UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS–GRADUAÇÃO EM FÍSICA E MATEMÁTICA APLICADA

Estudo das Bifurcações de Hopf no Sistema Regulador de Watt

Míriam Aparecida Rosa

Itajubá–MG Julho de 2008

UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS–GRADUAÇÃO EM FÍSICA E MATEMÁTICA APLICADA

Estudo das Bifurcações de Hopf no Sistema Regulador de Watt

Míriam Aparecida Rosa

Dissertação submetida ao Programa de Pós–Graduação em Física e Matemática Aplicada como parte dos requisitos para obtenção do Título de Mestre em Ciências em Física e Matemática Aplicada

Orientador: Prof. Dr. Luis Fernando Osório de Mello

Itajubá–MG Julho de 2008

Agradecimentos

A Deus por ter me permitido começar, seguir e terminar mais esta caminhada;

A meus pais e familiares que sempre acreditaram e torceram por mim;

Ao Luis Fernando, pelos conselhos e pela forma segura com que me orientou desde o início;

Ao Baiêta, pelo grande incentivo nos momentos difíceis;

Ao Renato, pela disponibilidade de ajuda sempre que solicitada;

À Márcia, pela forma delicada de expor suas aulas;

A todos eles pela paciência, competência e profissionalismo que me guiaram neste aprendizado de forma firme e cuidadosa;

A meus amigos de curso e convivência, que sempre estiveram ao meu lado e com quem aprendi coisas que levarei comigo por toda a vida.

Resumo

Trata-se do estudo qualitativo de um sistema não linear de equações diferenciais ordinárias de primeira ordem em \mathbb{R}^3 , composto por três equações acopladas: duas delas não lineares e uma linear. Este sistema está associado ao conhecido sistema regulador de Watt. Foi estudada a estabilidade local do sistema e o surgimento das bifurcações de Hopf e suas extensões. Apresentou-se um método para estudar essas bifurcações em sistemas *n*-dimensionais que enfatiza as condições de Hopf de não degenerescência, de transversalidade e que garantem o surgimento de órbitas periódicas. Apresentamos também algumas simulações numéricas para ilustrar a análise desenvolvida.

Abstract

To treat of study qualitative of a nonlinear system of first-order ordinary differential equations in \mathbb{R}^3 , composed of three coupled equations being two nonlinear and one linear. Such system is associate of the known Watt governor system. We study the local stability in this system and the appearance of a Hopf bifurcations and its extensions. To present a method for studying this bifurcations in *n*-dimensional systems, suitable to verify the Hopf conditions of nondegeneracy and of transversality, with guarantee the appearance of periodic orbits. We present so some numerical simulations for corroborating the analysis developed here.

Conteúdo

Conteúdo								
Li	Lista de figuras							
In	trod	ução	7					
1	o s	istema Regulador de Watt	10					
	1.1	O sistema máquina a vapor–regulador de Watt	10					
		1.1.1 O Sistema de Watt	10					
		1.1.2 Modelo matemático do sistema	12					
2	Bifı	ırcação de Hopf	15					
	2.1	Bifurcação de Hopf genérica	19					
	2.2	Método da Projeção	35					
	2.3	Diagramas de Bifurcação da forma normal	56					
3	\mathbf{Est}	udo Qualitativo do Sistema Regulador de Watt	62					
	3.1	Estudo das equações 3.1	63					
	3.2	Condição de Hopf	67					
	3.3	Bifurcação de Hopf	73					
	3.4	Condição de estabilidade de Vyshnegradskii	94					
4	Sim	ulações Numéricas	97					
	4.1	Estudo de casos específicos	97					
		4.1.1 Parâmetros pertencentes à região S_1	98					
		4.1.2 Parâmetros pertencentes à região U_1	99					
		4.1.3 Parâmetros pertencentes à região N_2	101					

4.1.4	Parâmetros pertencentes à região ${\cal P}_2$	
4.1.5	Parâmetros relacionados ao ponto ${\cal Q}$	
Conclusões		107
Bibliografia		109
Anexo		111

Lista de Figuras

1.1	O sistema máquina a vapor–regulador de Watt	11
1.2	Forças que agem sobre as esferas	12
1.3	Forças que agem sobre o volante	13
2.1	Retratos de fase apresentando bifurcação de Hopf	17
2.2	Transformação de Poincaré para a bifurcação de Hopf	20
2.3	Ponto fixo da transformação de retorno.	20
2.4	Construção do homeomorfismo próximo à bifurcação de Hopf	23
2.5	Diagrama de bifurcação de (2.52)	57
2.6	Diagrama de bifurcação de (2.53)	58
2.7	$T \cap \{v = c > 0\}.$	60
2.8	$T \cap \{v = c = 0\}.$	60
2.9	$T \cap \{v = c < 0\}.$	60
2.10	Diagrama de bifurcação do sistema (2.49)	61
3.1	Superfície de parâmetros críticos $\varepsilon_c = 2\alpha\beta^{3/2}$	67
3.2	Superfície de parâmetros $r(\beta, \alpha, \varepsilon) = \frac{1}{\sqrt[6]{2}} \sqrt{2\beta(\beta\varepsilon^2 + 3(\beta^2 - 1))}$.	69
3.3	Superfície de parâmetros $r(\beta, \alpha, \varepsilon) = \frac{-1}{\sqrt[6]{2}} \sqrt{2\beta(\beta\varepsilon^2 + 3(\beta^2 - 1))}$.	70
3.4	Curva de parâmetros $r(\beta, \alpha, \varepsilon) = 0$	70
3.5	Superfície de parâmetros $r(\beta, \alpha, \varepsilon) = \sqrt[3]{2} \left(\beta \varepsilon - \sqrt{3\beta (1 - \beta^2)}\right)$	71
3.6	Superfície de parâmetros $r(\beta, \alpha, \varepsilon) = \sqrt[3]{2} \left(\beta \varepsilon + \sqrt{3\beta (1 - \beta^2)}\right)$	71
3.7	Autovalores para $0 < \varepsilon < 2\alpha\beta^{3/2}$.	72
3.8	Autovalores para $\varepsilon = 2\alpha\beta^{3/2}$	72
3.9	Autovalores para $\varepsilon > 2\alpha\beta^{3/2}$	72
3.10	Autovalores para $r(\beta, \alpha, \varepsilon) = \pm \frac{1}{\sqrt[6]{2}} \sqrt{2\beta \left(\beta \varepsilon^2 + 3(\beta^2 - 1)\right)}$.	73
3.11	Curva $l_1 = 0$ dividindo a superfície de parâmetros críticos	76

3.12	Diagrama de bifurcação do sistema (3.15) em um equilíbrio dependendo de	
	parâmetros pertencentes à região S_1	77
3.13	Diagrama de bifurcação do sistema (3.16) em um equilíbrio dependendo de	
	parâmetros pertencentes à região U_1	78
3.14	Curva $D_1(\alpha, \beta, \varepsilon_c) = 0.$	83
3.15	Curva $D_2(\alpha, \beta, \varepsilon_c) = 0.$	84
3.16	Curva $D_3(\alpha, \beta, \varepsilon_c) = 0.$	84
3.17	Curva $D_2(\alpha, \beta, \varepsilon_c) = 0 \cap l_1(\alpha, \beta, \varepsilon_c) = 0.$	85
3.18	Curva $D_2(\alpha, \beta, \varepsilon_c) = 0 \cap l_1(\alpha, \beta, \varepsilon_c) = 0.$	85
3.19	Curva $D_2(\alpha, \beta, \varepsilon_c) = 0 \cap l_1(\alpha, \beta, \varepsilon_c) = 0.$	86
3.20	Curva $l_2 = 0$ dividindo superfície de parâmetros críticos	86
3.21	Intersecção entre as curvas $l_1 = 0$ e $l_2 = 0$ determinando o ponto Q	87
3.22	Diagrama de bifurcação do sistema (3.19) no ponto T	88
3.23	Diagrama de bifurcação do sistema (3.20) no ponto R	89
3.24	Diagrama de bifurcação do sistema (3.23) no ponto Q	92
3.25	Diagrama de Bifurcação do sistema (3.23) no ponto R_1	93
4.1	Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (1.2661, 0, 1.82574).$	98
4.2	Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (1.0472, 0, 1.41421)$	
	para $\varepsilon < \varepsilon_c$.	99
4.3	Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.451027, 0, 1.05409)$.	100
4.4	Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.451027, 0, 1.05409)$	
	para $\varepsilon > \varepsilon_c$	100
4.5	Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.470451, 0, 1.05919)$	
	para $\varepsilon > \varepsilon_c$	101
4.6	Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.470151, 0, 1.05911)$	
47	para $\varepsilon < \varepsilon_c$	102
4.1	para $\varepsilon < \varepsilon_c$	102
4.1	para $\varepsilon < \varepsilon_c$	102 102
4.8	para $\varepsilon < \varepsilon_c$	102 102
4.7	para $\varepsilon < \varepsilon_c$	102 102 103
4.7 4.8 4.9	para $\varepsilon < \varepsilon_c$	102 102 103
4.7 4.8 4.9	para $\varepsilon < \varepsilon_c$	102 102 103

4.10	Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.666481, 0, 1.12795)$	
	para $\varepsilon > \varepsilon_c$	104
4.11	Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.666646, 0, 1.12802)$	
	para $\varepsilon < \varepsilon_c$ no arco de parábola da figura 3.22	105
4.12	Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.56451, 0, 1.08795)$	
	para $\varepsilon < \varepsilon_c$ acima do arco de parábola da figura 3.22	105

4.13 Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.519071, 0, 1.07317).106$

Introdução

O regulador centrífugo é um dispositivo que controla automaticamente a velocidade de uma máquina.

A interação entre a máquina a vapor e o regulador implica neste último aumentar o suprimento de vapor quando a velocidade do volante decresce e diminuir o suprimento de vapor quando a velocidade do volante cresce. Desta forma, é de se esperar que a velocidade rotacional do volante seja estabilizada, passado algum intervalo de tempo.

O regulador centrífugo provavelmente foi inventado para regular a ação dos moinhos. A patente foi concedida a Thomas Mead em 1787 por criar uma válvula que ajustava a distância entre as pedras estável e móvel do moinho (que mudava de acordo com a razão de rotação do moinho). Um ano depois, James Watt adaptou o regulador ao controle de máquinas a vapor, introduzindo uma válvula que permitia a regulagem manual das máquinas a vapor sem que fosse necessário exercer muita força. A válvula tornara o processo de regulagem automático. Estima–se que somente na Inglaterra existiam 75000 destes reguladores, que passaram a ser conhecidos como reguladores de Watt, nos primeiros oitenta anos do invento. Ver Denny [13].

Na segunda metade do século XIX, começou-se a observar um decaimento na performance do regulador na máquina a vapor. Para esclarecer as razões de tal problema, um estudo detalhado da dinâmica do sistema máquina–regulador foi feito.

A primeira análise matemática das condições de estabilidade do sistema regulador de Watt foi feita por James Clerk Maxwell [5] em 1868 e posteriormente apresentada em uma linguagem adaptada para engenharia por Vyshnegradskii [12] em 1877.

De acordo com [6], p.217, a dinâmica do sistema máquina a vapor-regulador de Watt, esquematicamente apresentado na figura 1.1, é modelada pelo seguinte sistema não linear de equações diferenciais ordinárias:

$$\begin{cases} \varphi' &= \psi, \\ \psi' &= C^2 \,\Omega^2 \operatorname{sen} \varphi \, \cos \varphi - \operatorname{g} \operatorname{sen} \varphi - \frac{b}{m} \,\psi, \\ \Omega' &= \frac{\mu}{I} \cos \varphi - \frac{F}{I}, \end{cases}$$

onde $\varphi \in (0, \pi/2)$ é o ângulo de desvio das hastes do regulador em relação ao eixo vertical, ω é a velocidade angular do eixo vertical, $C = \omega/\Omega$ é a razão constante de transmissão, $\Omega \in [0, \infty)$ é a velocidade angular do volante, g é a constante gravitacional, b é a constante da força de atrito do sistema, m massa das esferas presas às hastes, μ é uma constante de proporcionalidade relacionada à carga, F é o torque relacionado à carga e I é o momento de inércia do volante.

O problema consistia em estudar a estabilidade da posição de equilíbrio deste sistema. Da análise da posição de equilíbrio do sistema, obteve-se as **condições de estabilidade de Vyshnegradskii**

$$\frac{bI}{m}\nu > 1$$

sendo $\nu = |\Omega_0/2 F| \in \Omega_0$, valor de Ω no ponto de equilíbrio, a partir das quais Vyshnegradskii concluiu que o atrito era o elemento essencial para um melhor funcionamento do regulador e que a queda no rendimento do dispositivo ocorreu especificamente pelo crescimento da massa das esferas presas às pontas das hastes que estavam sendo usadas. Ver Pontryagin [6] e Sotomayor, Mello e Braga em [8].

O sistema máquina à vapor-regulador inventado por James Watt em 1788 é considerado o marco de referência do nascimento da Teoria de Controle Automático.

A relevância histórica deste dispositivo bem como sua importância nos dias atuais, está relacionada à Teoria do Desenvolvimento de Controle Automático, do vapor para o diesel, máquinas à gasolina e reguladores eletrônicos, que foram bastante discutidos por MacFarlane [4] e vários outros autores.

O propósito deste trabalho foi compreender o modelo físico-matemático e o comportamento das soluções do sistema de equações diferenciais, relacionadas ao regulador de Watt, mostrando a existência de bifurcações de Hopf no modelo. Consequentemente, teremos o surgimento de ciclos limites que representam oscilações na dinâmica de funcionamento do sistema de Watt. Ver Hassard [2] e Al-Humadi e Kazarinoff em [1]. No primeiro capítulo, descrevemos o funcionamento do sistema regulador de Watt e o processo de obtenção das equações que modelam o sistema, conforme Pontryagin [6], Scárdua [7] e os artigos de Sotomayor, Mello e Braga [8], [9] e [10].

No segundo capítulo, definimos a bifurcação de Hopf num sistema bidimensional e um método para se estudar esta bifurcação em sistemas de dimensão finita qualquer, baseados no livro de [3] e os artigos de Sotomayor, Mello e Braga [8] e [9].

No terceiro capítulo, estudamos o modelo qualitativamente: o comportamento das soluções, o ponto de equilíbrio e o surgimento das bifurcações de Hopf, conforme Pontryagin em [6] e os artigos de Sotomayor, Mello e Braga [8] e [9].

No quarto e último capítulo, apresentamos algumas simulações numéricas para ilustrarmos os resultados e o surgimento das bifurcações de Hopf para um certo conjunto de valores dos parâmetros, feitas com o auxílio do software

MATHEMATICA [14].

Capítulo 1

O Sistema Regulador de Watt

Neste capítulo apresentamos o problema físico que iremos estudar neste trabalho.

Primeiramente descreveremos o sistema máquina a vapor-regulador de Watt e em seguida obteremos as equações diferenciais que modelam o sistema. Tal descrição será feita baseada nos livros de Pontryagin [6], de Scárdua [7] e os artigos de Sotomayor, Mello e Braga [8], [9] e [10].

1.1 O sistema máquina a vapor-regulador de Watt

Nesta seção, faremos uma descrição do sistema de Watt e seu modelo matemático.

1.1.1 O Sistema de Watt

Na figura 1.1 (obtida a partir dos artigos de Sotomayor, Mello e Braga [8], [9] e [10]), temos um eixo principal, E, ligado ao volante, D, do motor de uma máquina a vapor, que se conecta, por um conjunto de engrenagens, a um eixo vertical menor, e, que gira, tendo em sua extremidade superior duas hastes metálicas, iguais e de comprimentos l, com duas esferas iguais de contrapeso nas pontas, de massas m cada uma. As hastes de comprimentos l estão ligadas ao eixo e de modo que quando este gira, as hastes se abrem, formando um ângulo φ com o eixo vertical e, conforme a sua velocidade de rotação angular. Às hastes de comprimentos l conectamos, em pontos a uma mesma distância da base móvel comum, duas outras hastes menores que também possuem ângulo central variável e que ao se abrirem devido a rotação do eixo e, fazem subir uma base móvel, H, (camisa mecânica) ligada à uma alavanca. Ao subir, esta alavanca faz abrir a válvula V, aliviadora da pressão da caldeira a vapor.

Figura 1.1: O sistema máquina a vapor-regulador de Watt

- E: eixo principal ligado ao volante
- D: volante conectado à um conjunto de engrenagens
- T: conjunto de engrenagens de transmissão que conecta a máquina a vapor ao eixo e
- Ω : a velocidade angular de rotação do volante D da máquina
- e: eixo vertical ao qual estão ligadas as hastes na extremidade superior
- $\omega:~$ a velocidade angular de rotação de e
- *l*: comprimento das hastes
- $m{:}$ as massas das esferas que representam o contrapeso
- $\varphi: \in \left(0, \frac{\pi}{2}\right)$ é o ângulo de desvio formado pelas hastes do regulador e o eixo de direção vertical *e*
- H: base móvel que se conecta às hastes e desliza ao longo de e
- V: válvula que determina o fornecimento de vapor à máquina.

Tabela 1.1: Significado dos parâmetros do sistema de Watt.

1.1.2 Modelo matemático do sistema

Primeiramente faremos uma análise sobre as forças que agem sobre as esferas. Veja a figura (1.2).

Figura 1.2: Forças que agem sobre as esferas

Vamos supor, por simplicidade, que l = 1. Segundo [6], sendo ω a velocidade angular do eixo e, a força centrífuga sobre as esferas é dada por

$$m\omega^2 \operatorname{sen} \varphi,$$

enquanto a força peso é dada por

mg.

Na situação de equilíbrio, a soma das forças tangentes ao arco descrito pela massa m ao se abrir o ângulo central φ deve ser nula, de modo que

$$m\omega^2 \operatorname{sen} \varphi \cos \varphi - m \operatorname{g} \operatorname{sen} \varphi = 0.$$
(1.1)

A equação (1.1), determina o ângulo φ , o qual é visto como uma função crescente da velocidade angular ω do eixo e.

Para encontrarmos a equação diferencial que descreve φ fora da posição de equilíbrio, lançaremos mão da seguinte hipótese: a força de abertura das hastes maiores é proporcional à velocidade de abertura $\dot{\varphi}$, sendo b > 0 a constante de proporcionalidade (coeficiente de atrito)

$$F_{at} = -b \dot{\varphi}$$

Deste modo, da Segunda Lei de Newton, temos a equação diferencial ordinária de segunda ordem

$$m\ddot{\varphi} = m\omega^2 \operatorname{sen}\varphi \cos\varphi - mg\operatorname{sen}\varphi - b\dot{\varphi}.$$
(1.2)

Figura 1.3: Forças que agem sobre o volante

Denotaremos por Ω a velocidade angular do eixo principal da máquina que gira o volante D, por $M = M(\alpha)$ o momento angular de força da máquina, sendo α o ângulo de abertura da válvula aliviadora V, por N o momento angular de força atuando sobre o volante devido à carga e por I o momento de inércia do volante. Veja a figura (1.3).

Consideremos ainda que as velocidades angulares Ω e ω estejam relacionadas de maneira linear, de modo que

$$C = \frac{\omega}{\Omega} > 0.$$

Se denotarmos por φ_m o valor médio do ângulo central φ perto do qual este deve se manter e por F_m a força correspondente a este valor médio, temos que

$$M = F_m + \mu(\cos\varphi - \cos\varphi_m),$$

sendo $\mu > 0$ uma constante de proporcionalidade. Definindo

$$F = N - F_m + \mu \cos \varphi_m,$$

o qual depende da carga, obtemos o seguinte sistema de equações diferenciais ordinárias

$$\begin{cases} m\ddot{\varphi} = mC^2 \Omega^2 \operatorname{sen} \varphi \cos \varphi - mg \operatorname{sen} \varphi - b\dot{\varphi}, \\ I\dot{\Omega} = \mu \cos \varphi - F, \end{cases}$$

o qual pode ser transformado em um sistema de equações diferenciais de primeira ordem, da forma

$$\begin{pmatrix}
\frac{d\varphi}{d\tau} &= \psi, \\
\frac{d\psi}{d\tau} &= C^2 \Omega^2 \operatorname{sen} \varphi \cos \varphi - \operatorname{gsen} \varphi - \frac{b}{m} \psi, \\
\frac{d\Omega}{d\tau} &= \frac{1}{I} (\mu \cos \varphi - F).
\end{cases}$$
(1.3)

De acordo com a mudança de coordenadas e de tempo

$$x = \varphi, \ y = \sqrt{\frac{\psi}{\mathrm{g}}}, \ z = C\sqrt{\frac{\Omega}{\mathrm{g}}}, \ \tau = \sqrt{\frac{t}{\mathrm{g}}},$$

indicada em [8], o sistema de equações diferenciais (1.3), pode ser reescrito da seguinte forma

$$\begin{cases} \frac{dx}{dt} = y, \\ \frac{dy}{dt} = z^2 \operatorname{sen} x \cos x - \operatorname{sen} x - \varepsilon y, \\ \frac{dz}{dt} = \alpha (\cos x - \beta), \end{cases}$$
(1.4)

onde $\alpha>0,\, 0<\beta<1$ e $\varepsilon>0,$ dados por

$$\varepsilon = \frac{b}{m}\sqrt{\frac{1}{g}}, \ \alpha = \frac{C\mu}{gI}, \ \beta = \frac{F}{\mu},$$
(1.5)

são parâmetros variáveis normalizados. O sistema (1.4) é uma família de equações diferenciais a três parâmetros, que pode ser reescrita como $\mathbf{x}' = f(\mathbf{x}, \mu)$, onde

$$\mathbf{x} = (x, y, z); \ x = \left(0, \frac{\pi}{2}\right), \ y \in \mathbb{R}, \ z > 0, \quad \mu = (\beta, \alpha, \varepsilon); \ \beta \in (0, 1), \ \alpha > 0, \ \varepsilon > 0,$$

е

$$f(\mathbf{x},\mu) = (y, z^2 \operatorname{sen} x \cos x - \operatorname{sen} x - \varepsilon y, \, \alpha(\cos x - \beta)).$$

Chamaremos o sistema (1.4) de sistema de Watt ou simplesmente de SW.

Capítulo 2

Bifurcação de Hopf

Este capítulo tem por objetivo estudar as bifurcações de Hopf. Inicialmente trataremos dos sistemas bidimensionais, onde o conceito de bifurcação de Hopf é bastante conhecido, para posteriormente estudá-lo em um contexto mais amplo, para sistemas n-dimensionais. As definições e o método de projeção que apresentaremos no corrente capítulo foram baseados no livro de Kuznetsov [3].

Utilizaremos a terminologia suave para nos referir às funções de classe C^n com n suficientemente grande. Quando acharmos necessário explicitar a classe de diferenciabilidade, faremos menção a respeito.

A notação $f(x) = \mathcal{O}(||x||^n)$ representará uma função suave cuja expansão de Taylor em xinicia-se com os termos de ordem n (ou superiores).

Seguem algumas definições que usaremos no decorrer deste capítulo.

Definição 2.0.1 Um ponto de equilíbrio x_0 do sistema

$$\dot{x} = f(x)$$

com f suave $e x \in \mathbb{R}^n$, é chamado **hiperbólico** se todos os autovalores de $A(x_0)$ têm partes reais diferentes de zero, onde $A(x_0) = Df(x_0)$ representa a matriz Jacobiana de f no ponto x_0 . Se a parte real de algum autovalor for nula o equilíbrio será dito **não-hiperbólico** ou **degenerado**.

Definição 2.0.2 Um ponto de equilíbrio hiperbólico x_0 do sistema

$$\dot{x} = f(x)$$

com f suave $e x \in \mathbb{R}^n$, chama-se **nó** se $A(x_0)$ possuir n autovalores reais com mesmo sinal. Se tal sinal for negativo chamaremos x_0 de **nó atrator** e se for positivo de **nó repulsor**.

Definição 2.0.3 Um ponto de equilíbrio hiperbólico x_0 do sistema

$$\dot{x} = f(x),$$

com f suave $e x \in \mathbb{R}^2$, é chamado **foco** se $A(x_0)$ possuir dois autovalores complexos conjugados com partes reais diferentes de zero. Se a parte real destes autovalores for negativa chamaremos x_0 de um **foco atrator** e se a parte real dos autovalores for positiva de um **foco repulsor**.

Considere o seguinte sistema de equações diferenciais dependendo do parâmetro μ

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} \mu & -1 \\ 1 & \mu \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \pm (x_1^2 + x_2^2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$
 (2.1)

Para qualquer $\mu \in \mathbb{R}$, o ponto $(x_1, x_2) = (0, 0)$ é equilíbrio desse sistema, com a matriz Jacobiana dada por

$$A = \left(\begin{array}{cc} \mu & -1 \\ 1 & \mu \end{array} \right),$$

que possui autovalores $\lambda_1 = \mu + i \in \lambda_2 = \mu - i$. Introduzindo a variável complexa $z = x_1 + ix_2$, como

$$\dot{x}_1 = \mu x_1 - x_2 \pm x_1 (x_1^2 + x_2^2)$$

е

$$\dot{x}_2 = x_1 + \mu x_2 \pm x_2 (x_1^2 + x_2^2),$$

temos

$$\dot{z} = \dot{x}_1 + i\dot{x}_2 = \mu(x_1 + ix_2) + i(x_1 + ix_2) \pm (x_1 + ix_2)(x_1^2 + x_2^2).$$

Podemos então reescrever (2.1), na sua forma complexa, por

$$\dot{z} = (\mu + i)z \pm z|z|^2.$$
 (2.2)

Usando agora a representação $z = \rho e^{i\theta}$, obtemos

$$\dot{z} = \dot{\rho}e^{i\theta} + \rho i\dot{\theta}e^{i\theta},$$

e, portanto

$$\dot{\rho}e^{i\theta} + \rho i\dot{\theta}e^{i\theta} = \rho e^{i\theta}(\mu + i \pm \rho^2).$$

Podemos, então, escrever a equação (2.2) em sua forma polar

$$\begin{cases} \dot{\rho} = \rho(\mu \pm \rho^2), \\ \dot{\theta} = 1. \end{cases}$$
(2.3)

Da primeira equação de (2.3), podemos perceber que $\rho = 0$ é um ponto de equilíbrio para qualquer valor de μ (obviamente só consideraremos $\rho \ge 0$). Outro ponto de equilíbrio surgirá para determinados valores de μ , dependendo do sinal do termo cúbico em (2.1). Suponha, por exemplo, o sistema

$$\begin{cases} \dot{\rho} = \rho(\mu - \rho^2), \\ \dot{\theta} = 1. \end{cases}$$
(2.4)

Então, para $\mu > 0$, $\rho(\mu) = \sqrt{\mu}$ é um ponto de equilíbrio que descreve uma órbita periódica circular com velocidade constante. Este sistema sempre tem um equilíbrio na origem que é um foco atrator se $\mu < 0$, um foco repulsor para $\mu > 0$ ou um foco atrator "fraco" (um equilíbrio não linear e topologicamente equivalente ao foco atrator), para o valor crítico $\mu = 0$. Para $\mu > 0$, a origem fica isolada por uma órbita fechada (ciclo limite) que é única e atratora. Este ciclo é uma circunferência de raio $\rho(\mu) = \sqrt{\mu}$. Todas as órbitas externas ou internas a este ciclo, com exceção da origem, tendem ao ciclo limite quanto $t \to +\infty$, (veja figura 2.1).

Figura 2.1: Retratos de fase apresentando bifurcação de Hopf

Este fenômeno, de geração de uma órbita periódica e a mudança de estabilidade do foco a partir de uma pertubação no parâmetro μ , será chamado **bifurcação de Andronov–Hopf** ou simplesmente **bifurcação de Hopf**.

O mesmo sistema de (2.4), porém com sinal oposto nos termos não lineares,

$$\begin{cases} \dot{\rho} = \rho(\mu + \rho^2), \\ \dot{\theta} = 1, \end{cases}$$

$$(2.5)$$

pode ser analisado da mesma maneira. Teremos a bifurcação de Andronov-Hopf para $\mu = 0$ mas, ao contrário de (2.4), o ciclo limite que surgirá para $\mu < 0$, é repulsor. Para valores de $\mu > 0$ a origem é um foco repulsor e não possui ciclo limite, quando $\mu = 0$ será um foco repulsor "fraco" (não linear) e para $\mu < 0$ um foco atrator. Neste último caso teremos então um ciclo limite repulsor determinado por uma órbita fechada que é uma circunferência centrada na origem de raio $\rho(\mu) = \sqrt{-\mu}$. Todas as órbitas iniciando externa ou internamente ao ciclo, com exceção da origem, tendem a este ciclo quando $t \to -\infty$.

Definição 2.0.4 O sistema (2.1), ou equivalentemente, (2.2) e (2.3), é denominado forma normal da bifurcação de Hopf.

A seguinte definição será usada na próxima seção, onde estudaremos a bifurcação de Hopf genérica.

Definição 2.0.5 Dois sistemas

$$\dot{x} = f(x,\mu), \ x \in \mathbb{R}^n, \ \mu \in \mathbb{R}^m,$$
(2.6)

$$\dot{y} = g(y,\zeta), \ y \in \mathbb{R}^n, \ \zeta \in \mathbb{R}^m,$$

$$(2.7)$$

são ditos **localmente topologicamente equivalentes** em torno da origem se existir uma aplicação $(x, \mu) \mapsto (h_{\mu}(x), k(\mu))$, definida em uma vizinhança $V = U_0 \times V_0$ de $(x, \mu) = (0, 0)$, contida em $\mathbb{R}^n \times \mathbb{R}^m$, satisfazendo:

- (i) $k : \mathbb{R}^m \to \mathbb{R}^m$ é um homeomorfismo definido em V_0 ;
- (ii) h_µ: ℝⁿ → ℝⁿ é um homeomorfismo para cada µ, definido na vizinhança U₀ de x = 0,
 h₀(0) = 0, levando órbitas de (2.6) contidas em U₀ em órbitas de (2.7) em h_µ(U₀),
 preservando a direção do tempo.

2.1 Bifurcação de Hopf genérica

Nesta seção encontraremos condições para que um sistema seja localmente topologicamente equivalente à forma normal, que acabamos de definir, da bifurcação de Hopf. Este resultado será obtido no Lema (2.1.9).

Considere o sistema

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} \mu & -1 \\ 1 & \mu \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - (x_1^2 + x_2^2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \qquad (2.8)$$

que, como definido no início do capítulo, representa a forma normal da bifurcação de Hopf cujo sinal dos termos cúbicos é negativo e, consequentemente, apresenta uma órbita periódica atratora.

Lema 2.1.1 O sistema

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} \mu & -1 \\ 1 & \mu \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - (x_1^2 + x_2^2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \mathcal{O}(||x||^4), \quad (2.9)$$

onde $x = (x_1, x_2)^{\top} e \mathcal{O}(||x||^4)$ representa os termos de ordem 4 e depende suavemente de μ , é localmente topologicamente equivalente em torno da origem ao sistema (2.8).

Demonstração 2.1.1:

Parte I (Existência e unicidade do ciclo). Escrevendo (2.9) nas coordenadas polares (ρ, θ) obtemos

$$\begin{cases} \dot{\rho} = \rho(\mu - \rho^2) + \Phi(\rho, \theta), \\ \dot{\theta} = 1 + \Psi(\rho, \theta), \end{cases}$$
(2.10)

onde $\Phi = \mathcal{O}(|\rho|^4)$, $\Psi = \mathcal{O}(|\rho|^3)$, e não indicaremos a dependência em μ dessas funções para não complicarmos a notação. Uma órbita de (2.10) partindo de $(\rho, \theta) = (\rho_0, 0)$ tem a seguinte representação, (veja figura (2.2)),

$$\rho = \rho(\theta; \rho_0), \ \rho_0 = \rho(0; \rho_0) \ \text{com } \rho \ \text{satisfazendo a equação}$$
$$\frac{d\rho}{d\theta} = \frac{\rho(\mu - \rho^2) + \Phi(\rho, \theta)}{1 + \Psi(\rho, \theta)} = \rho(\mu - \rho^2) + R(\rho, \theta), \tag{2.11}$$

onde $R = \mathcal{O}(|\rho|^4)$. Note que a transformação de (2.10) para (2.11) é equivalente a uma reparametrização do tempo com $\dot{\theta} = 1$, implicando que o tempo de retorno para o semi–eixo

Figura 2.2: Transformação de Poincaré para a bifurcação de Hopf.

 $\theta = 0$ é o mesmo para todas as órbitas que partem desse eixo com $\rho_0 > 0$. Como $\rho(\theta; 0) \equiv 0$, podemos escrever a expansão de Taylor para $\rho(\theta; \rho_0)$ da forma

$$\rho = u_1(\theta)\rho_0 + u_2(\theta)\rho_0^2 + u_3(\theta)\rho_0^3 + \mathcal{O}(|\rho_0|^4).$$
(2.12)

Substituindo (2.12) em (2.11) obtemos

$$\begin{aligned} \frac{d}{d\theta} (u_1(\theta)\rho_0 + u_2(\theta)\rho_0^2 + u_3(\theta)\rho_0^3 + \ldots) &= \\ &= (u_1(\theta)\rho_0 + u_2(\theta)\rho_0^2 + u_3(\theta)\rho_0^3 + \ldots)[\mu - (u_1(\theta)\rho_0 + u_2(\theta)\rho_0^2 + u_3(\theta)\rho_0^3 + \ldots)^2] \\ &+ R(\rho,\theta) \\ &= u_1(\theta)\rho_0\mu + u_2(\theta)\rho_0^2\mu + u_3(\theta)\rho_0^3\mu - u_1^3(\theta)\rho_0^3 + \ldots + R(\rho,\theta), \end{aligned}$$

de onde vem as seguintes equações diferenciais lineares resultantes das correspondentes potências de ρ_0

Figura 2.3: Ponto fixo da transformação de retorno.

Como queremos para $\theta = 0$, $\rho = \rho_0$, estabelecemos as condições iniciais $u_1(0) = 1$, $u_2(0) = u_3(0) = 0$, obtendo assim

$$u_1(\theta) = e^{\mu\theta}, \quad u_2(\theta) \equiv 0, \quad u_3(\theta) = e^{\mu\theta} \frac{1 - e^{2\mu\theta}}{2\mu}.$$

Note que essas expressões são independentes de $R(\rho, \theta)$. Como na expressão de $u_3(2\pi)$ vale a igualdade

$$e^{2\pi\mu} \frac{1 - e^{2(2\pi)\mu}}{2\mu} = \frac{e^{2\pi\mu}}{2\mu} \left[1 - (1 + 2(2\pi)\mu + \frac{(2(2\pi))^2\mu^2}{2!} + \dots) \right] = -e^{2\pi\mu} [2\pi + \mathcal{O}(\mu)],$$

podemos concluir que a transformação de retorno $\rho_0 \mapsto \rho_1 = \rho(2\pi, \rho_0)$ tem a forma

$$\rho_1 = e^{2\pi\mu} \rho_0 - e^{2\pi\mu} [2\pi + \mathcal{O}(\mu)] \rho_0^3 + \mathcal{O}(\rho_0^4), \qquad (2.13)$$

para todo $R = \mathcal{O}(\rho^4)$. A transformação (2.13) pode ser facilmente analisada para $\rho_0 \in |\mu|$ suficientemente pequenos. Existe uma vizinhança da origem onde essa transformação tem somente o ponto fixo trivial para pequenos valores de $\mu < 0$ e um ponto fixo extra, $\rho_0^* = \sqrt{\mu} + \dots$, para pequenos valores de $\mu > 0$, veja figura 2.3. Para verificar essa última afirmação, consideremos a transformação (2.13) escrita na forma

$$\rho_1 = \rho_0 \hat{S}(\mu, \rho_0), \tag{2.14}$$

onde

$$\widetilde{S}(\mu,\rho_0) = e^{2\pi\mu} (1 - [2\pi + \mathcal{O}(\mu)]\rho_0^2) + \mathcal{O}(\rho_0^3)$$

Teremos, então, a equação dos pontos fixos, para $\rho_0>0,$ dada por

$$\widetilde{S}(\mu, \rho_0) = 1$$

$$\Leftrightarrow e^{2\pi\mu} (1 - [2\pi + \mathcal{O}(\mu)]\rho_0^2) + \mathcal{O}(\rho_0^3) = 1$$

$$\Leftrightarrow 1 - [2\pi + \mathcal{O}(\mu)]\rho_0^2 + e^{-2\pi\mu}\mathcal{O}(\rho_0^3) = e^{-2\pi\mu}$$

$$\Leftrightarrow 1 - [2\pi + \mathcal{O}(\mu)]\rho_0^2 + e^{-2\pi\mu}\mathcal{O}(\rho_0^3) - e^{-2\pi\mu} = 0.$$

Seja

$$S(\mu, \rho_0) = 1 - [2\pi + \mathcal{O}(\mu)]\rho_0^2 + e^{-2\pi\mu}\mathcal{O}(\rho_0^3) - e^{-2\pi\mu}$$

Aplicando o Teorema da Função Implícita na função $S(\mu, \rho_0)$, para $(\mu, \rho_0) = (0, 0)$, comprovamos a afirmação. De fato, S(0, 0) = 0 e $S_{\mu}(0, 0) = 2\pi \neq 0$, o que nos permite escrever μ como função de ρ_0 numa vizinhança de $\rho_0 = 0$ e calcular

$$\mu'(\rho_0) = -\frac{S_{\rho_0}(\rho_0, \mu(\rho_0))}{S_{\mu}(\rho_0, \mu(\rho_0))} = \frac{2(2\pi + \mathcal{O}(\mu))\rho_0 + e^{-2\pi\mu}\mathcal{O}(\rho_0^2)}{(\dots)\rho_0^2 - 2\pi e^{-2\pi\mu}\mathcal{O}(\rho_0^3) + 2\pi e^{-2\pi\mu}}.$$

Portanto, temos que

$$\mu'(0) = 0, \ \mu''(0) = 2,$$

implicando, pela expansão de Taylor ao redor de $\rho_0 = 0$, $\mu(0) = 0$, que

$$\mu(\rho_0) = \rho_0^2 + \dots ,$$

que é uma função injetora no domínio $\rho_0 \ge 0$.

A estabilidade dos pontos fixos também é obtida de (2.13). Derivando (2.14) com relação a ρ_0 , obtemos

$$\frac{d\rho_1}{d\rho_0} = \widetilde{S}(\mu, \rho_0) + \rho_0 \widetilde{S}_{\rho_0}(\mu, \rho_0).$$

Para provarmos a estabilidade de ρ_0^* basta mostrarmos que

$$\frac{d\rho_1}{d\rho_0}(\rho_0^*) < 1.$$

De fato, como $\widetilde{S}(\mu, \rho_0) = 1$ para $\rho_0 = \rho_0^*$; $\mu = \mu(\rho_0^*)$, resta vermos que $\rho_0 \widetilde{S}_{\rho_0}(\mu(\rho_0^*), \rho_0^*)$ é negativo. Calculando $\rho_0 \widetilde{S}_{\rho_0}(\mu, \rho_0) = \rho_0 \frac{\partial \widetilde{S}}{\partial \rho_0}(\mu, \rho_0)$, obtemos

$$\rho_0 \widetilde{S}_{\rho_0}(\mu, \rho_0) = \rho_0^2 [-2e^{2\pi\mu} [2\pi + \mathcal{O}(\mu)] + \mathcal{O}(\rho_0)],$$

que, para pequenos valores de $\rho_0^* > 0$, $\mu(\rho_0^*) > 0$, satisfaz o esperado.

Levando em conta que o ponto fixo positivo da transformação corresponde a um ciclo limite do sistema, podemos concluir que o sistema (2.10), ou (2.9), com quaisquer termos $\mathcal{O}(|\rho|^4)$, tem um único (e estável) ciclo limite bifurcando da origem quando $\mu > 0$ como no sistema (2.8).

Portanto, em outras palavras, os termos de ordem superior não afetam o surgimento do ciclo limite numa vizinhança de $(x_1, x_2) = (0, 0)$ com $|\mu|$ suficientemente pequeno.

Parte II (Construção do homeomorfismo). Estabelecida a existência e unicidade do ciclo limite, indicaremos agora como proceder para se obter os homeomorfismos necessários e concluir a equivalência topológica dos retratos de fase.

Fixemos μ pequeno, mas positivo. Ambos os sistemas (2.9) e (2.8) têm um ciclo limite em alguma vizinhança da origem. Assuma que já tenha sido realizada no sistema (2.9) a reparametrização do tempo, resultando num tempo de retorno constante 2π (veja Parte I). Além disso, aplicamos um escalonamento linear nas coordenadas do sistema (2.9) de modo que o ponto de intersecção do ciclo e o semi-eixo horizontal seja $x_1 = \sqrt{\mu}$.

Defina a aplicação $x \mapsto x^*$ do seguinte modo: Considere o ponto $x = (x_1, x_2)$ e encontre valores (ρ_0, τ_0) , onde τ_0 é o tempo mínimo que uma órbita do sistema (2.8) leva para alcançar

Figura 2.4: Construção do homeomorfismo próximo à bifurcação de Hopf

o ponto x partindo do semi-eixo horizontal com $\rho = \rho_0$. Agora, tome o ponto deste eixo com $\rho = \rho_0$ e construa uma órbita do sistema (2.9) no intervalo [0; τ_0] partindo desse ponto. Denote o ponto resultante por $x^* = (x_1^*, x_2^*)$. Veja figura (2.4). Assuma que $x^* = 0$ para x = 0.

A aplicação construída é um homeomorfismo que, para $\mu > 0$, leva órbitas do sistema (2.8), em alguma vizinhança da origem, em órbitas de (2.9), preservando a direção do tempo. O caso $\mu < 0$ pode ser considerado da mesma forma com uma nova mudança de coordenadas.

Considere o sistema

$$\dot{x} = f(x,\mu), \ x \in \mathbb{R}^2, \ \mu \in \mathbb{R}^m,$$

com f
 suave, tendo para μ nulo o equilíbri
ox=0 com autovalores $\lambda_{1,2}=\pm i\omega_0,$

 $\omega_0 > 0$. Pelo Teorema da Função Implícita, quando $\lambda = 0$ não é um autovalor da matriz Jacobiana, o sistema tem um único equilíbrio $x_0(\mu)$ em alguma vizinhança da origem para todo $||\mu||$ suficientemente pequeno. Podemos, então, através de uma mudança de coordenadas, levar este equilíbrio para a origem. Portanto, vamos assumir sem perda de generalidade que x = 0 é ponto de equilíbrio isolado do sistema para $||\mu||$ suficientemente pequeno.

Então o sistema acima pode ser escrito como

$$\dot{x} = A(\mu)x + F(x,\mu),$$
(2.15)

onde F é uma função suave com componentes $F_{1,2}$, tendo expansão de Taylor em x iniciando com termos quadráticos (no mínimo), $F = \mathcal{O}(||x||^2)$. A matriz Jacobiana $A(\mu)$ possui dois autovalores

$$\lambda_1(\mu) = \lambda(\mu), \ \lambda_2(\mu) = \overline{\lambda}(\mu),$$

onde

$$\lambda(\mu) = \gamma(\mu) + i\omega(\mu),$$

e a condição para a bifurcação de Hopf é

$$\gamma(0) = 0, \ \omega(0) = \omega_0 > 0.$$

Seja $q(\mu) \in \mathbb{C}^2$ autovetor complexo correspondente ao autovalor $\lambda(\mu)$,

$$A(\mu)q(\mu) = \lambda(\mu)q(\mu),$$

e seja $p(\mu) \in \mathbb{C}^2$ autovetor da matriz transposta $A^{\top}(\mu)$ correspondente ao autovalor $\bar{\lambda}(\mu)$,

$$A^{\top}(\mu)p(\mu) = \bar{\lambda}(\mu)p(\mu).$$

É sempre possível normalizar p com respeito a q, da seguinte forma

$$\langle p(\mu), q(\mu) \rangle = 1,$$

onde $\langle p,q \rangle = \bar{p_1}q_1 + \bar{p_2}q_2$ é o produto escalar em \mathbb{C}^2 . Qualquer vetor $x \in \mathbb{R}^2$ pode ser representado unicamente para todo μ pequeno como

$$x = zq(\mu) + \bar{z}\bar{q}(\mu),$$

para algum número complexo z. Temos, então, a seguinte fórmula explícita para se determinar \boldsymbol{z}

$$z = \langle p(\mu), x \rangle.$$
(2.16)

Para verificar esta fórmula notemos que

$$\begin{split} \langle p, x \rangle &= \langle p, zq + \bar{z}\bar{q} \rangle = \langle p, zq \rangle + \langle p, \bar{z}\bar{q} \rangle \\ \Rightarrow \langle p, x \rangle &= z \langle p, q \rangle + \bar{z} \langle p, \bar{q} \rangle \,. \end{split}$$

Como $\langle p,q\rangle=1,$ basta vermos que $\langle p,\bar{q}\rangle=0.$ De fato,

$$\begin{split} \langle p, \bar{q} \rangle &= \langle p, \frac{1}{\bar{\lambda}} A \bar{q} \rangle &= \frac{1}{\bar{\lambda}} \langle A^{\top} p, \bar{q} \rangle &= \frac{\lambda}{\bar{\lambda}} \langle p, \bar{q} \rangle \\ & \Rightarrow \left(1 - \frac{\lambda}{\bar{\lambda}} \right) \langle p, \bar{q} \rangle &= 0. \end{split}$$

Como $\lambda \neq \overline{\lambda}$, pois, para $||\mu||$ suficientemente pequeno, temos $\omega(\mu) > 0$, concluímos que

$$\langle p, \bar{q} \rangle = 0.$$

Lema 2.1.2 O sistema (2.15) pode ser escrito, para $||\mu||$ suficientemente pequeno, na forma

$$\dot{z} = \lambda(\mu)z + g(z, \bar{z}, \mu), \qquad (2.17)$$

onde $g = \mathcal{O}(|z|^2)$ é uma função suave de (z, \bar{z}, μ) , dada por

$$g(z, \bar{z}, \mu) = \langle p(\mu), F(zq(\mu) + \bar{z}\bar{q}(\mu), \mu) \rangle.$$

Demonstração 2.1.2: De (2.16) temos que a variável complexa z satisfaz a equação

$$\begin{aligned} \dot{z} &= \langle p(\mu), \dot{x} \rangle \\ &= \langle p, Ax + F(x) \rangle \\ &= \langle p, Ax \rangle + \langle p, F(x) \rangle \\ &= \langle p, A(zq + \bar{z}\bar{q}) \rangle + \langle p, F(zq + \bar{z}\bar{q}) \rangle \\ &= \langle p, A(zq) \rangle + \langle p, A(\bar{z}\bar{q}) \rangle + \langle p, F(zq + \bar{z}\bar{q}) \rangle \\ &= \lambda z \langle p, q \rangle + \bar{\lambda} \bar{z} \langle p, \bar{q} \rangle + \langle p, F(zq + \bar{z}\bar{q}) \rangle \\ &= \lambda(\mu) z + \langle p(\mu), F(zq(\mu) + \bar{z}\bar{q}(\mu), \mu) \rangle, \end{aligned}$$

obtendo então a forma (2.17), como queríamos.

Escrevendo gem série de Taylor nas duas variáveis complexas (z e $\bar{z}),$ temos

$$g(z, \bar{z}, \mu) = \sum_{j+k \ge 2} \frac{1}{j!k!} g_{jk}(\mu) z^k \bar{z}^j,$$

onde

$$g_{jk}(\mu) = \frac{\partial^{j+k}}{\partial z^k \partial \bar{z}^j} \left\langle p(\mu), F(zq(\mu) + \bar{z}\bar{q}(\mu), \mu) \right\rangle \Big|_{z=0},$$

para $k + j \ge 2, \, j, k = 0, 1, \dots$

Suponha que, para $\mu=0,$ a função $F(x,\mu)$ de (2.15) seja representada na forma

$$F(x,\mu) = \frac{1}{2}B(x,x) + \frac{1}{6}C(x,x,x) + \frac{1}{24}D(x,x,x,x) + \frac{1}{120}E(x,x,x,x,x) + \frac{1}{720}E(x,x,x,x,x,x) + \frac{1}{5040}L(x,x,x,x,x,x,x,x) + O(||x||^8),$$

$$(2.18)$$

onde B(x, y), C(x, y, z), D(x, y, z, u), E(x, y, z, u, v), K(x, y, z, u, v, s) e L(x, y, z, u, v, s, t)são funções multilineares simétricas nas variáveis $x, y, z, u, v, s, t \in \mathbb{R}^2$. Em coordenadas, temos

$$\begin{split} B_{i}(x,y) &= \sum_{j,k=1}^{2} \frac{\partial^{2} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k}} \Big|_{\mu=0} x_{j} y_{k}, \\ C_{i}(x,y,z) &= \sum_{j,k,l=1}^{2} \frac{\partial^{3} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k} \partial \mu_{l}} \Big|_{\mu=0} x_{j} y_{k} z_{l}, \\ D_{i}(x,y,z,u) &= \sum_{j,k,l,r=1}^{2} \frac{\partial^{4} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k} \partial \mu_{l} \partial \mu_{r}} \Big|_{\mu=0} x_{j} y_{k} z_{l} u_{r}, \\ E_{i}(x,y,z,u,v) &= \sum_{j,k,l,r,p=1}^{2} \frac{\partial^{5} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k} \partial \mu_{l} \partial \mu_{r} \partial \mu_{p}} \Big|_{\mu=0} x_{j} y_{k} z_{l} u_{r} v_{p}, \\ K_{i}(x,y,z,u,v,s) &= \sum_{j,k,l,r,p,q=1}^{2} \frac{\partial^{6} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k} \partial \mu_{l} \partial \mu_{r} \partial \mu_{p} \partial \mu_{q}} \Big|_{\mu=0} x_{j} y_{k} z_{l} u_{r} v_{p} s_{q}, \\ L_{i}(x,y,z,u,v,s,t) &= \sum_{j,k,l,r,p,q,h=1}^{2} \frac{\partial^{7} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k} \partial \mu_{l} \partial \mu_{r} \partial \mu_{p} \partial \mu_{q} \partial \mu_{h}} \Big|_{\mu=0} x_{j} y_{k} z_{l} u_{r} v_{p} s_{q} t_{h}, \end{split}$$

para i = 1, 2.

Então,

$$\begin{split} B(zq + \bar{z}\bar{q}, zq + \bar{z}\bar{q}) &= z^2 B(q, q) + 2z\bar{z}B(q, \bar{q}) + \bar{z}^2 B(\bar{q}, \bar{q}), \\ C(zq + \bar{z}\bar{q}, zq + \bar{z}\bar{q}, zq + \bar{z}\bar{q}) &= z^3 C(q, q, q) + 3z^2 \bar{z} C(q, q, \bar{q}) + 3z \bar{z}^2 C(q, \bar{q}, \bar{q}) + \bar{z}^3 C(\bar{q}, \bar{q}, \bar{q}), \\ D(zq + \bar{z}\bar{q}, zq + \bar{z}\bar{q}, zq + \bar{z}\bar{q}, zq + \bar{z}\bar{q}) &= z^4 D(q, q, q, q) + 4z^3 \bar{z} D(q, q, q, \bar{q}) + 6z^2 \bar{z}^2 D(q, q, \bar{q}, \bar{q}) \\ &+ 4z \bar{z}^3 D(q, \bar{q}, \bar{q}, \bar{q}) + \bar{z}^4 (\bar{q}, \bar{q}, \bar{q}, \bar{q}), \end{split}$$

$$E(zq+\bar{z}\bar{q},zq+\bar{z}\bar{q},zq+\bar{z}\bar{q},zq+\bar{z}\bar{q},zq+\bar{z}\bar{q}) = z^5 E(q,q,q,q,q) + 5z^4 \bar{z} E(q,q,q,q,\bar{q})$$

 $+10z^{3}\bar{z}^{2}E(q,q,q,\bar{q},\bar{q},\bar{q})+10z^{2}\bar{z}^{3}E(q,q,\bar{q},\bar{q},\bar{q})+5z\bar{z}^{4}E(q,\bar{q},\bar{q},\bar{q},\bar{q})+\bar{z}^{5}E(\bar{q},\bar{q},\bar{q},\bar{q},\bar{q},\bar{q}),$

$$K(zq + \bar{z}\bar{q}, zq + \bar{z}\bar{q}) = z^{6}K(q, q, q, q, q, q)$$

$$+6z^{5}\bar{z}K(q,q,q,q,\bar{q},\bar{q})+15z^{4}\bar{z}^{2}K(q,q,q,\bar{q},\bar{q},\bar{q})+20z^{3}\bar{z}^{3}K(q,q,q,\bar{q},\bar{q},\bar{q},\bar{q})$$

$$+15z^{2}\bar{z}^{4}K(q,q,\bar{q},\bar{q},\bar{q},\bar{q},\bar{q})+6z\bar{z}^{5}K(q,\bar{q},\bar{q},\bar{q},\bar{q},\bar{q})+\bar{z}^{6}K(\bar{q},\bar{q},\bar{q},\bar{q},\bar{q},\bar{q},\bar{q}),$$

$$L(zq + \bar{z}\bar{q}, zq + \bar{z}\bar{q}) = z^{7}L(q, q, q, q, q, q, q, q)$$
$$+7z^{6}\bar{z}L(q, q, q, q, q, q, \bar{q}) + 21z^{5}\bar{z}^{2}L(q, q, q, q, q, \bar{q}, \bar{q}) + 35z^{4}\bar{z}^{3}L(q, q, q, q, \bar{q}, \bar{q}, \bar{q})$$

onde q = q(0), p = p(0) e os coeficientes de Taylor g_{kl} , $2 \le k + j \le 7$, dos termos quadráticos em $g(z, \overline{z}, 0)$ podem ser expressos, agora, pelas fórmulas

 $g_{16} = \langle p, L(q, \bar{q}, \bar{q}, \bar{q}, \bar{q}, \bar{q}, \bar{q}, \bar{q}) \rangle, \ g_{07} = \langle p, L(\bar{q}, \bar{q}, \bar{q}, \bar{q}, \bar{q}, \bar{q}, \bar{q}, \bar{q}, \bar{q}) \rangle.$

Lema 2.1.3 A equação

$$\dot{z} = \lambda z + \frac{g_{20}}{2} z^2 + g_{11} z \bar{z} + \frac{g_{02}}{2} \bar{z}^2 + O(|z|^3), \qquad (2.19)$$

onde $\lambda = \lambda(\mu) = \gamma(\mu) + i\omega(\mu), \gamma(0) = 0, \omega(0) = \omega_0 > 0$ e $g_{ij} = g_{ij}(\mu)$, pode se transformada, pela mudança de coordenadas complexa

$$z = \omega + \frac{h_{20}}{2}\,\omega^2 + h_{11}\,\omega\bar{\omega} + \frac{h_{02}}{2}\,\bar{\omega}^2,$$

para $||\mu||$ suficientemente pequeno, na equação sem termos quadráticos

$$\dot{\omega} = \lambda \omega + O(|\omega|^3).$$

Demonstração 2.1.3: A mudança de variável inversa é dada pela expressão

$$\omega = z - \frac{h_{20}}{2} z^2 - h_{11} z \overline{z} - \frac{h_{02}}{2} \overline{z}^2.$$

Assim sendo,

$$\begin{split} \dot{\omega} &= \dot{z} - h_{20} z \dot{z} - h_{11} \left(\bar{z} \dot{z} + z \dot{\bar{z}} \right) - h_{02} \bar{z} \dot{\bar{z}} + \dots \\ &= \lambda z + \left(\frac{g_{20}}{2} - \lambda h_{20} \right) z^2 + (g_{11} + \lambda h_{11} + \bar{\lambda} h_{11}) z \bar{z} + \left(\frac{g_{02}}{2} + \bar{\lambda} h_{02} \right) \bar{z}^2 + \dots \\ &= \lambda \omega + \frac{1}{2} \left(g_{20} + \lambda h_{20} \right) \omega^2 + (g_{11} - \bar{\lambda} h_{11}) \omega \bar{\omega} + \frac{1}{2} \left(g_{02} + h_{02} (2 \bar{\lambda} - \lambda) \right) \bar{\omega}^2 \\ &+ O(|\omega|^3). \end{split}$$

Escolhendo, então,

$$h_{20} = \frac{g_{20}}{\lambda}, \ h_{11} = \frac{g_{11}}{\bar{\lambda}}, \ h_{02} = \frac{g_{02}}{2\bar{\lambda} - \lambda},$$

eliminamos os termos quadráticos de (2.19). Essas substituições são sempre possíveis, pois, para $||\mu||$ suficientemente pequeno, os denominadores nunca se anulam, pois $\lambda(0) = i\omega_0$ com $\omega_0 > 0$.

Lema 2.1.4 A equação

$$\dot{z} = \lambda z + \frac{g_{30}}{6} z^3 + \frac{g_{21}}{2} z^2 \bar{z} + \frac{g_{12}}{2} z \bar{z}^2 + \frac{g_{03}}{6} \bar{z}^3 + O(|z|^4),$$
(2.20)

onde $\lambda = \lambda(\mu) = \gamma(\mu) + i\omega(\mu), \gamma(0) = 0, \omega(0) = \omega_0 > 0$ e $g_{ij} = g_{ij}(\mu)$, pode se transformada, pela mudança de coordenadas complexa

$$z = \omega + \frac{h_{30}}{6}\,\omega^3 + \frac{h_{21}}{2}\,\omega^2\bar{\omega} + \frac{h_{12}}{2}\,\omega\bar{\omega}^2 + \frac{h_{03}}{6}\,\bar{\omega}^3,$$

para $||\mu||$ suficientemente pequeno, na equação com somente um termo cúbico

$$\dot{\omega} = \lambda \omega + c_1 \omega^2 \bar{\omega} + O(|\omega|^4),$$

onde $c_1 = c_1(\mu)$.

Demonstração 2.1.4: A transformação inversa é

$$\omega = z - \frac{h_{30}}{6} z^3 - \frac{h_{21}}{2} z^2 \bar{z} - \frac{h_{12}}{2} z \bar{z}^2 - \frac{h_{03}}{6} \bar{z}^3 + O(|z|^4).$$

Temos então,

$$\begin{split} \dot{\omega} &= \dot{z} - \frac{h_{30}}{2} z^2 \dot{z} - \frac{h_{21}}{2} \left(2 z \bar{z} \dot{z} + z^2 \dot{\bar{z}} \right) - \frac{h_{12}}{2} \left(\bar{z}^2 \dot{z} + 2 z \bar{z} \dot{z} \right) - \frac{h_{03}}{2} \bar{z}^2 \dot{\bar{z}} + \dots \\ &= \lambda z + \left(\frac{g_{30}}{6} - \frac{\lambda h_{30}}{2} \right) z^3 + \left(\frac{g_{21}}{2} - \lambda h_{21} - \frac{\bar{\lambda} h_{21}}{2} \right) z^2 \bar{z} + \left(\frac{g_{12}}{2} - \frac{\lambda h_{12}}{2} - \bar{\lambda} h_{12} \right) z \bar{z}^2 \\ &+ \frac{1}{6} \left(\frac{g_{03}}{6} - \frac{\bar{\lambda} h_{03}}{2} \right) \bar{z}^3 + \dots \\ &= \lambda \omega + \frac{1}{6} \left(g_{30} - 2\lambda h_{30} \right) \omega^3 + \frac{1}{2} \left(g_{21} - h_{21} (\lambda + \bar{\lambda}) \right) \omega^2 \bar{\omega} + \frac{1}{2} \left(g_{12} - 2\bar{\lambda} h_{12} \right) \omega \bar{\omega}^2 \\ &+ \frac{1}{6} \left(g_{03} + h_{03} (\lambda - 3\bar{\lambda}) \right) \bar{\omega}^3 + O(|\omega|^4). \end{split}$$

Fazendo

$$h_{30} = \frac{g_{30}}{2\lambda}, \ h_{12} = \frac{g_{12}}{2\bar{\lambda}}, \ h_{03} = \frac{g_{03}}{3\bar{\lambda} - \lambda},$$

eliminamos todos os termos cúbicos com exceção do termo $\omega^2 \bar{\omega}$, que será tratado separadamente. As substituições são válidas, pois os denominadores envolvidos são diferentes de zero para todo $||\mu||$ suficientemente pequeno.

Uma tentativa de eliminar o termo $\omega^2 \bar{\omega}$ seria escolher

$$h_{21} = \frac{g_{21}}{\lambda + \bar{\lambda}}.$$

Isso é possível para $\mu \neq 0$ pequeno, mas quando $\mu = 0$ o denominador se anula, pois $\lambda(0) + \bar{\lambda}(0) = i\omega_0 - i\omega_0 = 0$. Para obtermos então uma transformação que dependa suavemente de μ , escolhemos $h_{21} = 0$, no que resulta $c_1 = g_{21}/2$.

O termo $\omega^2 \bar{\omega}$ é chamado *termo ressonante*. Note que o seu coeficiente é o mesmo coeficiente do termo cúbico $z^2 \bar{z}$ na equação (2.20).

Lema 2.1.5 A equação

$$\dot{z} = \lambda z + \frac{g_{40}}{24} z^4 + \frac{g_{31}}{6} z^3 \bar{z} + \frac{g_{22}}{4} z^2 \bar{z}^2 + \frac{g_{13}}{6} z \bar{z}^3 + \frac{g_{04}}{24} \bar{z}^4 + O(|z|^5),$$
(2.21)

onde $\lambda = \lambda(\mu) = \gamma(\mu) + i\omega(\mu), \gamma(0) = 0, \omega(0) = \omega_0 > 0$ e $g_{ij} = g_{ij}(\mu)$, pode se transformada, pela mudança de coordenadas complexa

$$z = \omega + \frac{h_{40}}{24}\,\omega^4 + \frac{h_{31}}{6}\,\omega^3\bar\omega + \frac{h_{22}}{4}\,\omega^2\bar\omega^2 + \frac{h_{13}}{6}\,\omega\bar\omega^3 + \frac{h_{04}}{24}\,\bar\omega^4,$$

para $||\mu||$ suficientemente pequeno, na equação sem termos quárticos

$$\dot{\omega} = \lambda \omega + O(|\omega|^5).$$

Demonstração 2.1.5: A transformação inversa é

$$\omega = z - \frac{h_{40}}{24} z^4 - \frac{h_{31}}{6} z^3 \bar{z} - \frac{h_{22}}{4} z^2 \bar{z}^2 - \frac{h_{13}}{6} z \bar{z}^3 - \frac{h_{04}}{24} \bar{z}^4.$$

Temos, então

$$\begin{split} \dot{\omega} &= \dot{z} - \frac{h_{40}}{6} z^3 \dot{z} - \frac{h_{31}}{6} \left(3z^2 \bar{z} \dot{z} + z^3 \dot{\bar{z}} \right) - \frac{h_{22}}{2} \left(2z \bar{z}^2 \dot{z} + 2z^2 \bar{z} \dot{\bar{z}} \right) - \frac{h_{13}}{6} \left(\bar{z}^3 \dot{z} + 3z \bar{z}^2 \dot{\bar{z}} \right) \\ &- \frac{h_{04}}{6} \bar{z}^3 \dot{z} - \dots \\ &= \lambda z + \left(\frac{g_{40}}{24} - \frac{\lambda h_{40}}{6} \right) z^4 - \left(\frac{g_{31}}{6} - \frac{\lambda h_{31}}{2} - \frac{\bar{\lambda} g_{31}}{6} \right) z^3 \bar{z} + \left(\frac{g_{22}}{4} - \frac{\lambda h_{22}}{2} - \frac{\bar{\lambda} h_{22}}{2} \right) z^2 \bar{z}^2 \\ &+ \left(\frac{g_{13}}{6} - \frac{\lambda h_{13}}{6} - \frac{\bar{\lambda} h_{13}}{2} \right) z \bar{z}^3 + \left(\frac{g_{04}}{24} - \frac{\bar{\lambda} h_{04}}{6} \right) \bar{z}^4 + \dots \\ &= \lambda \omega + \frac{1}{24} \left(g_{40} - 3\lambda h_{40} \right) \omega^4 + \frac{1}{6} \left(g_{31} - h_{31} (2\lambda + \bar{\lambda}) \right) \omega^3 \bar{\omega} + \frac{1}{4} \left(g_{22} - h_{22} (\lambda + 2\bar{\lambda}) \omega^2 \bar{\omega}^2 \right) \\ &+ \frac{1}{6} \left(g_{13} + 3\bar{\lambda} h_{13} \right) \omega \bar{\omega}^3 + \frac{1}{24} \left(g_{04} + \lambda h_{04} - 4\bar{\lambda} h_{04} \right) \bar{\omega}^4 + O(|\omega|^5). \end{split}$$

Assim, tomando-se

$$h_{40} = \frac{g_{40}}{3\lambda}, h_{31} = \frac{g_{31}}{2\lambda - \bar{\lambda}}, h_{22} = \frac{g_{22}}{\lambda + 2\bar{\lambda}}, h_{13} = \frac{g_{13}}{3\bar{\lambda}}, h_{04} = \frac{g_{04}}{4\bar{\lambda} - \lambda},$$

eliminamos os termos quárticos de (2.21). Essas substituições são sempre possíveis, pois, para $||\mu||$ suficientemente pequeno, os denominadores nunca se anulam, afinal $\lambda(0) = i\omega_0$, com $\omega_0 > 0$.

Lema 2.1.6 A equação

$$\dot{z} = \lambda z + \frac{g_{50}}{120} z^5 + \frac{g_{41}}{24} z^4 \bar{z} + \frac{g_{32}}{12} z^3 \bar{z}^2 + \frac{g_{23}}{12} z^2 \bar{z}^3 + \frac{g_{14}}{24} z \bar{z}^4 + \frac{g_{05}}{120} \bar{z}^5 + O(|z|^6), \qquad (2.22)$$

de $\lambda = \lambda(\mu) = \gamma(\mu) + i\omega(\mu), \gamma(0) = 0, \omega(0) = \omega_0 > 0$ e $g_{ij} = g_{ij}(\mu)$, pode se transformada, pela mudança de coordenadas complexa

$$z = \omega + \frac{h_{50}}{120}\,\omega^5 + \frac{h_{41}}{24}\,\omega^4\bar{\omega} + \frac{h_{32}}{12}\,\omega^3\bar{\omega}^2 + \frac{h_{23}}{12}\,\omega^2\bar{\omega}^3 + \frac{h_{14}}{24}\,\omega\bar{\omega}^4 + \frac{h_{05}}{120}\,\bar{\omega}^5,$$

para $||\mu||$ suficientemente pequeno, na equação com somente um termo de ordem 5

$$\dot{\omega} = \lambda \omega + c_2 \omega^3 \bar{\omega}^2 + O(|\omega|^6),$$

onde $c_2 = c_2(\mu)$.

Demonstração 2.1.6: A transformação inversa é

$$\omega = z - \frac{h_{50}}{120}z^5 - \frac{h_{41}}{24}z^4\bar{z} - \frac{h_{32}}{12}z^3\bar{z}^2 - \frac{h_{23}}{12}z^2\bar{z}^3 - \frac{h_{14}}{24}z\bar{z}^4 - \frac{h_{05}}{120}\bar{z}^5 + O(|z|^6).$$

Temos, então

$$\begin{split} \dot{\omega} &= \dot{z} - \frac{h_{50}}{24} z^4 \dot{z} - \frac{h_{41}}{6} z^3 \dot{z} \bar{z} - \frac{h_{41}}{24} z^4 \dot{\bar{z}} - \frac{h_{32}}{4} z^2 \dot{z} \bar{z}^2 - \frac{h_{32}}{6} z^3 \dot{\bar{z}} \bar{z} - \frac{h_{23}}{6} z \dot{z} \bar{z}^3 - \frac{h_{23}}{6} z \dot{z} \bar{z}^3 - \frac{h_{23}}{4} z^2 \dot{z} \bar{z}^2 \\ &- \frac{h_{14}}{24} \dot{z} \bar{z}^4 - \frac{h_{14}}{6} z \bar{z}^3 \dot{\bar{z}} - \frac{h_{05}}{24} \bar{z}^4 \dot{\bar{z}} + \dots \\ &= \lambda z + \left(\frac{g_{50}}{120} - \frac{\lambda h_{50}}{24}\right) z^5 + \left(\frac{g_{41}}{24} - \frac{\lambda h_{41}}{6} - \frac{\bar{\lambda} h_{41}}{24}\right) z^4 \bar{z} + \left(\frac{g_{32}}{12} - \frac{\lambda h_{32}}{4} - \frac{\bar{\lambda} h_{32}}{6}\right) z^3 \bar{z}^2 \\ &+ \left(\frac{g_{23}}{12} - \frac{\lambda h_{23}}{6} - \frac{\bar{\lambda} h_{23}}{4}\right) z^2 \bar{z}^3 + \left(\frac{g_{14}}{24} - \frac{\lambda h_{14}}{24} - \frac{\bar{\lambda} h_{14}}{6}\right) z \bar{z}^4 + \left(\frac{g_{05}}{120} - \frac{\bar{\lambda} h_{05}}{24}\right) \bar{z}^5 + \dots \\ &= \lambda \omega + \left(\frac{g_{50}}{120} - \frac{\lambda h_{50}}{30}\right) \omega^5 + \left(\frac{g_{41}}{24} - \frac{\lambda h_{41}}{8} - \frac{\bar{\lambda} h_{41}}{24}\right) \omega^4 \bar{\omega} + \left(\frac{g_{32}}{12} - \frac{\lambda h_{32}}{6} - \frac{\bar{\lambda} h_{32}}{6}\right) \omega^3 \bar{\omega}^2 \\ &+ \left(\frac{g_{23}}{12} - \frac{\lambda h_{23}}{6} - \frac{\bar{\lambda} h_{23}}{4}\right) \omega^2 \bar{\omega}^3 + \left(\frac{g_{14}}{24} - \frac{\bar{\lambda} h_{14}}{6}\right) \omega \bar{\omega}^4 + \left(\frac{g_{05}}{120} + \frac{\lambda h_{05}}{120} - \frac{\bar{\lambda} h_{05}}{24}\right) \bar{\omega}^5. \end{split}$$

Fazendo

$$h_{50} = \frac{g_{50}}{4\lambda}, h_{41} = \frac{g_{41}}{\bar{\lambda} + 3\lambda}, h_{23} = \frac{g_{23}}{2\lambda + 3\bar{\lambda}}, h_{14} = \frac{g_{14}}{4\bar{\lambda}}, h_{05} = \frac{g_{05}}{5\bar{\lambda} - \lambda}, h_{14} = \frac{g_{14}}{4\bar{\lambda}}, h_{14} = \frac{g_{14}}{4\bar{\lambda}}, h_{15} = \frac{g_{15}}{5\bar{\lambda} - \lambda}, h_{15} = \frac{g_{15$$

eliminamos todos os termos de ordem 5, 4, 3 e 2 com exceção do termo $\omega^3 \bar{\omega}^2$ que será tratado separadamente. As substituições são válidas, pois os denominadores envolvidos são diferentes de zero para todo $||\mu||$ suficientemente pequeno.

Uma tentativa de eliminar o termo $\omega^3 \bar{\omega}^2$ seria escolher

$$h_{32} = \frac{g_{32}}{2\lambda + 2\bar{\lambda}},$$

que é possível para $\mu \neq 0$ pequeno, mas quando $\mu = 0$ o denominador se anula, pois $\lambda(0) + \bar{\lambda}(0) = i\omega_0 - i\omega_0 = 0$. Para obtermos então uma transformação que dependa suavemente de μ escolhemos $h_{32} = 0$, no que resulta $c_2 = g_{32}/12$.

O termo $\omega^3 \bar{\omega}^2$ é chamado também de *termo de ressonante*. Note que o seu coeficiente é o mesmo coeficiente do termo $z^3 \bar{z}^2$ na equação (2.22).

Lema 2.1.7 A equação

$$\dot{z} = \lambda z + \frac{g_{60}}{720} z^6 + \frac{g_{51}}{120} z^5 \bar{z} + \frac{g_{42}}{48} z^4 \bar{z}^2 + \frac{g_{33}}{36} z^3 \bar{z}^3 + \frac{g_{24}}{48} z^2 \bar{z}^4 + \frac{g_{15}}{120} z \bar{z}^5 + \frac{g_{06}}{720} \bar{z}^6 + O(|z|^7), \quad (2.23)$$

onde $\lambda = \lambda(\mu) = \gamma(\mu) + i\omega(\mu), \gamma(0) = 0, \omega(0) = \omega_0 > 0$ e $g_{ij} = g_{ij}(\mu)$, pode se transformada, pela mudança de coordenadas complexas

$$z = \omega + \frac{h_{60}}{720}\,\omega^6 + \frac{h_{51}}{120}\,\omega^5\bar{\omega} + \frac{h_{42}}{48}\,\omega^4\bar{\omega}^2 + \frac{h_{33}}{36}\,\omega^3\bar{\omega}^3 + \frac{h_{24}}{48}\,\omega^2\bar{\omega}^4 + \frac{h_{15}}{120}\,\omega\bar{\omega}^5 + \frac{h_{06}}{720}\,\bar{\omega}^6,$$

para $||\mu||$ suficientemente pequeno, na equação sem termos de ordem 2, 3, 4, 5 e 6

$$\dot{\omega} = \lambda \omega + O(|\omega|^7).$$

Demonstração 2.1.7: A mudança de variável inversa é dada pela expressão

$$\omega = z - \frac{h_{60}}{720} z^6 - \frac{h_{51}}{120} z^5 \bar{z} - \frac{h_{42}}{48} z^4 \bar{z}^2 - \frac{h_{33}}{36} z^3 \bar{z}^3 - \frac{h_{24}}{48} z^2 \bar{z}^4 - \frac{h_{15}}{120} z \bar{z}^5 - \frac{h_{06}}{720}, \bar{z}^6 - O(|z|^7).$$

Assim,

$$\begin{split} \dot{\omega} &= z - \frac{h_{60}}{120} z^5 \dot{z} - \frac{h_{51}}{24} z^4 \bar{z} \dot{z} - \frac{h_{42}}{12} z^3 \bar{z}^2 \dot{z} - \frac{h_{33}}{12} z^2 \bar{z}^3 \dot{z} - \frac{h_{24}}{24} z \bar{z}^4 \dot{z} - \frac{h_{15}}{120} \bar{z}^5 \dot{z} - \frac{h_{51}}{120} z^5 \dot{z} \\ &- \frac{h_{42}}{24} z^4 \bar{z} \dot{z} - \frac{h_{33}}{12} z^3 \bar{z}^2 \dot{z} - \frac{h_{24}}{12} z^2 \bar{z}^3 \dot{z} - \frac{h_{15}}{24} z \bar{z}^4 \dot{z} - \frac{h_{06}}{120} \bar{z}^5 \dot{z} - \dots \\ &= \lambda z + \left(\frac{g_{60}}{720} - \frac{\lambda h_{60}}{120}\right) z^6 - \left(\frac{g_{51}}{120} - \frac{\lambda h_{51}}{24} - \frac{\bar{\lambda} h_{51}}{120}\right) z^5 \bar{z} + \left(\frac{g_{42}}{48} - \frac{\lambda h_{42}}{12} - \frac{\bar{\lambda} h_{42}}{24}\right) z^4 \bar{z}^2 \\ &+ \left(\frac{g_{33}}{36} - \frac{\lambda h_{33}}{12} - \frac{\bar{\lambda} h_{33}}{12}\right) z^3 \bar{z}^3 + \left(\frac{g_{24}}{48} - \frac{\lambda h_{24}}{24} - \frac{\bar{\lambda} h_{24}}{12}\right) z^2 \bar{z}^4 + \left(\frac{g_{15}}{120} - \frac{\lambda h_{15}}{120} - \frac{\bar{\lambda} h_{15}}{24}\right) z \bar{z}^5 \\ &+ \left(\frac{g_{06}}{720} - \frac{\bar{\lambda} h_{06}}{120}\right) \bar{z}^6 + \dots \\ &= \lambda \omega + \left(\frac{g_{60}}{720} - \frac{\lambda h_{60}}{144}\right) \omega^6 + \left(\frac{g_{51}}{120} - \frac{\lambda h_{51}}{30} - \frac{\bar{\lambda} h_{51}}{120}\right) \omega^5 \bar{\omega} + \left(\frac{g_{42}}{48} - \frac{\lambda h_{42}}{16} - \frac{\bar{\lambda} h_{42}}{24}\right) \omega^4 \bar{\omega}^2 \\ &+ \left(\frac{g_{33}}{36} - \frac{\lambda h_{33}}{18} - \frac{\bar{\lambda} h_{33}}{12}\right) \omega^3 \bar{\omega}^3 + \left(\frac{g_{24}}{48} - \frac{\lambda h_{24}}{12}\right) \omega^2 \bar{\omega}^4 + \left(\frac{g_{15}}{120} - \frac{\lambda h_{15}}{120} - \frac{\bar{\lambda} h_{15}}{24}\right) \omega \bar{\omega}^5 \\ &+ \left(\frac{g_{06}}{720} - \frac{\lambda h_{60}}{144}\right) \bar{\omega}^6 + O(|\omega|^7). \end{split}$$

Escolhendo, então

$$h_{60} = \frac{g_{60}}{5\lambda}, \quad h_{06} = \frac{g_{06}}{6\bar{\lambda} - \lambda}, \quad h_{15} = \frac{g_{15}}{\lambda + 5\bar{\lambda}}, \quad h_{24} = \frac{g_{24}}{2\lambda + 4\bar{\lambda}},$$
$$h_{42} = \frac{g_{42}}{3\lambda + 2\bar{\lambda}}, \quad h_{51} = \frac{g_{51}}{\bar{\lambda} + 4\lambda}, \quad h_{33} = \frac{g_{33}}{3\bar{\lambda} + 2\lambda},$$

eliminamos os termos de ordem 2, 3, 4 e 5 de (2.23). Essas substituições são sempre possíveis, pois, para $||\mu||$ suficientemente pequeno, os denominadores nunca se anulam, afinal $\lambda(0) = i\omega_0$ com $\omega_0 > 0$.
Lema 2.1.8 A equação

$$\dot{z} = \lambda z + \frac{g_{70}}{5040} z^7 + \frac{g_{61}}{720} z^6 \bar{z} + \frac{g_{52}}{240} z^5 \bar{z}^2 + \frac{g_{43}}{144} z^4 \bar{z}^3 + \frac{g_{34}}{144} z^3 \bar{z}^4 + \frac{g_{25}}{240} z^2 \bar{z}^5 + \frac{g_{16}}{720} z \bar{z}^6 + \frac{g_{07}}{5040} \bar{z}^7 + O(|z|^8)$$
(2.24)

onde $\lambda = \lambda(\mu) = \gamma(\mu) + i\omega(\mu), \gamma(0) = 0, \omega(0) = \omega_0 > 0$ e $g_{ij} = g_{ij}(\mu)$, pode se transformada, pela mudança de coordenadas complexa

$$z = \omega + \frac{h_{70}}{5040}\omega^7 + \frac{h_{61}}{720}\omega^6\bar{\omega} + \frac{h_{52}}{240}\omega^5\bar{\omega}^2 + \frac{h_{43}}{144}\omega^4\bar{\omega}^3 + \frac{h_{34}}{144}\omega^3\bar{\omega}^4 + \frac{h_{25}}{240}\omega^2\bar{\omega}^5 + \frac{h_{16}}{720}\omega\bar{\omega}^6 + \frac{h_{07}}{5040}\bar{\omega}^7,$$

$$(2.25)$$

para $||\mu||$ suficientemente pequeno, na equação com somente um termo de ordem 7

$$\dot{\omega} = \lambda \omega + c_3 \omega^4 \bar{\omega}^3 + O(|\omega|^8),$$

onde $c_3 = c_3(\mu)$.

Demonstração 2.1.8: A transformação inversa é

$$\omega = z - \frac{h_{70}}{5040} z^7 - \frac{h_{61}}{720} z^6 \bar{z} - \frac{h_{52}}{240} z^5 \bar{z}^2 - \frac{h_{43}}{144} z^4 \bar{z}^3 - \frac{h_{34}}{144} z^3 \bar{z}^4 - \frac{h_{25}}{240} z^2 \bar{z}^5 - \frac{h_{16}}{720} z \bar{z}^6 - \frac{h_{07}}{5040} \bar{z}^7.$$

Então

$$\begin{split} \dot{\omega} &= \dot{z} - \frac{h_{70}}{720} z^6 \dot{z} - \frac{h_{61}}{120} z^5 \bar{z} \dot{z} - \frac{h_{52}}{48} z^4 \bar{z}^2 \dot{z} - \frac{h_{43}}{36} z^3 \bar{z}^3 \dot{z} - \frac{h_{34}}{48} z^2 \bar{z}^4 \dot{z} - \frac{h_{25}}{120} z \bar{z}^5 \dot{z} - \frac{h_{16}}{720} \bar{z}^6 \dot{z} - \frac{h_{16}}{720} \bar{z}^5 \dot{z} - \frac{h_{43}}{48} z^4 \bar{z}^2 \dot{z} - \frac{h_{34}}{36} z^3 \bar{z}^3 \dot{z} - \frac{h_{25}}{48} z^2 \bar{z}^4 \dot{z} - \frac{h_{16}}{120} z \bar{z}^5 \dot{z} - \frac{h_{07}}{720} \bar{z}^6 \dot{z} + \dots \\ &= \lambda z + \left(\frac{g_{70}}{5040} - \frac{\lambda h_{70}}{720}\right) z^7 + \left(\frac{g_{61}}{720} - \frac{\lambda h_{61}}{120} - \frac{\bar{\lambda} h_{61}}{720}\right) z^6 \bar{z} + \left(\frac{g_{52}}{240} - \frac{\lambda h_{52}}{48} - \frac{\bar{\lambda} h_{52}}{120}\right) z^5 \bar{z}^2 \\ &+ \left(\frac{g_{43}}{144} - \frac{\lambda h_{43}}{36} - \frac{\bar{\lambda} h_{43}}{48}\right) z^4 \bar{z}^3 + \left(\frac{g_{34}}{144} - \frac{\lambda h_{34}}{48} - \frac{\bar{\lambda} h_{34}}{36}\right) z^3 \bar{z}^4 + \left(\frac{g_{25}}{240} - \frac{\lambda h_{25}}{120} - \frac{\bar{\lambda} h_{25}}{48}\right) z^2 \bar{z}^5 \\ &+ \left(\frac{g_{16}}{720} - \frac{\lambda h_{16}}{120}\right) z \bar{z}^6 + \left(\frac{g_{07}}{5040} - \frac{\bar{\lambda} h_{61}}{720}\right) \bar{z}^7 + \dots \\ &= \lambda \omega + \left(\frac{g_{70}}{5040} - \frac{\lambda h_{70}}{840}\right) \omega^7 + \left(\frac{g_{61}}{720} - \frac{\lambda h_{61}}{144} - \frac{\bar{\lambda} h_{34}}{72}\right) \omega^6 \bar{\omega} + \left(\frac{g_{52}}{240} - \frac{\lambda h_{52}}{60} - \frac{\bar{\lambda} h_{52}}{120}\right) \omega^5 \bar{\omega}^2 \\ &+ \left(\frac{g_{43}}{144} - \frac{\lambda h_{43}}{48} - \frac{\bar{\lambda} h_{43}}{48}\right) \omega^4 \bar{\omega}^3 + \left(\frac{g_{34}}{144} - \frac{\lambda h_{34}}{72} - \frac{\bar{\lambda} h_{34}}{36}\right) \omega^3 \bar{\omega}^4 + \left(\frac{g_{25}}{240} - \frac{\lambda h_{52}}{120} - \frac{\bar{\lambda} h_{52}}{120}\right) \omega^5 \bar{\omega}^2 \\ &+ \left(\frac{g_{43}}{144} - \frac{\lambda h_{43}}{48} - \frac{\bar{\lambda} h_{43}}{48}\right) \omega^4 \bar{\omega}^3 + \left(\frac{g_{34}}{144} - \frac{\lambda h_{34}}{72} - \frac{\bar{\lambda} h_{34}}{36}\right) \omega^3 \bar{\omega}^4 + \left(\frac{g_{25}}{240} - \frac{\lambda h_{25}}{120} - \frac{\bar{\lambda} h_{25}}{120}\right) \bar{\omega}^5 \bar{\omega}^5 \\ &+ \left(\frac{g_{16}}{720} - \frac{\bar{\lambda} h_{16}}{120}\right) \omega \bar{\omega}^6 + \left(\frac{g_{07}}{5040} - \frac{\bar{\lambda} h_{07}}{5040} - \frac{\bar{\lambda} h_{07}}{720}\right) \bar{\omega}^7 + O(|\omega|^8). \end{split}$$

Tomando

$$h_{70} = \frac{g_{70}}{6\lambda}, h_{61} = \frac{g_{61}}{\bar{\lambda} + 5\lambda}, h_{52} = \frac{g_{52}}{4\lambda + 2\bar{\lambda}}, h_{34} = \frac{g_{34}}{2\lambda + 4\bar{\lambda}}, h_{25} = \frac{g_{25}}{2\lambda + 5\bar{\lambda}}, h_{16} = \frac{g_{16}}{6\bar{\lambda}}, h_{07} = \frac{g_{07}}{7\bar{\lambda} - \lambda},$$

eliminamos todos os termos de ordem 5, 4, 3 e 2 com exceção do termo $\omega^4 \bar{\omega}^3$ que será tratado separadamente. As substituições são válidas, pois, os denominadores envolvidos são diferentes de zero para todo $||\mu||$ suficientemente pequeno.

Uma tentativa de eliminar o termo $\omega^4 \bar{\omega}^3$ seria escolher

$$h_{43} = \frac{g_{43}}{3\lambda + 3\bar{\lambda}},$$

isso é possível para $\mu \neq 0$ pequeno, mas quando $\mu = 0$ o denominador se anula, pois, $\lambda(0) + \bar{\lambda}(0) = i\omega_0 - i\omega_0 = 0$. Para obtermos então uma transformação que dependa suavemente de μ escolhemos $h_{43} = 0$, no que resulta $c_3 = g_{43}/144$.

O termo $\omega^4 \bar{\omega}^3$ é chamado também de *termo de ressonante*. Note que o seu coeficiente é o mesmo coeficiente do termo $z^4 \bar{z}^3$ na equação (2.24).

Lema 2.1.9 A equação

$$\dot{z} = \lambda z + \sum_{2 \le j+k \le 7} \frac{1}{j!k!} g_{jk} z^j \bar{z}^k + O(|z|^8), \qquad (2.26)$$

onde $\lambda = \lambda(\mu) = \gamma(\mu) + i\omega(\mu), \gamma(0) = 0, \omega(0) = \omega_0 > 0, \ e \ g_{ij} = g_{ij}(\mu)$ pode ser transformada, pela mudança de coordenada complexa

$$\begin{aligned} z &= \omega + \frac{h_{70}}{5040} \,\omega^7 + \frac{h_{60}}{720} \,\omega^6 + \frac{h_{61}}{720} \,\omega^6 \bar{\omega} + \frac{h_{50}}{120} \,\omega^5 + \frac{h_{52}}{240} \,\omega^5 \bar{\omega}^2 + \frac{h_{51}}{120} \,\omega^5 \bar{\omega} + \frac{h_{40}}{24} \,\omega^4 + \frac{h_{43}}{144} \,\omega^4 \bar{\omega}^3 \\ &+ \frac{h_{42}}{48} \,\omega^4 \bar{\omega}^2 + \frac{h_{41}}{24} \,\omega^4 \bar{\omega} + \frac{h_{30}}{6} \,\omega^3 + \frac{h_{34}}{144} \,\omega^3 \bar{\omega}^4 + \frac{h_{33}}{36} \,\omega^3 \bar{\omega}^3 + \frac{h_{32}}{12} \,\omega^3 \bar{\omega}^2 + \frac{h_{31}}{6} \,\omega^3 \bar{\omega} + \frac{h_{25}}{240} \,\omega^2 \bar{\omega}^5 \\ &+ \frac{h_{24}}{48} \,\omega^2 \bar{\omega}^4 + \frac{h_{23}}{24} \,\omega^2 \bar{\omega}^3 + \frac{h_{22}}{4} \,\omega^2 \bar{\omega}^2 + \frac{h_{21}}{2} \,\omega^2 \bar{\omega} + \frac{h_{20}}{2} \,\omega^2 + h_{11} \,\omega \bar{\omega} + \frac{h_{02}}{2} \,\bar{\omega}^2 + \frac{h_{12}}{2} \,\omega \bar{\omega}^4 \\ &+ \frac{h_{03}}{6} \,\bar{\omega}^3 + \frac{h_{13}}{6} \,\omega \bar{\omega}^3 + \frac{h_{04}}{24} \,\bar{\omega}^4 + \frac{h_{14}}{24} \,\omega \bar{\omega}^4 + \frac{h_{05}}{120} \,\bar{\omega}^5 + \frac{h_{15}}{120} \,\omega \bar{\omega}^5 + \frac{h_{16}}{720} \,\omega \bar{\omega}^6 + \frac{h_{06}}{720} \,\omega \bar{\omega}^6 \\ &+ \frac{h_{07}}{5040} \,\bar{\omega}^7, \end{aligned}$$

para $||\mu||$ suficientemente pequeno, na equação com apenas um termo de ordem 3, um de ordem 5 e um de ordem 7

$$\dot{\omega} = \lambda \omega + c_1 \omega^2 \bar{\omega} + c_2 \omega^3 \bar{\omega}^2 + c_3 \omega^4 \bar{\omega}^3 + O(|\omega|^8), \qquad (2.27)$$

com $c_1 = c_1(\mu), c_2 = c_2(\mu), c_3 = c_3(\mu).$

Demonstração 2.1.9: Obviamente as transformações definidas nos lemas anteriores, nos levam a este resultado. As transformações

$$z = \omega + \frac{h_{20}}{2}\omega^2 + h_{11}\omega\bar{\omega} + \frac{h_{02}}{2}\bar{\omega}^2,$$

$$z = \omega + \frac{h_{40}}{24}\omega^4 + \frac{h_{31}}{6}\omega^3\bar{\omega} + \frac{h_{22}}{4}\omega^2\bar{\omega}^2 + \frac{h_{13}}{6}\omega\bar{\omega}^3 + \frac{h_{04}}{24}\bar{\omega}^4,$$

$$z = \omega + \frac{h_{60}}{720}\omega^6 + \frac{h_{51}}{120}\omega^5\bar{\omega} + \frac{h_{42}}{48}\omega^4\bar{\omega}^2 + \frac{h_{33}}{36}\omega^3\bar{\omega}^3 + \frac{h_{24}}{48}\omega^2\bar{\omega}^4 + \frac{h_{15}}{120}\omega\bar{\omega}^5 + \frac{h_{06}}{720}\bar{\omega}^6,$$
(2.28)

 com

$$\begin{split} h_{20} &= \frac{g_{20}}{\lambda}, \ h_{11} = \frac{g_{11}}{\bar{\lambda}}, \ h_{02} = \frac{g_{02}}{2\bar{\lambda} - \lambda}, \\ h_{40} &= \frac{g_{40}}{3\lambda}, \ h_{31} = \frac{g_{31}}{2\lambda - \bar{\lambda}}, \ h_{22} = \frac{g_{22}}{\lambda + 2\bar{\lambda}}, \ h_{13} = \frac{g_{13}}{3\bar{\lambda}}, \ h_{04} = \frac{g_{04}}{4\bar{\lambda} - \lambda}, \\ h_{60} &= \frac{g_{60}}{5\lambda}, \ h_{06} = \frac{g_{06}}{6\bar{\lambda} - \lambda}, \ h_{15} = \frac{g_{15}}{\lambda + 5\bar{\lambda}}, \ h_{24} = \frac{g_{24}}{2\lambda + 4\bar{\lambda}}, \ h_{42} = \frac{g_{42}}{3\lambda + 2\bar{\lambda}}, \\ h_{51} &= \frac{g_{51}}{\bar{\lambda} + 4\lambda}, \ h_{33} = \frac{g_{33}}{3\bar{\lambda} + 2\lambda}, \end{split}$$

definidos nos Lemas 2.1.3, 2.1.5 e 2.1.7, anulam os respectivos termos, mas também alteram outros termos. Os coeficientes $g_{21}/2$, $g_{32}/12$ e $g_{43}/144$ dos termos $z^2\bar{z}, z^3\bar{z}^2$ e $z^4\bar{z}^3$, respectivamente, na equação (2.26) foram modificados pelas transformações de (2.28). Os termos de ordem 8 ou maiores, afetam somente $O(|\omega|^8)$ e assim eles podem ser truncados.

2.2 Método da Projeção

Seja (x_0, μ_0) um ponto de equilíbrio de

$$\dot{x} = f(x,\mu), \tag{2.29}$$

onde $x \in \mathbb{R}^n$, $\mu \in \mathbb{R}^m$, e a matriz Jacobiana A possui um par de autovalores imaginários puros $\lambda_{1,2} = \pm i\omega_0, \ \omega_0 > 0$ e não admite outro autovalor com parte real nula. Denotando a variável $x - x_0$ também por x, escrevemos

$$A(\mu_0, x) + F(x, \mu_0) = f(x, \mu_0),$$

onde $F(x, \mu_0)$ é dada de forma análoga à (2.18).

Seja T^c o autoespaço generalizado de A correspondente à $\lambda_{1,2}$; isto é, T^c é subespaço não vazio invariante por A gerado pelos autovetores associados aos autovalores $\lambda_{1,2}$.

Teorema 2.2.1 (Teorema da Variedade Central) Localmente, existe um conjunto invariante W^c de (2.29) que é tangente a T^c em (x_0, μ_0) . Tal conjunto é o gráfico de uma aplicação suave, cujas derivadas parciais de todas as ordens são unicamente determinadas.

Se Φ^t denota o fluxo associado a (2.29), então existe uma vizinhança U de (x_0, μ_0) , tal que, se $\Phi^t(x) \in U$ para todo $t \ge 0$ ($t \le 0$), então $\Phi^t(x) \to W^c(x_0, \mu_0)$ para $t \to \infty$ ($t \to -\infty$). Ver Kuznetsov [3].

Definição 2.2.1 W^c é chamado de variedade central.

Sejam $p,q\ \in\ \mathbb{C}^n$ autovetores satisfazendo

$$A(\mu_0)q(\mu_0) = i\omega_0 q(\mu_0), \qquad A^{\top}(\mu_0)p(\mu_0) = -i\omega_0 p(\mu_0),$$

$$\langle p(\mu_0), q(\mu_0) \rangle = \sum_{i=1}^n \bar{p}_i(\mu_0)q_i(\mu_0) = 1,$$

onde $A^{\top}(\mu_0)$ é matriz transposta de $A(\mu_0)$. Um vetor $y \in T^c$, pode ser representado como

$$y = wq + \bar{w}\bar{q}, \qquad (2.30)$$

onde $w = \langle p, y \rangle \in \mathbb{C}$. A variedade central bidimensional pode ser parametrizada por (w, \bar{w}) , por meio de uma imersão da forma $x = H(w, \bar{w})$, onde $H : \mathbb{C}^2 \to \mathbb{R}^n$ tem uma expansão de Taylor da forma

$$H(w,\bar{w}) = wq + \bar{w}\bar{q} + \sum_{2 \le j+k \le 7} \frac{1}{j!k!} h_{jk} w^j \bar{w}^k + O(|w|^8), \qquad (2.31)$$

 $\operatorname{com} h_{jk} \in \mathbb{C}^n e h_{jk} = \bar{h}_{kj}.$

Substituindo (2.31) em (2.29), obtém-se a seguinte equação diferencial

$$H_w w' + H_{\bar{w}} \bar{w}' = A(H(w, \bar{w})) + F(H(w, \bar{w})).$$
(2.32)

A equação diferencial (2.32), restrita à variedade central, pode ser escrita na forma

$$w' = i\omega_0 w + \frac{1}{2} g_{21} w |w|^2 + \frac{1}{12} g_{32} w |w|^4 + \frac{1}{144} g_{43} w |w|^6 + O(|w|^8),$$

com $g_{jk} \in \mathbb{C}$. Diferenciando (2.31) em termos de $w \in \overline{w}$, temos

$$\begin{split} H_w &= q + h_{20} w + h_{11} \bar{w} + \frac{1}{2} h_{30} w^2 + h_{21} w \bar{w} + \frac{1}{2} h_{12} \bar{w}^2 + \frac{1}{6} h_{40} w^3 + \frac{1}{2} \bar{h}_{31} w w^2 + \frac{1}{2} h_{22} \bar{w}^2 w \\ &+ \frac{1}{6} h_{13} \bar{w}^3 + \frac{1}{24} h_{50} w^4 + \frac{1}{6} h_{41} \bar{w} w^3 + \frac{1}{4} h_{32} \bar{w}^2 w^2 + \frac{1}{6} h_{23} \bar{w}^3 w + \frac{1}{24} h_{14} \bar{w}^4 + \frac{1}{120} h_{60} w^5 \\ &+ \frac{1}{24} h_{51} \bar{w} w^4 + \frac{1}{12} h_{42} \bar{w}^2 w^3 + \frac{1}{12} h_{33} \bar{w}^3 w^2 + \frac{1}{24} h_{24} \bar{w}^4 w + \frac{1}{120} h_{15} \bar{w}^5 + \frac{1}{36} h_{43} \bar{w}^3 w^3 + \ldots \end{split}$$

$$H_{\bar{w}} = \bar{q} + h_{11}w + h_{02}\bar{w} + h_{12}w\bar{w} + \frac{1}{2}h_{21}w^2 + \frac{1}{2}h_{03}\bar{w}^2 + \frac{1}{2}h_{13}w\bar{w}^2 + \frac{1}{2}h_{22}w^2\bar{w} + \frac{1}{6}h_{31}w^3 \\ + \frac{1}{6}h_{04}\bar{w}^3 + \frac{1}{6}h_{14}w\bar{w}^3 + \frac{1}{4}h_{23}w^2\bar{w}^2 + \frac{1}{6}h_{32}w^3\bar{w} + \frac{1}{24}h_{41}w^4 + \frac{1}{24}h_{05}\bar{w}^4 + \frac{1}{120}h_{51}w^5 \\ + \frac{1}{24}h_{05}\bar{w}^4 + \frac{1}{12}h_{33}w^3\bar{w}^2 + \frac{1}{24}h_{42}w^4\bar{w} + \frac{1}{24}h_{15}w\bar{w}^4 + \frac{1}{120}h_{06}\bar{w}^5 + \frac{1}{48}h_{43}w^4\bar{w}^2 + \dots$$

Aplicando $H_w, H_{\bar{w}}, w, \bar{w}'$ em (2.32), temos

$$\begin{aligned} H_w w' + H_{\bar{w}} \bar{w}' &= q \, i\omega_0 \, w - \bar{q} \, i\omega_0 \, \bar{w} + h_{20} i\omega_0 \, w^2 - h_{02} i\omega_0 \, \bar{w}^2 + \frac{1}{2} \, h_{30} i\omega_0 \, w^3 + \left(\frac{1}{2} \, q \, g_{21} + \frac{1}{2} \, h_{21} i\omega_0\right) w^2 \bar{w} + \left(\frac{1}{2} \, \bar{q} \, \bar{g}_{21} - \frac{1}{2} \, h_{12} \, i\omega_0\right) w \bar{w}^2 - \frac{1}{2} \, h_{03} \, i\omega_0 \, \bar{w}^3 + \frac{1}{6} \, h_{40} i\omega_0 \, w^4 + \left(\frac{1}{2} \, g_{21} h_{20} + \frac{1}{3} \, h_{31} i\omega_0\right) w^3 \bar{w} \\ &+ \left(\frac{1}{2} \, g_{21} h_{11} + \frac{1}{2} \, \bar{g}_{21} h_{11}\right) w^2 \bar{w}^2 + \left(\frac{1}{2} \, h_{02} \bar{g}_{21} - \frac{1}{3} \, h_{13} i\omega_0\right) w \bar{w}^3 - \frac{1}{6} \, h_{04} i\omega_0 \, \bar{w}^4 + \frac{1}{24} \, h_{50} i\omega_0 \, w^5 + \\ \left(\frac{1}{4} \, g_{21} h_{30} + \frac{1}{8} \, h_{41} i\omega_0\right) w^4 \bar{w} + \left(\frac{1}{12} \, q \, g_{32} + \frac{1}{2} \, g_{21} h_{21} + \frac{1}{12} \, h_{32} i\omega_0 + \frac{1}{4} \, h_{21} \bar{g}_{21}\right) w^3 \bar{w}^2 + \left(\frac{1}{4} \, g_{21} h_{12} + \frac{1}{12} \, g_{32} h_{11} + \frac{1}{12} \, g_{32} h_{20} + \frac{1}{4} \, h_{03} \bar{g}_{21} - \frac{1}{8} \, h_{14} i\omega_0\right) w \bar{w}^4 - \frac{1}{24} \, h_{05} i\omega_0 \, \bar{w}^5 + \frac{1}{120} \, h_{60} i\omega_0 \, w^6 \\ \left(\frac{1}{12} \, g_{21} h_{40} + \frac{1}{30} \, h_{51} i\omega_0\right) w^5 \bar{w} + \left(\frac{1}{12} \, g_{32} h_{20} + \frac{1}{4} \, g_{21} h_{31} + \frac{1}{24} \, h_{42} i\omega_0 + \frac{1}{12} \, h_{31} \bar{g}_{21}\right) w^4 \bar{w}^2 + \left(\frac{1}{12} \, g_{32} h_{11} + \frac{1}{4} \, g_{21} h_{22} + \frac{1}{4} \, h_{22} \bar{g}_{21}\right) w^3 \bar{w}^3 + \left(\frac{1}{12} \, g_{21} h_{13} + \frac{1}{4} \, g_{21} h_{13} - \frac{1}{24} \, h_{24} i\omega_0 + \frac{1}{12} \, h_{02} \bar{g}_{32}\right) w^2 \bar{w}^4 + \\ \left(\frac{1}{12} \, h_{04} \bar{u}_{01} - \frac{1}{12} \, h_{02} \bar{g}_{32}\right) w^2 \bar{w}^5 - \frac{1}{12} \, h_{02} \bar{w}_{01} \bar{w}^6 + \left(\frac{1}{12} \, g_{12} h_{13} - \frac{1}{24} \, h_{24} i\omega_0 + \frac{1}{12} \, g_{04} h_{04} + \frac{1}{12} \, h_{04} h_{04} + \frac{1}{12} \, h_{04} h_{04} h_{04} + \frac{1}{12} \, h_{04} h_{04$$

$$\frac{1}{12}\bar{g}_{32}h_{11} + \frac{1}{4}g_{21}h_{22} + \frac{1}{4}h_{22}\bar{g}_{21} w^{3}\bar{w}^{3} + \left(\frac{1}{12}g_{21}h_{13} + \frac{1}{4}\bar{g}_{21}h_{13} - \frac{1}{24}h_{24}i\omega_{0} + \frac{1}{12}h_{02}\bar{g}_{32} w^{2}\bar{w}^{4} + \left(\frac{1}{12}h_{04}\bar{g}_{21} - \frac{1}{30}h_{15}i\omega_{0}\right)w\bar{w}^{5} - \frac{1}{120}h_{06}i\omega_{0}\bar{w}^{6} + \left(\frac{1}{144}qg_{43} + \frac{1}{12}g_{32}h_{21} + \frac{1}{8}g_{21}h_{32} + \frac{1}{144}h_{43}i\omega_{0} + \frac{1}{12}h_{32}\bar{g}_{21} + \frac{1}{24}h_{21}\bar{g}_{32} w^{4}\bar{w}^{3} + \dots$$

Por outro lado,

$$\begin{split} A(H(w,\bar{w})) + F(H(w,\bar{w})) &= A(q)w + A(\bar{q})\bar{w} + w^2 \left(\frac{1}{2}B(q,q) + \frac{1}{2}A(h_{20})\right) + \bar{w}^2 \left(\frac{1}{2}B(\bar{q},\bar{q}) + \frac{1}{2}A(h_{02})\right) \\ &+ w\bar{w} \left(B(q,\bar{q}) + A(h_{11})\right) + w^3 \left(\frac{1}{6}C(q,q,q) + \frac{1}{2}B(h_{20},q) + \frac{1}{6}A(h_{30})\right) + w^2\bar{w} \left(\frac{1}{2}C(\bar{q},q,q) + \frac{1}{2}B(h_{11},q) + \frac{1}{2}B(\bar{q},h_{02}) + \frac{1}{2}A(h_{12})\right) \\ &+ B(h_{11},q) + \frac{1}{2}B(\bar{q},h_{20}) + \frac{1}{2}A(h_{21})\right) + w\bar{w}^2 \left(\frac{1}{2}C(q,\bar{q},\bar{q}) + B(h_{11},\bar{q}) + \frac{1}{2}B(q,h_{02}) + \frac{1}{2}A(h_{12})\right) + \\ &\bar{w}^3 \left(\frac{1}{6}C(\bar{q},\bar{q},\bar{q}) + \frac{1}{2}B(h_{02},\bar{q}) + \frac{1}{6}A(h_{03})\right) + w^4 \left(\frac{1}{24}D(q,q,q,q) + \frac{1}{4}C(h_{20},q,q) + \frac{1}{6}B(h_{30},q) + \\ &\frac{1}{8}B(h_{20},q,q) + \frac{1}{24}A(h_{40})\right) + w^3\bar{w} \left(\frac{1}{6}D(\bar{q},q,q,q) + \frac{1}{2}C(h_{11},q,q) + \frac{1}{2}C(\bar{q},h_{20},q) + \frac{1}{2}B(h_{21},q) + \\ &\frac{1}{2}B(h_{11},h_{20}) + \frac{1}{6}B(\bar{q},h_{30}) + \frac{1}{6}A(h_{31})\right) + w^2\bar{w}^2 \left(\frac{1}{4}D(\bar{q},\bar{q},q,q) + \frac{1}{4}C(h_{02},q,q) + C(\bar{q},h_{11},q) + \\ &\frac{1}{2}B(h_{11},h_{20}) + \frac{1}{6}B(\bar{q},h_{30}) + \frac{1}{6}A(h_{31})\right) + w^2\bar{w}^2 \left(\frac{1}{4}D(\bar{q},\bar{q},q,q) + \frac{1}{4}C(h_{02},q,q) + C(\bar{q},h_{11},q) + \\ &\frac{1}{2}B(h_{11},h_{20}) + \frac{1}{6}B(\bar{q},h_{30}) + \frac{1}{6}A(h_{31})\right) + w^2\bar{w}^2 \left(\frac{1}{4}D(\bar{q},\bar{q},q,q) + \frac{1}{4}C(h_{02},q,q) + C(\bar{q},h_{11},q) + \\ &\frac{1}{2}B(h_{21},h_{21},h_{22}) + \frac{1}{6}B(\bar{q},h_{22},$$

$$\begin{split} &\frac{1}{2} B(h_{12},q) + \frac{1}{2} B(h_{11},h_{11}) + \frac{1}{4} C(\bar{q},\bar{q},h_{20}) + \frac{1}{4} B(h_{02},h_{20}) + \frac{1}{2} B(\bar{q},h_{21}) + \frac{1}{4} A(h_{22}) \right) \\ &+ \bar{w}^4 \left(\frac{1}{24} D(\bar{q},\bar{q},\bar{q},\bar{q},\bar{q}) + \frac{1}{4} C(h_{02},\bar{q},\bar{q}) + \frac{1}{6} B(h_{03},\bar{q}) + \frac{1}{8} B(h_{02},h_{02}) + \frac{1}{24} A(h_{04}) \right) + \\ &\bar{w}\bar{w}^3 \left(\frac{1}{6} D(q,\bar{q},\bar{q},\bar{q},\bar{q}) + \frac{1}{2} C(h_{11},\bar{q},\bar{q}) + \frac{1}{2} C(q,h_{02},\bar{q}) + \frac{1}{2} B(h_{22},\bar{q}) + \frac{1}{6} B(q,h_{03}) + \frac{1}{24} B(h_{02},h_{21}) \right) \\ &+ \bar{w}\bar{w}^3 \left(\frac{1}{6} D(q,\bar{q},\bar{q},\bar{q},\bar{q}) + \frac{1}{2} C(h_{11},\bar{q},\bar{q}) + \frac{1}{2} C(q,h_{02},\bar{q},\bar{q}) + \frac{1}{12} C(h_{30},q,q) + \frac{1}{12} B(h_{22},h_{21}) \right) \\ &+ \bar{w}\bar{w}^3 \left(\frac{1}{12} D(q,\bar{q},\bar{q},\bar{q},\bar{q}) + \frac{1}{12} D(h_{20},q,q,q) + \frac{1}{12} C(h_{30},q,q) + \frac{1}{8} C(h_{20},h_{20},h_{20},q) + \frac{1}{12} D(h_{20},h_{30}) \right) \\ &+ \bar{w}^4 \left(\frac{1}{24} B(h_{40},q) + \frac{1}{12} B(h_{20},h_{30}) + \frac{1}{120} A(h_{50}) \right) \\ &+ \bar{w}^4 \bar{w} \left(\frac{1}{24} E(\bar{q},\bar{q},q,q,q) + \frac{1}{6} D(h_{11},q,q,q) + \frac{1}{12} C(h_{11},h_{20},q) + \frac{1}{6} C(\bar{q},h_{30},q) + \frac{1}{8} C(h_{20},h_{20},h_{20}) + \frac{1}{6} B(h_{31},q) + \frac{1}{12} D(h_{20},q,q,q) + \frac{1}{2} C(h_{11},h_{31},q) + \frac{1}{12} D(h_{20},q,q,q) + \frac{1}{2} D(\bar{q},h_{11},q,q) + \frac{1}{4} D(\bar{q},\bar{q},h_{20},q) + \frac{1}{4} C(h_{12},q,q) + \frac{1}{2} C(h_{11},h_{11},q) + \frac{1}{12} D(h_{20},h_{20},q) + \frac{1}{2} D(\bar{q},h_{11},q,q) + \frac{1}{4} D(\bar{q},\bar{q},h_{20},q) + \frac{1}{4} C(h_{21},\bar{q},\bar{q}) + \frac{1}{4} B(h_{22},h_{20}) + \frac{1}{4} B(h_{22},h_{20}) + \frac{1}{12} D(h_{20},h_{30},q) + \frac{1}{6} B(\bar{q},h_{31}) + \frac{1}{12} A(h_{32}) \right) \\ &+ \bar{w}\bar{w}^3 \left(\frac{1}{12} E(q,q,\bar{q},\bar{q},\bar{q},\bar{q},\bar{q}) + \frac{1}{12} D(q,h_{11},\bar{q},\bar{q}) + \frac{1}{4} D(q,q,h_{20},\bar{q}) + \frac{1}{4} C(h_{21},\bar{q},\bar{q},\bar{q},\bar{q},\bar{q}) + \frac{1}{2} C(h_{11},h_{11},\bar{q}) + \frac{1}{12} D(h_{21},h_{21},h_{21}) + \frac{1}{12} A(h_{22}) \right) \\ &+ \bar{w}\bar{w}^3 \left(\frac{1}{12} E(q,q,\bar{q},\bar{q},\bar{q},\bar{q},\bar{q}) + \frac{1}{12} D(q,h_{31},h_{21}) + \frac{1}{12} A(h_{32}) \right) \\ &+ \bar{w}\bar{w}^3 \left(\frac{1}{12} D(h_{11},h_{11},\bar{q},\bar{q}) + \frac{1}{4} D(q,h_{21},h_{21},\bar{q}) + \frac{1}{4} C(h_$$

$$\begin{split} &\frac{1}{24}E(h_{11},\bar{q},\bar{q},\bar{q},\bar{q}) + \frac{1}{12}E(q,h_{02},\bar{q},\bar{q},\bar{q}) + \frac{1}{12}D(h_{12},\bar{q},\bar{q},\bar{q},\bar{q}) + \frac{1}{12}D(q,h_{03},\bar{q},\bar{q}) + \frac{1}{4}D(h_{02},h_{11},\bar{q},\bar{q}) + \\ &\frac{1}{8}D(q,h_{02},h_{02},\bar{q}) + \frac{1}{12}C(h_{13},\bar{q},\bar{q}) + \frac{1}{8}C(h_{02},h_{02},h_{11}) + \frac{1}{6}C(h_{03},h_{11}\bar{q}) + \frac{1}{4}C(h_{02},h_{12},\bar{q}) + \\ &\frac{1}{12}C(q,h_{02},h_{03}) + \frac{1}{24}C(q,h_{04},\bar{q}) + \frac{1}{120}B(q,h_{05}) + \frac{1}{24}B(h_{14},\bar{q}) + \frac{1}{24}B(h_{04},h_{11}) + \frac{1}{12}B(h_{03},h_{12}) + \\ &\frac{1}{12}B(h_{02},h_{13}) + \frac{1}{24}C(q,h_{04},\bar{q}) + \frac{1}{120}B(q,h_{05}) + \frac{1}{24}B(h_{14},\bar{q}) + \frac{1}{24}B(h_{04},h_{11}) + \frac{1}{12}B(h_{03},h_{12}) + \\ &\frac{1}{12}B(h_{02},h_{03},\bar{q},\bar{q}) + \frac{1}{48}C(h_{04},\bar{q},\bar{q}) + \frac{1}{12}C(h_{02},h_{03},\bar{q}) + \frac{1}{48}E(h_{02},\bar{q},\bar{q},\bar{q},\bar{q}) + \frac{1}{36}D(h_{03},\bar{q},\bar{q},\bar{q},\bar{q}) + \\ &\frac{1}{16}D(h_{02},h_{02},\bar{q},\bar{q}) + \frac{1}{48}C(h_{04},\bar{q},\bar{q}) + \frac{1}{12}C(h_{02},h_{03},\bar{q}) + \frac{1}{48}C(h_{02},h_{02},h_{02}) + \frac{1}{120}B(h_{05},\bar{q}) + \\ &\frac{1}{16}D(h_{02},h_{02},\bar{q},\bar{q}) + \frac{1}{48}C(h_{04},\bar{q},\bar{q}) + \frac{1}{12}C(h_{02},h_{03},\bar{q}) + \frac{1}{48}C(h_{02},h_{02},h_{02}) + \frac{1}{120}B(h_{05},\bar{q}) + \\ &\frac{1}{12}B(h_{03},h_{03}) + \frac{1}{48}B(h_{02},h_{04}) + \frac{1}{720}A(h_{06}) + w^4\bar{w}^3 \left(\frac{1}{144}L(\bar{q},\bar{q},\bar{q},\bar{q},\bar{q},\bar{q},\bar{q},\bar{q}) + \frac{1}{120}B(h_{05},\bar{q}) + \\ &\frac{1}{148}K(\bar{q},h_{02},q,q,q,q) + \frac{1}{12}E(h_{02},h_{11},q,q,q) + \frac{1}{12}E(\bar{q},h_{12},q,q,q) + \frac{1}{4}BE(\bar{q},\bar{q},\bar{q},h_{20},h_{20}) + \\ &\frac{1}{144}E(h_{03},q,q,q,q,q,q,q,q) + \frac{1}{18}E(\bar{q},\bar{q},\bar{q},h_{11},q,q,q) + \frac{1}{12}E(\bar{q},h_{12},q,q,q) + \frac{1}{36}E(\bar{q},\bar{q},\bar{q},h_{20},h_{20}) + \\ &\frac{1}{16}D(\bar{q},h_{02},h_{20},h_{20}) + \frac{1}{8}B(\bar{q},h_{21},q,q) + \frac{1}{12}D(\bar{q},\bar{q},h_{11},h_{20},q) + \frac{1}{36}E(\bar{q},\bar{q},\bar{q},h_{20},h_{20}) + \\ &\frac{1}{16}D(\bar{q},h_{02},h_{20},h_{20}) + \frac{1}{6}D(h_{11},h_{11},q,q,q) + \frac{1}{12}D(\bar{q},\bar{q},h_{20},q) + \frac{1}{36}E(\bar{q},\bar{q},\bar{q},h_{20},h_{20}) + \\ &\frac{1}{16}D(\bar{q},h_{02},h_{20},h_{20}) + \frac{1}{6}D(\bar{q},h_{11},h_{21},q) + \frac{1}{12}D(\bar{q},h_{12},h_{20},$$

$$\frac{1}{12}B(h_{11},h_{32}) + \frac{1}{144}B(h_{03},h_{40}) + \frac{1}{48}B(h_{02},h_{41}) + \frac{1}{48}B(\bar{q},h_{42}) + \frac{1}{12}B(h_{12},h_{31}) + \frac{1}{144}A(h_{43})\bigg).$$

Aplicando $(H_w w' + H_{\bar{w}} \bar{w}')$ e $F(H(w, \bar{w}))$ em (2.32), temos:

$$\begin{cases} q \, \mathrm{i}\omega_0 &= A(q); \\ h_{20} &= (2i\omega_0 I_n - A)^{-1}B(q, q); \\ h_{11} &= -A^{-1}(B(q, \bar{q})); \\ h_{30} &= (3i\omega_0 I_n - A)^{-1}(C(q, q, q) + 3B(h_{20}, q)); \end{cases}$$
(2.33)

onde I_n é matriz identidade $n \times n$.

Obtemos um sistema singular para o termo h_{21}

$$(i\omega_0 I_n - A)h_{21} = C(\bar{q}, q, q) - g_{21}q + 2B(h_{11}, q) + B(\bar{q}, h_{20}), \qquad (2.34)$$

que possui solução se, e somente se,

$$\langle p, C(\bar{q}, q, q) - g_{21}q + 2B(h_{11}, q) + B(\bar{q}, h_{20}) \rangle = 0.$$

Sendo assim,

$$g_{21} = \langle p, C(\bar{q}, q, q) + 2B(h_{11}, q) + B(\bar{q}, h_{20}) \rangle =$$

= $\langle p, C(\bar{q}, q, q) - 2B(-A^{-1}(B(q, \bar{q})), q) + B(\bar{q}, (2i\omega_0 I_n - A)^{-1}B(q, q)) \rangle.$

O primeiro coeficiente de Lyapunov é definido por

$$l_1 = \frac{1}{2} \operatorname{Re} g_{21}$$

Podemos encontrar o valor de h_{21} resolvendo o seguinte sistema

$$\begin{pmatrix} i\omega_0 I_n A & q\\ \bar{p} & 0 \end{pmatrix} \begin{pmatrix} h_{21}\\ r \end{pmatrix} = \begin{pmatrix} C(\bar{q}, q, q) - g_{21}q + 2B(h_{11}, q) + B(\bar{q}, h_{20})\\ 0 \end{pmatrix}, \quad (2.35)$$

tal que $\langle p, h_{21} \rangle = 0.$

Lema 2.2.1 O sistema (2.35) é não singular e se (ϑ, r) é solução, tal que $\langle p, \vartheta \rangle = 0, \vartheta$ é solução de (2.34).

Demonstração (2.2.1): Escrevamos $\mathbb{R}^n = T^c \oplus T^{su}$, onde $T^c \oplus T^{su}$ são respectivamente autoespaço generalizado de *A* correspondente aos autovalores com parte real nula e autovalores com parte real não nula, ambos invariantes por A. Pode-se provar que y definido em (2.30), é tal que $y \in T^{su}$ se, e somente se, $\langle p, \vartheta \rangle = 0$. Defina $v = C(\bar{q}, q, q) - g_{21}q + 2B(h_{11}, q) + B(\bar{q}, h_{20}).$

Seja (ϑ, r) a solução da equação obtida a partir de (2.35). Equivalentemente,

$$(i\omega_0 I_n - A)\vartheta + r q = 0, \quad \langle p, \vartheta \rangle = 0.$$
(2.36)

Da segunda equação de (2.36) segue que $\vartheta \in T^{su}$ e consequentemente,

 $(i\omega_0 I_n - A)\vartheta \in T^{su}$. Portanto, $\langle p, (i\omega_0 I_n - A)\vartheta \rangle = 0$. Agora, do produto interno de p com o primeiro termo de (2.36), vem

$$\langle p, (i\omega_0 I_n - A)\vartheta + rq \rangle = 0 \Rightarrow \langle p, (i\omega_0 I_n - A)\vartheta \rangle + r\langle p, q \rangle = 0.$$

Como $\langle p,q \rangle = 1 \in \langle p, (i\omega_0 I_n - A)\vartheta \rangle = 0$, temos $r\langle p,q \rangle = 0 \Leftrightarrow r = 0$. Substituindo r = 0, na primeira equação de (2.36), temos que

$$(i\omega_0 I_n - A)\vartheta = 0 \Rightarrow \vartheta = \alpha q; \alpha \in \mathbb{C}.$$

$$(2.37)$$

No entanto,

$$0 = \langle p, \vartheta \rangle = \langle p, \alpha \, q \rangle = \alpha \langle p, q \rangle = \alpha,$$

que em (2.37), nos fornece $\vartheta = 0$. Portanto, $(\vartheta, r) = (0, 0)$. Logo, o sistema (2.35) é não singular. Seja agora (ϑ, r) solução de (2.35). Então, temos

$$(i\omega_0 I_n - A)\vartheta + r q = v, \langle p, \vartheta \rangle = 0.$$
(2.38)

Da segunda equação de (2.38), segue que $\vartheta \in T^{su}$ e que

$$(i\omega_0 I_n - A)\vartheta \in T^{su} \Rightarrow \langle p, (i\omega_0 I_n - A)\vartheta \rangle = 0.$$

Fazendo o produto interno de p com a primeira equação de (2.38), temos que

$$\langle p, (i\omega_0 I_n - A)\vartheta + rq \rangle = \langle p, v \rangle \Rightarrow \langle p, (i\omega_0 I_n - A)\vartheta \rangle + r \langle p, q \rangle = \langle p, v \rangle.$$

Como $\langle p, v \rangle = 0$, $\langle p, q \rangle = 1$, $\langle p, (i\omega_0 I_n - A)\vartheta \rangle = 0$, segue que r = 0. Substituindo r = 0 na primeira equação de (2.38) obtemos

$$(i\omega_0 I_n - A)\vartheta = v.$$

Logo, ϑ é solução de (2.34).

De forma análoga, obteremos h_{32} e h_{43} .

Os termos seguintes serão necessários para calcularmos o segundo coeficiente de Lyapunov.

$$\begin{aligned}
h_{40} &= (4i\omega_0 I_n - A)^{-1} (D(q, q, q, q) + 6C(h_{20}, q, q) + 4B(h_{30}, q) + 3B(h_{20}, h_{20}); \\
h_{31} &= (2i\omega_0 I_n - A)^{-1} (D(\bar{q}, q, q, q) + 3C(h_{11}, q, q) + 3C(\bar{q}, h_{20}, q) + 3B(h_{21}, q) \\
&- 3g_{21}h_{20} + 3B(h_{11}, h_{20}) + B(\bar{q}, h_{30})); \\
h_{22} &= -A^{-1} (D(\bar{q}, \bar{q}, q, q) + C(h_{02}, q, q) + 4C(\bar{q}, h_{11}, q) + 2B(h_{12}, q) + 2B(h_{11}, h_{11}) \\
&+ C(\bar{q}, \bar{q}, h_{20}) + B(h_{02}, h_{20}) + 2B(\bar{q}, h_{21}) - 2h_{11}(g_{21} + \bar{g}_{21})).
\end{aligned}$$
(2.39)

Para $l_1 = 0$, devemos ter $g_{21} + \bar{g_{21}} = 0$, donde o último termo de h_{22} se torna nulo. O termo singular associado a h_{32} , é dado por

$$\begin{aligned} (i\omega_0 I_n - A) h_{32} &= E(\bar{q}, \bar{q}, q, q, q) + D(h_{02}, q, q, q) + 6D(\bar{q}, h_{11}, q, q) + 3C(h_{12}, q, q) \\ &+ 6C(h_{11}, h_{11}, q) + 3D(\bar{q}, \bar{q}, h_{20}, q) + 3C(h_{02}, h_{20}, q) + 6C(\bar{q}, h_{21}, q) \\ &+ 3B(h_{22}, q) + 6C(\bar{q}, h_{11}, h_{20}) + 3B(h_{12}, h_{20}) - 6g_{21}h_{21} + 6B(h_{11}, h_{21}) \\ &+ C(\bar{q}, \bar{q}, h_{30}) + B(h_{02}, h_{30}) + 2B(\bar{q}, h_{31}) - 3h_{21}\bar{g}_{21} - g_{32}q. \end{aligned}$$

Fazendo

$$\begin{aligned} H_{32} &= E(\bar{q}, \bar{q}, q, q, q) + D(h_{02}, q, q, q) + 6D(\bar{q}, h_{11}, q, q) + 3C(h_{12}, q, q) \\ &+ 6C(h_{11}, h_{11}, q) + 3D(\bar{q}, \bar{q}, h_{20}, q) + 3C(h_{02}, h_{20}, q) + 6C(\bar{q}, h_{21}, q) \\ &+ 3B(h_{22}, q) + 6C(\bar{q}, h_{11}, h_{20}) + 3B(h_{12}, h_{20}) - 6g_{21}h_{21} + 6B(h_{11}, h_{21}) \\ &+ C(\bar{q}, \bar{q}, h_{30}) + B(h_{02}, h_{30}) + 2B(\bar{q}, h_{31}) - 3h_{21}\bar{g}_{21}, \end{aligned}$$

podemos reescrever

$$(i\omega_0 I_n - A) h_{32} = H_{32} - g_{32}q,$$

que possui solução se, e somente se,

$$\langle p, H_{32} - g_{32}q \rangle = 0$$

sendo que os termos $-6g_{21}h_{21}$ e $-3h_{21}\bar{g}_{21}$ não entram na última equação, pois, $\langle p, h_{21} \rangle = 0$.

O segundo coeficiente de Lyapunov é definido por

$$l_2 = \frac{1}{12} Re g_{32}.$$

O vetor h_{32} pode ser encontrado resolvendo—se o seguinte sistema

$$\begin{pmatrix} i\omega_0 I_n A & q \\ \bar{p} & 0 \end{pmatrix} \begin{pmatrix} h_{32} \\ r \end{pmatrix} = \begin{pmatrix} H_{32} - g_{32} q \\ 0 \end{pmatrix}$$
(2.40)

tal que $\langle p, h_{32} \rangle = 0.$

Os termos seguintes serão necessários para calcularmos o terceiro coeficiente de Lyapunov.

$$\begin{array}{ll} h_{41} &= (3i\omega_0 I_n - A)^{-1} (E(\bar{q},q,q,q) + 4D(h_{11},q,q,q) + 6D(\bar{q},h_{20},q,q) + 6C(h_{21},q,q) \\ &+ 12C(h_{11},h_{20},q) + 4C(\bar{q},h_{30},q) + 3C(\bar{q},h_{20},h_{20}) + 4B(h_{31},q) + 6B(h_{20},h_{21}) \\ &+ 4B(h_{11},h_{30}) + B(\bar{q},h_{40})) - 6g_{21}h_{30}; \\ h_{42} &= (2i\omega_0 I_n - A)^{-1} (K(\bar{q},\bar{q},q,q,q,q) + E(h_{02},q,q,q,q) + 8E(\bar{q},h_{11},q,q,q) \\ &+ 6E(\bar{q},\bar{q},h_{20},q,q) + 4D(h_{12},q,q,q) + 12D(h_{11},h_{11},q,q) + 6D(h_{02},h_{20},q,q) \\ &+ 12D(\bar{q},h_{21},q,q) + 24D(\bar{q},h_{11},h_{20},q) + 4D(\bar{q},\bar{q},h_{30},q) + 3D(\bar{q},\bar{q},h_{20},h_{20}) \\ &+ 24C(h_{11},h_{21},q) + 6C(h_{22},q,q) + 4C(h_{02},h_{30},q) + 8C(\bar{q},h_{31},q) + C(\bar{q},\bar{q},h_{40}) \\ &+ 12C(\bar{q},h_{20},h_{21}) + 6B(h_{20},h_{22}) + 4B(h_{12},h_{30}) + 4B(h_{32},q) + 6B(h_{21},h_{21}) \\ &+ B(h_{02},h_{40}) + 2B(\bar{q},h_{41}) + 8B(h_{11},h_{31}) - 12g_{21}h_{31} - 4g_{32}h_{20} - 4h_{31}\bar{g}_{21}); \\ h_{33} &= A^{-1}(K(\bar{q},\bar{q},\bar{q},q,q,q) + 3E(\bar{q},h_{02},q,q) + 9E(\bar{q},\bar{q},h_{11},h_{20}) + D(\bar{q},\bar{q},\bar{q},h_{30}) \\ &+ 9D(\bar{q},h_{02},h_{20},q) + 9D(\bar{q},h_{12},q,q) + D(h_{03},q,q,q) + 18D(\bar{q},h_{11},h_{11},q) \\ &+ 9D(\bar{q},h_{02},h_{20},q) + 9D(\bar{q},\bar{q},h_{21},q) + 9D(\bar{q},\bar{q},h_{11},h_{20}) + D(\bar{q},\bar{q},\bar{q},h_{30}) \\ &+ 18C(h_{11},h_{12},q) + 9C(\bar{q},h_{22},h_{21},q) + 3E(h_{03},h_{20},q) + 6C(h_{11},h_{11},h_{11}) + 9C(\bar{q},h_{22},q) \\ &+ 9C(h_{02},h_{11},h_{20}) + 9C(\bar{q},h_{12},h_{20}) + 18C(\bar{q},h_{11},h_{21}) + 3C(h_{13},q,q) + 3C(\bar{q},\bar{q},h_{31}) \\ &+ 3C(\bar{q},h_{02},h_{30}) + 3B(h_{13},h_{20}) + 3B(h_{23},q) + 9B(h_{12},h_{21}) + 9B(h_{11},h_{22}) \\ &+ B(h_{03},h_{30}) + 3B(h_{02},h_{31}) + 3B(\bar{q},h_{32}) - 9h_{22}(\bar{g}_{21} - g_{21}) - 3h_{11}(\bar{g}_{32} - g_{32}). \end{array}$$

Para $l_1 = l_2 = 0$ devemos ter $\bar{g}_{21} - g_{21} = 0$ e $\bar{g}_{32} - g_{32} = 0$, donde o último termo de h_{33} se torna nulo.

O termo singular associado
a $h_{43},$ é dado por

$$\begin{aligned} (i\omega_0 I_n - A) h_{43} &= L(\bar{q}, \bar{q}, \bar{q}, q, q, q) + 3K(\bar{q}, h_{02}, q, q, q, q) + 12K(\bar{q}, \bar{q}, h_{11}, q, q, q) \\ &+ 6K(\bar{q}, \bar{q}, \bar{q}, h_{20}, q, q) + E(h_{03}, q, q, q, q) + 12E(\bar{q}, h_{12}, q, q, q) \\ &+ 36E(\bar{q}, h_{11}, h_{11}, q, q) + 12E(\bar{q}, h_{02}, h_{20}, q, q) + 18E(\bar{q}, \bar{q}, h_{21}, q, q) \\ &+ 12E(q, q, q, h_{02}, h_{11}) + 36E(\bar{q}, \bar{q}, h_{11}, h_{20}, q) + 4E(\bar{q}, \bar{q}, \bar{q}, h_{30}, q) \\ &+ 6E(\bar{q}, \bar{q}, \bar{q}, h_{20}, h_{20}) + 36D(h_{11}, h_{12}, q, q) + 36D(h_{02}, h_{11}, h_{20}, q) \\ &+ 6D(h_{03}, h_{20}, q, q) + 24D(h_{11}, h_{11}, h_{21}, q) + 36D(\bar{q}, h_{11}, h_{11}, h_{20}) \\ &+ 12D(\bar{q}, h_{02}, h_{30}, q) + 36D(\bar{q}, h_{12}, h_{20}, q) + 4D(h_{13}, q, q, q) \\ &+ 18D(\bar{q}, h_{22}, q, q) + 72D(\bar{q}, h_{11}, h_{21}, q) + 12D(\bar{q}, \bar{q}, h_{31}, q) \\ &+ D(\bar{q}, \bar{q}, \bar{q}, h_{40}) + 9D(\bar{q}, h_{02}, h_{20}) + 18D(\bar{q}, \bar{q}, h_{20}, h_{21}) \\ &+ 12D(\bar{q}, \bar{q}, h_{11}, h_{30}) + 18D(h_{02}, h_{21}, q, q) + 4C(h_{03}, h_{30}, q) \\ &+ 12C(h_{13}, h_{20}, q) + 36C(h_{12}, h_{21}, q) + 36C(h_{11}, h_{22}, q) \\ &+ 312C(h_{02}, h_{11}, h_{30}) + 12C(\bar{q}, h_{12}, h_{30}) + 12C(h_{02}, h_{31}, q) \\ &+ 24C(\bar{q}, h_{11}, h_{31}) + 36C(h_{11}, h_{12}, h_{20}) + 36C(h_{11}, h_{11}, h_{21}) \\ &+ 18C(h_{02}, h_{20}, h_{21}) + 12C(\bar{q}, h_{32}, q) + 18C(\bar{q}, h_{20}, h_{22}) + C(\bar{q}, \bar{q}, h_{41}) \\ &+ 38(h_{33}, q) + 18B(h_{21}, h_{22}) + 6B(h_{20}, h_{23}) + 4B(h_{13}, h_{30}) \\ &+ 12B(h_{12}, h_{31}) + 3B(\bar{q}, h_{42}) + 12B(h_{11}, h_{32}) + B(h_{03}, h_{40}) \\ &+ 3B(h_{02}h_{41}) - 12g_{32}h_{21} - 18g_{21}h_{32} - 12h_{32}\bar{g}_{21} - 6h_{21}\bar{g}_{32} - g_{43}q. \end{aligned}$$

Fazendo

$$\begin{split} H_{43} &= L(\bar{q}, \bar{q}, \bar{q}, q, q, q, q) + 3K(\bar{q}, h_{02}, q, q, q) + 2K(\bar{q}, \bar{q}, h_{11}, q, q, q) + 6K(\bar{q}, \bar{q}, \bar{q}, h_{20}, q, q) \\ &+ E(h_{03}, q, q, q) + 12E(\bar{q}, h_{02}, h_{20}, q, q) + 18E(\bar{q}, \bar{q}, h_{21}, q, q) + 12E(\bar{q}, h_{12}, q, q, q) \\ &+ 36E(\bar{q}, h_{11}, h_{11}, q, q) + 36E(\bar{q}, \bar{q}, h_{11}, h_{20}, q) + 4E(\bar{q}, \bar{q}, \bar{q}, h_{30}, q) + 6E(\bar{q}, \bar{q}, \bar{q}, h_{20}, h_{20}) \\ &+ 12E(q, q, q, h_{02}, h_{11}) + 4D(h_{13}, q, q, q) + 6D(h_{03}, h_{20}, q, q) + 36D(h_{11}, h_{12}, q, q) \\ &+ 18D(h_{02}, h_{21}, q, q) + 18D(\bar{q}, h_{22}, q, q) + 24D(h_{11}, h_{11}, h_{11}, q) + 36D(h_{02}, h_{11}, h_{20}, q) \end{split}$$

$$+ 2D(\bar{q}, h_{11}, h_{21}, q) + 18D(\bar{q}, \bar{q}, h_{20}, h_{21}) + 36D(\bar{q}, h_{11}, h_{11}, h_{20}) + 12D(\bar{q}, \bar{q}, h_{11}, h_{30}) + D(\bar{q}, \bar{q}, \bar{q}, h_{40}) + 4C(h_{03}, h_{30}, q) + 36C(h_{12}, h_{21}, q) + 36C(h_{11}, h_{22}, q) + C(\bar{q}, \bar{q}, h_{41}) + 12C(h_{13}, h_{20}, q) + 3C(h_{03}, h_{20}, h_{20}) + 24C(\bar{q}, h_{11}, h_{31}) + 12C(\bar{q}, h_{12}, h_{30}) + 3C(\bar{q}, h_{02}, h_{40}) + 18C(\bar{q}, h_{21}, h_{21}) + 6C(h_{23}, q, q) + 36C(h_{11}, h_{12}, h_{20}) + 312C(h_{02}, h_{11}, h_{30}) + 12C(\bar{q}, h_{32}, q) + 36C(h_{11}, h_{11}, h_{21}) + 18C(h_{02}, h_{20}, h_{21}) + 18C(\bar{q}, h_{20}, h_{22}) + 12C(h_{02}, h_{31}, q) + 3B(\bar{q}, h_{42}) + 6B(h_{20}, h_{23}) + 3B(h_{02}h_{41}) + 18B(h_{21}, h_{22}) + 4B(h_{13}, h_{30}) + 4B(h_{33}, q) + 12B(h_{12}, h_{31}) + 12B(h_{11}, h_{32}) + B(h_{03}, h_{40}) - 6(2h_{32}\bar{g}_{21} + h_{21}\bar{g}_{32} + 2g_{32}h_{21} + 3g_{21}h_{32})$$

+ $36D(\bar{q}, h_{12}, h_{20}, q) + 12D(\bar{q}, h_{02}, h_{30}, q) + 12D(\bar{q}, \bar{q}, h_{31}, q) + 9D(\bar{q}, h_{02}, h_{20}, h_{20})$

podemos reescrever

$$(i\omega_0 I_n - A) h_{43} = H_{43} - g_{43} q_{43}$$

que possui solução se, e somente se,

$$\langle p, H_{43} - g_{43} q \rangle = 0,$$

sendo que o termo $-6(2h_{32}\bar{g}_{21} + h_{21}\bar{g}_{32} + 2g_{32}h_{21} + 3g_{21}h_{32})$ não entra na última equação pois, $\langle p, h_{21} \rangle = 0 \in \langle p, h_{32} \rangle = 0.$

O terceiro coeficiente de Lyapunov é definido por

$$l_3 = \frac{1}{144} \operatorname{Re} g_{43},$$

onde $g_{43} = \langle p, H_{43} \rangle$.

Consideremos, agora, uma família de sistemas de equações diferenciais a um parâmetro

$$\dot{x} = A(\mu)x + F(x,\mu), \ x \in \mathbb{R}^n, \ \mu \in \mathbb{R},$$
(2.42)

onde $F(x,\mu) = \mathcal{O}(||x||^2)$ é uma função suave de x, com sua expansão de Taylor iniciando com pelo menos termos quadráticos, e dependendo suavemente de μ e $A(\mu)$ corresponde à parte linear do sistema com autovalores complexos, tais que o par

$$\lambda_1(\mu) = \lambda(\mu), \ \lambda_2(\mu) = \lambda(\mu),$$

onde

$$\lambda(\mu) = \gamma(\mu) + i\omega(\mu),$$

satisfaz a condição de Hopf para $\mu=0$

$$\gamma(0) = 0, \ \omega(0) = \omega_0 > 0,$$

e os outros λ_{n-2} autovalores, possuem parte real não nula.

O próximo lema nos mostra como calcular $\gamma'(0)$ em termos de $p \in q$.

Lema 2.2.2 (Condição de transversalidade) Considere o sistema (2.42) cuja matriz Jacobiana $A(\mu)$ possui um par de autovalores imaginários puros para $\mu = 0, \lambda_{1,2} = \gamma(\mu) \pm i\omega(\mu), \gamma(0) = 0, \omega(0) = \omega_0 > 0.$ Então,

$$\gamma'(0) = Re\langle p, A'(0)q \rangle,$$

onde $p,q \in \mathbb{C}^n$ satisfazem

$$A(0)q = i\omega_0 q, \ A^{\top}(0)p = -i\omega_0 p, \ \langle p,q \rangle = 1.$$

Demonstração 2.2.2: Derivando ambos os membros da equação

$$A(\mu)q(\mu) = \lambda(\mu)q(\mu),$$

com relação a μ obtemos

$$A'(\mu)q(\mu) + A(\mu)q'(\mu) = \lambda'(\mu)q(\mu) + \lambda(\mu)q'(\mu).$$

Aplicando, agora, o produto escalar por p em ambos os membros, temos

$$\langle p, A'q + Aq' \rangle = \langle p, \lambda'q + \lambda q' \rangle$$

$$\Rightarrow \langle p, A'q \rangle + \langle p, Aq' \rangle = \langle p, \lambda'q \rangle + \langle p, \lambda q' \rangle$$

$$\Rightarrow \langle p, A'q \rangle + \langle A^{\top}p, q' \rangle = \lambda' \langle p, q \rangle + \lambda \langle p, q' \rangle.$$

Para $\mu = 0, \ A^{\top}p = -i\omega_0 p$, portanto

$$\langle p, A'(0)q \rangle + i\omega_0 \langle p, q' \rangle = (\gamma'(0) + i\omega'(0)) \langle p, q \rangle + i\omega_0 \langle p, q' \rangle \Rightarrow \langle p, A'(0)q \rangle = (\gamma'(0) + i\omega'(0)) \langle p, q \rangle,$$

e finalmente, como $\langle p,q\rangle=1,$

$$\langle p, A'(0)q \rangle = \gamma'(0) + i\omega'(0).$$

Lema 2.2.3 Considere a equação

$$\frac{dw}{dt} = (\gamma(\mu) + i\omega(\mu))w + c_1(\mu)w|w|^2 + O(|w|^4),$$

onde $\gamma(0) = 0 \ e \ \omega(0) = \omega_0 > 0$. Suponha $\gamma'(0) \neq 0 \ e \ Re c_1(0) \neq 0$. Então, a equação acima pode ser transformada, por mudanças de coordenadas, na equação

$$\frac{du}{d\theta} = (\chi + i)u + su|u|^2 + O(|u|^4), \qquad (2.43)$$

onde u é a nova coordenada complexa, $\theta \in \chi$ são, respectivamente, os novos tempo e parâmetro, $s = sinal \operatorname{Re} c_1(0) = \pm 1.$

Demonstração 2.2.3: Introduzindo o novo tempo $\tau = \omega(\mu)t$, que preserva a direção, pois $\omega(\mu) > 0$ para todo $||\mu||$ suficientemente pequeno, obtemos

$$\frac{dw}{d\tau} = \frac{\gamma(\mu) + i\omega(\mu)}{\omega(\mu)}w + \frac{c_1(\mu)}{\omega(\mu)}w|w|^2 + O(|w|^4),$$
$$\Rightarrow \frac{dw}{d\tau} = (\chi + i)w + d_1(\chi)w|w|^2 + O(|w|^4),$$

onde

$$\chi = \chi(\mu) = \frac{\gamma(\mu)}{\omega(\mu)}, \ d_1 = \frac{c_1(\mu(\chi))}{\omega(\mu(\chi))}.$$

Podemos considerar χ como um novo parâmetro, porque

$$\chi(0) = 0, \ \chi'(0) = \frac{\gamma'(0)}{\omega(0)} \neq 0,$$

e, portanto, o Teorema da Função Inversa nos garante a existência local e suave de χ como função de μ .

Vamos agora reparametrizar o tempo ao longo das órbitas com a nova mudança de tempo $\theta = \theta(\tau, \chi)$, onde

$$d\theta = (1 + e_1(\chi)|w|^2)d\tau,$$

com $e_1(\chi) = Im \ d_1(\chi)$. Essa mudança é próxima da identidade numa pequena vizinhança da origem. Usando esse valor de tempo definido, obtemos

$$\frac{dw}{d\theta} = (\chi + i)w + l_1(\chi)w|w|^2 + O(|w|^4),$$

onde $l_1(\chi) = Re \ d_1(\chi) - \chi e_1(\chi)$ é real e

$$l_1(0) = \frac{Re \ c_1(0)}{\omega(0)}.$$
(2.44)

De fato,

$$\begin{aligned} \frac{dw}{d\theta} &= \frac{dw}{(1+e_1(\chi)|w|^2)d\tau} = (\chi+i)w + l_1(\chi)w|w|^2 + \dots, \\ \Leftrightarrow \ \frac{dw}{d\tau} &= (1+e_1(\chi)|w|^2)[(\chi+i)w + l_1(\chi)w|w|^2 + \dots] \\ &= (\chi+i)w + [l_1(\chi) + e_1(\chi)(\chi+i)]w|w|^2 \dots \\ &= (\chi+i)w + [Re\ d_1 - \chi e_1 + \chi e_1 + ie_1]w|w|^2 + \dots \\ &= (\chi+i)w + [Re\ d_1 + iIm\ d_1]w|w|^2 + \dots \\ &= (\chi+i)w + d_1(\chi)w|w|^2 + \dots \end{aligned}$$

Finalmente, introduzindo a nova variável complexa u

$$w = \frac{u}{\sqrt{|l_1(\chi)|}},$$

que é possível pois $Re c_1(0) \neq 0$ e, portanto, $l_1(0) \neq 0$, a equação toma então a forma

$$\begin{aligned} \frac{1}{\sqrt{|l_1|}} \frac{du}{d\theta} &= (\chi + i) \frac{u}{\sqrt{|l_1|}} + l_1 \frac{u}{\sqrt{|l_1|}} \left| \frac{u}{\sqrt{|l_1|}} \right|^2 + \dots, \\ \Rightarrow \frac{du}{d\theta} &= (\chi + i)u + \frac{l_1(\chi)}{|l_1(\chi)|} u|u|^2 + O(|u|^4) = (\chi + i)u + su|u|^2 + O(|u|^4), \end{aligned}$$

 $\operatorname{com} s = \operatorname{sinal} l_1(0) = \operatorname{sinal} \operatorname{Re} c_1(0).$

Observação 2.2.1 O valor de $l_1(0)$ depende das normas dos autovetores q e p, enquanto que seu sinal é invariante pela escolha de q e p, obviamente considerando a normalização $\langle p,q \rangle = 1.$

Note que se a equação (2.43) com sinal s = -1 for escrita em sua forma real, ela coincidirá com o sistema (2.9).

Definição 2.2.2 Um ponto de equilíbrio (x_0, μ_0) do sistema

$$\dot{x} = f(x, \mu)$$

com f suave, $x \in \mathbb{R}^n$ e $\mu \in \mathbb{R}^m$ é chamado **ponto de Hopf** se a matriz Jacobiana $A(x_0, \mu_0)$ possui um par da autovalores imaginários puros $\lambda_{1,2} = \pm i\omega_0, \omega_0 > 0$, e não admite outros autovalores com partes reais nulas. **Definição 2.2.3** Um ponto de Hopf (x_0, μ_0) é chamado **transversal** se os autovalores complexos dependentes do parâmetro μ interceptarem o eixo imaginário com derivadas não nulas quando $\mu = \mu_0$.

Podemos agora resumir os resultados obtidos no seguinte teorema.

Teorema 2.2.2 Qualquer sistema

$$\frac{dx}{dt} = f(x,\mu), \ x \in \mathbb{R}^n, \ \mu \in \mathbb{R}^m,$$
(2.45)

com f suave, tendo para todo $||\mu||$ suficientemente pequeno, o equilíbrio $(x, \mu) = (0, 0)$ tomando o par de autovalores

$$\lambda_{1,2}(\mu) = \gamma(\mu) \pm i\omega(\mu)$$

onde $\gamma(0) = 0$, $\omega(0) = \omega_0 > 0$, e os outros λ_{n-2} autovalores, com parte real não nula, satisfazendo as seguintes condições

- (1) $l_1(0) \neq 0$ (condição de não degenerescência),
- (2) $\gamma \prime (0) \neq 0$ (condição de transversalidade),

por introdução de uma variável complexa, aplicada a transformações de coordenadas suaves e inversíveis que dependem suavemente dos parâmetros, e realizando uma mudança suave dos parâmetros do tempo, pode ser reduzido à seguinte forma complexa:

$$\dot{z} = (\chi + i)z + sz|z|^2 + O(|z|^4),$$

com $s = sinal l_1(0) = sinal Re c_1(0).$

Se estas condições forem satisfeitas, o sistema possui uma bifurcação de Hopf de codimensão 1 na origem.

Lema 2.2.4 Considere a equação

$$\frac{dw}{dt} = (\gamma(\mu) + i\omega(\mu))w + c_1(\mu)w|w|^2 + c_2(\mu)w|w|^4 + O(|w|^6),$$

onde $\gamma(0) = 0 \ e \ \omega(0) = \omega_0 > 0$. Suponha $\gamma'(0) \neq 0 \ e \ Re \ c_1(0) = 0 \ e \ Re \ c_2(0) \neq 0$. Então, a equação acima poderá ser transformada, por mudanças de coordenadas, na equação

$$\frac{du}{d\theta} = (\chi + i)u + \zeta \, u|u|^2 + s \, u|u|^4 + O(|u|^6), \tag{2.46}$$

onde u é a nova coordenada complexa, $\theta \in \chi$ são, respectivamente, os novos tempo e parâmetro, $\zeta = \frac{d_1(0)}{\sqrt{|Re \ c_2(0)|}} \ e \ s = sinal \ Re \ c_2(0) = \pm 1.$ **Demonstração 2.2.4:** Introduzindo o novo tempo $\tau = \omega(\mu)t$, que preserva a direção, pois $\omega(\mu) > 0$ para todo $||\mu||$ suficientemente pequeno, obtemos

$$\frac{dw}{d\tau} = \frac{\gamma(\mu) + i\omega(\mu)}{\omega(\mu)}w + \frac{c_1(\mu)}{\omega(\mu)}w|w|^2 + \frac{c_2(\mu)}{\omega(\mu)}w|w|^4 + O(|w|^6),$$
$$\Rightarrow \frac{dw}{d\tau} = (\chi + i)w + d_1(\chi)w|w|^2 + d_2(\chi)w|w|^4 + O(|w|^6),$$

onde

$$\chi = \chi(\mu) = \frac{\gamma(\mu)}{\omega(\mu)}, \ d_1 = \frac{c_1(\mu(\chi))}{\omega(\mu(\chi))}, \ d_2 = \frac{c_2(\mu(\chi))}{\omega(\mu(\chi))}.$$

Podemos considerar χ como um novo parâmetro porque

$$\chi(0) = 0, \ \chi'(0) = \frac{\gamma'(0)}{\omega(0)} \neq 0$$

e, portanto, o Teorema da Função Inversa nos garante a existência local e suave de μ como função de χ .

Vamos agora reparametrizar o tempo ao longo das órbitas com a nova mudança de tempo $\theta = \theta(\tau, \chi)$, onde

$$d\theta = (1 + e_1(\chi)|w|^2 + e_2(\chi)|w|^4)d\tau$$

com $e_1(\chi) = Im \ d_1(\chi) \ e \ e_2(\chi) = Im \ d_2(\chi)$. Essa mudança é próxima da identidade numa pequena vizinhança da origem. Usando esse valor de tempo definido, obtemos

$$\frac{dw}{d\theta} = (\chi + i)w + \eta(\chi)w|w|^2 + l_2(\chi)w|w|^4 + O(|w|^6),$$

onde $\eta(\chi) = -\chi(\chi)e_1(\chi), \ l_2(\chi) = \operatorname{Re} d_2(\chi) + \chi(\chi) (e_1(\chi)^2 - e_2(\chi)), \text{ é real e}$

$$l_1(0) = \frac{Re \ c_1(0)}{\omega(0)} = 0, \ l_2(0) = \frac{Re \ c_2(0)}{\omega(0)}.$$
(2.47)

De fato,

$$\frac{dw}{d\theta} = \frac{dw}{(1 + e_1(\chi)|w|^2 + e_2(\chi)|w|^4)d\tau} = (\chi + i)w + \eta(\chi)w|w|^2 + l_2(\chi)w|w|^4 + \dots,$$

$$\Leftrightarrow \ \frac{dw}{d\tau} = (1 + e_1(\chi)|w|^2 + e_2(\chi)w|w|^4) \left[(\chi + i)w + \eta(\chi)w|w|^2 + l_2(\chi)w|w|^4 \dots \right]$$

$$= (\chi + i)w + \left[\eta(\chi) + e_1(\chi)(\chi + i) \right]w|w|^2 + \left[l_2(\chi) + e_1(\chi)\eta + e_2(\chi)(\chi + i) \right]w|w|^4 \dots$$

$$= (\chi + i)w + \left[-\chi e_1 + \chi e_1 + ie_1 \right]w|w|^2 + \left[\operatorname{Re} d_2 + \chi e_1^2 - \chi e_2 - \chi e_1^2 + \chi e_2 + ie_2 \right]w|w|^4 \dots$$

$$= (\chi + i)w + i\operatorname{Im} d_1w|w|^2 + \left[\operatorname{Re} d_2 + i\operatorname{Im} d_2 \right]w|w|^4 \dots$$

$$= (\chi + i)w + d_1(\chi)w|w|^2 + d_2(\chi)w|w|^4 + \dots$$

já que neste caso $\operatorname{Re} d_1 = 0, \, d_1 = i \operatorname{Im} d_1$. Finalmente, introduzindo a nova variável complexa u

$$w = \frac{u}{\sqrt[4]{|l_2(\chi)|}},$$

que é possível pois $Re c_2(0) \neq 0$ e, portanto, $l_2(0) \neq 0$, a equação toma então a forma

$$\begin{split} \frac{1}{\sqrt[4]{|l_2|}} \frac{du}{d\theta} &= (\chi + i) \frac{u}{\sqrt[4]{|l_2|}} + d_1 \frac{u}{\sqrt[4]{|l_2|}} |\frac{u}{\sqrt[4]{|l_2|}}|^2 + l_2 \frac{u}{\sqrt[4]{|l_2|}} \left|\frac{u}{\sqrt[4]{|l_2|}}\right|^4 \dots ,\\ \Rightarrow \frac{du}{d\theta} &= (\chi + i)u + \frac{d_1(\chi)}{\sqrt{|l_2(\chi)|}} u|u|^2 + \frac{l_2(\chi)}{|l_2(\chi)|} u|u|^4 + O(|u|^6)\\ &= (\chi + i)u + \zeta u|u|^2 + su|u|^4 + O(|u|^6), \end{split}$$

 $\operatorname{com} s = \operatorname{sinal} l_2(0) = \operatorname{sinal} \operatorname{Re} c_2(0).$

Definição 2.2.4 Um ponto de Hopf de codimensão 2 é um ponto de Hopf onde $l_1(\mu)$ se anula.

Definição 2.2.5 Um ponto de Hopf de codimensão 2 é chamado **transversal** se $\gamma(0) = 0$ e $l_1(0) = 0$ se interceptam transversalmente onde $\gamma = \gamma(\mu)$ é a parte real dos autovalores críticos.

Teorema 2.2.3 Suponha o sistema

$$\frac{dx}{dt} = f(x,\mu), \ x \in \mathbb{R}^n, \ \mu \in \mathbb{R}^m,$$
(2.48)

com f suave, tendo para todo $||\mu||$ suficientemente pequeno, o equilíbrio $(x, \mu) = (0, 0)$ tomando o par de autovalores

$$\lambda_{1,2}(\mu) = \gamma(\mu) \pm i\omega(\mu),$$

onde $\gamma(0) = 0$, $\omega(0) = \omega_0 > 0$, e os outros λ_{n-2} autovalores, com parte real não nula, satisfazendo as seguintes condições de genericidade

- (1) $l_1(0) = 0$, onde $l_1(\mu)$ é o primeiro coeficiente de Lyapunov;
- (2) $l_2(0) \neq 0$, onde $l_2(\mu)$ é o segundo coeficiente de Lyapunov;
- (3) a função $\mu \mapsto (\gamma(\mu), l_1(\mu))^{\top}$ é regular em $\mu = 0$.

Então, por introdução de uma variável complexa, aplicada a transformações de coordenadas suaves e inversíveis que dependem suavemente dos parâmetros, e realizando uma mudança suave dos parâmetros e do tempo, o sistema pode ser reduzido à seguinte forma complexa:

$$\dot{z} = (\chi + i)z + \zeta z |z|^2 + sz |z|^4 + O(|z|^6),$$

 $com \ s = sinal \ l_2(0) = sinal \ Re \ c_2(0).$

Se estas condições forem satisfeitas, o sistema possui uma bifurcação de Hopf de codimensão 2 na origem.

Lema 2.2.5 Considere a equação

$$\frac{dw}{dt} = (\gamma(\mu) + i\omega(\mu))w + c_1(\mu)w|w|^2 + c_2(\mu)w|w|^4 + c_3(\mu)w|w|^6 + O(|w|^8),$$

onde $\gamma(0) = 0 \ e \ \omega(0) = \omega_0 > 0$. Suponha $\gamma'(0) \neq 0 \ e \ Re \ c_1(0) = 0$, $Re \ c_2(0) = 0 \ e \ Re \ c_3(0) \neq 0$.

Então, a equação acima poderá ser transformada, por mudanças de coordenadas, na equação

$$\frac{du}{d\theta} = (\chi + i)u + \sigma u|u|^2 + \upsilon u|u|^4 + su|u|^6 + O(|u|^8),$$
(2.49)

onde u é a nova coordenada complexa, $\theta e \chi são$, respectivamente, os novos tempo e parâmetro,

$$\sigma = \frac{d_1(0)}{\sqrt[3]{|Re \ c_3(0)|}}, \upsilon = \frac{d_2(0)}{\sqrt{|Re \ c_3(0)|}} \ e \ s = sinal Re \ c_3(0) = \pm 1.$$

Demonstração 2.2.5: Introduzindo o novo tempo $\tau = \omega(\mu)t$, que preserva a direção, pois $\omega(\mu) > 0$ para todo $||\mu||$ suficientemente pequeno, obtemos:

$$\frac{dw}{d\tau} = \frac{\gamma(\mu) + i\omega(\mu)}{\omega(\mu)}w + \frac{c_1(\mu)}{\omega(\mu)}w|w|^2 + \frac{c_2(\mu)}{\omega(\mu)}w|w|^4 + \frac{c_3(\mu)}{\omega(\mu)}w|w|^6 + O(|w|^8),$$

$$\Rightarrow \frac{dw}{d\tau} = (\chi + i)w + d_1(\chi)w|w|^2 + d_2(\chi)w|w|^4 + d_3(\chi)w|w|^6 + O(|w|^8),$$

onde

$$\chi = \chi(\mu) = \frac{\gamma(\mu)}{\omega(\mu)}, \ d_1 = \frac{c_1(\mu(\chi))}{\omega(\mu(\chi))}, \ d_2 = \frac{c_2(\mu(\chi))}{\omega(\mu(\chi))}, \ d_3 = \frac{c_3(\mu(\chi))}{\omega(\mu(\chi))}.$$

Podemos considerar χ como um novo parâmetro porque

$$\chi(0) = 0, \ \chi'(0) = \frac{\gamma'(0)}{\omega(0)} \neq 0,$$

e, portanto, o Teorema da Função Inversa nos garante a existência local e suave de μ como função de $\chi.$

Vamos agora reparametrizar o tempo ao longo das órbitas com a nova mudança de tempo $\theta=\theta(\tau,\chi),\, {\rm onde}$

$$d\theta = (1 + e_1(\chi)|w|^2 + e_2(\chi)|w|^4 + e_3(\chi)|w|^6)d\tau,$$

com $e_1(\chi) = Im \ d_1(\chi), e_2(\chi) = Im \ d_2(\chi), e_3 = Im \ d_3(\chi)$. Essa mudança é próxima da identidade numa pequena vizinhança da origem. Usando esse valor de tempo definido, obtemos

$$\frac{dw}{d\theta} = (\chi + i)w + \eta(\chi)w|w|^2 + \nu(\chi)w|w|^4 + l_3(\chi)w|w|^6 + O(|w|^8),$$

onde

$$\eta(\chi) = -\chi e_1(\chi), \, \nu(\chi) = \chi(\chi)(e_1(\chi)^2 - e_2(\chi)),$$

$$l_3(\chi) = Red_3 + \chi(\chi)(e_1(\chi)(2e_2(\chi) - e_1(\chi)^2) - e_3(\chi))$$

é real e

$$l_1(0) = \frac{Re \ c_1(0)}{\omega(0)} = 0, \ l_2(0) = \frac{Re \ c_2(0)}{\omega(0)} = 0, \ l_3(0) = \frac{Re \ c_3(0)}{\omega(0)}.$$
 (2.50)

De fato,

$$\begin{array}{ll} \displaystyle \frac{dw}{d\theta} & = & \displaystyle \frac{dw}{(1+e_1(\chi)|w|^2+e_2(\chi)|w|^4+e_3(\chi)|w|^6)d\tau} = (\chi+i)w + \eta(\chi)w|w|^2 + \nu(\chi)w|w|^4 \\ & + & \displaystyle l_3(\chi)w|w|^6..., \end{array}$$

$$\Leftrightarrow \frac{dw}{d\tau} = (1 + e_1(\chi)|w|^2 + e_2(\chi)|w|^4 + e_3(\chi)|w|^6)[(\chi + i)w + \eta(\chi)w|w|^2 + \nu(\chi)w|w|^4 \\ + l_3(\chi)w|w|^6...]$$

$$= (\chi + i)w + [\eta(\chi) + e_1(\chi)(\chi + i)]w|w|^2 + [\nu(\chi) + e_1(\chi)\eta + e_2(\chi)(\chi + i)]w|w|^4 \\ + [l_3(\chi) + e_1(\chi)\nu(\chi) + e_2(\chi)\eta + e_3(\chi)(\chi + i)]w|w|^6...$$

$$= (\chi + i)w + [-\chi e_1 + \chi e_1 + ie_1]w|w|^2 + [\chi e_1^2 - \chi e_2 - \chi e_1^2 + \chi e_2 + ie_2]w|w|^4 \\ + [Re \, d_3 - \chi e_1^3 + 2\chi e_1 e_2 - \chi e_3 + \chi e_1^3 - \chi e_1 e_2 - \chi e_1 e_2 + \chi e_3 + ie_3]w|w|^6...$$

$$= (\chi + i)w + iIm \, d_1 w|w|^2 + iIm \, d_2 w|w|^4 + [Re \, d_3 + iIm \, d_3]w|w|^6 + ...$$

$$= (\chi + i)w + d_1(\chi)w|w|^2 + d_2(\chi)w|w|^4 + d_3(\chi)w|w|^3 + ...$$

já que $\operatorname{Re} d_1 = \operatorname{Re} d_2 = 0, i \operatorname{Im} d_1 = d_1$ e $i \operatorname{Im} d_2 = d_2$. Finalmente, introduzindo a nova variável complexa u

$$w = \frac{u}{\sqrt[6]{|l_3(\chi)|}},$$

que é possível pois $Re c_3(0) \neq 0$ e, portanto, $l_3(0) \neq 0$, a equação toma então a forma

$$\begin{split} \frac{1}{\sqrt[6]{|l_3|}} \frac{du}{d\theta} &= (\chi + i) \frac{u}{\sqrt[6]{|l_3|}} + d_1 \frac{u}{\sqrt[6]{|l_3|}} |\frac{u}{\sqrt[6]{|l_3|}}|^2 + d_2 \frac{u}{\sqrt[6]{|l_3|}} |\frac{u}{\sqrt[6]{|l_3|}}|^4 + l_3 \frac{u}{\sqrt[6]{|l_3|}} \left|\frac{u}{\sqrt[6]{|l_3|}}\right|^6 \dots, \\ \Rightarrow \frac{du}{d\theta} &= (\chi + i)u + \frac{d_1(\chi)}{\sqrt[3]{|l_3(\chi)|}} u|u|^2 + \frac{d_2(\chi)}{\sqrt{|l_3(\chi)|}} u|u|^4 + \frac{l_3(\chi)}{|l_3(\chi)|} u|u|^6 + O(|u|^8) \\ &= (\chi + i)u + \sigma u|u|^2 + \upsilon u|u|^4 + su|u|^6 + O(|u|^8), \end{split}$$

 $\operatorname{com} s = sinal \ l_3(0) = sinal \ Re \ c_3(0).$

Definição 2.2.6 Um ponto de Hopf de codimensão 3 é um ponto de Hopf de codimensão 2 onde $l_2(\mu)$ se anula.

Definição 2.2.7 Um ponto de Hopf de codimensão 3 é chamado **transversal** se $\gamma(0) = 0$, $l_1(0) = 0$ e $l_2(0) = 0$ se interceptam transversalmente, onde $\gamma = \gamma(\mu)$ é a parte real dos autovalores críticos.

Teorema 2.2.4 Suponha o sistema

$$\frac{dx}{dt} = f(x,\mu), \ x \in \mathbb{R}^n, \ \mu \in \mathbb{R}^m,$$
(2.51)

com f suave, tendo para todo $||\mu||$ suficientemente pequeno, o equilíbrio $(x, \mu) = (0, 0)$ tomando o par de autovalores

$$\lambda_{1,2}(\mu) = \gamma(\mu) \pm i\omega(\mu),$$

onde $\gamma(0) = 0$, $\omega(0) = \omega_0 > 0$, e os outros λ_{n-2} autovalores, com parte real não nula, satisfazendo as seguintes condições

- (1) $l_1(0) = l_2(0) = 0$, onde $l_1(\mu)$ e $l_2(\mu)$ são respectivamente o primeiro e o segundo coeficientes de Lyapunov;
- (2) $l_3(0) \neq 0$, onde $l_3(\mu)$ é o terceiro coeficiente de Lyapunov;
- (3) a função $\mu \to (\gamma(\mu), l_1(\mu), l_2(\mu))^{\top}$ é regular em $\mu = 0$.

Então, por introdução de uma variável complexa, aplicada a transformações de coordenadas suaves e inversíveis que dependem suavemente dos parâmetros, e realizando uma mudança suave dos parâmetros e do tempo, o sistema pode ser reduzido à seguinte forma complexa:

$$\dot{z} = (\chi + i)z + \sigma z |z|^2 + \upsilon z |z|^4 + s z |z|^6 + O(|z|^8),$$

 $com \ s = sinal \ l_3(0) = sinal \ Re \ c_3(0).$

Se estas condições forem satisfeitas, o sistema possui uma bifurcação de Hopf de codimensão 3 na origem.

2.3 Diagramas de Bifurcação da forma normal

O sistema (2.43) com s = -1, escrito sem o termo $O(|u|^4)$ em coordenadas polares (ρ, φ) , onde $u = \rho e^{i\varphi}$, fica sob a forma

$$\begin{cases} \dot{\rho} = \rho(\chi - \rho^2), \\ \dot{\varphi} = 1. \end{cases}$$
(2.52)

O sistema (2.52) é desacoplado. A segunda equação descreve a rotação com velocidade angular unitária. O equilíbrio trivial $\rho = 0$ da primeira equação corresponde somente ao equilíbrio w = 0 do sistema truncado.

Os valores de χ que anulam a expressão $(\chi - \rho^2)$, estão sobre a parábola

$$(\chi - \rho^2) = 0.$$

De acordo com [11], temos a figura 2.5.

Na região 1 onde $\chi < 0$, o sistema possui um ponto de equilíbrio estável e nenhum ciclo limite. Quando interceptamos o eixo ρ no sentido horário, o equilíbrio continua estável. Quando (χ, ρ) se encontram no arco de parábola, o equilíbrio continua atrator mas atrai de forma mais lenta. Para valores de (ρ, χ) bastante próximos ao arco da parábola e na região 2, temos o surgimento de um ciclo limite estável em torno do equilíbrio repulsor.

O caso s = 1 em (2.43) é tratado de forma similar ou pode ser reduzido ao estudo do caso anterior a partir de uma transformação $(w, \chi, t) \rightarrow (\bar{w}, \chi, -t)$.

Figura 2.5: Diagrama de bifurcação de (2.52).

O sistema (2.46) com s=-1, escrito sem o termo $O(|u|^6),$ em coordenadas polares $(\rho,\varphi),$ onde $u=\rho e^{i\varphi},$ toma a forma

$$\begin{cases} \dot{\rho} = \rho(\chi + \zeta \rho^2 - \rho^4), \\ \dot{\varphi} = 1. \end{cases}$$
(2.53)

Uma solução positiva da primeira equação de (2.53) satisfaz

$$\chi + \zeta \rho^2 - \rho^4 = 0, \tag{2.54}$$

e descreve um ciclo limite. A equação (2.54), pode ter nenhuma, uma ou duas soluções positivas, que correspondem a ciclos-limites do sistema (2.53).

As soluções são triviais ao longo da reta

$$H = \{(\chi, \zeta) : \chi = 0\}$$

que colide com o arco de parábola, dado por

$$T = \{(\chi, \zeta) : \zeta^2 + 4\chi = 0, \zeta > 0\}$$

e desaparece.

A estabilidade dos ciclos também é claramente detectada a partir da primeira equação de (2.53).

Figura 2.6: Diagrama de bifurcação de (2.53).

De acordo com [3], o diagrama de bifurcação de (2.53) é retratado como na figura (2.6).

O eixo H corresponde à bifurcação de Hopf. Ao longo deste eixo, o equilíbrio possui autovalores $\lambda_{1,2} = \pm i$. O equilíbrio é estável para $\chi < 0$ e instável para $\chi > 0$. O primeiro coeficiente de Lyapunov é $l_1(\chi) = \zeta$. Portanto, a bifurcação de Hopf no ponto $\chi = \zeta = 0$, separa o eixo H em dois ramos, H_- e H_+ correspondentes à bifurcação de Hopf com coeficientes de Lyapunov negativo e positivo, respectivamente.

Um ciclo limite estável surge em torno do equilíbrio, se cruzarmos H_{-} da esquerda para a direita, enquanto um instável surge se cruzamos H_{+} na direção oposta. Os ciclos estável e instável colidem na curva T, dando origem a um ciclo semi-estável. As curvas dividem o plano de parâmetros em três regiões (veja figura 2.6).

Para melhor entendimento do diagrama de bifurcação, faremos uma "passeio" no plano de parâmetros em torno do ponto de equilíbrio no sentido anti-horário, começando pela região $\mathbf{1}$, onde o sistema possui um ponto de equilíbrio e nenhum ciclo. Passar da região $\mathbf{1}$ para a região $\mathbf{2}$ por H_- , implica no aparecimento de um único ciclo limite estável que "sobrevive" quando passamos da região $\mathbf{2}$ para a região $\mathbf{3}$. Ao cruzarmos o eixo H por H_+ , surge um ciclo instável extra incidente ao primeiro, enquanto o equilíbrio recobra a estabilidade. Dois ciclos de estabilidades opostas coexistem na região $\mathbf{3}$, colidem na curva T e desaparecem restando um único equilíbrio estável, completando o ciclo na região $\mathbf{1}$. O caso s = 1 em (2.46) pode ser analisado de forma análoga ou pode ser reduzido ao estudo acima a partir de uma transformação $(w, \chi, \zeta, t) \rightarrow (\bar{w}, \chi, \bar{\zeta}, -t)$.

O sistema (2.49) com s = 1, escrito sem o termo $O(|u|^8)$ em coordenadas polares (ρ, φ) , onde $w = \rho e^{i\varphi}$, fica da forma

$$\begin{cases} \dot{\varphi} = \rho(\chi + \sigma \rho^2 + \upsilon \rho^4 + \rho^6), \\ \dot{\varphi} = 1. \end{cases}$$
(2.55)

Uma solução positiva da primeira equação de (2.55) satisfaz

$$\chi + \sigma \rho^2 + \upsilon \rho^4 + \rho^6 = 0.$$

Fazendo $\rho^2 = r$, temos

$$\begin{cases} \chi + \sigma r + vr^2 + r^3 = 0, \\ \sigma + 2vr + 3r^2 = 0, \\ r \ge 0. \end{cases}$$
(2.56)

Seja T o conjunto de pontos (v, σ, χ) para os quais existe um r tal que v, σ, χ, r satisfaz (2.56).

O sistema (2.56) é equivalente ao sistema

$$\begin{cases} \chi = r^{2}(\upsilon + 2r), \\ \sigma = -r(2\upsilon + 3r), \\ r \ge 0. \end{cases}$$
(2.57)

Estas equações tornam-se mais cômodas se calcularmos $T \cap \{v = c(constante)\}$ quando tomamos valores diferentes de v = c. Delas obtemos os seguintes resultados

- a) $T \cap v = c$, para c > 0. Obtemos o arco de parábola que está indicado na figura (2.7).
- b) $T \cap v = c$, para c = 0. Neste caso obtemos: $S \cap \{v = 0\} = \{(v, \sigma, \chi) | v = 0, \chi > 0, 27\chi^2 = -4\sigma^3\}$, que está ilustrada na figura (2.8).
- c) $T \cap v = c$, para c < 0. Obtemos uma curva com uma cúspide em um ponto que está indicado na figura (2.9). Perto da origem, esta curva possui novamente a aparência de parte de uma parábola.

Figura 2.7: $T \cap \{v = c > 0\}$.

Figura 2.8: $T \cap \{v = c = 0\}.$

Figura 2.9: $T \cap \{v = c < 0\}.$

De acordo com [11], combinando estas informações, obtemos uma ilustração para $S = T \cup H$ descrita na figura (2.10). É claro que $\mathbb{R}^3 \setminus S$ possui quatro componentes, enumeradas na figura (2.10), obtidas a partir de uma análise similar ao caso anterior (sistema (2.53)).

Na região 1 que está acima do plano σv e do lado direito da superfície $T \cap v$, temos um equilíbrio atrator sem nenhum ciclo limite. Passando pela superfície $T \cap v$ no sentido anti-horário, entramos na região 2 onde temos o surgimento de um ciclo limite repulsor para um equilíbrio atrator e incidente a este ciclo limite, temos ainda o surgimento de outro ciclo limite atrator . Atravessando o plano σv para valores de $\chi < 0$ (região 3), ocorre o colapso entre a órbita atratora que surgiu anteriormente em torno do equilíbrio e o ciclo limite repulsor, e, portanto temos um ciclo limite atrator e um equilíbrio repulsor. Passando da região 2 para a região 4, limitada por uma "língua" que surge a partir da união entre $T \cap \{v < 0\} \cup T \cap \{v = 0\}$

Figura 2.10: Diagrama de bifurcação do sistema (2.49).

e onde $\chi < 0$, temos o surgimento de um ciclo limite atrator em torno do equilíbrio repulsor, sendo que assim, coexistem três ciclos limites.

Capítulo 3

Estudo Qualitativo do Sistema Regulador de Watt

Neste capítulo, estudaremos o modelo proposto no capítulo 1 com respeito aos seus pontos de equilíbrio, a dinâmica do sistema máquina a vapor-regulador e o surgimento de bifurcações de Hopf. Verificaremos em que condições ocorrerão as bifurcações. As definições, teoremas, lemas e diagramas que apresentaremos neste capítulo foram baseadas nos livros de Kuznetsov [3] e Pontryagin [6], e nos artigos de Sotomayor, Mello e Braga, [8], [9] e [10].

Definição 3.0.1 Um sistema dinâmico é uma terna $\{T, X, \varphi^t\}$, onde T é o conjunto de tempos contínuos, X é o espaço de estados e $\varphi^t : X \to X$ é uma família de operadores de evolução parametrizados por $t \in T$ e satisfaz as seguintes propriedades:

- a) $\varphi^0 = id$, onde id é a função identidade em X, id(x) = x, $\forall x \in X$;
- b) $\varphi^{t+s} = \varphi^t \circ \varphi^s$, isto é, $\varphi^{t+s}(x) = \varphi^t(\varphi^s(x))$, $\forall x \in X \ e \ \forall t, s \in T$, onde ambos os membros desta equação estejam definidos.

Definição 3.0.2 Um conjunto invariante de um sistema dinâmico $\{T, X, \varphi^t\}$ é um subconjunto $S \subset X$ tal que se $x_0 \in S$ então $\varphi^t(x_0) \in S, \forall t \in T$.

Definição 3.0.3 Um conjunto invariante S_0 é chamado estável se para toda vizinhança $U \supset S_0$ existe uma vizinhança $V \supset S_0$ tal que $\varphi^t(x) \in U, \forall x \in V$ e para todo t > 0. Um conjunto invariante S_0 é chamado assintoticamente estável se for estável e se existir uma vizinhança $U_0 \supset S_0$ tal que $\varphi^t(x) \to S_0, \forall x \in U_0$ e $t \to +\infty$.

3.1 Estudo das equações 3.1

Aqui estudaremos o sistema de equações diferenciais (1.3) dado por

$$\frac{d\varphi}{d\tau} = \psi,
\frac{d\psi}{d\tau} = C^2 \Omega^2 \operatorname{sen} \varphi \cos \varphi - g \operatorname{sen} \varphi - \frac{b}{m} \psi,
\frac{d\Omega}{d\tau} = \frac{1}{I} (\cos \varphi - F),$$

que por uma transformação de coordenadas e do tempo

$$x = \varphi, \quad y = \sqrt{\frac{\psi}{\mathrm{g}}}, \quad z = C\sqrt{\frac{\Omega}{\mathrm{g}}}, \quad \tau = \sqrt{\frac{t}{\mathrm{g}}},$$

se torna o seguinte sistema de equações diferenciais de primeira ordem

$$\begin{cases} \frac{dx}{dt} = y, \\ \frac{dy}{dt} = z^2 \operatorname{sen} x \cos x - \operatorname{sen} x - \varepsilon y, \\ \frac{dz}{dt} = \alpha (\cos x - \beta), \end{cases}$$
(3.1)

onde $\alpha>0,\,0<\beta<1$ e $\varepsilon>0,$ são dados por

$$\varepsilon = \frac{b}{m} \sqrt{\frac{1}{g}}, \quad \alpha = \frac{C \mu}{g I}, \quad \beta = \frac{F}{\mu}.$$

Lema 3.1.1 As equações diferenciais (3.1) possuem apenas um ponto de equilíbrio

$$P_0 = (x_0, y_0, z_0) = \left(\arccos\beta, 0, \sqrt{\frac{1}{\beta}}\right).$$

Demonstração 3.1.1: De fato, fazendo

$$y = 0,$$

$$z^{2} \operatorname{sen} x \cos x - \operatorname{sen} x - \varepsilon y = 0,$$

$$\alpha(\cos x - \beta) = 0,$$
(3.2)

da última equação, obtemos $x = \arccos \beta$, já que $\alpha \in (0, \infty)$. Logo, $x_0 = \arccos \beta$. Para y_0 , temos apenas a possibilidade $y_0 = 0$.

Ao substituirmos $x_0 = \arccos \beta \ \in y_0 = 0$ na segunda equação, obtemos

$$z^{2} \operatorname{sen} x_{0} \cos x_{0} - \operatorname{sen} x_{0} = 0 \Rightarrow \operatorname{sen} x_{0} (z^{2} \cos x_{0} - 1) = 0,$$

donde segue que sen $x_0 = 0$ ou $z_0 = \pm \sqrt{\frac{1}{\beta}}$. Se

 $x = \varphi \Rightarrow \operatorname{sen} x_0 = \operatorname{sen} \varphi_0 = 0, \varphi_0 = \pm k\pi,$

para k inteiro qualquer. Mas $\varphi \in \left(0, \frac{\pi}{2}\right)$, não sendo possível, então, sen $x_0 = 0$. Portanto, $z_0 = \pm \sqrt{\frac{1}{\beta}}$. Como $z \in (0, \infty)$, então $z_0 = \sqrt{\frac{1}{\beta}}$.

Sendo assim, temos uma única representação para o ponto de equilíbrio

$$P_0 = (x_0, y_0, z_0) = \left(\arccos \beta, 0, \sqrt{\frac{1}{\beta}}\right).$$

Na análise que segue utilizaremos o seguinte resultado.

Teorema 3.1.1 O polinômio

$$P(\lambda) = \lambda^3 + a\lambda^2 + b\lambda + c,$$

com coeficientes reais é estável (possui todas as raízes com partes reais negativas), se e somente se, os números a, b, c > 0 e além disso

a b > c.

Demonstração 3.1.1: Temos que

$$P(\lambda) = \lambda^3 + a\lambda^2 + b\lambda + c = (\lambda + a)(\lambda^2 + b) - ab + c.$$

Seja $\lambda \ = \ \rho \ + \ i\omega$, raíz de $P(\lambda),$ tal que $\rho,\omega \in \mathbb{R}.$ Sendo assim, se $\omega \ \neq \ 0, \ \lambda \ = \ \rho \ - \ i\omega,$ também é raiz deste polinômio. Então

$$\begin{aligned} &[(\rho + i\omega) + a] \left[(\rho + i\omega)^2 + b \right] - ab + c = 0 \Rightarrow \\ &\begin{cases} &-\omega^2 (3\rho + a) + \rho (\rho^2 + b + a\rho) + c = 0, \\ &i\omega (3\rho^2 - \omega^2 + b + 2\rho a) = 0. \end{aligned}$$
(3.3)

• Se λ é raiz real, temos que $\omega = 0$. Assim, da primeira equação de (3.3)

$$\rho(\rho^2 + b + a\rho) + c = 0 \implies \rho(\rho^2 + b + a\rho) = -c \iff \rho < 0,$$

isto é, se existe uma raiz real, ela é negativa.

• Se λ é raiz imaginária pura, $\lambda = \rho \pm i\omega$ são raizes de $P(\lambda) \operatorname{com} \rho = 0$. Assim, de (3.3)

$$\begin{cases} -a\,\omega^2 = -c \Rightarrow \omega = \pm \sqrt{\frac{c}{a}} \\ i\omega(-\omega^2 + b) = 0 \Rightarrow \omega = \pm \sqrt{b} \end{cases} \iff c = ab.$$

Portanto, se a b = c, temos uma raiz real negativa e um par de raízes complexas conjugadas com parte real nula. Logo, neste caso o polinômio $P(\lambda)$ é instável.

• Se $\lambda = \rho + i\omega$, para $\rho, \omega \neq 0$, da segunda equação de (3.3) vem que

$$(3\rho^2 - \omega^2 + b + 2\rho a) = 0 \Rightarrow \omega^2 = 3\rho^2 + b + 2\rho a_2$$

que substituída na primeira equação de (3.3) nos fornece

$$(3\rho^{2} + b + 2\rho a)(3\rho + a) = \rho(\rho^{2} + b + a\rho) + c \Rightarrow$$

$$8a\rho^{2} + \rho(8\rho^{2} + 2b + 2a^{2}) = c - ab.$$
(3.4)

Caso 1: ab < c.

A equação (3.4) fica da forma

$$8a\rho^2 + 2\rho \left(4\rho^2 + b + a^2\right) > 0 \implies 4\rho^2 + 4a\rho + (a^2 + b) > 0,$$

donde nada se pode afirmar com relação ao sinal de ρ . Mas por outro lado, se

$$a = b = 0 \Rightarrow P(\lambda) = \lambda^3 + c = 0 \Rightarrow \sqrt[3]{c} \left(\cos \frac{\pi}{3} \pm i \sin \frac{\pi}{3} \right),$$

são raízes que estão do lado direito no plano complexo. Como as raízes dependem continuamente dos coeficientes, a instabilidade também é conservada para a e b positivos suficientemente pequenos. Portanto, se a b < c, temos uma raiz real negativa e um par de raízes complexas conjugadas com partes reais positivas. Logo, neste caso o polinômio $P(\lambda)$ é instável. **Caso 2**: ab > c.

A equação (3.4) fica da forma

$$8a\rho^2 + \rho\left(8\rho^2 + 2b + 2a^2\right) < 0 \iff \rho < 0.$$

Portanto, se ab > c, e $\omega \neq 0$, temos uma raíz real negativa e um par de raízes complexas conjugadas com partes reais negativas. Logo, neste caso, o polinômio $P(\lambda)$ é estável.

Lema 3.1.2 Considere o sistema de equações (3.1) com ponto de equilíbrio P_0 . Se $\varepsilon > 2\alpha\beta^{3/2}$, então P_0 é localmente assintoticamente estável. Se $0 < \varepsilon < 2\alpha\beta^{3/2}$, então P_0 é instável.

Demonstração 3.1.2: A matriz Jacobiana de $f \in P_0$ possui a forma

$$Df(P_0) = \begin{pmatrix} 0 & 1 & 0 \\ -\frac{1-\beta^2}{\beta} & -\varepsilon & 2\sqrt{\beta(1-\beta^2)} \\ -\alpha\sqrt{1-\beta^2} & 0 & 0 \end{pmatrix}.$$
 (3.5)

O polinômio característico $P(\lambda)$ desta matriz é dado por

$$-P(\lambda) = \lambda^3 + \varepsilon \lambda^2 + \frac{1-\beta^2}{\beta} \lambda + 2\alpha \beta^{1/2} (1-\beta^2).$$

De acordo com o Lema (3.1.1), sendo

$$a = \varepsilon, \ b = \frac{1-\beta^2}{\beta}, \ c = 2\alpha\beta^{1/2}(1-\beta^2)$$

todos positivos, a condição necessária e suficiente para a estabilidade assintótica do ponto de equilíbrio P_0 é dada por a b > c, isto é

$$\varepsilon\left(\frac{1-\beta^2}{\beta}\right) > 2\alpha\beta^{1/2}\left(1-\beta^2\right) \Rightarrow \varepsilon > 2\alpha\beta^{3/2}$$

Sendo $\varepsilon > 0$, segue imediatamente que se $0 < \varepsilon < 2\alpha\beta^{3/2}$, então P_0 é instável.

Figura 3.1: Superfície de parâmetros críticos $\varepsilon_c = 2\alpha\beta^{3/2}$.

3.2 Condição de Hopf

Lema 3.2.1 Se consideramos α , $\varepsilon > 0$ e $0 < \beta < 1$, a matriz Jacobiana do sistema (3.1) possuirá um par de autovalores imaginários puros se, e somente se,

$$\varepsilon = 2\alpha\beta^{3/2}.$$

Demonstração 3.2.1: Sejam $\lambda_1 \in \lambda_2$ raízes do polinômio característico

$$\lambda^{3} + \varepsilon \lambda^{2} + \frac{1 - \beta^{2}}{\beta} \lambda + 2\alpha \sqrt{\beta} \left(1 - \beta^{2}\right) = 0.$$

Se λ_1 é imaginário puro, $\lambda_1 = i\eta$ ($\eta \in \mathbb{R}$) então $\lambda_2 = \overline{\lambda_1} = -i\eta$ também é raiz, pois $\alpha, \varepsilon, \beta \in \mathbb{R}$. Substituindo λ_1 no polinômio característico, segue que

$$-i\eta^3 - \varepsilon\eta^2 + i\eta\left(\frac{1-\beta^2}{\beta}\right) + 2\alpha\sqrt{\beta}(1-\beta^2) = 0$$
$$\Rightarrow (-\varepsilon\eta^2 + 2\alpha\sqrt{\beta}(1-\beta^2)) + i\eta\left(-\eta^2 + \frac{1-\beta^2}{\beta}\right) = 0$$

$$\Rightarrow \begin{cases} -\varepsilon \eta^2 + 2\alpha \sqrt{\beta}(1-\beta^2) = 0, \\ -\eta^2 + \frac{1-\beta^2}{\beta} = 0. \end{cases}$$
(3.6)

Da segunda equação, temos

$$\eta^2 = \frac{1 - \beta^2}{\beta}.\tag{3.7}$$

Substituindo (3.7) na primeira equação do sistema (3.6), obtemos

$$-\varepsilon \left(\frac{1-\beta^2}{\beta}\right) + 2\alpha \sqrt{\beta}(1-\beta^2) = 0 \iff \varepsilon = 2\alpha \beta^{3/2}.$$

A volta segue do Lema (3.1.2), com base no Teorema (3.1.1)

Lema 3.2.2 Se $\varepsilon > 2\alpha\beta^{3/2}$, o polinômio $-P(\lambda)$ possui três raízes reais negativas ou uma raíz real negativa e duas raízes complexas conjugadas com partes reais negativas.

Demonstração 3.2.2: De acordo com a demonstração de (3.1.2), o polinômio característico $P(\lambda)$ é dado por

$$-P(\lambda) = \lambda^3 + \varepsilon \lambda^2 + \frac{(1-\beta^2)\lambda}{\beta} + 2(1-\beta^2)\alpha\sqrt{\beta}.$$

Com o auxílio do software MATHEMATICA, encontramos as seguintes raízes

$$\begin{split} \lambda_1 &= -\frac{\varepsilon}{3} - \frac{r(\beta, \alpha, \varepsilon)}{3\beta\sqrt[3]{2}} - \frac{\sqrt[3]{2}\left(3(\beta^2 - 1) + \varepsilon^2\beta\right)}{3r(\beta, \alpha, \varepsilon)}, \\ \lambda_2 &= -\frac{\varepsilon}{3} + \frac{\left(1 - i\sqrt{3}\right)r(\beta, \alpha, \varepsilon)}{6\beta\sqrt[3]{2}} + \frac{\left(1 + i\sqrt{3}\right)\left(3(\beta^2 - 1) + \varepsilon^2\beta\right)}{3\sqrt[3]{2^2}r(\beta, \alpha, \varepsilon)}, \\ \lambda_3 &= -\frac{\varepsilon}{3} + \frac{\left(1 + i\sqrt{3}\right)r(\beta, \alpha, \varepsilon)}{6\beta\sqrt[3]{2}} + \frac{\left(1 - i\sqrt{3}\right)\left(3(\beta^2 - 1) + \varepsilon^2\beta\right)}{3\sqrt[3]{2^2}r(\beta, \alpha, \varepsilon)}, \end{split}$$

tal que

$$\begin{aligned} r(\beta,\alpha,\varepsilon) &= \sqrt[3]{54\alpha\beta^{7/2}(1-\beta^2) + 9\varepsilon\beta^2(\beta^2-1) + 2\varepsilon^3\beta^3 + h(\beta,\alpha,\varepsilon)}, \\ h(\beta,\alpha,\varepsilon) &= \sqrt{\beta^3(9\varepsilon\beta(\beta^2-1) + 2\varepsilon^3\beta^2 - 54\alpha\beta^{3/2}(\beta^2-1))^2 - 4(3(\beta^2-1) + \varepsilon^2\beta)^3)}, \end{aligned}$$

donde temos três raízes reais negativas ou uma raiz real negativa e um par de raízes complexas conjugadas.

• $\lambda_{1,2,3}$ reais.
Se as três raízes são reais, deve ocorrer

$$\pm \frac{i\sqrt{3}r(\beta,\alpha,\varepsilon)}{6\beta\sqrt[3]{2}} \mp \frac{i\sqrt{3}\left(3(\beta^2-1)+\varepsilon^2\beta\right)}{3\sqrt[3]{2^2}r(\beta,\alpha,\varepsilon)} = 0,$$

onde

$$r(\beta, \alpha, \varepsilon) = (3(\beta^2 - 1) + \varepsilon^2 \beta) = 0$$

ou

$$r(\beta, \alpha, \varepsilon) = \pm \frac{1}{\sqrt[6]{2}} \sqrt{2\beta \left(\beta \varepsilon^2 + 3\left(\beta^2 - 1\right)\right)}.$$
(3.8)

A primeira igualdade não pode ocorrer, pois, neste caso teríamos uma indeterminação. Para a segunda, temos as superfícies de parâmetros descritas nas figuras (3.2) e (3.3).

Figura 3.2: Superfície de parâmetros $r(\beta, \alpha, \varepsilon) = \frac{1}{\sqrt[6]{2}} \sqrt{2\beta(\beta\varepsilon^2 + 3(\beta^2 - 1))}.$

Figura 3.3: Superfície de parâmetros $r(\beta, \alpha, \varepsilon) = \frac{-1}{\sqrt[6]{2}} \sqrt{2\beta(\beta\varepsilon^2 + 3(\beta^2 - 1))}.$

Figura 3.4: Curva de parâmetros $r(\beta, \alpha, \varepsilon) = 0$.

Para valores de β e ε sobre a superfície, temos $r(\beta, \alpha, \varepsilon)$ dado pela expressão (3.8) que implica em $\lambda_{2,3}$ reais e iguais.

De acordo com o teorema (3.1.1), se as raízes são reais, elas são negativas. Logo neste caso, temos três raízes reais negativas onde duas delas são iguais.

• $\lambda_{2,3}$ imaginários puros.

Se um par de raízes são complexas conjugadas imaginárias puras, deve ocorrer

$$-\frac{\varepsilon}{3} + \frac{r(\beta, \alpha, \varepsilon)}{6\sqrt[3]{2}\beta} + \frac{3(\beta^2 - 1) + \varepsilon^2\beta}{32^{2/3} r(\beta, \alpha, \varepsilon)} = 0,$$

onde

$$r(\beta, \alpha, \varepsilon) = (3(\beta^2 - 1) + \varepsilon^2 \beta) = 0$$

ou

$$r(\beta, \alpha, \varepsilon) = \sqrt[3]{2} \left(\beta \varepsilon \pm \sqrt{3\beta (1 - \beta^2)} \right).$$

A primeira igualdade sabemos que não pode ocorrer. Para a segunda, temos as superfícies de parâmetros de acordo com as figuras (3.5) e (3.6).

Figura 3.5: Superfície de parâmetros $r(\beta, \alpha, \varepsilon) = \sqrt[3]{2} \left(\beta \varepsilon - \sqrt{3\beta (1 - \beta^2)}\right).$

Figura 3.6: Superfície de parâmetros $r(\beta, \alpha, \varepsilon) = \sqrt[3]{2} \left(\beta \varepsilon + \sqrt{3\beta (1 - \beta^2)}\right).$

Neste caso, temos uma raiz real negativa e duas raízes complexas conjugadas imaginárias puras.

Lembremos que pelo Lema (3.2.1), só podemos ter um par de raízes complexas conjugadas imaginárias puras se $\varepsilon = 2\alpha\beta^{3/2}$. Neste caso, podemos reescrever $r(\beta, \alpha, \varepsilon)$ da seguinte forma:

$$r(\beta, \alpha) = 2\sqrt[3]{2} \alpha \beta^2 \sqrt{\beta} \pm \sqrt{3\beta (1 - \beta^2)}.$$

• λ_1 é real e $\lambda_{2,3}$ são complexas conjugadas com parte real não nula.

Pelo teorema (3.1.1), se $\varepsilon > 2\alpha\beta^{3/2}$ as partes reais desses autovalores são negativas.

As figuras (3.7), (3.8), (3.9), (3.10) representam o comportamento das partes real e imaginária dos três autovalores (λ_1 , λ_2 , λ_3) com relação a ε_c . Os eixos horizontal e vertical representam, respectivamente, as partes real e imaginária dos autovalores.

Figura 3.7: Autovalores para $0 < \varepsilon < 2\alpha\beta^{3/2}$.

Figura 3.8: Autovalores para $\varepsilon = 2\alpha\beta^{3/2}$.

Figura 3.9: Autovalores para $\varepsilon > 2\alpha\beta^{3/2}.$

Figura 3.10: Autovalores para $r(\beta, \alpha, \varepsilon) = \pm \frac{1}{\sqrt[6]{2}} \sqrt{2\beta \left(\beta \varepsilon^2 + 3 \left(\beta^2 - 1\right)\right)}.$

3.3 Bifurcação de Hopf

A estabilidade do ponto de equilíbrio $P_0 = \left(\arccos \beta, 0, \sqrt{\frac{1}{\beta}}\right)$, para $\varepsilon(\beta, \alpha) = \varepsilon_c = 2\alpha\beta^{3/2}$, será analisada.

De acordo com a expressão

$$F(x,\varepsilon_c) = \frac{1}{2}B(x,x) + \frac{1}{6}C(x,x,x) + \frac{1}{24}D(x,x,x,x) + \frac{1}{120}E(x,x,x,x,x) + \frac{1}{720}K(x,x,x,x,x,x,x) + \frac{1}{5040}L(x,x,x,x,x,x,x,x) + O(||x||^8), \quad (3.9)$$

onde B(x, y), C(x, y, z), D(x, y, z, u), E(x, y, z, u, v), K(x, y, z, u, v, s) e L(x, y, z, u, v, s, t)são funções multilineares de $x, y, z, u, v, s, t \in \mathbb{R}^3$ que em coordenadas são dadas por

$$B_{i}(x,y) = \sum_{j,k=1}^{3} \frac{\partial^{2} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k}} \Big|_{\mu=0} x_{j} y_{k},$$

$$C_{i}(x,y,z) = \sum_{j,k,l=1}^{3} \frac{\partial^{3} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k} \partial \mu_{l}} \Big|_{\mu=0} x_{j} y_{k} z_{l},$$

$$D_{i}(x,y,z,u) = \sum_{j,k,l,r=1}^{3} \frac{\partial^{4} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k} \partial \mu_{l} \partial \mu_{r}} \Big|_{\mu=0} x_{j} y_{k} z_{l} u_{r},$$

$$E_{i}(x,y,z,u,v) = \sum_{j,k,l,r,p=1}^{3} \frac{\partial^{5} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k} \partial \mu_{l} \partial \mu_{r} \partial \mu_{p}} \Big|_{\mu=0} x_{j} y_{k} z_{l} u_{r} v_{p},$$

$$K_{i}(x,y,z,u,v,s) = \sum_{j,k,l,r,p,q=1}^{3} \frac{\partial^{6} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k} \partial \mu_{l} \partial \mu_{r} \partial \mu_{p} \partial \mu_{q}} \Big|_{\mu=0} x_{j} y_{k} z_{l} u_{r} v_{p} s_{q},$$

$$L_{i}(x,y,z,u,v,s,t) = \sum_{j,k,l,r,p,q,h=1}^{3} \frac{\partial^{7} F_{i}(\mu)}{\partial \mu_{j} \partial \mu_{k} \partial \mu_{l} \partial \mu_{r} \partial \mu_{p} \partial \mu_{q} \partial \mu_{h}} \Big|_{\mu=0} x_{j} y_{k} z_{l} u_{r} v_{p} s_{q} t_{h}, \quad (3.10)$$

para i = 1, 2, 3, temos

$$B(x,y) = \{0, 2\omega_0\beta^{3/2}x_3y_3 - 3\omega_0\sqrt{\beta} x_1y_1 + 2(\beta - \omega_0^2)\sqrt{\beta} (x_3y_1 + x_1y_3), -\alpha\beta x_1y_1\},\$$

$$C(x,y,z) = \left\{0, \frac{(4-7\beta^2)}{\beta}x_1y_1z_1 - 8\beta\omega_0 (x_3y_1z_1 + x_1y_3z_1 + x_1y_1z_3) + 2\beta (\beta - \omega_0^2)(x_3y_3z_1 + x_3y_1z_3 + x_1y_3z_3), \alpha\sqrt{\beta}\omega_0x_1y_1z_1\right\},\$$

 $D(x, y, z, u) = \{0, -8\omega_0\beta^{3/2}(x_3y_1z_1u_3 + x_1y_3z_1u_3 + x_3y_3z_1u_1 + x_1y_1z_3u_3 + x_3y_1z_3u_1 + x_1y_3z_3u_1) + 15\omega_0\sqrt{\beta}x_1y_1z_1u_1 - 8\sqrt{\beta}(\beta - \omega_0^2)(x_1y_1z_1u_3 + x_3y_1z_1u_1 + x_1y_3z_1u_1 + x_1y_1z_3u_1), \alpha\beta x_1y_1z_1u_1\},$

$$\begin{split} E(x,y,z,u,v) &= \{0,32\beta\omega_0(x_1y_1z_1u_3v_1 + x_1y_1z_1u_1v_3 + x_3y_1z_1u_1v_1 + x_1y_3z_1u_1v_1 + x_1y_1z_3u_1v_1) \\ &-8\beta(\beta - \omega_0^2)(x_1y_1z_1u_3v_3 + x_3y_1z_1u_3v_1 + x_3y_1z_1u_1v_3 + x_1y_3z_1u_3v_1 + x_1y_3z_1u_1v_3 + x_3y_3z_1u_1v_1 \\ &+ x_1y_1z_3u_3v_1 + x_1y_1z_3u_1v_3 + x_3y_1z_3u_1v_1 + x_1y_3z_3u_1v_1) + (16(\beta - \omega_0^2) - \beta)x_1y_1z_1u_1v_1, \\ &-\alpha\sqrt{\beta}\omega_0x_1y_1z_1u_1v_1\}, \end{split}$$

$$\begin{split} K(x,y,z,u,v,s) &= \{0,32\omega_0\beta^{3/2}(x_1y_1z_1u_3v_1s_3 + x_1y_1z_1u_1v_3s_3 + x_1y_1z_1u_3v_3s_1 + x_3y_1z_1u_1v_1s_3 \\ &+ x_3y_1z_1u_3v_1s_1 + x_3y_1z_1u_1v_3s_1 + x_1y_3z_1u_1v_1s_3 + x_1y_3z_1u_3v_1s_1 + x_1y_3z_1u_1v_3s_1 + x_3y_3z_1u_1v_1s_1 \\ &+ x_1y_1z_3u_1v_1s_3 + x_1y_1z_3u_3v_1s_1 + x_1y_1z_3u_1v_3s_1 + x_3y_1z_3u_1v_1s_1 + x_1y_3z_3u_1v_1s_1 \\ &+ 32(\beta - \omega_0^2)\sqrt{\beta}(x_1y_1z_1u_1v_1s_3 + x_1y_1z_1u_3v_1s_1 + x_1y_1z_1u_1v_3s_1 + x_3y_1z_1u_1v_1s_1 + x_1y_3z_1u_1v_1s_1 \\ &+ x_1y_1z_3u_1v_1s_1) - 63\omega_0\sqrt{\beta}x_1y_1z_1u_1v_1s_1, -\alpha\beta x_1y_1z_1u_1v_1s_1\}, \end{split}$$

$$\begin{split} L(x, y, z, u, v, s, t) &= \{0, -128\beta\omega_0(x_1y_1z_1u_1v_1s_3t_1 + x_1y_1z_1u_1v_1s_1t_3 + x_1y_1z_1u_3v_1s_1t_1 \\ &+ x_1y_1z_1u_1v_3s_1t_1 + x_3y_1z_1u_1v_1s_1t_1 + x_1y_3z_1u_1v_1s_1t_1 + x_1y_1z_3u_1v_1s_1t_1) \\ &+ 32\beta(\beta - \omega_0^2)(x_1y_1z_1u_1v_1s_3t_3 + x_1y_1z_1u_3v_1s_3t_1 + x_1y_1z_1u_3v_1s_1t_3 + x_1y_1z_1u_1v_3s_3t_1 \\ &+ x_1y_1z_1u_1v_3s_1t_3 + x_1y_1z_1u_3v_3s_1t_1 + x_3y_1z_1u_1v_1s_3t_1 + x_3y_1z_1u_1v_1s_1t_3 + x_3y_1z_1u_3v_1s_1t_4 \{3.11\} \\ &+ x_3y_1z_1u_1v_3s_1t_1 + x_1y_3z_1u_1v_1s_3t_1 + x_1y_3z_1u_1v_1s_1t_3 + x_1y_3z_1u_3v_1s_1t_1 \\ &+ x_3y_3z_1u_1v_1s_1t_1 + x_1y_1z_3u_1v_1s_3t_1 + x_1y_1z_3u_3v_1s_1t_1 + x_1y_1z_3u_1v_3s_1t_1 \\ &+ x_1y_3z_3u_1v_1s_1t_1) + (\beta - 64(\beta - \omega_0^2))x_1y_1z_1u_1v_1s_1t_1, \alpha\sqrt{\beta}\omega_0x_1y_1z_1u_1v_1s_1t_1 \}. \end{split}$$

A matriz A possui os seguintes autovalores

$$\lambda_1 = -\varepsilon_c = -2\alpha\beta^{3/2}, \ \lambda_2 = i\omega_0, \ \lambda_3 = -i\omega_0,$$

e os autovetores p, q, serão dados por

$$q = \{1, i\omega_0, i\alpha\sqrt{\beta}\}, \quad p = \left\{\frac{1}{2}, \frac{1}{2\varepsilon_c - 2i\omega_0}, \frac{i\beta}{\varepsilon_c - i\omega_0}\right\}.$$
(3.12)

Teorema 3.3.1 Conforme o sistema de equações diferenciais (3.1), o primeiro coeficiente de Lyapunov no ponto P_0 com parâmetro $\varepsilon = \varepsilon_c$, é dado por

$$l_{1} = Re \, g_{21} \, = \, \frac{D(\alpha, \beta, \varepsilon_{c})}{2 \, (\alpha^{2} \beta^{4} - \beta^{2} + 1) \, (4\alpha^{2} \beta^{4} - \beta^{2} + 1)},$$

onde

$$D(\alpha, \beta, \varepsilon_c) = \alpha \beta^{3/2} \left(\beta^2 - 1\right) \left(\alpha^4 \beta^6 + \left(\alpha^2 - 5\right) \beta^2 + 3\right).$$
(3.13)

Demonstração 3.3.1: A prova deste teorema depende dos cálculos expostos na seção 2.2. De acordo com as expressões 3.10 e 3.11, obtivemos $l_1 = \frac{1}{2} \operatorname{Re} g_{21}$, onde

$$g_{21} = \langle p, C(\bar{q}, q, q) + 2B(h_{11}, q) + B(\bar{q}, h_{20}) \rangle.$$

De (2.33), (3.9), (3.10), (3.11), (3.12), $\varepsilon_c = 2\alpha\beta^{3/2}$ e $\omega_0 = \sqrt{\frac{1-\beta^2}{\beta}}$, temos

$$Re \langle p, C(q, q, \bar{q}) \rangle = \frac{\alpha \beta^{3/2} (4\alpha^2 \beta^4 - 2(\alpha^2 + 1)\beta^2 - 1)}{4\alpha^2 \beta^4 - \beta^2 + 1},$$

$$Re \langle p, 2B(q, h_{11}) \rangle = \frac{2\alpha\beta^{7/2}((1 - 3\beta^2)\alpha^2 + 3)}{4\alpha^2\beta^4 - \beta^2 + 1},$$
(3.14)

$$Re \langle p, B(\bar{q}, h_{20}) = \frac{\alpha \beta^{3/2} (\beta^2 ((3\alpha^2 \beta^6 - (\alpha^2 + 6)\beta^4 + 4\beta^2 - 1)\alpha^2 - \beta^2 + 3) - 2)}{(\alpha^2 \beta^4 - \beta^2 + 1)(4\alpha^2 \beta^4 - \beta^2 + 1)}.$$

Substituindo estes resultados na expressão de g_{21} e dividindo por 2, obtemos (3.13).

Lema 3.3.1 A condição de transversalidade é satisfeita para o ponto de Hopf de codimensão 1 com parâmetro $\varepsilon = \varepsilon_c$.

Demonstração 3.3.1: Pelo Teorema (2.2.2) temos que

$$\gamma'(\varepsilon_c) = Re \langle p, A'(\varepsilon_c) q \rangle,$$

onde $\varepsilon = \varepsilon_c$ é o parâmetro para o qual a matriz Jacobiana $A(\varepsilon)$ possui um par de autovalores puramente imaginários.

Temos

$$\gamma'(\varepsilon_c) = \operatorname{Re} \langle p, A'(\varepsilon_c) \, q \rangle = \frac{-i\,\omega_0}{2(\varepsilon_c + i\,\omega_0)}$$
$$\operatorname{Re} \left\{ \frac{-i\,\omega_0}{2(\varepsilon_c + i\,\omega_0)} \right\} = \frac{-\omega_0^2}{2(\omega_0^2 + \varepsilon_c^2)} < 0.$$

Teorema 3.3.2 Se o primeiro coeficiente de Lyapunov dado por (3.13) for não nulo, o sistema de equações diferenciais (3.1) possui um ponto de Hopf transversal para $\varepsilon_c = 2\alpha\beta^{3/2}$.

Demonstração (3.3.2): Pelo Lema 3.3.1 a condição de transversalidade é satisfeita. Portanto a condição necessária e suficiente para P_0 ser um ponto de Hopf é o primeiro coeficiente de Lyapunov $l_1(\beta, \alpha, \varepsilon_c) \neq 0$. O sinal da expressão (3.13) é definido por $\alpha^4\beta^6 + (\alpha^2 - 5)\beta^2 + 3$. O gráfico ilustrado na figura (3.11) possui a representação do sinal do primeiro coeficiente de Lyapunov. A curva $l_1 = 0$ divide a superfície de parâmetros críticos em duas componentes conexas denotadas por $S_1 \in U_1$, onde $l_1 < 0 \in l_1 > 0$, respectivamente.

Figura 3.11: Curva $l_1 = 0$ dividindo a superfície de parâmetros críticos.

Teorema 3.3.3 Se $(\beta, \alpha, \varepsilon_c) \in S_1 \cup U_1$, a família de equações diferenciais (3.1) possui um ponto de Hopf em P_0 . Se $(\beta, \alpha, \varepsilon_c) \in S_1$, o ponto de Hopf em P_0 é assintoticamente estável e para cada $\varepsilon < \varepsilon_c$ suficientemente próximo, existe uma órbita periódica estável perto do ponto de equilíbrio instável P_0 . Se $(\beta, \alpha, \varepsilon_c) \in U_1$, o ponto de Hopf em P_0 é instável e para cada $\varepsilon > \varepsilon_c$ suficientemente próximo, existe uma órbita periódica instável perto do ponto de equilíbrio estável P_0 .

Demonstração 3.3.3: Seja $(\beta, \alpha, \varepsilon_c)$ pertencente ao arco S_1 . Sendo assim, analisaremos o sistema (2.43) sem o termo $O(|u|^4)$ para s = -1, obtendo o seguinte sistema em coordenadas polares

$$\begin{cases} \dot{\rho} = \rho(\varepsilon - \rho^2), \\ \dot{\varphi} = 1. \end{cases}$$
(3.15)

Já se $(\beta, \alpha, \varepsilon_c)$ pertencer ao arco U_1 , analisaremos o sistema (2.43) sem o termo $O(|u|^4)$ para s = 1, obtendo o seguinte sistema em coordenadas polares:

$$\begin{cases} \dot{\rho} = \rho(\varepsilon + \rho^2), \\ \dot{\varphi} = 1. \end{cases}$$
(3.16)

Fazendo uma análise, como a descrita na seção 2.3, para os sistemas (3.15) e (3.16), obtemos os diagramas 3.12 e 3.13, respectivamente.

Figura 3.12: Diagrama de bifurcação do sistema (3.15) em um equilíbrio dependendo de parâmetros pertencentes à região S_1 .

Figura 3.13: Diagrama de bifurcação do sistema (3.16) em um equilíbrio dependendo de parâmetros pertencentes à região U_1 .

Teorema 3.3.4 Seja o sistema de equações diferenciais (3.1). O segundo coeficiente de Lyapunov no ponto P_0 com parâmetro $\varepsilon = \varepsilon_c$, é dado por

$$l_2 = \frac{Re g_{32}}{12} = \frac{T(\alpha, \beta, \varepsilon_c)}{36(4\alpha^2\beta^4 + 9(1-\beta^2))(1-\beta^2 + \alpha^2\beta^4)^3(1-\beta^2 + 4\alpha^2\beta^4)^3},$$
(3.17)

onde

$$\begin{split} T(\alpha,\beta,\varepsilon_c) &= \alpha\beta^{3/2}(640\alpha^{16}\beta^{30} - 16\alpha^{14}\beta^{28}(40\alpha^2 + 453) + 16\alpha^{12}\beta^{26}(718\alpha^2 + 1603) \\ &+ \alpha^{10}\beta^{24}(-4880\alpha^4 - 58288\alpha^2 + 33671) + 2\alpha^8\beta^{22}(23208\alpha^4 - 8956\alpha^2 \\ &- 96867) - 2\alpha^6\beta^{20}(7208\alpha^6 + 30173\alpha^4 - 258835\alpha^2 - 86887) \\ &+ 4\alpha^4\beta^{18}(16768\alpha^6 - 120616\alpha^4 - 163340\alpha^2 + 513) + \alpha^2\beta^{16}(-21205\alpha^8 \\ &+ 155856\alpha^6 + 990831\alpha^4 + 9540\alpha^2 - 25029) + 2\beta^{14}(9347\alpha^8 - 379430\alpha^6 \quad (3.18) \\ &- 45196\alpha^4 + 67878\alpha^2 - 567) + \beta^{12}(-16022\alpha^8 + 284264\alpha^6 + 215340\alpha^4 \\ &- 6\beta^{10}(-301275\alpha^2 + 5994) + 5186\alpha^6 + 38218\alpha^4 - 57687\alpha^2 + 2133) \\ &+ \beta^8(-5533\alpha^6 + 113612\alpha^4 - 210843\alpha^2 + 13770) - 18\beta^6(1128\alpha^4 - 3212\alpha^2) \\ &+ 405 - 9\beta^4(60\alpha^4 + 61\alpha^2 - 126) - 54\beta^2(37\alpha^2 - 9) - 162). \end{split}$$

Demonstração 3.3.4: A prova deste teorema depende dos cálculos expostos na seção 2.2. De acordo com as expressões (3.10) e (3.11), obtivemos $l_2 = \frac{1}{12} \operatorname{Re} g_{32}$, onde

$$g_{32} = \langle p, H_{32} \rangle,$$

com

$$H_{32} = E(\bar{q}, \bar{q}, q, q, q) + D(h_{02}, q, q, q) + 6D(\bar{q}, h_{11}, q, q) + 3C(h_{12}, q, q) + 6C(h_{11}, h_{11}, q) + 3D(\bar{q}, \bar{q}, h_{20}, q) + 3C(h_{02}, h_{20}, q) + 6C(\bar{q}, h_{21}, q) + 3B(h_{22}, q) + 6C(\bar{q}, h_{11}, h_{20}) + 3B(h_{12}, h_{20}) - 6g_{21}h_{21} + 6B(h_{11}, h_{21}) + C(\bar{q}, \bar{q}, h_{30}) + B(h_{02}, h_{30}) + 2B(\bar{q}, h_{31}) - 3h_{21}\bar{g}_{21}.$$

De (2.39), (3.9), (3.10), (3.11), (3.12) e substituindo $\varepsilon_c = 2\alpha\beta^{3/2}$ e $\omega_0 = \sqrt{\frac{(1-\beta^2)}{\beta}}$, temos

$$Re \langle p, E(\bar{q}, \bar{q}, q, q, q) \rangle =$$

= $\frac{\alpha \beta^{3/2} (-32\alpha^2 \beta^4 + 2(8\alpha^2 + 7)\beta^2 + 1)}{4\alpha^2 \beta^4 - \beta^2 + 1},$

$$Re\left[3\langle p, D(q, \bar{q}, \bar{q}, h_{20})\rangle\right] = \frac{\alpha\beta^{3/2}(-96\alpha^4\beta^8 + \alpha^2(20\alpha^2 + 147)\beta^6 + (3 - 65\alpha^2)\beta^4 - (4\alpha^2 + 33)\beta^2 + 30)}{4\alpha^4\beta^8 - 5\alpha^2\beta^6 + (5\alpha^2 + 1)\beta^4 - 2\beta^2 + 1},$$

$$Re\left[6\langle p, D(q, q, \bar{q}, h_{11})\rangle\right] = \frac{12\alpha\beta^{7/2}(2\alpha^2(5\beta^2 - 1) - 9)}{4\alpha^2\beta^4 - \beta^2 + 1},$$

$$\frac{Re \langle p, D(q, q, q, \bar{h}_{20}) \rangle}{\frac{\alpha \beta^{3/2} (-24\alpha^4 \beta^8 + \alpha^2 (4\alpha^2 + 201)\beta^6 - (167\alpha^2 + 39)\beta^4 + 9(4\alpha^2 + 5)\beta^2 - 6)}{3(4\alpha^4 \beta^8 - 5\alpha^2 \beta^6 + (5\alpha^2 + 1)\beta^4 - 2\beta^2 + 1)},$$

$$\begin{aligned} ℜ\left\langle p, C(\bar{q}, \bar{q}, h_{30})\right\rangle = \\ &\frac{\alpha\beta^{3/2}(16\alpha^8\beta^{16} - 8\alpha^6(3\alpha^2 + 301)\beta^{14} + \alpha^4(8\alpha^4 + 3246\alpha^2 + 11685)\beta^{12}}{8(\beta^2 - 1)(16\alpha^6\beta^{12} - 56\alpha^4\beta^{10} + 7\alpha^2(8\alpha^2 + 7)\beta^8 - (98\alpha^2 + 9)\beta^6 + (49\alpha^2 + 27)\beta^4 - 27\beta^2 + 9)} \\ &\frac{-2\alpha^2(532\alpha^4 + 10286\alpha^2 + 1453)\beta^{10} + (98\alpha^6 + 10363\alpha^4 + 4455\alpha^2 - 387)\beta^8}{8(\beta^2 - 1)(16\alpha^6\beta^{12} - 56\alpha^4\beta^{10} + 7\alpha^2(8\alpha^2 + 7)\beta^8 - (98\alpha^2 + 9)\beta^6 + (49\alpha^2 + 27)\beta^4 - 27\beta^2 + 9)} \end{aligned}$$

$$\begin{split} & \frac{-9(138\alpha^4-128\alpha^2-211)\beta^6+(150\alpha^4-4501\alpha^2-3213)\beta^4+9(200\alpha^2+253)\beta^2-576)}{8(\beta^2-1)(16\alpha^6\beta^{12}-56\alpha^4\beta^{10}+7\alpha^2(8\alpha^2+7)\beta^8-(98\alpha^2+9)\beta^6+(49\alpha^2+27)\beta^4-27\beta^2+9)},\\ & Re\left[6\langle p,C(\bar{q},h_{23},h_{11})\rangle\right]=\\ & = -\frac{2\alpha\beta^{3/2}(4\alpha^6\beta^{12}-6\alpha^4(\alpha^2+15)\beta^{10}+\alpha^2(2\alpha^4+111\alpha^2+125)\beta^8(-34\alpha^4-133\alpha^2+3)\beta^6}{(\beta^2-1)(4\alpha^4\beta^8-5\alpha^2\beta^6+(5\alpha^2+1)\beta^4-2\beta^2+1)},\\ & +\frac{(5\alpha^4+10\alpha^2-36)\beta^4+(13\alpha^2+57)\beta^2-24)}{(\beta^2-1)(4\alpha^4\beta^8-5\alpha^2\beta^6+(5\alpha^2+1)\beta^{10}-2\beta^2+1)},\\ & Re\left[6\langle p,C(\bar{q},\bar{q},h_{21})\rangle\right]=\\ & = \frac{\alpha\beta^{3/2}(-320\alpha^{10}\beta^{20}+48\alpha^8(10\alpha^2+17)\beta^{18}-4\alpha^6(40\alpha^4+112\alpha^2+123)\beta^{16}+(-192\alpha^8}{2(\beta^2-1)(\alpha^2\beta^4-\beta^2+1)(4\alpha^2\beta^4-\beta^2+1)^3},\\ & +86\alpha^6+229\alpha^4)\beta^{14}+\alpha^2(16\alpha^6+990\alpha^4-2813\alpha^2+292)\beta^{12}-(1054\alpha^6-5039\alpha^4+1233\alpha^2}{2(\beta^2-1)(\alpha^2\beta^4-\beta^2+1)(4\alpha^2\beta^4-\beta^2+1)^3},\\ & +86\alpha^6+229\alpha^4)\beta^{14}+\alpha^2(16\alpha^6+990\alpha^4-2813\alpha^2+292)\beta^{12}-(1054\alpha^6-5039\alpha^4+1233\alpha^2}{2(\beta^2-1)(\alpha^2\beta^4-\beta^2+1)(4\alpha^2\beta^4-\beta^2+1)^3},\\ & +201)\beta^{10}+(182\alpha^6-2933\alpha^4+1933\alpha^2+708)\beta^8+(472\alpha^4-1351\alpha^2-930)\beta^6+(6\alpha^4)}{2(\beta^2-1)(\alpha^2\beta^4-\beta^2+1)(4\alpha^2\beta^4-\beta^2+1)^3},\\ & +875\alpha^2+552)\beta^{14}-(16\alpha^2+141)\beta^2+12)\\ & 2(\beta^2-1)(\alpha^2\beta^4-\beta^2+1)(4\alpha^2\beta^4-\beta^2+1)^3,\\ & Re\left[3\langle p,C(q,\bar{h}_{21})\rangle\right]=\\ & = \frac{\alpha\beta^{3/2}(240\alpha^8\beta^{16}-8\alpha^6(45\alpha^2+29)\beta^{14}+3\alpha^4(40\alpha^4+178\alpha^2-321)\beta^{12}-8\alpha^2(76\alpha^4-166\alpha^2)}{4(\beta^2-1)(-4\alpha^2\beta^4+\beta^2-1)^2(\alpha^2\beta^4-\beta^2+1)},\\ & +\frac{349\alpha^2-423)\beta^4+3(4\alpha^2+51)\beta^2-12)}{4(\beta^2-1)(-4\alpha^2\beta^4+\beta^2-1)^2(\alpha^2\beta^4-\beta^2+1)},\\ & Re\left[3\langle p,C(q,\bar{h}_{20},h_{20})\rangle\right]=\\ & \frac{\alpha\beta^{3/2}(2(2\beta^{10}-3\beta^8+\beta)\alpha^6-2\beta^2(82\beta^6-83\beta^4+21\beta^2-4)\alpha^4+282\beta^6-267\beta^4+32\beta^2)}{3(\beta^2-1)(4\alpha^4\beta^8-5\alpha^2\beta^6+(5\alpha^2+1)\beta^4-2\beta^2+1)},\\ & Re\left[6\langle p,C(q,h_{11},h_{11})\right]=\\ & \frac{6\alpha\beta^{7/2}(2(2\beta^6-3\beta^4+\beta^2)\alpha^4+(-20\beta^4+22\beta^2-2)\alpha^2+3(6\beta^2-5))}{(\beta^2-1)(4\alpha^2\beta^4-\beta^2+1)}, \end{aligned}$$

$$\begin{split} ℜ\left[2\langle p, B(\bar{q}, h_{33})\rangle\right] = \\ &= \frac{\alpha\beta^{3/2}(2560\alpha^{16}\beta^{32} - 1152\alpha^{14}(3\alpha^{2} + 19)\beta^{30} + 16\alpha^{12}(56\alpha^{4} + 2914\alpha^{2} + 4139)\beta^{28}}{4(\beta^{2} - 1)(4\alpha^{2}\beta^{4} - 9\beta^{2} + 9)(4\alpha^{4}\beta^{8} - 5\alpha^{2}\beta^{6} + (5\alpha^{2} + 1)\beta^{4} - 2\beta^{2} + 1)^{3}} \\ &= \frac{-40\alpha^{10}(672\alpha^{4} + 5005\alpha^{2} + 2172)\beta^{26} + \alpha^{8}(4704\alpha^{6} + 187560\alpha^{4} + 404830\alpha^{2} + 111417)\beta^{24}}{4(\beta^{2} - 1)(4\alpha^{2}\beta^{4} - 9\beta^{2} + 9)(4\alpha^{4}\beta^{8} - 5\alpha^{2}\beta^{6} + (5\alpha^{2} + 1)\beta^{4} - 2\beta^{2} + 1)^{3}} \\ &= \frac{-2\alpha^{6}(33372\alpha^{6} + 285082\alpha^{4} + 318221\alpha^{2} + 44704)\beta^{22} + \alpha^{4}(8808\alpha^{8} + 317880\alpha^{6} + 1199212\alpha^{4}}{4(\beta^{2} - 1)(4\alpha^{2}\beta^{4} - 9\beta^{2} + 9)(4\alpha^{4}\beta^{8} - 5\alpha^{2}\beta^{6} + (5\alpha^{2} + 1)\beta^{4} - 2\beta^{2} + 1)^{3}} \\ &= \frac{-2\alpha^{6}(33372\alpha^{6} + 285082\alpha^{4} + 318221\alpha^{2} + 44704)\beta^{22} + \alpha^{4}(8808\alpha^{8} + 317880\alpha^{6} + 1199212\alpha^{4}}{4(\beta^{2} - 1)(4\alpha^{2}\beta^{4} - 9\beta^{2} + 9)(4\alpha^{4}\beta^{8} - 5\alpha^{2}\beta^{6} + (5\alpha^{2} + 1)\beta^{4} - 2\beta^{2} + 1)^{3}} \\ &= \frac{-104\alpha^{2}(\alpha^{2} + 9\beta^{2} + 9)(4\alpha^{4}\beta^{8} - 5\alpha^{2}\beta^{6} + (5\alpha^{2} + 1)\beta^{4} - 2\beta^{2} + 1)^{3}}{4(\beta^{2} - 1)(4\alpha^{2}\beta^{4} - 9\beta^{2} + 9)(4\alpha^{4}\beta^{8} - 5\alpha^{2}\beta^{6} + (5\alpha^{2} + 1)\beta^{4} - 2\beta^{2} + 1)^{3}} \\ &= \frac{-934600\alpha^{6} - 408676\alpha^{4} + 331814\alpha^{2} + 2547)\beta^{14} + (2562\alpha^{8} + 262131\alpha^{6} + 433714\alpha^{4} + 4(\beta^{2} - 1)(4\alpha^{2}\beta^{4} - 9\beta^{2} + 9)(4\alpha^{4}\beta^{8} - 5\alpha^{2}\beta^{6} + (5\alpha^{2} + 1)\beta^{4} - 2\beta^{2} + 1)^{3}} \\ &= \frac{-438091\alpha^{2} + 2781)\beta^{12} - (30000\alpha^{6} + 233141\alpha^{4} - 354740\alpha^{2} + 24309)\beta^{10} + (582\alpha^{6} + 4(\beta^{2} - 1)(4\alpha^{2}\beta^{4} - 9\beta^{2} + 9)(4\alpha^{4}\beta^{8} - 5\alpha^{2}\beta^{6} + (5\alpha^{2} + 1)\beta^{4} - 2\beta^{2} + 1)^{3}} \\ &= \frac{-10229\alpha^{2} + 26343)\beta^{4} + (456\alpha^{2} - 7551)\beta^{2} + 864}{4(\beta^{2} - 1)(4\alpha^{2}\beta^{4} - 9\beta^{2} + 9)(4\alpha^{4}\beta^{8} - 5\alpha^{2}\beta^{6} + (5\alpha^{2} + 1)\beta^{4} - 2\beta^{2} + 1)^{3}} \\ &= \frac{-10229\alpha^{2} + 26343)\beta^{4} + (456\alpha^{2} - 7551)\beta^{4} + \alpha^{6}(544\alpha^{4} + 9476\alpha^{2} + 13923)\beta^{16}}{3(\beta^{2} - 1)(\alpha^{2}\beta^{4} - \beta^{2} + 1)(4\alpha^{2}\beta^{4} - \beta^{2} + 1)^{3}} \\ &= \frac{-10229\alpha^{2} + 26343)\beta^{4} + (456\alpha^{2} - 7551)\beta^{4} + \alpha^{6}(54\alpha^{4} + 9476\alpha^{2} + 13923)\beta^{16}}{3(\beta^{2} - 1)(\alpha^{2}\beta^{4} - \beta^{2} + 1)(4\alpha^{2}\beta^{4} - \beta^{2} + 1)^{3}} \\$$

$$\frac{+56\alpha^{2}+198)\beta^{10}+(266\alpha^{6}+1033\alpha^{4}+1845\alpha^{2}-243)\beta^{8}+(-590\alpha^{4}-1268\alpha^{2}+549)\beta^{6}+}{12(\beta^{2}-1)(-4\alpha^{2}\beta^{4}+\beta^{2}-1)^{2}(\alpha^{2}\beta^{4}-\beta^{2}+1)}$$

$$\frac{(82\alpha^{4}+171\alpha^{2}-333)\beta^{4}+(44\alpha^{2}-9)\beta^{2}+36)}{12(\beta^{2}-1)(-4\alpha^{2}\beta^{4}+\beta^{2}-1)^{2}(\alpha^{2}\beta^{4}-\beta^{2}+1)},$$

$$\begin{aligned} ℜ \left\langle p, B(\bar{h}_{20}, h_{20}) \right\rangle = \\ &\frac{\alpha \beta^{3/2} (96\alpha^8 \beta^{16} - 8\alpha^6 (17\alpha^2 + 315)\beta^{14} + \alpha^4 (40\alpha^4 + 2722\alpha^2 + 8019)\beta^{12} - 2\alpha^2 (428\alpha^4 + 5674\alpha^2)}{24(\beta^2 - 1)(16\alpha^6 \beta^{12} - 56\alpha^4 \beta^{10} + 7\alpha^2 (8\alpha^2 + 7)\beta^8 - (98\alpha^2 + 9)\beta^6 + (49\alpha^2 + 27)\beta^4 - 27\beta^2 + 9)} \\ &\frac{+1311)\beta^{10} + (142\alpha^6 + 4733\alpha^4 + 2793\alpha^2 - 189)\beta^8 + (-486\alpha^4 + 1968\alpha^2 + 837)\beta^6}{24(\beta^2 - 1)(16\alpha^6 \beta^{12} - 56\alpha^4 \beta^{10} + 7\alpha^2 (8\alpha^2 + 7)\beta^8 - (98\alpha^2 + 9)\beta^6 + (49\alpha^2 + 27)\beta^4 - 27\beta^2 + 9)} \end{aligned}$$

$$\begin{aligned} &+3(46\alpha^4 - 1121\alpha^2 - 297)\beta^4 + 9(136\alpha^2 + 3)\beta^2 + 216)\\ \hline 24(\beta^2 - 1)(16\alpha^6\beta^{12} - 56\alpha^4\beta^{10} + 7\alpha^2(8\alpha^2 + 7)\beta^8 - (98\alpha^2 + 9)\beta^6 + (49\alpha^2 + 27)\beta^4 - 27\beta^2 + 9)\\ Re\left[6\langle p, B(h_{11}, h_{21})\rangle\right] = \\ &= \frac{\alpha\beta^{3/2}(416\alpha^{10}\beta^{20} - 32\alpha^8(17\alpha^2 + 39)\beta^{18} + 2\alpha^6(64\alpha^4 + 840\alpha^2 + 149)\beta^{16} + (-688\alpha^8 - 310\alpha^6)}{2(\beta^2 - 1)(\alpha^2\beta^4 - \beta^2 + 1)(4\alpha^2\beta^4 - \beta^2 + 1)^3}\\ &+ 383\alpha^4)\beta^{14} + \alpha^2(64\alpha^6 - 130\alpha^4 + 669\alpha^2 + 22)\beta^{12} + (238\alpha^6 - 2013\alpha^4 - 133\alpha^2 + 237)\beta^{10}}{2(\beta^2 - 1)(\alpha^2\beta^4 - \beta^2 + 1)(4\alpha^2\beta^4 - \beta^2 + 1)^3}\\ &+ (-64\alpha^6 + 1191\alpha^4 + 77\alpha^2 - 810)\beta^8 + (-230\alpha^4 + 169\alpha^2 + 1014)\beta^6 - 3(49\alpha^2 + 184)\beta^4}{2(\beta^2 - 1)(\alpha^2\beta^4 - \beta^2 + 1)(4\alpha^2\beta^4 - \beta^2 + 1)^3}\\ &+ 34(4\alpha^2 + 39)\beta^2 - 6)\\ \hline 2(\beta^2 - 1)(\alpha^2\beta^4 - \beta^2 + 1)(4\alpha^2\beta^4 - \beta^2 + 1)^3. \end{aligned}$$

Somando estes resultados, obtemos $Re g_{32}$, e dividindo esta soma por 12, obtemos (3.17).

Teorema 3.3.5 A condição de transversalidade é satisfeita para o ponto de Hopf de codimensão 2 com parâmetro $\varepsilon = \varepsilon_c$.

Demonstração 3.3.5: De acordo com o Teorema 2.2.3, sendo para o sistema (3.1)

$$Re\left[\lambda_{2,3}(\alpha,\beta,\varepsilon_c)\right] = 0, \quad Im\left[\lambda_{2,3}(\alpha,\beta,\varepsilon_c)\right] \neq 0, \quad l_1(\alpha,\beta,\varepsilon_c) = 0 \quad e \quad l_2(\alpha,\beta,\varepsilon_c) \neq 0,$$

a condição de transversalidade para um ponto de Hopf $P_0(\alpha, \beta, \varepsilon_c)$ é satisfeita desde que a função

$$\varepsilon \mapsto (Re \lambda_{2,3}(\alpha, \beta, \varepsilon), l_1(\alpha, \beta, \varepsilon))$$

seja regular para $\varepsilon = \varepsilon_c$, isto é, se

$$\nabla(K(\alpha,\beta,\varepsilon)) = \nabla(2\alpha\beta^{3/2} - \varepsilon) \quad e \quad \nabla(l_1(\alpha,\beta,\varepsilon))$$

forem linearmente independentes, o que indica que $K(\alpha, \beta, \varepsilon_c)$ e $l_1(\alpha, \beta, \varepsilon_c)$ se interceptam transversalmente.

Tomando o produto vetorial entre $\nabla(K(\alpha, \beta, \varepsilon_c)) \in \nabla(D(\alpha, \beta, \varepsilon_c))$, temos

$$\nabla(K(\alpha,\beta,\varepsilon_c)) \times \nabla(D(\alpha,\beta,\varepsilon_c)) = \{D_1, D_2, D_3\},\$$

onde

$$D_{1}(\alpha,\beta,\varepsilon_{c}) = -\frac{171}{2} \alpha^{5} \beta^{17/2} + \frac{135}{2} \alpha^{5} \beta^{13/2} - \frac{99}{2} \alpha^{3} \beta^{9/2} + \frac{495}{2} \alpha \beta^{9/2} + \frac{63}{2} \alpha^{3} \beta^{5/2} - 252 \alpha \beta^{5/2} + \frac{81}{2} \alpha \sqrt{\beta}, 45 \alpha^{4} \beta^{19/2} - 45,$$

$$D_{2}(\alpha,\beta,\varepsilon_{c}) = \alpha^{4} \beta^{15/2} + 27 \alpha^{2} \beta^{11/2} - 45 \beta^{11/2} - 27 \alpha^{2} \beta^{7/2} + 72,$$

$$D_{3}(\alpha,\beta,\varepsilon_{c}) = \beta^{7/2} - 27 \beta^{3/2}, -36, \alpha^{5} \beta^{10} - 18, \alpha^{3} \beta^{6} + 360, \alpha \beta^{6} - 18 \alpha^{3} \beta^{4} - 288 \alpha \beta^{4}.$$

As curvas representadas nas figuras 3.14, 3.15 e 3.16, nos mostram respectivamente para que valores de α e β , $D_1(\alpha, \beta, \varepsilon_c)$, $D_2(\alpha, \beta, \varepsilon_c)$, e $D_3(\alpha, \beta, \varepsilon_c)$, são nulos.

Figura 3.14: Curva $D_1(\alpha, \beta, \varepsilon_c) = 0.$

Figura 3.16: Curva $D_3(\alpha, \beta, \varepsilon_c) = 0.$

Se mostrarmos que as curvas $D_1(\alpha, \beta, \varepsilon_c) = 0$, $D_2(\alpha, \beta, \varepsilon_c) = 0$, e $D_3(\alpha, \beta, \varepsilon_c) = 0$, não interceptam a curva $l_1(\alpha, \beta, \varepsilon_c) = 0$ simultaneamente, teremos demonstrado o teorema. Veja as figuras 3.17, 3.18 e 3.19.

Figura 3.17: Curva $D_2(\alpha, \beta, \varepsilon_c) = 0 \cap l_1(\alpha, \beta, \varepsilon_c) = 0.$

Figura 3.18: Curva $D_2(\alpha, \beta, \varepsilon_c) = 0 \cap l_1(\alpha, \beta, \varepsilon_c) = 0.$

Como não ocorre a intercessão entre as $D_1(\alpha, \beta, \varepsilon_c) = 0$, $D_2(\alpha, \beta, \varepsilon_c) = 0$, e $D_3(\alpha, \beta, \varepsilon_c) = 0$, com $l_1(\alpha, \beta, \varepsilon_c) = 0$ simultaneamente, $K(\alpha, \beta, \varepsilon_c)$ e $l_1(\alpha, \beta, \varepsilon_c)$ se interceptam transversalmente.

Teorema 3.3.6 Se o primeiro e segundo coeficientes de Lyapunov dados por (3.13) e (3.17), respectivamente, forem tais que l_1 é nulo e l_2 é não nulo, o sistema de equações diferenciais

Figura 3.19: Curva $D_2(\alpha, \beta, \varepsilon_c) = 0 \cap l_1(\alpha, \beta, \varepsilon_c) = 0.$

(3.1) possui um ponto de Hopf transversal de codimensão dois para $\varepsilon_c = 2\alpha\beta^{3/2}$.

Demonstração 3.3.6: O sinal da expressão (3.17) é definido por $T(\alpha, \beta, \varepsilon_c)$. O gráfico ilustrado na figura (3.20), possui a representação do sinal do segundo coeficiente de Lyapunov. A curva $l_2 = 0$, divide a superfície de parâmetros críticos em duas componentes conexas denotadas por S_2 e U_2 , onde $l_2 < 0$ e $l_2 > 0$ respectivamente.

Figura 3.20: Curva $l_2 = 0$ dividindo superfície de parâmetros críticos.

A figura (3.21) mostra a intersecção entre as curvas $l_1 = 0$ e $l_2 = 0$ dividindo a superfície

de parâmetros críticos.

Figura 3.21: Intersecção entre as curvas $l_1 = 0$ e $l_2 = 0$ determinando o ponto Q.

Denotaremos o arco aberto onde $l_2 < 0$ e $l_1 = 0$ por N_2 . Neste arco, marcamos um ponto de referência R. O arco entre $l_2 > 0$ e $l_1 = 0$, denotaremos por P_2 e T será um ponto de referência sobre este arco.

Teorema 3.3.7 Se $(\beta, \alpha, \varepsilon_c) \in N_2 \cup P_2$, a família de equações diferenciais (3.1) possui um ponto de Hopf de codimensão 2 em P₀. Se $(\beta, \alpha, \varepsilon_c) \in P_2$, então P₀ é instável e o diagrama de bifurcação está ilustrado na figura (3.22). Se $(\beta, \alpha, \varepsilon_c) \in N_2$, então P₀ é assintoticamente estável e o diagrama de bifurcação está ilustrado na figura (3.23).

Demonstração 3.3.7: O ponto T marcado na figura (3.21) pertence ao arco P_2 . Sendo assim, analisaremos o sistema (2.46) sem o termo $O(|u|^6)$ para s = 1, obtendo o seguinte sistema em coordenadas polares

$$\begin{cases} \dot{\rho} = \rho(\varepsilon + l_1 \rho^2 + \rho^4), \\ \dot{\varphi} = 1. \end{cases}$$
(3.19)

Já o ponto R marcado na figura (3.21) pertence à região N_2 . Sendo assim, analisaremos o sistema (2.46) sem o termo $O(|u|^6)$ para s = -1, obtendo o seguinte sistema em coordenadas

polares

$$\begin{cases} \dot{\rho} = \rho(\varepsilon + l_1 \rho^2 - \rho^4), \\ \dot{\varphi} = 1. \end{cases}$$
(3.20)

Fazendo uma análise como a descrita na seção (2.3) para os sistemas (3.19) e (3.20) obtemos os diagramas (3.22) e (3.23), respectivamente.

Figura 3.22: Diagrama de bifurcação do sistema (3.19) no ponto T.

Figura 3.23: Diagrama de bifurcação do sistema (3.20) no ponto R.

Teorema 3.3.8 Para o sistema de equações (3.1) existe um único ponto,

$$Q = (0.868280339979722, 0.8505004843068731, \varepsilon_c),$$

com

$$\varepsilon_c = 1.3762410648466583,$$

onde as curvas $l_1 = l_2 = 0$ se interceptam transversalmente.

Demonstração 3.3.8: O ponto Q é obtido através da intersecção entre as curvas $l_1 = l_2 = 0$. Fazendo-se,

$$\begin{array}{rcl} 0 &=& \alpha^4\beta^6 + (\alpha^2 - 5)\,\beta^2 + 3, \\ 0 &=& 640\alpha^{16}\beta^{30} - 16\alpha^{14}\beta^{28}(40\alpha^2 + 453) + 16\alpha^{12}\beta^{26}(718\alpha^2 + 1603) \\ &+& \alpha^{10}\beta^{24}(-4880\alpha^4 - 58288\alpha^2 + 33671) + 2\alpha^8\beta^{22}(23208\alpha^4 - 8956\alpha^2 - 96867) \\ &-& 2\alpha^6\beta^{20}(7208\alpha^6 + 30173\alpha^4 - 258835\alpha^2 - 86887) + 4\alpha^4\beta^{18}(16768\alpha^6 - 120616\alpha^4 \\ &+& -163340\alpha^2 + 513) + \alpha^2\beta^{16}(-21205\alpha^8 + 155856\alpha^6 + 990831\alpha^4 + 9540\alpha^2 - 25029) \\ &+& 2\beta^{14}(9347\alpha^8 - 379430\alpha^6 - 45196\alpha^4 + 67878\alpha^2 - 567) + \beta^{12}(-16022\alpha^8 + 284264\alpha^6 \\ &+& 215340\alpha^4 - 301275\alpha^2 + 5994) - 6\beta^{10}(5186\alpha^6 + 38218\alpha^4 - 57687\alpha^2 + 2133) \\ &+& \beta^8(-5533\alpha^6 + 113612\alpha^4 - 210843\alpha^2 + 13770) - 18\beta^6(1128\alpha^4 - 3212\alpha^2 + 405) \\ &-& 9\beta^2(60\alpha^4 + 61\alpha^2 - 126)\beta^4 - 54(37\alpha^2 - 9) - 162, \end{array}$$

obtemos uma única solução real e positiva

 $(\beta, \alpha) = (0.868280339979722, 0.8505004843068731).$

Substituindo este valor na expressão $\varepsilon_c=2\alpha\beta^2,$ obtemos

$$\varepsilon_c = 1.3762410648466583.$$

Teorema 3.3.9 A condição de transversalidade é satisfeita para o ponto de Hopf de codimensão 3 com parâmetro $\varepsilon = \varepsilon_c$.

Demonstração 3.3.9: Conforme o Teorema 2.2.3, sendo para o sistema (3.1)

$$Re\left[\lambda_{2,3}(\alpha,\beta,\varepsilon_c)\right] = 0, \quad Im\left[\lambda_{2,3}(\alpha,\beta,\varepsilon_c)\right] \neq 0, \quad l_1(\alpha,\beta,\varepsilon_c) = 0 \quad l_2(\alpha,\beta,\varepsilon_c) = 0 \quad e \quad l_3(\alpha,\beta,\varepsilon_c) \neq 0,$$

a condição de transversalidade para um ponto de Hopf $P_0(\alpha, \beta, \varepsilon_c)$ é satisfeita desde que a função

$$\varepsilon \mapsto (Re \lambda_{2,3}(\alpha, \beta, \varepsilon), l_1(\alpha, \beta, \varepsilon), l_2(\alpha, \beta, \varepsilon))$$

seja regular para $\varepsilon = \varepsilon_c$, isto é, se

$$\nabla(K(\alpha,\beta,\varepsilon)) = \nabla(2\alpha\beta^{3/2} - \varepsilon), \quad \nabla(l_2(\alpha,\beta,\varepsilon)) \quad e \quad \nabla(l_1(\alpha,\beta,\varepsilon))$$

forem linearmente independentes, o que indica que $K(\alpha, \beta, \varepsilon_c), l_2(\alpha, \beta, \varepsilon_c), e l_3(\alpha, \beta, \varepsilon_c)$, se interceptam transversalmente.

Tomando

$$Det \begin{vmatrix} \nabla(K(\alpha,\beta,\varepsilon)) \\ \nabla(D(\alpha,\beta,\varepsilon)) \\ \nabla(T(\alpha,\beta,\varepsilon)) \end{vmatrix},$$
(3.21)

onde (3.13) e (3.18) definem $D(\alpha, \beta, \varepsilon)$ e $T(\alpha, \beta, \varepsilon)$, respectivamente, e aplicando Q em (3.21), temos:

$$Det \begin{vmatrix} 1.61815 & 2.37753 & -1 \\ 16.1348 & 9.51639 & -7.77013 \\ -5.9398 \times 10^7 & -7.84051 \times 10^7 & 3.12961 \times 10^7 \end{vmatrix} = 9.26687 \times 10^7, \quad (3.22)$$

e sendo (3.22) não nulo, a condição de transversalidade para o ponto Q fica provada.

Teorema 3.3.10 Se

 $(\beta, \alpha, \varepsilon_c) = (0.868280339979722, 0.8505004843068731, 1.3762410648466583) = Q,$

o sistema de equações (3.1), possui um ponto de Hopf transversal de codimensão três em P_0 , assintoticamente instável.

O diagrama de bifurcação do sistema (3.1) para o ponto Q está ilustrado nas figuras (3.24) e (3.25).

Demonstração 3.3.10: Aplicando

 $(\beta, \alpha, \varepsilon_c) = (0.868280339979722, 0.8505004843068731, 1.3762410648466583),$

nas expressões de (2.33), (2.35), (2.39), (2.40) e (2.41), obtemos

$$\begin{array}{lll} q &=& (1, i\, 0.532373, i\, 0.79251), \\ p &=& \left(\frac{1}{2}, 0.31602 + i\, 0.122246, -0.212288 + i\, 0.548787\right), \\ h_{11} &=& (-1.7503, 0, 0.487927), \\ h_{20} &=& (2.24199 + i\, 0.111917, -0.119164 + i\, 2.38715, -0.0443478 + i\, 1.58197) \\ h_{30} &=& (5.27952 + i\, 2.68329, -4.28554 + i\, 8.43202, -0.86409 + i\, 4.24046), \\ h_{21} &=& (-0.654921 + i\, 1.20919, -0.64374 - i\, 3.2492, -1.11354 + i\, 1.26043), \\ h_{22} &=& (-15.7259, 0, 10.9267), \\ h_{40} &=& (9.2769 + i\, 25.248, -53.7655 + i\, 19.7551, -9.11345 + i\, 11.3657), \\ h_{31} &=& (25.7218 + i\, 5.122, -4.47977 + i\, 7.87823, -6.22842 + i\, 15.9769), \\ h_{32} &=& (-53.1636 + i\, 27.1777, -3.94677 - i\, 57.5373, -27.8926 + i\, 52.7372), \\ h_{41} &=& (180.233 + i\, 35.5371, -10.059 + i\, 195.974, -33.7429 + i\, 125.348), \\ h_{42} &=& (778.492 + i\, 466.451, -362.161 - i\, 81.2386, -390.236 + i\, 503.381), \\ h_{33} &=& (-536.093, 0, 835.336), \\ H_{43} &=& (0, 2685.85 - i\, 9543.72, -1687.72 + i\, 28.8848), \\ q_{43} &=& 56.2325 - i\, 2424.27, \end{array}$$

$$l_3 = \frac{Re\,g_{43}}{144} = 0,39 > 0$$

o que implica a instabilidade do ponto de equilíbrio para parâmetros no ponto Q.

Como $l_3 > 0$ em Q, a expressão (2.49) sem o termo $O(|u|^8)$ será analisada com s = 1, a partir do seguinte sistema em coordenadas polares associado a ela:

$$\begin{cases} \dot{\rho} = \rho(\varepsilon_c + l_1 \rho^2 + l_2 \rho^4 + \rho^6), \\ \dot{\varphi} = 1. \end{cases}$$
(3.23)

A análise deste sistema para obtenção do seu respectivo diagrama de bifurcação, apresentado nas figuras (3.24) e (3.3.2), é feita segundo a exposição na seção (2.3).

Figura 3.24: Diagrama de bifurcação do sistema (3.23) no ponto Q.

Figura 3.25: Diagrama de Bifurcação do sistema (3.23) no ponto R_1 .

Observação 3.3.1 Sendo o ângulo de equilíbrio $\varphi_0 > 39, 23^\circ$, o ponto de equilíbrio P_0 é assintoticamente estável para $\varepsilon = \varepsilon_c$ e para todo $\alpha > 0$. E para cada $\varepsilon < \varepsilon_c$ suficientemente próximo, existe uma órbita periódica estável perto do ponto de equilíbrio instável P_0 .

Temos $l_1(\varepsilon_c) < 0$ para valores de $\beta < 0,7746$ e $\alpha > 0$. Veja figura 3.11. Como $\arccos(\beta = 0,7746) \cong 39,23^\circ$, tem-se P_0 assintoticamente estável para $\varphi_0 > 39,23^\circ$ se $\varepsilon = \varepsilon_c$ e $\alpha > 0$.

Observação 3.3.2 Se a normalização da velocidade da máquina z_0 satisfaz $z_0 > 1.1362$, então o ponto de equilíbrio P_0 é assintoticamente estável em $\varepsilon = \varepsilon_c$. E para cada $\varepsilon < \varepsilon_c$ suficientemente próximo, existe uma órbita periódica estável perto do ponto de equilíbrio instável P_0 .

Temos que $z_0 = \sqrt{1/\beta} \cong 1.1362$ para $\beta = 0,7746$.

Observação 3.3.3 Se

 $0.7746 < \beta < 1$

e

$$0 < \alpha < \sqrt{\frac{\sqrt{20\beta^4 - 12\beta^2 + 1} - 1}{2\beta^4}},$$

o ponto de equilíbrio P_0 é instável para $\varepsilon = \varepsilon_c$. E para cada $\varepsilon > \varepsilon_c$ suficientemente próximo, existe uma órbita periódica instável perto do ponto de equilíbrio assintoticamente estável P_0 .

Observe que

$$l_{1} = 0 \Leftrightarrow (\beta^{2} - 1)(\alpha^{4}\beta^{6} + (\alpha^{2} - 5)\beta^{2} + 3) = 0$$

$$\Rightarrow \alpha = \sqrt{\frac{\sqrt{20\beta^{4} - 12\beta^{2} + 1} - 1}{2\beta^{4}}}.$$

3.4 Condição de estabilidade de Vyshnegradskii

Uma boa performance da máquina a vapor depende da velocidade angular Ω do volante manter-se constante para uma carga fixa N e para o suplemento de vapor da válvula.

Observe o sistema original

$$\begin{cases}
\frac{d\varphi}{d\tau} = \psi, \\
\frac{d\psi}{d\tau} = C^2 \Omega^2 \operatorname{sen} \varphi \cos \varphi - g \operatorname{sen} \varphi - \frac{b}{m} \psi, \\
\frac{d\Omega}{d\tau} = \frac{1}{I} (\mu \cos \varphi - F).
\end{cases}$$
(3.24)

O ponto de equilíbrio deste sistema é dado por $P_0 = (\varphi_0, \psi_0, \Omega_0)$, onde

$$\begin{cases} \psi_0 = 0, \\ \cos \varphi_0 = \frac{F}{\mu}, \\ C^2 \Omega_0^2 = \frac{g}{\cos \varphi_0}. \end{cases}$$
(3.25)

Tomando o conjunto $\varphi = \varphi_0 + \Delta \varphi, \ \psi = \psi_0 + \Delta \psi, \ \Omega = \Omega_0 + \Delta \Omega$, nosso sistema (3.24), se transforma em

$$\begin{cases} \Delta \varphi' = \Delta \psi, \\ \Delta \psi' = C^2 \Omega_0^2 \Delta \varphi \cos 2\varphi_0 + C^2 \Delta \Omega \Omega_0 \sin 2\varphi - g \Delta \varphi \cos \varphi_0 - \frac{b}{m} \Delta \psi, \\ \Delta \Omega' = -\frac{\mu}{I} \Delta \varphi \sin \varphi_0. \end{cases}$$
(3.26)

Quando substituímos (3.25) na segunda equação de (3.26), obtemos

$$\Delta \psi' = -g \frac{\operatorname{sen}^2 \varphi_0}{\cos \varphi_0} \Delta \varphi - \frac{b}{m} \Delta \psi + \frac{2g \operatorname{sen} \varphi_0}{\Omega_0} \Delta \Omega$$

A matriz Jacobiana fica da forma

$$Df(P_0) = \begin{pmatrix} 0 & 1 & 0\\ -\frac{g \operatorname{sen}\varphi_0^2}{\cos \varphi_0} & -\frac{b}{m} & \frac{2g \operatorname{sen}\varphi_0}{\Omega_0}\\ -\frac{\mu}{I} \operatorname{sen}\varphi_0 & 0 & 0 \end{pmatrix},$$
(3.27)

donde extraímos o polinômio característico

$$-P(\lambda) = \lambda^3 + \frac{b}{m}\lambda^2 + \frac{g \operatorname{sen}^2 \varphi_0}{\cos \varphi_0}\lambda + \frac{2g \mu \operatorname{sen}^2 \varphi_0}{I\Omega_0}$$

Todos os coeficientes deste polinômio são positivos e, portanto, pelo teorema (3.1.1), a condição necessária e suficiente para a estabilidade é a desigualdade

$$\frac{b}{m} \cdot \frac{g \, \mathrm{sen}^2 \varphi_0}{\cos \varphi_0} \ > \ \frac{2g \, \mu \, \mathrm{sen}^2 \, \varphi_0}{I \Omega_0} \ \Rightarrow \ \frac{bI}{m} \ > \ \frac{2\mu \, \cos \varphi_0}{\Omega} \ = \ \frac{2F}{\Omega_0}$$

ser satisfeita.

Para esclarecer o membro direito da última desigualdade, introduziremos o conceito de não uniformidade de marcha da máquina a vapor. É claro que mudando o valor da carga N, em

$$F = N - F_m + \mu \cos \varphi_m,$$

a velocidade estável Ω_0 também se altera. A quantidade $d\Omega_0/dN$ caracteriza a razão da mudança de Ω_0 quando a carga N é alterada. Por (3.25), temos

$$F\Omega_0^2 = constante$$

e por diferenciação desta, obtemos

$$\frac{d\,\Omega_0}{d\,N} \;=\; \frac{d\,\Omega_0}{d\,F} \;=\; -\frac{\Omega_0}{2F}\,. \label{eq:generalized_eq}$$

Fazendo

$$\nu = \Big|\frac{\Omega_0}{2F}\Big|,$$

a condição de estabilidade poderá ser reescrita sob a forma

$$\frac{bI}{m}\nu > 1$$

conhecida como a *condição de estabilidade de Vyshnegradskii*. Ver Vyshnegradskii [12] e Pontryagin [6].

Vyshnegradskii obteve as seguintes conclusões:

Os seguintes fatores implicam em um efeito prejudicial à estabilidade do sistema:

- O crescimento da massa das esferas m;
- O decrescimento do coeficiente de atrito *b*;
- O decrescimento do momento de inércia do volante *I*;
- O decrescimento da não uniformidade de marcha $\nu.$

Foram obtidas por Vyshnegradskii as seguintes conclusões finais:

O atrito é um elemento essencial para uma correta operação do regulador.

"Sem atrito, não teremos regulador".

Reguladores não estáticos (com não uniformidade de marcha nula), não são reguladores.

"Sem a não uniformidade, não teremos regulador".

Capítulo 4

Simulações Numéricas

Neste capítulo, verificaremos numericamente a existência de bifurcações Hopf no modelo físico do regulador de Watt proposto no capítulo 1, dependente dos parâmetros $\alpha, \beta \in \varepsilon$ responsáveis pela performance do regulador. Para isto, utilizaremos os resultados obtidos no capítulo 3, fixando $\alpha \in \beta$ para encontrar ε_c , parâmetro para o qual ocorre a bifurcação.

Todos os cálculos a serem apresentados foram feitos com o auxílio do software MATHEMATICA 6. Os comandos do MATHEMATICA utilizados para obtenção dos resultados, serão apresentados no anexo do trabalho.

4.1 Estudo de casos específicos

Faremos o estudo do comportamento das soluções do sistema

$$\begin{cases} \frac{dx}{dt} = y, \\ \frac{dy}{dt} = z^2 \operatorname{sen} x \cos x - \operatorname{sen} x - \varepsilon y, \\ \frac{dz}{dt} = \alpha (\cos x - \beta). \end{cases}$$

De acordo com o Lema 3.1.1, este sistema possui um único ponto de equilíbrio admissível, $P_0(x_0, y_0, z_0) = \left(\arccos \beta, 0, \sqrt{\frac{1}{\beta}} \right)$ e pelo Lema 3.1.2, a superfície de parâmetros críticos é dada por $\varepsilon(\alpha, \beta) = \varepsilon_c(\alpha, \beta) = 2\alpha\beta^{3/2}$.

Estudemos os casos.

4.1.1 Parâmetros pertencentes à região S_1

Como vimos no Teorema 3.3.3, se o conjunto de parâmetros $(\alpha, \beta, \varepsilon_c)$ pertence à região S_1 , o ponto de Hopf P_0 , é assintoticamente estável.

Utilizaremos em nossa simulação, os seguintes valores de parâmetros pertencentes à esta região:

$$(\alpha, \beta) = (1.7, 0.3) \Rightarrow \varepsilon_c = 0.558677 \ e \ P_0 = (1.2661, 0, 1.82574).$$

Tomando $\varepsilon = (0.558677 + 0.2)$, obtemos a figura 4.1.

Figura 4.1: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (1.2661, 0, 1.82574).$

Para parâmetros (α, β) = (0.5, 0.5) pertencentes à região S_1 , temos $\varepsilon_c = 0.353553$ e $P_0 = (1.0472, 0, 1.41421)$. Tomando $\varepsilon = 0.353553 - 0.03$, temos pelo Teorema 3.3.3, o surgimento de uma órbita periódica atratora. Veja figura 4.2.

Figura 4.2: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (1.0472, 0, 1.41421)$ para $\varepsilon < \varepsilon_c$.

4.1.2 Parâmetros pertencentes à região U_1

Como vimos no Teorema 3.3.3, se o conjunto de parâmetros $(\alpha, \beta, \varepsilon_c)$ pertence à região U_1 , o ponto de Hopf P_0 é instável.

Utilizaremos, os seguintes valores de parâmetros pertencentes à esta região:

$$(\alpha, \beta) = (0.2, 0.9) \implies \varepsilon_c = 0.341526 \ e \ P_0 = (0.451027, 0, 1.05409).$$

Tomando $\varepsilon = (0.341526 - 0.085)$, obtemos a figura 4.3.

Figura 4.3: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.451027, 0, 1.05409).$

Para parâmetros (α, β) = (0.2, 0.9) pertencentes à região U_1 , temos $\varepsilon_c = 0.341526$ e $P_0 = (0.451027, 0, 1.05409)$. Tomando $\varepsilon = 0.341526 + 0.005$, pelo Teorema 3.3.3, temos uma órbita periódica repulsora. Veja figura 4.4.

Figura 4.4: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.451027, 0, 1.05409)$ para $\varepsilon > \varepsilon_c$.

4.1.3 Parâmetros pertencentes à região N_2

Pelo Teorema 3.3.7, se o conjunto de parâmetros $(\alpha, \beta, \varepsilon_c)$ pertence à região N_2 , o ponto de Hopf P_0 é assintoticamente estável.

Tomando $\alpha = 0.9$ e $l_1 = 0$, temos $\beta = 0.8913639104773827$ como único valor admissível. Avaliaremos estes parâmetros.

Para os valores

 $(\alpha,\beta) = (0.9, 0.8913639104773827) \quad \Rightarrow \quad \varepsilon_c = 1.5148 \ e \ P_0 = (0.470451, 0, 1.05919).$

Tomando $\varepsilon = (1.5148 + 0.004)$, obtemos a figura 4.5.

Figura 4.5: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.470451, 0, 1.05919)$ para $\varepsilon > \varepsilon_c$.

Tomando agora os parâmetros anteriores, mas $\varepsilon = (1.5148 - 0.0009)$ temos o surgimento de uma órbita periódica atratora. Veja a figura 4.6.

Figura 4.6: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.470151, 0, 1.05911)$ para $\varepsilon < \varepsilon_c$.

No diagrama de bifurcação relacionado aos parâmetros pertencentes à região N_2 (veja figura 3.23), onde $\varepsilon > \varepsilon_c$ e $l_1 > 0$, temos em torno do equilíbrio uma ou duas órbitas periódicas coexistindo conforme a análise feita no Lema 3.3.7.

Tomando os parâmetros $(\alpha, \beta) = (0.9, 0.8915)$ e $\varepsilon = 1.5148 + 0.00001$, resulta a figura 4.7, que contem uma órbita periódica semi–estável.

Figura 4.7: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.470151, 0, 1.05911)$ para $\varepsilon > \varepsilon_c$ no arco de parábola da figura 3.23.

Tomando os parâmetros (α, β) = (0.94, 0.917618) temos $\varepsilon_c = 1.65254 \text{ e } P_0 = (0.40875, 0, 1.04392).$ Fazendo $\varepsilon = (1.65254 + 0.0003)$, temos a figura 4.8 que ilustra dois ciclos limites, um atrator e um repulsor, coexistindo com o equilíbrio atrator.

Figura 4.8: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.40875, 0, 1.04392)$ para $\varepsilon > \varepsilon_c$ abaixo do arco de parábola da figura 3.23.

4.1.4 Parâmetros pertencentes à região P₂

Pelo Teorema 3.3.7, se o conjunto de parâmetros $(\alpha, \beta, \varepsilon_c)$ pertence à região P_2 , o ponto de Hopf P_0 é instável.

Tomando $\alpha = 0.37$ e $l_1 = 0$, temos $\beta = 0.7860020308968707$ como único valor admissível. Avaliaremos estes parâmetros.

Para os valores

$$(\alpha, \beta) = (0.37, 0.7860020308968707) \Rightarrow \varepsilon_c = 0.515664 \ e \ P_0 = (0.666481, 0, 1.12795).$$

Tomando $\varepsilon = (0.515664 - 0.01)$, obtemos a figura 4.9.

Figura 4.9: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.666481, 0, 1.12795)$ para $\varepsilon < \varepsilon_c$).

Tomando agora os parâmetros anteriores, mas $\varepsilon = (0.515664 + 0.0009)$ temos o surgimento de uma órbita periódica repulsora. Veja a figura 4.10.

Figura 4.10: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.666481, 0, 1.12795)$ para $\varepsilon > \varepsilon_c$.

No diagrama de bifurcação relacionado aos parâmetros pertencentes à região P_2 (veja figura 3.22), onde $\varepsilon < \varepsilon_c$ e $l_1 < 0$, temos em torno do equilíbrio uma ou duas órbitas periódicas coexistindo, conforme a análise feita no Lema 3.3.7.

Tomando os parâmetros (α, β) = (0.37, 0.7859) e ε = (0.631823 - 0.001), resulta a figura
4.11, ilustrando uma órbita periódica semi-estável.

Figura 4.11: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.666646, 0, 1.12802)$ para $\varepsilon < \varepsilon_c$ no arco de parábola da figura 3.22.

Tomando os parâmetros $(\alpha, \beta) = (0.78, 0.8448506793129703)$ temos $\varepsilon_c = 1.21142$ e $P_0 = (0.56451, 0, 1.08795)$. Fazendo $\varepsilon = (1.21142 - 0.000001)$, a figura 4.12 ilustra a existência de dois ciclos limites, um atrator e um repulsor, coexistindo com um equilíbrio repulsor.

Figura 4.12: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.56451, 0, 1.08795)$ para $\varepsilon < \varepsilon_c$ acima do arco de parábola da figura 3.22.

4.1.5 Parâmetros relacionados ao ponto Q

Pelo Teorema 3.3.10, para $Q(\alpha, \beta, \varepsilon_c) = (0.86828, 0.8505, 1.37624)$, temos $P_0(x_0, y_0, z_0) = (0.519071, 0, 1.07317)$ que é um ponto de Hopf instável.

De acordo com o diagrama 3.24, tomando $\varepsilon = 1.37624 - 0.0005$, temos um equilíbrio repulsor, assim como na figura 4.13.

Figura 4.13: Retrato de fase do sistema (3.1) próximo ao equilíbrio $P_0 = (0.519071, 0, 1.07317).$

Devido à dificuldade de encontrarmos parâmetros para relacionarmos as diversas regiões do diagrama 3.25, neste trabalho não serão apresentadas as simulações referentes a elas.

Conclusões

Neste trabalho, estudamos o sistema (SW)

$$\begin{cases} \frac{dx}{dt} = y, \\ \frac{dy}{dt} = z^2 \operatorname{sen} x \cos x - \operatorname{sen} x - \varepsilon y, \\ \frac{dz}{dt} = \alpha(\cos x - \beta), \end{cases}$$

que representa o modelo físico do sistema regulador de Watt. A obtenção dessas equações foi detalhada no capítulo 1. O sistema em questão, possui um ponto de equilíbrio admissível P_0 , e para ele escrevemos as expressões da matriz Jacobiana do sistema concluindo a partir dos estudos, o comportamento desse equilíbrio em termos dos parâmetros. Indicamos no capítulo 3 condições para que P_0 seja um ponto de Hopf transversal e analisamos estas condições numericamente obtendo conclusões sobre como as soluções desse sistema se comportam conforme os valores dos parâmetros no capítulo 4.

Para implementação das simulações numéricas no estudo das bifurcações de Hopf do sistema (SW), utilizamos o método da projeção descrito no capítulo 2, seção 2.3. No capítulo 2 fizemos o estudo de bifurcações de Hopf em sistemas n– dimensionais, mostrando condições para que um sistema a possua. Em seguida apresentamos o método da projeção e as condições de não degenerescência e transversalidade para sistemas de codimensão até 3, para o surgimento das bifurcações de Hopf para o valor crítico relacionado aos autovalores imaginários puros.

Em suma, expomos as condições necessárias para um bom rendimento do regulador de Watt.

Este trabalho onde foi utilizado técnicas da teoria qualitativa das equações diferenciais, contribui para a compreensão do estudo físico qui tratado, além de poder ser estendido a estudos de outros modelos físicos relacionados à teoria de controle, justificando a contribuição significativa deste trabalho. Como sugestão para trabalhos futuros, propomos tomar um sistema de equações diferenciais da forma (3.1), porém considerando a constante de proporcionalidade C como uma taxa de proporcionalidade $C = \theta/\Omega$ não constante isto é, tomando as a variação entre a velocidades angulares $\theta \in \Omega$ não constantes.

Bibliografia

- A. Al-Humadi e N. D. Kazarinoff, *Hopf Bifurcation in the Watt Steam Engine*, Inst. Math. Appl., **21**, [1985], pp. 133-136.
- B. D. Hassard, N. D. Kazarinoff e Y. H. Wan, Theory and Applicatios of Hopf Bifurcations, Cambridge University Press, Cambridge, [1981].
- [3] Y. A. Kuznetsov, *Elemens of Applied Bifurcation Theory*, Springer-Verlag, New York, [2004].
- [4] A. G. J. MacFarlane, The development of frequency-response methods in automatic control, IEEE T. Automat. Contr., AC-24, [1979], pp. 250-265.
- [5] J. C. Maxwell, On governors, Proc. R. Soc., 16, [1868], pp. 270-283.
- [6] L. S. Pontryagin, Ordinary Differential Equations, Addison-Wesley Publishing Company Inc., [1962].
- [7] B. Scárdua, Tópicos de Equações Diferenciais Ordinárias, 22º Colóquio Brasileiro de Matemática, IMPA, Rio de Janeiro, [1999].
- [8] J. Sotomayor, L. F. Mello e D. C. Braga, Stability and Hopf Bifurcation in the Watt Governor System, Commun. Appl. Nonlinear Anal., 13, 4, [2006], pp. 1-17.
- [9] J. Sotomayor, L. F. Mello e D. C. Braga, Bifurcation Analysis of the Watt Governor System, Comp. Appl. Math., 26, 1, [2007], pp. 19-44.
- [10] J. Sotomayor, L. F. Mello e D. C. Braga, Stability and Hopf Bifurcation in an Haxagonal Governor System, Nonlinear Anal.: Real World Appl., 9, 3, [2008], pp. 889-898.
- [11] F. Takens, Unfoldings of certain singularities of vectorfields: Generalized Hopf bifurcations, J. Diff. Equat., 14, [1973], pp. 476-493.

- [12] I. A. Vyshnegradskii, Sur la théorie générale des régulateurs, C. R. Acad. Sci. Paris, 83, [1876], pp. 318-321.
- [13] M. Denny, Watt steam governor stabilit, Eur. J. Phys., 23, [2002], pp. 339-351.
- [14] Software MATHEMATICA 6: http://www.wolfram.com

Anexo

Anexo

Bifurcação de Hopf no modelo do regulador de Watt

Modelo

 $f2[x_, y_, z_] := z^2 * Cos[x] * Sin[x] - Sin[x] - \epsilon * y$

 $f3[x_, y_, z_] := \alpha * (Cos[x] - \beta)$

Ponto de equilíbrio

f1[x_, y_, z_] := y

 $P0 = \left\{ \operatorname{ArcCos}[\beta], 0, 1 \middle/ \sqrt{\beta} \right\};$

Matriz Jacobiana

```
J[{x_, y_, z_}] := {{Derivative [1, 0, 0] [f1] [x, y, z],
Derivative [0, 1, 0] [f1] [x, y, z], Derivative [0, 0, 1] [f1] [x, y, z]},
{Derivative [1, 0, 0] [f2] [x, y, z], Derivative [0, 1, 0] [f2] [x, y, z],
Derivative [0, 0, 1] [f2] [x, y, z]}, {Derivative [1, 0, 0] [f3] [x, y, z],
Derivative [0, 1, 0] [f3] [x, y, z], Derivative [0, 0, 1] [f3] [x, y, z]}}
```

Matriz Jacobiana no ponto P0

 $J[P_0]$

$$\left\{\{0, 1, 0\}, \left\{-\frac{1-\beta^2}{\beta}, -\epsilon, 2\sqrt{\beta}\sqrt{1-\beta^2}\right\}, \left\{-\alpha\sqrt{1-\beta^2}, 0, 0\right\}\right\}$$

 ω_0

$$\omega 0 = \frac{\sqrt{1-\beta^2}}{\sqrt{\beta}}$$

 $Clear[\omega 0]$

ϵ crítico = ϵ c

Matriz A

 $\mathbf{A} = \left\{ \left\{ 0 \; , \; 1 \; , \; 0 \right\} \; , \; \left\{ - \omega 0^2 \; , \; - \epsilon \mathbf{c} \; , \; 2 \; \beta \; \omega 0 \right\} \; , \; \left\{ - \alpha \; \sqrt{\beta} \; \omega 0 \; , \; 0 \; , \; 0 \right\} \right\};$

Autovetor q

 $\mathbf{q} = \left\{\mathbf{1}, \ \mathbf{i} \ \omega \mathbf{0}, \ \mathbf{i} \ \alpha \ \sqrt{\beta} \right\};$

Autovetor qb

 $qb = \left\{1, -i\omega 0, -i\alpha \sqrt{\beta}\right\};$

Autovetor pb

 $\texttt{pb} = \{ \texttt{ec} + \texttt{i} \ \texttt{\omega0} \ , \ \texttt{1} \ , \ -\texttt{2} \ \texttt{i} \ \beta \} \ ;$

Fator de normalização

 $n = \frac{1}{2 \epsilon c + 2 i \omega 0};$

Normalização

 $\mathbf{p} = \mathbf{Simplify} [\mathbf{n} * \mathbf{pb}]$ $\left\{ \frac{1}{2}, \frac{1}{2 \in \mathbf{c} + 2 \mathrm{i} \omega 0}, -\frac{\mathrm{i} \beta}{\mathrm{e} \mathrm{c} + \mathrm{i} \omega 0} \right\}$

Expansão em série de Taylor da f2[x,y,z] e f3[x,y,x]

$$\begin{aligned} & \operatorname{Stf2} = \operatorname{Simplify} \left[(1/2) * \left(\operatorname{Derivative} \left[2, 0, 0 \right] \left[f2 \right] \left[\operatorname{ArcCos} \left[\beta \right], 0, 1 \middle/ \sqrt{\beta} \right] * x^2 + \\ & 2 * \operatorname{Derivative} \left[1, 1, 0 \right] \left[f2 \right] \left[\operatorname{ArcCos} \left[\beta \right], 0, 1 \middle/ \sqrt{\beta} \right] * x * y + \\ & 2 * \operatorname{Derivative} \left[1, 0, 1 \right] \left[f2 \right] \left[\operatorname{ArcCos} \left[\beta \right], 0, 1 \middle/ \sqrt{\beta} \right] * x * z + \\ & 2 * \operatorname{Derivative} \left[0, 1, 1 \right] \left[f2 \right] \left[\operatorname{ArcCos} \left[\beta \right], 0, 1 \middle/ \sqrt{\beta} \right] * y * z + \\ & \operatorname{Derivative} \left[0, 2, 0 \right] \left[f2 \right] \left[\operatorname{ArcCos} \left[\beta \right], 0, 1 \middle/ \sqrt{\beta} \right] * y^2 + \\ & \operatorname{Derivative} \left[0, 0, 2 \right] \left[f2 \right] \left[\operatorname{ArcCos} \left[\beta \right], 0, 1 \middle/ \sqrt{\beta} \right] * z^2 + \\ \end{aligned} \end{aligned}$$

 $-\frac{3}{2} x^{2} \sqrt{1-\beta^{2}} + z^{2} \beta \sqrt{1-\beta^{2}} + \frac{2 x z (-1+2 \beta^{2})}{\sqrt{\beta}}$

Stf3 = Simplify
$$\left[(1/2) * \left(\text{Derivative} [2, 0, 0] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^2 + 2 * \text{Derivative} [1, 1, 0] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x * y + 2 * \text{Derivative} [1, 0, 1] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x * z + 2 * \text{Derivative} [0, 1, 1] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * y * z + Derivative [0, 2, 0] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * y^2 + Derivative [0, 0, 2] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * z^2 \right]$$

$$-\frac{1}{\alpha} \mathbf{x}^2 \alpha \beta$$

$$b[\{x1_{,} x2_{,} x3_{,}\}, \{y1_{,} y2_{,} y3_{,}\}] := \left\{0, -3 * \sqrt{\beta} * \omega 0 * x1 * y1 + 2 * \sqrt{\beta} * (\beta - \omega 0^{2}) * x1 * y3 + 2 * \sqrt{\beta} * (\beta - \omega 0^{2}) * x3 * y1 + 2 * \beta^{3/2} * \omega 0 * x3 * y3, -\alpha * \beta * x1 * y1\right\}$$

Expansão em série de Taylor da f2[x,y,z] e f3[x,y,x]

6β

Stf4 = Simplify
$$[(1/6) * (Derivative [3, 0, 0] [f2] [ArcCos [\beta], 0, 1/\sqrt{\beta}] * x^3 + 3 * Derivative [2, 0, 1] [f2] [ArcCos [\beta], 0, 1/\sqrt{\beta}] * x^2 * z + 3 * Derivative [1, 0, 2] [f2] [ArcCos [\beta], 0, 1/\sqrt{\beta}] * x * z^2 + Derivative [0, 0, 3] [f2] [ArcCos [\beta], 0, 1/\sqrt{\beta}] * z^3)]$$

x $(x^2 (4 - 7\beta^2) - 24 \times z\beta^{3/2} \sqrt{1 - \beta^2} + 6 z^2 \beta (-1 + 2\beta^2))$

Stf5 = Simplify
$$\left[(1/6) * \left(\text{Derivative} [3, 0, 0] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^3 + 3 * \text{Derivative} [2, 0, 1] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^2 * z + 3 * \text{Derivative} [1, 0, 2] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x * z^2 + \text{Derivative} [0, 0, 3] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * z^3 \right]$$

 $\frac{1}{6} x^3 \alpha \sqrt{1 - \beta^2}$

$$c[\{x1_{,}, x2_{,}, x3_{,}\}, \{y1_{,}, y2_{,}, y3_{,}\}, \{z1_{,}, z2_{,}, z3_{,}\}] := \left\{0, \frac{4-7\beta^{2}}{\beta} * x1 * y1 * z1 + 2 * \beta * (\beta - \omega 0^{2}) * x1 * y3 * z1 - 8 * \beta * \omega 0 * x3 * y1 * z1 + 2 * \beta * (\beta - \omega 0^{2}) * x1 * y3 * z3 + 2 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z3 + 2 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z3 + 2 * \beta * (\beta - \omega 0^{2}) * x3 * y3 * z1, \alpha * \sqrt{\beta} * \omega 0 * x1 * y1 * z1\right\}$$

Stf6 = Simplify
$$\left[(1/24) * \left(\text{Derivative} [4, 0, 0] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^4 + 4 * \text{Derivative} [3, 0, 1] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^3 * z + 6 * \text{Derivative} [2, 0, 2] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^2 * z^2 + 4 * \text{Derivative} [1, 0, 3] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x * z^3 + \text{Derivative} [0, 0, 4] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * z^4 \right]$$

$$\frac{1}{24} x^{2} \left(\frac{32 x z (1 - 2\beta^{2})}{\sqrt{\beta}} + 15 x^{2} \sqrt{1 - \beta^{2}} - 48 z^{2} \beta \sqrt{1 - \beta^{2}} \right)$$

Distribute
$$\left[\frac{1}{24} \mathbf{x}^2 \left(\frac{32 \mathbf{x} \mathbf{z} \left(1-2 \beta^2\right)}{\sqrt{\beta}} + 15 \mathbf{x}^2 \sqrt{1-\beta^2} - 48 \mathbf{z}^2 \beta \sqrt{1-\beta^2}\right)\right]$$

$$\frac{4 x^{3} z (1 - 2 \beta^{2})}{3 \sqrt{\beta}} + \frac{5}{8} x^{4} \sqrt{1 - \beta^{2}} - 2 x^{2} z^{2} \beta \sqrt{1 - \beta^{2}}$$

Stf7 = Simplify
$$\left[(1/24) * \left(\text{Derivative} [4, 0, 0] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^4 + 4 * \text{Derivative} [3, 0, 1] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^3 * z + 6 * \text{Derivative} [2, 0, 2] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^2 * z^2 + 4 * \text{Derivative} [1, 0, 3] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] x * z^3 + \text{Derivative} [0, 0, 4] [f3] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * z^4 \right]$$

 $\frac{1}{24} x^4 \alpha \beta$

$$\begin{split} d[\{x1_, x2_, x3_\}, \{y1_, y2_, y3_\}, \{z1_, z2_, z3_\}, \{u1_, u2_, u3_\}] := \\ \left\{0, 15*\sqrt{\beta} *\omega0*x1*y1*z1*u1-8*\sqrt{\beta} *(\beta-\omega0^{2})*x1*y1*z1*u3-8*\sqrt{\beta} *(\beta-\omega0^{2})*x1*y1*z3*u1-8*\sqrt{\beta} *(\beta-\omega0^{2})*x3*y1*z1*u1-8*\sqrt{\beta} *(\beta-\omega0^{2})*x1*y1*z3*u1-8*\sqrt{\beta} *(\beta-\omega0^{2})*x1*y1*z3*u1-8*\beta^{2}(3/2)*\omega0*x1*y3*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z3*u3-8*\beta^{2}(3/2)*\omega0*x1*y3*z1*u3-8*\beta^{2}(3/2)*\omega0*x3*y1*z3*u1-8*\beta^{2}(3/2)*\omega0*x3*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x3*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*y1*z1*u1-8*\beta^{2}(3/2)*\omega0*x1*$$

Stf8 = Simplify
$$\left[(1/120) * \left(\text{Derivative} [5, 0, 0] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^5 + 5 * \text{Derivative} [4, 0, 1] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^4 * z + 10 * \text{Derivative} [3, 0, 2] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^3 * z^2 + 10 * \text{Derivative} [2, 0, 3] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^2 * z^3 + 5 * \text{Derivative} [1, 0, 4] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x * z^4 + \text{Derivative} [0, 0, 5] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * z^5 \right]$$

$$\frac{x^{3} \left(80 z^{2} \beta (1 - 2 \beta^{2}) + 160 x z \beta^{3/2} \sqrt{1 - \beta^{2}} + x^{2} (-16 + 31 \beta^{2})\right)}{120 \beta}$$

Stf8 =
Distribute
$$\left[\frac{x^{3}\left(80 z^{2} \beta \left(1-2 \beta^{2}\right)+160 x z \beta^{3/2} \sqrt{1-\beta^{2}}+x^{2} \left(-16+31 \beta^{2}\right)\right)}{120 \beta}\right]$$

$$\frac{2}{3} x^{3} z^{2} \left(1-2 \beta^{2}\right)+\frac{4}{3} x^{4} z \sqrt{\beta} \sqrt{1-\beta^{2}}+\frac{x^{5} \left(-16+31 \beta^{2}\right)}{120 \beta}$$
Stf9 = Simplify
$$\left[\left(1 / 120\right) * \left(\text{Derivative } [5, 0, 0] \left[f3\right] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta}\right] * x^{5} + 5 * \operatorname{Derivative} [4, 0, 1] \left[f3\right] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta}\right] * x^{4} * z + 10 * \operatorname{Derivative} [3, 0, 2] \left[f3\right] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta}\right] * x^{3} * z^{2} + 10 * \operatorname{Derivative} [2, 0, 3] \left[f3\right] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta}\right] * x^{2} * z^{3} + 5 * \operatorname{Derivative} [1, 0, 4] \left[f3\right] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta}\right] * x^{2} + z^{3} + \operatorname{Derivative} [0, 0, 5] \left[f3\right] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta}\right] * z^{5} \right]$$

 $-\frac{1}{120} \mathbf{x}^5 \, \alpha \, \sqrt{1-\beta^2}$

$$\begin{split} e[\{x1_{,}, x2_{,}, x3_{,}\}, \{y1_{,}, y2_{,}, y3_{,}\}, \{z1_{,}, z2_{,}, z3_{,}\}, \{u1_{,}, u2_{,}, u3_{,}\}, \{v1_{,}, v2_{,}, v3_{,}\}] := \\ & \left\{0, (16*(\beta - \omega 0 \land 2) - \beta) * x1 * y1 * z1 * u1 * v1 + 32*\beta * \omega 0 * x1 * y1 * z1 * u1 * v3 + 32*\beta * \omega 0 * x1 * y1 * z1 * u1 * v1 + 32*\beta * \omega 0 * x1 * y1 * z1 * u1 * v1 + 32*\beta * \omega 0 * x1 * y3 * z1 * u1 * v1 + 32*\beta * \omega 0 * x3 * y1 * z1 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x1 * y1 * z1 * u3 * v3 - 8*\beta * (\beta - \omega 0 \land 2) * x1 * y1 * z3 * u1 * v3 - 8*\beta * (\beta - \omega 0 \land 2) * x1 * y3 * z1 * u1 * v3 - 8*\beta * (\beta - \omega 0 \land 2) * x1 * y3 * z1 * u1 * v3 - 8*\beta * (\beta - \omega 0 \land 2) * x1 * y3 * z1 * u1 * v3 - 8*\beta * (\beta - \omega 0 \land 2) * x1 * y3 * z1 * u1 * v3 - 8*\beta * (\beta - \omega 0 \land 2) * x1 * y3 * z1 * u1 * v3 - 8*\beta * (\beta - \omega 0 \land 2) * x1 * y3 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z1 * u1 * v3 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z1 * u1 * v3 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z1 * u3 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z1 * u1 * v3 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z1 * u1 * v3 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z1 * u3 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z3 * u1 * v1 - 8*\beta * (\beta - \omega 0 \land 2) * x3 * y3 * z1 * u1 * v1 + 0*\beta * (\beta - \omega 0 \land 2) * x3 * y1 * z1 * u1 * v1 \right\}$$

Stf10 = Simplify
$$\left[(1 / 720) * \left(\text{Derivative} [6, 0, 0] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^6 + 6 \text{ Derivative} [5, 0, 1] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^5 * z + 15 * \text{Derivative} [4, 0, 2] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^4 * z^2 + 20 * \text{Derivative} [3, 0, 3] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^3 * z^3 + 15 * \text{Derivative} [2, 0, 4] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x^2 * z^4 + 6 * \text{Derivative} [1, 0, 5] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * x * z^5 + Derivative [0, 0, 6] [f2] \left[\operatorname{ArcCos} [\beta], 0, 1 / \sqrt{\beta} \right] * z^6 \right) \right]$$

$$\frac{1}{240} x^{4} \left(-21 x^{2} \sqrt{1-\beta^{2}} + 160 z^{2} \beta \sqrt{1-\beta^{2}} + \frac{64 x z (-1+2 \beta^{2})}{\sqrt{\beta}} \right)$$

Distribute
$$\left[\frac{1}{240}\mathbf{x}^{4}\left(-21\mathbf{x}^{2}\sqrt{1-\beta^{2}}+160\mathbf{z}^{2}\beta\sqrt{1-\beta^{2}}+\frac{64\mathbf{x}\mathbf{z}\left(-1+2\beta^{2}\right)}{\sqrt{\beta}}\right)\right]$$

$$-\frac{7}{80} x^{6} \sqrt{1-\beta^{2}} + \frac{2}{3} x^{4} z^{2} \beta \sqrt{1-\beta^{2}} + \frac{4 x^{5} z (-1+2 \beta^{2})}{15 \sqrt{\beta}}$$

Stf11 = Simplify
$$\left[(1/720) * (\text{Derivative} [6, 0, 0] [f3] [\operatorname{ArcCos} [\beta], 0, 1/\sqrt{\beta}] * x^{6} + 6 \text{ Derivative} [5, 0, 1] [f3] [\operatorname{ArcCos} [\beta], 0, 1/\sqrt{\beta}] * x^{5} * z + 15 * \text{Derivative} [4, 0, 2] [f3] [\operatorname{ArcCos} [\beta], 0, 1/\sqrt{\beta}] * x^{4} * z^{2} + 20 * \text{Derivative} [3, 0, 3] [f3] [\operatorname{ArcCos} [\beta], 0, 1/\sqrt{\beta}] * x^{3} * z^{3} + 15 * \text{Derivative} [2, 0, 4] [f3] [\operatorname{ArcCos} [\beta], 0, 1/\sqrt{\beta}] * x^{2} * z^{4} + 6 * \text{Derivative} [1, 0, 5] [f3] [\operatorname{ArcCos} [\beta], 0, 1/\sqrt{\beta}] * x^{2} + z^{5} + \text{Derivative} [0, 0, 6] [f3] [\operatorname{ArcCos} [\beta], 0, 1/\sqrt{\beta}] * z^{6} \right]$$

 $-\frac{1}{720} x^6 \alpha \beta$

 $k[\{x1_, x2_, x3_\}, \{y1_, y2_, y3_\}, \{z1_, z2_, z3_\}, \{u1_, u2_, u3_\}, \{v1_, v2_, v3_\}, \{s1_, s2_, s3_\}] := k[\{x1_, x2_, x3_\}, \{y1_, y2_, y3_\}, \{z1_, z2_, z3_\}, \{u1_, u2_, u3_\}, \{v1_, v2_, v3_\}, \{u1_, u4_, u4_, u4_, u4_\}, \{u4_, u4_, u4_, u4_\}, \{u4_, u4_, u4_, u4_\}, \{u4_, u4_, u4_, u4_\}, \{u4_, u4_\}, u4_\}, \{u4_, u4_\}, \{u4_, u4_\}, \{u4_, u4_\}, \{u4_, u4_\}, u4_\}, \{u4_, u4_\}, u4_\}, \{u4_, u4_\}, u4_\}, u4_\}, u4_\}, u4_\}, u4_\}, u4_\}, u4_\}, u4_\}, u4_]$

 $\left\{0, -63 * \sqrt{\beta} * \omega 0 * x1 * y1 * z1 * u1 * v1 * s1 + \right\}$

 $\begin{aligned} &32*\beta^{(3/2)*\omega0*x1*y1*z1*u1*v3*s3+32*\beta^{(3/2)*\omega0*x1*y1*z1*u3*v1*s3} + \\ &32*\beta^{(3/2)*\omega0*x1*y1*z1*u3*v3*s1+32*\beta^{(3/2)*\omega0*x1*y1*z3*u1*v1*s3} + \\ &32*\beta^{(3/2)*\omega0*x1*y1*z3*u1*v3*s1+32*\beta^{(3/2)*\omega0*x1*y1*z3*u3*v1*s1} + \\ &32*\beta^{(3/2)*\omega0*x1*y3*z1*u1*v1*s3+32*\beta^{(3/2)*\omega0*x1*y3*z1*u1*v3*s1} + \\ &32*\beta^{(3/2)*\omega0*x1*y3*z1*u1*v1*s3+32*\beta^{(3/2)*\omega0*x1*y3*z3*u1*v1*s1} + \\ &32*\beta^{(3/2)*\omega0*x3*y1*z1*u3*v1*s1+32*\beta^{(3/2)*\omega0*x3*y1*z1*u1*v3*s1} + \\ &32*\beta^{(3/2)*\omega0*x3*y1*z1*u1*v1*s3+32*\beta^{(3/2)*\omega0*x3*y1*z1*u1*v3*s1} + \\ &32*\beta^{(3/2)*\omega0*x3*y1*z1*u1*v1*s1+32*\beta^{(3/2)*\omega0*x3*y1*z1*u1*v3*s1} + \\ &32*\beta^{(3/2)*\omega0*x3*y1*z1*u1*v1*s1+32*\beta^{(3/2)*\omega0*x3*y1*z1*u1*v1*s1} + \\ &32*\beta^{(3/2)*\omega0*x3*y3*z1*u1*v1*s1+32*\sqrt{\beta}*(\beta-\omega0^{(2)*x1*y1*z1*u1*v1*s1} + \\ &32*\sqrt{\beta}*(\beta-\omega0^{(2)*x1*y1*z1*u1*v1*s1+32*\sqrt{\beta}*(\beta-\omega0^{(2)*x1*y1*z1*u1*v1*s1} + \\ &32*\sqrt{\beta}*(\beta-\omega0^{(2)*x1*y1*z1*u1*v1*s1} + \\ &32*\sqrt{\beta}*(\beta-\omega0^{(2)*x1*y1*z1*u1*v1*s1}$

 $\frac{x^{5} \left(x^{2} \left(64 - 127 \beta^{2}\right) - 896 \times z \beta^{3/2} \sqrt{1 - \beta^{2}} + 672 z^{2} \beta \left(-1 + 2 \beta^{2}\right)\right)}{5040 \beta}$

$$Distribute \left[\frac{x^{5} \left(x^{2} \left(64 - 127 \beta^{2}\right) - 896 \times z \beta^{3/2} \sqrt{1 - \beta^{2}} + 672 z^{2} \beta \left(-1 + 2 \beta^{2}\right)\right)}{5040 \beta}\right]$$
$$\frac{x^{7} \left(64 - 127 \beta^{2}\right)}{5040 \beta} - \frac{8}{45} x^{6} z \sqrt{\beta} \sqrt{1 - \beta^{2}} + \frac{2}{15} x^{5} z^{2} \left(-1 + 2 \beta^{2}\right)$$

 $x^7 \alpha \sqrt{1 - \beta^2}$

5040

 $l[\{x1_, x2_, x3_\}, \{y1_, y2_, y3_\}, \{z1_, z2_, z3_\}, \{u1_, u2_, u3_\}, \{v1_, v2_, v3_\}, \{s1_, s2_, s3_\} \{t1_, t2_, t3_\}] := l(x1_, x2_, x3_)$ $128 * \beta * \omega 0 * x1 * y1 * z1 * u1 * v1 * s3 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z1 * u1 * v3 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z1 * u1 * v3 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z1 * u1 * v3 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z1 * u1 * v3 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z1 * u1 * v3 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z1 * u1 * v3 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z1 * u1 * v3 * s1 * t1 + 128 * \beta * \omega 0 * x1 * y1 * z1 * u1 * v3 * s1 * t1 + 128 * \beta * \omega 0 * x1 * y1 * z1 * u1 * v3 * s1 * t1 + 128 * 128$ $128 * \beta * \omega 0 * x1 * y1 * z1 * u3 * v1 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z3 * u1 * v1 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z3 * u1 * v1 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z3 * u1 * v1 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z3 * u1 * v1 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z3 * u1 * v1 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z3 * u1 * v1 * s1 * t1 - 128 * \beta * \omega 0 * x1 * y1 * z3 * u1 * v1 * s1 * t1 + 128 * \beta * \omega 0 * x1 * y1 * z3 * u1 * v1 * s1 * t1 + 128 * \beta * \omega 0 * x1 * y1 * z3 * u1 * v1 * s1 * t1 + 128 * 128$ $128 * \beta * \omega 0 * x1 * y3 * z1 * u1 * v1 * s1 * t1 - 128 * \beta * \omega 0 * x3 * y1 * z1 * u1 * v1 * s1 * t1 + 128 * \beta * \omega 0 * x3 * y1 * z1 * u1 * v1 * s1 * t1 + 128 * \beta * \omega 0 * x3 * y1 * z1 * u1 * v1 * s1 * t1 + 128 * 128$ $32 * \beta * (\beta - \omega 0^{2}) * x1 * y3 * z1 * u1 * v1 * s1 * t3 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u3 * v1 * s1 * t1 + 20 * 10^{2} * 10$ $32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v3 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x1 * y1 * z3 * u1 * v1 * s3 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * (\beta - \omega$ $32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z3 * u1 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u3 * v1 * s1 * t1 + 32 * \beta * (\beta - \omega 0^{2}) * (\beta - \omega 0^{2$ $32 * \beta * (\beta - \omega 0^{2}) * x3 * y1 * z1 * u1 * v1 * s1 * t3, \alpha * \sqrt{\beta} * \omega 0 * x1 * y1 * z1 * u1 * v1 * s1 * t1$

AI = Inverse [A]

$$\left\{\left\{0, 0, -\frac{1}{\alpha \sqrt{\beta} \omega 0}\right\}, \{1, 0, 0\}, \left\{\frac{\epsilon c}{2 \beta \omega 0}, \frac{1}{2 \beta \omega 0}, -\frac{1}{2 \alpha \beta^{3/2}}\right\}\right\}$$

Matriz W20 = $2 i \omega 0$ I-A

W20 = Simplify [2 * i * ω 0 * IdentityMatrix [3] - A]

 $\left\{ \{ 2 \text{ i } \omega 0, -1, 0 \}, \{ \omega 0^2, \text{ } \epsilon \text{c} + 2 \text{ i } \omega 0, -2 \beta \omega 0 \}, \{ \alpha \sqrt{\beta} \omega 0, 0, 2 \text{ i } \omega 0 \} \right\}$

Inversa da matriz W20

W20I = Simplify [Inverse [W20]]

$$\left\{ \left\{ \frac{i \in c - 2 \omega 0}{\alpha \beta^{3/2} \omega 0 - 2 \in c \omega 0 - 3 i \omega 0^2}, \frac{i}{\alpha \beta^{3/2} \omega 0 - 2 \in c \omega 0 - 3 i \omega 0^2}, \frac{\beta}{\alpha \beta^{3/2} \omega 0 - 2 \in c \omega 0 - 3 i \omega 0^2} \right\}, \\ \left\{ -\frac{\alpha \beta^{3/2} + i \omega 0}{\alpha \beta^{3/2} - 2 \in c - 3 i \omega 0}, -\frac{2}{\alpha \beta^{3/2} - 2 \in c - 3 i \omega 0}, \frac{2 i \beta}{\alpha \beta^{3/2} - 2 \in c - 3 i \omega 0} \right\}, \\ \left\{ -\frac{\alpha \sqrt{\beta} (\epsilon c + 2 i \omega 0)}{2 (\alpha \beta^{3/2} - 2 \in c - 3 i \omega 0) \omega 0}, -\frac{\alpha \sqrt{\beta}}{2 \alpha \beta^{3/2} \omega 0 - 4 \in c \omega 0 - 6 i \omega 0^2}, \frac{2 i \epsilon c - 3 \omega 0}{2 \alpha \beta^{3/2} \omega 0 - 4 \in c \omega 0 - 6 i \omega 0^2} \right\} \right\}$$

h11

h11 = Simplify[-AI.b[q, qb]] $\left\{-\frac{\sqrt{\beta}}{\omega 0}, 0, \frac{1-\alpha^2 \beta^2}{\sqrt{\beta}}\right\}$

h20

$$\begin{aligned} h20 &= \operatorname{Simplify}[W201.b[q, q]] \\ &\left\{ \frac{-3 \text{ i } \sqrt{\beta} \ \omega 0 - 2 \text{ i } \alpha^2 \ \beta^{5/2} \ \omega 0 + \alpha \ \beta \ \left(-5 \ \beta + 4 \ \omega 0^2\right)}{\left(\alpha \ \beta^{3/2} - 2 \ \epsilon \text{ c } - 3 \text{ i } \omega 0\right) \ \omega 0}, \\ &\frac{6 \sqrt{\beta} \ \omega 0 + 4 \ \alpha^2 \ \beta^{5/2} \ \omega 0 - 2 \text{ i } \alpha \ \beta \ \left(5 \ \beta - 4 \ \omega 0^2\right)}{\alpha \ \beta^{3/2} - 2 \ \epsilon \text{ c } - 3 \text{ i } \omega 0}, \\ &\frac{\alpha \ \beta \ \left(-\text{ i } \ \epsilon \text{ c } + 3 \ \omega 0 + \alpha^2 \ \beta^2 \ \omega 0 - 2 \text{ i } \alpha \ \sqrt{\beta} \ \left(\beta - \omega 0^2\right)\right)}{\left(\alpha \ \beta^{3/2} - 2 \ \epsilon \text{ c } - 3 \text{ i } \omega 0\right)} \end{aligned} \right\}$$

h20b

$$\begin{aligned} h20b &= \text{Simplify} \left[\text{Refine} \left[\text{ComplexExpand} \left[\text{Conjugate} \left[h20 \right] \right] \right], \beta > 0 \right] \\ &\left\{ \frac{3 \text{ i } \sqrt{\beta} \ \omega 0 + 2 \text{ i } \alpha^2 \ \beta^{5/2} \ \omega 0 + \alpha \ \beta \ \left(-5 \ \beta + 4 \ \omega 0^2 \right) \right)}{\left(\alpha \ \beta^{3/2} - 2 \ \varepsilon \text{ c } + 3 \text{ i } \omega 0 \right) \ \omega 0}, \\ &\frac{6 \sqrt{\beta} \ \omega 0 + 4 \ \alpha^2 \ \beta^{5/2} \ \omega 0 + 2 \text{ i } \alpha \ \beta \ \left(5 \ \beta - 4 \ \omega 0^2 \right) \right)}{\alpha \ \beta^{3/2} - 2 \ \varepsilon \text{ c } + 3 \text{ i } \omega 0}, \\ &\frac{\alpha \ \beta \ \left(\text{i } \ \varepsilon \text{ c } + 3 \ \omega 0 + \alpha^2 \ \beta^2 \ \omega 0 + 2 \text{ i } \alpha \ \sqrt{\beta} \ \left(\beta - \omega 0^2 \right) \right)}{\left(\alpha \ \beta^{3/2} - 2 \ \varepsilon \text{ c } + 3 \text{ i } \omega 0 \right) \ \omega 0} \end{aligned} \end{aligned}$$

G21

G21 = Simplify[p.(c[q, q, qb] + b[qb, h20] + 2 * b[q, h11])]

G21b

G21b = Simplify[Refine[ComplexExpand[Conjugate[G21]]], $\beta > 0$]

 $\epsilon c \left(\epsilon c^{2} \left(8 + 6\beta^{2} - 8\beta\omega0^{2}\right) - 9\omega0^{2} \left(-2 + \beta^{2} + 2\beta\omega0^{2}\right)\right)\right) /$

 $(\beta (\epsilon c^2 + \omega 0^2) (\alpha^2 \beta^3 - 4 \alpha \beta^{3/2} \epsilon c + 4 \epsilon c^2 + 9 \omega 0^2))$

```
 \begin{pmatrix} 3 \ i \ \alpha^{4} \ \beta^{6} \ \omega 0^{2} + \alpha \ \beta^{3/2} \ \left( -7 \ i \ \beta^{2} \ \epsilon c + 2 \ \omega 0 + \beta \ \left( -3 \ i \ \epsilon c - 11 \ \omega 0 \right) \ \omega 0^{2} \right) + \alpha^{2} \ \beta^{3} \ \left( 6 \ i \ \beta^{2} + \beta \ \left( \epsilon c - i \ \omega 0 \right) \ \omega 0 + \left( -2 \ \epsilon c + i \ \omega 0 \right) \ \omega 0^{3} \right) - 2 \ \alpha^{3} \ \beta^{9/2} \ \omega 0 \ \left( \beta + \omega 0 \ \left( 2 \ i \ \epsilon c + \omega 0 \right) \right) + \omega 0 \ \left( -6 \ i \ \omega 0 \ \left( -1 + \beta \ \omega 0^{2} \right) + \epsilon c \ \left( -4 - 3 \ \beta^{2} + 4 \ \beta \ \omega 0^{2} \right) \right) \right) / \left( \beta \ \left( \epsilon c - i \ \omega 0 \right) \ \left( \alpha \ \beta^{3/2} - 2 \ \epsilon c + 3 \ i \ \omega 0 \right) \ \omega 0 \right)
```

Re G21

ReG21 = Simplify [Refine [ComplexExpand [Re[G21]], $\beta \in \text{Reals } \&\& \alpha \in \text{Reals } \&\& ec \in \text{Reals } \&\& \omega 0 \in \text{Reals } \&\& \beta > 0]]$	
$ \left(-3 \alpha^{5} \beta^{15/2} \omega 0^{2} + \alpha^{4} \beta^{6} \epsilon c \left(-2 \beta + 17 \omega 0^{2}\right) - \alpha^{3} \beta^{9/2} \left(6 \beta^{2} - 5 \beta \epsilon c^{2} + 5 \beta \omega 0^{2} + 18 \epsilon c^{2} \omega 0^{2} + 7 \omega 0^{4}\right) + \alpha^{2} \beta^{3} \epsilon c \left(2 + 37 \beta^{2} + 4 \epsilon c^{2} \omega 0^{2} - \omega 0^{4} - 2 \beta \left(\epsilon c^{2} + 5 \omega 0^{2}\right)\right) - \alpha \beta^{3/2} \left(27 \beta \omega 0^{4} + \epsilon c^{2} \left(8 + 38 \beta^{2} - 11 \beta \omega 0^{2}\right)\right) \right) $	-

Primeiro coeficiente de Lyapunov

11 = FullSimplify [(1/2) * ReG21]

```
 \left( -3\,\alpha^{5}\,\beta^{15/2}\,\omega^{2} + \alpha^{4}\,\beta^{6}\,\varepsilon c\,\left( -2\,\beta + 17\,\omega^{2} \right) - \alpha^{3}\,\beta^{9/2}\,\left(\beta\,\left(6\,\beta - 5\,\varepsilon c^{2} \right) + \left(5\,\beta + 18\,\varepsilon c^{2} \right)\,\omega^{2} + 7\,\omega^{4} \right) + \alpha^{2}\,\beta^{3}\,\varepsilon c\,\left( 2 + 37\,\beta^{2} + 4\,\varepsilon c^{2}\,\omega^{2} - \omega^{4} - 2\,\beta\,\left(\varepsilon c^{2} + 5\,\omega^{2} \right) \right) - \alpha\,\beta^{3/2}\,\left( 27\,\beta\,\omega^{4} + \varepsilon c^{2}\,\left( 8 + 38\,\beta^{2} - 11\,\beta\,\omega^{2} \right) \right) + \varepsilon c\,\left(\varepsilon c^{2}\,\left( 8 + 6\,\beta^{2} - 8\,\beta\,\omega^{2} \right) - 9\,\omega^{2}\left( -2 + \beta^{2} + 2\,\beta\,\omega^{2} \right) \right) \right) \right) \left/ \left( 2\,\beta\,\left(\varepsilon c^{2} + \omega^{2} \right) \left( \left(\alpha\,\beta^{3/2} - 2\,\varepsilon c\right)^{2} + 9\,\omega^{2} \right) \right) \right) \right) \right) \right) \right) = 0
```

 $\epsilon c = 2 * \alpha * \beta^{\wedge}(3/2);$ $\omega 0 = \frac{\sqrt{1 - \beta^2}}{\sqrt{\beta}};$

Primeiro coeficiente de Lyapunov

11 = FullSimplify [11] $\frac{\alpha \beta^{3/2} (-1 + \beta^2) (3 + (-5 + \alpha^2) \beta^2 + \alpha^4 \beta^6)}{2 (1 - \beta^2 + \alpha^2 \beta^4) (1 - \beta^2 + 4 \alpha^2 \beta^4)}$ $Clear[\omega0, \epsilonc]$

Matriz W30 = $3 * i * \omega 0I - A$

W30 = Simplify $[3 * i * \omega 0 * \text{IdentityMatrix} [3] - A]$

$$\{ \{ 3 \ i \ \omega 0, \ -1, \ 0 \}, \{ \omega 0^2, \ \epsilon c + 3 \ i \ \omega 0, \ -2 \ \beta \ \omega 0 \}, \{ \alpha \sqrt{\beta} \ \omega 0, \ 0, \ 3 \ i \ \omega 0 \} \}$$

Inversa da matriz W30

W30I = Simplify[Inverse[W30]]

$$\left\{ \left\{ \frac{-3\,\mathrm{i}\,\mathrm{c}\,\mathrm{c}\,\mathrm{s}\,9\,\omega0}{\left(-2\,\alpha\,\beta^{3/2}\,+\,9\,\mathrm{c}\,\mathrm{c}\,+\,24\,\mathrm{i}\,\omega0\right)\,\omega0}, \frac{3\,\mathrm{i}}{2\,\alpha\,\beta^{3/2}\,\omega0\,-\,9\,\mathrm{c}\,\mathrm{c}\,\omega0\,-\,24\,\mathrm{i}\,\omega0^{2}}, \frac{2\,\beta}{2\,\alpha\,\beta^{3/2}\,\omega0\,-\,9\,\mathrm{c}\,\mathrm{c}\,\omega0\,-\,24\,\mathrm{i}\,\omega0^{2}} \right\}, \\ \left\{ -\frac{2\,\alpha\,\beta^{3/2}\,+\,3\,\mathrm{i}\,\omega0}{2\,\alpha\,\beta^{3/2}\,-\,9\,\mathrm{c}\,\mathrm{c}\,-\,24\,\mathrm{i}\,\omega0}, -\frac{9}{2\,\alpha\,\beta^{3/2}\,-\,9\,\mathrm{c}\,\mathrm{c}\,-\,24\,\mathrm{i}\,\omega0}, \frac{6\,\mathrm{i}\,\beta}{2\,\alpha\,\beta^{3/2}\,-\,9\,\mathrm{c}\,\mathrm{c}\,-\,24\,\mathrm{i}\,\omega0} \right\}, \\ \left\{ -\frac{\alpha\,\sqrt{\beta}}{\left(2\,\alpha\,\beta^{3/2}\,-\,9\,\mathrm{c}\,\mathrm{c}\,-\,24\,\mathrm{i}\,\omega0\right)}, -\frac{\alpha\,\sqrt{\beta}}{2\,\alpha\,\beta^{3/2}\,\omega0\,-\,9\,\mathrm{c}\,\mathrm{c}\,\omega0\,-\,24\,\mathrm{i}\,\omega0^{2}}, \frac{-3\,\mathrm{i}\,\mathrm{c}\,\mathrm{c}\,+\,8\,\omega0}{\left(-2\,\alpha\,\beta^{3/2}\,+\,9\,\mathrm{c}\,\mathrm{c}\,+\,24\,\mathrm{i}\,\omega0\right)\,\omega0} \right\} \right\}$$

h30

$\mathbf{h30} = \mathbf{Simplify}[\mathbf{W30I.}(3*b[q,\,\mathbf{h20}]+c[q,\,q,\,q])]$

$$\left\{ -\left(2 \left(9 \alpha^{4} \beta^{6} \omega 0^{2} + 3 \omega 0 \left(-i \left(-4 + 7 \beta^{2}\right) \epsilon c + 6 \left(-1 + 4 \beta^{2}\right) \omega 0\right) - 6 i \alpha^{3} \beta^{9/2} \omega 0 \left(7 \beta - 6 \omega 0^{2}\right) + \alpha \beta^{3/2} \left(-3 \beta^{2} \left(3 \epsilon c + 40 i \omega 0\right) - 6 i \omega 0 + \beta \left(83 \epsilon c + 219 i \omega 0\right) \omega 0^{2}\right) + \alpha^{2} \beta^{3} \left(-78 \beta^{2} + 9 \left(2 i \epsilon c - 9 \omega 0\right) \omega 0^{3} + \beta \omega 0 \left(-27 i \epsilon c + 173 \omega 0\right)\right)\right)\right) \right) \right) \right. \\ \left(\beta \omega 0^{2} \left(2 \alpha^{2} \beta^{3} + 18 \epsilon c^{2} - \alpha \beta^{3/2} \left(13 \epsilon c + 30 i \omega 0\right) + 75 i \epsilon c \omega 0 - 72 \omega 0^{2}\right)\right), \\ \left(6 \left(-9 i \alpha^{4} \beta^{6} \omega 0^{2} + 3 \omega 0 \left(\left(4 - 7 \beta^{2}\right) \epsilon c - 6 i \left(-1 + 4 \beta^{2}\right) \omega 0\right) - 6 \alpha^{3} \beta^{9/2} \omega 0 \left(7 \beta - 6 \omega 0^{2}\right) + \alpha^{2} \beta^{3} \left(78 i \beta^{2} - \beta \left(27 \epsilon c + 173 i \omega 0\right) \omega 0 + 9 \left(2 \epsilon c + 9 i \omega 0\right) \omega 0^{3}\right) + \alpha \beta^{3/2} \left(\beta^{2} \left(9 i \epsilon c - 120 \omega 0\right) - 6 \omega 0 + \beta \omega 0^{2} \left(-83 i \epsilon c + 219 \omega 0\right)\right)\right)\right) \right) \right) \right. \\ \left(\beta \omega 0 \left(2 \alpha^{2} \beta^{3} + 18 \epsilon c^{2} - \alpha \beta^{3/2} \left(13 \epsilon c + 30 i \omega 0\right) + 75 i \epsilon c \omega 0 - 72 \omega 0^{2}\right)\right), \\ \left(\alpha \left(-6 i \alpha^{4} \beta^{6} \omega 0^{2} - 24 \alpha^{3} \beta^{9/2} \omega 0 \left(\beta - \omega 0^{2}\right) + 6 \alpha^{2} \beta^{3} \left(7 i \beta^{2} - 2 \beta \left(3 \epsilon c + 13 i \omega 0\right) \omega 0 + \left(2 \epsilon c + 9 i \omega 0\right) \omega 0^{3}\right) + \alpha \beta^{3/2} \left(\beta^{2} \left(51 i \epsilon c - 194 \omega 0\right) - 4 \omega 0 + 29 \beta \omega 0^{2} \left(-3 i \epsilon c + 8 \omega 0\right)\right) + \omega 0 \left(-6 i \beta \epsilon c^{2} \omega 0 + 12 i \omega 0 \left(1 - 10 \beta^{2} + 2 \beta \omega 0^{2}\right) + \epsilon c \left(8 - 41 \beta^{2} + 25 \beta \omega 0^{2}\right)\right)\right)\right) \right. \\ \left(\sqrt{\beta} \omega 0^{2} \left(2 \alpha^{2} \beta^{3} + 18 \epsilon c^{2} - \alpha \beta^{3/2} \left(13 \epsilon c + 30 i \omega 0\right) + 75 i \epsilon c \omega 0 - 72 \omega 0^{2}\right)\right)\right)$$

Matriz W = $i * \omega 0$ I-A

 $W = \text{Simplify}[i * \omega 0 * \text{IdentityMatrix}[3] - A]$ $\{ \{ i \ \omega 0, \ -1, \ 0 \}, \ \{ \omega 0^2, \ \in c + i \ \omega 0, \ -2 \ \beta \ \omega 0 \}, \ \{ \alpha \ \sqrt{\beta} \ \omega 0, \ 0, \ i \ \omega 0 \} \}$ $\{\text{T1, T2, T3}\} = \text{Simplify}[c[q, q, qb] + b[qb, h20] + 2 * b[q, h11] - G21 * q];$

$$\left\{\{i\,\omega 0,\,-1,\,0,\,1\},\,\left\{\omega 0^2,\,\epsilon c+i\,\omega 0,\,-2\,\beta\,\omega 0,\,i\,\omega 0\},\,\left\{\alpha\,\sqrt{\beta}\,\omega 0,\,0,\,i\,\omega 0,\,i\,\alpha\,\sqrt{\beta}\,\right\},\,\left\{\frac{1}{2},\,\frac{1}{2\,\epsilon c+2\,i\,\omega 0},\,-\frac{i\,\beta}{\epsilon c+i\,\omega 0},\,0\right\}\right\};$$

V21 =

h21

V21I = Simplify[Inverse[V21]];

{h211, h212, h213, s} = V21I.{T1, T2, T3, 0};

$$\begin{aligned} & \mathbf{b21} = \mathbf{Simplity} \{ \{\mathbf{b211}, \mathbf{b212}, \mathbf{b213} \} \} \\ & \left\{ \left(2 \text{ i } \left(6 \ \alpha^5 \ \beta^{15/2} \ \omega^0^2 - 2 \ \alpha^3 \ \beta^{11/2} \ \left(\beta - 3 \ \omega^0^2 \right) - \text{ i } \ \alpha^4 \ \beta^6 \ \omega 0 \ \left(8 \ \beta + \omega 0 \ \left(-8 \text{ i } \text{ ec} + 7 \ \omega 0 \right) \right) + \\ & \alpha \ \beta^{3/2} \ \left(2 \ \omega 0 \ \left(-4 \text{ i } \text{ ec} + 7 \ \omega 0 \right) + \beta \ \omega^0^2 \ \left(2 \ \text{ ec}^2 + 18 \text{ i } \text{ ec} \ \omega 0 - 29 \ \omega^0^2 \right) + 2 \ \beta^2 \ \left(2 \ \text{ ec}^2 + 6 \text{ i } \text{ ec} \ \omega 0 - 3 \ \omega 0^2 \right) \right) + \\ & \omega \ \alpha^2 \ \left(6 \ i \ \omega 0 \ \left(-1 + \beta \ \omega^0^2 \right) + 2 \ \left(2 \ \text{ ec}^2 + 6 \text{ i } \text{ ec} \ \omega 0 - 3 \ \omega 0^2 \right) \right) + \\ & \alpha \ \beta^{3/2} \ \left(2 \ \text{ ec}^3 - 9 \ \text{ ec}^2 \ \omega 0 - 17 \ \text{ i } \text{ ec} \ \omega^0 + 2 \ \mu^0 \ \omega^0 \ 2 + 2 \ \alpha^2 \ \beta^3 \ \left(-3 \text{ i } \text{ ec} + 5 \ \omega 0 \right) + \\ & \text{ i } \ \alpha \ \beta^{3/2} \ \left(1 \ \text{ ec}^2 + 35 \text{ i } \text{ ec} \ \omega 0 - 26 \ \omega^0^2 \right) \right), \\ & - \left(2 \ \left(2 \ \alpha^5 \ \beta^{15/2} \ \omega^0^2 - \text{ i } \alpha^4 \ \beta^6 \ \omega 0 \ \left(16 \ \beta + \omega 0 \ - 13 \ \text{ i } \text{ ec} + 5 \ \omega 0 \right) - \\ & 2 \ \alpha^3 \ \beta^{3/2} \ \left(2 \ \beta^2 + \beta \ \left(-\text{ i } \text{ ec} - 7 \ \omega 0 \right) \ \omega 0 \ \omega^0^2 \ \left(2 \ \text{ ec}^2 + 7 \ \text{ i } \text{ ec} \ \omega 0 - 3 \ \omega^0^2 \right) \right) - \\ & \alpha \ \beta^{3/2} \ \left(2 \ \left(7 \ \text{ i } \text{ ec} - 11 \ \omega 0 \right) \ \omega 0 + \beta^2 \ \left(7 \ \text{ ec}^2 + 11 \ \text{ i } \text{ ec} \ \omega 0 - 3 \ \omega^0^2 \right) - \\ & \alpha \ \beta^{3/2} \ \left(2 \ \left(7 \ \text{ i } \text{ ec} - 11 \ \omega 0 \ \omega 0 + \beta^2 \ \left(7 \ \text{ ec}^2 + 11 \ \text{ i } \text{ ec} \ \omega 0 - 27 \ \omega^0^2 \right) - \\ & \alpha \ \beta^{3/2} \ \left(2 \ (7 \ \text{ i } \text{ ec} - 11 \ \omega 0 \ \omega 0 + \beta^2 \ \left(7 \ \text{ ec}^2 + 11 \ \text{ i } \text{ ec} \ \omega 0 - 27 \ \omega^0^2 \right) + \\ & \omega 0 \ \left(-2 \ \text{ i } \text{ ec}^2 \ \omega^0 + 13 \ \omega^0^2 \right) + i \ \omega^0 \ \left(2 \ \text{ ec}^2 + 3 \ \omega^0^2 \ \left(3 \ \text{ ec}^2 - 6 \ \text{ i } \text{ ec} \ \omega 0 + 19 \ \omega^0^2 \right) \right) + \\ & \alpha^2 \ \beta^3 \ \left(\beta^2 \ \left(-6 \ \text{ ec} + 4 \ \text{ i } \ \omega 0^2 \right) + i \ \omega^0 \ \left(2 \ \text{ ec}^3 + 16 \ \omega^0^2 \right) \right) \right) \right) \right) \right) \right) \\ & \left(\beta \ \omega 0 \ \left(2 \ \text{ i } \text{ ec}^3 - 9 \ \omega^0^2 \ \text{ i } \text{ ec}^3 \ 12 \ \omega^3 + 2 \ \alpha^2 \ \beta^3 \ \left(-3 \ \text{ i } \text{ ec}^3 \ 13 \ \omega^0 \ \omega^2 \right) + i \ \omega^3 \ \left(2 \ \text{ ec}^3 \ 13 \ \text{ ec}^3 \ 17 \ \text{ i } \text{ ec}^3 \ 13 \ \text{ ec}^3 \ 17 \ \text{ i } \text{ ec}^3 \ 13 \ \omega^3 \ 18 \ \omega^3 \right) \right) \\ & \left($$

h21b

h21b = Simplify[Refine[ComplexExpand[Conjugate[h21]]], $\beta > 0$]

```
\left\{-\left(2 \text{ i } \left(6 \alpha^{5} \beta^{15/2} \omega 0^{2}-2 \alpha^{3} \beta^{11/2} \left(\beta-3 \omega 0^{2}\right)+\text{ i } \alpha^{4} \beta^{6} \omega 0 \left(8 \beta+\omega 0 \left(8 \text{ i } \in c+7 \omega 0\right)\right)+\right.\right.\right\}
                                                    \alpha \beta^{3/2} (2 \omega 0 (4 i \varepsilon c + 7 \omega 0) + \beta \omega 0^2 (2 \varepsilon c^2 - 18 i \varepsilon c \omega 0 - 29 \omega 0^2) + 2 \beta^2 (2 \varepsilon c^2 - 6 i \varepsilon c \omega 0 - 3 \omega 0^2)) +
                                                   \omega 0^{2} (-6 \pm \omega 0 (-1 + \beta \omega 0^{2}) + \epsilon c (-4 - 3 \beta^{2} + 4 \beta \omega 0^{2})) +
                                                   \alpha^{2}\beta^{3}(\beta^{2}(-13 \in c + 14 \pm \omega^{0}) + \beta(2 \in c + 9 \pm \omega^{0})\omega^{2} + \pm \omega^{0}(-4 + 2 \pm c \omega^{3} + \omega^{4})))))/
                       (\beta \omega 0^{2} (-2 i \epsilon c^{3} - 9 \epsilon c^{2} \omega 0 + 17 i \epsilon c \omega 0^{2} + 12 \omega 0^{3} + 2 \alpha^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2} c^{2} \beta^{3} (3 i \epsilon c + 5 \omega 0) + 12 \omega^{2}
                                                   \alpha \beta^{3/2} \left( -11 \text{ i} \in \text{c}^2 - 35 \in \text{c} \, \omega 0 + 26 \, \text{i} \, \omega 0^2 \right) \right)
      -(2(12\alpha^5\beta^{15/2}\omega^0^2 + i\alpha^4\beta^6\omega^0(16\beta + \omega^0(13iec + 5\omega^0))) -
                                                     2 \alpha^{3} \beta^{9/2} \left( 2 \beta^{2} + i \beta (\epsilon c + 7 i \omega 0) \omega 0 + \omega 0^{2} \left( 2 \epsilon c^{2} - 7 i \epsilon c \omega 0 - 3 \omega 0^{2} \right) \right) - \alpha \beta^{3/2}
                                                            (2 (-7 i \epsilon c - 11 \omega 0) \omega 0 + \beta^2 (7 \epsilon c^2 - 11 i \epsilon c \omega 0 + 6 \omega 0^2) + \beta \omega 0^2 (3 \epsilon c^2 + 6 i \epsilon c \omega 0 + 19 \omega 0^2)) + \beta \omega 0^2 (3 \epsilon c^2 + 6 i \epsilon c \omega 0 + 19 \omega 0^2))
                                                   \omega 0 \left( \epsilon c \, \omega 0 \, \left( 10 + 3 \, \beta^2 - 10 \, \beta \, \omega 0^2 \right) + i \, \epsilon c^2 \left( 4 + 3 \, \beta^2 - 4 \, \beta \, \omega 0^2 \right) + 6 \, i \, \omega 0^2 \left( -1 + \beta \, \omega 0^2 \right) \right) - \alpha^2 \, \beta^3
                                                              (\beta^2 (6 \in c + 4 \pm \omega 0) + \beta \omega 0 (\pm e c^2 + 6 \in c \omega 0 - 27 \pm \omega 0^2) + \pm \omega 0 (8 - 2 e c^2 \omega 0^2 + 3 \pm e c \omega 0^3 + \omega 0^4))))/
                       (\beta \omega 0 (-2 i \epsilon c^3 - 9 \epsilon c^2 \omega 0 + 17 i \epsilon c \omega 0^2 + 12 \omega 0^3 + 2 \alpha^2 \beta^3 (3 i \epsilon c + 5 \omega 0) + 
                                                    \alpha \beta^{3/2} (-11 i \epsilon c^2 - 35 \epsilon c \omega 0 + 26 i \omega 0^2))),
         (\alpha (6 \alpha^4 \beta^6 (\epsilon c - 3 i \omega 0) \omega 0^2 + 4 \omega 0 (2 i \epsilon c^2 + 9 \epsilon c \omega 0 - 9 i \omega 0^2) +
                                            \beta^{2} \left(4 \in c^{3} - 9 \text{ i} \in c^{2} \omega 0 - 7 \in c \omega 0^{2} + 12 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 \in c^{3} - 17 \text{ i} \in c^{2} \omega 0 - 53 \in c \omega 0^{2} + 48 \text{ i} \omega 0^{3}\right) + \beta \omega 0^{2} \left(2 (e^{2} + 17 \text{ i} + 17 \text{ i
                                            4 \alpha^3 \beta^{9/2} \omega 0 (i \in c + 3 \omega 0) (2 \beta + \omega 0 (2 i \in c + \omega 0)) +
                                            2 \alpha^{2} \beta^{3} \left(-\beta^{2} (\epsilon c - 3 i \omega 0) + 2 \beta (\epsilon c - 5 i \omega 0) \omega 0^{2} + \omega 0^{3} (2 i \epsilon c^{2} + 7 \epsilon c \omega 0 - 3 i \omega 0^{2})\right) + \alpha \beta^{3/2}
                                                     \left(-4 \text{ i} (\epsilon \text{c} - 3 \text{ i} \omega \text{0}) \omega \text{0} + \beta^2 (-13 \epsilon \text{c}^2 + 33 \text{ i} \epsilon \text{c} \omega \text{0} + 10 \omega \text{0}^2) + \beta \omega \text{0}^2 (\epsilon \text{c}^2 + 13 \text{ i} \epsilon \text{c} \omega \text{0} + 36 \omega \text{0}^2))\right)\right) / \epsilon^2
               \left(\sqrt{\beta} \ \omega 0^2 \left(-2 \ \mathrm{i} \ \mathrm{ec}^3 - 9 \ \mathrm{ec}^2 \ \omega 0 + 17 \ \mathrm{i} \ \mathrm{ec} \ \omega 0^2 + 12 \ \omega 0^3 + 2 \ \alpha^2 \ \beta^3 \ (3 \ \mathrm{i} \ \mathrm{ec} + 5 \ \omega 0) + 12 \ \mathrm{ec}^3 \right) \right)
                                           \alpha \beta^{3/2} \left( -11 \ i \ \epsilon c^2 - 35 \ \epsilon c \ \omega 0 + 26 \ i \ \omega 0^2 \right) \right)
```

$\begin{aligned} h22 &= \text{Simplify}[-\text{AI.}(d[q, q, qb, qb] + 4 * c[q, qb, h11] + c[qb, qb, h20] + \\ & c[q, q, h20b] + 2 * b[h11, h11] + 2 * b[q, h21b] + 2 * b[qb, h21] + b[h20b, h20])] \end{aligned}$

```
\left\{ (288 \alpha^7 \beta^{21/2} \in c \omega 0^2 - 32 \alpha^6 \beta^9 \omega 0^2 (20 \beta + 33 \epsilon c^2 - 9 \omega 0^2) + \right\}
                                                               8 \alpha^5 \beta^{15/2} \in c (-12 \beta^2 + 316 \beta \omega 0^2 + 70 \epsilon c^2 \omega 0^2 + 133 \omega 0^4) +
                                                             16 \left(4 \ \epsilon c^{4} \ \omega 0^{2} - 7 \ \epsilon c^{2} \ \omega 0^{4} - 36 \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2} + 563 \ \epsilon c^{2} \ \omega 0^{4} + 432 \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2} + 563 \ \epsilon c^{2} \ \omega 0^{4} + 432 \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2} + 563 \ \epsilon c^{2} \ \omega 0^{4} + 432 \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2} + 563 \ \epsilon c^{2} \ \omega 0^{4} + 432 \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2} + 563 \ \epsilon c^{2} \ \omega 0^{4} + 432 \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2} + 563 \ \epsilon c^{2} \ \omega 0^{4} + 432 \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2} + 563 \ \epsilon c^{2} \ \omega 0^{4} + 432 \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2} + 563 \ \epsilon c^{2} \ \omega 0^{4} + 432 \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2} + 563 \ \epsilon c^{2} \ \omega 0^{4} + 432 \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2} + 563 \ \epsilon c^{2} \ \omega 0^{4} + 563 \ \epsilon c^{4} \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2} + 563 \ \epsilon c^{2} \ \omega 0^{4} + 563 \ \epsilon c^{4} \ \omega 0^{6}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{6} - 13 \ \epsilon c^{4} \ \omega 0^{2}\right) - \beta^{2} \left(8 \ \epsilon c^{4} \ \omega 0^{4}\right) - \beta^{2} \left(8 \ \epsilon c^{4} \ \omega 0^{4}\right) - \beta^{
                                                           \beta (12 \in c^{6} \omega 0^{2} + 85 \in c^{4} \omega 0^{4} + 89 \in c^{2} \omega 0^{6} - 432 \omega 0^{8}) - 4 \alpha^{4} \beta^{6} (\beta^{2} (355 \in c^{2} + 1059 \omega 0^{2}) - 6 \omega^{2} + 1059 \omega^{2}) = 0
                                                                                                               9 \beta \left(19 \epsilon c^{2} \omega 0^{2} + 35 \omega 0^{4}\right) + \omega 0^{2} \left(-80 - 31 \epsilon c^{4} + 135 \epsilon c^{2} \omega 0^{2} + 104 \omega 0^{4}\right) + 4 \alpha^{3} \beta^{9/2} \epsilon c
                                                                                 \left(\beta^{2} \left(333 \in c^{2} + 523 \,\omega 0^{2}\right) - 2 \,\omega 0^{2} \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 211 \,\omega 0^{4}\right) + \beta \left(289 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right)\right) - \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 211 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2} + 1795 \,\omega 0^{4}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2}\right) + \beta \left(136 + 44 \,\varepsilon c^{2} \,\omega 0^{2}\right) + \beta \left(136 + 44 \,\varepsilon c^{2}\right) + \beta \left(136 + 44 \,\varepsilon c^{
                                                             4 \alpha \beta^{3/2} \in c \left(\beta^2 \left(38 \in c^4 + 93 \in c^2 \omega 0^2 + 121 \omega 0^4\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 \in c^4 \omega 0^2 + 283 \in c^2 \omega 0^4\right) + \beta \left(36 (c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 (c^4 \omega 0^2 + 283 \in c^2 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 (c^4 \omega 0^2 + 283 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665 \omega 0^6)\right) + \beta \left(36 (c^4 \omega 0^4 + 665
                                                                                                               4 \left( e^{2} \omega^{4} \omega^{4} + e^{2} \omega^{2} (-44 + \omega^{4}) + 4 \omega^{4} (-31 + 4 \omega^{4}) \right) \right) -
                                                           \alpha^{2} \beta^{3} \left(\beta^{2} \left(363 \in c^{4} + 4607 \in c^{2} \omega 0^{2} + 5724 \omega 0^{4}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4} + 7076 \omega 0^{6}\right) + \beta \left(241 \in c^{4} \omega 0^{2} + 2085 \in c^{2} \omega 0^{4}\right) + \beta \left(241 (c^{4} \omega 0^{2} + 2085 (c^{4} \omega 0^{2} + 2085 (c^{4} \omega 0^{4} + 7076 \omega 0^{6})\right) + \beta \left(241 (c^{4} \omega 0^{2} + 2085 (c^{4} \omega 0^{4} + 7076 \omega 0^{6})\right) + \beta \left(241 (c^{4} \omega 0^{2} + 2085 (c^{4} \omega 0^{4} + 7076 \omega 0^{6})\right) + \beta \left(241 (c^{4} \omega 0^{2} + 2085 (c^{4} \omega 0^{4} + 7076 \omega 0^{6})\right) + \beta \left(241 (c^{4} \omega 0^{4} + 2085 (c^{4} \omega 0^{4} + 7076 \omega 0^{6})\right) + \beta \left(241 (c^{4} \omega 0^{4} + 2085 (c^{4} \omega 0^{4} + 7076 \omega 0^{6})\right)
                                                                                                            4 (39 \in c^{4} \omega 0^{4} + 8 \omega 0^{4} (-88 + \omega 0^{4}) + \epsilon c^{2} \omega 0^{2} (-132 + 97 \omega 0^{4}))))) / 
                                 \left(\sqrt{\beta} \left(\alpha \beta^{3/2} - 2 \epsilon c - 3 i \omega 0\right) \left(\alpha \beta^{3/2} - 2 \epsilon c + 3 i \omega 0\right) \omega 0^3\right)
                                                               \left(\epsilon c^{2}+2 \alpha \beta^{3/2} \left(3 \epsilon c-5 i \omega 0\right)-3 i \epsilon c \omega 0-4 \omega 0^{2}\right) \left(\epsilon c^{2}+2 \alpha \beta^{3/2} \left(3 \epsilon c+5 i \omega 0\right)+3 i \epsilon c \omega 0-4 \omega 0^{2}\right)\right),
           0, \left(-12 \,\alpha^8 \,\beta^{11} \,\omega 0^2 \,\left(40 \,\beta+21 \,\epsilon c^2+45 \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)-288 \,\omega 0^6 \,\left(-4+\beta \,\omega 0^2\right)+4 \,\epsilon c^6 \,\left(8-8 \,\beta^2+\beta \,\omega 0^2\right)+2 \,\epsilon c^6 \,\left(8-8 \,\beta^2
                                                             2 \in c^2 \omega 0^4 (-330 + 52 \beta^2 + 15 \beta \omega 0^2) + 2 \in c^4 \omega 0^2 (2 - 40 \beta^2 + 43 \beta \omega 0^2) +
                                                             4 \alpha^7 \beta^{19/2} \in c (-96 \beta^2 + 504 \beta \omega 0^2 + 177 \in c^2 \omega 0^2 + 329 \omega 0^4) -
                                                             8 \alpha^{5} \beta^{13/2} \epsilon c \left(20 \beta^{3} - 2 \beta^{2} \left(41 \epsilon c^{2} + 61 \omega 0^{2}\right) + \omega 0^{2} \left(8 + 19 \epsilon c^{4} + 36 \epsilon c^{2} \omega 0^{2} - 70 \omega 0^{4}\right) - 2 \epsilon c^{4} + 36 \epsilon^{2} \omega c^{2} + 36 \epsilon^{2} \omega c^{4} + 36 \epsilon^{2} + 36 \epsilon^{2} \omega c^{4} + 36 \epsilon^
                                                                                                          \beta (24 + 79 \epsilon c^2 \omega 0^2 + 273 \omega 0^4)) + \alpha^6 \beta^8 (160 \beta^3 + 32 \beta^2 (13 \epsilon c^2 - 87 \omega 0^2) - \alpha^6 \beta^8 (160 \beta^3 + 32 \beta^2 (13 \epsilon c^2 - 87 \omega 0^2)))
                                                                                                               8 \beta (256 \epsilon c^2 \omega 0^2 + 465 \omega 0^4) - \omega 0^2 (499 \epsilon c^4 + 2499 \epsilon c^2 \omega 0^2 + 3960 \omega 0^4)) +
                                                             4 \alpha^{3} \beta^{7/2} \in c \left(912 \omega 0^{4} - 8 \in c^{4} \omega 0^{4} + 52 \omega 0^{8} + 4 \beta^{3} \left(69 \in c^{2} + 377 \omega 0^{2}\right) - \beta^{2} \left(9 \in c^{4} + 40 \in c^{2} \omega 0^{2} + 479 \omega 0^{4}\right) + 2 (14 + 10 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (14 + 10) (1
                                                                                                               \epsilon c^{2} (228 \omega 0^{2} - 14 \omega 0^{6}) + 4 \beta (6 \epsilon c^{4} \omega 0^{2} + 4 \epsilon c^{2} (-31 + 13 \omega 0^{4}) - \omega 0^{2} (299 + 57 \omega 0^{4}))) +
                                                           \alpha^{2} \beta^{2} (8 \beta^{3} (25 \epsilon c^{4} + 7 \epsilon c^{2} \omega 0^{2} + 180 \omega 0^{4}) - 8 (13 \epsilon c^{4} \omega 0^{2} + 277 \epsilon c^{2} \omega 0^{4} + 512 \omega 0^{6}) + 
                                                                                                            \beta^2 (23 \in c^6 - 88 \in c^4 \omega 0^2 - 39 \in c^2 \omega 0^4 + 3496 \omega 0^6) +
                                                                                                               4 \beta \left(2 \in c^{6} \omega 0^{2} + \in c^{4} (191 + 138 \omega 0^{4}) + 4 \omega 0^{4} (185 + 482 \omega 0^{4}) + \in c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}))\right) - c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega 0^{4}) = c^{2} \omega 0^{2} (1231 + 904 \omega
                                                             2 \alpha^4 \beta^5 (12 \beta^3 (89 \epsilon c^2 + 72 \omega 0^2) + 2 \beta^2 (237 \epsilon c^4 + 1972 \epsilon c^2 \omega 0^2 + 5243 \omega 0^4) +
                                                                                                          \omega 0^{2} (4 \epsilon c^{6} + 87 \epsilon c^{4} \omega 0^{2} + 16 \omega 0^{2} (137 + 15 \omega 0^{4}) + \epsilon c^{2} (656 + 207 \omega 0^{4})) -
                                                                                                            \beta \left(203 \in c^{4} \omega 0^{2} + 8 \omega 0^{2} \left(167 + 906 \omega 0^{4}\right) + \epsilon c^{2} \left(184 + 2407 \omega 0^{4}\right)\right)\right) - 4 \alpha \sqrt{\beta} \epsilon c \left(8 \epsilon c^{4} \omega 0^{2} + 6 \epsilon c^{4} \omega 0^{2}\right)
                                                                                                               60 \in c^{2} \ \omega 0^{4} - 56 \ \omega 0^{6} + \beta^{3} \ \left(38 \in c^{4} + 70 \in c^{2} \ \omega 0^{2} - 408 \ \omega 0^{4}\right) + \beta^{2} \ \left(7 \in c^{4} \ \omega 0^{2} - 221 \in c^{2} \ \omega 0^{4} - 908 \ \omega 0^{6}\right) - \beta^{2} = 0
                                                                                                            2 \beta \left(-302 \omega 0^{4}+20 \omega 0^{8}+\epsilon c^{4} (47+7 \omega 0^{4})+\epsilon c^{2} (39 \omega 0^{2}+33 \omega 0^{6})\right)\right) \right) / (\beta^{3/2} \omega 0^{2}
                                                                  \left(4 \in c^{6} + 13 \in c^{4} \omega 0^{2} + 73 \in c^{2} \omega 0^{4} + 144 \omega 0^{6} + 4 \alpha^{4} \beta^{6} \left(9 \in c^{2} + 25 \omega 0^{2}\right) - 4 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} \in c \left(33 \in c^{2} + 97 \omega 0^{2}\right) + 2 \alpha^{3} \beta^{9/2} (1 + 2 \alpha^{3} + 2 \alpha^{3} + 2 \alpha^{3}) + 2 \alpha^{3} \beta^{9/2} (1 + 2 \alpha^{3} + 2 \alpha^{3}) + 2 \alpha^{3} \beta^{9/2} (1 + 2 \alpha^{3} + 2 \alpha^{3}) + 2 \alpha^{3} \beta^{9/2} (1 + 2 \alpha^{3} + 2 \alpha^{3}) + 2 \alpha^{3} \beta^{9/2} (1 + 2 \alpha^{3} + 2 \alpha^{3}) + 2 \alpha^{3} \beta^{9/2} (1 + 2 \alpha^{3}) + 2 \alpha^{3} \beta^{9/2} (1 + 2 \alpha^{3} + 2 \alpha^{3}) + 2 \alpha^{3} \beta^{9/2} (1 + 2 \alpha^{3} + 2 \alpha^{3}) + 2 \alpha^{3} \beta^{9/2} (1 + 2 \alpha^{3} + 2 \alpha^{3}) + 2 \alpha^{3} \beta^{9/2} (1 + 2 \alpha^{3}) + 2
                                                                                              4 \alpha \beta^{3/2} \in c \left( 11 \in c^4 + 38 \in c^2 \omega 0^2 + 11 \omega 0^4 \right) + \alpha^2 \beta^3 \left( 97 \in c^4 + 677 \in c^2 \omega 0^2 + 916 \omega 0^4 \right) \right) \right)
```

Matriz W40 = $4 i \omega 0$ I-A

W40 = Simplify $[4 * i * \omega 0 * \text{IdentityMatrix} [3] - A]$

 $\{4 \pm \omega 0, -1, 0\}, \{\omega 0^2, \epsilon c + 4 \pm \omega 0, -2 \beta \omega 0\}, \{\alpha \sqrt{\beta} \omega 0, 0, 4 \pm \omega 0\}\}$

Inversa da matriz W40 = $4 i^* \omega 0$ I-A

W40I = Simplify[Inverse[W40]]

$$\left\{ \left\{ \frac{2\,\mathrm{i}\,\mathrm{cc}\,\mathrm{c}\,\mathrm{8}\,\mathrm{u0}}{\alpha\,\beta^{3/2}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{8}\,\mathrm{cc}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{30}\,\mathrm{i}\,\mathrm{u0}^{2}}, \frac{2\,\mathrm{i}}{\alpha\,\beta^{3/2}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{8}\,\mathrm{cc}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{30}\,\mathrm{i}\,\mathrm{u0}^{2}}, \frac{\beta}{\alpha\,\beta^{3/2}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{8}\,\mathrm{cc}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{30}\,\mathrm{i}\,\mathrm{u0}^{2}}, \frac{\beta}{\alpha\,\beta^{3/2}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{8}\,\mathrm{cc}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{30}\,\mathrm{i}\,\mathrm{u0}^{2}} \right\}, \\ \left\{ -\frac{\alpha\,\beta^{3/2}\,\mathrm{-}\,\mathrm{8}\,\mathrm{cc}\,\mathrm{-}\,\mathrm{30}\,\mathrm{i}\,\mathrm{u0}}{\alpha\,\beta^{3/2}\,\mathrm{-}\,\mathrm{8}\,\mathrm{cc}\,\mathrm{-}\,\mathrm{30}\,\mathrm{i}\,\mathrm{u0}}, -\frac{8}{\alpha\,\beta^{3/2}\,\mathrm{-}\,\mathrm{8}\,\mathrm{cc}\,\mathrm{-}\,\mathrm{30}\,\mathrm{i}\,\mathrm{u0}}, \frac{4\,\mathrm{i}\,\beta}{\alpha\,\beta^{3/2}\,\mathrm{-}\,\mathrm{8}\,\mathrm{cc}\,\mathrm{-}\,\mathrm{30}\,\mathrm{i}\,\mathrm{u0}} \right\}, \\ \left\{ -\frac{\alpha\,\sqrt{\beta}}{2\,\left(\alpha\,\beta^{3/2}\,\mathrm{-}\,\mathrm{8}\,\mathrm{cc}\,\mathrm{-}\,\mathrm{30}\,\mathrm{i}\,\mathrm{u0}\right)}, -\frac{\alpha\,\sqrt{\beta}}{2\,\alpha\,\beta^{3/2}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{16}\,\mathrm{cc}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{60}\,\mathrm{i}\,\mathrm{u0}^{2}}, \frac{4\,\mathrm{i}\,\mathrm{cc}\,\mathrm{-}\,\mathrm{15}\,\mathrm{u0}}{2\,\alpha\,\beta^{3/2}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{16}\,\mathrm{cc}\,\mathrm{u0}\,\mathrm{-}\,\mathrm{60}\,\mathrm{i}\,\mathrm{u0}^{2}} \right\} \right\}$$

h40

{

$$\begin{split} & \mathbf{h} \mathbf{0} = \mathbf{Refine}[\mathbf{W} \mathbf{401}, \mathbf{3} * \mathbf{b}(\mathbf{h} 20, \mathbf{h} 20] + \mathbf{4} * \mathbf{b}[q, \mathbf{h} 30] + \mathbf{6} * \mathbf{c}[q, q, \mathbf{h} 20] + \mathbf{d}[q, q, q, q])] \\ & \left[\beta \right[\alpha \beta + \frac{6 \alpha \sqrt{\beta} \left(-3 i \sqrt{\beta} \omega 0 - 2 i \alpha^2 \beta^{5/2} \omega 0 + \alpha \beta \left(-5 \beta + 4 \omega 0^2 \right) \right) \right]^2}{\alpha \beta^{3/2} - 2 \epsilon c - 3 i \omega 0} - \frac{3 \alpha \beta \left(-3 i \sqrt{\beta} \omega 0 - 2 i \alpha^2 \beta^{5/2} \omega 0 + \alpha \beta \left(-5 \beta + 4 \omega 0^2 \right) \right) \right]^2}{\left(\alpha \beta^{3/2} - 2 \epsilon c - 3 i \omega 0 \right)^2 \omega 0^2} + \frac{3 \alpha \beta \left(-3 i \sqrt{\beta} \omega 0 - 2 i \alpha^2 \beta^{5/2} \omega 0 + \alpha \beta \left(-5 \beta + 4 \omega 0^2 \right) \right) \right)^2}{\left(\alpha \beta^{3/2} - 2 \epsilon c - 3 i \omega 0 \right)^2 \omega 0^2} + \frac{3 \alpha \beta \left(-3 i \sqrt{\beta} \omega 0 - 2 i \alpha^2 \beta^{5/2} \omega 0 + \alpha \beta \left(-5 \beta + 4 \omega 0^2 \right) \right) - 6 i \alpha^3 \beta^{9/2} \omega 0 \left(7 \beta - 6 \omega 0^2 \right) + \alpha \beta^{3/2} \left(-3 \beta^2 \left(3 \epsilon c + 40 i \omega 0 \right) - 6 i \omega 0 + \beta \left(83 \epsilon c + 219 i \omega 0 \right) \omega 0^2 \right) + \alpha^2 \beta^3 \left(-78 \beta^2 + 9 \left(2 i \epsilon c - 9 \omega 0 \right) \omega 0^3 + \beta \omega 0 \left(-27 i \epsilon c + 173 \omega 0 \right) \right) \right) \right) / \\ \left(\omega 0^2 \left(2 \alpha^2 \beta^3 + 18 \epsilon c^2 - \alpha \beta^{3/2} \left(13 \epsilon c + 30 i \omega 0 \right) + 75 i \epsilon c \omega 0 - 72 \omega 0^2 \right) \right) \right] \right) / \\ \left(\alpha \beta^{3/2} \omega 0 - 8 \epsilon c \omega 0 - 30 i \omega 0^2 \right) + \left(2 i \left(15 \sqrt{\beta} \omega 0 + 48 \alpha^2 \beta^{5/2} \omega 0 - 32 i \alpha \beta \left(\beta - \omega 0^2 \right) + \alpha \beta^{3/2} - 2 \epsilon c - 3 i \omega 0 \right) \right) \\ \frac{4 i \alpha^2 \beta^{5/2} \left(\beta - \omega 0^2 \right) \left(-i \epsilon c + 3 \omega 0 + \alpha^2 \beta^2 \omega 0 - 2 i \alpha \sqrt{\beta} \left(\beta - \omega 0^2 \right) \right) \\ - \frac{4 i \alpha^2 \beta^{5/2} \left(\beta - \omega 0^2 \right) \left(-i \epsilon c + 3 \omega 0 + \alpha^2 \beta^2 \omega 0 - 2 i \alpha \sqrt{\beta} \left(\beta - \omega 0^2 \right) \right) \\ - \frac{16 i \alpha \beta^{3/2} \left(-3 i \sqrt{\beta} \omega 0 - 2 i \alpha^2 \beta^{5/2} \omega 0 + \alpha \beta \left(-5 \beta + 4 \omega 0^2 \right) \right) \\ - \frac{4 (4 - 7 \beta^2) \left(-3 i \sqrt{\beta} \omega 0 - 2 i \alpha^2 \beta^{5/2} \omega 0 + \alpha \beta \left(-5 \beta + 4 \omega 0^2 \right) \right) }{\beta \left(\alpha \beta^{3/2} - 2 \epsilon c - 3 i \omega 0 \right) \omega 0} - \frac{16 (\alpha \beta^{3/2} - 2 \epsilon c - 3 i \omega 0) \omega 0}{\beta \left(\alpha \beta^{3/2} - 2 \epsilon c - 3 i \omega 0 \right) \omega 0} - \frac{16 (\alpha \beta^{3/2} \left(-3 i \sqrt{\beta} \omega 0 - 2 i \alpha^2 \beta^{5/2} \omega 0 + \alpha \beta \left(-5 \beta + 4 \omega 0^2 \right) \right) }{\beta \left(\alpha \beta^{3/2} - 2 \epsilon c - 3 i \omega 0 \right) \omega 0} - \frac{16 \alpha \beta^{3/2} \left(-3 i \sqrt{\beta} \omega 0 - 2 i \alpha^2 \beta^{5/2} \omega 0 + \alpha \beta \left(-5 \beta + 4 \omega 0^2 \right) \right) }{\beta \left(\alpha \beta^{3/2} - 2 \epsilon c - 3 i \omega 0 \right) \omega 0} - \frac{16 \alpha \beta^{3/2} \left(-3 i \sqrt{\beta} \omega 0 - 2 i \alpha^2 \beta^{5/2} \omega 0 + \alpha \beta \left(-5 \beta + 4 \omega 0^2 \right) \right)}{\beta \left(\alpha \beta^{3/2} - 2 \epsilon c - 3 i \omega 0 \right) \omega 0} - \frac{16 \alpha \beta^{3/2} \left(-3 i \sqrt{\beta} \omega 0 - 2$$

$$\begin{split} \frac{2 \, \sigma^2 \, \beta^2 \, \left(\beta - \omega \theta^2\right)}{\left(\alpha \, \beta^{3/2} - 2 \, c - 3 \, i \, \omega \theta\right) \, \omega \theta} & = \frac{1}{2} \, \left(\alpha \, \beta^{3/2} - 2 \, c - 3 \, i \, \omega \theta\right) \, \omega \theta} \\ + \\ & 3 \, \left(\frac{2 \, \alpha^2 \, \beta^{3/2} \left(-1 \, c \, c + 3 \, \omega \theta + \alpha^2 \, \beta^2 \, \omega \theta - 2 \, 1 \, \alpha \, \sqrt{\beta} \, \left(\beta - \omega \theta^2\right)\right)^2}{\left(\alpha \, \beta^{3/2} - 2 \, c - 3 \, i \, \omega \theta\right)^2 \, \omega \theta} \\ & \left(4 \, \alpha \, \beta^{3/2} \, \left(\beta - \omega \theta^2\right) \left(-1 \, c \, c + 3 \, \omega \theta + \alpha^2 \, \beta^2 \, \omega \theta - 2 \, 1 \, \alpha \, \sqrt{\beta} \, \left(\beta - \omega \theta^2\right)\right) \right) \left(\left(\alpha \, \beta^{3/2} - 2 \, c \, c - 3 \, i \, \omega \theta\right)^2 \, \omega \theta} \\ & \left(5 \, \alpha \, \beta^{3/2} \, \left(\beta - \omega \theta^2\right) \left(-1 \, \alpha c + 3 \, \omega \theta + \alpha^2 \, \beta^2 \, \omega \theta - 2 \, 1 \, \alpha \, \sqrt{\beta} \, \left(\beta - \omega \theta^2\right)\right) \right) \left(\left(\alpha \, \beta^{3/2} - 2 \, c \, c - 3 \, i \, \omega \theta\right)^2 \, \omega \theta^2\right) - \\ & \frac{3 \, \sqrt{\beta} \, \left(-3 \, i \, \sqrt{\beta} \, \omega \theta - 2 \, 1 \, \alpha^2 \, \beta^{3/2} \, \omega \theta + \alpha \, \beta \, \left(-5 \, \beta + 4 \, \omega \theta^2\right)\right)\right)^2}{\left(\alpha \, \beta^{3/2} - 2 \, c \, c - 3 \, i \, \omega \theta\right)^2 \, \omega \theta^2} \right) + \\ & 4 \, \left(\left(6 \, \left(9 \, \alpha^4 \, \beta^4 \, \omega \theta^2 + 3 \, \omega \theta \, \left(-1 \, \left(-4 + 7 \, \beta^2\right) \, c c + 6 \, \left(-1 + 4 \, \beta^2\right) \, \omega \theta\right) - 6 \, i \, \alpha^3 \, \beta^{3/2} \, \omega \theta} \\ & \left(7 \, \beta - 6 \, \omega^2\right) + \alpha \, \beta^{3/2} \, \left(1 \, 2 \, c - 9 \, \omega \theta\right) \, \omega^3 + \beta \, \omega \theta \, \left(-27 \, 1 \, c + 173 \, \omega \theta\right) \right)\right) \right) \right) \\ & \left(\sqrt{\beta} \, \omega \, 0 \, \left(2 \, \alpha^2 \, \beta^3 + 18 \, c^2 - \alpha \, \beta^{3/2} \, \left(1 \, 5 \, c + 3 \, 0 \, 4 \, \omega\right) + 75 \, 1 \, c \, \omega \theta - 72 \, \omega^2\right)\right) - \\ & 4 \, i \, 4 \, \left(\beta - \omega^2\right) \, \left(3 \, \alpha^4 \, \beta^{40} \, \omega^2 - 3 \, \alpha^{3/2} \, \left(1 \, 3 \, c + 3 \, 0 \, 1 \, \omega\right) + 75 \, 1 \, c \, \omega \theta - 72 \, \omega^2\right)\right) - \\ & \left(4 \, i \, \alpha \, \omega^2\right) \, \left(3 \, \alpha^4 \, \beta^{40} \, \omega^2 - 24 \, \alpha^3 \, \beta^{3/2} \, \omega \theta \, \left(27 \, 1 \, c \, c + 13 \, \omega \theta\right) \right) \right) \right) \right) \right) \\ & \left(\omega^2 \, \left(2 \, \alpha^2 \, \beta^3 + 18 \, c^2 - \alpha \, \beta^{3/2} \, \left(13 \, c \, c \, 3 \, 1 \, \omega \theta\right) + 75 \, 1 \, c \, \omega \theta - 72 \, \omega^2\right)\right) + \\ & \left(2 \, i \, \alpha^3 \, \beta^{3/2} \, \alpha^2 \, \theta^2 - 2 \, \theta^{3/2} \, \left(13 \, c \, c \, 3 \, 1 \, \omega \theta\right) + 75 \, 1 \, c \, \omega \theta - 72 \, \omega^2\right) \right) \right) \right) \right) \right) \\ & \left(\omega^2 \, \left(2 \, \alpha^2 \, \beta^3 + 18 \, c^2 - \alpha \, \beta^{3/2} \, \omega^2 \, \omega^2 \, \omega^2 \, \theta^2 \, \omega^2 \, \delta^3 \, \omega^2 \, \omega^2 \, \delta^3 \, \omega^2 \, \omega^2\right) + \sigma^2 \, \left(2 \, \alpha^2 \, \beta^3 + 1 \, \theta^2 - 2 \, \beta^3 \, \left(3 \, c \, a^2 \, 1 \, \theta^3 \, 2^2 \, \omega^2 \, \theta^3 \, a^3 \, \omega^2 \, \omega^2 \, \omega^2 \, \delta^3 \, \omega^2 \, \omega$$

$$\begin{split} & \frac{6 \, \alpha \, \sqrt{\beta} \, \left(-3 \, 1 \, \sqrt{\beta} \, \omega 0 - 2 \, 1 \, \alpha^2 \, \beta^{5/2} \, \omega 0 + \alpha \, \beta \, \left(-5 \, \beta + 4 \, \omega 0^2\right)\right)}{\alpha \, \beta^{5/2} - 2 \, cc - 3 \, 1 \, \omega 0\right)^2 \, \omega^2} \\ & \frac{3 \, \alpha \, \beta \, \left(-3 \, \frac{1}{4} \, \sqrt{\beta} \, \omega 0 - 2 \, 4 \, \alpha^2 \, \beta^{5/2} \, \omega 0 + \alpha \, \beta \, \left(-5 \, \beta + 4 \, \omega 0^2\right)\right)^2}{\left(\alpha \, \beta^{5/2} - 2 \, cc - 3 \, 1 \, \omega 0\right)^2 \, \omega^2} \\ & \left(8 \, \alpha \, \left(9 \, \alpha^4 \, \beta^5 \, \omega 0^2 + 3 \, \omega 0 \, \left(-1 \, \left(-4 + 7 \, \beta^2\right) \, cc + 6 \, \left(-1 + 4 \, \beta^2\right) \, \omega 0\right) - 6 \, 1 \, \alpha^3 \, \beta^{5/2} \, \omega 0 \, \left(7 \, \beta - 6 \, \omega 0^2\right) + \alpha \, \beta^{5/2} \, \left(3 \, zc + 40 \, ta \, 0\right) - 6 \, ta \, \omega + \beta \, \left(83 \, zc + 21 \, 9 \, 1 \, \omega 0\right) \, \omega 0^2 + \alpha \, \beta^{5/2} \, \left(2 \, 3 \, c^2 \, \beta^3 + 18 \, cc^2 - \alpha \, \beta^{5/2} \, \left(13 \, cc + 20 \, 1 \, \omega 0\right) + 75 \, 1 \, cc \, \omega 0 - 72 \, \omega 0^2\right) \right) \right) / \\ & \left(\omega 0^5 \, \left(2 \, \alpha^2 \, \beta^3 + 18 \, cc^2 - \alpha \, \beta^{5/2} \, \left(13 \, cc + 20 \, 1 \, \omega 0\right) + 75 \, 1 \, cc \, \omega 0 - 72 \, \omega 0^2\right) \right) \\ & \left(\alpha \, \beta^{3/2} - 8 \, cc - 30 \, 1 \, \omega 0\right) - \left[\beta \, \left[15 \, \sqrt{\beta} \, \omega 0 + 48 \, \alpha^2 \, \beta^{5/2} \, \omega 0 - 32 \, 1 \, \alpha \, \beta \, \left(\beta - \omega 0^2\right) \right) + \left(\alpha \, \beta^{3/2} - 2 \, cc - 3 \, 1 \, \omega 0\right) \right. \right. \\ & \left. \frac{4 \, 1 \, \alpha^2 \, \beta^{5/2} \, \left(\beta - \omega 0^2\right) \left(-1 \, cc + 3 \, \omega 0 + \alpha^2 \, \beta^2 \, \omega 0 - 2 \, 1 \, \alpha \, \sqrt{\beta} \, \left(\beta - \omega 0^2\right) \right) \\ & \left(\alpha \, \beta^{3/2} - 2 \, cc - 3 \, 1 \, \omega 0\right) \right. \right. \\ & \left. \frac{4 \, 1 \, \alpha^2 \, \beta^{5/2} \, \left(\beta - \omega 0^2\right) \left(-1 \, cc + 3 \, \omega 0 + \alpha^2 \, \beta^{5/2} \, \omega 0 + \alpha \, \beta \, \left(-5 \, \beta + 4 \, \omega 0^2\right) \right) \\ & \left(\alpha \, \beta^{3/2} - 2 \, cc - 3 \, 1 \, \omega 0\right) \right. \right. \\ & \left. \frac{4 \, \left(4 - 7 \, \beta^2\right) \left(-3 \, 1 \, \sqrt{\beta} \, \omega 0 - 2 \, 1 \, \alpha^2 \, \beta^{5/2} \, \omega 0 + \alpha \, \beta \, \left(-5 \, \beta + 4 \, \omega 0^2\right) \right) \\ & \left(\alpha \, \beta^{3/2} - 2 \, cc - 3 \, 1 \, \omega 0\right) \, \omega 0 \right. \\ \\ & \left. \frac{2 \, \alpha^2 \, \beta^{2/2} \, \left(\beta - \omega 0^2\right) \left(-3 \, 1 \, \sqrt{\beta} \, \omega 0 - 2 \, 1 \, \alpha^2 \, \beta^{5/2} \, \omega 0 + \alpha \, \beta \, \left(-5 \, \beta + 4 \, \omega 0^2\right) \right) \\ & \left(\alpha \, \beta^{3/2} - 2 \, cc - 3 \, 1 \, \omega 0\right) \, \omega 0 \right. \\ \\ & \left. \left. \frac{4 \, \alpha \, \beta^{3/2} \, \left(\beta - \omega 0^2\right) \left(-3 \, 1 \, \sqrt{\beta} \, \omega 0 - 2 \, 1 \, \alpha^2 \, \beta^{5/2} \, \omega 0 + \alpha \, \beta \, \left(-5 \, \beta + 4 \, \omega 0^2\right) \right) \right) \right\} \right. \\ \\ & \left. \left. \left. \left(\frac{4 \, \alpha \, \beta^{3/2} \, \left(\beta - \omega 0^2\right) \left(-3 \, 1 \, \sqrt{\beta} \, \omega 0 - 2 \, 1 \, \alpha^2 \, \beta^{5/2} \, \omega 0 + \alpha \, \beta \, \left(-5 \, \beta + 4 \, \omega 0^2\right) \right) \right) \right\} \right. \\ \\ & \left. \left. \left(\frac{4 \, \alpha \, \beta^{3/2}$$

$$\begin{split} \beta^{2} \left(-78 \beta^{2} + 9 \left(2 \ t \ c - 9 \ u 0 \right) u 0^{3} + \beta \ u 0 \left(-27 \ t \ c - 173 \ u 0 \right) \right) \right) \Big/ \\ \left(\sqrt{\beta} \ u 0 \left(2 \alpha^{2} \beta^{2} + 18 \ c \gamma^{2} - \alpha \beta^{3/2} \left(13 \ c + 301 \ u 0 \right) + 751 \ c \ u 0 - 72 \ u 0^{2} \right) \right) - \\ \left(41 \ \alpha \left(\beta - u 0^{2} \right) \left(9 \ \alpha^{4} \beta^{6} \ u 0^{2} + 3 \ u 0 \left(-1 \left(-4 + 7 \ \beta^{5} \right) \ c + 6 \left(-1 + 4 \ \beta^{2} \right) \ u 0 \right) - 61 \ a^{3} \beta^{3/2} \ u 0 \\ \left(7 \ \beta - 6 \ u^{2} \right)^{2} + q^{2} \beta^{3/2} \left(-2 \ \beta^{2/2} \left(13 \ c + 301 \ u 0 \right) + 751 \ c \ u 0 - 72 \ u 0^{2} \right) \right) + \\ \left(2^{2} \alpha^{2} \beta^{3/2} + 18 \ c^{2} - \alpha \beta^{3/2} \left(13 \ c + 301 \ u 0 \right) + 751 \ c \ c \ 0 - 72 \ u 0^{2} \right) \right) + \\ \left(2^{2} 1 \ \alpha^{2} \beta^{3/2} \left(-61 \ \alpha^{4} \beta^{6} \ u 0^{2} - 24 \ \alpha^{2} \beta^{3/2} \ u 0 \left(\beta - u 0^{2} \right) + c \left(3 \ c + 13 \ u 0 \right) \right) + \alpha^{3/2} \\ \left(\beta^{2} \left(51 \ i \ c - 194 \ u 0 \right) - 4 \ u 2 \beta \beta u 0^{2} \left(-28 \ u^{2} \ 18 \ c + 30 \ u 0 \right) + \alpha^{3/2} \\ \left(\beta^{2} \left(51 \ i \ c - 194 \ u 0 \right) - 4 \ u^{2} 2 \beta \beta u 0^{2} \right) + c \left(8 - 41 \ \beta^{2} + 25 \ \beta u 0^{2} \right) \right) \right) \right) \\ \left(u 0 \left(2 \alpha^{2} \beta^{3} + 18 \ c^{2} - \alpha \beta^{3/2} \left(12 \ c + 31 \ u 0 \right) u 0 + 75 \ i \ c \ u 0 - 72 \ u 0^{2} \right) \right) + \\ \left(2 \alpha \left(\beta - u 0^{2} \right) \left(-61 \ \alpha^{5} \beta^{4} \ u 0^{2} - 24 \ \alpha^{3} \beta^{3/2} \ u 0 \left(\beta - u 0^{2} \right) + c \left(8 - 41 \ \beta^{2} + 25 \ \beta u 0^{2} \right) \right) \right) \right) \right) \\ \left(u 0 \left(2 \alpha^{2} \beta^{3} + 18 \ c^{2} - \alpha \beta^{3/2} \left(13 \ c \ c + 30 \ 1 \ u 0 \right) x 0 \ \beta^{3/2} - 2 \ u 0^{2} \right) + a^{3/2} \\ \left(\beta^{4} \left(51 \ i \ c - 194 \ u 0 \right) - 4 \ u 0 + 29 \ \beta u 0^{2} \left(-3 \ i \ c \ s \ u 0 \right) + a^{3/2} \\ \left(\beta^{4} \left(51 \ i \ c \ -194 \ u 0 \right) - 4 \ u 0 \ 29 \ \beta u 0^{2} \left(-3 \ i \ c \ s \ u 0 \right) + a^{3/2} \\ \left(\beta^{4} \left(51 \ i \ c \ -194 \ u 0 \right) - 4 \ u 0 \ 29 \ \beta u 0^{2} \left(-3 \ i \ c \ s \ u 0 \right) + a^{3/2} \\ \left(\alpha^{2} \beta^{3} + 18 \ c^{2} - \alpha \beta^{3/2} \left(13 \ c \ c \ 30 \ 1 \ u 0 \right) + 75 \ i \ c \ u 0 - 72 \ u 0^{2} \right) \right) \right) \right) \\ \\ \left(u 0^{2} \left(2 \alpha^{2} \beta^{3} + 18 \ c^{2} - \alpha \beta^{3/2} \left(13 \ c \ c \ 30 \ 1 \ u 0 \right) + 75 \ i \ c \ u 0 - 72 \ u 0^{2} \right) \right) \right) \right) \\ \\ \left(u \beta^{3} \left(-3 \ a^{2} \left(3 \ c \ -3 \ a \ 0 \right) \right)^{2} \left($$

$$\begin{cases} 15 \sqrt{\beta} \ \omega 0 + 48 \ \alpha^2 \ \beta^{5/2} \ \omega 0 - \\ 32 \ t \ \alpha \ \beta \ (\beta - \omega 0^2) + \\ 6 \left[-\frac{8 \ \alpha \ \beta^2 \ (-i \ c + 3 \ \omega 0 + \alpha^2 \ \beta^2 \ \omega 0 - 2 \ i \ \alpha \ \sqrt{\beta} \ (\beta - \omega 0^2)) + \\ \alpha \ \beta^{5/2} - 2 \ c c - 3 \ i \ \omega 0 \right] \\ = \frac{4 \ i \ \alpha^2 \ \beta^{5/2} \ (\beta - \omega 0^2) \ (-i \ c + 3 \ \omega 0 + \alpha^2 \ \beta^2 \ \omega 0 - 2 \ i \ \alpha \ \sqrt{\beta} \ (\beta - \omega 0^2)) + \\ \alpha \ \beta^{5/2} - 2 \ c c - 3 \ i \ \omega 0 \right] \\ = \frac{16 \ t \ \alpha \ \beta^{3/2} \ (-3 \ i \ \sqrt{\beta} \ \ \omega 0 - 2 \ i \ \alpha^2 \ \beta^{5/2} \ \omega 0 + \alpha \ \beta \ (-5 \ \beta + 4 \ \omega^2)) + \\ \alpha \ \beta^{5/2} - 2 \ c c - 3 \ i \ \omega 0 \right] \\ = \frac{16 \ t \ \alpha \ \beta^{3/2} \ (-3 \ i \ \sqrt{\beta} \ \ \omega 0 - 2 \ i \ \alpha^2 \ \beta^{5/2} \ \omega 0 + \alpha \ \beta \ (-5 \ \beta + 4 \ \omega^2)) + \\ \alpha \ \beta^{5/2} - 2 \ c c - 3 \ i \ \omega 0 \ \omega 0 \\ = \frac{2 \ \alpha^2 \ \beta^2 \ (\beta - \omega 0^2) \ (-3 \ i \ \sqrt{\beta} \ \ \omega 0 - 2 \ i \ \alpha^2 \ \beta^{5/2} \ \omega 0 + \alpha \ \beta \ (-5 \ \beta + 4 \ \omega^2)) + \\ \alpha \ \beta^{5/2} - 2 \ c c - 3 \ i \ \omega 0 \ \omega 0 \\ = \frac{2 \ \alpha^2 \ \beta^{5/2} \ (-6 \ - 2 \ \alpha \ \beta^2 \ \ (-5 \ \beta + 4 \ \omega^2)) \ (\alpha \ \beta^{5/2} - 2 \ c c - 3 \ i \ \omega 0) \ \omega 0 \\ = \frac{2 \ \alpha^2 \ \beta^{5/2} \ (-6 \ - 2 \ \alpha^2 \ \ \beta^{5/2} \ \omega 0 - 2 \ i \ \alpha^2 \ \ \beta^{5/2} \ \omega 0 + \alpha \ \beta \ (-5 \ \beta + 4 \ \omega^2)) \ (\alpha \ \beta^{5/2} - 2 \ c c - 3 \ i \ \omega 0) \ \omega 0 \\ = \frac{2 \ \alpha^2 \ \beta^{5/2} \ (-6 \ - 2 \ \alpha^2 \ \ \beta^{5/2} \ \omega 0 - 2 \ i \ \alpha \ \sqrt{\beta} \ \ (\beta - \omega^2)) \ (-3 \ i \ \alpha^{5/2} \ \ (-2 \ c - 3 \ i \ \omega 0) \ \alpha^{5/2} \ \omega - 2 \ c - 3 \ i \ \omega 0) \ \omega^{5/2} + \\ = \frac{2 \ \alpha^2 \ \beta^{5/2} \ \omega 0 - 2 \ i \ \alpha^{5/2} \ \omega 0 - 2 \ i \ \alpha^{5/2} \ \omega 0 - 2 \ i \ \alpha^{5/2} \ (\beta - \omega^2) \) \ (\alpha \ \beta^{5/2} - 2 \ c - 3 \ i \ \omega 0)^{2} \ \omega^{5/2} \ \omega^{$$

$$\begin{aligned} (3 * blq, b2l) + blqb, b30l + 3 * blb20, b11l + 3 * clq, q, b11l + 3 * clq, q, b12l + dlq, q, q, qbl - 3 * C2l * b20l) \\ (3 (1 cc - 2 \omega 0) (-3 i \sqrt{\beta} \omega 0 - 2 i a^2 \beta^{3/2} \omega 0 + \alpha \beta (-5 \beta + 4 \omega 0^2)) \\ (-3 i a^4 \beta^6 \omega 0^2 + \alpha \beta^{3/2} (7 i \beta^2 cc + 2 \omega 0 + \beta (3 i cc - 11 \omega 0) \omega 0^2) + \\ \alpha^2 \beta^3 (-6 i \beta^2 + \beta (cc + i \omega 0) \omega 0 - (2 cc + i \omega 0) \omega^3) - 2 \alpha^3 \beta^{3/2} \omega 0 (\beta + \omega 0 (-2 i cc + \omega 0)) + \\ \omega 0 (6 i \omega 0 (-1 + \beta \omega 0^2) + ec (-4 - 3 \beta^2 + 4 \beta \omega 0^2)))) / \\ (\beta (cc + i \omega 0) (\alpha \beta^{3/2} - 2 cc - 3 i \omega 0)^2 \omega 0^2 (\alpha \beta^{3/2} \omega 0 - 2 cc \omega 0 - 3 i \omega 0^2)) + \\ \frac{3 \alpha \sqrt{\beta} (-3 i \sqrt{\beta} \omega 0 - 2 i a^2 \beta^{5/2} \omega 0 + \alpha \beta (-5 \beta + 4 \omega 0^2))}{\alpha \beta^{3/2} - 2 cc - 3 i \omega 0} + \\ \frac{3 \alpha \beta^{3/2} (-3 i \sqrt{\beta} \omega 0 - 2 i a^2 \beta^{5/2} \omega 0 + \alpha \beta (-5 \beta + 4 \omega 0^2))}{(\alpha \beta^{3/2} - 2 cc - 3 i \omega 0)} + \\ \frac{3 \alpha \beta^{3/2} (-3 i \sqrt{\beta} \omega 0 - 2 i a^2 \beta^{5/2} \omega 0 + \alpha \beta (-5 \beta + 4 \omega 0^2))}{(\alpha \beta^{3/2} - 2 cc - 3 i \omega 0)} + \\ \frac{3 \alpha \beta^{3/2} (-3 i \sqrt{\beta} \omega 0 - 2 i a^2 \beta^{5/2} \omega 0 + \alpha \beta (-5 \beta + 4 \omega 0^2))}{(\alpha \beta^{3/2} - 2 cc - 3 i \omega 0)} + \\ \frac{3 \alpha \beta^{3/2} (-3 i \sqrt{\beta} \omega 0 - 2 i a^2 \beta^{5/2} \omega 0 + \alpha \beta (-5 \beta + 4 \omega 0^2))}{(\alpha \beta^{3/2} - 2 \beta^2 - 2 cc - 3 i \omega 0) \omega^2} + \\ \frac{3 \alpha \beta^{3/2} (-3 i \sqrt{\beta} \omega 0 - 2 i a^2 \beta^{5/2} \omega 0 + \alpha \beta (-5 \beta + 4 \omega 0^2))}{(\alpha \beta^{3/2} (-3 \beta^2 + 9 (2 i cc - 9 \omega 0) \omega 0^3 + \beta \omega 0 - (-27 i cc + 173 \omega 0))) / \\ (\omega^2 (2 \alpha^2 \beta^3 + 18 cc^2 - \alpha \beta^{3/2} (13 cc + 3 0 i \omega 0) + 75 i cc \omega 0 - 72 \omega^2)) - \\ (3 \alpha (-i cc + 3 \omega 0 + \alpha^2 \beta^2 \omega 0 - 2 i \alpha \sqrt{\beta} (\beta - \omega^2))) \\ (-3 i \alpha^4 \beta^6 \omega^2 + \alpha \beta^{3/2} (7 i \beta^2 cc + 2 \omega 0 + \beta (3 i cc - 11 \omega 0) \omega^2) + \\ \alpha^2 \beta^3 (-6 i \beta^2 + \beta (cc + i \omega 0) \omega 0 - (2 cc + i \omega 0) \omega^2) - 2 \alpha^3 \beta^{3/2} \omega 0 (\beta + \omega 0 (-2 i cc + \omega 0)) + \\ \omega 0^2 (2 a^2 \beta^3 + 18 cc^2 - \alpha \beta^{3/2} (13 cc + 14 \omega 0) \omega^2 - 2 (cc + i \omega 0) \omega^2) - 2 \alpha^3 \beta^{3/2} \omega 0 (\beta + \omega 0 (-2 i cc + \omega 0)) + \\ \omega 0^2 (2 \omega (-4 i cc + 7 \omega 0) + \beta \omega^2 (2 cc^2 + 18 i cc \omega 0 - 29 \omega^2)) - \\ (3 \alpha^2 \beta^3 (-6 i \beta^3 + \beta (cc + 7 \omega 0) + \beta \omega^2 (2 cc^2 + 18 i cc \omega 0 - 29 \omega^2) + 2 \beta^2 (2 cc^2 + 6 i cc \omega 0 - 3 \omega^2)) + \\ \omega 0^2 (2 i cc^3 - 9 cc^2 \omega 0 - 17 i cc \omega^2 + 12 \omega^3 + 2 \alpha^2 \beta^3 (-3 i cc + 5 \omega 0) + \\ \omega 0^2 (2 i c$$

h31 = Refine[W20I.

h31

{ - (3

β

$$\left(7 \text{ i} \beta^{2} - 2\beta (3 \text{ εc + 13 i ω0}) \omega^{0} + (2 \text{ εc + 9 i ω0}) \omega^{3}\right) + \alpha \beta^{3/2} \\ \left(\beta^{2} (51 \text{ i} \text{ εc - 194 ω0}) - 4 \omega^{0} + 29\beta \omega^{2} (-3 \text{ i} \text{ εc + 8 ω0})\right) + \omega^{0} \\ \left(-6 \text{ i} \beta \text{ εc}^{2} \omega^{0} + 12 \text{ i} \omega^{0} (1 - 10\beta^{2} + 2\beta \omega^{2}) + \text{εc} (8 - 41\beta^{2} + 25\beta \omega^{2}))\right) \right) / \\ \left(\omega^{2} (2\alpha^{2}\beta^{3} + 18\text{ εc}^{2} - \alpha\beta^{3/2} (13\text{ εc + 30 i ω0}) + 75 \text{ i} \text{εc} \omega^{0} - 72\omega^{2}))\right) \right) / \\ \left(2\alpha\beta^{3/2} \omega^{0} - 16\text{εc} \omega^{0} - 60 \text{ i} \omega^{2})\right)$$

$$\begin{split} \left(\alpha \, \beta^{3/2} \, \omega 0 - 2 \, ec \, \omega 0 - 3 \, i \, \omega 0^2\right) + \left(\pm \left[15 \, \sqrt{\beta} \, \omega 0 - 16 \pm \alpha \, \beta \, \left(\beta - \omega 0^2\right) + \frac{2 \, \alpha^2 \, \beta^{5/2} \, \left(\beta - \omega 0^2\right)}{\omega 0} + \frac{2 \, \alpha^2 \, \beta^{5/2} \, \left(\beta - \omega 0^2\right)}{\omega 0}\right) + \frac{2 \, \alpha^2 \, \beta^{5/2} \, \left(\beta - \omega 0^2\right)}{\omega 0}\right) + \left(6 \, \left(9 \, \alpha^5 \, \beta^5 \, \omega 0^2 - 3 \, \omega 0 \, \left(-1 \, \left(-4 + 7 \, \beta^2\right) \, ec + 6 \, \left(-1 + 4 \, \beta^2\right) \, \omega 0\right) - 6 \, i \, \alpha^2 \, \beta^{3/2} \, \omega 0 \, \left(7 \, \beta - 6 \, \omega 0^2\right) + \alpha^2 \, \beta^3 \, \left(-78 \, \beta^2 + 9 \, \left(2 \, i \, ec - 9 \, \omega 0 \, \omega 0^3 + \beta \, \omega 0 \, \left(-27 \, i \, ec + 173 \, \omega 0 \, \right)\right)\right)\right) \right/ \\ \left(\sqrt{\beta} \, \omega 0 \, \left(2 \, \alpha^2 \, \beta^3 + 18 \, ec^2 - \alpha \, \beta^{3/2} \, \left(13 \, ec + 30 \, i \, \omega 0\right) + 75 \, i \, ec \, \omega 0 - 72 \, \omega^2\right)\right) + \left(4 \, i \, \alpha \, \left(\beta - \omega 0^2\right) \, e \, \alpha \, \beta^{3/2} \, \left(13 \, ec + 30 \, i \, \omega 0\right) + 75 \, i \, ec \, \omega 0 - 72 \, \omega^2\right)\right) + \left(4 \, i \, \alpha \, \left(\beta - \omega 0^2\right) \, e \, \alpha \, \beta^{3/2} \, \left(13 \, ec + 30 \, i \, \omega 0\right) + 75 \, i \, ec \, \omega 0 - 72 \, \omega^2\right)\right) + \alpha^2 \, \beta^3 \, \left(-78 \, \beta^4 + 9 \, \left(2 \, i \, ec - 9 \, \omega^3\right) \, \omega^3 \, \beta \, \omega^2 \, \left(-27 \, ec + 173 \, \omega^3\right) \, \omega^2\right) + \alpha^2 \, \beta^3 \, \left(-78 \, \beta^4 + 9 \, \left(2 \, i \, ec - 9 \, \omega^3\right) \, \omega^3 \, \beta \, \omega^2 \, \left(-27 \, ec + 173 \, \omega^3\right) \, \omega^2\right) + \alpha^2 \, \beta^3 \, \left(-78 \, \beta^4 + 9 \, \left(2 \, i \, ec - 9 \, \omega^3\right) \, \omega^3 \, \beta \, \omega^2 \, \left(-27 \, ec + 137 \, \omega^3\right) \, \omega^2\right) + \alpha^2 \, \beta^3 \, \left(-78 \, \beta^4 + 9 \, \left(2 \, i \, ec - 9 \, \omega^3\right) \, \omega^3 \, \beta \, \omega^2 \, \left(-27 \, ec + 137 \, \omega^3\right) \, \omega^2\right) + \alpha^2 \, \beta^{3/2} \, \left(2 \, \alpha^2 \, \beta^3 \, 18 \, ec^2 \, - \alpha \, \beta^{3/2} \, \left(13 \, ec + 30 \, 1 \, \omega^3\right) \, \omega^3 \, \beta \, \omega^2 \, \left(-27 \, ec + 31 \, \omega^3\right) \, \omega^2\right) + \alpha^2 \, \left(\frac{4 - 7 \, \beta^2}{\alpha} \, \left(-1 \, ec + 3 \, \omega^3 \, \alpha^2 \, 2c \, ec - 31 \, \omega^3\right) \, \omega^3\right) + \alpha^2 \, \left(\frac{2 \, \alpha^2 \, \beta^3 \, \left(\beta - \omega^2 \, \beta^2\right) \, \left(-1 \, ec + 3 \, \omega^2 \, \alpha^2 \, \beta^{5/2} \, \omega^2 \, \alpha \, \beta \, \left(-5 \, \beta + 4 \, \omega^2 \, \beta^2\right)\right) + \alpha^2 \, \left(\frac{2 \, \alpha^2 \, \beta^3 \, \left(\beta - \omega^2 \, \beta^2\right) \, \left(-1 \, ec + 3 \, \omega^2 \, \beta^{5/2} \, \omega^2 \, \alpha \, 21 \, \alpha \, \sqrt{\beta} \, \left(\beta - \omega^2 \, \beta^2\right) + \alpha^2 \, \left(\frac{2 \, \alpha^2 \, \beta^{3/2} \, \omega^2 \, \alpha^2 \,$$

$$\begin{cases} (\omega 0 \left(2 \alpha^2 \beta^2 + 18 e \alpha^2 - \alpha \beta^{2/2} (13 e \alpha^2 + 30 4 \omega 0 \right) + 75 4 e \alpha 0 - 72 \omega^2 \right) + \\ (2 \alpha \left(\beta - \alpha 0 \right)^2 \left(-16 4 \alpha^3 \beta^2 \omega^2 - 24 \alpha^2 \beta^{2/2} \omega 0 \left(\beta - \alpha 0 \right)^2 + 6 \alpha^2 \beta^2 \left(14 \beta^2 - 2\beta (3 \alpha^2 + 13 + \omega) \omega 0 + (2\alpha + 54 \omega 0) \psi 0 \right) + 6 \alpha^{2/2} \left(2^2 \left(3 \alpha^2 + 13 e \alpha^2 - \alpha \beta^{2/2} (13 e \alpha^2 + 30 (10 - 17 + 54 e \alpha) - 29 \omega^2 \right)^2 - (2 \alpha + 8 \omega + 5) + (2 \alpha^2 + 34 + 8 e^2 - \alpha \beta^{2/2} (13 e \alpha^2 + 30 (10 - 17 + 2\beta \omega \alpha^2) + e \alpha (8 - 41 \beta^2 + 25 \beta \omega \alpha^2)))) \right) \\ (\delta 0^2 \left(2 \alpha^2 \beta^{3/2} \left(8 \alpha^4 \beta^6 (e \alpha^2 + 31 \omega 0) \omega^2 + 4 \omega 0 \left(-2 1 e \alpha^2 + 9 e \omega 0 + 3 \omega^2 \right) + \beta^2 \left(4 e \alpha^2 + 9 (1 e \alpha^2 - 3 \alpha) - 22 (1 e \alpha^2 + 3 \omega^2) + 2 \alpha^2 \beta^2 \left(-\beta^2 (e \alpha^2 + 13 \omega + 2 \alpha) - 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) - 2 \alpha + 2 \alpha) + 2 \alpha^2 \beta^2 \left(-\beta^2 (e \alpha^2 + 13 \omega + 2 \alpha) + 2 \alpha^2 \beta^2 \left(-\beta^2 (\alpha^2 - 3 1 + 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha + 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha + 2 \alpha^2 \beta^2 (1 - \alpha^2 - 3 1 + 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \alpha^2 - 3 1 + 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \alpha^2 - 3 1 + 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \alpha^2 - 3 1 + 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha^2 \beta^2 (1 - \beta^2 - 2 \alpha) + 2 \alpha^2 \beta^2 (1 - 3$$

$$\begin{array}{l} 2\\ i\\ \beta\\ \\ \\ \left\{ -2 \, a \, \beta + \right\} \\ \\ \begin{array}{l} \frac{3 \, a \, \sqrt{\beta}}{2} \left(-3 \, 1 \, \sqrt{\beta} \, \omega 0 - 2 \, 1 \, a^2 \, \beta^{5/2} \, \omega 0 + a \, \beta \, \left(-5 \, \beta + 4 \, \omega 0^2 \right) \right)}{a \, \beta^{5/2} - 2 \, e a - 3 \, i \, \omega 0} + \\ \\ \frac{3 \, a \, \beta^{5/2} \left(-3 \, i \, \sqrt{\beta} \, \omega 0 - 2 \, i \, a^2 \, \beta^{5/2} \, \omega 0 + a \, \beta \, \left(-5 \, \beta + 4 \, \omega 0^2 \right) \right)}{\left(a \, \beta^{5/2} - 2 \, e a - 3 \, i \, \omega 0 \right) \, \omega 0^2} + \\ \\ \left(2 \, \sigma \, \left(9 \, a^4 \, \beta^4 \, \omega 0^2 + 3 \, \omega 0 \, \left(-4 \, \left(-47 \, 7 \, \beta^2 \right) \, g c + 6 \, \left(-1 + 4 \, \beta^2 \right) \, \omega 0 \right) - 6 \, 4 \, a^2 \, \beta^{5/2} \, \omega 0 \, \left(7 \, \beta - 6 \, \omega 0^2 \right) + \\ a \, \alpha^{3/2} \left(-3 \, \beta^2 \, \left(3 \, c c - 40 \, 1 \, \omega 0 \right) - 6 \, 1 \, \omega b^2 \, \left(8 \, 2 \, c c - 23 \, 1 \, \omega 0 \right) \, \omega 0^2 \right) \\ \left(2 \, \sigma \, \left(9 \, a^4 \, \beta^4 \, \omega 0^2 + 3 \, \omega 0 \, \left(-3 \, 1 \, a \, \omega \right) - 6 \, 1 \, \omega b^2 \, \left(8 \, 2 \, c \, c - 31 \, \omega 0 \right) \, \omega 0^2 \right) + \\ \alpha^2 \, \beta^{3/2} \left(-3 \, \beta^2 \, \left(3 \, c c - 40 \, 1 \, \omega 0 \right) - 6 \, 1 \, \omega b^2 \, \left(8 \, 2 \, c \, c - 31 \, \omega 0 \right) \, \omega 0^2 \right) \\ \left(3 \, \sigma \, \left(-4 \, c \, c + 3 \, \omega 0 + \sigma^2 \, \beta^{5/2} \, \left(7 \, 4 \, \beta^2 \, c c + 2 \, \omega 0 + \beta \, \left(3 \, 4 \, c - 11 \, \omega 0 \right) \, \omega 0^2 \right) + \\ \alpha^2 \, \beta^3 \, \left(-6 \, i \, \beta^{2} + \beta \, \left(c \, c + 4 \, \omega 0 \, \alpha - 2 \, \delta^{2/2} \, \left(7 \, 4 \, \beta^2 \, c c + 2 \, \omega + \beta \, \left(3 \, 4 \, c - 11 \, \omega 0 \, 1 \, \omega 0 \right) \left(2 \, - 2 \, \sigma^2 \, \beta^{3/2} \, \omega 0 \, \left(\beta + \omega \, 0 \, \left(-2 \, i \, c \, c \, \omega 0 \right) \right) + \\ \omega 0 \, \left(6 \, 1 \, \omega \, 0 \, \left(-1 \, \beta \, \omega \, 0^2 \, c \, - 2 \, 3 \, 1 \, \omega 0 \, 2^2 \, \omega^2 \, \right) \right) \right) \right) \right) \\ \left(\left((c \, c \, 1 \, a \, \omega) \, \left(a \, \beta^{3/2} - 2 \, c \, c \, 3 \, 1 \, \omega \, 0 \, 2^2 \, d^{2/2} \, \omega \, 0 \, \left(-1 \, a \, b \, \omega^2 \, 2^2 \, c^2 \, a \, 1 \, 1 \, c \, \omega \, 0^2 \, 2^2 \, d^2 \, 1 \, 1 \, c \, c \, c \, 3 \, 2^2 \, 2^2 \, 2 \, c^2 \, c^2 \, 1 \, 4^2 \, c^2 \, c^2 \, a^2 \, 1 \, 1 \, c^2 \, c^2 \, 3^2 \, 1 \, 1 \, c \, \omega \, 0^2 \, a^2 \, 1 \, 2^2 \, a^2 \, 1 \, 1 \, c \, \omega^2 \, a^2 \, 1 \, a^2 \, a^2 \, a^2 \, 1 \, a^2 \, a^2 \, a^2 \, 1 \, a^2 \, a^2 \, a^2 \, a^2 \, 1 \, a^2 \, a^$$

$$\begin{split} & 3 \left[-\frac{8 \ a \ b^2 \left(-1 \ c \ c \ +3 \ u \ 0 \ + a^2 \ \beta^2 \ u \ 0 \ - 2 \ 1 \ a \ \sqrt{\beta} \ \left(\beta \ - u \ 0^2\right)\right)}{\alpha \ \beta^{3/2} - 2 \ c \ - 3 \ 4 \ u \ 0} + \\ & - \frac{\left(4 - 7 \ \beta^2\right) \left(-3 \ 1 \ \sqrt{\beta} \ \ u \ 0 \ - 2 \ 1 \ a^2 \ \beta^{3/2} \ u \ + a \ \beta \ \left(-5 \ \beta \ + 4 \ u \ 0^2\right)\right)}{\beta \ \left(\alpha \ \beta^{3/2} - 2 \ c \ - 3 \ 1 \ u \ 0\right) \ u \ 0} + \\ & - \frac{2 \ a^2 \ \beta^2 \ \left(\beta \ - u \ 0^2\right) \left(-3 \ 1 \ \sqrt{\beta} \ \ u \ 0 \ - 2 \ 1 \ a^2 \ \beta^{3/2} \ u \ 0 \ + a \ \beta \ \left(-5 \ \beta \ + 4 \ u \ 0^2\right)\right)}{\left(\alpha \ \beta^{3/2} - 2 \ c \ - 3 \ 1 \ u \ 0\right) \ u \ 0} + \\ & - \frac{2 \ a^2 \ \beta^2 \ \left(\beta \ - u \ 0^2\right) \left(-3 \ 1 \ \sqrt{\beta} \ \ u \ 0 \ - 2 \ 1 \ a^2 \ \beta^{3/2} \ u \ 0 \ + a \ \beta \ \left(-5 \ \beta \ + 4 \ u \ 0^2\right)\right)}{\alpha \ \beta^{3/2} - 2 \ c \ - 3 \ 1 \ u \ 0} \ u \ 0 - \\ & - \frac{2 \ a \ \beta^2 \ \left(\beta \ - u \ 0^2\right) \left(-1 \ c \ c \ + 3 \ u \ 0 \ + a^2 \ \beta^2 \ u \ 0 \ - 2 \ 1 \ a \ \sqrt{\beta} \ \ \left(\beta \ - u \ 0^2\right)\right)}{\left(\alpha \ \beta^{3/2} - 2 \ c \ - 3 \ 1 \ u \ 0\right) \ u^2} + \\ & - \frac{2 \ a \ \beta^2 \ \left(\beta \ - u \ 0^2\right) \left(-1 \ c \ c \ + 3 \ u \ 0 \ + a^2 \ \beta^2 \ u \ 0 \ - 2 \ 1 \ a \ \sqrt{\beta} \ \ \left(\beta \ - u \ 0^2\right)\right)}{\left(\alpha \ \beta^{3/2} - 2 \ c \ - 3 \ 1 \ u \ 0\right) \ u^2} + \\ & - \frac{2 \ a \ \beta^2 \ \left(\beta \ - u \ 0^2\right) \left(-1 \ c \ c \ + 3 \ u \ 0 \ + a^2 \ \beta^2 \ u \ 0 \ - 2 \ 1 \ a \ \sqrt{\beta} \ \left(\beta \ - u \ 0^2\right)\right)}{\left(\alpha \ \beta^{3/2} - 2 \ c \ - 3 \ 1 \ u \ 0\right) \ u^2} + \\ & \frac{3 \ \beta \ \left(-3 \ i \ \sqrt{\beta} \ u \ 0 \ - 2 \ i \ a^2 \ \beta^{3/2} \ u \ 0 \ - 2 \ i \ a^2 \ \beta^{3/2} \ u \ 0 \ - 2 \ i \ a^2 \ \beta^{3/2} \ u^2 \ - 2 \ c \ - 3 \ 1 \ u^2\right) \ u^2} \right) \\ & \left(3 \ \left(\frac{5 \ \sqrt{\beta} \ u \ 0 \ + 4 \ a^2 \ \beta^{3/2} \ \left(1 \ \beta^2 \ c \ 2 \ u \ - 2 \ i \ \alpha^2 \ \beta^{3/2} \ u^2 \ - 2 \ c \ - 3 \ 1 \ u^2\right) \ u^2\right) - \left(3 \ u^2 \ u^2 \ u^2 \ - 2 \ u^2 \ a^2 \ u^2\ u^2 \ u^$$

$$\begin{split} & \left| e^{-2} \sin \theta - 7 e e^{-2} \sin \theta^{2} + 12 (\pm e^{-2}) + 8 \sin^{2} \left(2 e^{-2} + 17 + e^{-2} \sin \theta - 53 e e^{-2} e^{-2} + 1 \sin \theta + 2 e^{-2} e^{-2} \sin \theta^{-2} + 12 e^{-2} e^{-$$

$$\begin{cases} \left(ec + 4 a0 \right) \left(a \beta^{3/2} - 2 ec - 3 i a0 \right)^2 a0^2 \right) - 1 a^4 \beta^6 w0 \left(8 \beta + w0 \left(-8 i cc + 7 w0 \right) \right) + a \beta^{3/2} \left(2 w0 \left(-4 i cc + 7 w0 \right) + \beta w0^2 \left(2 cc^2 + 18 i cc w0 - 29 w0^2 \right) + 2 \beta^2 \right) \\ \left(2 cc^2 + 6 i cw0 - 3 w0^2 \right) + w0^2 \left(6 i w0 - (-1 + 3 w0^2) + ec - (-4 - 3 \beta^2 + 4 \beta w0^2) \right) - a^2 \beta^3 \left(\beta^2 \left(13 cc + 14 i w0 \right) + \beta \left(-2 cc + 9 i w0 \right) w0^2 + w0 \left(2 cc w0^2 + 1 \left(-4 + w0^2 \right) \right) \right) \right) \right) / \\ \left(w0^2 \left(2 i cc^2 - 9 cc^2 w0 - 17 i cc w0^2 + 12 w0^2 + 2 c^2 \beta^2 \left(-3 i cc + 5 w0 \right) + i w \beta^{3/2} \left(11 cc^2 + 25 i cc w0 - 26 w0^2 \right) \right) \right) \right) \right) / \\ \left(2 a \beta^{3/2} w0 - 4 cc w0 - 6 i w0^2 \right) - \left[a \sqrt{\beta} \left[15 \sqrt{\beta} w0 - 16 i a \beta \left(8 - w0^2 \right) + \frac{2 a^2 \beta^{5/2} \left(\beta - w0^2 \right)}{w0} \right) + \left(6 \left(9 a^4 \beta^6 w0^2 + 3 w0 \left(-i \left(-4 + 7 \beta^2 \right) cc + 6 \left(-1 + 4 \beta^2 \right) w0 \right) - 6 i a^2 \beta^{3/2} w0 \left(7 \beta - 6 wc^2 \right) + a^2 \beta^3 \left(-3 \beta^2 + 3 w0 \left(-i \left(-4 + 7 \beta^2 \right) cc + 6 \left(-1 + 4 \beta^2 \right) w0 \right) - 6 i a^2 \beta^{3/2} w0 \right) \right) \right) / \\ \left(\sqrt{\beta} w0 \left(2 a^2 \beta^2 + 18 cc^2 - a \beta^{3/2} \left(13 cc + 30 i w0 \right) + 75 i cc w0 - 72 w0^2 \right) + a^2 \beta^3 \left(-78 \beta^2 + 9 \left(2 i cc - 9 w0 \right) w0^3 + 8 w0 \left(-27 i cc + 173 w0 \right) \right) \right) \right) / \\ \left(w0^2 \left(2 a^2 \beta^3 + 18 cc^2 - a \beta^{3/2} \left(13 cc + 30 i w0 \right) + 75 i cc w0 - 72 w0^2 \right) + a^2 \beta^2 \left(-8 w0^2 + 21 cc - 9^2 a w0 \right) + 5 i cc w0 - 72 w0^2 \right) \right) + d^2 \beta^3 \left(-78 \beta^2 + 21 cc - 9 w0 w^3 + 8 w0 \left(-21 cc + 173 w0 \right) \right) \right) / \\ \left(w0^2 \left(2 a^2 \beta^3 + 18 cc^2 - a \beta^{3/2} \left(13 cc + 30 i w0 \right) + 75 i cc w0 - 72 w0^2 \right) \right) + d^2 \left(-3 c^2 \beta^2 + 21 cc - 2 m^2 w^2 + 8 a^2 \beta^2 - 2 cc - 3 i w0 \right) w0 + 2 m^2 \left(-3 w^2 \beta^2 - 2 cc - 3 i w0 \right) w0 + 2 m^2 \left(-3 w^2 \beta^2 - 2 cc - 3 i w0 \right) w0 + 2 m^2 \left(-3 w^2 \beta^2 - 2 cc - 3 i w0 \right) w0 + 2 m^2 \left(-3 w^2 \beta^2 - 2 cc - 3 i w0 \right) w0^2 + \frac{2 a^2 \beta^2 \left(\beta - w0^2 \right) \left(-3 i \sqrt{\beta} w0 - 2 i a^2 \beta^{3/2} w0 - 2 i a \sqrt{\beta} \left((\beta - w0^2 \right) \right) \right) + \frac{2 a \beta^2 \left(\beta - w0^2 \right) \left(-3 i \sqrt{\beta} w0 - 2 i a^2 \beta^{3/2} w0 - 2 i a \sqrt{\beta} \left((\beta - w0^2 \right) \right) + \frac{2 a^2 \beta^2 \left(\beta - w0^2 \right) \left(-3 i \sqrt{\beta} w0 - 2 i a^2 \beta^{3/2} w0 - 2 i a \sqrt{\beta} \left((\beta - w0^2 \right) \right) + \frac{2 a \beta^$$

L321 =

 $\label{eq:complex} \mbox{Refine}[\mbox{Complex}\mbox{Expand}[\mbox{Re}[6*p.b[\mbox{h11},\mbox{h21}]]],\ \beta \in \mbox{Reals && $\& $\alpha \in \mbox{Reals & $\& $\& $\omega 0 \in \mbox{Reals & $\& $\& $\omega 0 \in \mbox{Reals & $\& $\& $\beta > 0]$}; $$

L322 =

Refine[ComplexExpand[Re[*p.b*[h20b, h30]]], $\beta \in \text{Reals && } \alpha \in \text{Reals && } \omega 0 \in \text{Reals && } \beta > 0$];

L323 = Refine[ComplexExpand[Re[3 * *p.b*[h21b, h20]]], $\beta \in \text{Reals } \& \& \alpha \in \text{Reals } \& \& \epsilon c \in \text{Reals } \& \& \omega 0 \in \text{Reals } \& \& \beta > 0];$

L324 =

Refine [Complex Expand [Re[3 * p.b[q, h22]]], $\beta \in \text{Reals & } \alpha \in \text{Reals & } \epsilon \in \text{Reals & } \omega 0 \in \text{Reals & } \beta > 0$];

L325 =

Refine[ComplexExpand[Re[2 * *p.b*[qb, h31]]], $\beta \in$ Reals && $\alpha \in$ Reals && $\epsilon \in$ Reals && $\omega 0 \in$ Reals && $\beta > 0$];

L326 = Refine[ComplexExpand[Re[6 * *p.c*[*q*, h11, h11]]], $\beta \in \text{Reals } \&\& \alpha \in \text{Reals } \&\& \epsilon c \in \text{Reals } \&\& \omega 0 \in \text{Reals } \&\& \beta > 0];$

L327 = Refine[ComplexExpand[Re[3 * p.c[q, h20b, h20]]], $\beta \in \text{Reals & \& \alpha \in \text{Reals & \& } \epsilon c \in \text{Reals & \& } \omega 0 \in \text{Reals & \& } \beta > 0$];

L328 = Refine[ComplexExpand[Re[3 * p.c[q, q, h21b]]], $\beta \in \text{Reals } \&\& \alpha \in \text{Reals } \&\& \epsilon c \in \text{Reals } \&\& \omega 0 \in \text{Reals } \&\& \beta > 0$];

L329 = Refine[ComplexExpand[Re[6 * p.c[q, qb, h21]]], $\beta \in \text{Reals && } \alpha \in \text{Reals && } \epsilon c \in \text{Reals && } \omega 0 \in \text{Reals && } \beta > 0$];

L3210 = Refine[ComplexExpand[Re[6 * *p.c*[qb, h20, h11]]], $\beta \in \text{Reals \&\& \alpha \in \text{Reals \&\& } \epsilon c \in \text{Reals \&\& } \omega 0 \in \text{Reals \&\& } \beta > 0];$

L3211 =

L3212 =

 $\label{eq:complex} \mbox{Refine}[\mbox{Complex}\mbox{Expand}[\mbox{Re}[p.d[q,q,q,h20b]]], \mbox{$\beta \in \mbox{Reals && $\alpha \in \mb$

$$\begin{split} \textbf{L3213} &= \textbf{Refine}[\textbf{ComplexExpand}[\textbf{Re}[6*p.d[q, q, \textbf{qb}, \textbf{h11}]]], \\ \beta &\in \textbf{Reals &\& & \alpha \in \textbf{Reals &\& & } \epsilon c \in \textbf{Reals &\& & } \omega 0 \in \textbf{Reals &\& & } \beta > 0]; \end{split}$$

L3214 = Refine[ComplexExpand[Re[3 * *p.d*[*q*, qb, qb, h20]]], $\beta \in \text{Reals } \&\& \alpha \in \text{Reals } \&\& \epsilon c \in \text{Reals } \&\& \omega 0 \in \text{Reals } \&\& \beta > 0];$

L3215 = Refine[ComplexExpand[Re[p.e[q, q, q, qb, qb]]], $\beta \in \text{Reals } \& \alpha \in \text{Reals } \& \& \epsilon c \in \text{Reals } \& \& \omega 0 \in \text{Reals } \& \& \beta > 0$];

$$\omega_{0} = \frac{\sqrt{1 - \beta^{2}}}{\sqrt{\beta}};$$
(* ϵ_{c} *)
 $\epsilon_{c} = 2 * \alpha * \beta^{3/2};$

Simplificação

L321 = Simplify[L321]

```
 \begin{pmatrix} \alpha \ \beta^{3/2} \ (-6+3 \ (39+4 \ \alpha^2) \ \beta^2 - 3 \ (184+49 \ \alpha^2) \ \beta^4 + (1014+169 \ \alpha^2 - 230 \ \alpha^4) \ \beta^6 + (-810+77 \ \alpha^2 + 1191 \ \alpha^4 - 64 \ \alpha^6) \ \beta^8 + (237 - 133 \ \alpha^2 - 2013 \ \alpha^4 + 238 \ \alpha^6) \ \beta^{10} + \alpha^2 \ (22+669 \ \alpha^2 - 130 \ \alpha^4 + 64 \ \alpha^6) \ \beta^{12} + (383 \ \alpha^4 - 310 \ \alpha^6 - 688 \ \alpha^8) \ \beta^{14} + 2 \ \alpha^6 \ (149+840 \ \alpha^2 + 64 \ \alpha^4) \ \beta^{16} - 32 \ \alpha^8 \ (39+17 \ \alpha^2) \ \beta^{18} + 416 \ \alpha^{10} \ \beta^{20}) ) \ / 
 \left( 2 \ (-1+\beta^2) \ (1-\beta^2 + \alpha^2 \ \beta^4) \ (1-\beta^2 + 4 \ \alpha^2 \ \beta^4) \ ^3 \right)
```

```
 \left(\alpha \ \beta^{3/2} \left(216 + 9 \left(3 + 136 \ \alpha^{2}\right) \ \beta^{2} + 3 \left(-297 - 1121 \ \alpha^{2} + 46 \ \alpha^{4}\right) \ \beta^{4} + \left(837 + 1968 \ \alpha^{2} - 486 \ \alpha^{4}\right) \ \beta^{6} + \left(-189 + 2793 \ \alpha^{2} + 4733 \ \alpha^{4} + 142 \ \alpha^{6}\right) \ \beta^{8} - 2 \ \alpha^{2} \left(1311 + 5674 \ \alpha^{2} + 428 \ \alpha^{4}\right) \ \beta^{10} + \alpha^{4} \left(8019 + 2722 \ \alpha^{2} + 40 \ \alpha^{4}\right) \ \beta^{12} - 8 \ \alpha^{6} \left(315 + 17 \ \alpha^{2}\right) \ \beta^{14} + 96 \ \alpha^{8} \ \beta^{16}\right) \right) /
```

```
\left(24\left(-1+\beta^{2}\right)\left(9-27\beta^{2}+\left(27+49\alpha^{2}\right)\beta^{4}-\left(9+98\alpha^{2}\right)\beta^{6}+7\alpha^{2}\left(7+8\alpha^{2}\right)\beta^{8}-56\alpha^{4}\beta^{10}+16\alpha^{6}\beta^{12}\right)\right)
```

L323 = Simplify[L323]

L322 = Simplify[L322]

```
 \begin{pmatrix} \alpha \ \beta^{3/2} \ (36 + (-9 + 44 \ \alpha^2) \ \beta^2 + (-333 + 171 \ \alpha^2 + 82 \ \alpha^4) \ \beta^4 + (549 - 1268 \ \alpha^2 - 590 \ \alpha^4) \ \beta^6 + (-243 + 1845 \ \alpha^2 + 1033 \ \alpha^4 + 266 \ \alpha^6) \ \beta^8 - 4 \ \alpha^2 \ (198 + 56 \ \alpha^2 + 401 \ \alpha^4) \ \beta^{10} + \alpha^4 \ (-757 + 2302 \ \alpha^2 + 112 \ \alpha^4) \ \beta^{12} - 4 \ \alpha^6 \ (237 + 154 \ \alpha^2) \ \beta^{14} + 504 \ \alpha^8 \ \beta^{16}) \end{pmatrix} / (12 \ (-1 + \beta^2) \ (-1 + \beta^2 - 4 \ \alpha^2 \ \beta^4)^2 \ (1 - \beta^2 + \alpha^2 \ \beta^4) )
```

L324 = Simplify[L324]

```
 \begin{array}{c} -\left(\alpha\ \beta^{3/2}\ \left(-45+\left(333-240\ \alpha^{2}\right)\ \beta^{2}+\left(-675+1698\ \alpha^{2}+4\ \alpha^{4}\right)\ \beta^{4}+\left(477-3174\ \alpha^{2}-1022\ \alpha^{4}\right)\ \beta^{6}+\left(-36+2529\ \alpha^{2}+7390\ \alpha^{4}+309\ \alpha^{6}\right)\ \beta^{8}-2\ \left(27+564\ \alpha^{2}+8973\ \alpha^{4}+1891\ \alpha^{6}\right)\ \beta^{10}+3\ \alpha^{2}\ \left(105+7162\ \alpha^{2}+5152\ \alpha^{4}+292\ \alpha^{6}\right)\ \beta^{12}-2\ \alpha^{4}\ \left(4956+12\ 209\ \alpha^{2}+2606\ \alpha^{4}\right)\ \beta^{14}+\alpha^{6}\ \left(13\ 923+9476\ \alpha^{2}+544\ \alpha^{4}\right)\ \beta^{16}-4\ \alpha^{8}\ \left(1557+544\ \alpha^{2}\right)\ \beta^{18}+1632\ \alpha^{10}\ \beta^{20}\right)\right)\ \\ \left(3\ \left(-1+\beta^{2}\right)\ \left(1-\beta^{2}+\alpha^{2}\ \beta^{4}\right)\ \left(1-\beta^{2}+4\ \alpha^{2}\ \beta^{4}\right)^{3}\right) \end{array}
```
L325 = Simplify[L325]

```
-\left(\alpha \beta^{3/2} \left(864 + \left(-7551 + 456 \alpha^2\right) \beta^2 + \left(26343 - 10229 \alpha^2 + 230 \alpha^4\right) \beta^4 + \left(-47871 + 59110 \alpha^2 - 9234 \alpha^4\right) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^4) \beta^6 + (-47871 + 59110 \alpha^2 - 9234 \alpha^2) \beta^6 + (-47871 + 59110 \alpha^2) \beta^6 + (-47871 + 59110 \alpha^2) \beta^6 + (-4
                                                          (2781 - 438091 \alpha^2 + 433714 \alpha^4 + 262131 \alpha^6 + 2562 \alpha^8) \beta^{12} +
                                                          (2547 + 331814 \alpha^2 - 408676 \alpha^4 - 934600 \alpha^6 - 49866 \alpha^8) \beta^{14} +
                                                          (-819 - 139725 \alpha^2 + 155973 \alpha^4 + 1611692 \alpha^6 + 352625 \alpha^8 + 7210 \alpha^{10}) \beta^{16} +
                                                       \alpha^{2} (24 984 + 13 067 \alpha^{2} - 1 411 008 \alpha^{4} - 979 508 \alpha^{6} - 72 876 \alpha^{8}) \beta^{18} +
                                                       \alpha^4 (-17710 + 590611 \alpha^2 + 1199212 \alpha^4 + 317880 \alpha^6 + 8808 \alpha^8) \beta^{20} -
                                                       2 \alpha^{6} (44704 + 318221 \alpha^{2} + 285082 \alpha^{4} + 33372 \alpha^{6}) \beta^{22} +
                                                       \alpha^{8} \left(111 \, 417 + 404 \, 830 \, \alpha^{2} + 187 \, 560 \, \alpha^{4} + 4704 \, \alpha^{6}\right) \, \beta^{24} - 40 \, \alpha^{10} \left(2172 + 5005 \, \alpha^{2} + 672 \, \alpha^{4}\right) \, \beta^{26} + 672 \, \alpha^{4} + 722 \, \alpha
                                                       16 \alpha^{12} (4139 + 2914 \alpha^{2} + 56 \alpha^{4}) \beta^{28} - 1152 \alpha^{14} (19 + 3 \alpha^{2}) \beta^{30} + 2560 \alpha^{16} \beta^{32})) /
                    \left(4 \left(-1+\beta^{2}\right) \left(9-9 \beta^{2}+4 \alpha^{2} \beta^{4}\right) \left(1-2 \beta^{2}+\left(1+5 \alpha^{2}\right) \beta^{4}-5 \alpha^{2} \beta^{6}+4 \alpha^{4} \beta^{8}\right)^{3}\right)
```

L326 = Simplify[L326]

 $6 \alpha \beta^{7/2} \left(3 \left(-5 + 6 \beta^2 \right) + \alpha^2 \left(-2 + 22 \beta^2 - 20 \beta^4 \right) + 2 \alpha^4 \left(\beta^2 - 3 \beta^4 + 2 \beta^6 \right) \right)$ $(-1 + \beta^2) (1 - \beta^2 + 4 \alpha^2 \beta^4)$

L327 = Simplify[L327]

```
(\alpha \beta^{7/2} (9 (1 + \beta^2 - 2 \beta^4) - 2 \alpha^4 \beta^2 (-4 + 21 \beta^2 - 83 \beta^4 + 82 \beta^6) +
          \alpha^{2} (28 + 32 \beta^{2} - 267 \beta^{4} + 282 \beta^{6}) + 2 \alpha^{6} (\beta^{6} - 3 \beta^{8} + 2 \beta^{10}))) /
  (3(-1+\beta^2)(1-2\beta^2+(1+5\alpha^2)\beta^4-5\alpha^2\beta^6+4\alpha^4\beta^8))
```

L328 = Simplify[L328]

```
(\alpha \beta^{3/2} (-12 + 3 (51 + 4 \alpha^2) \beta^2 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^4 + (435 - 1192 \alpha^2 - 122 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^4 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^2 + 42 \alpha^4) \beta^6 + (-423 + 349 \alpha^4)
                                                                                (-153 + 1271 \alpha^2 - 357 \alpha^4 + 162 \alpha^6) \beta^8 - 8 \alpha^2 (55 - 166 \alpha^2 + 76 \alpha^4) \beta^{10} +
                                                                                3 \alpha^4 (-321 + 178 \alpha^2 + 40 \alpha^4) \beta^{12} - 8 \alpha^6 (29 + 45 \alpha^2) \beta^{14} + 240 \alpha^8 \beta^{16})) /
```

```
(4(-1+\beta^2)(-1+\beta^2-4\alpha^2\beta^4)^2(1-\beta^2+\alpha^2\beta^4))
```

L329 = Simplify[L329]

```
(\alpha \beta^{3/2} (12 - (141 + 16 \alpha^2) \beta^2 + (552 + 375 \alpha^2 + 6 \alpha^4) \beta^4 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^4) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^2) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^2) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^2) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^2) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^2) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^2) \beta^6 + (-930 - 1351 \alpha^2 + 472 \alpha^2) \beta^6 + (-930 - 1351 \alpha^2
                                                                                                                          \left(708 + 1933 \, \alpha^2 - 2933 \, \alpha^4 + 182 \, \alpha^6 \right) \, \beta^8 - \left(201 + 1233 \, \alpha^2 - 5039 \, \alpha^4 + 1054 \, \alpha^6 \right) \, \beta^{10} + 1000 \, \alpha^{10} + 1000 \, \alpha^
                                                                                                               \alpha^{2} \left(292 - 2813 \alpha^{2} + 990 \alpha^{4} + 16 \alpha^{6}\right) \beta^{12} + \left(229 \alpha^{4} + 86 \alpha^{6} - 192 \alpha^{8}\right) \beta^{14} - 
                                                                                                                  4 \alpha^{6} (123 + 112 \alpha^{2} + 40 \alpha^{4}) \beta^{16} + 48 \alpha^{8} (17 + 10 \alpha^{2}) \beta^{18} - 320 \alpha^{10} \beta^{20})) /
```

```
(2(-1+\beta^2)(1-\beta^2+\alpha^2\beta^4)(1-\beta^2+4\alpha^2\beta^4)^3)
```

L3210 = Simplify[L3210]

```
-(2 \alpha \beta^{3/2} (-24 + (57 + 13 \alpha^2) \beta^2 + (-36 + 10 \alpha^2 + 5 \alpha^4) \beta^4 +
                                                                                                                                                   \left( 3\,-\,133\,\,\alpha^2\,-\,34\,\,\alpha^4 \right)\,\,\beta^6\,+\,\alpha^2\,\,\left( 125\,+\,111\,\,\alpha^2\,+\,2\,\,\alpha^4 \right)\,\,\beta^8\,-\,6\,\,\alpha^4\,\,\left( 15\,+\,\alpha^2 \right)\,\,\beta^{10}\,+\,4\,\,\alpha^6\,\,\beta^{12} \,\right)\,\,/\,\,\beta^{10}\,+\,4\,\,\alpha^6\,\,\beta^{12} \,\right)\,\,\beta^{10}\,+\,4\,\,\alpha^6\,\,\beta^{12} \,\,\beta^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,+\,\beta^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,\alpha^{11}\,\,
                                                 ((-1 + \beta^2) (1 - 2\beta^2 + (1 + 5\alpha^2)\beta^4 - 5\alpha^2\beta^6 + 4\alpha^4\beta^8))
```

L3211 = Simplify[L3211]

```
 \left(\alpha \beta^{3/2} \left(-576 + 9 \left(253 + 200 \alpha^{2}\right) \beta^{2} + \left(-3213 - 4501 \alpha^{2} + 150 \alpha^{4}\right) \beta^{4} - 9 \left(-211 - 128 \alpha^{2} + 138 \alpha^{4}\right) \beta^{6} + \left(-387 + 4455 \alpha^{2} + 10363 \alpha^{4} + 98 \alpha^{6}\right) \beta^{8} - 2 \alpha^{2} \left(1453 + 10286 \alpha^{2} + 532 \alpha^{4}\right) \beta^{10} + \alpha^{4} \left(11685 + 3246 \alpha^{2} + 8 \alpha^{4}\right) \beta^{12} - 8 \alpha^{6} \left(301 + 3 \alpha^{2}\right) \beta^{14} + 16 \alpha^{8} \beta^{16}\right) \right) / \left(8 \left(-1 + \beta^{2}\right) \left(9 - 27 \beta^{2} + \left(27 + 49 \alpha^{2}\right) \beta^{4} - \left(9 + 98 \alpha^{2}\right) \beta^{6} + 7 \alpha^{2} \left(7 + 8 \alpha^{2}\right) \beta^{8} - 56 \alpha^{4} \beta^{10} + 16 \alpha^{6} \beta^{12}\right) \right) \right)
```

L3212 = Simplify[L3212]

```
\frac{\alpha \, \beta^{3/2} \, \left(-6+9 \, \left(5+4 \, \alpha^2\right) \, \beta^2-\left(39+167 \, \alpha^2\right) \, \beta^4+\alpha^2 \, \left(201+4 \, \alpha^2\right) \, \beta^6-24 \, \alpha^4 \, \beta^8\right)}{3 \, \left(1-2 \, \beta^2+\left(1+5 \, \alpha^2\right) \, \beta^4-5 \, \alpha^2 \, \beta^6+4 \, \alpha^4 \, \beta^8\right)}
```

L3213 = Simplify[L3213]

```
\frac{12 \,\alpha \,\beta^{7/2} \,\left(-9+2 \,\alpha^2 \,\left(-1+5 \,\beta^2\right)\right)}{1-\beta^2+4 \,\alpha^2 \,\beta^4}
```

L3214 = Simplify[L3214]

```
\frac{\alpha \,\beta^{3/2} \,\left(30-\left(33+4 \,\alpha^2\right) \,\beta^2+\left(3-65 \,\alpha^2\right) \,\beta^4+\alpha^2 \,\left(147+20 \,\alpha^2\right) \,\beta^6-96 \,\alpha^4 \,\beta^8\right)}{1-2 \,\beta^2+\left(1+5 \,\alpha^2\right) \,\beta^4-5 \,\alpha^2 \,\beta^6+4 \,\alpha^4 \,\beta^8}
```

L3215 = Simplify[L3215]

```
\frac{\alpha \,\beta^{3/2} \,\left(1+2 \,\left(7+8 \,\alpha^2\right) \,\beta^2-32 \,\alpha^2 \,\beta^4\right)}{1-\beta^2+4 \,\alpha^2 \,\beta^4}
```

Segundo coeficiente de Lyapunov

```
\begin{split} & \mathbf{12} = (\mathbf{1}/\mathbf{12}) * \mathbf{Simplify} [\mathbf{L321} + \mathbf{L322} + \mathbf{L323} + \mathbf{L324} + \mathbf{L325} + \\ & \mathbf{L326} + \mathbf{L327} + \mathbf{L328} + \mathbf{L329} + \mathbf{L3210} + \mathbf{L3211} + \mathbf{L3212} + \mathbf{L3213} + \mathbf{L3214} + \mathbf{L3215}] \\ & \left(\alpha \ \beta^{3/2} \ \left(-162 - 54 \ \left(-9 + 37 \ \alpha^2\right) \ \beta^2 - 9 \ \left(-126 + 61 \ \alpha^2 + 60 \ \alpha^4\right) \ \beta^4 - 18 \ \left(405 - 3212 \ \alpha^2 + 1128 \ \alpha^4\right) \ \beta^6 + \\ & \left(13 \ 770 - 210 \ 843 \ \alpha^2 + 113 \ 612 \ \alpha^4 - 5533 \ \alpha^6\right) \ \beta^8 - 6 \ \left(2133 - 57 \ 687 \ \alpha^2 + 38 \ 218 \ \alpha^4 + 5186 \ \alpha^6\right) \ \beta^{10} + \\ & \left(5994 - 301 \ 275 \ \alpha^2 + 215 \ 340 \ \alpha^4 + 284 \ 264 \ \alpha^6 - 16 \ 022 \ \alpha^8\right) \ \beta^{12} + \\ & 2 \ \left(-567 + 67 \ 878 \ \alpha^2 - 45196 \ \alpha^4 - 379 \ 430 \ \alpha^6 + 9347 \ \alpha^8\right) \ \beta^{14} + \\ & \alpha^2 \ \left(-25 \ 029 + 9540 \ \alpha^2 + 990 \ 831 \ \alpha^4 + 155 \ 856 \ \alpha^6 - 21 \ 205 \ \alpha^8\right) \ \beta^{16} + \\ & 4 \ \alpha^4 \ \left(513 - 163 \ 340 \ \alpha^2 - 120 \ 616 \ \alpha^4 + 16 \ 768 \ \alpha^6\right) \ \beta^{18} - \\ & 2 \ \alpha^6 \ \left(-86 \ 887 - 258 \ 835 \ \alpha^2 + 30 \ 173 \ \alpha^4 + 7208 \ \alpha^6\right) \ \beta^{20} + \\ & 2 \ \alpha^8 \ \left(-96 \ 867 - 8956 \ \alpha^2 + 23 \ 208 \ \alpha^4\right) \ \beta^{22} + \alpha^{10} \ \left(33 \ 671 - 58 \ 288 \ \alpha^2 - 4880 \ \alpha^4\right) \ \beta^{24} + \\ & 16 \ \alpha^{12} \ \left(1603 + 718 \ \alpha^2\right) \ \beta^{26} - 16 \ \alpha^{14} \ \left(453 + 40 \ \alpha^2\right) \ \beta^{28} + 640 \ \alpha^{16} \ \beta^{30}\right) \right) \Big/ \\ & \left(36 \ \left(9 - 9 \ \beta^2 + 4 \ \alpha^2 \ \beta^4\right) \ \left(1 - 2 \ \beta^2 + \left(1 + 5 \ \alpha^2\right) \ \beta^4 - 5 \ \alpha^2 \ \beta^6 + 4 \ \alpha^4 \ \beta^8\right)^3\right) \end{split}
```

Cálculos para o terceiro coeficiente de Lyapunov

Numerador de L1

```
\begin{split} g[\beta_-, \ \alpha_-] &:= \ \alpha * \beta^{\wedge} (3/2) * (\beta^{\wedge} 2 \ - \ 1) * (\alpha^{\wedge} 4 * \beta^{\wedge} 6 \ + \\ & (\alpha^{\wedge} 2 \ - \ 5) * \beta^{\wedge} 2 \ + \ 3); \end{split}
```

Numerador de L2

```
\begin{split} h[\beta_{-}, \alpha_{-}] &:= \alpha * \beta^{\wedge} (3/2) * (-162 - 54 * (-9 + 37 * \alpha^{2}) * \beta^{\wedge} 2 - \\ & 9 * (-126 + 61 * \alpha^{\wedge} 2 + 60 * \alpha^{\wedge} 4) * \beta^{\wedge} 4 - \\ & 18 * (405 - 3212 * \alpha^{\wedge} 2 + 1128 * \alpha^{\wedge} 4) * \beta^{\wedge} 6 + \\ & (13770 - 210843 * \alpha^{\wedge} 2 + 113612 * \alpha^{\wedge} 4 - 5533 * \alpha^{\wedge} 6) * \beta^{\wedge} 8 - \\ & 6 * (2133 - 57687 * \alpha^{\wedge} 2 + 38218 * \alpha^{\wedge} 4 + 5186 * \alpha^{\wedge} 6) * \beta^{\wedge} 10 + \\ & (5994 - 301275 * \alpha^{\wedge} 2 + 215340 * \alpha^{\wedge} 4 + 284264 * \alpha^{\wedge} 6 - 16022 * \alpha^{\wedge} 8) * \\ & \beta^{1}12 + 2 * (-567 + 67878 * \alpha^{\wedge} 2 - 45196 * \alpha^{\wedge} 4 - 379430 * \alpha^{\wedge} 6 + \\ & 9347 * \alpha^{\wedge} 8) * \beta^{\wedge} 14 + \alpha^{2} * (-25029 + 9540 * \alpha^{\wedge} 2 + 990831 * \alpha^{\wedge} 4 + \\ & 155856 * \alpha^{\wedge} 6 - 21205 * \alpha^{\wedge} 8) * \beta^{\wedge} 16 + \\ & 4 * \alpha^{\wedge} 4 * (513 - 163340 * \alpha^{\wedge} 2 - 120616 * \alpha^{\wedge} 4 + 16768 * \alpha^{\wedge} 6) * \beta^{\wedge} 18 - \\ & 2 * \alpha^{\wedge} 6 * (-86887 - 258835 * \alpha^{\wedge} 2 + 30173 * \alpha^{\wedge} 4 + 7208 * \alpha^{\wedge} 6) * \beta^{\wedge} 20 + \\ & 2 * \alpha^{\wedge} 8 * (-96867 - 8956 * \alpha^{\wedge} 2 + 23208 * \alpha^{\wedge} 4) * \beta^{\wedge} 22 + \\ & \alpha^{1}10 * (33671 - 58288 * \alpha^{\wedge} 2 - 4880 * \alpha^{\wedge} 4) * \beta^{\wedge} 24 + \\ & 16 * \alpha^{1} 12 * (1603 + 718 * \alpha^{\wedge} 2) * \beta^{\wedge} 26 - 16 * \alpha^{1} 14 * (453 + 40 * \alpha^{\wedge} 2) * \\ & \beta^{\wedge} 28 + 640 * \alpha^{1} 16 * \beta^{\wedge} 30) \end{split}
```

Valores de α e β na intercessão entre as curvas L1 = 0 e L2 = 0

FindRoot[{g[β, α] == 0, h[β, α] == 0}, {{β, 0.5}, {α, 0.05}}]
{0.86828 -> 0.86828, 0.8505 -> 0.8505}
α := 0.8505004843068731;
β := 0.868280339979722;

Valores de $\epsilon c = \omega 0$ quando 11 e 12 se interceptam

```
\begin{aligned} & \varepsilon c = 2 \star \alpha \star \beta^{(3/2)} \\ & \omega 0 = \mathrm{Sqrt}[1 - \beta^{2}] / \mathrm{Sqrt}[\beta] \end{aligned}
\begin{aligned} & \varepsilon c = 1.3762410648466583; \\ & \omega 0 = 0.5323733886477583; \end{aligned}
\begin{aligned} & \mathbb{Q}[\alpha_{-}, \beta_{-}, \varepsilon c_{-}] := \{0.8505004843068731, 0.868280339979722, \\ & 1.3762410648466583\}; \end{aligned}
```

Equações do sistema

```
f1[x_, y_, z_] := y
f2[x_, y_, z_] := z^2*\cos[x]*\sin[x] - \sin[x] - \epsilon*y
f3[x_, y_, z_] := a*(\cos[x] - \beta)
```

Ponto de equilíbrio em Q

```
P0 = \{ \operatorname{ArcCos}[\beta], 0, 1/\operatorname{Sqrt}[\beta] \}
```

 $\{0.519071, 0, 1.07317\}$

Matriz A em Q

```
A = \{\{0, 1, 0\}, \{-\omega 0^2, -\epsilon c, 2 * \beta * \omega 0\}, \{(-\alpha) * Sqrt[\beta] * \omega 0, 0, 0\}\}
```

 $\{\{0, 1, 0\}, \{-0.283421, -1.37624, 0.924499\}, \{-0.421911, 0, 0\}\}$

Autovetores q, qb, p e pb para o ponto Q

```
q = \{1, I \neq 0, I \neq \alpha \neq Sqrt[\beta]\}
\{1, 0.532373 \neq I, 0.79251 \neq I\}
qb = \{1, (-I) \neq 0, (-I) \neq \alpha \neq Sqrt[\beta]\}
\{1, -0.532373 \neq I, -0.79251 \neq I\}
p = \{1/2, 1/(2 \neq cc - 2 \neq I \neq 0), (I \neq \beta)/(cc - I \neq 0)\}
\{\frac{1}{2}, 0.31602 \neq 0.122246 \pm, -0.212288 \neq 0.548787 \pm\}
pb = \{1/2, 1/(2 \neq cc + 2 \neq I \neq 0), -((I \neq \beta)/(cc + I \neq 0))\}
\{\frac{1}{2}, 0.31602 = 0.122246 \pm, -0.212288 = 0.548787 \pm\}
```

AI inversa da matriz A, em Q

```
AI = Inverse[A]
```

 $\{\{0., 0., -2.37017\}, \{1., 0., 0.\}, \{1.48863, 1.08167, -0.726617\}\}$

Matriz W20 = $2 \pm i \pm \omega 0I - A$, em Q

```
W20 = Simplify[2*I*\u0*IdentityMatrix[3] - A]
```

Inversa da matriz W20 em Q

```
W20I = Chop[Simplify[Inverse[W20]]]

{{-1.25225*I, -0.440375 - 0.569207*I, -0.494232 + 0.382369*I},
    {0.333333, 0.606062 - 0.468887*I, -0.407126 - 0.526231*I},
    {0.496212, 0.225551 - 0.174501*I, -0.151515 - 1.13503*I}}
h11 = Chop[Simplify[-AI . b[q, qb]]]

{-1.7503, 0, 0.487927}
h20 = Chop[Simplify[W20I . b[q, q]]]

{2.24199 + 0.111917*I, -0.119164 + 2.38715*I, -0.0443478 + 1.58197*I}
h20b = Simplify[Refine[ComplexExpand[Conjugate[h20]]], β > 0]

{2.24199 - 0.111917*I, -0.119164 - 2.38715*I, -0.0443478 - 1.58197*I}
G21 = Chop[Simplify[p . (c[q, q, qb] + b[qb, h20] + 2*b[q, h11])]]
-2.90054*I
G21b = ComplexExpand[Conjugate[G21]]
```

2.90054*I

De fato, em Q L1 é nulo

```
11 = Chop[(\alpha * \beta^{(3/2)} * (-1 + \beta^{2}) * (3 + (-5 + \alpha^{2}) * \beta^{2} + \alpha^{4} * \beta^{6})) / (2 * (1 - \beta^{2} + \alpha^{2} * \beta^{4}) * (1 - \beta^{2} + 4 * \alpha^{2} * \beta^{4}))]
0
```

```
W30 = Simplify [3*I*\omega0*IdentityMatrix [3] - A]
```

Inversa da matriz W30 em Q

```
W30I = Chop[Simplify[Inverse[W30]]]

{{-0.704393*I, -0.253103 - 0.218099*I, -0.126247 + 0.14651*I},
    {0.125, 0.348331 - 0.404236*I, -0.233993 - 0.201632*I},
    {0.186079, 0.0576152 - 0.0668622*I, -0.0387034 - 0.659478*I}}
h30 = Simplify[W30I . (3*b[q, h20] + c[q, q, q])]

{5.27952 + 2.68329*I, -4.28554 + 8.43202*I, -0.86409 + 4.24046*I}
```

h30b em Q

```
h30b = Simplify [Refine [ComplexExpand [Conjugate [h30]]], \beta > 0]
```

{5.27952 - 2.68329*I, -4.28554 - 8.43202*I, -0.86409 - 4.24046*I}

Matriz W = $[i*\omega 0*I - A]$ em Q

```
W = Simplify[I*w0*IdentityMatrix[3] - A]
{{0.532373*I, -1, 0}, {0.283421, 1.37624 + 0.532373*I, -0.924499},
    {0.421911, 0, 0.532373*I}}

q = {1, I*w0, I*a*Sqrt[β]};
p = {1/2, 1/(2*ec + 2*I*w0), -((I*β)/(ec + I*w0))};

V21 = {{I*w0, -1, 0, 1}, {w0^2, ec + I*w0, -2*β*w0, I*w0},
    {a*Sqrt[β]*w0, 0, I*w0, I*a*Sqrt[β]},
    {1/2, 1/(2*ec + 2*I*w0), -((I*β)/(ec + I*w0)), 0}}
```

h21 em Q

h21 = Simplify[{h211, h212, h213}]

{-0.654921 + 1.20919*I, -0.64374 - 3.2492*I, -1.11354 + 1.26043*I}

{-0.654921 + 1.20919*I, -0.64374 - 3.2492*I, -1.11354 + 1.26043*I, 0}

h21b em Q

```
h21b = Simplify [Refine [ComplexExpand [Conjugate [h21]]], \beta > 0]
```

 $\{ \texttt{-0.654921} \ \texttt{-1.20919*I}, \ \texttt{-0.64374} \ \texttt{+} \ \texttt{3.2492*I}, \ \texttt{-1.11354} \ \texttt{-} \ \texttt{1.26043*I} \}$

h22 em Q

```
h22 = Chop[Simplify[-AI . (d[q, q, qb, qb] + 4*c[q, qb, h11] +
c[qb, qb, h20] + c[q, q, h20b] + 2*b[h11, h11] + 2*b[q, h21b] +
2*b[qb, h21] + b[h20b, h20])]]
```

 $\{-15.7259, 0, 10.9267\}$

Matriz W40 = $4 \pm \omega 0 \pm I - A = M Q$

Inversa da matriz W40 em Q

```
W40I = Chop[Simplify[Inverse[W40]]]
```

```
{{-0.500902*I, -0.16592 - 0.10723*I, -0.0465531 + 0.0720327*I},
{0.0666667, 0.228347 - 0.353327*I, -0.153393 - 0.0991344*I},
{0.0992423, 0.0212453 - 0.0328734*I, -0.0142717 - 0.478819*I}}
```

h40 em Q

```
h40 = Refine[W40I . (3*b[h20, h20] + 4*b[q, h30] + 6*c[q, q, h20] +
d[q, q, q, q])]
```

{9.2769 + 25.248*I, -53.7655 + 19.7551*I, -9.11345 + 11.3657*I}

h40b em Q

```
h40b = ComplexExpand [Conjugate [h40]]
{9.2769 - 25.248*I, -53.7655 - 19.7551*I, -9.11345 - 11.3657*I}
```

```
De fato, em Q 12 = 0
```

```
12 = Chop[(\alpha * \beta^{(3/2)} * (-162 - 54* (-9 + 37* \alpha^{2}) * \beta^{2} -
                       9*(-126 + 61*\alpha^2 + 60*\alpha^4)*\beta^4 -
                       18*(405 - 3212*\alpha^2 + 1128*\alpha^4)*\beta^6 +
                        (13770 - 210843 * \alpha^2 + 113612 * \alpha^4 - 5533 * \alpha^6) * \beta^8 -
                       6*(2133 - 57687*\alpha^2 + 38218*\alpha^4 + 5186*\alpha^6)*\beta^{10} +
                        (5994 - 301275 * \alpha^2 + 215340 * \alpha^4 + 284264 * \alpha^6 - 16022 * \alpha^8) *
                           \beta^{12} + 2*(-567 + 67878*\alpha^2 - 45196*\alpha^4 - 379430*\alpha^6 +
                                9347 \star \alpha^{8}) \star \beta^{14} + \alpha^{2} \star (-25029 + 9540 \star \alpha^{2} + 990831 \star \alpha^{4} + 
                                155856 * \alpha^{6} - 21205 * \alpha^{8} * \beta^{16} +
                       4 * \alpha^{4} * (513 + 4 * \alpha^{2} * (-40835 - 30154 * \alpha^{2} + 4192 * \alpha^{4})) *
                           \beta^{18} - 2 * \alpha^{6} * (-86887 - 258835 * \alpha^{2} + 30173 * \alpha^{4} + 
                                7208 * \alpha^{6}) * \beta^{2}0 + 2 * \alpha^{8} * (-96867 - 8956 * \alpha^{2} + 23208 * \alpha^{4}) *
                           \beta^{22} - \alpha^{10*}(-33671 + 58288*\alpha^{2} + 4880*\alpha^{4})*\beta^{24} +
                       16 * \alpha^{12} * (1603 + 718 * \alpha^{2}) * \beta^{26} - 16 * \alpha^{14} * (453 + 40 * \alpha^{2}) * \beta^{26}
                          \beta^{28} + 640 * \alpha^{16} * \beta^{30}) ) / (36 * (1 - \beta^{2} + \alpha^{2} * \beta^{4})^{3} *
                   (9 - 9*\beta^2 + 4*\alpha^2*\beta^4)*(1 - \beta^2 + 4*\alpha^2*\beta^4)^3)
```

0

h31 em Q

h31 = Refine[W20I . (3*b[q, h21] + b[qb, h30] + 3*b[h20, h11] + 3*c[q, q, h11] + 3*c[q, qb, h20] + d[q, q, q, qb] - 3*G21*h20)] {25.7218 + 5.122*I, -4.47977 + 7.87823*I, -6.22842 + 15.9769*I}

h31b em Q

```
h31b = Simplify[Refine[ComplexExpand[Conjugate[h31]]], β > 0]
{25.7218 - 5.122*I, -4.47977 - 7.87823*I, -6.22842 - 15.9769*I}
```

G32 em Q

-34.9333*I

G32b em Q

```
G32b = Simplify [Refine [ComplexExpand [Conjugate [G32]]], \beta > 0]
```

34.9333*I

H32 em Q

h32 em Q

```
h32 = \{h321, h322, h323\}
```

{-53.1636 + 27.1777*I, -3.94677 - 57.5373*I, -27.8926 + 52.7372*I}

h32b em Q

```
h32b = Simplify [Refine [ComplexExpand [Conjugate [h32], \beta > 0]]]
```

{-53.1636 - 27.1777*I, -3.94677 + 57.5373*I, -27.8926 - 52.7372*I}

h41 em Q

```
h41 = W30I . (4*b[h11, h30] + 6*b[h20, h21] + 4*b[q, h31] + b[qb, h40] +
12*c[q, h11, h20] + 6*c[q, q, h21] + 4*c[q, qb, h30] +
3*c[qb, h20, h20] + 4*d[q, q, q, h11] + 6*d[q, q, qb, h20] +
e[q, q, q, q, qb] - 6*G21*h30)
```

 $\{180.233 + 35.5371*I, -10.059 + 195.974*I, -33.7429 + 125.348*I\}$

h41b em Q

```
h41b = ComplexExpand[Conjugate[h41]]
{180.233 - 35.5371*I, -10.059 - 195.974*I, -33.7429 - 125.348*I}
```

h42 em Q

```
h42 = Chop[W20I . (-4*(G32*h20 + 3*G21*h31 + G21b*h31) + b[h20b, h40] +

8*b[h11, h31] + 6*b[h20, h22] + 6*b[h21, h21] + 4*b[h21b, h30] +

4*b[q, h32] + 2*b[qb, h41] + 12*c[h11, h11, h20] +

3*c[h20, h20, h20b] + 24*c[q, h11, h21] + 12*c[q, h20, h21b] +

4*c[q, h20b, h30] + 6*c[q, q, h22] + 8*c[q, qb, h31] +

8*c[qb, h11, h30] + 12*c[qb, h20, h21] + c[qb, qb, h40] +

12*d[q, q, h11, h11] + 6*d[q, q, h20, h20b] + 4*d[q, q, q, h21b] +

12*d[q, q, qb, h21] + 24*d[q, qb, h11, h20] + 4*d[q, qb, qb, h30] +

3*d[qb, qb, h20, h20] + e[q, q, q, q, h20b] +

8*e[q, q, q, qb, h11] + 6*e[q, q, qb, qb, h20] +

k[q, q, q, q, qb, qb])]
```

 ${778.492 + 466.451*I, -362.161 - 81.2386*I, -390.236 + 503.381*I}$

h42b em Q

```
h42b = ComplexExpand[Conjugate[h42]]
{778.492 - 466.451*I, -362.161 + 81.2386*I, -390.236 - 503.381*I}
```

h33 em Q

h33 = Chop[-AI . (9*b[h11, h22] + 3*b[h20, h31b] + 3*b[h20b, h31] +
9*b[h21, h21b] + b[h30b, h30] + 3*b[q, h32b] + 3*b[qb, h32] +
6*c[h11, h11, h11] + 9*c[h11, h20b, h20] + 18*c[q, h11, h21b] +
3*c[q, h20, h30b] + 9*c[q, h20b, h21] + 3*c[q, q, h31b] +
9*c[q, qb, h22] + 18*c[qb, h11, h21] + 9*c[qb, h20, h21b] +
3*c[qb, h20b, h30] + 3*c[qb, qb, h31] + 9*d[q, q, h20b, h11] +
d[q, q, q, h30b] + 9*d[q, q, qb, h21b] + 18*d[q, qb, h11, h11] +
9*d[q, qb, h20b, h20] + 9*d[q, qb, qb, h21] +
9*d[qb, qb, h11, h20] + d[qb, qb, qb, h30] +
3*e[q, q, q, qb, h20b] + 9*e[q, q, qb, qb, h11] +
$3 \star e[q, qb, qb, qb, h20] + k[q, q, qb, qb, qb] -$
3*(G32 + G32b)*h11 - 9*(G21 + G21b)*h22)]

{-536.093, 0, 835.336}

H43 em Q

```
H43 = 12*b[h11, h32] + 6*b[h20, h32b] + 3*b[h20b, h41] +
    18*b[h21, h22] + 12*b[h21b, h31] + 4*b[h30, h31b] + b[h30b, h40] +
    4*b[q, h33] + 3*b[qb, h42] + 36*c[h11, h11, h21] +
    36*c[h11, h20, h21b] + 12*c[h11, h20b, h30] + 3*c[h20, h20, h30b] +
    18*c[h20, h20b, h21] + 36*c[q, h11, h22] + 12*c[q, h20, h31b] +
    12*c[q, h20b, h31] + 36*c[q, h21, h21b] + 4*c[q, h30, h30b] +
    6*c[q, q, h32b] + 12*c[q, qb, h32] + 24*c[qb, h11, h31] +
    18*c[qb, h20, h22] + 3*c[qb, h20b, h40] + 18*c[qb, h21, h21] +
    12*c[qb, h21b, h30] + 3*c[qb, qb, h41] + 24*d[q, h11, h11, h11] +
    36*d[q, h11, h20, h20b] + 36*d[q, q, h11, h21b] +
    6*d[q, q, h20, h30b] + 18*d[q, q, h20b, h21] + 4*d[q, q, q, h31b] +
    18*d[q, q, qb, h22] + 72*d[q, qb, h11, h21] +
    36*d[q, qb, h20, h21b] + 12*d[q, qb, h20b, h30] +
    12*d[q, qb, qb, h31] + 36*d[qb, h11, h11, h20] +
    9*d[qb, h20, h20, h20b] + 12*d[qb, qb, h11, h30] +
    18*d[qb, qb, h20, h21] + d[qb, qb, qb, h40] +
    12*e[q, q, q, h11, h20b] + e[q, q, q, q, h30b] +
    12*e[q, q, q, qb, h21b] + 36*e[q, q, qb, h11, h11] +
    18*e[q, q, qb, h20, h20b] + 18*e[q, q, qb, qb, h21] +
    36*e[q, qb, qb, h11, h20] + 4*e[q, qb, qb, qb, h30] +
    3*e[qb, qb, qb, h20, h20] + 3*k[q, q, q, q, qb, h20b] +
    12 * k[q, q, q, qb, qb, h11] + 6 * k[q, q, qb, qb, qb, h20] +
    1[q, q, q, q, qb, qb, qb]
```

 $\{0, 2685.85 - 9543.72*I, -1687.72 + 28.8848*I\}$

G43 em Q

G43 = p . H43 56.2325 - 2424.27*I

ReG43 em Q

56.2325

L3 em Q

Simulações numéricas

Sistema de equações

f1[x_,y_,z_,{ $\beta_{-},\alpha_{-},\epsilon_{-}$ }]:=y;

 $\texttt{f2}[\texttt{x}_{},\texttt{y}_{},\texttt{z}_{},\{\beta_{},\alpha_{},\varepsilon_{}\}]:=\texttt{Cos}[\texttt{x}] \quad \texttt{Sin}[\texttt{x}] \quad \texttt{z}^2-\texttt{y} \quad \varepsilon-\texttt{Sin}[\texttt{x}];$

 $\texttt{f3[x_,y_,z_,(\beta_,\alpha_,\epsilon_]]:=\alpha (Cos[x]-\beta);}$

Superfície de parâmetros críticos

 $ec[\beta_{,\alpha_{]}:=2 \ \alpha \ \beta^{3/2}$

Ponto de equilíbrio

```
P0[\{\beta_{-},\alpha_{-},\epsilon_{-}\}]:=\left\{\operatorname{ArcCos}[\beta],0,\sqrt{\frac{1}{\beta}}\right\}
```

Comportamento de um ponto de equilíbrio para parâmetros pertencentes à região U₁

Parâmetros a serem considerados

α=0.2; β=0.9; 2 α β^{3/2} 0.341526

 $PR1=\{0.9, 0.2, \epsilon c[0.9, 0.2]-0.085\};$

Ponto de equilíbrio

P0[PR1]

{0.451027, 0, 1.05409}

Condição inicial

```
pli=ListPointPlot3D [{{0.5`,0,1.05`}},PlotStyle→PointSize[0.02],
ColorFunction→"CMYKColors"];
```

Solução

```
sol1=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR1],y'[t]==f2[x[t],y[t],z[t],PR1],z'[t]==f3[x[t],
y[t],z[t],PR1],x[0]==0.5,y[0]==0,z[0]==1.05}, {x[t],y[t],z[t]}, {t,0,50}];
```

```
\begin{aligned} & \text{Show}[graf1=ParametricPlot3D[{x[t],y[t],z[t]}/.sol1,{t,0,50},PlotStyle \rightarrow \{Black\}, \\ & \text{PlotRange} \rightarrow \{\{0.15`, 0.7`\}, \{-0.15`, 0.2`\}, \{1,1.12`\}\}, \\ & \text{AxesLabel} \rightarrow \{x,y,z\}], \\ & pl,pli] \end{aligned}
```

Parâmetros pertencentes a U_1 tomando $\epsilon > \epsilon c$

α=0.2; β=0.9; 2 α β^{3/2} 0.341526

 $PR2 = \{0.9, 0.2, \varepsilonc[0.9, 0.2] + 0.005\};$

Ponto de equilíbrio

P0[PR2]

 $\{0.451027, 0, 1.05409\}$

```
p2=ListPointPlot3D [{{0.45102681179626236`,0,1.0540925533894598`}},PlotStyle→
PointSize [0.02],ColorFunction→"RustTones"];
```

Solução

```
sol2=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR2],y'[t]==f2[x[t],y[t],z[t],PR2],z'[t]==f3[x[t],
y[t],z[t],PR2],x[0]==0.6,y[0]==0,z[0]==1.05}, {x[t],y[t],z[t]}, {t,0,1000}];
```

 $\begin{aligned} Show[graf2=ParametricPlot3D[{x[t],y[t],z[t]}/.sol2,{t,4,300},PlotStyle \rightarrow {Black}, \\ PlotRange \rightarrow \{{0.15`, 0.8`}, {-0.15`, 0.2`}, {1,1.15`}, AxesLabel \rightarrow {x,y,z}], p2] \end{aligned}$

Comportamento de um ponto de equilíbrio para parâmetros pertencentes à região S₁

Parâmetros a serem considerados

```
α=1.7;
β=0.3;
```

2 $\alpha \beta^{\left\{\frac{3}{2}\right\}}$ {0.558677}

 $PR3 = \{0.3, 1.7, ec[0.3, 1.7] + 0.20\};$

Ponto de equilíbrio

P0[PR3]

```
{1.2661, 0, 1.82574}
```

```
p3=ListPointPlot3D[{{1.2661036727794992`,0,1.8257418583505538`}},PlotStyle→PointSize
[0.02],ColorFunction→"RustTones"];
```

Condição inicial

```
p3i=ListPointPlot3D[{{2,1,2.5`}},PlotStyle→PointSize[0.02],
ColorFunction→"CMYKColors"];
```

Solução

```
sol3=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR3],y'[t]==f2[x[t],y[t],z[t],PR3],z'[t]==f3[x[t],
y[t],z[t],PR3],x[0]==2,y[0]==1,z[0]==2.5},{x[t],y[t],z[t]},{t,0,1000}];
```

```
Show[graf3=ParametricPlot3D[{x[t],y[t],z[t]}/.sol3,{t,0,25},PlotStyle\rightarrow{Black}, PlotRange\rightarrow{{0.2`,2.5`},{-1.07`,1.75`},{1,3}},AxesLabel\rightarrow{x,y,z}],p3,p3i]
```

Parâmetros pertencentes à região S_1 tomando $\epsilon < \epsilon c$

Parâmetros a serem considerados

 $(\alpha=0.5);$ $(\beta=0.5);$ $2 \alpha \beta^{\{\frac{3}{2}\}}$ $\{0.353553\}$

 $PR4 = \{0.5, 0.5, cc[0.5, 0.5-0.03]\};$

Ponto de equilibrio

P0[PR4]{1.0472, 0, 1.41421}

```
p4=ListPointPlot3D [{{1.0471975511965979`,0,1.4142135623730951`}},PlotStyle→
PointSize[0.02],ColorFunction→"RustTones"];
```

Condição inicial externa à óbita

```
p4i=ListPointPlot3D [{{0.2`,0,1.41`}},PlotStyle→PointSize [0.02],
ColorFunction→"CMYKColors"];
```

Solução para a condição inicial externa à óbita

```
sol4=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR4],y'[t]==f2[x[t],y[t],z[t],PR4],z'[t]==f3[x[t],
y[t],z[t],PR4],x[0]==0.2,y[0]==0,z[0]==1.41},{x[t],y[t],z[t]},{t,0,650}];
```

```
\begin{aligned} Show[graf4=ParametricPlot3D[{x[t],y[t],z[t]}/.sol4,{t,0,650},PlotStyle \rightarrow {Red}, \\ PlotRange \rightarrow \{{0,2}, {-1,1}, {0.8}^{,2}\}, \\ AxesLabel \rightarrow {x,y,z}], \\ p4,p4i]; \end{aligned}
```

Condição inicial interna a órbita

```
p5i=ListPointPlot3D [{{0.8`,0,1.41`}},PlotStyle→PointSize[0.02],
ColorFunction→"CMYKColors"];
```

Solução para a condição inicial externa a óbita

```
sol5=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR4],y'[t]==f2[x[t],y[t],z[t],PR4],z'[t]==f3[x[t],
y[t],z[t],PR4],x[0]==0.8,y[0]==0,z[0]==1.41},{x[t],y[t],z[t]},{t,0,650}];
```

```
\begin{aligned} & \text{Show}[\texttt{graf5}=\texttt{ParametricPlot3D}\left[\{\texttt{x[t]},\texttt{y[t]},\texttt{z[t]}\}/.\texttt{sol5},\{\texttt{t},0,650\},\texttt{PlotStyle}\rightarrow\{\texttt{Black}\},\\ & \text{PlotRange}\rightarrow\{\{0,2\},\{-1,1\},\{1.25`,2\}\},\texttt{AxesLabel}\rightarrow\{\texttt{x},\texttt{y},\texttt{z}\}\right],\texttt{p5i}]; \end{aligned}
```

```
Show[graf5,graf4,p4,p4i,p5i]
```

Comportamento de um ponto de equilíbrio para parâmetros pertencentes à região P₂

```
Numerador de L<sub>1</sub>
```

```
D = \alpha \ \beta^{3/2} \ (\beta^2 - 1) \ (\alpha^4 \ \beta^6 + (\alpha^2 - 5) \ \beta^2 + 3);

\alpha = 0.37;

Solve [11==0, \beta]

{{\beta - 3.97374}, {\beta - 1.}, {\beta - 0.786002}, {\beta - 0.}, {\beta - 0.-4.05073 \ \mathbf{n}}, {\beta - 0.+4.05073 \ \mathbf{n}}, {\beta - 0.+4.05073 \ \mathbf{n}}, {\beta - 0.786002}, {\beta - 0.786002}, {\beta - 1.}, {\beta - 0.7874}}

\beta - 0.786002; {\beta - 1.}, {\beta - 0.7874}}

\beta - 0.786002;

2 \alpha \beta^{\beta - 1}}

{0.515664}
```

Parâmetros pertencentes a P_2 tomando $\epsilon < \epsilon c$

PR6={0.7860020308968707`,0.37, cc[0.7860020308968707`,0.37]-0.01};

Ponto de equilíbrio

P0[PR6]

```
{0.666481, 0, 1.12795}
```

Condição inicial

p6i=ListPointPlot3D [{{0.63`,0,1.13`}},PlotStyle→PointSize[0.02], ColorFunction→"CMYKColors"];

p6=ListPointPlot3D [{{0.6661607561144524`,0,1.1278036096494983`}},PlotStyle→ PointSize [0.02],ColorFunction→"RustTones"];

sol6=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR6],y'[t]==f2[x[t],y[t],z[t],PR6],z'[t]==f3[x[t], y[t],z[t],PR6],x[0]==0.63,y[0]==0,z[0]==1.13},{x[t],y[t],z[t]},{t,0,1040}];

 $\begin{aligned} & \text{Show}[\texttt{graf61}=\texttt{ParametricPlot3D}[\{\texttt{x[t]},\texttt{y[t]},\texttt{z[t]}\}/.\texttt{sol6},\{\texttt{t},0,400\},\texttt{PlotStyle}\rightarrow\{\texttt{Black}\},\\ & \texttt{PlotRange}\rightarrow\{\{0.5`,0.83`\},\{-0.11`,0.12`\},\{1.075`,1.19`\}\},\texttt{AxesLabel}\rightarrow\{\texttt{x},\texttt{y},\texttt{z}\}],\texttt{p6},\texttt{p6i}] \end{aligned}$

Parâmetros pertencentes a P_2 para $\epsilon > \epsilon c$

PR7 = {0.7860020308968707, 0.37, cc[0.7860020308968707, 0.37] + 0.0009};

Ponto de equilíbrio

P0[PR7]

 $\{0.666481, 0, 1.12795\}$

p7=ListPointPlot3D [{{0.6664810436636704`,0,1.1279456297737596`}},PlotStyle→ PointSize[0.02],ColorFunction→"RustTones"];

Condição inicial externa à óbita

```
p7i=ListPointPlot3D [{{0.5`,0,1.127`}},PlotStyle→PointSize [0.02],
ColorFunction→"CMYKColors"];
```

Solução para a condição inicial externa à óbita

```
sol7=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR7],y'[t]==f2[x[t],y[t],z[t],PR7],z'[t]==f3[x[t],
y[t],z[t],PR7],x[0]==0.5,y[0]==0,z[0]==1.127},{x[t],y[t],z[t]},{t,0,1000}];
```

 $\begin{aligned} & \text{Show}[\texttt{graf7}=\texttt{ParametricPlot3D}[\{\texttt{x[t]},\texttt{y[t]},\texttt{z[t]}\}/.\texttt{sol7},\{\texttt{t},0,1000\},\texttt{PlotStyle}\rightarrow\{\texttt{Black}\},\\ & \text{PlotRange}\rightarrow\{\{0.35`,1\},\{-0.25`,0.25`\},\{1,1.3`\}\},\texttt{AxesLabel}\rightarrow\{\texttt{x},\texttt{y},\texttt{z}\}],\texttt{p7},\texttt{p7i}]; \end{aligned}$

Condição inicial interna à óbita

```
p7bi=ListPointPlot3D [{{0.85`,0,1.127`}},PlotStyle→PointSize [0.02],
ColorFunction→"CMYKColors"];
```

Solução para a condição inicial interna à óbita

```
sol7b=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR7],y'[t]==f2[x[t],y[t],z[t],PR7],z'[t]==f3[x[t],
y[t],z[t],PR7],x[0]==0.85,y[0]==0,z[0]==1.127},{x[t],y[t],z[t]},{t,0,500}];
```

```
\begin{aligned} & \text{Show}[\texttt{graf7b}=\texttt{ParametricPlot3D}[\{\texttt{x[t]},\texttt{y[t]},\texttt{z[t]}\}/.\texttt{sol7b},\{\texttt{t},0,300\},\texttt{PlotStyle}\rightarrow\{\texttt{Red}\},\\ & \text{PlotRange}\rightarrow\{\{0.45`,0.9`\},\{-0.15`,0.15`\},\{1.05`,1.22`\}\},\texttt{AxesLabel}\rightarrow\{\texttt{x},\texttt{y},\texttt{z}\}],\texttt{p7},\texttt{p7bi}]; \end{aligned}
```

Show[graf7b,graf7,p7,p7i,p7bi]

Parâmetros pertencentes a P_2 tomando $\epsilon < \epsilon c$ no arco de parábola da figura 3.22

```
(\alpha = 0.37);

(\beta = 0.7859);

2\alpha * \beta^{3/2} \{3/2\}

\{0.631823\}

\alpha \beta^{3/2} (\beta^2 - 1) (\alpha^4 \beta^6 + (\alpha^2 - 5) \beta^2 + 3)

-0.0000765379
```

 $PR8 = \{0.7859, 0.37, ec[0.7859, 0.37] - 0.001\};$

Ponto de equilíbrio

P0[PR8]

```
{0.666646, 0, 1.12802}
```

```
p8=ListPointPlot3D[{{0.6666460650949781`,0,1.128018846193902`}},PlotStyle→
PointSize[0.02],ColorFunction→"RustTones"];
```

Condição inicial interna à óbita

```
p8i=ListPointPlot3D [{{0.5`,0,1.15`}},PlotStyle→PointSize[0.02],
ColorFunction→"CMYKColors"];
```

Solução para a condição inicial interna à óbita

```
sol8=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR8],y'[t]==f2[x[t],y[t],z[t],PR8],z'[t]==f3[x[t],
y[t],z[t],PR8],x[0]==0.5,y[0]==0,z[0]==1.15},{x[t],y[t],z[t]},{t,0,1000}];
```

```
Show[graf81=ParametricPlot3D[{x[t],y[t],z[t]}/.sol8,{t,0,80},PlotStyle→{Black},
PlotRange→{{0.45`,0.9`},{-0.15`,0.17`},{1,1.25`}},AxesLabel→{x,y,z}],p8,p8i];
```

Condição inicial externa à óbita

```
Show[graf82=ParametricPlot3D[{x[t],y[t],z[t]}/.sol8, {t,80,1000},PlotStyle→{Red},
PlotRange→{{0.4`,0.95`}, {-0.2`,0.23`}, {1,1.25`}},AxesLabel→{x,y,z}],p8];
```

Show[graf82,graf81,p8,p8i]

Parâmetros pertencentes a P_2 tomando $\epsilon < \epsilon c$,

acima do arco de parábola da figura 3.22

 $\alpha = 0.78;$

```
Solve [11=:0,\beta]
{{\beta \rightarrow -1.74117}, {\beta \rightarrow -1.}, {\beta \rightarrow -0.844851}, {\beta \rightarrow 0.}, {\beta \rightarrow 0.-1.93531 i}, {\beta \rightarrow 0.+1.93531 i}, {\beta \rightarrow 0.844851}, {\beta \rightarrow 1.}, {\beta \rightarrow 1.74117}
```

 $\beta = 0.844851;$

```
2 \alpha \beta^{\left\{\frac{3}{2}\right\}}
```

{1.21142}

PR12={0.844851,0.78,cc[0.844851,0.78]-0.000001};

Ponto de equilíbrio

P0[PR12]

{0.56451, 0, 1.08795}

p121=ListPointPlot3D [{{0.56451,0,1.08795}},PlotStyle→PointSize[0.02], ColorFunction→"RustTones"];

Solução para condição inicial sobre o ciclo limite atrator

```
sol121=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR12],y'[t]==f2[x[t],y[t],z[t],PR12],z'[t]==f3[x[t
y[t],z[t],PR12],x[0]==0.8,y[0]==0,z[0]==1.12},{x[t],y[t],z[t]},{t,0,1100}];
```

 $\label{eq:show} $$ Show[graf121=ParametricPlot3D[{x[t],y[t],z[t]}/.sol121,{t,2,1100},PlotStyle \rightarrow {Red}, PlotRange \rightarrow {\{0.1,1.05\}, {-0.3,0.4}, {0.7,1.5}}, AxesLabel \rightarrow {x,y,z}],p121]; $$ The set of t$

Condição inicial para órbita interna ao ciclo atrator

```
p122i=ListPointPlot3D [{{0.76,0,1.11}},PlotStyle > PointSize[0.02],
ColorFunction > "CMYKColors"];
```

Solução da condição inicial da órbita interna ao ciclo atrator

sol122=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR12],y'[t]==f2[x[t],y[t],z[t],PR12],z'[t]==f3[x[t] y[t],z[t],PR12],x[0]=0.77,y[0]=0,z[0]=1.11},{x[t],y[t],z[t]}, {t,0,1620}];

Show[graf122=ParametricPlot3D[{x[t],y[t],z[t]}/.sol122,{t,0,1622.2},PlotStyle→{Black},
PlotRange→{{0.1,1.05}, {-0.3,0.4}, {0.7,1.5}},AxesLabel→{x,y,z}],p121,
p122i];

Condição inicial para órbita externa ao ciclo atrator

p123i=ListPointPlot3D[{{0.85,-0.03,1.12}},PlotStyle→PointSize[0.02], ColorFunction→"CMYKColors"];

Solução da condição inicial da órbita externa ao ciclo atrator

sol123=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR12],y'[t]==f2[x[t],y[t],z[t],PR12],z'[t]==f3[x[t] y[t],z[t],PR12],x[0]=0.85,y[0]=-0.03,z[0]=1.12},{x[t],y[t],z[t]}, {t,0,990}];

 $\label{eq:show} $$ Show[graf123=ParametricPlot3D[{x[t],y[t],z[t]}/.sol123,{t,0,990},PlotStyle \rightarrow {Black}, PlotRange \rightarrow { \{0,1.3\}, \{-0.4,0.6\}, \{0.5,1.8\} \}, AxesLabel \rightarrow {x,y,z}], pl21, pl23i]; $$ The second second$

Condição inicial do ciclo limite repulsor

```
p124i=ListPointPlot3D[{{0.91,0,1.12}},PlotStyle > PointSize[0.02],
ColorFunction > "CMYKColors"];
```

Solução para condição inicial sobre o ciclo limite repulsor

```
sol124=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR12],y'[t]==f2[x[t],y[t],z[t],PR12],z'[t]==f3[x[t
y[t],z[t],PR12],x[0]==0.91,y[0]==0,z[0]==1.12},{x[t],y[t],z[t]},{t,0,1400}];
```

Show[graf124=ParametricPlot3D[{x[t],y[t],z[t]}/.sol124,{t,0,500},PlotStyle→{Red},
PlotRange→{{0,1.3},{-0.4,0.6},{0.5,1.8}},AxesLabel→{x,y,z}],pl21,pl24i];

Condição inicial da órbita externa ao ciclo limite repulsor

 $\texttt{p125i=ListPointPlot3D[{\{1,0,1.12\}}, PlotStyle \rightarrow \texttt{PointSize[0.02], ColorFunction} \rightarrow \texttt{"CMYKColors"];}}$

Solução da condição inicial da órbita externa ao ciclo limite repulsor

```
sol125=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR12],y'[t]==f2[x[t],y[t],z[t],PR12],z'[t]==f3[x[t
y[t],z[t],PR12],x[0]==1,y[0]==0,z[0]==1.12}, {x[t],y[t],z[t]}, {t,0,1050}];
```

 $\begin{aligned} & \text{Show} [\texttt{graf125} = \texttt{ParametricPlot3D} \left[\{ \texttt{x[t]}, \texttt{y[t]}, \texttt{z[t]} \} / . \texttt{sol125}, \{ \texttt{t}, \texttt{0}, \texttt{1000} \}, \texttt{PlotStyle} \rightarrow \{ \texttt{Blue} \}, \\ & \texttt{PlotRange} \rightarrow \{ \{ -0.02, 1.3 \}, \{ -0.4, 0.6 \}, \{ 0.6, 1.8 \} \}, \texttt{AxesLabel} \rightarrow \{ \texttt{x}, \texttt{y}, \texttt{z} \} \right], \texttt{pl21}, \texttt{pl25i}]; \end{aligned}$

Show[graf125,graf124,graf123,graf122,graf121,p121]

Parâmetros pertencentes a N_2

 $\alpha = 0.9;$

$$\begin{split} &11 = \frac{\alpha \ \beta^{3/2} \ (\beta^2 - 1) \ (\alpha^4 \ \beta^6 + (\alpha^2 - 5) \ \beta^2 + 3)}{2 \ (\alpha^2 \ \beta^4 - \beta^2 + 1) \ (4 \ \alpha^2 \ \beta^4 - \beta^2 + 1)};\\ &\text{Solve} \left[11 = 0, \beta\right] \\ &\{\{\beta \to -1.42631\}, \{\beta \to -1.\}, \{\beta \to -0.891364\}, \{\beta \to 0.\}, \{\beta \to 0. - 1.68193 \ \text{i}\}, \{\beta \to 0. + 1.68193 \ \text{i}\}, \{\beta \to 0.891364\}, \{\beta \to 1.\}, \{\beta \to 1.42631\}\} \\ &\alpha = 0.9;\\ &\beta = 0.8913639104773827;\\ &2 \ \alpha \ \beta^{\left\{\frac{3}{2}\right\}} \\ &\{1.5148\} \end{split}$$

Parâmetros pertencentes a N_2 tomando $\epsilon > \epsilon c \in L1 < 0$

 $PR9 = \{0.8913639104773827, 0.9, \epsilon_{c}[0.8913639104773827, 0.9] + 0.004\};$

Ponto de equilíbrio

P0[PR9]

 $\{0.470451, 0, 1.05919\}$

```
p9=ListPointPlot3D[{{0.47045107795749347`,0,1.0591865976178645`}},PlotStyle→
PointSize[0.02],ColorFunction→"RustTones"];
```

Condição inicial

```
p9i=ListPointPlot3D [{{0.5`,0,1.2`}},PlotStyle→PointSize[0.02],
ColorFunction→"CMYKColors"];
```

Solução para a condição inicial

sol9=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR9],y'[t]==f2[x[t],y[t],z[t],PR9],z'[t]==f3[x[t], y[t],z[t],PR9],x[0]=0.5,y[0]=0,z[0]=1.2}, {x[t],y[t],z[t]}, {t,0,1000}];

```
\begin{aligned} & \text{Show}[\texttt{graf9}=\texttt{ParametricPlot3D}[\{\texttt{x}[\texttt{t}],\texttt{y}[\texttt{t}],\texttt{z}[\texttt{t}]\}/.\texttt{sol9},\{\texttt{t},0,15\},\texttt{PlotStyle}\rightarrow\{\texttt{Black}\},\\ & \texttt{PlotRange}\rightarrow\{\{0.2`,0.7`\},\{-0.15`,0.1`\},\{0.9`,1.3`\}\},\texttt{AxesLabel}\rightarrow\{\texttt{x},\texttt{y},\texttt{z}\}],\texttt{p9},\texttt{p9i}]; \end{aligned}
```

```
\begin{aligned} & \text{Show}[graf9b=ParametricPlot3D[{x[t],y[t],z[t]}/.sol9, {t,15,1000}, PlotStyle \rightarrow {Orange}, \\ & \text{PlotRange} \rightarrow \{ \{0.3^{\circ}, 0.68^{\circ}\}, \{-0.15^{\circ}, 0.1^{\circ}\}, \{0.9^{\circ}, 1.2^{\circ}\} \}, \\ & \text{AxesLabel} \rightarrow \{x, y, z\}], p9, p9i]; \end{aligned}
```

Show[graf9b,graf9,p9,p9i]

```
(\alpha=0.9;);
(\beta=0.8913639104773827);
2 \alpha \beta^{\left\{\frac{3}{2}\right\}}
\{1.5148\}
```

PR10 = {0.8913639104773827[`], 0.9, €c[0.8913639104773827[`], 0.9] - 0.0009};

Ponto de equilíbrio

P0[PR10]

 $\{0.470451, 0, 1.05919\}$

p10=ListPointPlot3D [{{0.47045107795749347`,0,1.0591865976178645`}},
PlotStyle→PointSize [0.02], ColorFunction→"RustTones"];

Condição inicial externa a órbita

```
p10i=ListPointPlot3D [{{0.481`,0,1.063`}},PlotStyle 	riangle PointSize[0.02],
ColorFunction 	riangle "CMYKColors"];
```

Solução para a condição inicial externa à órbita

```
sol10=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR10],y'[t]==f2[x[t],y[t],z[t],PR10],z'[t]==f3[x[t],
y[t],z[t],PR10],x[0]==0.481,y[0]==0,z[0]==1.063},{x[t],y[t],z[t]},
{t,0,1500}];
```

 $\begin{aligned} & \text{Show}[graf10=ParametricPlot3D[{x[t],y[t],z[t]}/.sol10, {t,0,1500}, PlotStyle \rightarrow {Red}, \\ & \text{PlotRange} \rightarrow \{ \{0.45`, 0.49`\}, \{-0.01`, 0.01`\}, \{1.04`, 1.08`\} \}], p10, p10i]; \end{aligned}$

Condição inicial interna à órbita

```
p10bi=ListPointPlot3D[{{0.4615`,0,1.06`}},PlotStyle→PointSize[0.02],
ColorFunction→"CMYKColors"];
```

Solução para a condição inicial interna à órbita

sol10b=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR10],y'[t]==f2[x[t],y[t],z[t],PR10],z'[t]==f3[x[t] y[t],z[t],PR10],x[0]==0.4615,y[0]==0,z[0]==1.06}, {x[t],y[t],z[t]}, {t,0,1800}];

```
Show[graf10b=ParametricPlot3D[{x[t],y[t],z[t]}/.sol10b,{t,0,1680},PlotStyle→{Black},
PlotRange→{{0.457`,0.483`},{-0.007`,0.0052`},{1.048`,1.07`}},AxesLabel→{x,y,z}]
,p10,p10bi];
```

Show[graf10b,graf10,p10,p10i,p10bi]

Parâmetros pertencentes a N₂ tomando $\epsilon > \epsilon$ cono arco de parábola da figura 3.23

```
Clear [\epsilonc]

\beta=0.8915;

\alpha=0.9;

2 \alpha \beta^{\left\{\frac{3}{2}\right\}}

{1.5148}

\alpha \beta^{3/2} (\beta^2-1) (\alpha^4 \beta^6 + (\alpha^2-5) \beta^2 + 3)

0.000111172

PR11 = {0.8915, 0.9, \epsilonc[0.8915, 0.9] + 0.00001};
```

Ponto de equilíbrio

P0[PR11]
{0.470151, 0, 1.05911}

```
pl1=ListPointPlot3D [{{0.470150762046627`,0,1.0591057508989423`}},
PlotStyle→PointSize [0.02],ColorFunction→"RustTones"];
```

Solução para a condição inicial interna à órbita

sol11=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR11],y'[t]==f2[x[t],y[t],z[t],PR11],z'[t]==f3[x[t], y[t],z[t],PR11],x[0]==0.47055,y[0]==0,z[0]==1.06}, {x[t],y[t],z[t]}, {t,0,1300}];

```
\label{eq:show} $$ Show[graf11=ParametricPlot3D[{x[t],y[t],z[t]}/.sol11,{t,5,1303},PlotStyle \rightarrow {Red}, PlotRange \rightarrow {\{0.2`,0.7`\}, {-0.15`,0.1`}, {0.9`,1.3`}}]]; $$
```

Condição inicial externa a órbita

```
p11i=ListPointPlot3D [{{0.4708`,0,1.06`}},PlotStyle 	riangle PointSize [0.02],
ColorFunction 	riangle "CMYKColors"];
```

Solução para a condição externa a órbita

```
sol11b=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR11],y'[t]==f2[x[t],y[t],z[t],PR11],z'[t]==f3[x[t
y[t],z[t],PR11],x[0]==0.4708,y[0]==0,z[0]==1.06},{x[t],y[t],z[t]},{t,0,
2000}];
```

```
Show[graf11b=ParametricPlot3D[{x[t],y[t],z[t]}/.sol11b,{t,0,2000},PlotStyle→{Blue},
PlotRange→{{0.2`,0.7`},{-0.15`,0.1`},{0.9`,1.3`}}],p111];
```

Solução para condição inicial sobre a órbita

```
sol11c=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR11],y'[t]==f2[x[t],y[t],z[t],PR11],z'[t]==f3[x[t
y[t],z[t],PR11],x[0]==0.47068,y[0]==0,z[0]==1.06},{x[t],y[t],z[t]},{t,0,
1500}];
```

Show[graf11c=ParametricPlot3D[{x[t],y[t],z[t]}/.sol11c,{t,5,1500},PlotStyle→{Black},
PlotRange→{{0.4688`,0.4715`},{-0.0005`,0.0005`},{1.0582`,1.0601`}}],p11];

Show[graf11c,graf11b,graf11,p11,p11i]

Parâmetros pertencentes a N₂ tomando ϵ > ϵ abaixo do arco de parábola da figura 3.23

```
11 = \frac{\alpha \ \beta^{3/2} \ (\beta^2 - 1) \ (\alpha^4 \ \beta^6 + (\alpha^2 - 5) \ \beta^2 + 3)}{2 \ (\alpha^2 \ \beta^4 - \beta^2 + 1) \ (4 \ \alpha^2 \ \beta^4 - \beta^2 + 1)};

\alpha = 0.94;

Solve [11==0, \beta]

{\langle \beta - 1.32525 \rangle, \langle \beta - 1. \rangle, \langle \beta - 0.917618 \rangle, \langle \beta - 0. \rangle, \beta - 0.
```

Ponto de equilíbrio

P0[PR13]

 $\{0.40875, 0, 1.04392\}$

```
p13=ListPointPlot3D[{{0.40875008276599034`,0,1.0439241838330968`}},PlotStyle→
PointSize[0.02],ColorFunction→"RustTones"];
```

Condição inicial da órbita interna ao ciclo limite repulsor

```
p13i=ListPointPlot3D[{{0.46`,0,1.044`}},PlotStyle→PointSize[0.02],
ColorFunction→"CMYKColors"];
```

Solução para a condição inicial interna ao ciclo limite repulsor

```
sol13=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR13],y'[t]==f2[x[t],y[t],z[t],PR13],z'[t]==f3[x[t]
y[t],z[t],PR13],x[0]==0.46,y[0]==0,z[0]==1.044},{x[t],y[t],z[t]},{t,0,
1900}];
```

```
Show[graf13=ParametricPlot3D[{x[t],y[t],z[t]}/.sol13,{t,0,1903},PlotStyle→{Blue},
PlotRange→{{0.35, 0.48}},{-0.025},0.025},{0.99,1.1}},AxesLabel→{x,y,z}],
p13];
```

Condição inicial do ciclo limite repulsor

```
p14i=ListPointPlot3D [{{0.47`,0,1.044`}},PlotStyle→PointSize [0.02],
ColorFunction→"CMYKColors"];
```

Solução para a Condição inicial do ciclo limite repulsor

```
sol14=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR13],y'[t]==f2[x[t],y[t],z[t],PR13],z'[t]==f3[x[t]
y[t],z[t],PR13],x[0]==0.47,y[0]==0,z[0]==1.044},{x[t],y[t],z[t]},{t,0,
1900}];
```

```
Show[graf14=ParametricPlot3D[{x[t],y[t],z[t]}/.sol14,{t,0,1900},PlotStyle→{Red},
PlotRange→{{0.34`,0.48`},{-0.025`,0.026`},{0.98`,1.11`}},
AxesLabel→{x,y,z}],p13];
```

Condição inicial externa ao ciclo limite repulsor

Solução da condição inicial externa ao ciclo limite repulsor

```
sol15=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR13],y'[t]==f2[x[t],y[t],z[t],PR13],z'[t]==f3[x[t]
y[t],z[t],PR13],x[0]==0.48,y[0]==0,z[0]==1.044},{x[t],y[t],z[t]},{t,0,
2490}];
```

 $\begin{aligned} Show[graf15=ParametricPlot3D[{x[t],y[t],z[t]}/.sol15, {t,0,2494.2}, PlotStyle \rightarrow {Black}, \\ PlotRange \rightarrow \{ \{0.33^{,}, 0.5^{,}\}, \{-0.04^{,}, 0.04^{,}\}, \{0.98^{,}, 1.11^{,}\} \}, \\ AxesLabel \rightarrow \{x, y, z\}], p13]; \end{aligned}$

Condição inicial para o ciclo limite atrator

```
p16i=ListPointPlot3D[{{0.45`,0,1.044`}},PlotStyle→PointSize[0.02],
ColorFunction→"CMYKColors"];
```

Solução para a condição inicial do ciclo limite\trator

```
sol16=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR13],y'[t]==f2[x[t],y[t],z[t],PR13],z'[t]==f3[x[t]
y[t],z[t],PR13],x[0]==0.49,y[0]==0,z[0]==1.044},{x[t],y[t],z[t]},{t,0,
2400}];
```

```
\begin{aligned} & \text{Show}[\texttt{graf16}=\texttt{ParametricPlot3D}[\{\texttt{x}[\texttt{t}],\texttt{y}[\texttt{t}],\texttt{z}[\texttt{t}]\}/.\texttt{sol16},\{\texttt{t},0,2400\},\texttt{PlotStyle}\rightarrow\{\texttt{Red}\},\\ & \texttt{PlotRange}\rightarrow\{\{0.25`,0.55`\},\{-0.035`,0.035`\},\{0.95`,1.15`\}\},\texttt{AxesLabel}\rightarrow\{\texttt{x},\texttt{y},\texttt{z}\}],\texttt{pl3}]; \end{aligned}
```

Condição inicial externa ao ciclo limite atrator

Solução para a condição inicial externa ao ciclo limite atrator

```
sol17=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR13],y'[t]==f2[x[t],y[t],z[t],PR13],z'[t]==f3[x[t]
y[t],z[t],PR13],x[0]==0.5,y[0]==0,z[0]==1.044},{x[t],y[t],z[t]},{t,0,
2020}];
```

 $\begin{aligned} & \text{Show}[graf17=ParametricPlot3D[{x[t],y[t],z[t]}/.sol17, {t,0,2022.7}, PlotStyle \rightarrow {Black}, \\ & \text{PlotRange} \rightarrow \{ \{0.3, 0.5, \}, \{-0.05, 0.04, \}, \{0.95, 1.15, \} \}, \\ & \text{AxesLabel} \rightarrow \{x, y, z\}], \\ & plotBarder = \{ 0.3, 0.5, 0.04, 0.05, 0.05, 0.04, 0.05, 0.05, 0.04, 0.05, 0.05, 0.04, 0.05, 0.05, 0.04, 0.05, 0.05, 0.04, 0.05, 0.05, 0.05, 0.04, 0.05,$

```
Show[graf17,graf14,graf15,graf16,graf13,p13]
```

Parâmetros do ponto Q

```
  \alpha := 0.8505004843068731 ; \\  \beta := 0.868280339979722 ;
```

```
PR12 = {0.868280339979722, 0.8505004843068731, €c[0.868280339979722, 0.8505004843068731]
- 0.0005}
```

```
\{0.86828, 0.8505, 1.37574\}
```

Ponto de equilíbrio para os parâmetros do ponto Q

```
P0[PR12]
```

```
{0.519071, 0, 1.07317}
```

```
p12=ListPointPlot3D [{{0.5190711346530525`,0,1.0731736881418679`}},
PlotStyle > PointSize [0.02], ColorFunction > "RustTones"];
```

Solução

sol12=NDSolve[{x'[t]==f1[x[t],y[t],z[t],PR12],y'[t]==f2[x[t],y[t],z[t],PR12],z'[t]==f3[x[t] y[t],z[t],PR12],x[0]==0.49,y[0]==0,z[0]==1.0732},{x[t],y[t],z[t]},{t,0, 1996}];

 $\begin{aligned} & \text{Show}[\texttt{graf10}=\texttt{ParametricPlot3D}[\{\texttt{x}[\texttt{t}],\texttt{y}[\texttt{t}],\texttt{z}[\texttt{t}]\}/.\texttt{sol12},\{\texttt{t},0,1999.5\},\texttt{PlotStyle} \rightarrow \{\texttt{Black}\},\\ & \texttt{PlotRange} \rightarrow \{\{0.485`, 0.55`\}, \{-0.03`, 0.025`\}, \{1.04`, 1.105`\}\},\texttt{AxesLabel} \rightarrow \{\texttt{x},\texttt{y},\texttt{z}\},\texttt{pl2}] \end{aligned}$