Universidade Federal de Itajubá Programa de Pós–Graduação em Matemática

Funções Convexas, Subdiferenciais e Aplicações

Tiago Sousa Mota

Orientador: Prof. Dr. Jacson Simsen

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da CAPES e FAPEMIG

UNIVERSIDADE FEDERAL DE ITAJUBÁ Programa de Pós-Graduação em Matemática

Funções Convexas, Subdiferenciais e Aplicações

Tiago Sousa Mota

Orientador: Prof. Dr. Jacson Simsen

Dissertação submetida ao Programa de Pós-Graduação em Matemática como parte dos requisitos para obtenção do Título de Mestre em Ciências em Matemática

Área de Concentração: Análise

Itajubá – MG 28 de fevereiro de 2019

Dedico este trabalho aos meus familiares e amigos.

Agradecimentos

Agradeço primeiramente a Deus por ter me dado vida e força para alcançar essa conquista.

À minha família, que sempre acreditou na minha capacidade.

Aos amigos e companheiros de mestrado, que sempre demonstraram grande companheirismo e solidariedade, em especial, Rafael e Camila, que me receberam muito bem e deram todo apoio que precisei ao ingressar no curso.

Ao professor Dr. Jacson Simsen, pela dedicação, orientação, paciência e compreensão para realização deste trabalho.

À República Alcatraz Bumae e todos os seus moradores por dar me darem oportunidade de fazer parte desta família e a Lilí, que sempre cuidou de todos nós como se fosse uma mãe.

A todos os professores do departamento de matemática por todo conhecimento transmitido.

À CAPES e a FAPEMIG, pelo apoio financeiro.

A todos os membros da banca avaliadora por aceitar fazer parte deste trabalho.

Não importa o quão forte você seja nunca tente fazer tudo sozinho, caso contrário irá falhar.

Uchiha Itachi.

Resumo

Considerando X um espaço de Banach real e $\varphi: X \longrightarrow \overline{\mathbb{R}}$ uma função convexa, semicontínua inferior e própria, veremos algumas propriedades de φ e de sua conjugada $\varphi^*: X^* \longrightarrow \overline{\mathbb{R}}$. Além disso, estudaremos a relação entre a subdiferencial de φ e a subdiferencial da conjugada φ^* . Estas subdiferenciais aparecem como operador principal em muitos modelos de EDP's, por exemplo, o operador p(x)-Laplaciano perturbado é a subdiferencial de uma função convexa, semicontínua inferior e própria, e EDP's com este operador tem aplicações em processamento de imagens e fluidos eletroeológicos.

Palavras-chave: Subdiferenciais, funções convexas, semicontinuidade inferior.

Abstract

Considering X a real Banach space and $\varphi: X^* \longrightarrow \mathbb{R}$ a proper, lower semicontinuos and convex function, we shall see some properties of φ and its conjugate $\varphi^*: X \longrightarrow \mathbb{R}$. In addition, we will study the relationship between the subdifferential of φ and the subdifferential of the conjugate of φ . These subdifferential appear as main operator in many PDE's models, for example, the perturbed p(x)-Laplacian operator is the subdifferential of a proper, lower semicontinuo and convex function and PDE's with this operator have applications in image process and electrorheological fluids.

Keywords: Subdifferentials, convex functions, lower semicontinuity.

Sumário

f Agradecimentos			ii
\mathbf{R}	Resumo		
\mathbf{A}	bstra	et	v
Ín	dice		vi
	Intro	odução	ix
1	Fun	ções Convexas e Côncavas na Reta	7
	1.1	Funções Convexas na Reta	7
	1.2	Funções Côncavas na Reta	11
2	Função Semicontínua Inferior e sua Conjugada		15
	2.1	Função Semicontínua Inferiormente	15
	2.2	Função Fracamente Semicontínua Inferior	18
	2.3	Função Conjugada	21
3	Sub	diferenciais	2 5
	3.1	Subdiferenciais	25
	3.2	Exemplos de Subdiferenciais	26
	3.3	Subdiferencial da Conjugada da Função	31
4	Aplicação		39
	4.1	Algumas definições e resultados importantes	39

	vii	
4.2 O operador $p(x)$ -Laplaciano	42	
Bibliografia		

Introdução

Dada $\varphi: X \longrightarrow \overline{\mathbb{R}} = (-\infty, +\infty]$ uma função convexa, semicontínua inferior e própria, com X sendo um espaço de Banach real, nosso objetivo é estudar a aplicação,

 $\partial \varphi: X \longrightarrow X^*$, conhecida como a subdiferencial de φ , visando aplicações em EDP's.

Para isso, veremos inicialmente uma breve revisão sobre conceitos de espaços de Banach, topologia fraca, entre outros, e enunciaremos alguns resultados que serão bastante utilizados no decorrer deste trabalho. No primeiro capítulo, introduziremos o conceito de funções convexas e côncavas na reta, pois a convexidade de funções será importante para trabalharmos com subdiferenciais.

No segundo capítulo, definiremos o que é uma função $\varphi: X \longrightarrow \overline{\mathbb{R}}$ semicontínua inferior e própria, com X sendo um espaço de Banach real, e veremos algumas relações de φ com os seus conjuntos de níveis e seu epígrafo. Além disso, definiremos a conjugada de φ , denotada por $\varphi^*: X^* \longrightarrow \overline{\mathbb{R}}$, e mostraremos que, se φ for convexa, semicontínua inferior e própria, então φ^* também tem estas mesmas propriedades.

Para o terceiro capítulo, teremos como foco trabalhar com a subdiferencial $\partial \varphi$ de funções $\varphi: X \longrightarrow \mathbb{R}$ que são convexas, semicontínuas inferior e próprias. Devido aos resultados do capítulo anterior, estudaremos a subdiferencial da conjugada de φ e veremos a relação entre $\partial \varphi$ e $\partial \varphi^*$.

No último capítulo enunciaremos algumas propriedades do espaço $L^{p(x)}(\Omega)$ e do espaço de Sobolev generalizado $W^{1,p(x)}(\Omega)$ e definiremos o operador p(x)-Laplaciano. Mostraremos que para $H=L^2(\Omega)$ o operador p(x)-Laplaciano é a subdiferencial de uma função convexa, semicontínua inferior e própria.

Preliminares

Neste capítulo, apresentaremos algumas ferramentas matemáticas e notações que serão utilizadas nos demais capítulos desta dissertação.

Seja C um subconjunto de um espaço vetorial E. $x \in E$ é uma **cota superior** de C se $x \ge y$, para todo $y \in C$. x é uma **cota inferior** de C se $x \le y$, para todo $y \in C$.

Definição 0.0.1.

- (a) O supremo de um conjunto C, denominado $\sup C$, é a menor das cotas superiores.
- (b) O **infimo** de um conjunto C, denominado inf C, é a maior das cotas inferiores.

Definição 0.0.2.

(a) Seja $\{a_n\}_{n\in\mathbb{N}}$ uma sequência em $(-\infty, +\infty)$ e sejam, $b_k = \sup\{a_k, a_{k+1}, a_{k+2}, \ldots\}, k = 1, 2, 3, \ldots$ e $\beta = \inf\{b_1, b_2, b_3, \ldots\}.$ β é chamado **limite superior** de $\{a_n\}_{n\in\mathbb{N}}$ e escrevemos,

$$\beta = \limsup_{n \to +\infty} a_n.$$

(b) Seja $\{a_n\}_{n\in\mathbb{N}}$ uma sequência em $(-\infty, +\infty)$ e sejam, $b_k = \inf\{a_k, a_{k+1}, a_{k+2}, \ldots\}, k = 1, 2, 3, \ldots$ e $\alpha = \sup\{b_1, b_2, b_3, \ldots\}.$ α é chamado **limite inferior** de $\{a_n\}_{n\in\mathbb{N}}$ e escrevemos,

$$\alpha = \liminf_{n \to +\infty} a_n.$$

Definição 0.0.3.

(a) Seja E um espaço vetorial e C um subconjunto de E. O subconjunto C é convexo se dados $x,y\in C$ e $\lambda\in [0,1]$, então $[\lambda x+(1-\lambda)y]\in C$.

(b) Uma função $\varphi: X \longrightarrow [-\infty, +\infty]$ é convexa, se dados quaisquer $x, y \in X$ e $\lambda \in [0, 1]$ então:

$$\varphi((1-\lambda)x + \lambda y) \le (1-\lambda)\varphi(x) + \lambda\varphi(y).$$

Proposição 0.0.4. Se $f, g: X \longrightarrow \mathbb{R}$ são convexas, então $h: X \longrightarrow \mathbb{R}$ dada por h(x) = f(x) + g(x) é convexa.

Demonstração:

Para quaisquer $x, y \in X$ e $\lambda \in [0, 1]$ temos que,

$$\begin{split} h(\lambda x + (1 - \lambda)y) &= f(\lambda x + (1 - \lambda)y) + g(\lambda x + (1 - \lambda)y) \\ &\leq \lambda f(x) + (1 - \lambda)f(y) + \lambda g(x) + (1 - \lambda)g(y) \\ &= \lambda [f(x) + g(x)] + (1 - \lambda)[f(y) + g(y)] = \lambda h(x) + (1 - \lambda)h(y). \end{split}$$

Portanto, h é convexa.

Seja X um espaço vetorial real normado, com norma $||.||_X$, denotado por $(X,||.||_X)$. O espaço vetorial $(X,||.||_X)$ é um espaço de Banach quando X for completo em relação a métrica d(x,y)=||x-y||, com $x,y\in X$, isto é, se toda sequência de Cauchy em X converge.

Neste trabalho, sempre que não especificado, denotaremos X como um espaço de Banach real.

Dizemos que $f:X\longrightarrow \mathbb{R}$ é uma aplicação linear real sobre X se satisfaz:

$$(i)f(x+y) = f(x) + f(y)$$
, para todo $x, y \in X$.

$$(ii)f(\lambda x) = \lambda f(x)$$
, para todo $x \in X$ e $\lambda \in \mathbb{R}$.

Definição 0.0.5. Sejam $(E; ||.||_E)$ e $(F; ||.||_F)$ espaços vetoriais normados. Dizemos que uma aplicação linear $T: E \longrightarrow F$ é limitada se existe uma constante M > 0 tal que,

$$||T(x)||_F \le M||x||_E$$

para todo $x \in E$.

Proposição 0.0.6. Sejam E e F espaço vetoriais e $T: X \longrightarrow \mathbb{R}$ uma aplicação linear. As seguintes afirmações são equivalentes:

- (i) T é contínua.
- (ii) T é contínua na origem.
- (iii) T é limitada.

Demonstração: Ver [9], página 91.

Definição 0.0.7.

- (a) O conjunto formado por todas as aplicações lineares contínuas $T: X \longrightarrow \mathbb{R}$ será chamado de **espaço dual** de X e será denotado por X^* .
- (b) A norma usual adotada no espaço X^* é $||T|| = \inf\{M \in \mathbb{R} : ||T(x)|| \le M||x||, \forall \ x \in X\}.$

Proposição 0.0.8. Sejam E e F espaços vetoriais normados e $T: E \longrightarrow F$ uma aplicação linear limitada. Então,

$$||T|| = \sup \left\{ \frac{||T(x)||}{||x||}; \ x \in E - \{0\} \right\} = \sup \left\{ ||T(x)||; \ x \in E \ e \ ||x|| \le 1 \right\}$$
$$= \sup \left\{ ||T(x)||; \ x \in E \ e \ ||x|| = 1 \right\}.$$

Demonstração: Ver [9], página 86.

Notação: Dados $f \in X^*$ e $x \in X$, denotaremos $\langle f, x \rangle := f(x)$. Temos que $\langle ., . \rangle$ denota o produto dualidade entre X^* e X.

Dados $f, g \in X^*, x, y \in X$ e $\lambda \in \mathbb{R}$, temos que $\langle ., . \rangle$ satisfaz

- $\langle f + \lambda g, x \rangle = \langle f, x \rangle + \lambda \langle g, x \rangle$,
- $\langle f, x + \lambda y \rangle = \langle f, x \rangle + \lambda \langle f, y \rangle$.

Seja X um espaço de Banach e consideremos $f \in X^*$. Designaremos por $\varphi_f : X \longrightarrow \mathbb{R}$, a aplicação dada por $\varphi_f(x) = \langle f, x \rangle$, para todo $x \in X$. A medida que f percorre X^* , se obtém uma família $\{\varphi_f\}_{f \in X^*}$ de aplicações de X em \mathbb{R} .

Sejam $(X; \tau_1)$ e $(X; \tau_2)$ espaços topológicos. Se $\tau_1 \subset \tau_2$, dizemos que a topologia τ_1 é mais grossa que τ_2 ou que τ_2 é mais fina que τ_1 .

Definição 0.0.9. A topologia fraca $\sigma(X; X^*)$ sobre X, é a topologia menos fina (ou mais grossa) em X para a qual são contínuas todas as aplicações φ_f , com $f \in X^*$.

Dada uma sequência $\{y_n\}_{n\in\mathbb{N}}\subset X$, se designa por $y_n\rightharpoonup y$ a convergência de y_n para y na topologia fraca $\sigma(X;X^*)$. Dizemos, neste caso, que $\{y_n\}$ converge fraco para y em X.

Uma sequência $\{y_n\}_{n\in\mathbb{N}}$ converge fraco para y em X se, e somente se, $\langle f, y_n \rangle \longrightarrow \langle f, y \rangle$ quando $n \longrightarrow +\infty$, para toda $f \in X^*$.

Definição 0.0.10. Seja C um subconjunto do espaço vetorial normado X com norma ||.||,

- C é **fortemente fechado** (ou, C é fechado na topologia forte de X) se C é fechado na topologia da norma, isto é, se dada uma sequência $\{y_n\}_{n\in\mathbb{N}}\subset C$ tal que $||y_n-y|| \longrightarrow 0$ quando $n \longrightarrow +\infty$, então $y \in C$.
- C é **fracamente fechado** se ele é fechado na topologia fraca de X, ou seja, se dada uma sequência $\{y_n\}_{n\in\mathbb{N}}\subset C$, tal que $\langle f,y_n\rangle\longrightarrow\langle f,y\rangle$ quando $n\longrightarrow+\infty$, para toda $f\in X^*$, então $y\in C$.

Lema 0.0.11. Seja $f : \mathbb{R} \longrightarrow \mathbb{R}$, temos que $f \in \mathbb{R}^*$ se, somente se, $f(x) = \alpha x$ para algum $\alpha \in \mathbb{R}$.

Demonstração:

Se $f \in \mathbb{R}^*$, então $f(1) = \alpha$, para algum $\alpha \in \mathbb{R}$. Assim, dado $x \in \mathbb{R}$, temos que, $f(x) = f(x.1) = xf(1) = \alpha x$.

Por outro lado, se $f(x) = \alpha x$, claramente f é uma aplicação linear contínua, provando assim o resultado.

Teorema 0.0.12. Sejam X e Y espaços de Banach. Existe um isomorfismo de $(X \times Y)^*$ para $X^* \times Y^*$, neste caso, denotaremos $(X \times Y)^* \approx X^* \times Y^*$.

Demonstração: Ver [11] pag. 6. \Box

Definição 0.0.13. Seja X um espaço vetorial real. Um hiperplano afim de X é um conjunto da forma

$$H = \{x \in X; f(x) = \alpha\},\$$

sendo que $\alpha \in \mathbb{R}$ e $f: X \longrightarrow \mathbb{R}$ uma aplicação linear não nula.

Escrevemos que H tem equação $[f = \alpha]$.

Proposição 0.0.14. O hiperplano H de equação $[f = \alpha]$ é fechado se , somente se, f é contínua.

Demonstração: Ver [11] pag. 25. □

Definição 0.0.15. Sejam X um espaço vetorial normado e A,B subconjuntos de X.

- O hiperplano H de equação $[f = \alpha]$ separa A e B no sentido lato se, $f(x) \leq \alpha$, para todo $x \in A$ e $f(x) \geq \alpha$, para todo $x \in B$.
- O hiperplano H de equação $[f = \alpha]$ separa A e B no sentido estrito se, $f(x) < \alpha$, para todo $x \in A$ e $f(x) > \alpha$, para todo $x \in B$.

Teorema 0.0.16 (Teorema de Hahn-Banach, primeira forma geométrica). Sejam X um espaço vetorial normado e $A, B \subset X$ subconjuntos convexos, disjuntos e não vazios. Se A é aberto, então existe um hiperplano fechado que separa A e B no sentido lato.

Teorema 0.0.17 (Teorema de Hahn-Banach, segunda forma geométrica). Sejam X um espaço vetorial normado e $A, B \subset X$ subconjuntos convexos, disjuntos e não vazios. Assuma que A é fechado e B é compacto. Então existe um hiperplano fechado que separa estritamente os subconjuntos A e B.

Definição 0.0.18. O dual topológico de X^* é chamado **bidual** de X e o denotaremos por X^{**} . Em outras palavras, $X^{**} = \{\phi : X^* \longrightarrow \mathbb{R}; \phi \text{ \'e linear e contínua }\}.$

Existe uma aplicação canônica J entre X e X** definida como,

$$J: X \longrightarrow X^{**}$$

$$x \longrightarrow J(x): X^{*} \longrightarrow \mathbb{R}$$

$$x^{*} \longrightarrow J(x)(x^{*}) = x^{*}(x) = \langle x^{*}, x \rangle.$$

Dizemos que X é um espaço **reflexivo** quando $J(X) = X^{**}$.

Proposição 0.0.19. A aplicação $J: X \longrightarrow X^{**}$ como na definição anterior é um isomorfismo isométrico de X em J(X).

Demonstração: Veja [11], pág. 46

Teorema 0.0.20. Seja X um espaço de Banach reflexivo e $K \subset X$ um subconjunto convexo, fechado e limitado. Então K é compacto na topologia fraca de X.

Demonstração: Ver [4], página 46.

Capítulo 1

Funções Convexas e Côncavas na Reta

Neste capítulo faremos uma revisão de funções convexas e côncavas na reta tendo como referência o livro [3].

1.1 Funções Convexas na Reta

Se $a \neq b$, a reta que liga os pontos (a,A) e (b,B) no plano \mathbb{R}^2 é o conjunto dos pontos $(x,y) \in \mathbb{R}^2$ tais que:

$$y = A + \frac{B-A}{b-a}(x-a)$$
 ou equivalentemente, $y = B + \frac{B-A}{b-a}(x-b)$.

Definição 1.1.1. Seja a função $f: X \longrightarrow \mathbb{R}$. Dados $a, b \in X$, o segmento de reta que liga os pontos (a, f(a)) e (b, f(b)) será chamado de secante ab.

Definição 1.1.2. Seja $I \subset \mathbb{R}$ um intervalo. Uma função $f: I \longrightarrow \mathbb{R}$ chama-se **convexa** quando a parte de seu gráfico se situa abaixo de cada secante, $a \leq x \leq b$. Em termos precisos, a convexidade de f se exprime assim:

$$a < x < b \ em \ I \Longrightarrow f(x) \le f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$$

ou equivalentemente,

$$a < x < b \ em \ I \Longrightarrow f(x) \le f(b) + \frac{f(b) - f(a)}{b - a}(x - b).$$

Observação 1.1.3. Sejam $a, b, x \in I$. A função $f: I \longrightarrow \mathbb{R}$ é convexa no intervalo I se, e somente se, $a < x < b \Longrightarrow \frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \frac{f(x) - f(b)}{x - b}$.

Decorre direto do fato de:

$$f(x) \le f(a) + \frac{f(b) - f(a)}{b - a}(x - a) \Longleftrightarrow \frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a}$$

e,

$$f(x) \le f(b) + \frac{f(b) - f(a)}{b - a}(x - b) \iff \frac{f(x) - f(b)}{x - b} \ge \frac{f(b) - f(a)}{b - a}.$$

Consequentemente, para a < x < b, a secante ax tem inclinação menor que a secante ab e esta por sua vez, tem inclinação menor de que a secante xb.

Teorema 1.1.4. Se $f: I \longrightarrow \mathbb{R}$ é convexa no intervalo I então existem as derivadas laterais $f'_{+}(c)$ e $f'_{-}(c)$ em todo ponto $c \in intI$.

Demonstração: Pela observação anterior a função definida como $\phi_c(x) = \frac{f(x) - f(c)}{x - c}$ é monótona não-decrescente no intervalo $J = I \cap (c, +\infty)$. Como $c \in intI$, existe $a \in I$, com a < c. Portanto para,

$$a < c < x \Longrightarrow \frac{f(a) - f(c)}{a - c} = \frac{f(c) - f(a)}{c - a} \le \frac{f(x) - f(a)}{x - a} \le \frac{f(c) - f(x)}{c - x} = \frac{f(x) - f(c)}{x - c} = \phi_c(x)$$

Logo,

$$\phi_c(x) \ge \frac{f(a) - f(c)}{a - c}$$
, para todo $x \in J$.

Assim, a função $\phi_c: J \longrightarrow \mathbb{R}$ é limitada inferiormente. Sendo assim, existe o limite à direita $\lim_{x\to c^+}\phi_c(x)=f'_+(c)$.

Para a derivada a esquerda o raciocínio é análogo.

Corolário 1.1.5. Uma função convexa $f: I \longrightarrow \mathbb{R}$ é contínua em todo ponto interior do intervalo I.

Demonstração: Se $f: I \longrightarrow \mathbb{R}$ é convexa, então pelo teorema anterior as derivadas laterais $f'_+(c)$ e $f'_-(c)$ existem em todo ponto $c \in intI$. Note que,

$$0 \le |f(c+h) - f(c)| = \left| \frac{f(c+h) - f(c)}{h} |.|h| \right| \le M|h|.$$

Fazendo $h \longrightarrow 0^+$ e $h \longrightarrow 0^-$, temos que, $\lim_{h \to 0} f(c+h) - f(c)$.

Portanto f é contínua em c.

Exemplo: $f:[0,1] \longrightarrow \mathbb{R}$, definida por f(0)=1 e f(x)=0 se $0 < x \le 1$, é convexa porém descontínua no ponto 0 (ponto extremo).

Teorema 1.1.6. As seguintes afirmações sobre a função $f: I \longrightarrow \mathbb{R}$, derivável no intervalo I, são equivalentes:

- (1) f é convexa.
- (2) A derivada $f': I \longrightarrow \mathbb{R}$ é monótona não-decrescente.
- (3) Para quaisquer $a, x \in I$ têm-se $f(x) \ge f(a) + f'(a)(x a)$, ou seja, o gráfico de f está situado acima de qualquer de suas tangentes.

Demonstração: $(1) \Longrightarrow (2)$:

Sejam a < x < b em I. Como f é convexa temos que

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \frac{f(x) - f(b)}{x - b}.$$

Aplicando o limite de $x \longrightarrow a^+$ na primeira desigualdade e analogamente com $x \longrightarrow b^-$ na segunda desigualdade, temos que:

$$f'(a) = f'_{+}(a) \le \frac{f(b) - f(a)}{b - a} \le f'_{-}(b) = f'(b).$$

Logo $a < b \Longrightarrow f'(a) \le f'(b)$.

 $(2) \Longrightarrow (3)$:

Suponhamos a < x em I. Pelo Teorema do Valor Médio, existe $z \in (a, x)$ tal que f(x) = f(a) + f'(z)(x-a). Como f' é monótona não-decrescente, temos que $f'(z) \ge f'(a)$. Logo, $f(x) \ge f(a) + f'(a)(x-a)$.

Se x < a, pelo teorema do Valor Médio, existe w $\in (x, a)$ tal que,

$$f(a) - f(x) = f'(w)(a - x) \Longrightarrow f(x) = f(a) - f'(w)(a - x) = f(a) + f'(w)(x - a).$$

Como f' é monótona não-decrescente, temos $f'(w) \leq f'(a)$. Como (x-a) < 0, temos que $f'(w)(x-a) \geq f'(a)(x-a)$. Portanto, $f(x) \geq f(a) + f'(a)(x-a)$. (3) \Longrightarrow (1):

Suponhamos que vale a condição (3) e sejam a < c < b em I. Queremos mostrar que,

$$f(c) \le f(a) + \frac{f(b) - f(a)}{b - a}(c - a).$$

De fato, consideremos g(x) = f(c) + f'(c)(x - c) e $H = \{(x, y) \in \mathbb{R}^2; y \geq g(x)\}$ o semiplano superior determinado pela reta y = g(x) que é a tangente ao gráfico de f no ponto (c, f(c)).

Evidentemente H é um subconjunto convexo do plano, isto é, o segmento que liga quaisquer dois pontos de H está contido em H.

Da hipótese, temos que os pontos (a, f(a)) e (b, f(b)) pertence a H, logo o segmento de reta que une estes dois pontos estão contidos em H. Em particular, o ponto desse segmento que tem abcissa c, $(c, f(a) + \frac{f(b) - f(a)}{b - a}(c - a))$, pertence a H, isto é,

$$f(a) + \frac{f(b) - f(a)}{b - a}(c - a) \ge g(c) = f(c).$$

Portanto, f é convexa.

Corolário 1.1.7. Todo ponto crítico de uma função convexa é um ponto de mínimo absoluto.

Demonstração: Seja $a \in I$ um ponto crítico de uma função convexa $f: I \longrightarrow \mathbb{R}$, isto é, f'(a) = 0. Pela condição (3) do teorema temos que $f(x) \ge f(a) + f'(a)(x-a), \forall x \in I$, como f'(a) = 0 segue que $f(x) \ge f(a), \forall x \in I$.

Portanto, a é ponto de mínimo absoluto para f.

Corolário 1.1.8. Uma função $f: I \longrightarrow \mathbb{R}$, duas vezes derivável em I, é convexa se, e somente se, $f''(x) \ge 0$ para todo $x \in I$.

Demonstração: $f''(x) \ge 0 \ \forall \ x \in I \iff f': I \longrightarrow \mathbb{R}$ é monótona não-decrescente $\iff f$ é convexa.

1.2 Funções Côncavas na Reta

Definição 1.2.1. Uma função $f: I \longrightarrow \mathbb{R}$ diz-se côncava quando -f é convexa, isto é, quando o gráfico de f está acima de qualquer de suas secantes.

$$a < x < b \text{ em } I \Longrightarrow f(x) \ge f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$$

Ou equivalentemente,

$$a < x < b \text{ em } I \Longrightarrow f(x) \ge f(b) + \frac{f(b) - f(a)}{b - a}(x - b).$$

Portanto, $f: I \longrightarrow \mathbb{R}$ é côncava se, somente se,

$$a < x < b \text{ em } I \Longrightarrow \frac{f(x) - f(a)}{x - a} \ge \frac{f(b) - f(a)}{b - a} \ge \frac{f(x) - f(b)}{x - b}.$$

De forma análoga ao caso das funções convexas, obtemos os seguintes resultados.

Proposição 1.2.2. Se $f: I \longrightarrow \mathbb{R}$ é côncava no intervalo I, então existem as derivadas laterais $f'_{+}(c)$ e $f'_{-}(c)$ em todo ponto $c \in int(I)$.

Demonstração: Análoga ao Teorema 1.0.1, basta tomar g(x)=-f(x) em I, e usar as propriedades de g(x) ser convexa.

Corolário 1.2.3. Uma função côncava $f: I \longrightarrow \mathbb{R}$ é contínua em todo ponto interior do intervalo I.

Teorema 1.2.4. As seguintes afirmações sobre a função $f: I \longrightarrow \mathbb{R}$, derivável no intervalo I, são equivalentes:

- (1) f \acute{e} $c\^{o}ncava.$
- (2) A derivada $f': I \longrightarrow \mathbb{R}$ é monótona não-crescente.
- (3) Para quaisquer $a, x \in I$ têm-se $f(x) \leq f(a) + f'(a)(x a)$, ou seja, o gráfico de f está situado abaixo de suas tangentes.

Corolário 1.2.5. Todo ponto crítico de uma função côncava é um ponto de máximo absoluto.

Corolário 1.2.6. Uma função $f: I \longrightarrow \mathbb{R}$, duas vezes derivável no intervalo I, é côncava se, e somente se, $f''(x) \leq 0$, para todo $x \in I$.

Definição 1.2.7. Uma função $f: I \longrightarrow \mathbb{R}$ é estritamente convexa quando,

$$a < x < b \ em \ I \Longrightarrow f(x) < f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$$

f é estritamente côncava quando,

$$a < x < b \ em \ I \Longrightarrow f(x) > f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$$

Observação 1.2.8. Se $f: I \longrightarrow \mathbb{R}$ é estritamente convexa, implica que f' é crescente, mas não implica que f''(x) > 0, para todo $x \in I$. Entretanto, f''(x) > 0, para todo $x \in I$ implica que f' é crescente e portanto, f é estritamente convexa.

Exemplo 1.2.9. A função $f : \mathbb{R} - \{0\} \longrightarrow \mathbb{R}$, com f(x) = 1/x, é estritamente côncava para x < 0 e estritamente convexa para x > 0. Como $f''(x) = \frac{2}{x^3}$ e temos,

$$x > 0 \Longrightarrow f''(x) > 0 \Longrightarrow f' \text{ \'e crescente}$$
.

Portanto, f é estritamente convexa em $(0, +\infty)$.

$$x < 0 \Longrightarrow f''(x) < 0 \Longrightarrow f' \text{ \'e decrescente.}$$

Portanto, f é estritamente côncava em $(-\infty,0)$.

Exemplo 1.2.10. A função $f(x) = e^x$ é estritamente convexa em \mathbb{R} , pois $f''(x) = e^x > 0$, para todo $x \in \mathbb{R}$. Portanto, f' é crescente e, conseguentemente, f é estritamente convexa.

Enquanto a função $g(x) = \ln(x)$, para x > 0, é estritamente côncava, pois $g''(x) = -1/x^2 < 0$, para todo x > 0.

Todo ponto $x \in [a, b]$ é escrito de modo único sob a forma x = (1 - t)a + tb, com $0 \le t \le 1$.

O segmento de reta que liga o ponto (a, f(a)) ao ponto (b, f(b)) no plano é definido por $y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$, com $a \le x \le b$. O ponto de abscissa x = (1 - t)a + tb tem ordenada y(t) = (1 - t)f(a) + tf(b), pois

$$y(t) = f(a) + \frac{f(b) - f(a)}{b - a}((1 - t)a + tb - a) = f(a) + \frac{f(b) - f(a)}{b - a}(-ta + tb)$$
$$= f(a) + \frac{f(b) - f(a)}{b - a}(t(b - a))$$
$$= (1 - t)f(a) + tf(b).$$

Portanto, uma função $f:I\longrightarrow \mathbb{R}$ é convexa se, somente se,

$$a, b \in I, 0 \le t \le 1 \Longrightarrow f((1-t)a+tb) \le (1-t)f(a)+tf(b).$$

Equivalentemente, $f: I \longrightarrow \mathbb{R}$ é convexa se, e somente se, para quaisquer $a_1, a_2 \in I$ e $t_1, t_2 \in [0, 1]$ com $t_1 + t_2 = 1$ tem-se $f(t_1a_1 + t_2a_2) \le t_1f(a_1) + t_2f(a_2)$.

Basta notar que substituindo $t_1 = 1 - t_2$ na equação acima obtemos:

$$a_1, a_2 \in I, t_2 \in [0, 1] \Longrightarrow f((1 - t_2)a_1 + t_2a_2) \le (1 - t_2)f(a_1) + t_2f(a_2).$$

Proposição 1.2.11. Sejam $a_1, a_2, a_3 \in I$ e $t_1, t_2, t_3 \in [0, 1]$ com $t_1 + t_2 + t_3 = 1$. Se $f: I \longrightarrow \mathbb{R}$ é convexa, então $f(t_1a_1 + t_2a_2 + t_3a_3) \le t_1f(a_1) + t_2f(a_2) + t_3f(a_3)$.

Demonstração: Se $t_1 = t_2 = 0$, então $t_3 = 1$ e a designaldade decorre direto $(f(a_3) = f(a_3))$.

Suponha agora que $t_1 + t_2 \neq 0$, com $t_1 + t_2 + t_3 = 1$ e note que, $t_1a_1 + t_2a_2 + t_3a_3 = (t_1 + t_2) \left[\frac{t_1}{t_1 + t_2} a_1 + \frac{t_2}{t_1 + t_2} a_2 \right] + t_3a_3$ e $1 = \frac{t_1 + t_2}{t_1 + t_2} = \frac{t_1}{t_1 + t_2} + \frac{t_2}{t_1 + t_2}$. Assim, $f(t_1a_1 + t_2a_2 + t_3a_3) = f\left((t_1 + t_2) \left[\frac{t_1}{t_1 + t_2} a_1 + \frac{t_2}{t_1 + t_2} a_2 \right] + \frac{t_2}{t_1 + t_2} a_2 \right]$

$$f(t_1a_1 + t_2a_2 + t_3a_3) = f\left((t_1 + t_2)\left[\frac{t_1}{t_1 + t_2}a_1 + \frac{t_2}{t_1 + t_2}a_2\right] + t_3a_3\right)$$

$$\leq (t_1 + t_2)f\left(\frac{t_1}{t_1 + t_2}a_1 + \frac{t_2}{t_1 + t_2}a_2\right) + t_3f(a_3)$$

$$\leq (t_1 + t_2)\left[\frac{t_1}{t_1 + t_2}f(a_1) + \frac{t_2}{t_1 + t_2}f(a_2)\right] + t_3f(a_3)$$

$$= t_1f(a_1) + t_2f(a_2) + t_3f(a_3).$$

As designaldades ocorrem do fato de f ser convexa e as constantes satisfazerem as hipóteses.

Observação 1.2.12. Analogamente, se $f: I \longrightarrow \mathbb{R}$ é convexa então, dados $a_1, a_2, ..., a_n \in I$ e $t_1, t_2, ..., t_n \in [0, 1]$ com $t_1 + t_2 + ... + t_n = 1$, vale

$$f(t_1a_1 + \dots + t_na_n) \le t_1f(a_1) + \dots + t_nf(a_n).$$

Com isso podemos provar a seguinte relação entre a média aritmética e a média geométrica:

Exemplo 1.2.13. Dados $x_1, x_2, ..., x_n \in \mathbb{R}^+$, temos que $\sqrt[n]{x_1 x_2 ... x_n} \le \frac{x_1 + ... + x_n}{n}$.

Com efeito, considere a função convexa $f(x)=e^x$, $t_1=t_2=\ldots=t_n=\frac{1}{n}$ e $a_1=\ln x_1,\ldots,a_n=\ln x_n$ temos,

$$\sqrt[n]{x_1 x_2 \dots x_n} = \sqrt[n]{e^{a_1} e^{a_2} \dots e^{a_n}} = e^{\frac{a_1 + \dots + a_n}{n}} = f(t_1 a_1 + \dots + t_n a_n) \le t_1 f(a_1) + \dots + t_n f(a_n) = e^{\frac{a_1 + \dots + a_n}{n}} = f(t_1 a_1 + \dots + t_n a_n) \le t_1 f(a_1) + \dots + t_n f(a_n) = e^{\frac{a_1 + \dots + a_n}{n}} = e^{\frac{a_1 + \dots + a_n}{n}} = f(t_1 a_1 + \dots + t_n a_n) \le t_1 f(a_1) + \dots + t_n f(a_n) = e^{\frac{a_1 + \dots + a_n}{n}} = e^{\frac{a_1 + \dots + a_n}{n}}$$

$$= \frac{e^{a_1} + \dots + e^{a_n}}{n} = \frac{x_1 + \dots + x_n}{n}.$$

Exemplo 1.2.14. Sejam $x_1, ..., x_n$ números positivos e $t_1, ..., t_n \in [0, 1]$ com $t_1+...+t_n=1$. Então vale a seguinte designaldade:

$$x_1^{t_1}.x_2^{t_2}...x_n^{t_n} \le t_1x_1 + t_2x_2 + ... + t_nx_n.$$

De fato, se existir $j \in \{1, 2, ..., n\}$ tal que $x_j = 0$, claramente a desigualdade é válida. Considere a função convexa $f(x) = e^x$, e $a_1 = \ln x_1, ..., a_n = \ln x_n$, com $x_i > 0$, para todo i = 1, 2, ..., n. Então,

$$x_1^{t_1}.x_2^{t_2}...x_n^{t_n} = e^{t_1a_1}.e^{t_2a_2}...e^{t_na_n} = e^{t_1a_1+...+t_na_n} = f(t_1a_1 + ... + t_na_n) \le$$

$$< t_1f(a_1) + ... + t_nf(a_n) = t_1e^{\ln x_1} + ... + t_ne^{\ln x_n} = t_1x_1 + t_2x_2 + ... + t_nx_n.$$

Capítulo 2

Função Semicontínua Inferior e sua Conjugada

Este capítulo e o próximo são baseados na segunda seção do primeiro capítulo do livro [13].

2.1 Função Semicontínua Inferiormente

Chamaremos de domínio efetivo de $\varphi: X \longrightarrow \bar{\mathbb{R}}$, onde X é um espaço de Banach real, o conjunto

$$D(\varphi) = \{x \in X; \varphi(x) < +\infty\}.$$

Definição 2.1.1.

- (a) $\varphi: X \longrightarrow \mathbb{R}$ é uma função **própria** se $D(\varphi) \neq \emptyset$, ou seja, φ não é identicamente $+\infty$.
- (b) Dado $\lambda \in \mathbb{R}$, o conjunto de nível λ de uma função $\varphi: X \longrightarrow \bar{\mathbb{R}}$ é

$$\{x\in X; \varphi(x)\leq \lambda\}=: [\varphi,\lambda].$$

(c) Uma função $\varphi: X \longrightarrow \mathbb{R}$ é semicontínua inferiormente (s.c.i.) se, $\liminf_{u \longrightarrow x} \varphi(u) \ge \varphi(x), \text{ para todo } x \in X. \text{ Equivalentemente, temos}$ $\liminf_{n \longrightarrow +\infty} \varphi(x_n) \ge \varphi(x), \text{ onde } \{x_n\}_{n=1}^{+\infty} \subset X, \text{ com } x_n \longrightarrow x.$

Proposição 2.1.2. Uma função $\varphi: X \longrightarrow \mathbb{R}$ é semicontínua inferiormente se, e somente se, todos os conjuntos de níveis de φ são fechados.

Demonstração:

 (\Longrightarrow)

Seja $\varphi: X \longrightarrow \mathbb{R}$ uma função s.c.i. e considere o conjunto de nível $[\varphi \leq \lambda]$ com $\lambda \in \mathbb{R}$ fixado arbitrariamente. Seja $\{x_n\}_{n=1}^{\infty} \subset [\varphi \leq \lambda]$ uma sequência convergindo para x e vamos mostrar que $x \in [\varphi \leq \lambda]$, ou seja, $\varphi(x) \leq \lambda$. Como $\varphi(x_n) \leq \lambda$, para todo $n \in \mathbb{N}$, então,

$$\liminf_{n \to +\infty} \varphi(x_n) \le \lambda.$$
(1)

Por outro lado, como φ é s.c.i. temos que,

$$\lim_{n \to +\infty} \inf \varphi(x_n) \ge \varphi(x). \tag{2}$$

De (1) e (2) temos que $\varphi(x) \leq \lambda$.

 (\Longleftrightarrow)

Suponha que $[\varphi \leq \lambda] = \{x \in X; \varphi(x) \leq \lambda\}$ seja fechado para todo $\lambda \in \mathbb{R}$.

Dado $x \in X$, seja $\{x_n\}_{n=1}^{\infty} \subset X$ uma sequência convergindo para x.

- Se $\liminf_{n \to +\infty} \varphi(x_n) = +\infty$, então $\varphi(x) \le +\infty$ e o resultado decorre direto.
- Se $\liminf_{n \to +\infty} \varphi(x_n) = \alpha < +\infty$, considere $\lambda_{\epsilon} = \alpha + \epsilon$, sendo ϵ um número real positivo. Temos uma subsequência $\{\varphi(x_{n_k})\}$ da sequência $\{\varphi(x_n)\}_{n \in \mathbb{N}}$ com $\varphi(x_{n_k}) \to \alpha$ quando $k \to +\infty$. Para todo $\epsilon > 0$, existe $k_0 \in \mathbb{N}$ tal que para $k \geq k_0$ temos que $\varphi(x_{n_k}) \leq \lambda_{\epsilon}$. Como $x_n \to x$, quando $n \to +\infty$, a subsequência $x_{n_k} \to x$ quando $k \to +\infty$, e o conjunto de nível $[\varphi, \lambda_{\epsilon}]$ é fechado, então $x \in [\varphi, \lambda_{\epsilon}]$, isto é, $\varphi(x) \leq \lambda_{\epsilon} = \alpha + \epsilon$. Fazendo $\epsilon \to 0$ temos que $\varphi(x) \leq \alpha = \liminf_{n \to +\infty} \varphi(x_n)$.

Observação 2.1.3. Note que o resultado da Proposição 2.1.2 independe da topologia usada em X.

Proposição 2.1.4. Cada conjunto de nível de uma função convexa $\varphi: X \longrightarrow \mathbb{R}$ é convexo.

Demonstração:

Seja $\lambda \in \mathbb{R}$ tal que o conjunto de nível $[\varphi, \lambda] \neq \emptyset$. Tome $x, y \in [\varphi, \lambda]$. Como φ é convexa, temos que,

$$\begin{split} \varphi(tx+(1-t)y) &\leq t\varphi(x)+(1-t)\varphi(y) \leq t\lambda+(1-t)\lambda = \lambda, \text{ para todo } t \in [0,1]. \end{split}$$
 Portanto $(tx+(1-t)y) \in [\varphi,\lambda]$ para todo $t \in [0,1].$

Dada uma função $\varphi: X \longrightarrow \overline{\mathbb{R}}$, chamaremos de **epígrafo** de φ o conjunto

$$Epi(\varphi) = \{(x, \lambda) \in X \times \mathbb{R}; \varphi(x) \le \lambda\}.$$

Proposição 2.1.5. Uma função $\varphi: X \longrightarrow \overline{\mathbb{R}}$ é s.c.i. se, e somente se, o conjunto $Epi(\varphi)$ é fechado.

Demonstração:

 (\Longrightarrow)

Suponha que $\varphi: X \longrightarrow \mathbb{R}$ é s.c.i. e considere a sequência $\{(x_n, \lambda_n)\}_{n \in \mathbb{N}} \subset Epi(\varphi)$ convergindo para (x, λ) . Segue que $x_n \longrightarrow x$ em $X \in \lambda_n \longrightarrow \lambda$ em \mathbb{R} , quando $n \longrightarrow +\infty$. Como φ é s.c.i. e $\varphi(x_n) \leq \lambda_n$, para todo $n \in \mathbb{N}$, segue que,

$$\lambda = \lim_{n \to +\infty} \lambda_n \ge \lim_{n \to +\infty} \inf \varphi(x_n) \ge \varphi(x).$$

Portanto $(x, \lambda) \in Epi(\varphi)$.

(\iff) Suponha que o conjunto $Epi(\varphi)$ seja fechado. Tome $x \in X$ e uma sequência $\{x_n\}_{n\in\mathbb{N}} \subset X$ convergindo para x e note que:

- (i) Se $\lim_{n\to+\infty} inf\varphi(x_n) = +\infty$ o resultado é direto.
- (ii) Se $\lim_{n\to+\infty} \inf \varphi(x_n) = \alpha < +\infty$, então a sequência $\{\varphi(x_n)\}_{n\in\mathbb{N}}$ possui uma subsequência $\{\varphi(x_{n_k})\}_{k\in\mathbb{N}}$ convergindo para α . Para todo $\epsilon\in\mathbb{R}$, com $\epsilon>0$, existe $k_0\in\mathbb{N}$ tal que, para $k\geq k_0$, temos que $\varphi(x_{n_k})\leq \lambda_\epsilon:=\alpha+\epsilon\Longrightarrow (x_{n_k},\lambda_\epsilon)\in Epi(\varphi)$, para $k\geq k_0$.

Como $\lim_{n\to\infty} x_n = x$ e o $Epi(\varphi)$ é fechado, então $\lim_{k\to\infty} x_{n_k} = x$ e $(x_{n_k}, \lambda_{\epsilon})$ converge para $(x, \lambda_{\epsilon}) \in Epi(\varphi)$ quando $k \longrightarrow +\infty$. Portanto, $(x, \lambda_{\epsilon}) \in Epi(\varphi)$, isto é, $\varphi(x) \leq \lambda_{\epsilon}$, para todo $\epsilon > 0$. Fazendo $\epsilon \longrightarrow 0$, temos que,

$$\varphi(x) \le \alpha = \liminf_{n \to +\infty} \varphi(x_n).$$

Corolário 2.1.6. Seja $\varphi: X \longrightarrow \overline{\mathbb{R}}$. Então os conjuntos de níveis de φ são fechados se, somente se, o $Epi(\varphi)$ é fechado.

Demonstração:

Segue direto das proposições 2.1.2 e 2.1.5.

Proposição 2.1.7. A função $\varphi: X \longrightarrow \mathbb{R}$ é convexa se, e somente se, o conjunto $Epi(\varphi)$ é convexo.

Demonstração:

 (\Longrightarrow)

Tome $(x, \lambda_0), (y, \lambda_1) \in Epi(\varphi)$. Como φ é convexa, temos que,

$$\varphi(tx+(1-t)y) \le t\varphi(x)+(1-t)\varphi(y) \le t\lambda_0+(1-t)\lambda_1$$
, para todo $t \in [0,1]$.

Assim $t(x, \lambda_0) + (1 - t)(y, \lambda_1) = (tx + (1 - t)y, t\lambda_0 + (1 - t)\lambda_1) \in Epi(\varphi)$, para todo $t \in [0, 1]$.

 (\Longleftrightarrow)

Dados $x, y \in X$, note que $(x, \varphi(x)), (y, \varphi(y)) \in Epi(\varphi)$. Como $Epi(\varphi)$ é convexo, temos que

$$\lambda(x,\varphi(x)) + (1-\lambda)(y,\varphi(y)) = (\lambda x + (1-\lambda)y, \lambda \varphi(x) + (1-\lambda)\varphi(y)) \in Epi(\varphi), \forall \ \lambda \in [0,1].$$

Portanto,
$$\varphi(\lambda x + (1 - \lambda)y) \le \lambda \varphi(x) + (1 - \lambda)\varphi(y), \forall \lambda \in [0, 1].$$

Teorema 2.1.8. Seja $C \subset X$ um conjunto convexo. Então C é fracamente fechado em X se, e somente se, C é fortemente fechado em X.

Demonstração: Ver [4] pag. 38.

2.2 Função Fracamente Semicontínua Inferior

Definição 2.2.1. Uma função $\varphi: X \longrightarrow \mathbb{R}$ é fracamente semicontínua inferior se for semicontínua inferior num espaço X dotado da topologia fraca, isto é, se $x_n \rightharpoonup x$ quando $n \longrightarrow +\infty$, então $\varphi(x) \leq \lim_{n \to +\infty} \inf \varphi(x_n)$.

Proposição 2.2.2. Se $\varphi: X \longrightarrow \mathbb{R}$ é uma função própria e convexa então φ é semicontínua inferior se, somente se, é fracamente semicontínua inferior.

Demonstração:

 (\Longrightarrow)

Como φ é convexa e própria, pela Proposição 2.1.4, temos que

$$[\varphi,\lambda]=\{x\in X; \varphi(x)\leq \lambda\}$$
é um subconjunto convexo de $X.$

O subconjunto $[\varphi, \lambda]$ é fortemente fechado pois φ é s.c.i. na topologia forte em X (veja a Proposição 2.1.2). Pelo Teorema 2.1.8, temos que $[\varphi, \lambda]$ é fechado para $\sigma(X, X^*)$ e o resultado segue da Proposição 2.1.2.

$$(\Longleftrightarrow)$$

Seja φ fracamente s.c.i. e considere a sequência $\{x_n\}$ em X com $x_n \longrightarrow x$ fortemente quando $n \to \infty$. Como a convergência forte implica a fraca, temos que $x_n \rightharpoonup x$. Portanto,

$$\lim_{n \to +\infty} \inf \varphi(x_n) \ge \varphi(x).$$

Proposição 2.2.3. Seja $\varphi: X \longrightarrow \mathbb{R}$ uma função própria, s.c.i. e convexa. Então φ é delimitada por baixo por uma função afim, isto é, existe $x_0^* \in X^*$ e $\beta \in \mathbb{R}$ tal que $\varphi(x) \geq \langle x_0^*, x \rangle + \beta$, para todo $x \in X$.

Demonstração:

Como φ é própria, temos que existe $x_0 \in D(\varphi)$ tal que $\varphi(x_0) < \infty$. Seja $\lambda_0 \in \mathbb{R}$ com $\lambda_0 < \varphi(x_0)$, então o ponto $(x_0, \lambda_0) \notin Epi(\varphi)$.

Como φ é convexa e s.c.i., pelas Proposições 2.1.5 e 2.1.7, o $Epi(\varphi)$ é um subconjunto convexo e fechado de $X \times \mathbb{R}$. Note que $Epi(\varphi) \neq \emptyset$, pois φ é própria.

Por outro lado, $B := \{(x_0, \lambda_0)\}$ é um subconjunto compacto e convexo de $X \times \mathbb{R}$ e $Epi(\varphi) \cap B = \emptyset$.

Pelo Teorema de Hahn Banach, segunda forma geométrica, existe $\psi \in (X \times \mathbb{R})^*$ e $\alpha \in \mathbb{R}$ tais que:

$$\psi((x,\lambda)) < \alpha < \psi((x_0,\lambda_0))$$
, para todo $(x,\lambda) \in Epi(\varphi)$.

Como $\psi \in (X \times \mathbb{R})^*$ e pelo Teorema 0.0.12 e Lema 0.0.11 podemos escrever,

$$\psi((x,\lambda)) = h(x) + k\lambda$$
, onde $h \in X^*$ e $k \in \mathbb{R}$.

Assim,

$$h(x) + k\lambda < \alpha < h(x_0) + k\lambda_0$$
, para todo $(x, \lambda) \in Epi(\varphi)$.

Em particular, para $\lambda = \varphi(x_0)$, temos que $(x_0, \varphi(x_0)) \in Epi(\varphi)$. Portanto,

$$h(x_0) + k\varphi(x_0) < h(x_0) + k\lambda_0 \Longrightarrow k(\varphi(x_0) - \lambda_0) < 0. \text{ Como } \varphi(x_0) > \lambda_0, \text{ temos } k < 0.$$

Note que todo ponto $(x, \varphi(x)) \in Epi(\varphi)$, sendo assim, tomando $\lambda = \varphi(x)$ temos,

$$h(x) + k\varphi(x) \le \alpha \Longrightarrow \frac{-h(x)}{k} - \varphi(x) \le \frac{-\alpha}{k}$$
. Tomando $x_0^* : X \longrightarrow \mathbb{R}$ dada por,

$$x_0^*(x) = \frac{-h(x)}{k} \in \beta = \frac{\alpha}{k},$$

temos que,

$$\langle x_0^*, x \rangle - \varphi(x) \leq -\beta \Longrightarrow \varphi(x) \geq \langle x_0^*, x \rangle + \beta, \text{ para todo } x \in D(\varphi).$$

Se $x \notin D(\varphi)$, então decorre direto, visto que $\varphi(x) = +\infty$.

Portanto
$$\varphi(x) \ge \langle x_0^*, x \rangle + \beta$$
, para todo $x \in X$.

Proposição 2.2.4. Seja $\varphi: X \longrightarrow \mathbb{R}$ uma função convexa, s.c.i. e própria. Então φ é contínua no int $D(\varphi)$.

Demonstração:

Ver [5], pág. 40.

Lema 2.2.5. Seja $\{f_i\}_{i\in I}$ uma família de funções s.c.i.. Então $\varphi: X \longrightarrow \overline{\mathbb{R}}$, com $\varphi(x) = \sup_{i\in I} \{f_i(x)\}$ é semicontínua inferior.

Demonstração:

Note que
$$Epi(\varphi) = \bigcap_{i \in I} Epi(f_i)$$
 pois,

(a)
$$Epi(\varphi) \subset \bigcap_{i \in I} Epi(f_i)$$
:

Dado $(x, \lambda) \in Epi(\varphi)$ temos que,

$$\varphi(x) \leq \lambda \Longrightarrow \sup_{i \in I} \{f_i(x)\} \leq \lambda$$
, isto é, $f_i(x) \leq \lambda, \forall i \in I$.

Portanto,
$$(x, \lambda) \in \bigcap_{i \in I} Epi(f_i)$$
.

(b)
$$\bigcap_{i \in I} Epi(f_i) \subset Epi(\varphi)$$
:

Dado
$$(x,\lambda) \in \bigcap_{i \in I} Epi(f_i)$$
, então $f_i(x) \leq \lambda, \forall i \in I$. Assim, $sup_{i \in I} \{f_i(x)\} \leq \lambda$.

Portanto,

$$\varphi(x) \le \lambda \Longrightarrow (x,\lambda) \in Epi(\varphi).$$

Como f_i é s.c.i., para todo $i \in I$, pela Proposição 2.1.5 temos que o $Epi(f_i)$ é fechado para todo $i \in I$. Como a interseção arbitrária de fechados é fechado, temos que o $Epi(\varphi)$ é fechado, pela Proposição 2.1.5 temos que φ é semicontínua inferiormente.

2.3 Função Conjugada

Definição 2.3.1. Seja $\varphi: X \longrightarrow \overline{\mathbb{R}}$. A função $\varphi^*: X^* \longrightarrow \overline{\mathbb{R}}$ definida por,

$$\varphi^*(f) = \sup\{\langle f, x \rangle - \varphi(x) : x \in X\}$$

é chamada de **conjugada** de φ .

Proposição 2.3.2. Seja $\varphi: X \longrightarrow \mathbb{R}$ uma função própria, s.c.i. e convexa. Então φ^* é s.c.i., convexa e própria no espaço X^* .

Demonstração:

• φ^* é convexa.

Dados $f, g \in X^*$ e $x \in X$ com $t \in [0, 1]$, temos que,

$$\langle tf + (1-t)g, x \rangle - \varphi(x) = t\langle f, x \rangle + (1-t)\langle g, x \rangle - \varphi(x) - t\varphi(x) + t\varphi(x)$$
$$= t[\langle f, x \rangle - \varphi(x)] + (1-t)[\langle g, x \rangle - \varphi(x)].$$

Portanto.

$$\varphi^*(tf + (1-t)g) = \sup\{\langle tf + (1-t)g, x \rangle - \varphi(x); x \in X\}$$

$$= \sup\{t[\langle f, x \rangle - \varphi(x)] + (1-t)[\langle g, x \rangle - \varphi(x)]; x \in X\}$$

$$\leq t \sup\{\langle f, x \rangle - \varphi(x); x \in X\} + (1-t) \sup\{\langle g, x \rangle - \varphi(x), x \in X\}$$

$$= t\varphi^*(f) + (1-t)\varphi^*(g).$$

provando o resultado.

• φ^* é própria.

Como φ é s.c.i., convexa e própria, pela Proposição 2.2.3 existe $f \in X^*$ e $\beta \in \mathbb{R}$ tal que

$$\langle f, x \rangle + \beta \le \varphi(x), \forall x \in X \Longrightarrow \langle f, x \rangle - \varphi(x) \le -\beta, \text{ para todo } x \in X$$

$$\Longrightarrow \varphi^*(f) = Sup\{\langle f, x \rangle - \varphi(x); x \in X\} \le -\beta < +\infty.$$

Portanto, $D(\varphi^*) \neq \emptyset$ provando o resultado.

• φ^* é semicontínua inferior.

Para isso, usaremos o Lema 2.2.5.

Dado $x \in X$, defina

$$\psi_x: X^* \longrightarrow \bar{\mathbb{R}}, \text{ por } \psi_x(f) = \langle f, x \rangle - \varphi(x).$$

Mostraremos que ψ_x é uma aplicação contínua, daí em particular, ψ_x será s.c.i..

Seja $\{f_n\}_{n\in\mathbb{N}}$ uma sequência em X^* , com $f_n \longrightarrow f$ quando $n \longrightarrow +\infty$ em X^* , isto é,

$$\lim_{n \to +\infty} \sup_{x \in X} |\langle f_n - f, x \rangle| = 0, \forall \ x \in X \text{ com } ||x|| \le 1.$$

Então,

$$\lim_{n \to +\infty} |\langle f_n - f, x \rangle| = 0 \Longrightarrow \lim_{n \to +\infty} |\langle f_n, x \rangle - \langle f, x \rangle| = 0$$
$$\Longrightarrow \lim_{n \to +\infty} \psi_x(f_n) = \psi_x(f)$$

Para um caso geral, basta tomar $y = \frac{x}{||x||}$ com x não nulo, fixado arbitrariamente em X e notar que

$$\lim_{n \to +\infty} |\langle f_n - f, y \rangle| = 0 \Longrightarrow \lim_{n \to +\infty} |\langle f_n - f, \frac{x}{||x||} \rangle| = 0$$

$$\Longrightarrow \frac{1}{||x||} \lim_{n \to +\infty} |\langle f_n - f, x \rangle| = 0$$

$$\Longrightarrow \lim_{n \to +\infty} |\langle f_n, x \rangle - \langle f, x \rangle| = 0.$$

Portanto, $\{\psi_x\}_{x\in X}$ é uma família de funções s.c.i..

Pelo Lema 2.2.5, a função conjugada $\varphi^*: X^* \longrightarrow \overline{\mathbb{R}}$, com $\varphi^*(f) = \sup\{\psi_x(f)\}_{x \in X}$ é s.c.i..

Proposição 2.3.3. Se $\varphi: X \longrightarrow \mathbb{R}$ é uma função fracamente semicontínua inferior tal que os conjuntos de níveis $[\varphi, \lambda] = \{x \in X : \varphi(x) \leq \lambda\}$ são fracamente compactos, então φ atinge seu mínimo em X. Em particular, se X é reflexivo e φ é convexa, s.c.i. e própria em X tal que

$$\lim_{||x|| \to +\infty} \varphi(x) = \infty,$$

então existe $x_0 \in X$ tal que $\varphi(x_0) = \inf{\{\varphi(x); x \in X\}}$.

Demonstração:

Defina $d = \inf\{\varphi(x); x \in X\}.$

Se $d=-\infty$, então existe uma sequência $\{x_n\}_{n\in\mathbb{N}}\subset X$ tal que, $\lim_{n\to+\infty}\varphi(x_n)=-\infty$. Logo, dado $\lambda\in\mathbb{R}, \exists N_0\in\mathbb{N}$ tal que, se $n\geq N_0$ então $\varphi(x_n)\leq\lambda$. Portanto, para $n\geq N_0$, temos que $\{x_n\}_{n=N_0}^\infty\subset[\varphi,\lambda]$. Então, visto que $[\varphi,\lambda]$ é fracamente compacta, existe uma subsequência que nomearemos por $\{x_k\}_{k\in\mathbb{N}}$ de $\{x_n\}_{n\in\mathbb{N}}$, tal que $x_k\rightharpoonup x$ em $[\varphi,\lambda]$, quando $k\longrightarrow+\infty$. Logo, $\varphi(x)\leq\lambda$.

Como φ é s.c.i. na topologia fraca de X temos que,

$$\varphi(x) \le \liminf_{k \to +\infty} \varphi(x_k) = -\infty.$$

Isto implicaria que $\varphi(x)=-\infty$, o que é um absurdo visto que $\varphi:X\longrightarrow (-\infty,+\infty]$.

Portanto $d > -\infty$.

Pela definição de ínfimo, temos uma sequência $\{x_n\}_{n\in\mathbb{N}}\subset X$ com

$$d \le \varphi(x_n) < d + \frac{1}{n}$$
, para todo $n \in \mathbb{N}$.

Para $\lambda = d+1$, temos que $\{x_n\}_{n \in \mathbb{N}} \subset [\varphi, \lambda]$. Como todo conjunto de nível é fracamente compacto, existe uma subsequência $\{x_{n_k}\}_{k \in \mathbb{N}}$ de $\{x_n\}_{n \in \mathbb{N}}$, com $x_{n_k} \rightharpoonup x_0$ em $[\varphi, \lambda]$ quando $k \longrightarrow \infty$, logo $\varphi(x_0) \le \lambda$.

Como $d \leq \varphi(x_{n_k}) < d + \frac{1}{n_k}$, para todo $k \in \mathbb{N}$ e φ é s.c.i. na topologia fraca em X, temos que,

$$d = \liminf_{k \to +\infty} \varphi(x_{n_k}) \ge \varphi(x_0).$$

Por outro lado, $d \leq \varphi(x_0)$, pois d é o ínfimo de φ . Portanto, $\varphi(x_0) = d$. Suponhamos agora que X é reflexivo e φ é s.c.i., convexa e própria tal que

$$\lim_{||x|| \to +\infty} \varphi(x) = +\infty.$$

Pela Proposição 2.2.2, φ é s.c.i. na topologia fraca em X. Mostraremos que para todo $\lambda \in \mathbb{R}$, o conjunto de nível $[\varphi, \lambda]$ é fracamente compacto e o resultado seguirá da parte anterior.

Seja $\lambda_0 \in \mathbb{R}$ fixado arbitrariamente. Como $\lim_{||x|| \to +\infty} \varphi(x) = +\infty$, existe R > 0 tal que $\varphi(u) > \lambda_0$, para todo $u \in X$, com ||u|| > R. Assim,

$$[\varphi, \lambda_0] = \{ x \in X; \varphi(x) \le \lambda_0 \} \subseteq \overline{B_R(0)}. \tag{2.1}$$

Pela Proposição 2.1.2, o conjunto de nível $[\varphi, \lambda_0]$ é fechado na topologia fraca de X. Por (2.1), temos que $[\varphi, \lambda_0]$ é limitado.

Visto que X é reflexivo, pelo Teorema 0.0.20, temos que $[\varphi, \lambda_0]$ é fracamente compacto e o resultado segue.

Capítulo 3

Subdiferenciais

Considere $f:X\longrightarrow \mathbb{R},$ sendo X um espaço de Banach real. A função $f':X\times X\longrightarrow \mathbb{R}$ é definida por

$$f'(x,y) = \lim_{\lambda \to 0^+} \frac{f(x+\lambda y) - f(x)}{\lambda}.$$
 (3.1)

Caso exista o limite, será chamado de **derivada direcional** de f em x na direção y.

A função $f:X\longrightarrow \mathbb{R}$ é dita **Gâteaux diferenciável** em $x\in X$, se existe $\nabla f(x)\in X^*$, de modo que,

$$f'(x,y) = \langle \nabla f(x), y \rangle, \quad \forall y \in X.$$

Se a convergência em (3.1) é uniforme em y sobre subconjuntos limitados, então f será chamada de **Fréchet diferenciável** e ∇f será chamada de **diferencial de Fréchet** de f.

Obs: Note que Fréchet diferenciável ⇒ Gâteaux diferenciável, mas não vale a recíproca.

3.1 Subdiferenciais

Caso a função $\varphi:X\longrightarrow \bar{\mathbb{R}}$ seja convexa e própria, a aplicação $\partial \varphi:X\longrightarrow X^*$ dada por

$$\partial \varphi(x) = \{x^* \in X^*; \varphi(x) \le \varphi(y) + \langle x^*, x - y \rangle, \forall y \in X\}$$
 (3.2)

será chamada de **subdiferencial** de φ .

Em geral, $\partial \varphi$ é um operador multívoco de X em X^* não definido em todos os pontos $x \in X$ e pode ser visto como um subconjunto de $X \times X^*$.

O elemento $x^* \in \partial \varphi(x)$, caso exista, será chamado de **subgradiente** de φ em x. Nós denotaremos, como de costume, por $D(\partial \varphi)$ o conjunto de todos os $x \in X$ para o qual $\partial \varphi(x) \neq \emptyset$, isto é, $D(\partial \varphi) = \{x \in X; \partial \varphi(x) \neq \emptyset\}$.

Definição 3.1.1. O mapeamento $J: X \longrightarrow X^*$ dado por,

$$J(x) = \{x^* \in X^*; \langle x^*, x \rangle = ||x||^2 = ||x^*||^2\}, \text{ para todo } x \in X,$$

é chamado de mapeamento da dualidade do espaço X.

Sejam φ e ψ funcionais multívocos (ou unívocos) definidos num espaço X, escrevemos $\varphi \subset \psi$ se $\varphi(x) \subset \psi(x)$, para todo $x \in X$, equivalentemente, se $w \in \varphi(x)$ então $w \in \psi(x)$. Vejamos alguns exemplos simples:

3.2 Exemplos de Subdiferenciais

Exemplo 3.2.1. Seja $\varphi(x) = \frac{1}{2}||x||^2$. Então, $\partial \varphi = J$ (o mapeamento da dualidade do espaço X).

a) $J \subset \partial \varphi$:

Seja
$$x^* \in J(x)$$
 e tome arbitrariamente $y \in X$, então $\langle x^*, x \rangle = ||x||^2 = ||x^*||^2$. Assim, $\langle x^*, x - y \rangle = \langle x^*, x \rangle - \langle x^*, y \rangle = ||x||^2 - \langle x^*, y \rangle$. (1)

Note que,

$$\begin{split} (||x^*|| - ||y||)^2 & \geq 0 \Longrightarrow ||x^*||^2 + ||y||^2 - 2||x^*||.||y|| \geq 0 \\ & \Longrightarrow \frac{||x^*||^2 + ||y||^2}{2} \geq ||x^*||.||y|| \geq \langle x^*, y \rangle \\ & \Longrightarrow -\langle x^*, y \rangle \geq \frac{-||x^*||^2 - ||y||^2}{2}, \forall \ y \in X. \end{split}$$

Assim,

$$||x||^2 - \langle x^*, y \rangle \ge ||x||^2 - \frac{||x^*||^2}{2} - \frac{||y||^2}{2} = ||x||^2 - \frac{||x||^2}{2} - \frac{||y||^2}{2} = \frac{||x||^2}{2} - \frac{||y||^2}{2}. \quad (2)$$

Substituindo (1) em (2) temos que,

$$\langle x^*, x - y \rangle \ge \frac{||x||^2}{2} - \frac{||y||^2}{2}$$
, ou seja, $\langle x^*, x - y \rangle \ge \varphi(x) - \varphi(y), \forall y \in X$.

Portanto $\varphi(x) \leq \langle x^*, x - y \rangle + \varphi(y)$, para todo $y \in X$, logo $x^* \in \partial \varphi(x)$.

b) $\partial \varphi \subset J$:

Seja
$$x^* \in \partial \varphi(x)$$
, então $\varphi(x) - \varphi(y) \le \langle x^*, x - y \rangle, \forall y \in X$. Assim,
$$\frac{1}{2}[||x||^2 - ||y||^2] \le \langle x^*, x - y \rangle, \forall y \in X. \tag{3}$$

Tomando $y = \lambda x$, com $\lambda \in (0,1)$ e substituindo em (3) temos que

$$\langle x^*, x(1-\lambda) \rangle \ge \frac{1-\lambda^2}{2} ||x||^2 \Longrightarrow (1-\lambda)\langle x^*, x \rangle \ge \frac{(1+\lambda)(1-\lambda)}{2} ||x||^2.$$

Como $(1 - \lambda) \in (0, 1)$ temos que,

$$\langle x^*, x \rangle \ge \frac{1}{2} (1 + \lambda) ||x||^2$$
, para todo $\lambda \in (0, 1)$. Fazendo $\lambda \longrightarrow 1^-$, temos que $\langle x^*, x \rangle \ge ||x||^2$. (4)

Agora, tomando $y = \lambda x$, com $\lambda > 1$ e substituindo em (3) temos que,

$$(1-\lambda)\langle x^*, x\rangle \ge \frac{1-\lambda^2}{2}||x||^2$$
. Como $1-\lambda < 0$, temos que,

$$\langle x^*, x \rangle \le \frac{(1+\lambda)(1-\lambda)}{2(1-\lambda)} ||x||^2 = \frac{1+\lambda}{2} ||x||^2$$
, para todo $\lambda > 1$.

Fazendo $\lambda \longrightarrow 1^+$, temos que

$$\langle x^*, x \rangle \le ||x||^2. \tag{5}$$

Portanto, de (4) e (5) temos que $\langle x^*, x \rangle = ||x||^2$. Agora, vamos mostrar a igualdade $||x|| = ||x^*||$.

Se x=0, a igualdade ocorre direto. Seja $x\neq 0$ e note que $||x^*||.||x||\geq \langle x^*,x\rangle=||x||^2$. Assim

$$||x^*|| \ge ||x||. \tag{6}$$

Por outro lado, tomando $y=x+\lambda u$, com $\lambda>0$ e $u\in X$ arbitrários e substituindo em (3) temos que,

$$\begin{split} \langle x^*, x - x - \lambda u \rangle &\geq \frac{1}{2}(||x||^2 - ||x + \lambda u||^2), \log 0 \\ \lambda \langle x^*, u \rangle &\leq \frac{1}{2}(||x + \lambda u||^2 - ||x||^2) \\ &\leq \frac{1}{2}[(||x|| + ||\lambda u||)^2 - ||x||^2] \\ &= \frac{1}{2}(||x||^2 + 2||x||.||\lambda u|| + ||\lambda u||^2 - ||x||^2) \\ &= \frac{\lambda^2||u||^2}{2} + \lambda||x||.||u||. \end{split}$$

Como $\lambda > 0$, temos que $\langle x^*, u \rangle \leq ||x||.||u|| + \frac{\lambda ||u||^2}{2}$. Fazendo $\lambda \longrightarrow 0^+$ temos, $\langle x^*, u \rangle \leq ||x||.||u||$, para todo $u \in X$. Assim, pela definição da norma de um operador linear, temos que

$$||x^*|| \le ||x||. \tag{7}$$

Portanto, de (6) e (7) segue a igualdade $||x|| = ||x^*||$.

Exemplo 3.2.2. Seja K um subconjunto não vazio, convexo e fechado de X. A função $I_K: X \longrightarrow \overline{\mathbb{R}}$ definida por

$$I_K(x) = \begin{cases} 0 & , se \ x \in K \\ +\infty & , se \ x \notin K \end{cases}$$

é chamada de função indicatriz de K com subdiferencial

 $\partial I_K(x) = \{x^* \in X^*; \langle x^*, x - y \rangle \ge 0, \forall y \in K\}, \text{ para todo } x \in K. \text{ Além disso, } \partial I_k(x) = 0$ se $x \in int(K), \ D(\partial I_K) = K \text{ e sua conjugada } I_K^*(x^*) = \sup\{\langle x^*, x \rangle, x \in K\}.$

Primeiramente, note que I_K é convexa, s.c.i. e própria.

- Como $K \neq \emptyset$, existe $x \in K$, logo $I_K(x) = 0 < +\infty$, portanto I_K é própria.
- I_K é s.c.i., pois seus conjuntos de níveis são fechados.
 Para λ < 0, o conjunto de nível [I_K, λ] = ∅, é fechado. Se λ ≥ 0, então [I_K, λ] = K, que é fechado. Pela Proposição 2.1.2 segue o resultado.
- I_K é convexa, pois como o conjunto $Epi(I_K) = K \times [0, +\infty)$ é convexo, o resultado segue da Proposição 2.1.7.

1) Vamos calcular a subdiferencial de I_K .

$$\partial I_K(x) = \{x^* \in X^*; I_K(x) \le I_K(y) + \langle x^*, x - y \rangle, \forall y \in X\}.$$

(a) Se $x \notin K \Longrightarrow I_K(x) = +\infty$. Então,

$$\partial I_K(x) = \{x^* \in X^*; I_K(y) + \langle x^*, x - y \rangle \ge +\infty, \forall y \in X\} = \{\emptyset\}, \text{ pois,}$$

Se
$$y \in K \Longrightarrow I_K(y) = 0 \Longrightarrow \langle x^*, x - y \rangle = +\infty$$
.

(b) Se $x \in K \Longrightarrow I_K(x) = 0$. Então,

$$\partial I_K(x) = \{ x^* \in X^*; 0 \le I_K(y) + \langle x^*, x - y \rangle, \forall y \in X \}.$$

Note que se $y \notin K$, a desigual dade $0 \le I_K(y) + \langle x^*, x - y \rangle$ é satisfeita, para todo $x^* \in X^*$. Assim,

$$\partial I_K(x) = \{x^* \in X^*; 0 \le I_K(y) + \langle x^*, x - y \rangle, \forall y \in K\}, \text{ isto \'e},$$

$$\partial I_K(x) = \{ x^* \in X^*; \langle x^*, x - y \rangle \ge 0, \forall y \in K \}.$$

Portanto,

$$\partial I_K(x) = \begin{cases} \{x^* \in X^*; \langle x^*, x - y \rangle \ge 0, \forall y \in K , \text{ se} \} & x \in K \\ \emptyset, \text{ se} & x \notin K. \end{cases}$$
(3.3)

2) $\partial I_K(x) = 0$, se $x \in int(K)$.

Se $x \in int(K) \Longrightarrow existe \ \epsilon > 0$ tal que a bola $B(x, \epsilon) \subset K$.

Se $x^* \in \partial I_K(x)$, então $\langle x^*, x - u \rangle \ge 0, \forall u \in K$, em particular, $\forall u \in B(x, \epsilon)$.

Por outro lado, dado $y \in X$ com y não nulo, existe $\lambda > 0$ tal que $u_0 := x + \lambda y \in B(x, \epsilon)$ pois,

 $||x-u_0||=||x-(x+\lambda y)||=||-\lambda y||=\lambda ||y||<\epsilon,$ para λ sufficientemente pequeno. Assim,

$$0 \le \langle x^*, x - u_0 \rangle = \langle x^*, x - (x + \lambda y) \rangle = \langle x^*, -\lambda y \rangle = -\lambda \langle x^*, y \rangle. \text{ Portanto,}$$
$$\langle x^*, y \rangle \le 0, \forall y \in X. \tag{I}$$

Dado $z \in X$, considere y = -z. Temos que,

$$\langle x^*, z \rangle = \langle x^*, -y \rangle \ge 0.$$
 (II)

De (I) e (II) temos que $\langle x^*, w \rangle = 0, \forall w \in X$. Portanto, $x^* = 0$.

3) Calculando a conjugada I_K^* de I_K temos,

 $I_K^*: X^* \longrightarrow \bar{\mathbb{R}}$ é dada por,

$$I_K^*(x^*) = \sup\{\langle x^*, x \rangle - I_K(x), x \in X\} = \sup\{\langle x^*, x \rangle - I_K(x), x \in K\}$$
$$= \sup\{\langle x^*, x \rangle, x \in K\}.$$

4) O fato de $D(\partial I_K) = K$, segue direto de (3.3). Basta notar que $0 \in \partial I_K(x)$, para todo $x \in K$.

Exemplo 3.2.3. Seja φ uma função convexa e Gâteaux diferenciável em $x \in X$. Então $\partial \varphi(x) = \nabla \varphi(x)$.

• $\nabla \varphi(x) \subset \partial \varphi(x)$:

Como φ é convexa, dado $x, y \in X$ e $\lambda \in (0, 1)$ temos que

$$\varphi(x+\lambda(y-x))=\varphi(\lambda y+(1-\lambda)x)\leq \lambda \varphi(y)+(1-\lambda)\varphi(x), \text{ para todo } y\in X.$$

Equivalentemente,

$$\frac{\varphi(x+\lambda(y-x))-\varphi(x)}{\lambda} \le \varphi(y)-\varphi(x), \text{ para todo } y \in X.$$
 (1)

Fazendo $\lambda \longrightarrow 0^+$ em (1) temos que

$$\lim_{\lambda \to 0^+} \frac{\varphi(x + \lambda(y - x)) - \varphi(x)}{\lambda} \le \varphi(y) - \varphi(x). \tag{2}$$

Como φ é Gâteaux diferenciável em $x \in X$, existe $\nabla \varphi(x) \in X^*$ tal que

$$\varphi'(x,y-x) = \lim_{\lambda \to 0^+} \frac{\varphi(x+\lambda(y-x)) - \varphi(x)}{\lambda} = \langle \nabla \varphi(x), y-x \rangle, \text{ para todo } y \in X.$$

Substituindo em (2) temos que,

$$\langle \nabla \varphi(x), y - x \rangle \leq \varphi(y) - \varphi(x) \Longrightarrow \varphi(x) \leq \varphi(y) + \langle \nabla \varphi(x), x - y \rangle$$
, para todo $y \in X$.
Portanto $\nabla \varphi(x) \in \partial \varphi(x)$.

• $\partial \varphi(x) \subset \nabla \varphi(x)$:

Se
$$w \in \partial \varphi(x) \Longrightarrow \varphi(x) \le \varphi(y) + \langle w, x - y \rangle$$
, para todo $y \in X$.

Equivalentemente,

$$\varphi(x) - \langle w, x \rangle \le \varphi(y) - \langle w, y \rangle, \forall \ y \in X.$$
 (3)

Defina a função $g: X \longrightarrow \mathbb{R}$ dada por $g(z) = \varphi(z) - \langle w, z \rangle$. Como φ é Gâteaux diferenciável em x, segue que g é Gâteaux diferenciável em x e temos,

$$\begin{split} \langle \bigtriangledown g(x), y \rangle &= \lim_{\lambda \to 0^+} \frac{g(x + \lambda y) - g(x)}{\lambda} = \lim_{\lambda \to 0^+} \frac{\varphi(x + \lambda y) - \langle w, x + \lambda y \rangle - \varphi(x) + \langle w, x \rangle}{\lambda} \\ &= \lim_{\lambda \to 0^+} \frac{\varphi(x + \lambda y) - \varphi(x)}{\lambda} - \langle w, y \rangle = \langle \bigtriangledown \varphi(x), y \rangle - \langle w, y \rangle \\ &= \langle \bigtriangledown \varphi(x) - w, y \rangle, \forall \ y \in X. \end{split}$$

Portanto,
$$\nabla g(x) = \nabla \varphi(x) - w$$
. (4)

Afirmação: $\nabla g(x) = 0$.

De fato, note que por (3) temos que x é ponto mínimo de g, isto é, $g(x) \leq g(y)$, para todo $y \in X$, logo

$$\lim_{\lambda \to 0^+} \frac{g(x + \lambda y) - g(x)}{\lambda} \ge 0, \forall y \in X \Longrightarrow \langle \nabla g(x), y \rangle \ge 0, \forall y \in X.$$

Considerando y' = -y temos que,

$$0 \le \langle \nabla g(x), y' \rangle = \langle \nabla g(x), -y \rangle = -\langle \nabla g(x), y \rangle, \forall y \in X \Longrightarrow \nabla g(x) = 0.$$

De (4) concluímos que $\nabla \varphi(x) = w$.

Lema 3.2.4. Seja $\varphi: X \longrightarrow \mathbb{R}$ uma função s.c.i. e convexa. Temos que $\varphi(x) = \inf\{\varphi(u); u \in X\}$ se, e somente se, $0 \in \partial \varphi(x)$.

Demonstração:

Seja $x\in X$ tal que $\varphi(x)=\inf\{\varphi(u);u\in X\}$, pela definição de ínfimo, temos que $\varphi(x)\leq \varphi(y)$ para todo $y\in X$. Assim,

$$\varphi(x) \leq \varphi(y), \forall y \in X \Longleftrightarrow \varphi(x) \leq \varphi(y) + \langle 0, x - y \rangle, \forall y \in X \Longleftrightarrow 0 \in \partial \varphi(x).$$

3.3 Subdiferencial da Conjugada da Função

Definição 3.3.1. Se φ^* é própria, a função $\varphi^{**}: X^{**} \longrightarrow \mathbb{R}$ dada por $\varphi^{**}(x^{**}) = \sup\{\langle x^{**}, f \rangle - \varphi^*(f); f \in X^*\} \text{ é chamada conjugada de } \varphi^*.$

Pela Proposição 0.0.19 temos que $J(X) \subset X^{**}$, no caso de X ser reflexivo temos que $J(X) = X^{**}$, ou seja, $X = X^{**}$ e escrevemos,

 $\varphi^{**}(x)=\sup\{\langle f,x\rangle-\varphi^*(f); f\in X^*\} \text{ via identidade com a definição acima, pois dado}$ $x^{**}\in X^{**}, \text{ temos que existe } x\in X, \text{ tal que}$

$$\langle x^{**}, f \rangle = \langle J(x), f \rangle = J_x(f) = f(x) = \langle f, x \rangle.$$

Definição 3.3.2. $\partial \varphi^*(x^*) = \{x^{**} \in X^{**}; \varphi^*(x^*) \leq \langle x^{**}, x^* - y^* \rangle + \varphi^*(y^*), y^* \in X^* \},$ equivalentemente, caso X seja reflexivo,

$$\partial \varphi^*(x^*) = \{x \in X; \varphi^*(x^*) \le \langle x^* - y^*, x \rangle + \varphi^*(y^*), y^* \in X^* \}.$$

Vejamos a seguir algumas relações entre $\partial \varphi$ e $\partial \varphi^*$.

Proposição 3.3.3. Seja X um espaço de Banach reflexivo e $\varphi: X \longrightarrow \mathbb{R}$ uma função semicontínua inferior, convexa e própria. Então as seguintes condições são equivalentes.

- (i) $x^* \in \partial \varphi(x)$,
- (ii) $\varphi(x) + \varphi^*(x^*) = \langle x^*, x \rangle$,
- (iii) $x \in \partial \varphi^*(x^*)$.

Em particular, $\partial \varphi^* = (\partial \varphi)^{-1} e (\varphi^*)^* = \varphi$.

Demonstração:

Note que, pela proposição 2.3.2 temos que $\varphi^*:X^*\longrightarrow \bar{\mathbb{R}}$ é s.c.i., convexa e própria.

 $(i) \Longrightarrow (ii)$:

Seja $x^* \in \partial \varphi(x)$. Então,

$$\varphi(x) \le \varphi(y) + \langle x^*, x - y \rangle, \forall y \in X \Longrightarrow \varphi(x) + \langle x^*, y \rangle - \varphi(y) \le \langle x^*, x \rangle, \forall y \in X.$$

Consequentemente,

$$\varphi(x) + \sup\{\langle x^*, y \rangle - \varphi(y); y \in X\} \le \langle x^*, x \rangle. \text{ Portanto}$$

$$\varphi(x) + \varphi^*(x^*) \le \langle x^*, x \rangle.$$
 (1)

Por outro lado, temos que $\varphi^*(x^*) = \sup\{\langle x^*, y \rangle - \varphi(y); y \in X\} \ge \langle x^*, x \rangle - \varphi(x)$. Assim,

$$\varphi(x) + \varphi^*(x^*) \ge \langle x^*, x \rangle.$$
 (2)

De (1) e (2) segue a igualdade de (ii).

$$(ii) \Longrightarrow (i)$$
:

De (ii) temos que,

$$\langle x^*, x \rangle = \varphi(x) + \varphi^*(x^*) = \varphi(x) + \sup\{\langle x^*, x \rangle - \varphi(x); x \in X\}$$

$$\geq \varphi(x) + \langle x^*, y \rangle - \varphi(y), \forall y \in X. \text{ Assim},$$

$$\varphi(x) \le \varphi(y) + \langle x^*, x - y \rangle, \forall y \in X \Longrightarrow x^* \in \partial \varphi(x).$$

Para provar que $(ii) \iff (iii)$, primeiramente vamos mostrar que $\varphi^{**} = \varphi$.

Afirmação 1: $\varphi^{**} \leq \varphi$.

Note que, $\varphi^*(x^*) = \sup\{\langle x^*, x \rangle - \varphi(x), x \in X\}, \forall x^* \in X^*$. Assim, para cada $x \in X$, temos que

$$\varphi^*(x^*) \ge \langle x^*, x \rangle - \varphi(x), \forall x^* \in X^* \Longrightarrow \langle x^*, x \rangle - \varphi^*(x^*) \le \varphi(x), \forall x^* \in X^*$$

Portanto, para cada $x \in X$, temos,

$$\sup\{\langle x^*, x \rangle - \varphi^*(x^*), x^* \in X^*\} \le \varphi(x) \Longrightarrow \varphi^{**}(x) \le \varphi(x), \forall x \in X.$$

Provando a afirmação 1.

Suponha que exista $x_0 \in X$ tal que $\varphi^{**}(x_0) < \varphi(x_0)$, logo $(x_0, \varphi^{**}(x_0)) \notin Epi(\varphi)$. Pela Proposição 2.1.5, $Epi(\varphi)$ é fechado e pela Proposição 2.1.7, temos que $Epi(\varphi)$ é convexo em $X \times \mathbb{R}$. Como φ é própria, então $Epi(\varphi) \neq \emptyset$. Definindo $A = \{(x_0, \varphi^{**}(x_0))\}$, claramente A é convexo e compacto em $X \times \mathbb{R}$ e disjunto de $Epi(\varphi)$.

Pela segunda forma geométrica do Teorema de Hahn Banach, existe $\psi \in (X \times \mathbb{R})^*$ e $\alpha \in \mathbb{R}$ tal que,

$$\psi(x_0, \varphi^{**}(x_0)) \le \alpha - \epsilon < \alpha < \alpha + \epsilon \le \psi(x, \lambda), \forall (x, \lambda) \in Epi(\varphi),$$
para algum $\epsilon > 0$. (3)

Pela Proposição 0.0.12, temos que, $(X \times \mathbb{R})^* \approx X^* \times \mathbb{R}^*$. Logo, existe $x_0^* \in X^*$ e $k \in \mathbb{R}$ tal que, $\psi(x, \lambda) = \langle x^*, x \rangle + k\lambda, \forall (x, \lambda) \in X \times \mathbb{R}$. Substituindo em (3) temos,

$$\langle x_0^*, x_0 \rangle + k \varphi^{**}(x_0) < \alpha < \langle x_0^*, x \rangle + k \lambda$$
, para todo $(x, \lambda) \in Epi(\varphi)$.

Tomando $\lambda = \varphi(x)$, temos claramente que $(x, \varphi(x)) \in Epi(\varphi)$. Supondo, sem perda de generalidade, que k > 0, então

$$\langle \frac{x_0^*}{k}, x_0 \rangle + \varphi^{**}(x_0) < \langle \frac{x_0^*}{k}, x \rangle + \varphi(x)$$
, para todo $x \in X$.

Equivalentemente,

$$\left\langle \frac{-x_0^*}{k}, x_0 \right\rangle - \varphi^{**}(x_0) > \left\langle \frac{-x_0^*}{k}, x \right\rangle - \varphi(x), \text{ para todo } x \in X. \text{ Assim,}$$

$$\left\langle \frac{-x_0^*}{k}, x_0 \right\rangle - \varphi^{**}(x_0) > \sup \left\{ \left\langle \frac{-x_0^*}{k}, x \right\rangle - \varphi(x), x \in X \right\} = \varphi^* \left(\frac{-x_0^*}{k} \right).$$

Portanto, $\sup\{\langle f, x_0 \rangle - \varphi^*(f); f \in X^*\} = \varphi^{**}(x_0) < \left\langle \frac{-x_0^*}{k}, x_0 \right\rangle - \varphi^*\left(\frac{-x_0^*}{k}\right)$, o que contradiz a definição de φ^{**} .

Portanto, segue que $\varphi^{**} = \varphi$.

$$(ii) \Longrightarrow (iii)$$
:

Como (ii) vale e $\varphi^{**} = \varphi$ temos que $\varphi^{**}(x) + \varphi^{*}(x^{*}) = \langle x^{*}, x \rangle$. Portanto,

$$-\varphi^*(x^*) = -\langle x^*, x \rangle + \varphi^{**}(x)$$

$$= -\langle x^*, x \rangle + \sup\{\langle y^*, x \rangle - \varphi^*(y^*), y^* \in X^*\}$$

$$\geq -\langle x^*, x \rangle + \langle y^*, x \rangle - \varphi^*(y^*), \forall y^* \in X^*.$$

Logo,
$$\varphi^*(x^*) \le \langle x^* - y^*, x \rangle + \varphi^*(y^*), \forall y^* \in X^*.$$

Usando a reflexibilidade do espaço X temos,

$$\varphi^*(x^*) \le \langle x, x^* - y^* \rangle + \varphi^*(y^*), \forall y^* \in X^*.$$

Portanto $x \in \partial \varphi^*(x^*)$.

$$(iii) \Longrightarrow (ii)$$
:

$$x \in \partial \varphi^*(x^*) \Longrightarrow \varphi^*(x^*) \le \langle x^* - y^*, x \rangle + \varphi^*(y^*), \forall y^* \in X^*.$$
 Assim,

$$\varphi^*(x^*) + \langle y^*, x \rangle - \varphi^*(y^*) \le \langle x^*, x \rangle, \forall y^* \in X^*.$$

Equivalentemente,

$$\varphi^*(x^*) + \sup\{\langle y^*, x \rangle - \varphi^*(y^*), y^* \in X^*\} \le \langle x^*, x \rangle. \text{ Assim,}$$
$$\varphi^*(x^*) + \varphi^{**}(x) \le \langle x^*, x \rangle. \tag{6}$$

Por outro lado, temos que

$$\varphi^{**}(x) = \sup\{\langle y^*, x \rangle - \varphi^*(y^*), y^* \in X^*\} \ge \langle x^*, x \rangle - \varphi^*(x^*). \text{ Logo}$$
$$\varphi^{**}(x) + \varphi^*(x^*) \ge \langle x^*, x \rangle. \tag{7}$$

De (6), (7) e do fato de $\varphi^{**} = \varphi$, segue a igualdade de (ii).

A prova da igualdade $\partial \varphi^* = (\partial \varphi)^{-1} = D(\partial \varphi)$ segue da equivalência entre (i) e (iii).

De fato, se $x \in (\partial \varphi)^{-1}$ então existe $x^* \in X^*$ tal que $x^* \in \partial \varphi(x)$, como $(i) \Longrightarrow (iii)$, temos que $x \in \partial \varphi^*(x^*)$. Por outro lado, se $x \in \partial \varphi^*(x^*)$, para algum $x^* \in X^*$, como $(iii) \Longrightarrow (i)$ temos que $x^* \in \partial \varphi(x)$, portanto $x \in (\partial \varphi)^{-1}$.

Definição 3.3.4. Seja $\varphi: X \longrightarrow \mathbb{R}$ uma função convexa, s.c.i. e própria. Para cada $\epsilon > 0$ defina o conjunto $\partial_{\epsilon} \varphi(x)$ de subgradientes aproximados de φ em x por,

$$\partial_{\epsilon}\varphi(x) = \{x^* \in X^*; \varphi(y) \ge \varphi(x) - \epsilon + \langle x^*, y - x \rangle, \forall y \in X\}$$
$$= \{x^* \in X^*; \varphi(x) + \varphi^*(x^*) - \langle x^*, x \rangle \le \epsilon\}.$$

A conjugada φ^{**} de φ^{*} coincide com φ em X (considerando X como um subespaço de X^{**}), isto é, $\varphi(x) = \sup\{\langle x^{*}, x \rangle - \varphi^{*}(x^{*}), x^{*} \in X^{*}\}$, para cada $x \in X$.

Observação 3.3.5. *Note que, se* $x \in D(\varphi)$ *, então* $\partial_{\epsilon}\varphi(x) \neq \emptyset$ *.*

De fato, como $x \in D(\varphi)$ temos que,

 $\varphi(x) = \sup\{\langle y^*, x \rangle - \varphi^*(y^*), y^* \in X^*\} < +\infty. \text{ Assim, dado } \epsilon > 0 \text{ existe } z_{\epsilon}^* \in X^* \text{ tal } que,$

$$\varphi(x) - \epsilon < \langle z_{\epsilon}^*, x \rangle - \varphi^*(z_{\epsilon}^*) \Longrightarrow \varphi(x) + \varphi^*(z_{\epsilon}^*) - \langle z_{\epsilon}^*, x \rangle < \epsilon. \ Portanto, \ z_{\epsilon}^* \in \partial_{\epsilon} \varphi(x).$$

Lema 3.3.6. Seja $\varphi: X \longrightarrow \overline{\mathbb{R}}$ uma função convexa, s.c.i. e própria com $x^* \in \partial_{\epsilon} \varphi(x)$. Então, para cada $\lambda > 0$, existe $\bar{x} \in X$ e $\bar{x}^* \in X^*$ tal que $||\bar{x} - x|| \leq \lambda$, $||\bar{x}^* - x^*|| \leq \frac{\epsilon}{\lambda}$ e $\bar{x}^* \in \partial \varphi(\bar{x})$.

Demonstração: ver lema em [1], pág. 608. □

Proposição 3.3.7. Seja $\varphi: X \longrightarrow \mathbb{R}$ uma função s.c.i., convexa e própria. Então, $D(\partial \varphi)$ é um subconjunto denso de $D(\varphi)$.

Demonstração:

1) $D(\partial \varphi) \subset D(\varphi)$.

Seja $x \in D(\partial \varphi)$, então existe $x^* \in X^*$ tal que,

$$\varphi(x) \le \varphi(y) + \langle x^*, x - y \rangle$$
, para todo $y \in X$. (I)

Como φ é própria, existe $u \in X$ tal que $\varphi(u) < +\infty$. Tomando y = u em (I) temos que, $\varphi(x) \leq \varphi(u) + \langle x^*, x - u \rangle < +\infty$.

Portanto, $x \in D(\varphi)$.

$$2) \ \overline{D(\partial \varphi)}^X = D(\varphi).$$

Agora vamos mostrar a densidade de $D(\partial \varphi)$ no $D(\varphi)$. Seja $x \in D(\varphi)$, e vamos mostrar que existe uma sequência $\{x_n\}_{n\in\mathbb{N}} \subset D(\partial \varphi)$ tal que $||x_n - x|| \longrightarrow 0$, quando $n \longrightarrow +\infty$.

Como $x \in D(\varphi)$, pela Observação 3.3.5, dado $\epsilon > 0$, existe $x_{\epsilon}^* \in \partial_{\epsilon} \varphi(x)$. Sendo assim, para cada $n \in \mathbb{N}$ defina $\epsilon_n = \frac{1}{n^2} > 0$ e $\lambda_n = \frac{1}{n} > 0$. Pelo Lema 3.3.6 temos que existe $\bar{x}_n \in X$ e $\bar{x}_n^* \in X^*$ tal que,

$$||\bar{x}_n - x|| \le \lambda_n = \frac{1}{n}, \ ||\bar{x}_n^* - x_n^*|| \le \frac{\epsilon_n}{\lambda_n} = \frac{1}{n} \ \mathrm{e} \ \bar{x}_n^* \in \partial \varphi(\bar{x}_n) \ \mathrm{para} \ \mathrm{todo} \ n \in \mathbb{N}.$$

Portanto, a sequência $\{\bar{x}_n\}_{n\in\mathbb{N}}\subset D(\partial\varphi)$ e fazendo $n\longrightarrow +\infty$ em ambos os lados da desigualdade $||\bar{x}_n-x||\leq \frac{1}{n}$, temos que, $||\bar{x}_n-x||\longrightarrow 0$, e o resultado segue.

Proposição 3.3.8. Seja $\varphi: X \longrightarrow \mathbb{R}$ uma função s.c.i., convexa e própria. Então, $intD(\varphi) \subset D(\partial \varphi)$.

Demonstração:

Se $intD(\varphi) = \emptyset$, o resultado decorre direto.

Suponha que $int D(\varphi) \neq \emptyset$ e seja $x_0 \in int D(\varphi)$, então existe r > 0 tal que,

 $V=B(x_0,r)=\{x\in X; ||x-x_0||< r\}\subset D(\varphi).$ Pela Proposição 2.2.4, temos que φ é contínua em V.

Defina
$$C = \{(x, \lambda) \in V \times \mathbb{R}; \varphi(x) < \lambda\}.$$

- C é aberto em $X \times \mathbb{R}$. De fato, dado $(x', \lambda') \in C$, como φ é contínua em V e $\varphi(x') < \lambda'$, podemos tomar $\delta > 0$ e $\epsilon > 0$, suficientemente pequeno, de forma que $\varphi(x) < \lambda' \epsilon, \forall x \in B(x', \delta) \subset V$. Note que $B(x', \delta) \times (\lambda' \epsilon, \lambda' + \epsilon) =: A$ é um aberto de $X \times \mathbb{R}$ contendo o ponto (x', λ') e $A \subset C$. Portanto, C é um aberto de $X \times \mathbb{R}$.
- C é um conjunto convexo.

Dados $(x,\alpha),(y,\beta)\in C$, então $\varphi(x)<\alpha$ e $\varphi(y)<\beta$. Como V é um subconjunto convexo de X e φ é convexa, temos que

$$\varphi(\lambda x + (1 - \lambda)y) \leq \lambda \varphi(x) + (1 - \lambda)\varphi(y) < \lambda \alpha + (1 - \lambda)\beta, \forall \lambda \in (0, 1). \text{ Assim,}$$
$$\lambda(x, \alpha) + (1 - \lambda)(y, \beta) = (\lambda x + (1 - \lambda)y, \lambda \alpha + (1 - \lambda)\beta) \in C, \text{ para todo } \lambda \in (0, 1),$$
provando a afirmação.

Seja $B := \{(x_0, \varphi(x_0))\}$ e note que $B \cap C = \emptyset$. Pelo Teorema de Hahn-Banach, primeira forma geométrica, existe um hiperplano fechado que separa $B \in C$ no sentido lato, isto é, existe $\psi \in (X \times \mathbb{R})^*$ e $\beta \in \mathbb{R}$ tal que

$$\psi(x_0, \varphi(x_0)) \le \beta \le \psi(x, \lambda), \forall (x, \lambda) \in C.$$
 (I)

Como ψ é contínua, temos

$$\beta \le \psi(x,\lambda), \forall (x,\lambda) \in \overline{C}.$$
 (II)

Pelo Teorema 0.0.12 temos que $(X \times \mathbb{R})^* \approx X^* \times \mathbb{R}^*$. Portanto, existe $f \in X^*$ e $K \in \mathbb{R}$, K não nulo (veja Lema 0.0.11), tal que,

$$\psi(x,\lambda) = \langle f, x \rangle + K\lambda, \forall (x,\lambda) \in X \times \mathbb{R}. \tag{III}$$

Por (I), (II) e (III) temos,

$$\langle f, x_0 \rangle + K\varphi(x_0) \le \beta \le \langle f, x \rangle + K\lambda$$
, para todo $(x, \lambda) \in \overline{C}$.

Sem perda de generalidade, suponha que K > 0. Assim,

$$\langle \frac{f}{K}, x_0 \rangle + \varphi(x_0) \leq \frac{\beta}{K} \leq \langle \frac{f}{K}, x \rangle + \lambda$$
, para todo $(x, \lambda) \in \overline{C}$.

Tomando $x_0^* = \frac{-f}{K} \in X^* \in \alpha = \frac{\beta}{K} \in \mathbb{R}$ obtemos que,

 $\langle -x_0^*, x_0 \rangle + \varphi(x_0) \leq \alpha \leq \langle -x_0^*, x \rangle + \lambda$, para todo $(x, \lambda) \in \overline{C}$. Como $(x, \varphi(x)) \in \overline{C}$ para todo $x \in V$ temos que, $\langle -x_0^*, x_0 \rangle + \varphi(x_0) \leq \langle -x_0^*, x \rangle + \varphi(x)$, para todo $x \in V$.

Equivalentemente,

$$\varphi(x_0) - \varphi(x) \le \langle x_0^*, x_0 - x \rangle, \forall \ x \in V.$$
 (IV)

Para todo $u \in X$, podemos tomar $\lambda \in (0,1)$ tal que $x = \lambda x_0 + (1-\lambda)u \in V$ pois,

 $||\lambda x_0 + (1 - \lambda)u - x_0|| = (1 - \lambda)||u - x_0|| < r$ para algum λ suficientemente próximo de 1. Substituindo $x = \lambda x_0 + (1 - \lambda)u$ em (IV), temos pela convexidade de φ que,

$$\varphi(x_0) - \lambda \varphi(x_0) - (1 - \lambda)\varphi(u) \le \varphi(x_0) - \varphi(\lambda x_0 + (1 - \lambda)u) \le \langle x_0^*, x_0 - \lambda x_0 - (1 - \lambda)u \rangle,$$
para todo $u \in X$. Assim,

$$\varphi(x_0) \leq \lambda \varphi(x_0) + (1-\lambda)\varphi(u) + \langle x_0^*, (1-\lambda)(x_0-u) \rangle, \text{ para todo } u \in X \text{ e } \lambda \in (0,1).$$

Como x_0^* é contínua, fazendo $\lambda \longrightarrow 0^+$, temos que,

$$\varphi(x_0) \le \varphi(u) + \langle x_0^*, x_0 - u \rangle$$
, para todo $u \in X$.

Portanto,
$$x_0^* \in \partial \varphi(x_0) \Longrightarrow x_0 \in D(\partial \varphi)$$
.

Proposição 3.3.9. Seja X um espaço de Banach reflexivo e $\varphi:X\longrightarrow \bar{\mathbb{R}}$ uma função

própria, s.c.i. e convexa. Se

$$\lim_{\|x\| \to +\infty} \varphi(x) = +\infty$$

Então $R(\partial \varphi) = X^*$, sendo que $R(\partial \varphi) := \{x^* \in X^*; \exists z \in X, x^* \in \partial \varphi(z)\}$

Demonstração:

Dado $f \in X^*$, temos que f é limitada, contínua e convexa (pela linearidade de f). Definindo $g: X \longrightarrow \bar{\mathbb{R}}$ por $g(x) = \varphi(x) - f(x)$ temos que g é convexa, semicontínua inferior, própria e

$$\lim_{||x||\to +\infty}g(x)=\lim_{||x||\to +\infty}\varphi(x)-f(x)=+\infty, \text{ pois } f \text{ \'e limitada e } \lim_{||x||\to +\infty}\varphi(x)=+\infty.$$

Pela Proposição 2.3.3, segue que existe $x_0 \in X$ tal que $g(x_0) \leq g(y)$, para todo $y \in X$. Equivalentemente,

$$\varphi(x_0) - f(x_0) \le \varphi(y) - f(y), \forall y \in X \Longrightarrow \varphi(x_0) \le \varphi(y) + \langle f, x_0 - y \rangle, \forall y \in X.$$
Portanto, $f \in \partial \varphi(x_0)$, provando que $R(\partial \varphi) = X^*$.

Observação 3.3.10. Sejam $\varphi, \psi : X \longrightarrow \mathbb{R}$ funções convexas, semicontínuas inferiormente e próprias. Se $D(\varphi) \cap D(\psi) \neq \emptyset$ então $\partial \psi + \partial \varphi \subset \partial (\psi + \varphi)$.

Seja $w^* = w_1^* + w_2^*$, com $w_1^* \in \partial \psi(x)$ e $w_2^* \in \partial \varphi(x)$. Assim,

$$\psi(x) \le \psi(y) + \langle w_1^*, x - y \rangle$$
, para todo $y \in X$. (I)

$$\varphi(x) \le \varphi(y) + \langle w_2^*, x - y \rangle$$
, para todo $y \in X$. (II)

Somando ambos os lados das desigualdades (I) e (II) temos que,

$$\varphi(x) + \psi(x) \le \varphi(y) + \psi(y) + \langle w_1^* + w_2^*, x - y \rangle$$
, para todo $y \in X$.

Portanto, $w^* \in \partial(\varphi + \psi)(x)$.

Proposição 3.3.11. Sejam φ e ψ funções convexas, semicontínuas inferiormente e próprias em X tais que $int(D(\psi)) \cap D(\varphi) \neq \emptyset$. Então $\partial(\psi + \varphi) = \partial\psi + \partial\varphi$.

Demonstração:

Ver [5] p. 41.
$$\Box$$
 .

Capítulo 4

Aplicação

Neste capítulo, definiremos o operador p(x)-Laplaciano perturbado e mostraremos que a realização deste operador no espaço $H=L^2(\Omega)$ é a subdiferencial de uma função convexa, própria e s.c.i.. O operador p(x) - Laplaciano aparece em muitos modelos de EDP's com aplicações em processamento de imagens e fluidos eletroreológicos. Os resultados deste capítulo podem ser encontrados em [8].

4.1 Algumas definições e resultados importantes

Nesta seção, iremos evidenciar algumas definições e resultados que serão úteis ao longo do capítulo.

Definição 4.1.1. O espaço de Lebesgue generalizado $L^{p(x)}(\Omega)$ é definido por

$$L^{p(x)}(\Omega) = \left\{ u : \Omega \to \mathbb{R} : u \text{ \'e mensur\'avel}, \int_{\Omega} |u(x)|^{p(x)} dx < \infty \right\},$$

onde $\Omega \subset \mathbb{R}^N$, $N \geq 1$, é um conjunto mensurável e $p \in L^{\infty}(\Omega)$, com $p \geq 1$.

Para $u \in L^{p(x)}(\Omega)$ e $p \in L^{\infty}_+ := \{q \in L^{\infty}(\Omega) : \text{infess } q \geq 1\}$ denotaremos

$$\rho(u) = \int_{\Omega} |u(x)|^{p(x)} dx,$$

$$p^- = \inf \operatorname{ess} p \in p^+ = \sup \operatorname{ess} p.$$

Por [15, 7, 10], $L^{p(x)}(\Omega)$ é um espaço de Banach com a norma

$$||u||_{p(x)} = \inf \left\{ \lambda > 0 : \rho \left(\frac{u}{\lambda} \right) \le 1 \right\}.$$

Definição 4.1.2. O espaço de Sobolev generalizado $W^{1,p(x)}(\Omega)$ é definido por

$$W^{1,p(x)}(\Omega) = \big\{u \in L^{p(x)}(\Omega): |\nabla u| \in L^{p(x)}(\Omega)\big\}.$$

De acordo com [15, 6, 10], temos que $W^{1,p(x)}(\Omega)$ é um espaço de Banach com a norma

$$||u||_* := ||u||_{p(x)} + ||\nabla u||_{p(x)}.$$

Definição 4.1.3. $W^{1,p(x)}_o = \overline{C^\infty_o(\Omega)}^{W^{1,p(x)}(\Omega)}$

Proposição 4.1.4. [16, 10] As normas $||\nabla u||_{p(x)}$ e $||u||_*$ são equivalentes em $W_o^{1,p(x)}$.

Teorema 4.1.5. [15, 10] Seja $u \in L^{p(x)}(\Omega)$. Então

- (i) $||u||_{p(x)} < 1 (=1; > 1)$ se e somente se $\rho(u) < 1 (=1; > 1);$
- (ii) Se $||u||_{p(x)} > 1$, então $||u||_{p(x)}^{p^-} \le \rho(u) \le ||u||_{p(x)}^{p^+}$;
- (iii) Se $||u||_{p(x)} < 1$, então $||u||_{p(x)}^{p^+} \le \rho(u) \le ||u||_{p(x)}^{p^-}$.

Teorema 4.1.6. [2, 12, 10] Sejam p(x) e q(x) funções mensuráveis tais que $p(x) \in L^{\infty}(\Omega)$ e $1 \leq p(x)q(x) \leq +\infty$ para quase todo $x \in \Omega$. Seja $f \in L^{q(x)}(\Omega)$, $f \neq 0$. Então

$$||f||_{p(x)q(x)}^{p^+} \le |||f|^{p(x)}||_{q(x)} \le ||f||_{p(x)q(x)}^{p^-}$$
, se $||f||_{p(x)q(x)} \le 1$,

e

$$||f||_{p(x)q(x)}^{p^{-}} \le |||f|^{p(x)}||_{q(x)} \le ||f||_{p(x)q(x)}^{p^{+}}, se ||f||_{p(x)q(x)} \ge 1.$$

Em particular, se $p(x) \equiv p$ é constante, então $|||f|^p||_{q(x)} = ||f||_{p(x)q(x)}^p$.

Proposição 4.1.7. [6, 17, 10] O espaço conjugado de $L^{p(x)}(\Omega)$ é $L^{q(x)}(\Omega)$ onde $\frac{1}{p(x)} + \frac{1}{q(x)} = 1$. Além disso, para $f \in L^{p(x)}(\Omega)$ e $g \in L^{q(x)}(\Omega)$ vale a designal dade

$$\left| \int_{\Omega} f(x)g(x)dx \right| \le 2||f||_{p(x)}||g||_{q(x)}.$$

Teorema 4.1.8. [15, 16, 10]

- (i) O espaço $(L^{p(x)}(\Omega), ||\cdot||_{p(x)})$ é separável;
- (ii) Se $p^- > 1$, então $L^{p(x)}(\Omega)$ é reflexivo;
- (iii) Se $p^- > 1$, então $W^{1,p(x)}(\Omega)$ é separável e reflexivo.

Segue imediatamente da definição de $W_o^{1,p(x)}$ e das propriedades de $W^{1,p(x)}(\Omega)$, que $W_o^{1,p(x)}$ é um espaço de Banach reflexivo e separável.

Teorema 4.1.9. [15, 16, 10] Seja Ω um domínio limitado de \mathbb{R}^N e $p,q\in L^\infty_+(\Omega)$. Então

$$L^{p(x)}(\Omega) \subset L^{q(x)}(\Omega)$$

se e somente se $q(x) \leq p(x)$ para quase todo $x \in \Omega$, e neste caso a imersão é contínua.

Teorema 4.1.10. [16, 10] Seja Ω um domínio limitado de \mathbb{R}^N e sejam $p,q\in C(\overline{\Omega})$ tal que $p^-,q^-\geq 1$. Assuma que

$$q(x) < p^*(x) := \begin{cases} \frac{Np(x)}{N - p(x)}, p(x) < N \\ +\infty, p(x) \ge N \end{cases}$$

para todo $x \in \overline{\Omega}$. Então,

$$W^{1,p(x)}(\Omega) \subset L^{q(x)}(\Omega),$$

e a imersão é contínua e compacta.

Definição 4.1.11. Seja V um espaço de Banach. Dizemos que um operador $A:V\to V^*$ é hemicontínuo se, para todo $u,v\in V$,

$$A(u + \lambda v) \rightharpoonup Au$$
,

quando $\lambda \to 0$.

Definição 4.1.12. Seja V um espaço de Banach. Dizemos que um operador $A:V\to V^*$ é coercivo se

$$\lim_{j \to +\infty} \frac{\langle Au_j, u_j \rangle_{V^*, V}}{||u_j||_V} = +\infty$$

qualquer que seja $(u_j)_{j\in\mathbb{N}}\subset V$ com $\lim_{j\to+\infty}||u_j||_V=+\infty$.

4.2 O operador p(x)-Laplaciano

Nesta seção, definiremos o operador p(x)-Laplaciano e mostraremos algumas propriedades para esse operador, como monotonicidade, coercividade e hemicontinuidade.

Seja $\Omega \subset \mathbb{R}^N$ um domínio limitado e consideremos $V = W^{1,p(x)}(\Omega), H = L^2(\Omega),$ $p(x) \in C(\overline{\Omega})$ com p(x) > 2 para quase todo $x \in \Omega$. Pelos Teoremas 4.1.9 e 4.1.10 temos que $V \subset H \subset V^*$ com imersões contínuas e densas. Consideremos agora o operador $A: V \to V^*$ dado por

$$A(u)(v) = \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \cdot \nabla v dx + \int_{\Omega} |u|^{p(x)-2} uv dx.$$

Lema 4.2.1. Sejam a e b números reais positivos e q > 1. Então $(a + b)^q \le 2^{q-1} (a^q + b^q)$.

Lema 4.2.2. [16] Sejam $\xi, \eta \in \mathbb{R}^N$ e $p \geq 2$ uma constante. Vale a designaldade

$$(|\xi|^{p-2}\xi - |\eta|^{p-2}\eta)\,(\xi - \eta) \ge \left(\frac{1}{2}\right)^p |\xi - \eta|^p.$$

Lema 4.2.3. Sejam $\frac{1}{p(x)} + \frac{1}{q(x)} = 1$ $e \ \widetilde{p}(x) := p(x) - 1$. Se $||u||_V \le 1$ então

(i)
$$\langle Au, u \rangle_{V^*, V} \ge \frac{1}{2^{p^+-1}} ||u||_V^{p^+};$$

(ii)
$$||Au||_{V^*} \leq ||\nabla u||_{p(x)}^{p^-} + ||u||_{p(x)}^{p^-} + 1;$$

(iii)
$$||Au||_{V^*} \le 2 \left(||\nabla u||_{p(x)}^{\widetilde{p}^-} + ||u||_{p(x)}^{\widetilde{p}^-} \right).$$

Lema 4.2.4. $Sejam \frac{1}{p(x)} + \frac{1}{q(x)} = 1 \ e \ \widetilde{p}(x) := p(x) - 1. \ Se \ ||u||_V \ge 1 \ ent \widetilde{ao}$

(i)
$$\langle Au, u \rangle_{V^*, V} \ge \begin{cases} \frac{1}{2^{p^- - 1}} ||u||_V^{p^-}, \ se \ ||u||_{p(x)} \ge 1 \ e \ ||\nabla u||_{p(x)} \ge 1 \\ ||\nabla u||_{p(x)}^{p^-} + ||u||_{p(x)}^{p^+}, \ se \ ||u||_{p(x)} \le 1 \ e \ ||\nabla u||_{p(x)} \ge 1 \ ; \\ ||\nabla u||_{p(x)}^{p^+} + ||u||_{p(x)}^{p^-}, \ se \ ||u||_{p(x)} \ge 1 \ e \ ||\nabla u||_{p(x)} \le 1 \end{cases}$$

(ii)
$$||Au||_{V^*} \le \begin{cases} ||\nabla u||_{p(x)}^{p^+} + ||u||_{p(x)}^{p^+} + 1, & se \ ||u||_{p(x)} \ge 1 \ e \ ||\nabla u||_{p(x)} \ge 1 \end{cases}$$

$$||Au||_{V^*} \le \begin{cases} ||\nabla u||_{p(x)}^{p^+} + ||u||_{p(x)}^{p^+} + 1, & se \ ||u||_{p(x)} \le 1 \ e \ ||\nabla u||_{p(x)} \ge 1 \end{cases}$$

$$||\nabla u||_{p(x)}^{p^-} + ||u||_{p(x)}^{p^+} + 1, & se \ ||u||_{p(x)} \ge 1 \ e \ ||\nabla u||_{p(x)} \le 1 \end{cases}$$

(iii)
$$||Au||_{V^*} \leq \begin{cases} 2\left(||\nabla u||_{p(x)}^{\widetilde{p}^+} + ||u||_{p(x)}^{\widetilde{p}^+}\right), & se \ ||u||_{p(x)} \geq 1 \ e \ ||\nabla u||_{p(x)} \geq 1 \\ 2\left(||\nabla u||_{p(x)}^{\widetilde{p}^+} + ||u||_{p(x)}^{\widetilde{p}^-}\right), & se \ ||u||_{p(x)} \leq 1 \ e \ ||\nabla u||_{p(x)} \geq 1 \ . \\ 2\left(||\nabla u||_{p(x)}^{\widetilde{p}^-} + ||u||_{p(x)}^{\widetilde{p}^+}\right), & se \ ||u||_{p(x)} \geq 1 \ e \ ||\nabla u||_{p(x)} \leq 1 \end{cases}$$

Definição 4.2.5.

Um operador $A: V \longrightarrow V^*$ é monótono se, dado $x_1, x_2 \in D(A)$, então $\langle A(x_1) - A(x_2), x_1 - x_2 \rangle \geq 0$.

O operador A é dito ser maximal monótono, se não estiver propriamente contido em qualquer outro operador monótono.

Lema 4.2.6. O operador $A: V \to V^*$ é monótono.

 ${\bf Demonstração} \colon$ Sejam $u,v \in V.$ Usando o Lema 4.2.2 para cada $x \in \Omega$ fixado obtemos

$$\langle Au - Av, u - v \rangle_{V^*, V} = \langle Au, u - v \rangle_{V^*, V} - \langle Av, u - v \rangle_{V^*, V}$$

$$= \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \cdot \nabla (u - v) dx + \int_{\Omega} |u|^{p(x)-2} u \cdot (u - v) dx - \int_{\Omega} |\nabla v|^{p(x)-2} \nabla v \cdot \nabla (u - v) dx$$

$$- \int_{\Omega} |v|^{p(x)-2} v \cdot (u - v) dx = \int_{\Omega} \left(|\nabla u|^{p(x)-2} \nabla u - |\nabla v|^{p(x)-2} \nabla v \right) \left(\nabla u - \nabla v \right) dx$$

$$+ \int_{\Omega} \left(|u|^{p(x)-2} u - |v|^{p(x)-2} v \right) (u - v) dx \ge \int_{\Omega} \left(\frac{1}{2} \right)^{p(x)} |\nabla u - \nabla v|^{p(x)} dx$$

$$+ \int_{\Omega} \left(\frac{1}{2} \right)^{p(x)} |u - v|^{p(x)} dx \ge \left(\frac{1}{2} \right)^{p^+} \left(\int_{\Omega} |\nabla u - \nabla v|^{p(x)} dx + \int_{\Omega} |u - v|^{p(x)} dx \right) \ge 0.$$

Lema 4.2.7. O operador $A: V \to V^*$ é coercivo.

Lema 4.2.8. O operador $A: V \to V^*$ é hemicontínuo.

Assim, o operador $A:V\to V^*,\ V=W^{1,p(x)}(\Omega)$ definido por

$$A(u)(v) = \int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \cdot \nabla v dx + \int_{\Omega} |u|^{p(x)-2} uv dx,$$

é monótono, coercivo e hemicontínuo para cada $u, v \in V$. Portanto, A é maximal monótono (veja [13]). Agora, seja A_H a realização de A em $H = L^2(\Omega)$ dada por

$$\begin{cases} D(A_H) := \{u \in V; A(u) \in H\} \\ A_H(u) = A(u), \text{ se } u \in D(A_H) \end{cases}.$$

Usualmente, podemos representar $\int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \cdot \nabla v dx$ por $-\Delta_{p(x)}(u)(v)$. Mostraremos que A_H é a subdiferencial de uma função convexa, própria e s.c.i. Considere

$$\varphi_{p(x)}(u) = \begin{cases} \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} dx + \int_{\Omega} \frac{1}{p(x)} |u|^{p(x)} dx , se \ u \in V \\ +\infty, \ se \ u \in H - V \end{cases}$$

Lema 4.2.9. A aplicação $\varphi_{p(x)}$ é convexa e própria.

Demonstração: Seja $u \in V = W^{1,p(x)}(\Omega)$. Então $u \in L^{p(x)}(\Omega)$ e $\nabla u \in L^{p(x)}(\Omega)$. Assim,

$$\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}dx+\int_{\Omega}\frac{1}{p(x)}|u|^{p(x)}dx\leq\frac{1}{2}\left[\int_{\Omega}|\nabla u|^{p(x)}dx+\int_{\Omega}|u|^{p(x)}dx\right]<\infty$$

donde $\varphi_{p(x)}$ é própria. Como a aplicação λ^p é convexa para $\lambda>0$, então, para $u,v\in V$ e $0\leq t\leq 1$, temos

$$\begin{split} \varphi_{p(x)}(tu+(1-t)v) &= \int_{\Omega} \frac{1}{p(x)} |\nabla(tu+(1-t)v)|^{p(x)} dx + \int_{\Omega} \frac{1}{p(x)} |tu+(1-t)v|^{p(x)} dx \\ &= \int_{\Omega} \frac{1}{p(x)} |t\nabla u+(1-t)\nabla v|^{p(x)} dx + \int_{\Omega} \frac{1}{p(x)} |tu+(1-t)v|^{p(x)} dx \\ &\leq \int_{\Omega} \frac{1}{p(x)} \left(t|\nabla u|+(1-t)|\nabla v|\right)^{p(x)} dx + \int_{\Omega} \frac{1}{p(x)} \left(t|u|+(1-t)|v|\right)^{p(x)} dx \\ &\leq \int_{\Omega} \frac{1}{p(x)} \left(t|\nabla u|^{p(x)}+(1-t)|\nabla v|^{p(x)}\right) dx + \int_{\Omega} \frac{1}{p(x)} \left(t|u|^{p(x)}+(1-t)|v|^{p(x)}\right) dx \\ &= t \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} dx + t \int_{\Omega} \frac{1}{p(x)} |u|^{p(x)} dx + (1-t) \int_{\Omega} \frac{1}{p(x)} |\nabla v|^{p(x)} dx \\ &+ (1-t) \int_{\Omega} \frac{1}{p(x)} |v|^{p(x)} dx = t \varphi_{p(x)}(u) + (1-t) \varphi_{p(x)}(v). \end{split}$$

Logo $\varphi_{p(x)}$ é convexa e o lema está provado.

Lema 4.2.10. A aplicação $\varphi_{p(x)}$ é semicontínua inferiormente.

Demonstração: Devemos mostrar que $\varphi_{p(x)}(u) \leq \liminf_{n \to \infty} \varphi_{p(x)}(u_n)$ se $u_n \to u$ em H. Seja então (u_n) tal sequência. Se $\liminf_{n \to \infty} \varphi_{p(x)}(u_n) = +\infty$ então

$$\varphi_{p(x)}(u) \le +\infty = \liminf_{n \to \infty} \varphi_{p(x)}(u_n).$$

Caso contrário, se $\liminf_{n\to\infty} \varphi_{p(x)}(u_n) = a < +\infty$ então existe uma subsequência $(u_{n_j}) \subset V$ de (u_n) tal que

$$\lim_{j \to \infty} \varphi_{p(x)}(u_{n_j}) = \lim_{j \to \infty} \left(\int_{\Omega} \frac{1}{p(x)} |\nabla u_{n_j}|^{p(x)} dx + \int_{\Omega} \frac{1}{p(x)} |u_{n_j}|^{p(x)} dx \right) = a.$$

Assim, temos que $\varphi_{p(x)}(u_{n_j})$ é limitada, isto é, existe M>0 tal que

$$|\varphi_{p(x)}(u_{n_i})| \le M$$

para todo $j \in \mathbb{N}$. Usando o Teorema 4.1.5 obtemos que

$$||u_{n_j}||_{p(x)} \le \begin{cases} (p^+M)^{\frac{1}{p^-}}, & se \ ||u_{n_j}||_{p(x)} \ge 1\\ (p^+M)^{\frac{1}{p^+}}, & se \ ||u_{n_j}||_{p(x)} < 1 \end{cases}$$

 \mathbf{e}

$$||\nabla u_{n_j}||_{p(x)} \le \begin{cases} (p^+ M)^{\frac{1}{p^-}}, & se \ ||\nabla u_{n_j}||_{p(x)} \ge 1\\ (p^+ M)^{\frac{1}{p^+}}, & se \ ||\nabla u_{n_j}||_{p(x)} < 1 \end{cases}.$$

Assim podemos concluir que $||u_{n_j}||_V$ é uma sequência limitada no espaço de Banach reflexivo $V=W^{1,p(x)}(\Omega)$. Logo (u_{n_j}) possui uma subsequência (que também iremos denotar por (u_{n_j})) tal que $u_{n_j} \rightharpoonup v$ em V para algum $v \in V$. Como $H^* \subset V^*$ temos que $u_{n_j} \rightharpoonup v$ em H e pela unicidade do limite fraco $u=v \in V$. Considerando agora a subdiferencial $\partial \varphi_{p(x)}$ de $\varphi_{p(x)}$ obtemos,

$$\langle \partial \varphi_{p(x)}(u), u_{n_j} - u \rangle_{V^*, V} \le \varphi_{p(x)}(u_{n_j}) - \varphi_{p(x)}(u),$$

para todo $j \in \mathbb{N}$. Logo,

$$\langle \partial \varphi_{p(x)}(u), u_{n_j} - u \rangle_{V^*, V} + \varphi_{p(x)}(u) \leq \varphi_{p(x)}(u_{n_j}),$$

para todo $j \in \mathbb{N}$. Como $u_{n_j} \rightharpoonup u$ em V e $\partial \varphi_{p(x)}(u) \in V^*$ segue que,

$$\langle \partial \varphi_{p(x)}(u), u_{n_j} - u \rangle_{V^*, V} \to 0,$$

quando $j \to +\infty$. Portanto, quando $j \to +\infty$,

$$\varphi_{p(x)}(u) \le \lim_{j \to \infty} \varphi_{p(x)}(u_{n_j}) = a = \liminf_{j \to \infty} \varphi_{p(x)}(u_n).$$

Teorema 4.2.11. A_H é a subdiferencial $\partial \varphi_{p(x)}$ de $\varphi_{p(x)}$.

Demonstração Temos que A_H , que é a realização de A em H é maximal monótono em H. Como $\partial \varphi_{p(x)}$ é monótono em H temos

$$\partial \varphi_{p(x)}(u) \subset A_H(u)$$

qualquer que seja $u \in H$. Assim, basta mostrar que $A_H(u) \subset \partial \varphi_{p(x)}(u)$. Seja então $u \in D(A_H) := \{u \in V; A(u) \in H\}$ e seja $v \in A(u) = A_H(u)$. Então para todo $\xi \in V$ temos

$$\langle v, \xi - u \rangle_{V^*, V} = \langle A_H(u), \xi - u \rangle_{V^*, V} = \int_{\Omega} |\nabla u|^{p(x) - 2} \nabla u \cdot (\nabla \xi - \nabla u) dx$$

$$+ \int_{\Omega} |u|^{p(x) - 2} u(\xi - u) dx = \int_{\Omega} |\nabla u|^{p(x) - 2} \nabla u \cdot \nabla \xi dx - \int_{\Omega} |\nabla u|^{p(x)} dx$$

$$+ \int_{\Omega} |u|^{p(x) - 2} u \xi dx - \int_{\Omega} |u|^{p(x)} dx = \int_{\Omega} |\nabla u|^{p(x) - 2} \nabla u \cdot \nabla \xi dx + \int_{\Omega} |u|^{p(x) - 2} u \cdot \xi dx$$

$$- \int_{\Omega} |\nabla u|^{p(x)} dx - \int_{\Omega} |u|^{p(x)} dx.$$

Considerando q(x) de forma que $\frac{1}{p(x)} + \frac{1}{q(x)} = 1$ temos

$$\begin{split} \langle v, \xi - u \rangle_{V^*, V} + \int_{\Omega} |\nabla u|^{p(x)} dx + \int_{\Omega} |u|^{p(x)} dx &= \int_{\Omega} |\nabla u|^{p(x) - 2} \nabla u \cdot \nabla \xi dx \\ + \int_{\Omega} |u|^{p(x) - 2} u \cdot \xi dx &\leq \int_{\Omega} |\nabla u|^{p(x) - 1} |\nabla \xi| dx + \int_{\Omega} |u|^{p(x) - 1} |\xi| dx \\ &\leq \int_{\Omega} \frac{1}{q(x)} |\nabla u|^{(p(x) - 1)q(x)} + \frac{1}{p(x)} |\nabla \xi|^{p(x)} dx + \int_{\Omega} \frac{1}{q(x)} |u|^{(p(x) - 1)q(x)} + \frac{1}{p(x)} |\xi|^{p(x)} dx \\ &= \int_{\Omega} \frac{1}{q(x)} |\nabla u|^{p(x)} dx + \int_{\Omega} \frac{1}{p(x)} |\nabla \xi|^{p(x)} dx + \int_{\Omega} \frac{1}{q(x)} |u|^{p(x)} dx + \int_{\Omega} \frac{1}{p(x)} |\xi|^{p(x)} dx \end{split}$$

logo,

$$\langle v, \xi - u \rangle_{V^*, V} + \int_{\Omega} \left(1 - \frac{1}{q(x)} \right) |\nabla u|^{p(x)} dx + \int_{\Omega} \left(1 - \frac{1}{q(x)} \right) |u|^{p(x)} dx$$

$$\leq \int_{\Omega} \frac{1}{p(x)} |\nabla \xi|^{p(x)} dx + \int_{\Omega} \frac{1}{p(x)} |\xi|^{p(x)} dx$$

e com isso concluímos que

$$\langle v, \xi - u \rangle_{V^*, V} + \varphi_{p(x)}(u) \le \varphi_{p(x)}(\xi)$$

ou de forma equivalente

$$\langle v, \xi - u \rangle_{V^*, V} \le \varphi_{p(x)}(\xi) - \varphi_{p(x)}(u)$$

para todo $\xi \in H$. Isso mostra que $A_H(u) = v \in \partial \varphi_{p(x)}(u)$ e o teorema está provado.

Pela Proposição 3.3.7 em [14] sabemos que o domínio de A_H é um subconjunto denso de $D(\varphi_{p(x)}) := \{u \in H : \varphi_{p(x)}(u) < \infty\} = V = W^{1,p(x)}(\Omega)$. Como $V \subset H$ e as imersões são contínuas e compactas, temos que $W^{1,p(x)}(\Omega) \subset \overline{D(A_H)}^H$ para todo p(x) tal que p(x) > 2 e p(x) contínua em $\overline{\Omega}$. Consequentemente, obtemos que $\overline{D(A_H)}^H = H$ para todo p(x) tal que p(x) > 2 e $p \in C(\overline{\Omega})$.

Referências Bibliográficas

- [1] A. Brondsted, R. T. Rockafellar, 'On the subdifferentiability of convex functions', Proc. Amer. Math. Soc. 16 (1965) 605-11.
- [2] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent. Studia Math., n.143, p.267-293, 2000.
- [3] E. L. Lima Análise Real, vol. 1: Funções de uma Variável, SBM,. Rio de Janeiro, 2001.
- [4] H. Brézis, Analyse Fonctionnelle. 2.ed. Paris: masson, 1983. 233p.
- [5] H. Brézis; Operateurs Maximaux Monotone, Et Semi-groupes de Contractions Dans Les Espaces de Hilbert. Editora N.H., Paris, 1978, 183 p..
- [6] H. Hudzik, On generalized Orlicz-Sobolev space, Funct. Approx., n.4, p.37-51, 1977.
- [7] H. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, v.1034, Springer-Verlag, Berlin, 1983.
- [8] J. Simsen, M.S. Simsen, F.B. Rocha, Existence of solutions for some classes of parabolic problems involving variable exponents, Nonlinear Studies 21(1)(2014) 113-128.
- [9] L. B. Machado, Análise Funcional e Aplicações. Dissertação Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas. São Paulo, P. 204. 2012.
- [10] L. Diening, Lebesgue and Sobolev spaces with variable exponents, Springer-Verlag, Heidelberg, 2011.

- [11] M. M. Cavalcanti, V. N. D. Cavalcanti, V. Komornik, Introdução à análise funcional. Editora da Universidade Estadual de Maringá (Eduem), Maringá, 2011. 481 p.
- [12] M. Sanchon, J.M. Urbano, Entropy solutions for the p(x)-Laplace equation, Trans. Amer. Soc., n.361, p.6387-6405, 2009.
- [13] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, New York: Springer, 2010.
- [14] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, Noordhoff International, 1976.
- [15] X.L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal.Appl, n.263, p.424-446, 2001.
- [16] X.L. Fan, Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal. n.52, p.1843-1852, 2003.
- [17] X.L.Fan, Y. Zhao, D.Zhao, Compact imbedding theorems with symmetry os Strauss-Lions type for the space $W^{1,p(x)}(\Omega)$. J. Math. Anal. Appl., n.255, p.333-348, 2001.