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Abstract
Formal analogies between gravitational and acoustic or optical phenomena have been
a subject of study for over a century, leading to interesting scenarios for testing kine-
matic aspects of general relativity in terrestrial laboratories. Here, some aspects about
analog models of gravity obtained from the description of these two dierent kind of sys-
tems are analysed. First, light propagation in linear magnetoeletric media is examined.
In particular, it is shown that this eect produces mixed time-space terms in the eective
metric that depend only on the antisymmetric part of the generally non-symmetric mag-
netoelectric coecient. Furthermore, the dispersion relation related to the linear eect
motivates the analysis of an idealised exact model presenting an analog event horizon.
Then, a short discussion comparing dierent ways of constructing analog models is pro-
vided. Subsequently, motivated by the results obtained in the optical context, we make a
bibliographic review about those analog models obtained from moving media, establishing
an equivalence between the propagation of acoustic perturbations in such a background
and the propagation of free scalar elds near a Schwarschild black hole. This last aspect
drives us to analyse the particle production in this scenario, a result that was rst ad-
dressed by Stephen Hawking [1, 2], which yields to the the description of the so called
Hawking radiation. When treating a non-stationary spacetime, particularly those present-
ing a gravitational collapse, we can extend the description of quantum elds to curved
spacetimes by splitting the metric into two asymptotically stationary regions, with that
we show that the presence of the horizon is fundamental for the creation of particles. Fi-
nally, it is also shown that the thermal distribution of this particle emission is identical to
the Planck distribution for bosons, and because of that the Hawking temperature appears
to be very small when we consider astrophysical scenarios.

Key-words: Linear magnetoeletrics, Analogue event horizon, Acoustic black holes, Quan-
tum eld theory in curved spacetime, Hawking radiation.
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Introduction

analogue models of General Relativity (GR) solutions have been a subject of in-
vestigation since the beginning of the 20th century, when Gordon originally studied light
propagation in material media and reinterpreted the refractive index of a medium by
means of an eective geometric description [3]. Throughout the years, the possibility of
creating analogs for GR spacetime geometries in laboratory was extensively studied not
only in the realm of electromagnetism [4, 5, 6, 7], but also in the context of acoustic waves
and condensed matter systems [8, 9]. Models containing an event horizon in Bose-Einstein
condensates have also been frequently examined [10, 11], which includes the analysis of
analogue Hawking’s radiation phenomenon. In addition, analogue models seem to be an
interesting tool to test GR metric solutions related to controversial predictions, such as
those containing closed time-like curves [12, 13] (even though quantum physics suggests
that such possibilities are forbidden [14, 15]).

Solutions for the propagation of a light ray in a material medium are obtained from
Maxwell’s equations together with certain constitutive relations. Such relations depend on
each specic medium and are related to the way the material is polarized or magnetized
by means of external applied elds. The fundamental equation governing the propagation
of the light rays is the dispersion relation connecting the wavevector to the frequency of
the propagating wave. From this relation, formal analogies between light propagating in
the optical material and in a curved spacetime can be established.

Recent advances in the science and technology of optical materials, which includes
magnetoelectrics [16, 17, 18, 19] and metamaterials [20], have opened a new window to in-
vestigate analogue models based on electromagnetism. In particular, in a magnetoelectric
material, the polarization phenomenon can be induced by a magnetic eld, and magne-
tization can be induced by an electric eld, or both together. In this project we begin
by investigating some aspects of analogue models based on light propagation in material
media, with particular interest in linear magnetoelectric media. The analysis is restricted
to the regime of lossless and dispersionless systems, which consist of materials whose
delay in their response to external electromagnetic perturbations is negligible. It is as-
sumed that the total electromagnetic elds can be split in two contributions: a strong and
slowly varying part, mainly responsible for activating the polarization and magnetization
of the material, and a weak and rapidly varying eld, which is the one that propagates
in the medium. analogue models based on materials whose magnetoelectric coecient is
generally non-symmetric are thus constructed and eective geometries describing curved
spacetimes are obtained. In particular, metrics with nonzero time-space components, 0,
are investigated. Motivated by the behavior of light rays in a model based on a linear
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magnetoelectric system, an idealized toy model exhibiting an analogue event horizon is
discussed.

We also investigate analogue models obtained from uid motion, which are directly
related to the Hawking radiation eect. Since the rst description of the evaporation
process of black holes made by Stephen Hawking [1, 2], acoustic black holes became
an eervescent area of investigation. Beginning with the early studies of Unruh about
experiments measuring Hawking radiation in the laboratory [21], many other theoretical
studies have been done about this issue [22, 23], together with its experimental analysis
[24]. The diculty of measuring this phenomenon in astrophysical scenarios led us to
many attempts of constructing “analogue black holes”. The fundamental aspect behind
the so called “analogue models” is to establish an equivalence between the propagation of
perturbations near astrophysical structures, as for instance, black holes (but also spinning
strings, wormholes, etc), and the propagation of sound waves or light rays in uids or
optical materials, respectively. The comparison in uid motion is done between sound
waves in acoustic systems and quantum elds propagating near a Schwarzschild black
hole. Among the subjects addressed in this project are the analogue models constructed
with acoustic systems, with particular interest in the relationship between them and
Hawking radiation. We analyse the behavior of linear perturbations in a homentropic and
irrotational ow, and with that we establish the connection with a massless scalar eld
propagating freely near a Schwarzschild black hole, written in a special set of coordinates,
called Painlevè-Gullstrand (PG) coordinates [25, 26]. Henceforth, we turn our attention to
the quantum aspects involving these systems, which leads to the description, by means of
the tools of Quantum Field Theory (QFT) in curved spacetimes, of the Hawking radiation
eect.

In the next Chapter we analyse the analogue models obtained from light propa-
gation in linear magnetoelectric materials. In particular, the analysis based on rst-order
linear magnetoelectric eect leads to a dispersion relation that motivates the investiga-
tion of an exact model for which a variety of optical eects are present. Moreover, the
behavior of the light rays in such a hypothetical system anticipates the existence of an
analogue event horizon solution. analogue models based on linear magnetoelectric eects
are thus constructed. It is shown that, when only the rst order contribution to the eect
is considered, the solution for the phase velocity leads to an eective metric having mixed
time-space components, which includes stationary solutions of GR. Such mixed compo-
nents are essentially related to the magnetoelectric properties of the medium. In this case
it is shown that only the antisymmetric part of the magnetoelectric coecient  takes
place in the eective geometry, and it appears only in its mixed time-space sector. Ad-
ditionally, we examine a toy model for an optical event horizon based on the idealized
model.
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In Chap. 2 a selfcontented review on acoustic black holes is adressed. It is shown
for linear perturbations that the equations of motion (EOM) describing these perturbative
quantities can be written in a form identical to the d’Alembert equation for propagation
of a free massless scalar eld, by means of a background acoustic metric. Depending on
the uid motion one can construct a sonic event horizon, which behaves exactly like an
event horizon of a Schwarzschild black hole. In Chap. 3 we describe the particle produc-
tion in a simple system where the formation of the black hole is driven by collapse of
incoming radiation. Then, using tools of QFT in curved spacetimes, such as the Bogoli-
ubov transformation, we are able to describe the dierent eld modes, one related to
the Minkowski geometry (innite past region) and the other related to the Schwarzschild
black hole (innite future region). It is shown that the vacuum states of each region are
dierent, and this dierence yields a process of particle emission during the transition of
the metric. These particles are then shown to follow the Planck thermal distribution and
the Hawking temperature is derived. Finally, we discuss the results and the consequences
of the phenomenon of particle emission by a black hole, and how it is related to the
investigation of analogue models in a variety of contexts, such as optical materials and
Bose-Einstein condensates.

Throughout the text Greek indices ˓ ˓ ◁◁◁ run from 0 to 3 (spacetime indices)
while Latin indices ˓ ˓ ◁◁◁ run from 1 to 3 (the three spatial directions) and the Einstein
convention for sum is used, i.e., repeated indices in a monomial indicate summation.
Partial and covariant derivatives with respect to coordinate  is denoted, respectively, by
a comma and a semicolon followed by the corresponding  index. In Galilean coordinates,
the three-dimensional Levi-Civita symbol  is a completely antisymmetric object dened
by 123 = 1. The components of the identity matrix (the Kronecker delta) is represented
by  . Parentheses encompassing two indices mean symmetrization, whether or not those
indices belong to the same object. For instance, () = (1▷2) ( + ), for any rank-2
tensor  . Similarly, square brackets will be used to indicate antisymmetrization as, for
instance, [] = (1▷2) ( − ). Natural units  = 1 and  = 1 are used throughout the
text.
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1 Optical analog models

In this chapter we analysed the propagation of light rays through material me-
dia and show how it can be connected with an eective geometry. First, we present a
review on how to construct analog models based on the propagation of light rays in a
material medium. We follow then with a method proposed by Hadamard [27] for the de-
scription of such phenomena. Furthermore, we restrict ourselves to the analysis of a linear
magnetoelectric media from which we obtain the analog model.

1.1 Eective geometry
As it is well known from classic electrodynamics, a monochromatic light wave

of angular frequency  and wave vector ⃗, propagating in vacuum, is described by the
dispersion relation 2 = 0, i.e.,

 = 0˓

where we dened the wave 4-vector  ◁= (˓−⃗ ), such that 2 = 2 − 2, with  = ‖⃗ ‖.
In other words,  is a null-like vector in the Minkowski spacetime whose metric is  .
In a curved spacetime the metric will be a solution of GR, and the wave vector will still
be a null vector, but now in the curved metric, i.e., (GR) = 0.

In an optical material the dispersion relation is a bit more elaborated. New terms
related to specic optical properties of the medium are added in such a way that the
dispersion relations generalizes to ( + ) = 0, where  is related to the sus-
ceptibilities coecients of the medium and possibly to external elds that couple to such
coecients, as it is the case for nonlinear materials. As a consequence, the magnitude
of the phase velocity of light in a material medium will be generally dependent on its
optical susceptibilities, the applied elds and also the direction of wave propagation. This
expression can be presented in the suggestive form,

̄ = 0˓ (1.1)

where it was dened the rank-2 tensor eld ̄ =  +  .

Let us dene a new tensor eld  as the inverse of ̄ such that

̄ =  ◁ (1.2)

It is worth emphasising that the background metric is the Minkowski one,  . In this
sense, a covariant tensor ̄ associated with ̄ is obtained by means of  as ̄ =
 ̄

. Thus,  and ̄ are generally quite dierent objects. They will coincide only
when light is propagating in the Minkowski empty space.
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It can be shown [28, 29, 30] that Eq. (1.1) allows an interpretation that  ,
whose inverse is ̄ , is in fact an eective metric for the wave 4-vector . Thus, light
propagation in material media is equivalent to light propagation in curved spacetimes,
and formal analogies between these two dierent scenarios are possible. For completeness
and future reference, this result [29] shall be revisited below in details.

We start by taking the derivative of Eq. (1.1) with respect to the coordinate  ,
yielding

̄ ˓  + 2̄˓ = 0˓ (1.3)

where it was used the fact that the wave 4-vector  is a gradient eld, i.e.,  = Φ,
where Φ is the phase of the elds, which implies that ˓ = ˓. Now, taking the derivative
of Eq. (1.2) with respect to  , one gets ̄ ˓ = −˓ ̄ , which, after contraction
with ̄, results in,

̄ ˓ =− ̄˓ ̄

=− ̄ ̄(˓ + ˓ − ˓)◁

Returning this result in Eq. (1.3) and conveniently reorganizing the indices and using the
symmetry of ̄ , one obtains

̄

˓ − Γ


= 0˓ (1.4)

where we have dened the contravariant vector ̄ ◁= ̄ , and also

Γ
◁= 1
2 ̄

 (˓ + ˓ − ˓) ◁

Looking at Eq. (1.4), it is clearly seen that, if  is regarded as a metric, the expression
between brackets should be identied with the covariant derivative of the wave vector,
i.e.,

; = ˓ − Γ◁

In other words, whenever the wave vector  is considered,  eectively works as a
curved spacetime metric, whose inverse is given by means of Eq. (1.2). So, Γ

 holds for
the connection coecients associated to this eective metric, which is indeed experienced
by the wave vector in an optical medium.

With the above denitions, Eq. (1.4) reads ̄; = 0. Multiplying this equation
by ̄ and using the identity ̄˓ = ̄˓ + ̄̄˓, straightforward calculations
lead to

̄

̄˓ + Γ̄


= 0◁

Finally, identifying the covariant derivative of ̄ with respect to the eective metric,

̄ ; = ̄˓ + Γ̄˓
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results,

̄̄ ; = 0◁ (1.5)

Notice that Eq. (1.5) is the geodesic equation in the spacetime described by the
geometry  and it clearly shows that  is a null vector in the eective geometry  .
Thus, a light ray propagating in a material medium shows complete analogy with a light
ray propagating in an empty, but curved spacetime, which may be a solution of general
relativity. This is a mathematical equivalence that holds as far as kinematic aspects of
GR are considered.

Additionally, as ̄ is a tangent vector along a curve  that describes the path
of light, we may set ̄ = ▷, where  is an ane parameter along . In this way,
Eq. (1.5) takes the canonical form

2

2
+ Γ








= 0◁

It is worth emphasizing that all the above results did not make use of  as the
spacetime metric. It is just an eective one that is experienced only by the wave vector.
The true background metric of the spacetime is still the Minkowski one  .

1.2 Wave propagation in optical materials
The Maxwell’s equations, which govern electrodynamics in a material medium, are

given by
∇ · ⃗ = ▷0˓ ∇ · ⃗ = 0˓ (1.6)

∇× ⃗ = −⃗

˓ ∇× ⃗ = 00

⃗


+ 0⃗ ˓ (1.7)

where the source terms are of the form

 =  +  =  −∇ · ⃗ ˓

⃗ = ⃗ + ⃗ + ⃗ = ⃗ + ⃗


+∇× ⃗˓

(1.8)

and the indeces  ,  and  indicate, respectively, free sources, polarization sources and
magnetization sources. Still, one can rewrite Eqs. (1.6) e (1.7) as

∇ · ⃗ =  ˓ ∇ · ⃗ = 0˓ (1.9)

∇× ⃗ = −⃗

˓ ∇× ⃗ = ⃗


+ ⃗ ˓ (1.10)
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where ⃗ is the displacement vector and ⃗ is the induced magnetic eld, given by

⃗ = 0⃗ + ⃗ ˓ (1.11)

⃗ = ⃗

0
− ⃗◁ (1.12)

Moreover, one can build the constitutive relations between the fundamental and induced
elds, using general permeability and permittivity coecients, which characterize the
medium. In components, these equations are given by

 =  + ̃˓ (1.13)
 = 

(−1)
  + ̃(−1)

  ˓ (1.14)

where ̃ and ̃(−1)
 are coupled terms, i.e., in materials presenting these properties, the

magnetic eld induces polarization and the electric eld induces magnetization.

1.2.1 Step method
The method we use here to describe the light propagation in material media is the

step method, presented by J. Haddamard in 1903, which makes use of the constitutive
relations, (1.13) and (1.14), together with boundary analysis [27]. This will be analysed
in what follows.

First, we dene a hypersurface Λ, given by  (˓ ⃗) = 0. This divides the spacetime
into two regions, which we will call + and −, which represent, respectively, the set of
points inside the hypersurface (− ∈  (˓ ⃗) < 0) and outside of it (+ ∈  (˓ ⃗) > 0).
These regions are evidently disjoint, i.e., + ∩− = {∅}. The discontinuity of a function
 (˓ ⃗) at a point  on the boundary of Λ is given by

[ (˓ ⃗)]Λ
◁= lim
±→

[
(+)− (−)

]
◁ (1.15)

The electromagnetic elds must be smooth functions on + and − and continuous along
Λ. However, the same cannot be said with respect to their rst derivatives. In fact, the
discontinuities of each eld at its respective derivative are given by [27]

[
⃗
]
Λ
= 0˓

[
⃗
]
Λ
= 0˓ (1.16)

[]Λ = ˓ []Λ = ˓ (1.17)

[ ]Λ = − ˓ []Λ = − ˓ (1.18)

where  and  are the components of the wave polarization vectors, related to the deriva-
tives of the elds in Λ, of the form ⃗ =

[
⃗▷

]
Λ
and ⃗ =

[
⃗▷

]
Λ
, and the terms 
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and  are the angular frequency and the i-th component of the wave vector, respectively.
Notice that this method is equivalent to considering the elds of a plane wave described
by  = exp [− (⃗ · ⃗− )]  and  = exp [− (⃗ · ⃗− )] .

Let us now consider Maxwell’s equations in the absence of sources using indices,

 = 0˓  = 0˓ (1.19)
 = −˓  = ◁ (1.20)

Considering the discontinuity in the Ampère-Maxwell law, and using the constitutive
relations Eq. (1.13) and Eq. (1.14), one obtains

[




(−1)
  + ̃(−1)

 

]
Λ
= [ ( + ̃)]Λ ˓ (1.21)

and, through the chain rule,



⎧
⎨
⎩


(−1)




[]Σ +


(−1)




[]Σ + (−1)
 []Σ +

+̃
(−1)




[]Σ +
̃

(−1)




[]Σ + ̃(−1)
 []Σ

⎫
⎬
⎭ =

= 


[]Σ +



[]Σ +  [ ]Σ +

+ ̃


[]Σ +
̃


[]Σ + ̃ [ ]Σ ◁

(1.22)

Using Eqs. (1.16 - 1.18) for eld discontinuities, the above equation can be rewritten as

−
⎡
⎣
⎛
⎝

(−1)




 +
̃

(−1)






⎞
⎠  +

⎛
⎝

(−1)




 +
̃

(−1)






⎞
⎠ +

+ (−1)
  + ̃(−1)

 

⎤
⎦

= 

⎡
⎣
(



 +
̃




)
 +

(



 +
̃




)
+

+  + ̃

⎤
⎦◁

(1.23)

In the rst two terms of the square brackets on the right side of the above equation, the
index  is muted. Let us relabel it to . We will do the same with the index  in the last
two terms of the same square brackets and with the index  in the last two terms of the
left-hand square brackets. Therefore, one obtains in the compact form,

 1

̃ + 


 +

 1

 + ̃


 = 0˓ (1.24)

where we dened the following tensors

̃ = 
(−1)




 +
̃

(−1)




 + ̃(−1)
 ˓ (1.25)
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 = 
(−1)




 +
̃

(−1)




 + (−1)
 ˓ (1.26)

 = 


 +
̃


 + ˓ (1.27)

̃ = 


 +
̃


 + ̃◁ (1.28)

Now, from Faraday’s Law in Eq. (1.20) one gets

 []Σ = − []Σ ˓ (1.29)

then, from the eld discontinuity denitions,

 =


◁ (1.30)

Substituting the above term in the Eq. (1.24), one obtains, after rearranging some indexes

[
̃ + 2 +  + ̃

]
 = 0˓ (1.31)

where we use that  =  , in which  is the unit j-th component of the wave vector,
and ▷ = , where  is the phase velocity of the wave. The above equation denes an
eigenvalue problem, which can be written in the form

 = 0˓ (1.32)

where  denotes the elements of the Fresnel matrix


◁= 

2 +

̃ + ̃


 + ◁ (1.33)

Non-trivial solutions of Eq. (1.32) are found via the generalized Fresnel equation,
det || = 0, where || is the matrix whose elements are given by the above equation.
One of the methods to solve this equation is the use of Cayley-Hamilton theorem [31, 32],
as follows

|| = 2(1)3 − 312 + 23 = 0˓ (1.34)

where 1
◁= , 2

◁=  and 3
◁= . The dispersion relation derived from Eq.

(1.34) describes the propagation of light rays in material media. In principle, one could
get more than one eective metric associated with the optical medium, depending on
the behavior of light propagating through it, for instance, in birefringent materials there
are two dierent solutions for the phase velocities, called ordinary and extraordinary ray
solutions, and there will be also dierent eective geometries related to each of them.
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1.2.2 Linear magnetoeletric material
The main subject of this section is to investigate light propagation in a linear mag-

netoelectric material. Throughout this section 3-dimensional component notation is used,
with the metric of the three-space in Galilean coordinates coinciding with the Kronecker
delta  . So, without losing generality, we keep all indices at just one (lower) level, and
Einstein’s summation convention over repeated indices still applies.

When electric  and magnetic  elds are applied over an optical medium having
magnetoelectric properties, polarization and magnetization phenomena may occur in such
a way that both elds can contribute to both eects. If we restrict our analysis to the
linear eects, the polarization () and the magnetization () vectors will be given by,

 = 0(1)
  +  ˓

0 =0̃(1)
  +  ˓

where spontaneous eects are not being considered. Here,  represents the linear magne-
toelectric coecients, and it is assumed that the linear electric and magnetic susceptibility
sectors are isotropic, in such a way that (1)

 =  and ̃(1)
 = ̃ , respectively. In this

case, the constitutive relations connecting the auxiliary elds to the fundamental electric
and magnetic elds, can be conveniently written as

 =  +  ˓ (1.35)
 =  +  ˓ (1.36)

where it was dened the isotropic electric permittivity,  = 0(1 + ), and magnetic
permeability,  = 0(1 + ̃), coecients. Let us rewrite these relations for the induced
elds, as

 = ( − −1) + −1 ˓ (1.37)
 = −1 − −1 ◁ (1.38)

Comparing these equations with Eqs. (1.13) and (1.14), one obtains that the optical
coecients are given by

 =  − −1˓ (1.39)

(−1)
 = −1 ˓ (1.40)
̃ = −1 ˓ (1.41)
̃
(−1)
 = −−1◁ (1.42)

Plugging these parameters into Eq. (1.33), one obtains

 =( − ) 2 + 2() −  ˓ (1.43)
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where we dened the projector orthogonal to the wave vector,  ◁=  −  . Solving
det = 0 up to rst order in  one nds the solutions for the magnitude of the phase
velocity,

± = ± − 2˓ (1.44)

where we dene 2
◁= ()−1, and


◁= 

2 ◁

In this result we have discarded higher order contributions to . For later reference, it is
worth writing this vector more explicitly in terms of its Cartesian components as

⃗ = ([23]˓ [31]˓ [12])◁ (1.45)

Notice that only the antisymmetric part of the linear magnetoelectric coecient  con-
tributes to the result in Eq. (1.44). Additionally, it should be mentioned that this solution
describes an extraordinary light ray, in the sense that it depends on the direction of wave
propagation. In the absence of magnetoelectric eect ( = 0), the phase velocity reduces
to an ordinary light-ray solution, whose velocity is , as expected.

Furthermore, one can see that the system presents a nonreciprocal behavior, i.e.,
the two possible solutions describe waves that propagate in opposite directions with dif-
ferent velocities. Notice that this anisotropy is due to the coupling of  to the direction
of wave propagation. Additionally, one could consider the eect of assuming the mag-
netoelectric coecients as functions of position, so that the magnitude of the light-ray
velocity would change along its path through the medium. Such assumption requires a
consistency analysis about the obtained wave solutions. For a moment, let us assume a
general dependence of these coecients on the coordinate . In this case, it can be shown
that considering () in Eqs. (1.35) and (1.38),

 −



 [()]

(⃗·⃗−) = 0˓ (1.46)

where  is the total eld given by  + 0 and  is given by Eq. (1.43). In order to
maintain the previous results, one should guarantee that the second term in Eq. (1.46)
does not contribute to the eect. If we consider a model in which  vary suciently slowly
with the coordinate , these terms could be neglected and the consistency of the previous
analysis is guaranteed. The behavior of the two phase velocities given by Eq. (1.44) are
illustratively depicted in Fig. 1. Bottom (up) row of arrows symbolizes the behavior of
the + (−) mode, as indicated. Notice that the magnitude of the velocity changes as the
light ray propagates through the material. In particular, for the chosen model, the mode
+ is an increasing function of , while mode − is a decreasing function of .

Motivated by the previous analysis, we now investigate the idealised model for
which the phase velocity given by Eq. (1.44) is assumed to be an exact solution, in the
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z

v+

v

Fig. 1 – Propagation in  direction of monochromatic waves in an optical material whose magnetoelectric co-
ecient depends on the coordinate . Solid and dashed arrows represent the positive and negative
solutions, respectively. Their sizes are related to the magnitude of the corresponding phase velocity,
given by Eq. (1.44). In this case we set  as a decreasing functon of .

sense that  does not necessarily represent a small contribution, but could be as larger in
magnitude as . In such case,  should be understood as a more general quantity which
would not be especially related to the magnetoelectric eect, because other eects could
also contribute to this result, including those depending on external elds. In fact, such a
conguration can only be conceived in the realm of metamaterials. We will not be worried
here about the derivation of these idealised constitutive relations behind such dispersion
relation, but only about its physical consequences.

Let us set the propagation in the  direction, and study the behavior of light rays
in such hypothetical material. In this particular case, the two possible solutions for the
phase velocity described by Eq. (1.44) reduce to

+ = − + ˓ (1.47)
− = −− ˓ (1.48)

where  ◁= 2[12].

In order to exhibit a specic model presenting a transition in the behavior of light
propagation, for which the coecient  become bigger than 0 at a certain point, we
consider that this system can be constructed in such a way to allow  to be a function of
. Suppose that at some region, for instance  < ℎ,  > 0. Therefore, for this region one
has that  >  and both solutions for ± are negative, while in the region  > ℎ solutions
propagating in both directions are allowed. These aspects are illustratively depicted in
Fig. 2. Solutions of light rays propagating to the right cannot exist in the region given by
 < ℎ, since their velocities are negative due to the inuence of this idealised optical eect.
It is interesting to notice that in such region, birefringence occurs, as there will be two
modes propagating in a same direction, but with dierent phase velocities. Furthermore,
this region ( < ℎ) is a sort of one-way system, as there will be no solution propagating to
the right. On the other hand, there is no birefringence in the region given by  > ℎ. In this
region the two solutions correspond to rays propagating in opposite directions. However,
these solutions correspond to quite dierent phase velocities, which makes the propagation
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Fig. 2 – Propagation of monochromatic waves in a material whose optical coecient depends on the coordinate
. Solid and dashed arrows represent the two possible solutions described by Eqs. (1.47) and (1.48),
respectively. Their sizes are related to the magnitude of the corresponding phase velocities. The vertical
line represents the transition, that is located at  = ℎ.

in this region ( > ℎ) non-symmetric under space reversion. Another interesting aspect
is that the region nearby the transition ( ≈ ℎ) is a sort of slow light region for the mode
described by Eq. (1.47). Its phase velocity is exactly zero at  = ℎ and increases as it
moves away from this region. The very dependence of the magnitude of the velocity with
the distance to the transition point is certainly dependent on the chosen model, such as
the particular one set by Eq. (3.29), but the fact that its velocity must be zero at ℎ and
near zero in its immediate vicinity, is not dependent on the specic model, but it is a
consequence of the presence of the transition.

It is straightforward to think of such optical behavior as an analog event horizon,
in the sense that the point of transition splits the medium into two domains in which one
of them only allows propagation in one direction. This correspondence will be investigated
in the next section, where the eective metric produced by such a hypothetical optical
system is examined.

1.3 Analogue models
In this section we obtain the analog model for both media analysed before. Firstly,

we investigate the eective metric corresponding to the approximated linear magnetoelet-
ric model. Finally we consider the idealised hypothetical model and through its dispersion
relation we obtained the metric, which turns out to be related with light propagation near
a Schwarzschild black hole.

1.3.1 Linear magnetoelectric model
Let us now examine the possible analog models based on a linear magnetoelectric

medium. Hereafter we assume the background spacetime as described by the Minkowski
metric, which, in Cartesian coordinates read  = diag(1˓−1˓−1˓−1). The electric and
magnetic four-vectors are dened, respectively, by  = (0˓ ⃗) and  = (0˓ ⃗). We
introduce the 4-vector   representing the velocity eld of an observer relative to the
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optical material through which light is propagating. In the case of our interest the observer
will always be at the rest frame of the optical material, i.e.,   = 0 . In terms of such
velocity eld,  = 

. Furthermore, as 2 = 
 = 2 − 2, it follows that 2 =

−ℎ , where the projector in the three-dimensional space section was dened as

ℎ =  −    ˓

such that ℎ  = 0 and ℎℎ = ℎ . We thus conveniently dene the four-vector

 = ℎ =  −   = (0˓ ⃗)◁

Notice that  = −2. Finally, we dene the four-vector  = (0˓ ⃗), where ⃗ is dened
by Eq. (1.45).

Let us examine the possible models based on the solution given in Eq. (1.44).
Squaring the phase velocity solution, and keeping only rst order terms in magnetoelectric
coecients, one obtains that

2 − 22 = 2
2◁

Or yet, as 2 = −2 + 2, this equation can be recast in the convenient form
[
   + 2ℎ − 22( )

]
 = 0◁

Now, one can identify, as in Eq. (1.1),

̃ =  −
(
1− 1

2

)
   − 2( )˓

whose inverse  is identied as the eective geometry,

 =  −

1− 2


 + 22()◁ (1.49)

Separating this metric into components, for each sector, one has (up to a global factor 2)

00 = 1˓ (1.50)

0 = −1
2

˓ (1.51)

 =
1
2
 ◁ (1.52)

The class of metrics described by this solution exhibits nonzero mixed terms, 0, as
expected. As it can be seen, the linear magnetoelectric coecient  activates this term
in the eective metric, and only its antisymmetric part contributes to it.
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1.3.2 A toy model for an optical horizon
Let us now investigate the exact model based on the assumption that there might

be a meta-medium for which the dispersion relation leading to Eq. (1.44) is exact. Notice
that such a hypothetical system is not restricted to be a linear magnetoelectric mate-
rial. In this case the dispersion relation is given by (using the four-dimensional notation
introduced in Sec. 1.3.1),

2 − 22 + 4 − 22 = 0◁

Thus, one can conveniently rewrite this expression as ̃ = 0, where we dene the
eective metric

̃ =  −
(
1− 1

2

)
   − 2( ) + 2 ◁

The optical geometry is then given by the inverse of this metric, namely

 =  −

1− 2 + 42


 + 22()

where 2 = −.

The line element for a light ray propagating in  direction is

2 = (2 − 42)2 − 223− 2 = 0◁ (1.53)

This line element is similar to the one describing radial propagation in the Schwarzchild
metric, when written in PG coordinates [25],

2 =

1− 2




2 − 2

√
2

− 2◁

In order to investigate this resemblance closer, let us choose a specic system for which
 = 3. Thus, Eq. (1.53) reduces to

2 = (1− 22)()2 − 2()− 2◁

In the above expression,  = 1▷√ plays the role of the speed of light in vacuum in
PG line element ( = 1▷√00 = 1 in natural units here adopted), and it corresponds
to the velocity of an ordinary light ray in the absence of the -coupling. Comparing this
result with PG metric one sees that the term 2

2, which encodes the hypothetical optical
eect, plays the role of the term 2▷, which is related to the black hole mass. A similar
behavior is also known to occur in acoustic black holes [21, 22, 23], where perturbations
propagating in a moving uid are trapped in a sort of acoustic horizon.

The above results suggest that natural or articial optical systems provide possible
scenarios to the investigation of kinematic aspects of solutions of general relativity. The
above idealised model consists in an optical analog for Schwarzschild spacetime, but other
solutions, including cosmological ones, could also be conceived in a similar way.
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2 Acoustic analogue models

In this chapter we analyse the equivalence between acoustic waves propagating in
a uid and the propagation of a massless scalar eld near a Schwarzschild black hole. It
is shown that by considering linear perturbation in the functions describing the uid, the
EOM of the second order terms can be written in terms of an acoustic metric.

2.1 Fluid Action
Consider a uid presenting an irrotational and homentropic ow1, such that ⃗ ∝

∇, where ⃗ is the uid velocity and  is the velocity eld, and  =  (), where  is
the pressure and  the density. In the abscence of external forces the ow action is given
by [33]

 = −
∫
4


̇ + 1

2 (∇)
2 +  ()


˓ (2.1)

where () is the internal energy density.

Let us then use the principle of least action and vary the action with respect to 
and . For 

 = [ + ˓ ̇ + ˙˓ ]− [˓ ̇˓ ] = 0◁ (2.2)

Expanding and maintaining only rst order terms in the variation , one obtains that
∫
4






() + ∇ ·∇()


= 0◁ (2.3)

Now, performing integration by parts in both terms of the above integral and recalling
that  vanishes at the limits of integration, the above equation reduces to

∫
4 [̇+∇ · (⃗)]  = 0˓ (2.4)

and since  is an arbitrary variation, one nds the continuity equation

̇+∇ · (⃗) = 0◁ (2.5)

Analogously, the variation with respect to  leads to the Bernoulli equation, namely

̇ + 1
2

2 + () = 0˓ (2.6)

where () = (▷). Finally, let us take the gradient of the Bernoulli equation, as
follows

˙⃗
 + (⃗ ·∇)⃗ +∇[()] = 0˓ (2.7)

1 An homentropic ow has uniform and constant entropy, which makes it isentropic, but with the
additional feature that every particle has the same level of entropy.
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where we used that the spatial and time derivatives commute, and the vectorial calculus
identity

∇(⃗ · ⃗) = (⃗ ·∇)⃗+ (⃗ ·∇)⃗+ ⃗× (∇× ⃗) + ⃗× (∇× ⃗)◁

Furthermore, the last term in Eq. (2.7) can be written as

∇ = 1

(∇) = 1


[∇()− ∇] ◁

thus, using integral by parts

∇ = 1



∇

∫
+ 


− ∇


= 1

∇

∫



= 1

∇◁ (2.8)

where the pressure is dened as  =

. Substituing this in Eq. (2.7), one nds the

Euler equation given by
˙⃗ + (⃗ ·∇)⃗ + 1


∇ = 0◁ (2.9)

To nish this section it is worth analysing the symmetries of the action (2.1). The
action is invariant under translations, such as

⎧
⎪⎨
⎪⎩
() → ( − )˓
() → ( − )˓

and the conservation law related with this invariance is, by means of Noether’s theorem,
given by

() + 

()()− 


̇ + 1

2(∇)
2 + ()


= 0◁ (2.10)

One can still simplify this relation by using the denition of the pressure, as follows

 =
∫
 =

∫
()−

∫
 = − ˓

thus with the Bernoulli equation, in Eq. (2.6), one obtains that [34]

− = ̇ + 1
2(∇)

2 + ()◁ (2.11)

Hence, Eq. (2.10) reduces to the momentum conservation law

() + Π = 0˓ (2.12)

where Π = ()() +  is the momentum ux tensor.

2.2 Acoustic metric
In order to analyse the propagation of perturbations in the uid, let us split the

characteristic functions into two parts: the background (mean ow), described by 0 and
0, and the uctuations, described by that 1 and 1, such that  = 0+1 and  = 0+1.
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Up to second order contributions in the uctuations, the action in Eq. (2.1) is
written as

 = 0 −
∫
4

(
0̇1 + 1̇0 + 0∇1 ·∇0 +

1
21(∇0)2 + 1





⃒⃒
⃒⃒
0

)
−

−
∫
4

(
1̇1 + 1∇0 ·∇1 +

1
20(∇1)2 +

21
2
2

2

⃒⃒
⃒⃒
0

)
◁

(2.13)

Let us collect the linear terms in uctuations. Using integration by parts, together with
the fact that the elds vanish at the innity, one obtains

1 =
∫
4


1

(
̇0 +

1
2(∇0)2 +





⃒⃒
⃒⃒
0

)
− 1 (̇0 +∇(0∇0))


◁ (2.14)

The equation associated with 1 is just the 0 EOM for the unperturbed action and the
one multiplied by 1 is the continuity equation. Therefore, the linear contributions vanish
entirely (1 = 0). The remaining action takes the form

 = 0 + 2˓ (2.15)

where the action describing the propagation of linear perturbations in the uid is given
by

2 = −
∫
4

(
1̇1 + 1∇0 ·∇1 +

1
20(∇1)2 +

2
20

21

)
˓ (2.16)

in which  is the speed of sound dened by 2 = 


⃒⃒
⃒⃒
0
.

Since there are time derivative terms of 1 in the above equation, the EOM for
this quantity is straightforward given by

̇1 +∇0 ·∇1 +
2
0
1 = 0◁ (2.17)

From that, one can write 1 in terms of 1 and obtain that the action will reduce to

2 = −
∫
4


1
2

2
0 −

0
22


̇1 + ⃗0 ·∇1

2

◁ (2.18)

Thus, the EOM for 1 will be given, in its general form, by

−

0
22

( + ⃗0 ·∇1)

+∇ ·

{
⃗0


−0
2

(1 + ⃗0 ·∇1)

+ 0∇1

}
= 0◁ (2.19)

Now, one can write the EOM for 1 in a four-dimensional notation, as follows

(1) = 0˓ (2.20)

where we have dened


◁= 0
2

⎛
⎝−1 −⃗0T

−⃗0 2 − 00

⎞
⎠ ◁ (2.21)
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One can also write this tensor as  = √− , where


◁= 1
0

⎛
⎝−1 −⃗0T

−⃗0 2 − 00

⎞
⎠ ˓ (2.22)

and √− = 20▷. Then, let us introduce the “acoustic metric“, given by the inverse of
 , as


◁= 0


⎛
⎝−(2 − 20) −⃗0T

−⃗0 3×3

⎞
⎠ ˓ (2.23)

where 3×3 is the identity matrix. Henceforth, one can directly see that the equality after
Eq. (2.21) holds for  = det (), as we expected.

Therefore, Eq. (2.20) can be written as the d’Alembert equation in curved space-
time [21],

1√−(
√−1) = 1 = 0◁ (2.24)

Thus, the action for the uctuations reduces to

2 = −1
2

∫
4

√−11◁ (2.25)

This is nothing but the action for the massless scalar eld, minimally coupled with the
gravitational eld, propagating freely in a curved metric.

Finally, one can write the line element associated with the acoustic metric by
means of Eq. (2.23) as follows

2 = 
 = 0



[
−(2 − 20)2 − 20+ 

]
◁ (2.26)

For propagation in only one direction, this line element is very similar to the one asso-
ciated with radial propagation in the Schwarzschild geometry, when written in the PG
coordinates [25].

2.2.1 Geodesics
Let us now show that the eld 1 follows geodesics of the acoustic metric  . We

start by considering a plane-wave solution for this eld, i.e.,

1 = ℛ{}˓ (2.27)

where  is a slowing varying amplitude and  is a rapidly changing real phase. Let us
introduce the gradient wave vector  = , which is orthogonal to the surface dened
by . Using Eq. (2.24) one nds,

() = −(− ) = 0˓ (2.28)
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taking the real part of the last equation and using the denition of the wave vector, one
obtains

 = 
 = 0˓ (2.29)

where we dened  = ▷, in which  is a parameter. This denes a tangent vector
along the curve dened by  and parametrized by . Henceforth,  is a null-like vector
and sound waves will propagate along null geodesics of the acoustic metric.

For three dimensions, using that the parameter  is the usual Newtonian time,
one gets


 = 








= 0



−(2 − 20)− 20




+ 










= 0˓ (2.30)

thus (
⃗


− ⃗0

)2

= 2 ˓

which implies that ⃒⃒
⃒⃒
⃒
⃗


− ⃗0

⃒⃒
⃒⃒
⃒ = ◁ (2.31)

This is the wave equation describing propagation of sound with velocity ⃗ in a moving
medium which moves with velocity ⃗0.

2.2.2 Pseudo energy-momentum tensor
From this point it is possible to derive two dierent energy momentum-tensors,

one using  (that is the Minkowski background in the Laboratory) and one using the
acoustic metric. For the latter, we will use the name “pseudo energy-momentum tensor“.
Calculations are done by means of the following equation

 = − 2√−




= 1√−
∫
4



√−


11 +
√− 11


◁

(2.32)

Let us now use the Jacobi’s formula to calculate the derivative of the metric determinant.
Consider a matrix , thus for a general variation operation, the Jacobi’s formula is given
by

(det) = det()Tr(−1)◁ (2.33)

Hence,
(
√−) = − 1

2√−  =
√−
2 Tr() = −

√−
2 ()˓ (2.34)

where we have used that  = − (see Appendix A). Hence, substituting this
in Eq. (2.32), one obtains the pseudo energy-momentum tensor as

 = −1
2

11 + 11◁ (2.35)
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In components we have

T00 = ̇1
2 − (2 − 20)

22

[
(̇2 +∇1 · ⃗0)2 − 2(∇1)2

]
˓ (2.36)

T0 = ̇11 −
0
22

[
(̇2 +∇1 · ⃗0)2 − 2(∇1)2

]
˓ (2.37)

T = 11 +

22

[
(̇2 +∇1 · ⃗0)2 − 2(∇1)2

]
◁ (2.38)

In Appendix A it is shown that this tensor satises the covariant form of the conservation
law, given by

T ; =
1√−(

√−T) + ΓT = 0˓ (2.39)

where Γ are the connection coecients dened, in terms of the acoustic metric, as

Γ = 1
2

(˓ +˓− ˓ )◁ (2.40)

If the uid and the background space are homogeneous, Γ
 vanish and the system

is symmetric under translation in one specic direction. In this case, the covariant conser-
vation law reduces to the conservation of the pseudo energy-momentum. However, since
in general Γ ̸= 0, Eqs. (2.39) describe the energy and momentum exchanging between
the sound waves and the mean ow [34].

2.3 Acoustic black holes
Let us now consider linear ows in, for instance, the  direction, i.e., ⃗0 = (0˓ 0˓ 0),

and restrict our analysis to the propagation of sound waves parallel to the uid ow, such
that, in Eq. (2.30),  =  = 0. Hence, the propagation will be described by

0


⎡
⎣−(2 − 20)− 20




+

(




)2
⎤
⎦ = 0◁ (2.41)

Now, if we suppose that the uid moves from right to left, i.e., 0 < 0, there will be
two possible solutions for the sound wave velocities, relative to the uid movement. The
downstream and upstream propagation are, respectively, given by




= 0 − ˓ (2.42)




= 0 + ◁ (2.43)

Notice that the downstream solution moves along with the ow, while the upstream
solution propagates against it, from left to right. If there is a point from where the ow
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velocity becomes greater than the speed of sound, the surface dened by |0| =  will split
the space into two dierent regions. The rst region is dened by |0| < . In this case the
solutions propagate in opposite directions, and the upstream waves, given by Eq. (2.43)
are able to propagate to the right (they are positive). In the region where |0| >  the
solutions propagate in the same direction, together with the main ow. Notice that the
upstream solutions become negative in this region, i.e., although they tend to propagate
from left to right, in the supersonic region they are dragged to the left due to the uid
motion. The surface previously mentioned characterizes the “sonic horizon”, in the sense
that from that point no sound wave can escape out of the supersonic region. This is
similar to the propagation of light near to a black hole event horizon, once the rays cross
the horizon they can never return. Therefore, this acoustic system mimetizes the geometry
of a black hole, and for that it is usually called “acoustic black hole” [21].

In terms of null coordinates, the upstream and downstream solutions will follow

− = 

(
−

∫


+ 

)
˓ (2.44)

+ = 

(
+

∫


− 

)
˓ (2.45)

where the null geodesics are characterized by − = , for the upstream propa-
gation, and + = , for the downstream propagation. This is indeed the same
behavior of light rays propagating along null geodesics of the Schwarzschild spacetime.
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3 Hawking radiation

In this chapter we derived the results obtained by Stephen Hawking [1, 2] in a
very simplied model, in which we consider only the collapse of an incoming radiation at
some specic instant of time. We begin with the quantization of a massless scalar eld in
a curved background and then apply the results for a spacetime given by the metric of
Vaidya [35]. Finally, we obtain the thermal spectrum and show that it corresponds to the
Planck distribution for bosons.

3.1 Scalar eld quantization
Consider the action describing the free propagation of a scalar eld in Minkowski

space given by
 = 1

2

∫
4(−22)◁ (3.1)

The EOM are given by



− 

(


()

)
= 0˓

which result in
(+2) = 0˓ (3.2)

where  = 
. Using a Legendre transformation, one obtains the correspondent Hamil-

toninan of the scalar eld,

 =
∫
3

(


()
− 

)
˓ (3.3)

which results in
 = 1

2

∫
3(2 + (∇)2 +2)˓ (3.4)

where  =  is the canonical conjugate momentum.

Now, in order to quantize the eld, let us promote the canonical functions to
operators

(˓ ⃗) → ̂(˓ ⃗)˓
(˓ ⃗) → ̂(˓ ⃗)˓

(3.5)

that satises the equal-time commutation relations
[
̂(˓ ⃗)˓ ̂(˓ ⃗′)

]
= 3(⃗− ⃗′)˓

[
̂(˓ ⃗)˓ ̂(˓ ⃗′)

]
=

[
̂(˓ ⃗)˓ ̂(˓ ⃗′)

]
= 0◁

(3.6)
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In order to nd solutions to the EOM, let us expand the eld ̂ in normal modes, as
follows

̂(˓ ⃗) =
∫
3⃗̂⃗()⃗(⃗)˓ (3.7)

where the function ⃗ is given by

⃗(⃗) = 
⃗·⃗˓ (3.8)

which corresponds to the plane-wave solution. Plugging this into Eq. (3.2) one obtains
that

2 ̂⃗ = −2̂⃗˓

∇2 = −2˓
(3.9)

where 2 = 2 +2. Solutions for the second equation are given by Eq. (3.8), while for
the rst one,

̂⃗() = ̂
(1)
⃗
− + ̂(2)

⃗
◁ (3.10)

Substituting Eqs. (3.8) and (3.10) in Eq. (3.7) one nds that, recalling the fact that ̂ is
a hermitian operator, ̂†

(1)
−⃗ = ̂

(2)
⃗
. With this, one can write the quantized eld ̂(˓ ⃗) in

the compact form
̂ =

∫
3⃗

[
̂⃗(˓ ⃗) + ̂

†
⃗
*(˓ ⃗)

]
˓ (3.11)

where we dene
(˓ ⃗) = 

−(−⃗·⃗)˓ (3.12)

in which  is an normalization constant. One can also write the canonical conjugate
momentum as

̂ = 
∫
3⃗

[
̂†
⃗
*(˓ ⃗)− ̂⃗(˓ ⃗)

]
◁ (3.13)

The denition in Eq. (3.11), in terms of the creation and annihilation operators,
must hold for the commutation relations given by Eqs. (3.6), such that

[
̂⃗˓ 

†
⃗′

]
= (⃗ − ⃗′)˓ (3.14)

and all the other commutators vanish.

Now, in order to evaluate the normalization constant in Eq. (3.12), let us substitute
Eqs. (3.11) and (3.13) in the rst commutation relation in Eq. (3.6), as follows

[
̂(˓ ⃗)˓ ̂(⃗′˓ )

]
=

∫
3⃗

∫
3⃗′() {′[ ̂⃗˓ ̂

†
⃗′
]− ′**[̂†

⃗′
˓ ̂⃗′ ]}◁

Thus, substituting the denition Eq. (3.12) in the above expression and using Eq. (3.14),
one nds [

̂(˓ ⃗)˓ ̂(⃗′˓ )
]
= 

∫
3⃗2 2


⃗(⃗−⃗′) = 3(⃗− ⃗′)◁ (3.15)
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Hence, using that the Dirac delta function is given by

3(⃗− ⃗′) =
∫
3⃗

1
(2)3 

⃗(⃗−⃗′)˓

one obtains that the normalization constant must be given by  = 1▷
√
163.

It is worth noticing that splitting the eld into normal modes yields operators
composed by positive and negative frequency solutions with respect to the Minkowskian
time, such that




⃗(˓ ⃗) = −⃗(˓ ⃗)◁ (3.16)

Furthermore, the Klein-Gordon (KG) product is given by

(˓ ) = −
∫
3⃗(* − *)◁ (3.17)

Therefore, the functions ⃗(˓ ⃗) form a complete orthonormal basis with respect to this
product.

Finally, the many-particle Fock space is built from the one-particle Hilbert space,
which is constructed with the positive frequency solutions dened previously. First, one
dene the vacuum state |0⟩, which is dened by means of the annihilation operator, as

̂⃗|0⟩ = 0◁ (3.18)

The one-particle states are dened by acting the creation operator in this vacuum state,
as follows

|1⃗⟩ = ̂†⃗|0⟩◁ (3.19)

Therefore, the many particle states are given by

|(1)
⃗1
˓ 

(2)
⃗2
˓ ◁◁◁˓ 

()
⃗
⟩ =


(1)!(2)!◁◁◁()!

(−1▷2)
(̂†⃗1)

(1)(̂†⃗2)
(2)
◁◁◁(̂†⃗)

() |0⟩˓ (3.20)

where ⃗1˓ ⃗2˓ ◁◁◁˓ ⃗ are dierent indices labeling the particle states.

3.2 Quantization in curved spacetimes
In this case, the lagrangian density is given by [36]

ℒ() = 1
2
√−

[
()()−22

]
◁ (3.21)

The EOM are given by

( +2)() = 0˓ (3.22)

where  = ∇∇ = (
√−)▷

√− (see Appendix ??).



Chapter 3. Hawking radiation 34

In general, the Klein-Gordon product is written as follows

(˓ ) = −
∫

Σ
Σ(* − *)˓ (3.23)

where the integral is performed in Σ, which is the Cauchy hypersurface dening the initial
data.

Dierent from the Minkowski quantization, here it is dicult to establish positive
and negative frequency solutions, as in general, the metric could change rapidly in time.
However, in stationary spacetimes we have a timelike vector eld  that denes the iso-
morphism of the spacetime metric  = 0, where  is an innitesimal transformation
generated by the vector  (as it appears in Appendix A). In this sense one could dene
the positive frequency solution given by

∇⃗ = −⃗˓ (3.24)

and with that be able to extend the denition of Fock space to curved spacetimes.

In what follows, we will be interested in collapsing spacetimes, and although it
seems that the previous analysis does not apply, one can still split the spacetime into
two asymptotically stationary regions, one in the asymptotic past, labeled by “in”, and
one in the asymptotic future, after the collapse, labeled by “out”. In order to analyse the
quantum states in these regions one needs to make use of the Bogoliubov transformations.

3.2.1 Bogoliubov transformations
Here we are going to consider the discrete problem instead of the continuous space

of possible normal modes. The only dierence is that we replace the integrals by sum-
mation and the continuous ⃗ values by discrete indeces. Considering two asymptotically
stationary regions, one has two possible expansions to the scalar eld ̂, one dened in
the asymptotic past, characterized by the script “in”, as follows

̂ =
∑




̂ 


 + ̂ †

*

˓ (3.25)

and the other dened in the asymptotic future, characterized by the script “out”,

̂ =
∑




̂  + ̂

†
*

◁ (3.26)

The orthonormal relations between the modes are given by

( ˓  ) =  ˓

( *˓ 
*) = − ˓

( ˓  *) = 0◁

(3.27)

The same applies for the “out” modes.
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Since each set of modes form a complete basis, one can be expanded in terms of
the other. In general one has [37]

 =
∑



( +  *)◁ (3.28)

These are called Bogoliubov transformations and  and  are the Bogoliubov coe-
cients. Taking this into account one can show, using the denitions in Eqs. (3.27), that

 = ( ˓  )˓ (3.29)

 = −( ˓ 
*)◁ (3.30)

In what follows, let us use the Einstein summation convention. Plugging Eq. (3.28) into
the Klein-Gordon products one can nd that

( ˓  ) =  = ( ˓ 

 + * )˓

so that
*
 − *

 =  ◁ (3.31)

Moreover,
( ˓ * ) = 0 = ( ˓ *


*
 + *



 )◁

Thus,
 −  = 0◁ (3.32)

In the above results we have used the property of the Klein-Gordon product, as follows

(1˓ 2 + 3) = −
∫
Σ(*1 *2 + *1 *3 − * *21 − * *31)˓

which results in
(1˓ 2 + 3) = *(1˓ 2) + *(1˓ 3)◁ (3.33)

Now, one can invert the relation in Eq. (3.28) and nds that

 = *



 − * ◁ (3.34)

One can also calculate the creation and annihilation operators in terms of KG products,
as follows

(̂˓  ) =

̂ 


 + ̂† * ˓ 


= ̂ ( ˓  )˓ (3.35)

using Eq. (3.27) one obtains
̂ = (̂˓  )◁ (3.36)

Analogously
̂ = (̂˓  )◁ (3.37)
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Using the denitions of ̂, from Eqs. (3.25, 3.26), one can write these operators in
terms of one another,

 =

̂  + ̂†



 * ˓ 



=
[
̂


 + ̂†


* ˓ 

]
˓

(3.38)

thus,
̂ =


̂


 + *

̂
†



◁ (3.39)

Analogously,
̂ =


*
̂


 − *

̂
†



◁ (3.40)

In general, the vacuum states at each region are dierent, dened as

̂ |⟩ = 0˓ (3.41)

̂ |⟩ = 0◁ (3.42)

Therefore, the Fock spaces of  and  are not the same. Take for instance

̂ |⟩ = *
̂

†
 |⟩ = *

|1 ⟩ ̸= 0◁ (3.43)

If the coecients  vanish, the vacuum state remains unchanged as the metric evolves.

Since, in general, the  coecients do not vanish, there will be a particle content
related to the previous vacuum state |⟩, in the “out” region. In order to investigate that,
let us calculate the number of modes  in the state |⟩, evaluated by means of the
“in” particle number operator,  

 = ̂† ̂ ,

⟨| 
 |⟩ = ⟨|̂† ̂ |⟩˓

= ⟨|( ̂ )(*
̂

†
 )|⟩ = 

*
⟨1 |1 ⟩◁

Henceforth, recalling that ⟨1 |1 ⟩ = , one obtains

⟨| 
 |⟩ =

∑



||2◁ (3.44)

This demonstrates that there is a particle content of excited states of |⟩ in the nal
stationary metric, i.e., the dierence between the asymptotic basis leads to nonzero ex-
pectation value of vacuum state after Bogoliubov transformation.

3.3 Vaidya spacetime
In this section, let us restrict ourselves to the simplest case of black hole formation,

given by Vaidya’s solution of Einstein’s equations. The line element of such a solution is
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given by [35] 1

2 = −
(
1− ()



)
2 + 2 + 2Ω2˓ (3.46)

where Ω2 is the solid angle and () is the total mass, depending only on the null
coordinate . When () =  one has the Schwarzschild spacetime, written in
the Eddington-Finkelstein coordinates [38]. Here the collapse is driven by an incoming
ux of radiation at a certain instant of time or an interval of the null coordinate .
Here we are going to consider that the ux of radiation occurs instantaneously, i.e., the
collapse will be driven by an incoming shock wave located at, for instance,  = 0. The
two asymptotic regions in this case are: the Minskowski spacetime, that we will call “in”,
and the Schwarzschild region, called “out”. This whole setup is depicted in Fig. (3). The
Penrose diagram is depicted in terms of compact null variables, so that one can represent
the whole spacetime (that goes to innity) in a nite picture. The symbols in the graphic
are characterized as follows: − is the past timelike innity ( → −∞ and → −∞), + is
the future timelike innity ( → +∞ and → +∞), 0 is the spacelike innity ( → +∞
and  → −∞), ℐ− is the past null innity ( xed and  → −∞) and nally, ℐ+ is the
future null innity ( xed and  → +∞) (for a review about Penrose diagrams check
[37]).

Now, we consider the classic massless scalar eld to be quantized in this scenario.
The Klein-Gordon equation for this case is given by

 = 0◁ (3.47)

Recalling the fact that the background space is spherically symmetric, one can expand
the scalar eld into spherical harmonics solutions, as follows

(˓ ⃗) =
∑

˓

(˓ )


(˓ )˓ (3.48)

where  are the spherical harmonics.

Let us solve Eq. (3.47) using separation of variables. Substituting the above solu-
tion in the KG equation, for the Minkowski spacetime,  < 0 (which corresponds to the
“in” region), one obtains, suppressing the sum signal, that

−


2
2

+ 
2





(
2







)
+ 
3 sin 





(
sin  




)
+ 
3 sin2 

2

2 = 0◁

Multiplyinig the above equation by 3▷ one nds that

−
2




2

+ 







(
2







)
= −


1

 sin 




(
sin  




)
+ 1
 sin2 

2

2


◁

1 The general Vaidya spacetime is given by

2 = −

1− ()




2 + 2 + 2Ω2˓ (3.45)

where the sign of  indicates incoming (positive) or outgoing (negative) radiation.
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Fig. 3 – Penrose diagram for Vaidya spacetime. The dotted and dashed lines represents, respectively, the singu-
larity and the shock wave. White and gray areas represent the at spacetime and the black hole region,
respectively. The collapse is driven by a shock wave located at  = 0, after that a Schwarzschild black
hole is formed.

Notice that the term on the left hand side depends only on angular coordinates, such that
they must be a constant. This constant is of the form (+1). This choice is related to the
regularity of the spherical harmonics (˓ ) at the poles of the sphere, where  = 0˓ .
Henceforth, expanding the derivatives with respect to the radius r, one nally nds that
the equation for the elds, in the “in” region, to be like

(
− 2

2
− 2

2
− ( + 1)

2

)
(˓ ) = 0◁ (3.49)

Analogously, for the Schwarzschild metric,  > 0 (which corresponds to the “out” region),
one obtains (see Appendix B)

(
− 2

2
− 2

*2
− ()

)
(˓ ) = 0˓ (3.50)

where * is the Eddington-Finkelstein coordinate given by

* =  + 2 ln |▷2 − 1|˓

and  () is the eective potential due to the curvature

() =

1− 2



 
( + 1)
2

+ 2
3


◁ (3.51)

Noticed that at the horizon ( = 2) the potential vanishes. Since we are interested only
in the phenomena occurring at the horizon, where the potential vanishes, let us consider
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Fig. 4 – Potential dened by Eq. (4). Solid, dotted, dotdashed and dashed lines represents the behavior of the
potential for  = 0,  = 1,  = 2,  = 3, respectively. Here we used that  = 1, such that the event
horizon is located at  = 2.

an approximation in which we neglect the potential everywhere. One could also look at
this approximation as setting the wave as the “s-wave component”, that is the one less
aected by the potential and is characterized by  = 0. The potential behavior is depicted
in Fig. (4). Once this has been set, Eqs. (3.49) and (3.50) reduce to

(
− 2

2
− 2

2

)
(˓ ) = 0˓ (3.52)

(
− 2

2
− 2

*2

)
(˓ ) = 0◁ (3.53)

Next, assuming the harmonic time dependence of the elds, one can write

(˓ ) = −()◁ (3.54)

With that, Eqs. (3.52) and (3.53) reduce to the radial dependent equations
2()
2

+ 2() = 0˓ (3.55)

2()
*2

+ 2() = 0◁ (3.56)

It is worth writing the line elements of each of the regions using null coordinates.
The Minkowski line element is given, in spherical coordinates, by

2 = −2 + 2 + 2Ω2˓

where the subscript “in” indicates that this is the asymptotic past region of the asymptot-
ically stationary spacetime. Choosing the null coordinates  = −  and  = + 
one can rewrite the above expression as

2 = − + 2Ω2◁ (3.57)
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Moreover, the Schwarzschild line element is given by

2 = −

1− 2




2 +


1− 2



−1
2 + 2Ω2˓ (3.58)

where subscript “out” characterizes the asymptotic future region of the spacetime. Again,
using the null coordinates,  =  − * and  =  + *, one obtains

2 = −

1− 2




 + 2Ω2◁ (3.59)

The modes of the scalar eld will be functions of these null coordinates, each one related
to the possible incoming and outgoing solutions.

3.3.1 Quantized elds
Now we analyse the modes in each region using the treatment described in Sec. (3.2.1).

First, since we restrict ourselves to the case in which  = 0, the solutions given by Eq. (3.48)
can be written, generically, as

̂() = 1
2
√


̂(˓ )


= 1
2
√


−̂()


˓

where we have used that 00 = 1▷2
√
. Proceeding with the solutions of Eqs. (3.55) and

(3.56) one nds, for the “in” region that

̂() = 

2
√

(̂(1) − + ̂(2) −)˓ (3.60)

where  is the normalization constant. For the “out” region one has

̂() = 

2
√

(̂(1) − + ̂(2) −)◁ (3.61)

Now, in order to analyse the particle creation in the collapsing background we
shall dene the “in” Fock space associated with the asymptotic past region, dened at
ℐ−. The positive frequency modes are given by

 = 

2
√

−◁

In order to compute the normalization constant, let us substitute this in the KG product
as follows

( ˓ ′) = −
∫

ℐ−
2Ω( *′ − *′ 


 )

=  2


∫

ℐ−
[′(−

′) + (′−)]

= 4 2
( − ′) = ( − ′)◁
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Therefore, the normalization constant is  = 1▷2
√
 and the mode dened in the

asymptotic past is given by

 = 1
4

√


−


◁ (3.62)

Analogously, the Fock space associated with the asymptotic future region, dened at ℐ+,
has its positive frequency modes given by

 = 1
4

√


−


◁ (3.63)

The normalization conditions for these modes are given by

( ˓ ′ ) = −
∫

ℐ+


2Ω( 
*
′ − *′ 


 ) = ( − ′)◁ (3.64)

It is worth mentioning that although one could start with the surface ℐ+ as a possible
Cauchy surface, it will not correspond to the whole space of initial data, since one should
add also the future horizon. To avoid any problem arising from this choice, in what follows
we should set the asymptotic past surface as the Cauchy surface of initial data, with that
one covers the whole spacetime conguration.

Let us determine the Bogoliubov coecients related to the number of particles
created by the collapse, thus

′ = −( ˓ *′ ) = 
∫

ℐ−
2Ω( 


′ − ′


 )◁ (3.65)

Notice that, in order to calculate this coecient, one should know the behavior of the
modes  in the asymptotic past region, as we choose ℐ− as the Cauchy surface. In
other words, one should obtain  as a function of . For that, we determine the form
of these modes in the Minkowski region ( < 0) using matching conditions. Before the
shock wave  < 0 we have that the modes are given by

 = 1
4

√


−()


◁ (3.66)

The matching condition on  = 0 implies that

(0˓ ) = (0˓ )˓ (3.67)

but for Minkowski
(0˓ ) =

0 − 
2 ˓

and for Schwarzschild

*(0˓ ) =
0 − 

2 = (0˓ ) + 2 ln
⃒⃒
⃒⃒
⃒
(0˓ )

2 − 1
⃒⃒
⃒⃒
⃒◁ (3.68)

Henceforth, substituting in Eq. (3.67), one obtains

 =  − 4 ln
⃒⃒
⃒⃒ − 

4

⃒⃒
⃒⃒˓ (3.69)
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where  = 0 − 4 is the the location of the null ray forming the horizon at  = ∞,
characterized in the Fig. (3) by +.

Now, in the Minkowski region we need to guarantee the regularity at  = 0, so
that the full mode “out” in such a region will be given by

 = 1
4

√



−()


− −()


Θ( − )


˓ (3.70)

where () = ( ↔ ).

Since we are interested in the form of the “out” modes at ℐ−, the rst term
of Eq. (3.70) will not contribute. At early times,  → −∞ and  → −∞, one has
() ≈ . So that, at the asymptotic past region

 ≈ − 1
4

√


−


◁ (3.71)

Except for the negative sign, this is identical to the “in” mode, given by Eq. (3.62), so
that ′ vanish. Therefore in the asymptotic past region there is no particle emission, as
expected.

At late times,  → +∞ and  →  , one has

() ≈  − 4 ln  − 
4 ◁ (3.72)

Henceforth, in the regime near  , the modes are given by

 = − 1
4

√


−(−4 ln −

4 )


◁ (3.73)

This result shows that at late times, there is particle production, as the ′ coecients
associated with these modes do not vanish [1, 2].

3.3.2 Thermal distribution
Let us then calculate the ′ according to Eq. (3.65). First, let us use partial

integration to neglect the boundary terms, so that

′ = 2
∫

ℐ−
2Ω 


′ ◁ (3.74)

Substituting Eqs. (3.62) and (3.73) in the equation above, one nds

′ = 1
2

√
′



∫ 

−∞


−
[
−4 ln (−)

4

]
+′

◁

Thus, introducing the new variable  =  − , one obtains

′ = 1
2

√
′


−(′+)(4)−4

∫ ∞

0
4

′◁
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In principle, this quantity is not convergent, since we are not summing up for all possible
values of the frequency. To avoid the divergence problem one can add an innitesimal
term (−) in the exponent of the exponential function in the integrand. Heceforth, using
the following identity, ∫ ∞

0
− = −1−Γ(1 + )˓ (3.75)

one obtains

′ = − 1
2

√
′


−(′+)(4)−4 (−′ + )−1−4Γ(1 + 4)◁ (3.76)

Analogously, using the identity Eq. (3.29) one nds

′ = − 1
2

√
′


−(′+)(4)−4 (′ + )−1−4Γ(1 + 4)◁ (3.77)

Through the following identity

ln(−′ − ) = − + ln′˓

one obtains
(−′ + ) = (′ + )◁

Therefore, comparing Eqs. (3.76) and (3.77) one gets

′ = −42′′ ˓

and, nally,
|′ | = 4 |′ |◁ (3.78)

Although one can use this relation to calculate the spectrum of particles emitted, it is
better to analyse such aspect by means of wavepackets. The relation between ′ and ′

will remain unaltered, except for the fact that we consider wavepackets sharply peaked
around a frequency  .

A complete orthonormal set of wavepackets, described by discrete quantum num-
bers, is given by [37]

 = 1√


∫ (+1)


2▷ ˓ (3.79)

where  ≥ 0 and  are integers. Now, let us substitute Eq. (3.63) in the above equation,
so that one can rewrite it as

 = 1
4

√


∫ (+1)



√

(2▷−)◁

The real part will be given by

() ◁= ℛ( ) = 1
4

√


∫ (+1)



√

cos

2


− 

◁ (3.80)
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Fig. 5 – Real part of the wavepacket mode given by Eq. (3.79). Here we set  = 10,  = 5 and  = 0. The
wavepackets are peaked around  = 0.

The wavepackets have a peak around  = 2▷ and, as we set  to be an innitesimal
value, the modes are narrowly centered around  = . This behavior is depicted in
Fig. (5).

It is worth noticing that the choice of treating wavepackets is not only mathe-
matical convenient but also has a physical meaning. When we treat modes with denite
frequency, the uncertainty of time measurements explodes, so that one could only analyse
particle emission occurring in random instants of time. When we consider wavepackets
we restrict ourselves to study those modes with frequency within  of  , emitted at
 = 2▷.

Using this denition, after a rigorous derivation [37], one obtains the relation
between ˓′ and ˓′ to be

|˓′ | = 4 |˓′ |˓ (3.81)

which is almost unchanged, compared with Eq. (3.78).

Let us now use Eq. (3.31), which in this case is given by
∫ ∞

0
′(˓′*

′′˓′ − ˓′*
′′˓′) = ′′ ◁

For  =  ′ and  = ′, the equation above reduces to
∫ ∞

0
′


|˓′ |2 − |˓′ |2


= 1◁ (3.82)

Therefore, substituting Eq. (3.81), one obtains that the expectation value of number of
particles emitted at late times is given by

⟨| 
 |⟩ =

∫ ∞

0
′|˓′ |2 = 1

8 − 1 ◁ (3.83)
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Finally, comparing this with the Planck distribution of radiation for bosons, namely

1
ℏ▷ − 1 ˓

where  is the Boltzman’s constant, one obtains the temperature of the particles distri-
bution

 = ℏ
8

◁ (3.84)

This is called Hawking temperature of the black hole [2]. Notice that it is inversely pro-
portional to the black hole mass. In terms of the mass of the sun, one can write

 ≈ 10−7


K◁

Notice that this quantity is very small when we consider astrophysical black holes, with
mass many times larger than the mass of the sun.
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Final Remarks

In the rst part of this thesis we analysed analog models obtaind from linear mag-
netoelectric materials. There are dierent ways of producing such analogies between light
propagation in optical media and in curved spacetimes. The way explored in this project
is based on the description of light propagation in an optical medium through an eective
geometric interpretation, as formally discussed in Sec. 1.1. In such scenario, it is possible
to relate the optical coecients of the medium in consideration with the metric compo-
nents of a gravitational analog. Another way is to start with a metric solution of general
relativity and relate the modication of the electromagnetic elds in such curved space-
time with the constitutive relations of a hypothetical optical medium. More specically,
in the presence of gravity, the electromagnetic eld in the empty space has its proper-
ties aected by the curvature of the spacetime. As already known since Einstein’s early
publications on GR, the contravariant and covariant forms of the electromagnetic tensor,
which are associated by the metric, are related by means of an expression that mimics the
constitutive relations of a material medium. The metric components describing a curved
spacetime can thus be compared with the susceptibility coecients that describe an eec-
tive optical medium, so that a formal analogy is possible [5, 39]. One immediate conclusion
is that such an analogy requires a linear magnetoelectric medium. In this context, it was
recently noticed that the term that plays the role of the magnetoelectric coecient is
antisymmetric [40]. On the other hand, as shown in Sec. 1.3, if we start by analysing
the propagation of light in a material medium that exhibits a non-symmetric magneto-
electric coecient, one nds that such a system mimics a curved spacetime presenting
nonzero time-space mixed terms in the metric which depend only on the antisymmetric
part of  , as described by Eq. (1.51). It is important to mention that, in the context
of Sec. 1.3, the analog models are constructed by means of the solutions for plane-wave
propagation. Some approximations are usually implemented because in natural systems
the optical coecients are originated in the expansion of the free-energy density of the
optical material in terms of the electromagnetic elds. For instance, in the case of the
magnetoelectric eect, second order contributions in  are usually suppressed, as these
terms are expected to be corrections when compared to the other linear terms.

As specically examined in Sec. 1.3.2, the magnetoelectric eect motivates the
conception of an idealised analog model containing an event horizon. Light propagation
in the neighborhood of such analog horizon exhibits a non-symmetric spatial behavior.
At one side of it, there will be only one direction in which both wave solutions can
propagate. This aspect is similar to the behavior of light propagation in the interior
of the Schwarzschild event horizon. In fact, one can notice that the solutions given by
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Eqs. (1.47) and (1.48) are very similar to the solutions that describe a radial propagation
in the Schwarzschild metric, written in the Painlevé-Gullstrand coordinates. Another point
that should be mentioned is that the interior of the analog event horizon ( < ℎ in the
toy model) becomes a birefringent system, because the two distinct solutions propagate in
the same direction (given by the wave vector) with dierent phase velocities. Moreover, it
is noteworthy that near the horizon one of the solutions behaves as a slow-light mode. It
propagates with a phase velocity that gets an arbitrarily small value as it gets close to the
horizon, on each side of it. Additionally, even outside the horizon ( > ℎ), reversing the
propagation direction leads to dierent behaviors of the light rays. This space inversion
symmetry breaking is known to occur in the presence of magnetoelectric couplings.

The main aspect behind the event horizon solution was the assumption of an op-
tical coecient that depends on position. This behavior can be naively imagined to be
articially produced by using a material whose optical properties are conveniently sensi-
tive to temperature dierences, or even by joining parallel layers of materials, specially
conceived to guarantee that in each layer the optical eect would occur with a dierent
magnitude.

Furthermore, analog models for gravity can also be studied in the context of non-
linear couplings. Generally, if we consider the expansion of the polarization and magneti-
zation vectors in terms of the applied elds, several eects in dierent orders of magnitude
are bond to appear in a optical medium, depending on its physical properties. In such
nonlinear systems the applied elds may explicitly appear in the metric components of the
corresponding analog model, which can lead to richer scenarios to investigate GR metric
solutions. Additionally, it should be mentioned that when natural materials are being
considered, the implemented approximations to rst order eects in the linear magneto-
electric coupling can be partially justied by means of the possible existence of nonlinear
eects. For instance, if we had kept second order contributions to the linear coupling, the
magnitude of corresponding eects would be of the same order, or even smaller, than those
associated with higher-order couplings, and its presence would require further analysis.

In the second part of this project, we studied analog models obtained from acoustic
black holes and the Hawking’s radiation phenomenon. When Hawking rst described the
process of black hole evaporation, one of the main experimental consequences was that
the temperature of the radiation, emitted in the process of collapse, is very small when
we consider astrophysical scenarios, as it is inversely proportional to the black hole mass.
This result arose an experimental problem, as the measurement tools available are not
able to detect such small temperatures. Although it can be argued that in primordial
black holes (before ination) the temperature of the radiation would be larger, since their
mass are relatively small, there is still no evidence of the existence of such a structure
in our universe. In fact, even if at early stages of the universe they could have been
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produced [41, 42], it is argued that the ination period could have accelerate their process
of evaporation so that they do not exist anymore [43]. Therefore, the only source of this
kind of radiation would be the astrophysical black holes as, for instance, the one at the
center of our galaxy, called M87. Such black holes are extremely massive, henceforth the
temperature of their radiation would be many times smaller than the cosmic microwave
background temperature.

Therefore, one possible way of studying such a phenomenon would be by construct-
ing analog systems in terrestrial laboratories, those that mimics the kinematic aspects of
this GR solution. Here we made a review on acoustic black holes and showed that the
propagation of acoustic perturbations inside a moving medium behaves exactly like the
propagation of a massless scalar eld near a black hole given by the Schwarzschild solu-
tion. The soundwaves are trapped by a sort of “sonic horizon” that, in our case, drag the
perturbations to the direction of the ow propagation.

Moreover, we also studied the quantization of elds in curved spacetimes. We re-
strict ourselves to the investigation of the quantized modes in a simple model of spacetime
presenting a gravitational collapse, the Vaidya spacetime. The metric transition, from at
to curved, occurs due the collapse of incoming radiation, a shockwave concentrated in a
particular instant of time. Such a metric is obviously non stationary however, we could
split the whole spacetime conguration into two asymptotically stationary regions, called
the “asymptotic past”, characterized by the Minkowski metric, and “asymptotic future”
given by the Schwarzschild metric. Henceforth, by means of the Bogolubiov transforma-
tions we showed that the vacuum states of the quantum elds at each region are dierent
and this yields to the production of particles during the transition. Finally, by studying
the modes at each stationary stage of the metric, we recover the result rst analysed by
Hawking [2], in which he showed that the thermal spectrum of the emission is equal to
the Planck distribution for bosons and identied the “Hawking temperature”, given by
Eq. (3.84).
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APPENDIX A – Energy-momentum tensor
in curved spacetime

In curved spacetime, a eld action will, generally, be given by

 = 1


∫
ℒ√−Ω◁ (A.1)

Now, consider the following transformation

 → ′ =  + ˓ (A.2)

where  → 0. Under this transformation, the metric transforms as follows

() →  ′(′) = ′


 ′


◁ (A.3)

Thus, substituting the transformations in Eqs. (A.2) one nds, up to rst order in , the
metric transformation

 ′(′) = ( +  ˓ + + ˓ ) = () +  ˓ +˓ ◁ (A.4)

In order to maintain the dependence on the old coordinates, let us expand

 ′(′) =  ′( + ) =  ′() + 


◁ (A.5)

Henceforth, substituting this on Eq. (A.4) one obtains

 ′() = ()− 


 +  ˓ +˓ ◁ (A.6)

Now, using, that the covariant derivative of  is given by

 ;=  ˓+Γ˓ (A.7)

one nds that the linear terms in  in Eq. (A.6) are written as

 ˓ +˓−



 = (; + ;) +  ( ; ) ◁ (A.8)

Since the covariant derivative of the metric tensor vanishes one nally obtains that the
metric transforms as

 ′ =  +  ˓ (A.9)

where  = ; + ;. This is a dieomorphism of the metric  . Analogously,

′ =  +  ˓ (A.10)
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where  = −; − ;.

Let us then consider the variation principle in the action of Eq. (A.1) with respect
to the metric, so that

 = [ +  ˓ ( + )]− [ ˓  ]

= 1


∫ 

√−


 + 
√−
 ˓





Ω◁

(A.11)

Now, using integration by parts one nds

 = 1
2

∫ √−Ω˓ (A.12)

where we dene
1
2
√− =


√−


− 

√−
( ˓ )

◁ (A.13)

Using that,

 = −(; + ; ) = −(; + ; ) = − ˓

one obtains that  = −  . Substituting this relation in Eq. (A.12), it can be
rewritten as

 = − 1
2

∫ √− Ω◁ (A.14)

Let us introduce the dieomorphism denition in Eq. (A.12) and use the fact that
the energy-momentum tensor is symmetric, such that

 = 1


∫ √−;Ω◁ (A.15)

Integrating by parts and recalling that the elds  vanish at innity, one has, imposing
invariance under dieomorphism

 = −1


∫ √− 
 ; Ω = 0◁ (A.16)

Since  are small but arbitrary quantities, one nally obtains that

 
 ; = 0◁ (A.17)

This is the covariant form of the energy-momentum conservation equation.
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APPENDIX B – Klein-Gordon equation for
Schwarzschild background

Consider the general d’Alembertian operator for a curved spacetime, applied in a
eld (˓ ⃗), as follows

∇∇ = ∇() =  [()˓−Γ()]˓ (B.1)

where we used that the covariant derivative is given by [44]

∇ = ()˓−Γ◁ (B.2)

Substituting Eq. (2.40) in Eq. (B.1), and recalling that the metric is a symmetric tensor,
one obtains that

∇∇ = +


2 ( ˓ )− (˓ )◁ (B.3)

Now, using the identity (see Appendix A)

1√−
√− = 1

2
( ˓ )

and the Leibniz rule in the last term of Eq. (B.3), one nally obtains

∇∇ = + 
1√−

√−+ ˓ 

= 1√−(
√−)◁

(B.4)

For a massless scalar eld, the KG equation reduces to
1√−(

√−) = 0◁ (B.5)

The Schwarzschild contravariant metric, in spherical coordinates, is given by

 = diag
(
− 1
() ˓ ()˓

1
2
˓

1
2 sin2 

)
˓ (B.6)

where () = 1− 2▷ and  = det =2 sin2 . Plugging this into Eq. (B.5) one gets

− 1


2

2
+ 1
2




(
2





)
+ 1
2 sin 





(
sin 



)
+ 1
2 sin2 

2

2 = 0˓

thus, using the spherical harmonics expansion Eq. (3.48), one obtains, after some algebra

−
2
2

+ 







(
2




)
− ( + 1)

2
 = 0˓ (B.7)
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where we used the same argument of Sec. 3.3 for the spherical harmonics dierential
equation. Expanding the second term, one obtains

−
2
2

+ 2
2
2

+ ′


− 

2
3

+ ( + 1)
2


 = 0˓ (B.8)

where ′ = ▷. Recalling that the Eddington-Finkelstein coordinate * can also be
written as [38],

* =
∫



() ˓

one has,
2
*2

= 2
2
2

+ ′

◁

Henceforth, substituting this result in Eq. (B.8) one nally obtains the d’Alembert equa-
tion for Schwarzschild background, given by Eq. (3.50).
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