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Abstract

Many engineering projects rely on software to execute simulations and analysis of a
wide variety of domains. Computer programs are great allies of the engineers when
it comes to simulations, including the ones for electromagnetic transient analysis.
However, a single programming paradigm (the imperative paradigm) seems to have
dominated most of the commercial and academic applications.

This work presents and implements an algorithm to analyse simple electromagnetic
transient circuits adopting functional programming. The code uses the nodal anal-
ysis found on industry programs like the EMTP (Electromagnetic Transients Pro-
gram). The results of adopting the Haskell language and functional programming
are very favourable to the engineering community: programs with higher chances to
have fewer bugs, with concise implementations and with more focus on the mathe-
matical aspects of the algorithm.

Keywords: Functional programming, electromagnetic transient analysis, Haskell,
programming languages.
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1 Introduction

1.1 Motivation

Computer-aided applications play a crucial role in engineering. Since the 1950s,
many engineering projects rely on software to execute simulations and analysis of
a wide variety of domains. Engineering (Civil, Mechanical, Electrical) has a heavy
focus on mathematical models, time optimisations and new applications for modern
techniques. Nevertheless, in many situations, engineers of these domains do not
spend much time investigating a vital tool at the development of computer software:
programming languages.

. Onf i)f the earliest and most concise definitions of programming languages comes
rom |1].

"[A Programming Language] is considered to be a set of characters and rules for
combining them which have the following characteristics: (1) machine code knowledge
is unnecessary; (2) there is good potential for conversion to other computers; (3) there
is an instruction explosion (from one to many); and (4) there is a notation which is
closer to the original problem than assembly language would be".

The core of software engineering for industrial applications started with the As-
sembly language, moving towards more structured languages like Fortran, Algol,
Cobol, PL/I, Basic, Pascal, C, Smalltalk, Prolog, C+-, Matlab, and more recently,
Python, R and Java [2|. However, it is possible to find a much broader spectrum of
programming languages as illustrated in Figure 1.1 (source [3]).
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Chapter 1. Introduction 3

Programming languages itself is a dense topic, branching into compilers, static
analysis, program synthesis, proofs, concurrency, type theory, logic and many others.
Programming languages also have different paradigms [4]. Historically speaking, the
industry has been adopting procedural and imperative styles during the majority
of the time.

Imperative programming is a paradigm that describes computation as state-
ments - they can modify the state of the program. These statements focus on how
they should solve the problem proposed in the algorithm, requiring a detailed in-
struction guide to perform.

There are different programming paradigms apart from the imperative style. Some
languages follow the Functional programming paradigm - "they are descriptive
rather than imperative, have no assignment command and no explicit flow of control
- subcomputations are ordered only partially, by data dependency"[5]. The princi-
pal component in this alternative paradigm is the application of a function to its
arguments, not the computation of statements.

1.2 Research goals

This work proposes the adoption of the functional programming paradigm with
a functional programming language to build a simple program reproducing a well-
known algorithm for electromagnetic transient analysis of simple electrical circuits.
This baseline algorithm uses a didactic program, developed in the MatLab plataform,
by students at UNIFEI and UBC (see [6]). It aims to answer the following questions:

1. What are the benefits of using a functional programming language? Will the
development process be more intuitive? Will it be possible to apply all the
functional programming concepts directly into the application domain?

2. What will be the differences with respect to the code base? Will it be shorter
or longer? Will it produce a readable code?

3. What will be the technical challenges? Functional programming is becoming
more popular in the industry only in recent years, so there are not many
documents and articles available to report challenges during the development
process of engineering applications.

4. How and why "functional languages are associated with fewer defects than
either procedural or scripting languages"|[7|?

The development of the Haskell application will answers the questions previously
proposed.

Some of the complementary goals of this project are listed below.

e Create an open-source implementation of a project using a real-world engineer-
ing application (electromagnetic transients) applying functional programming.
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There are not many projects in electrical engineering using this paradigm and
this work can be a basic reference project for future research on similar topics.

e A software developer of electrical engineering applications should care about
the tools he/she adopts. The programming language chosen is one of the
main tools of the project. The selection of an inappropriate tool leads to bugs
and unwanted behaviour. The correctness of the program also relies on the
programming language. A professional software engineer will consider this
matter when delivering a project.

1.3 Relevance

The future of engineering applications is strictly connected to advances in com-
puter science and software development. Still, these two areas are mostly treated as
entirely separate domains. This work aims to build a bridge between programming
languages (with a case study on functional programming) and electrical engineering
(with electromagnetic transient analysis).

The domain of programming languages research is vast. Analysing the use of func-
tional programming for electrical engineering applications is just a starting point.
This work is relevant because it can open doors for several future outputs, such
as type analysis focused on the most common engineering models, formal verifica-
tion of algorithms (increasing the reliability of the delivered software), and so on.
Expanding this analysis to a field called Type Theory may lead to exciting results
- would it be possible to guarantee that the written algorithm is mathematically
equivalent to the engineering model? There are not many publications in this do-
main yet. Functional programming is the entry point for a more in-depth analysis
of this matter.

1.4 Methodology

After a literature review on functional programming, Haskell (the functional lan-
guage chosen to be the primary tool of this work) and existing applications, a work-
ing software containing the proof of concept (PoC) will be delivered and it will be
publicly accessible on Github (a Git repository hosting service with free plans).

Once the PoC is done, its results will be compared with the ones produced by
Matlab version, validating if the algorithm produces values at least similar to the
ones produced by the Matlab version. A comparison between code paradigms will
follow the numerical results.

Octave (an open-source implementation of Matlab) is used to run the simulations

from the imperative implementation; Stack[8] and Cabal[9] are used with GHC to
compile and run the Haskell version.
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1.5 Chapters Overview

Chapter 2 gives an overview of the Nodal Analysis in Electromagnetic Transient
Analysis, as well as a historical context of the software build for this domain, both
in industry and in academia.

Chapter 3 presents the most important concepts of functional programming. It
will provide the reader with conceptual examples and possible applications. It uses
the actual code from the Haskell program developed in this work.

Chapter 4 applies the functional programming concepts described in the previous
chapter to the Haskell language, providing a rich set of practical applications in the
language. Haskell is not the only functional language available; there are others like
OCaml, SML, Racket. Two separates chapters were kept in order to emphasise that
learning functional programming is different from learning Haskell (although it is a
necessary to know both for delivering good quality software and the results of this
work).

Chapter 5 provides a thorough explanation of the Haskell application. In every
section of this chapter, there is a recap of the main algorithm for electromagnetic
transient analysis, a walk-through the Haskell code and comparisons with the orig-
inal didactic program developed in MatLab.

Chapter 6 presents the results of the implementation, numerically comparing the
values obtained from complete simulations in both versions, Haskell and Matlab. It
then compares the development process for both of the paradigms, functional and
imperative.

Chapter 7 answers the questions proposed at 1.2. It also provides an extensive
list of future work and a contribution guide for researches interested in the topic.

Future work is also reported on the appendices. They provide the reader with an
introduction to Lambda-calculus (A), logic (B) and type analysis (C).



2  Electromagnetic Transients

The simulation and analysis of electromagnetic transients in basic electric circuits
are essential to the study of power systems. Electromagnetic transient analysis soft-
ware can help to determine overcurrent, overvoltage and other unwanted phenomena
in power systems. Since the 1970s, computer-aided algorithms have been developed
to simulate a wide variety of conditions on complex circuits.

Despite the powerful numerical techniques, simulation tools and graphical user inter-
faces currently available, those involved in electromagnetic transients studies, sooner
or later, face the limitations of models available in transients packages, the lack of re-
liable data and conversion procedures for parameter estimation or insufficient studies
for validating models ([10])

Some of these simulation tools are well-known in industry and academia, such as
ATP and EMTP. These two programs operate by creating a representation of the
equivalent input circuit and obtaining the simulation results either by state space
or nodal analysis. This work is focused on the latter approach.

2.1 Overview of Nodal Analysis

Broadly studied at electromagnetic transients courses and firstly described by
H. Dommel in [11], the nodal admittance matrix method is the base algorithm
for programs like EMTP and ATP. This representation can deal with both single
and multi-phase circuits containing resistors, capacitors, sources and a few other
nonlinear elements as well as the discretization of the circuit differential equations
through the trapezoidal integration method.

Figure 2.1 illustrates a simple circuit and the continuous time domain first order
differential equation and its solution for the current as function of time, considering
the time constant (L/R) of the circuit.

Figure 2.1: Transient Analysis - Example Circuit
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i
Ri + LE = es(t) (2.1a)
it) = %[1 _ 7] (2.1b)
3
- (2.1c)

When transforming the equation previously described in an algorithm, it is nec-
essary to adopt discrete intervals of time At, since digital computers are not able to
simulate the idea of continuous-time.

Assuming the single-phase case, [11] describes the discrete representations for the
inductors and the capacitor components, based on the trapezoidal numerical method
integration:

Figure 2.2: Inductor - equivalent discrete representation

eh(t)

2L

= 2.2
R A (2.2a)
2L

eh(t) = =V(t = At) = Li(t — AY) (2.2b)

Figure 2.3: Capacitor - equivalent discrete representation

& eh(t)

S

At
eh(t) =V (t — At) + %z(t — At) (2.3b)

Other numerical methods can be taken into consideration. Each distinct nu-
merical method can generate different equivalent values for the limped L and C
components. The trapezoidal integration method has been used in academic and
commercial EMTP-based programs mainly due to its accuracy and stability proper-

ties. Analysing the advantages or disadvantages of each method is out of the scope
of this work.
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2.2 EMTP algorithm

Into EMTP or ATP software, the discrete models previously described compose
a matrix equation in the following format:

Figure 2.4: Nodal matrix model

[GI[V] = [h] (2.4a)

At 2.4, GG is the matrix of conductances, V is the vector of unknown voltages
and h is the vector of known current sources (independent current sources and the
historical equivalent current sources).

It is possible to state a general algorithm [11] in electromagnetic transients analysis
according to the following procedures:

1. Read the input data;

2. Build the steady-state solution matrix;

3. Build the transient solution matrix (G);

4. Find the steady-state solution to initialise histories;
5. Assume t = At;

6. Evaluate current and voltage sources;

7. Solve for node voltages;

8. Update history functions;

9. Increment t: ¢t =t + At;

10. Go back to item 6 if the maximum simulation time hasn’t been reached.

2.3 Existing commercial software

In this section, an overview of the two major programs used for electromagnetic
transient analysis is presented. Both are written in imperative languages (Fortran,
C and C++). Imperative programming stands for a programming paradigm that
uses statements which can change a program’s state. Chapter 3 brings a detailed
explanation of this matter.
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2.3.1 ATP

Written mostly in Fortran language, the Alternative Transient Program (ATP)
[12] became popular in the 1970s and 1980s. Originally, the user had to insert
the circuit data in a card, as well as the simulation parameters, and then run the
algorithm. The code is not open source, and even though it is possible to download
the software for free, there are some restrictions on its license:. "Licensing to use
ATP is free of all charge for all who have not engaged in EMTP commerce" [13].

Modern versions of ATP support a rich GUI, named ATPDraw. See an example
at Figure 2.5.

A} ATPDraw = |5
File  Edit View ATP Library Tools Windows ‘Web Help
OF-dHA | % o) © A& dHEE | pESE| AP0 v -
Seleclmn‘ Simulation . .
<& C:\Program Files (B6)N\ATPDraw\Projects\Exa_| +&k C:\Program Files (x86)\ATPDraw\Projects\Exa_l4.acp E’ = @
[ Settings | | Tz Resul Dir -
@ Optimizer E Outputs "
- . K A g\~
Simulation type 1, ] AT
@ Time domain Volt
Loa
Frequency scan
Hamonic (HFS) - Diode
Phase faults Zig-zag bridges _
s Regulation transformers £
delaT: 1E- Distance transformers  ZNOd11y0
Tmax: 0.1 BT 7 11.310.6 KV 10.7/0.693 KV m
Xopt: 0 %. Ground faults -
Copt: 0 O Probes &3-phase » v
i n
Epsilon: 0 s ¢ Branch Linear > T
50 F " 2 L
Frequency % SI‘—‘ &5 BranchNonlinear  » Line Over-current 50/51
7] Auto-detect ATP ermors overey g Lines/Cables ’ Load PQ Time over-current 51
[Z] Sarting by order - Switches » RMS Directional ground 67N
Sorting by X-pos [ —
] UM Automeic initiaization @ Sources ’ Phasors Distance quad. 21
[V UM Prediction method | @ Machines > Filters > Distance circl. 21
Use intsmal pasec @ Transformers » PLL Diff. transformer 87T
1
VARIABLES  HSim: £} MODELS , Harmonics Diff. line 870
MLE EREEY i 1 TACS » PQ » Under-voltage 27
Phasor calc e RX » .
Fundamental User Specified » Over-voltage 59
- + h'th harmonic Differer |7 Steady-state > Relays » Frequency 81 =
m [ﬂ Delete 4 Power system tools » TACS » 1 ’
—
MODE: EDIT Modfied  Registered [E] Allstandard comp...

Figure 2.5: ATPDraw

[14]

ATP supports a wide variety of nonlinear components, switches, transformers and
even support for the creation of customised elements. It can be used for time and
frequency domain studies, lightning studies, electrical machines, control systems and
power electronics projects.

2.3.2 EMTP-RV

EMTP-RV [15] is mostly written in C and C++. It was released on the market a
few years after ATP. It is also a closed-source software, and it has a paid license. It
is possible to obtain a free trial for a few days. It also comes with a sophisticated
GUI, advanced machine models, transformer models which include magnetic core
saturation and hysteresis, extensive library of control devices and functions and
more.
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Simulation of single-phase fault in an unbalanced
230kV Network. Simulation is automatically initialized
from EMTP Unbalanced multi-phase load-flow results.

Ferroresonance in an industrial plant

Example of parametric studies performed using
EMTPWorks scripting capabilities (JavaScript)

CIGRE DC GRID Test System. See the following
reference for details: "EMT simulation of the CIGRE B4
DC Grid test system” S. Dennetiére H. Saad RTE
France. 2014 CIGRE Canada Conference

ScopeView is an advanced tool for visualization and
post-processing of data

Figure 2.6: EMTP

EMTP implements, among other optimisations, the Critical Damping Adjustment
(CDA) algorithm. "The CDA procedure eliminates the numerical oscillations that
can occur in transients simulations that use the trapezoidal rule of integration"[16].

2.4 Academic (didactic) software

Commercial versions are suitable for production projects, but for the learning
process of undergraduate and graduate students, they might not be ideal, since their
source code is often unavailable. Building a didactic prototype helps to understand
the ideas behind the algorithms, possible optimisations and problems (numerical
oscillations, errors, processing times). It also provides the students with a better
understanding of the model and of the approach of nodal analysis method.
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2.4.1 ETR-P Matlab

Educational tool developed by a joint work from UNIFEI and UBC, this simpli-
fied Matlab/Octave version of an electromagnetic transient analysis program reads
the user input from a file (in a similar format as ATP’s cards) and executes the
simulation. It can plot charts and it offers support to Transmission Lines, Switches
and other nonlinear elements. Single-phase analysis only.

This academic project implements the CDA algorithm, as well as an equivalent
technique named by the authors of [17] as "THTA" - Trapezoidal History Term
Averaging.

This project does not have an official name; the students refer to it simply as
"THTA", but the nomenclature may lead to misinterpretation of what is the aca-
demic tool and what is, in fact, the Trapezoidal History Term Averaging optimi-
sation. For this particular reason, this work refers to UNIFEI’s implementation as
ETR-P (Electromagnetic Transient Program).

ETR-P’s source code is open, and it is possible to find it on Github [6]. It is
not actively maintained and the code is purely procedural and imperative. It is
restricted to the Matlab/Octave environment.

2.4.2 ETR-Py - Python

Inspired by ETRP-P, ETR-Py [18] implements a subset of features from ETR-P
using the Python Language, this time using Object Oriented programming, classes,
modules and popular libraries such as NumPy and SciPy. The code is also available
at Github - [19]. The features for chart plotting, Transmission Lines and Switches
are not implemented yet.

When this Python version was proposed, it used to be called "PyTHTA". Once
again, to avoid misunderstandings with the term "THTA", this work replaces the
former name with ETR-Py.

2.4.3 Comparison of the software alternatives

Up to this point, only imperative code has been used to build a program to run
an electromagnetic transient analysis simulation. There are other programming
paradigms, and this work adopts one of them (Functional Programming) to
create a new version of ETR-P using an utterly distinct programming style. The
elaboration of this other program, named Haskell ETR-P, will make a robust com-
parison between advantages and disadvantages of each programming style possible.
The code is also be open source and it is already on Github [20].

The Haskell version of ETR-P aims to provide a solution where students can fo-
cus on the algorithm itself, and not on the "language plumbing" (particularities of a
programming language that are required to make a program work properly but de-
mand time and expertise to get it right). The existing academic versions mentioned
at 2.4.1 and even the more recent 2.4.2 are subjected to the existing problems of the
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imperative programming paradigm. The new approach with functional program-
ming may help the students to use more time thinking about the algorithm and new
ways to improve it.



3  Functional Programming

Functional programming is not an entirely new concept. The nomenclature was
solidified in the 1970’s by J. Backus [21]. In his work [22] (published in 1990), J.
Hughes summarizes the main benefits of this style by comparing pieces of code in
Miranda (a functional language) with structural code. The present work will follow a
similar approach. The upcoming sections will introduce and compare the main tools
of functional programming. In order to fully understand the ideas, it is necessary
to put aside the previous knowledge of the imperative style.

Functional programming is so-called because its fundamental operation is the appli-
cation of functions to arguments. A main program itself is written as a function that
receives the program’s input as its argument and delivers the program’s output as its
result. Typically the main function is defined in terms of other functions ([22])

In other words, "the primary role of the programmer is to construct a function to
solve a given problem" [23] and "the primary role of the computer is to act as an
evaluator or calculator".

There are many other languages labelled as functional languages. Besides Haskell
and Miranda, it is possible to mention SML, Hope and, more recently, Scala and
Clojure. There are also languages which are popular among the imperative style, but
also support some aspects of functional programming. This is the case of Javascript
and Python.

Some functional languages are considered to be "pure": "A language is purely
functional if (i) it includes every simply typed A-calculus term, and (ii) its call-
by-name, call-by-need, and call-by-value implementations are equivalent (modulo
divergence and errors)"[24]. Nevertheless, this definition is not strict. In the group
of "purely functional languages", it is possible to cite Haskell and SML.

Even if the definition of "purely function" is not well established, some other topics
are well-agreed among the academic community when it comes to characteristics of
the functional programming paradigm. They will be listed in the upcoming sections,
following the summary proposed by [25].

3.1 First class functions
Passing functions as arguments to other functions or returning functions as the
result of an operation are perfectly valid steps in functional programming. Functions

are interpreted with the same connotation of mathematical functions. That means
it is conceivable to have several definitions for the same function:

fa)=a+a (3.1a)

13
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flz) =2z (3.1b)

Listing 3.4 shows an example of a simple function in a functional language.

double x = x+x

Listing 3.1: A simple function in a functional language

The = operator is not binding any variable; it is actually performing the same
mathematical function one finds when declaring a function. In languages like C+-+
or Python, it is reasonable to have a code like the following:

a=a+ 10

Listing 3.2: Mutable references

The code on listing 3.2 changes the value of the variable a from 1 to 11. Such a
concept is not allowed in a functional language. The = operator attaches some value
to a variable, and in a functional setting, it becomes immutable. A value is a fully
simplified expression. Every time a new binding occurs, a new environment for the
bound variables is created. A function corresponds in some sense to the methods in
C++ or Python, but it also holds the mathematical foundation mentioned earlier.
Analysing the listing 3.2 under mathematical terms would lead to an inconsistency.

It is also feasible to vary the body of the function according to the domain (or,
interpreting it as functional programming, the input parameters) 3.2.

flx)=z,2>0 (3.2a)
f(z)=—x,2<0 (3.2b)

It is possible to reproduce the exact same structure in functional programming
by using pattern matching. In the main application of this work, for example, it
is necessary to calculate an integer value (thtactl) control for determining the final
result of a current vector (in the Haskell ETR-P implementation). Simplifying the
process to make the usage of pattern matching more explicit, imagine the following
scenario:

thtaControl :: Int -> [Float]
thtaControl thtactl
| thtactl <= 0 = [0.0, 0.0]
| thtactl < 3 = [1.0, 1.0]
| otherwise = [2.0, 2.0]

Listing 3.3: Pattern matching with guards. This does not correspond to the original
implementation



Chapter 3. Functional Programming 15

The [Float] represents a list of Float numbers. In the code at listing 3.3, thtactl
is the input argument of the thataControl function. Depending on its value, the
behaviour of the function changes. This structure avoids the confusion of nested
if/else blocks.

3.2 Strong type system

It is possible to organise values in collections called types. There are primitive
or base types (boolean, integer, float, double, etc.), and compound or derived
types, whose values are build from other types (basic or compound) [23|. A function
is called with arguments and produces a value. When invoking a certain function
(think of it as an operation), it is necessary to guarantee the call with the appropriate
types of parameters. For example, calling the function add with characters might not
be a valid operation. The languages have mechanisms to check the validity of these
types. One way to perform this type check is to have a compiler that captures
mismatched data.

No runtime errors arise from type mismatches. This behaviour originates the label
'strong’: "the domain and codomain of each function is either stated in or inferable
from the program text, and there is a syntactic discipline which prevents a function
from being applied to an inappropriate argument" [26].

3.3 Polymorphic types

Functions also have a type. For example, the listing 3.3 has type (Int -> [Float
— 1), because it receives an integer and returns a list of float numbers. In some
languages, it would be possible to generalise these types. Both integers and floats
are numbers, allowing the programmer to determine that the type of the function
could also be (Num -> [Num]). The study of polymorphic types has several topics,
but it is reasonable to think about when it is important to have generalisations.
For example, to create a function that measures the length of a list, it would be
possible to consider the type ([Int] -> Int). But then the function length would
be restricted to lists of Int only, which is not ideal. It is feasible to generalise the
domain of the function 1ength to a Polymorphic type: ([a]l -> Int).

3.4 Algebraic types

When developing a function, it is necessary to think of its return type, the type of
its parameters and its body. For example, to build a simulation function for Haskell
ETR-P, the input would be a list of components. For the output, a Vector I together
with a Matrix v would be the expected:
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thtaSimulation :: [ComponentData] -> (Vector Double, Matrix Double)
Listing 3.4: Haskell ETR-P simulation function

The [1 denotes a list, as mentioned previously. A List can have any length, but
all its elements must have the same type - that is why the type declaration consists
of [ComponentDatal, making it explicit it will be a list of ComponentData. Another
structure that requires attention is the Tuple - they support different types in the
same structure - for example, (Vector Double, Matrix Double) holds a Vector and a
Matrix.

A function is a value: it will be type-checked and evaluated. Just like in C++ or
Python, a function can call itself, being labelled as a recursive function. It must
contain a base case (which will indicate when to stop the process) and a recursive
case (which will propagate the recursive call).

Another crucial concept are let expressions. They allow the creation of local
bindings, often required by recursive function calls. See listing 3.5.

diagonalUpdate :: Int -> Matrix Double -> Double -> Matrix Double
diagonalUpdate d buffer gkmHead =
let
updated = (Matrix.getElem d d buffer) + gkmHead
in
Matrix.setElem updated (d, d) buffer

Listing 3.5: let expression

The 1et expression holds the local binding of updated, which computes an inter-
mediate value to be used at the function call triggered after the in keyword. updated
cannot be used outside of the 1et block.

For most of the applications, the basic types (Integer, Double, Float, Boolean,
etc) in the standard library are not enough to express the goals and operations of
the program. The same way one can define classes in object oriented programming,
it is also possible to define custom types in functional languages. It is reasonable to
aggregate several fields in a Record just as in listing 3.6.

{first = "Hanneli", last = "Tavante", course="EE"}

Listing 3.6: Record

A more structured idea than a record originates a Datatype as seen in listing 3.7

data ComponentData =
ComponentData {

componentType :: ComponentType,
nodeK :: Int,
nodeM :: Int,
magnitude :: Double,
paraml :: Double,
param2 :: Double,
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plot :: Int
X

data ComponentType = Resistor | Capacitor | Inductor | EAC | EDC

Listing 3.7: ComponentData datatype

The custom ComponentData carries several fields: componentType (whose type is
also a custom type), nodeK, nodeM, magnitude, param1, param2 and plot.

Another example of DataType is the ComponentType. The constructors do not
have any parameters (Resistor, Capacitor, etc). To obtain the component type of a
component data, a set of if/else blocks would be required (when thinking according
to the imperative programming style). In a functional setting, there is Pattern
Matching. The code in listing 3.8 provides another example of this feature, this
time using a case expression:

condutance :: ComponentData -> Double -> Double
condutance component dt =
case componentType component of
Resistor -> 1.0 / (magnitude component)
Capacitor -> (magnitude component) * 0.000001 * 2 / dt
Inductor -> dt / (2 * 0.001 * (magnitude component))
_ ->0.0

Listing 3.8: Pattern matching example with case

It is also possible to work with pattern matching when declaring the function’s
body as seen in listing 3.9:

buildIVector :: [ComponentData] -> Vector Double -> Vector Double -> Vector
< Double

buildIVector [] _ iVector = iVector

buildIVector (component:cs) ih iVector =

-- recursive case omitted

Listing 3.9: Pattern matching in functions

buildIVector can be pattern matched against its own parameters. Its behaviour
changes when it receives an empty list (meaning the end of the recursion) or when
it receives a non-empty list, denoted by (component:cs). The underscore means the
value does not have any influence on that pattern matching format.

3.5 Modularity

There are systems of modules which can be attached to projects, making the
development of larger systems easier and more organised. For the developed Haskell
ETR-P, for example, a few modules were required to build the project as shown in
listing 3.10.
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-- vector
import Data.Vector (Vector)
import qualified Data.Vector as Vector

-- Matrix
import Data.Matrix (Matrix)
import qualified Data.Matrix as Matrix

-- HMatrix
import qualified Numeric.LinearAlgebra.Data as HMatrix
import qualified Numeric.LinearAlgebra.HMatrix as HMatrix

-- bytestring
import Data.ByteString.Lazy (ByteString)
import qualified Data.ByteString.Lazy as ByteString

Listing 3.10: Modules

In listing 3.10, it is possible to find the Vector, Matrix, HMatrix and ByteString
modules. It is plausible to import them to the main project assigning an alias. For
example, import qualified Data.Matrix as Matrix adds the alias Matrix to the module

Data.Matrix.

3.6 Fucntional Programming - summary

"Functional programming can be contrasted with imperative programming either
in a negative or a positive sense"|27]. Combining the "pros" and "cons" listed at
[27] and at 28], it was possible to built the table 3.1, which aims to be impartial
and summarise an objective and concise comparison of the main differences between
these two paradigms:

Imperative Paradigm  Functional Paradigm

Main component | Statements Functions
(can be treated as values)
The same name No assignments.
Assignments may be associated with A name is only
the same value associated with one value
Execution order | Crucial importance Not very important

Yes, most of the time the

Mutability structures are mutable Usually not present
State changes Essential building block | No state
: Recursion,
Flow control Loops,. ek pattern matching,
exceptions 10

Table 3.1: Comparison: Imperative and Functional paradigms



4 Haskell

Haskell is a functional language developed in the 1990s. Designed to be lazy, pure
and to support type classes [29], the language has been evolving since its creation.
This chapter will provide examples of some of the functional programming concepts
introduced in Chapter 3 using the Haskell language. This chapter is not a "Haskell
Tutorial"; its primary goal is to present the concepts of functional programming
that will be used in the practical section and, therefore, will be one of the central
objects of study of this work. The fundamental ideas of the next section come from
[30], and from [31] (course at TU Delft); those are also good references to get started
into Haskell programming.

The development of the Haskell language started in 1987 [29], but its foundations
started a few decades before, with Alonzo’s Church Lambda Calculus. In the 1970s,
John Backus inaugurated the term Functional style in his work [21], motivating a
meeting of programming language researches ten years later. This group officially
started the works on the Haskell language.

The principal features of the Haskell language [30] are listed below:

e Concise programs - Haskell’s syntax is designed to be compressed and to have
just a few keywords. List Comprehensions, for example, are a concise way to
navigate on a list, create new ones, filter elements or transform the existing
ones. No need for explicit loops (like while) or nested if/else blocks.

e Type system - Haskell’s type system helps programmers to detect incompat-
ibility errors at compile time (the functions often require the expected input
and output types). Haskell supports polymorphism and overloading, providing
the developers with a wide range of features.

e Recursive functions - One and probably the most important way to navigate
through a collection of elements is using recursion. To determine when to
stop or to continue, recursion can be combined with pattern matching.

e Higher-order functions - Functions can receive other functions as arguments,
as well as return them as values. A higher order function abstracts the
behaviour of a group of functions, wrapping it up in another function.

e Effectful functions - A function is called pure when it produces the same out-
put given the same inputs, without any interference. In some circumstances,
there may be side effects, causing unexpected outputs. Operations that in-
volve files are a good example of impurity. If a function requires a file, it may
or may not be present, causing the function to have multiple outputs for the
same inputs. It will be an impure function. Haskell provides mechanisms to
deal with this impurity scenario: monads and applicatives.

19
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e Lazy evaluation - In Haskell, a computation is not performed until it is required
by another function. This mechanism avoids unnecessary computations and
allows the usage of infinite structures, such as infinite lists.

e Equational reasoning - Combined with induction, it can be used to transform,
execute and demonstrate properties of Haskell programs.

4.1 Function and Types in Haskell

Recall that one of the aspects of functional programming is having a style closer
to a mathematical representation. In this context, £ x in the Haskell language
corresponds to the mathematical function application f(z). In other words, an
empty, blank space represents a function application.

4.1.1 Basic types

Another topic that arises in functional languages are types: they are a collection
of related values, as seen in listing 4.1.

v::T -- v has type T
e::T -- The evaluation of the expression e will produce a value of type T

Listing 4.1: Types for variables and expressions

In Haskell, every expression must have a type. For this language, it is possible to
either manually define the types or to have them inferred using the type inference
process. This step happens before the proper evaluation, so if there is anything that
does not match the possible type (for example, adding a string with an integer),
the code will not compile. Making types explicit when writing functions is a good
practice in Haskell. Mathematically speaking, this is shown in fig. 4.1:

Figure 4.1: Transient Analysis - Example Circuit

fitA—B e A
fe: B

Figure 4.1 states that if there is a function f that maps an argument of type A to
a result of type B and e is an expression of type A, the application of the function
f will have the type B.

Haskell programs are labelled as type safe because the compiler guarantees the
absence of type errors during run time. One downside about this feature is that
sometimes a valid expression may be misinterpreted during the type inference pro-
cess, causing it to reject a correct expression.
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Some examples of built-in types in Haskell are Int, Float, Double. There are also
more sophisticated built-in types in Haskell - Lists, collections of elements of the
same types; and Tuples, finite sequences of components, which can be of different
types. An example can be found in listing 4.2.

[1,2,3] -- A List of Integers
("Hanneli","UNIFEI",2019,True) -- A Tuple of arity four (four elements)

Listing 4.2: Lists and Tuples

Conceptually, Lists require a specification of the type they will convey. It is
reasonable to have lists of Integers, Floats and Strings, for examples. Generalising,
there is the type List a, where a is a variable to indicate a type. A type (in this case,
List) that contains one or more type variables (in this case, a), is a polymorphic
type.

A List like [1,2,3] is equivalent to (1:(2:(3:[1))). From this alternative represen-
tation it is possible to see that lists are recursively compounded. Initially, there is
the empty list [1, and then 3, then 2, then 1 are appended. In functional languages,
recursion is very important to compose several data structures. Recursion is also the
basic looping mechanism. In Java or C++, it is common to find a for loop accessing
items of collections by indexes. In contrast, Haskell relies on recursion to perform
operations across lists. For example, multiplication can be defined as a recursive
sum as shown in listing 4.3.

mult _ O = O -- Base case
mult n m (mult n (m - 1)) + n -- Recursive call

Listing 4.3: Recursion

Given that a function can receive other functions as arguments and return other
functions, a function is itself a type. That means functions receiving multiple pa-
rameters can be rewritten as functions that receive a single parameter and return
another function. This is called currying. For example, when declaring a func-
tion adds to add two integers, the function type can be defined as something that
receives two integers and returns another integer ( adds :: Int -> Int -> Int ) oOr
as a function that takes only one integer and returns another function that takes
the second integer and returns the result: adds :: Int -> (Int -> Int). In the pre-
vious example, the parentheses are optional, since the -> (named ’arrow function’)
is interpreted as right-associative. So Int -> Int -> Int -> Int is the same as Int
< -> (Int -> (Int -> Int)).

However, function application (denoted by a simple space character " ") associates
to the left. So adds x y z means ((adds x)y)z.

In Haskell, the concept of class differs from the idea of the object-oriented lan-
guages. A class is a collection of types that supports overloaded operations (meth-
ods). For example, Fquality is a class that contains a method (==) under the type
signature of (==):: a -> a -> Bool, that determines if an element of the collection
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of types a is equal to another of the same type, a Bool result must be returned.
Ordering (ord), Show, Read, Numerical (Num) and Fractional are other examples of
Haskell classes.

4.1.2 Function structure and resources

Haskell supports if/else blocks (example: if n == 0 then 0 else 1), but it is much
more common to use guard expressions (see listing 3.3) or pattern matching (see
listing 4.4):

condutance :: ComponentData -> Double -> Double
condutance component dt =
case componentType component of
Resistor -> 1.0 / (magnitude component)
Capacitor -> (magnitude component) * 0.000001 * 2 / dt
Inductor -> dt / (2 * 0.001 * (magnitude component))
-> 0.0

Listing 4.4: Pattern matching with case

It is possible to pattern match against Lists, Tuples and other types.

It is feasible to define auxiliary, nameless functions. They are called lambda
expressions and a similar concept is present in some object-oriented languages such
as Python. In listing 4.5, there is a lambda expression right after map. This anony-
mous function specifies one should be added to the value of each component of a
collection. \ indicates the declaration of a lambda expression. The name ’lambda’
expression originates from \-Calculus (visit appendix A for more information).

map (\r -> (r + 1)) [1, 2, 3]
Listing 4.5: Lambda functions

map applies another function to each element of a list. For example, to add 2 to all
the elements of [1, 2, 3], one can invoke the map function as in map (+2)[1, 2, 3].

4.1.3 Higher order functions

Higher-order functions allow common programming patterns to be wrapped in a
function. To build the intuition on this topic, it is reasonable to sketch an example
with the fold function. "Folding" a list means to compress it following a certain
operation. For example, foldl (+)0 [1, 2, 3] returns 6; the 0 is the initial buffer.
+ is the operation, and 0 4+ 1 + 2 + 3 is the result of fo1d. Alternatively, foldl (+)1
< [1, 2, 3] returns 7, because the initial accumulator is 1.

"fold takes an ’initial answer’ acc and uses [a function| £ to 'combine’ acc and

the first element of the list, using this as the new ’initial answer’ for 'folding’ over
the rest of the list"[32]. A collection can be folded to the left with foldl or to the
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right with foldr. The listing 4.6 describes the implementation of a left fold, named
as foldl2, since foldl is the name of the funciton in the standard implementation of
the Haskell language.

foldl2 £ v [1 = v
foldl2 f v (x:xs) = foldl2 f (f v x) xs

Listing 4.6: fold left

The type signature of foldl is given by listing 4.7:

foldl :: (a ->b ->a) ->a -> [b] -> a
Listing 4.7: fold left type signature

Functions can be composed the same way they are composed in mathematics. The
higher-order composition function (denoted by the operator . ) allows the function
composition f o g with the syntax £ . g .

4.1.4 Composite types

It is possible to define custom types in Haskell by using the keyword data. The
listing 4.8 is an example of a new data called Shape, which has two possible con-
structions: it can be a Circle or a Rectangle.

data Shape = Circle Float | Rectangle Float Float

square: :Float -> Shape
square n = Rectangle n n

Listing 4.8: Custom types

Rectangle and Circle are constructor functions. They exist for building pieces
of data, but they do not carry the defining equations. The logic to build the actual
rectangle is in the function square. This is consistent with the principles of func-
tional programming: the data is isolated, and the basic method of computation to
build anything is the application of functions.

The keyword type adds an alias to existing types. For example, type String
< = [Char], implies that String is just a List of char. Type declarations can be
parameterised by other types. For example, type Pair a = (a, a).

4.2 Impure functions

One of the key ideas in functional programming is the concept of pure functions.
They have no side effects (they do not mutate any state of the program or change
non-local variables). These functions also return the same value given the same
input arguments, just as a regular mathematical function.
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However, 1/O operations can have side effects. For example, opening a file may
succeed or may throw an error, either because the file does not exist or because
it is corrupted. Note that this problem has nothing to do with manipulating the
information on a file; it is an external problem. Realistically, it is only possible to
have a code that expects the possibility of a side effect. Languages like Java deal
with this scenario by throwing run time exceptions.

Haskell represents impurity with the 10 type. Expressions of this type are named
as actions.

The use case presented in this work requires, from the very first beginning, an
action that will generate side effects - reading CSV files with the input data. A
function to read and parse the data can have side effects when (a) the file is not in
the specified directory; (b) the file does not exist; (c) the file is empty; (d) the file is
corrupted. The type of a parsing function must incorporate the possibility of these
side effects, and for that matter, two elements are required:

1. an action to change the context from pure to impure (return function in list-
ing 4.9);

2. a sequencing operator to apply the parser and call the result, then reapply
the parser, get the result and repeat the process until the end of the file is
reached. A sequence of actions can be chained with the do notation as seen in
listing 4.9.

do
eitherSimulation <- decodeSimulationFromFile "data/simulation.csv"
componentsList <- decodeltemsFromFile "data/components.csv"
return (eitherSimulation, componentList)

Listing 4.9: do notation; Note: this is just a didactic draft example.

4.3 Monads

Haskell supports even more generic sets of functions - some of them can be gen-
eralised over a range of parameterised types (lists, trees, 10). For example, it is
possible to generalise the idea of map to other structures rather than Lists. In the
reference implementation of this work, in many scenarios map occurs in a Vector.
This generalisation is seen on listing 4.10:

gkm :: Vector ComponentData -> Double -> Vector Double
gkm components dt =
Vector.map (\c -> condutance c dt) components

Listing 4.10: map in a Vector
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There is a class of types supporting the map function - this is the Functor class,
with fmap as the generic function that maps another function over each element of
a structure [30].

class Functor f where
fmap :: (a ->b) ->fa->£fb

Listing 4.11: Functor class

4.10 is an example of a Functor. Functors work for single-element functions. It
is possible to generalise the idea of Functor itself, making it support any number of
parameters, as suggested in fig. 4.2.

fmapo :: a -> f a
fmapl :: (a ->b) ->f a ->f b
fmap2 :: (a ->b ->¢) ->fa->fbh->fc

fmap3 :: (a -> b ->c¢c ->d) ->fa->fb->fc->fd

Figure 4.2: Generalising functors

[30]
Two basic functions are capable of encoding the desired generalisation. They are
built using the idea of currying and are described in listing 4.12:

class Functor f=> Applicative f where
pure :: a -> f a
(<¥>) :: f (a->b) >fa->fb

Listing 4.12: Applicatives

This pair of functions is called Applicative Functor (or simply Applicatives).
Examples of its usage can also be found in the implementation of Haskell ETR-P in
listing 4.13:

instance FromNamedRecord ComponentData where
parseNamedRecord m =

ComponentData
<$> m .: "Element Type"
<*>m .: "Node K"
<*>m .: "Node M"
<k¥>m .: "Value"
<*>m .: "Source param 1"
<*>m .: "Source param 2"
<> m .: "Plot"



12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

ISR N

Chapter 4. Haskell 26

instance FromField ComponentType where
parseField "R" =
pure Resistor

parseField "L" =
pure Inductor

parseField "C" =
pure Capacitor

parseField "EDC" =
pure EDC

parseField "EAC" =
pure EAC

parseField otherType =
Other <$> parseField otherType

Listing 4.13: Using Applicatives

In Haskell, it is possible to encode a possibility of failure in the function’s type.
The Maybe type wraps a success branch (named Just a) or a possible failure, rep-
resented by the absence of value (represented by Nothing). The bind operator >>=
takes an argument of type "a" and a function of type a -> b. Both can fail, the
argument and the function. >>= returns a result of type "b", which can also be a
failure (encoded as a Maybe) as shown in listing 4.14:

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
mx >>= f = case mx of

Nothing -> Nothing

Just x -> f x

Listing 4.14: The bind operator

It is also necessary to have a function that provides a connection between pure
functions and actions (impure). This is the return function, with the signature
defined in listing 4.15.

return :: a -> I0 a

Listing 4.15: The return

The return function defined in listing 4.15 has nothing to do with the "return"
statements found in languages like C.

A Monad arises from the combination of these two elements, >>= and return. A
Monad is an applicative that supports both of these operations. "Every Monad is
an applicative functor"[33] in its generalised form, as proposed in 4.2. This work
will not explore in detail the powerful constructions built on the monadic style.
A complete example of Monad applications can be found on the work of [34]. The
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code in listing 4.16 and listing 4.17 describe a Monadic parser with the two principal
elements of a Monad: the return and bind operator >>= :

newtype Parser a = Parser (String -> [(a,String)])

Listing 4.16: Declaring the type Parser

instance Monad Parser where
return a = Parser (\cs -> [(a,cs)])
p >>= f = Parser (\cs -> concat [parse (f a) cs' |
(a,cs') <- parse p cs])

Listing 4.17: Declaring the type Parser

4.4 Advanced Features and fields of study

The previous sections provided the basic concepts required to understand and
interpret the code in Chapter 5. However, the Haskell language has been evolving
continuously and it has advanced topics which are also out of the scope of this work.
Just to give a taste to the reader, some of the active research topics involve (but
are not limited to): Deep EDSL (35|, verification of Haskell programs with type
theory [36], constraint solving [37], Monad transformers [38], verification of Haskell
programs in proof interactive theorem provers (like Coq [39] or Liquid Haskell [40],
see [41] and [42]), program synthesis in Haskell [43], etc.



5 Haskell in Electromagnetic Tran-
sient Analysis - Implementation

This chapter describes the development of the principal analysis tool for this
work: a functional version of the original ETR-P software rewritten in Haskell. The
upcoming sections do not follow the same order of content creation; instead, they try
to build a more intuitive connection between the theory of functional programming
and a practical aspect of its application when building a program for electromagnetic
transient analysis. Each section methodically follows the same basic structure:

e Logical explanation of the electrical process
e Haskell implementation
e Functional programming resources

e Comparison with the implementation in ETR-P using Matlab/Octave. Addi-
tional languages, such as Python and C++, will also be targeted for contrast-
ing the different paradigms.

e Improvements and future work

5.1 The goals for a Haskell version of ETR-P

The main goal of this open-source Haskell program is to compare the style differ-
ences between functional and imperative code. This version does not contain all the
features supported at the original ETR-P. Its scope was limited in order to demon-
strate a proof of concept. Non-linear components, switches, transmission lines are
not implemented. Triangular voltage sources and external current sources were put
aside for the initial implementation. RLC components, DC and sinusoidal elements
are the core of this Haskell program. It is restricted to single-phase circuits.

Optimisation, performance, graphics, UI, charts and user input are popular topics
in program development, but they are not the goal of this work either. This project
is a comparison of programming paradigms and an analysis of the outcomes.

Following H. W. Dommel’s original proposition in [11], this program reads in the
circuit data, creates the initial steady-state matrix equations for initialization of
equivalent historic sources of digital lumped components. Then it solves the nodal
equations [G][V] = [I] for every time step (where G is the conductances matrix,
and [, are the historical and external current sources), obtaining the final values
for nodal voltages, branch voltages and branch currents after the simulation time.

28
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Translating this goal to Haskell, it is necessary to elaborate a function with the
type described in listing 5.1. It follows the functional programming principle that
says "Programs in Haskell can be viewed as functions whose input is that of the
problem being solved, and whose output is the desired result.|...| The behaviour of
the function can be understood as [..| computation by calculation". [44]

thtaSimulation :: Vector ComponentData -> SimulationData -> SimulationResults

Listing 5.1: ETR-P Haskell goal’s function

In listing 5.41, the function thtaSimulation receives two parameters: the com-
ponents representing the circuit (Vector ComponentData) and the simulation
data (SimulationData). It returns a tuple with a the final current vector and the
final voltage matrix, represented by the type SimulationResults.

In ETR-P (Matlab/Octave), there is no single function isolating this compact
representation. Instead, there is a single block of code sequentially declaring the
steps of the algorithm.

The following section 5.1.1 will describe data acquisition from a set of files.

5.1.1 Data input

The data describing the simulation parameters and the components of the circuit
is stored in external files. This part of the code must handle the data and feed the
algorithm with the collected information. Just like the implementation of ETR-Py,
this the initial circuit status will be stored in .csv files. ETR-P (Matlab/Octave)
uses a .txt file.

The Haskell implementation requires two different files (one for components and
another for the simulation parameters). A well-formed CSV does not mix differ-
ent sources of information, making it inappropriate to store the Time and other
information of the simulation along with the components and nodes information.
The original ETR-P and also ETR-Py handle this step improperly mixing these two
sources of information in the same input file.

Listing 5.2 and listing 5.3 are examples of the input data split in two files.

Element Type,Node K,Node M,Value,Source param 1,Source param 2,Plot
EDC,2,0,10,0,0,0

R,2,1,10,0,0,0

L,1,0,1,0,0,0

Listing 5.2: Input data file for components

Number of Nodes,Number of Voltages Sources,Step Size,Maximum time for simulation
2,1,0.0001,0.05

Listing 5.3: Input data file for time and simulation data
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Listing 5.4 shows the input file format of the original ETR-P Matlab program:

T 2 1 100E-6 50E-3 0 0 0 0 O
EDC 2 010000005
R2110000005
L1010000O0S5

NV120000000
Listing 5.4: Original input data file for ETR-P Matlab

Headers were also inserted on each CSV file to make their columns self-explanatory
(listing 5.2 and listing 5.3). These headers are taken into consideration when parsing
the files in the Haskell implementation.

File operations are considered impure (details in section 4.2), given that they can
generate several unexpected behaviours to a function. Some of the possible are listed
below:

1. File path is incorrect;
2. File is corrupted;
3. File is in the wrong format (not a CSV);

4. A well-formed CSV is expected to have data in all the columns, for all the
rows. The file might contain missing data;

5. Fileis in a different encoding (example: file contains characters from a different
alphabet rather than the Latin alphabet);

As described in section 4.2, it will be necessary to use Haskell’s specific mecha-
nisms to deal with possible side effects.

The first step is building a parser to take the .csv file and turn it into proper
types. The implementation in this work uses the library cassava for handling the
parsing. The implementation starts with the components.csv file, describing each
component and their corresponding position in the circuit (see listing 5.5).

{-# LANGUAGE OverloadedStrings #-1}

{-# LANGUAGE RecordWildCards #-}

module Main where

import qualified Data.ByteString.Lazy as BL
import qualified Data.Vector as V

-- from cassava

import Data.Csv

type ComponentData = (BL.ByteString, Int, Int, Float, Param, Param, Int)

main :: I0 Q)
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main = do
csvData <- BL.readFile "data/components.csv"
let v = decode NoHeader csvData :: Either String (V.Vector ComponentData)

Listing 5.5: Initial implementation of CSV file parsing with cassava

The code at listing 5.5 imports the basic modules (from lines 6 to 9), followed by
a basic type declaration: ComponentData. It matches the structure of each line of the
CSV file components.csv. ComponentData is just a synonym to a tuple structure made
of (BL.ByteString, Int, Int, Float, Param, Param, Int). Next, in the main body, the
file is read with BL.readFile and its content is decoded, ignoring the CSV header.
The result of reading a file can be either a well-formed data or an error. That is
why the Either type is necessary: to carry either a successful output (which is called
Right) or an error (wich is called Left, by convention).

Even though the code on listing 5.5 achieves its purpose of reading and parsing
a CSV file, it is important to improve the expressiveness of the program types. A
data type called ComponentData is built, where it is possible to store a corresponding
ComponentType for each type component the project supports (initially starting with
a restricted subset of possible elements: Resistors, Inductors, Capacitors, AC and
DC sources; this list will be expanded for more components in the future). The
project’s goal is to make ComponentData be the data type that represents each line of
the components.csv file, as suggested in listing 5.6.

data ComponentData =
ComponentData {
componentType :: ComponentType,
nodeK :: Int,
nodeM :: Int,

magnitude :: Double,
paraml :: Double,
param2 :: Double,
plot :: Int

b

deriving (Eq, Show)
data ComponentType = Resistor | Capacitor | Inductor | EAC | EDC | Other Text
— deriving (Eq, Show)
Listing 5.6: ComponentData and ComponentType declarations

A more sophisticated version of the code takes into consideration the csv header,
mapping each item to a ComponentData field. The function parseNamedRecord from
Cassava library does the job:

instance FromNamedRecord ComponentData where
parseNamedRecord m =

ComponentData
<$> m .: "Element Type"
<¥>m .: "Node K"
<*>m .: "Node M"
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<¥>m .: "Value"
<*>m .: "Source param 1"
<*¥>m .: "Source param 2"
<#>m .: "Plot"

Listing 5.7: parseNamedRecord

Cassava is a mature Haskell library for parsing and encoding CSV files. With
the support of monads (see section 4.3), it allows both index and name based con-
versions from text files to proper Haskell types. It has several other features such
as customizable record-conversion instance derivation (with Haskell generics), incre-
mental decoding and encoding API and streaming API for constant-space decoding.
The full documentation can be found on [45].

Compare the listing 5.7 with the declared header of the components.csv:

Element Type,Node K,Node M,Value,Source param 1,Source param 2,Plot

Listing 5.8: CAV header components file

The code at listing 5.7 applies (<*>) to each element (which receives an alias of m,
executing the role of a temporary variable in an iteration) to the described sequence
of header names ("Element Type", then "Node K", then "Node M", etc). Columns
with types defined at Haskell’s standard library, such as Int or Double, are directly
converted to the fields of ComponentData.

It is necessary then to specify how "Element Type" translates to ComponentType.
ComponentType is not a type defined at Haskell’s standard library; it is a proper type.
parseField function must translate the text of an m to this custom type ComponentType,
as shown in listing 5.9:

instance FromField ComponentType where
parseField "R" =
pure Resistor

parseField "L" =
pure Inductor

parseField "C" =
pure Capacitor

parseField "EDC" =
pure EDC

parseField "EAC"
pure EAC

parseField otherType =
Other <$> parseField otherType

Listing 5.9: parseField
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In this implementation, a ComponentType supports the RLC components, EAC and
EDC (as specified in section 5.1). If any other string is specified, it is flexible enough
for preventing the program to crash if the user accidentally inputs a non-existing
Component Type (for example, "H"). The algorithm will ignore the text type with
Other. A more strict implementation could throw an error in the presence of a field
that cannot be converted with parseField. It is important to notice that if there are
any parsing errors, there will be an error during runtime execution.

Even if some errors can happen during runtime, the application "shields" the
code by warning it about problems that can happen. The 10 type deals with impure
functions. In the following example, combined with Either, it throws an exception if
something does not work as expected while parsing a csv file or lets the code move
forward if the outcome is appropriated. Using the functional programming style,
functions to read and decode a csv file are composed. The functions decodeItems and
decodeItemsFromFile summarise these operations. The code in listing 5.10 brings the
proper implementations suggested at the official Cassava’s guide:

decodeltems :: ByteString -> Either String (Vector ComponentData)
decodeltems =
fmap snd . Cassava.decodeByName

decodeItemsFromFile :: FilePath -> IO (Either String (Vector ComponentData))
decodeItemsFromFile filePath =
catchShowIO (ByteString.readFile filePath)
>>= return . either Left decodeltems

catchShowIO :: I0 a -> IO (Either String a)
catchShowIO action =
fmap Right action
“catch® handleIOException
where
handleIOException :: IOException -> I0 (Either String a)
handleIOException =
return . Left . show

Listing 5.10: Decoding a CSV file

The type signature of decodeItemsFromFile shows that it receives a FilePath and
the return of the function may have side effects (not a pure function). This idea is
represented with the type 10. The result will be Either an error message from an
exception (described at catchShowI0) or a successful Vector of ComponentData elements.

To acquire the simulation data from the simulation.csv file, the exact same process
is used. First, the type declaration, shown in listing 5.11:

data SimulationData =
SimulationData {
nodes :: Int,
voltageSources :: Int,
stepSize :: Double,
tmax :: Double
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}
deriving (Eq, Show

)

Listing 5.11: SimulationData declaration

Then, the conversion from text to the data type using the parseNamedRecord from
Cassava library, listed in the code at listing 5.12:

instance FromNamedRe
parseNamedRecord m

cord SimulationData where

SimulationData
<$> m .: "Number of Nodes"
<#>m .: "Number of Voltages Sources"
<k> m "Step Size"
<x> m "Maximum time for simulation"

Listing 5.12: parseNamedRecord for simulation data

SimulationData onl

y contains basic types form Haskell’s standard library (Int and

Double). Conversions with parseField are not required.
p q

Lastly, the decoding functions are listed in listing 5.13.

decodeSimulation ::
decodeSimulation =
fmap snd . Cassava

ByteString -> Either String (Vector SimulationData)

.decodeByName

decodeSimulationFromFile :: FilePath -> I0 (Either String (Vector SimulationData)

)
decodeSimulationFrom

File filePath =

catchShowIO (ByteString.readFile filePath)
>>= return . either Left decodeSimulation

Listing 5.13: Decoding the CSV simulation file

In the original ETR-P, the data input happens as listed in the code at listing 5.14:

FILENAME = input('En
FID = fopen(FILENAME
data = textscan(FID,
fclose(FID);

% data contains the

% should be put in a
type = dataf{1l}; from
val6é = data{6}; val7
% bmax is the number
bmax = length(type);
%% Calculating param
b=1;

ter the input file name *.txt : ', 's');
);
“%s hd hd %E KE KE SE hd %hd %d');

input file organized as a table. Now, each column
separated column vector.

= data{2}; to = data{3}; val4d = data{4}; valb = data{5};
data{7}; val8 = data{8}; val9 = data{9}; plt = data{10};
of lines in the input file.

eters for vector and matrix dimensioning

if strcmp(type(d), 'T')
% Reading time card data
% N = Number of nodes
% M = Number of voltage sources
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% dt = step size

% tmax = maximum time of simulation

N = from(b);

M = to(b);

dt = vald(b);

tmax = val5(b);

Damp = plt(b);

if Damp ==

fprintf('------------o - THTA Activated --——-———————————————— \r');

end
else

error('Input file error: the first line is not the Time Card.');
end

Listing 5.14: Shortened version of ETR-P Matlab code to read the input data

There are no explicit types, and the context of what is going on in the code relies
mostly on variable names and code comments. if/else blocks deal with malformed
files (for ETR-P, files that do not start with "I, which is the row holding the
simulation’s parameters, are considered to be malformed and return an error message
to the user). No additional checks are made to see if there are components different
from the RLC, transmission lines, voltage sources, current sources or switches. These
lines would be ignored.

5.1.2 Improvements to the data input

CSV files are convenient and more structured than a pure txt files. However,
other configurations force the user to adopt a more restrictive format, such as xML
or JSON, reducing the number of problems generated by malformed or illegal input
data. Json files are widely accepted in modern software applications. Ideally, the
components.csv file could be translated in a JSON file similar to the suggestion in
listing 5.15:

"circuit": "A circuit",
"time": {

1,

"ny": {

},
"nodes": [
{

"from": 1,
"to": 1,
"element_type": "R",
"element_value": 10.5,
"power_10": O,
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Listing 5.15: Input file as JSON

This feature is listed on the project’s issue tracker [20].

5.2 Initial Setup

After collecting and parsing the required input data for the simulation, it is nec-
essary to work on the initial setup. Several parameters must be determined. They
are listed in the following subsections.

D: number of unknown voltage sources

The number of unknown voltage sources (D) is given by the formula D = N — M,
where N and M are the number of nodes in the simulation and the number of
voltage sources, respectively. They are both obtained from the SimulationData. In
the Haskell implementation, this process is represented as described in listing 5.16:

(nodes simulation - voltageSources simulation)

Listing 5.16: Determining the number of unknown voltage sources D

There is a similar, straightforward formula at ETR-P.

gkm: Conductance for each element

For each type of RLC component, there is a formula to determine its respective
conductance. It varies with the ComponentType and it depends on the simulation’s
step size. The respective Haskell function will then receive two parameters: the
ComponentData and a Double value representing the simulation step size. It will
return another Double value representing the appropriate conductance, as declared
in listing 5.17.

condutance :: ComponentData -> Double -> Double
condutance component dt =
case componentType component of
Resistor -> 1.0 / (magnitude component)
Capacitor -> (magnitude component) * 0.000001 * 2 / dt
Inductor -> dt / (2 * 0.001 * (magnitude component))
_ ->0.0

Listing 5.17: Determining the conductance for each element gkm
The ComponentType is identified with a Pattern Matching case. If the ComponentType

— is not a Resistor, Capacitor or Inductor, the conductance is determined as 0.0.
Recall section 4.1.2 for a broader explanation of Pattern matching.
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From this function, it is possible to determine the conductance vector for all
the elements of the simulation. The parsed components.csv originates a Vector of
ComponentData elements (when parsed with no errors). This initial Vector can feed
the function listing 5.18:

gkm :: Vector ComponentData -> Double -> Vector Double
gkm components dt =
Vector.map (\c -> condutance c dt) components

Listing 5.18: Determining the conductance vector gkm

Listing 5.18 receives a Vector ComponentData and a Double as input values, maps
each element of the vector with the condutance function and returns another vector
as the final result.

In ETR-P, despite of the several temporary variables, the code for calculating
conductances relies on many nested if/else blocks (see listing 5.19)

% gkm = conductance for each element in the input file
gkm = zeros(bmax,1);
[...]
% Calculate branch conductances for each input data row
for b = 2:bmax
if strcmp(type(b), 'R') || strcmp(type(b), 'S')
R = vald(b);
gkm(b) = 1/R;
elseif strcmp(type(b), 'L')
L = val4(b)*1le-3; YmH
gkm(b) = dt/(2xL);
elseif strcmp(type(b), 'C')
C = val4(b)*le-6; %uF
gkm(b) = 2xC/dt;
elseif strcmp(type(b), 'TL')
Zc = vala(b);
gkm(b) = 1/Zc;
end
end

Listing 5.19: Calculating conductances in Matlab

npoints: number of points in the simulation

Another straightforward value, the number of points in the simulation (npoints)
is given by the formula npoints = fiz(tmax/dt) + 1, where tmax and dt are both
obtained from the SimulationData and correspond to the maximum timestamp for
the simulation and the step size, respectively. fix (which is called round in Haskell)
truncates the division to its integer portion.

npoints :: SimulationData -> Int
npoints sim =
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round ((tmax sim)/(stepSize sim)) + 1

Listing 5.20: Determining the number of points in the simulation npoints

As specified in listing 5.20, the npoints function receives the SimulationData as
a single parameter and returns an Int with the number of points. The function
npoints requires the SimulationData as an input. That means it requires a successful
parsing of the simulation.csv file. It does not make sense to call this function if there
were errors to obtain the simulation parameters. This restriction is encoded in the
function’s signature. Such a feature is not present in the ETR-P Matlab code.

The code in ETR-P is equally direct and for this reason it is not listed in this
section.

nh: number of energy storage elements

The number of energy storage elements (nh) is the number of Inductors and Ca-
pacitors in the circuit. In the Haskell implementation, a filter functor (filter in a
Vector) is created to collect only C or L ComponentTypes as presented in listing 5.21.

filterEnergyStorageComponent :: Vector ComponentData -> Vector ComponentData
filterEnergyStorageComponent =
Vector.filter (\r -> (componentType r == Capacitor) || (componentType r ==

< Inductor))

Listing 5.21: filtering energy storage elements

The function filterEnergyStorageComponent receives a Vector of ComponentData and
selects only the ones which ComponentType are ¢ or L. The function nh (shown in list-

ing 5.22) receives a Vector CmponentData, then filters it with filterEnergyStorageComponent

— and returns the length of the filtered elements.

nh :: Vector ComponentData -> Int
nh components =
length $ filterEnergyStorageComponent components

Listing 5.22: Determining the number energy storage elements nh

The Matlab ETR-P version relies on if/else blocks to determine the value of nh,
as seen in listing 5.23.

% nh = number of energy storage elements
nh = 0;
[...]
for b = 2:bmax
% Set tstart to zero. If we find any source that was active at t<0,
% set the program to compute the Steady State Solution.
tstart = 0;
if strcmp(type(b), 'L') || strcmp(type(b), 'C')
% finding the number of lumped elements which need history terms
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nh = nh + 1;
val8(b) = nh;
[...] % Code to deal with Transmission Lines ommited

Listing 5.23: Determining the number energy storage elements nh with ETR-P

G matrix: Conductances matrix

The conductances square matrix ¢ holds the conductances calculated with the
support of the gkm vector. The ¢ matrix is built using Recursion and with the
let/in Haskell structures (check listing 5.24).

buildGMatrixFromList :: SimulationData -> Matrix Double -> [ComponentData] ->
— Matrix Double
buildGMatrixFromList _ buffer [] = buffer
buildGMatrixFromList simulation buffer (c:cs) =
let gkmss = condutance c¢ $ stepSize simulation
bufferUpdtate = gMatrix (nodeK c, nodeM c) buffer gkmss
in buildGMatrixFromList simulation bufferUpdtate cs

Listing 5.24: Building the G Matrix

The function buildGMatrixFromList receives the SimulationData, a buffer matrix
(which its initial value is set to zero), a list of ComponentData ([ComponentData]) and
returns the ¢ matrix. It is a recursive function: if the list of ComponentData is empty,
it returns the value held in the buffer. Otherwise, it calculates the conductance of
the given element, updates the values of the buffer with the function gMatrix and
holds the value on bufferUpdtate.

gMatrix :: (Int, Int) -> Matrix Double -> Double -> Matrix Double
gMatrix (k, 0) buffer gkmHead = diagonalUpdate k buffer gkmHead
gMatrix (0, m) buffer gkmHead = diagonalUpdate m buffer gkmHead
gMatrix (k, m) buffer gkmHead =
let updateK = ((k, k), (Matrix.getElem k k buffer) + gkmHead)
updateM = ((m, m), (Matrix.getElem m m buffer) + gkmHead)
updatedl = ((k, m), (Matrix.getElem k m buffer) - gkmHead)
updated2 = ((m, k), (Matrix.getElem m k buffer) - gkmHead)
in
gMatrixUpdate [updateK, updateM, updatedl, updated2] buffer

gMatrixUpdate :: [((Int, Int), Double)] -> Matrix Double -> Matrix Double
gMatrixUpdate [] gmatrix = gmatrix
gMatrixUpdate (((k, m), toUpdate):xs) gmatrix =

gMatrixUpdate xs (Matrix.setElem toUpdate (k, m) gmatrix)

diagonalUpdate :: Int -> Matrix Double -> Double -> Matrix Double
diagonalUpdate d buffer gkmHead =

let updated = (Matrix.getElem d d buffer) + gkmHead

in Matrix.setElem updated (d, d) buffer

Listing 5.25: Building the G Matrix buffer update



16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Chapter 5.

Haskell in Electromagnetic Transient Analysis - Implementation 40

In listing 5.25, the auxiliary function gMatrix receives a Tuple of Int representing
the nodes from the component (nodek and nodeM), the buffer (a Matrix Double) and
the value of the conductance for the element. It patterns matches according to the
positions in the tuple (k, m) and calls another auxiliary function, diagonalUpdate
(when k or m are zero), or gMatrixUpdate (when k and m have distinct values).

Once again, there isn’'t a single if/else block in this function.
determined and calculated with Pattern Matching and Recursion. Every step
of the recursive call produces a new matrix. There is no risk of mutability-related
issues.

The ETR-P code for creating the G Matrix is described in listing 5.26.

%% Build and partition the G matrix

% Calculate branch conductances for each input data row
for b = 2:bmax

if strcmp(type(b), 'R') || strcmp(type(b), 'S')

end

end

R =

val4(b);

gkm(b) = 1/R;
elseif strcmp(type(b), 'L')

L =

vald(b)*le-3; mH

gkm(b) = dt/(2*L);
elseif strcmp(type(b), 'C')

C =

val4d(b)*1le-6; JuF

gkm(b) = 2xC/dt;

% Build the G matrix
for b = 2:bmax

end

k = from(b);
m = to(b);
if m ==
G(k,k) = G(k,k) + gkm(b);
elseif k ==
G(m,m) = G(m,m) + gkm(b);
else
G(k,k) = G(k,k) + gkm(b);
G(m,m) = G(m,m) + gkm(b);

end

if strcmp(type(b), 'TL') ==

end

% If the branch is NOT a transmission line then calculate
% off-diagonals

Gk,m) = G(k,m) - gkm(b);

G(m,k) = G(m,k) - gkm(b);

Listing 5.26: G Matrix with ETR-P

Everything is
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5.2.1 Refactoring example - GMatrix

The listing 5.24 and its auxiliary functions can be shorter and deserve a refactor.
They can be rewritten to be more compact. This enhancement is listed on [20] and
this section implements the desired improvement.

The code on listing 5.24 and on listing 5.25 is functional, but verbose. This was
the first version of the Haskell implementation and this subsection can be a good
place to show the process of refactoring functional code. After building the auxiliary
functions on listing 5.25, it became clear that the GMatrix could be built only with
the conductances (which could be calculated on demand, not necessarily in a let/in
block)and with pattern matching across the nodes K and M. listing 5.27 brings an
alternative version for the implementation, more compact and more direct. In this
code, the function buildGMatrixFromList is replaced by buildGMatrixFromVector (for
making the function call simpler), and all the auxiliary functions (diagonalUpdate,
gMatrixUpdate and gMatrix) are replaced by a single function, buildCompactGMatrix,
that receives the step size of the simulation (dt), the list of components and a buffer
for the GMatrix, initially set to zero.

buildGMatrixFromVector :: SimulationData -> Vector ComponentData -> Matrix Double
buildGMatrixFromVector simulation components =
buildCompactGMatrix (stepSize simulation) (Vector.tolist components) (Matrix.
— zero (nodes simulation) (nodes simulation))

buildCompactGMatrix :: Double -> [ComponentData] -> Matrix Double -> Matrix
— Double
buildCompactGMatrix dt [] buffer = buffer
buildCompactGMatrix dt (component:cs) buffer =
case (nodeK component, nodeM component) of
(0, m) -> buildCompactGMatrix dt cs (Matrix.setElem (Matrix.getElem m m
buffer + condutance component dt) (m, m) buffer)

(k, -> buildCompactGMatrix dt cs (Matrix.setElem (Matrix.getElem k k
buffer + condutance component dt) (k, k) buffer)
(k, -> buildCompactGMatrix dt cs (Matrix.setElem (Matrix.getElem k k

getElem m m buffer + condutance component dt) (m, m) (Matrix.
setElem (Matrix.getElem k m buffer - condutance component dt) (k, m
) (Matrix.setElem (Matrix.getElem m k buffer - condutance component
dt) (m, k) buffer))))

(_, _) -> buildCompactGMatrix dt cs buffer

Listing 5.27: Building the G Matrix buffer update

—>
0)
<_>
m)
— buffer + condutance component dt) (k, k) (Matrix.setElem (Matrix.
(%
—
<_>
(SN

In listing 5.27, for the case where the GMatrix needs to be updated outside the
diagonal (which requires multiple changes), recursion is used in the buffer, producing
the effect of multiple sequential updates to each index of the matrix.
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5.3 Simulation Loop

With the initial setup completed, the next step is the simulation loop. In terms
of functional programming, building this step was one of the most challenging parts
of this work. A functional approach for the simulation loop had to be built on
top of Recursion and Pattern matching - that means identifying the parameters
changing in every iteration under the matrix form of the algorithm. The imperative
implementation of ETR-P does not make it clear which parameters belong to the
main body of the algorithm on every step of the iteration and which information is
just a tool to guarantee the procedural process (for example, the indexes of vectors
and matrices).

The first step to build this recursive simulation was identifying what are the fixed
parameters, as well as what are the ones that change on every step of the iteration.
These discoveries are specified in the function’s signatures transcribed in listing 5.28.

thtaSimulationStep :: [ComponentData] -> Matrix Double -> SimulationData -> Int
< -> Int -> Double -> Vector Double -> Matrix Double -> Vector Double ->
— Vector Double -> SimulationResults
thtaSimulationStep components condutances simulation thtactl n time ih vMatrix
— vbVector iVector =
-- implementation

Listing 5.28: Building the simulation loop - parameter identification

Every step of the simulation requires the list of ComponentData, the Matrix of conduc-
tances, the SimulationData, the THTACt1 (the core of the THTA algorithm in ETR-P),
the simulation step n, the time stamp time (required for determining EAC values), the
historical vector 1h, the matrix of Voltages v, the vector with voltage sources VB and
the vector of current I. The conductance of the components is also necessary, but it
can be calculated in every step (it is a pure function, which means it will certainly
have the same value for the same inputs). This extensive list of parameters produces
some intermediate values in every step - they are listed in the thtaSimulationStep
implementation in listing 5.29.

thtaSimulationStep :: [ComponentData] -> Matrix Double -> SimulationData -> Int
— -> Int -> Double -> Vector Double -> Matrix Double -> Vector Double ->
< Vector Double -> SimulationResults
thtaSimulationStep _ _ _ _ 1 _ _ vMatrix _ iVector = (iVector, vMatrix)
thtaSimulationStep components condutances simulation thtactl n time ih vMatrix
— vbVector iVector =
let (gaa, gab, gba, gbb) = Matrix.splitBlocks ((nodes simulation) - (
— voltageSources simulation)) ((nodes simulation) - (voltageSources
< simulation)) condutances
ihBuffer = buildIhVector (nhComponents components) (stepSize simulation) n
— (Vector.toList ih) [] vMatrix
(thta, ihThta, timeThta) = thtaControl thtactl time ihBuffer ih simulation
vbVec = buildVBVector components timeThta []
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iVec = buildIVector (nhComponents components) (Vector.toList ihThta) (
— Vector.replicate (nodes simulation) 0)
(iVecCalc, vVec) = solver (toHMatrixVectorTransformer iVec) (
— toHMatrixTransformer gaa) (toHMatrixTransformer gab) (
— toHMatrixTransformer gba) (toHMatrixTransformer gbb) (
— toHMatrixVectorTransformer vbVec) simulation
vMatr = Matrix.mapCol (\r _ -> vVec Vector.! (r - 1)) (n-1) vMatrix

in
thtaSimulationStep components condutances simulation thta (n-1) timeThta
< ihThta vMatr vbVec iVecCalc

Listing 5.29: Building the simulation loop - let bindings

First, the Tuple (gaa, gab, gba, gbb) originates from the Matrix.split function,
after splitting the matrix of conductances ¢ in four sub-matrices. In the model, they
are equivalent to the GAA, GAB, GBA and GBB submatrices of the linear system.
Next, it is necessary to calculate the current historical values and store the results
in inBuffer. It demands a call to an auxiliary function buildIhVector. vbVec is the
vB Vector for that step. The thataControl function returns a Tuple with the THTA
Control and the updated value of the current historic vector, as well as the time step.
Next, the values of ivec are calculated. ivec is the vector of current values, based on
the 1h (historic current) vector previously calculated. All these intermediate values
are passed to the solver function, which returns a Tuple with a final value for the
I Vector and the updated columns of the v Matrix. The following binding, vMatr,
updates the v Matrix. Finally, the next step of the recursion is invoked with the
newly calculated values.

There is a pattern matching at the beginning of the function thtaSimulationStep
that forces the stop of the recursive calls if the simulation step is equals to 1. So
in the functional approach, the initial step starts the simulation within the largest
step n and decreases it’s value in each step of the iteration. Going from npoints to 1
is the same as going from 1 to npoints. The v Vector will be built from right to left.

The original implementation of ETR-P in Matlab does not aggregate these steps
in a single location. It is reasonable, instead, to compare the auxiliary functions
buildIhVector, buildVBVector, thtaControl, buildIVector and solver with the original
implementation.

buildIhVector: creating a buffer for the historic current values

The buildThvector function takes the list of components (already filtered for L and
C only), the step size parameter (obtained from SimulationData ), the iteration step,
the buffer of the Ih Vector (if any), an empty buffer vector (ihnew) and the v Matrix,
returning an updated 1h vector buffer. Its values are updated bases on the nodes
K and M and also on the ComponentType. That is why there is an extensive pattern
matching against the Tuple made of these three pieces of information. The values
of the conductances are also necessary and are calculated when needed, as shown
listing 5.30.
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buildIhVector :: [ComponentData] -> Double -> Int -> [Double] -> [Double] ->
< Matrix Double -> Vector Double
buildIhVector [] _ _ _ ihnew _ = Vector.fromList ihnew
buildIhVector (component:cs) dt n (hold:ihold) ihnew vMatrix =
case (componentType component, nodeK component, nodeM component) of
(Inductor, 0, m) -> buildIhVector cs dt n ihold (ihnew ++ [(2*(condutance

< component dt)*(Matrix.getElem m n vMatrix) + hold)]) vMatrix

(Inductor, k, 0) -> buildIhVector cs dt n ihold (ihnew ++ [(-2*(condutance

< component dt)*(Matrix.getElem k n vMatrix) + hold)]) vMatrix

(Inductor, k, m) -> buildIhVector cs dt n ihold (ihnew ++ [(-2*(condutance

— component dt)*((Matrix.getElem k n vMatrix) - (Matrix.getElem m n
— vMatrix)) + hold)]) vMatrix

(Capacitor, 0, m) -> buildIhVector cs dt n ihold (ihnew ++ [(-2*(condutance

— component dt)*(Matrix.getElem m n vMatrix) - hold)]) vMatrix

(Capacitor, k, 0) -> buildIhVector cs dt n ihold (ihnew ++ [(2*(condutance

— component dt)*(Matrix.getElem k n vMatrix) - hold)]) vMatrix

(Capacitor, k, m) -> buildIhVector cs dt n ihold (ihnew ++ [(2*(condutance

— component dt)*((Matrix.getElem k n vMatrix) - (Matrix.getElem m n
— vMatrix)) - hold)]) vMatrix
(_, _, _) -> buildIhVector cs dt n ihold ihnew vMatrix

Listing 5.30: Building the Ih buffer vector: buildIhVector

Compare the listing 5.30 with the Matlab ETR-P implementation at listing 5.33.

%% Calculate the history sources at time t

% to be used in t+dt for R,L,C elements and in t+Tau for TL
Ihold = Ih;
Thnew = zeros(nh,1);

for b = 2:bmax
k = from(b);
m = to(b);

idxhist = val8(b);
idxplt = val9(b);
if strcmp(type(b), 'L')

if k ==
Thnew(idxhist) = 2 * gkm(b) * V(m,n) + Thold(idxhist);
elseif m == 0
Thnew(idxhist) = -2 * gkm(b) * V(k,n) + Ihold(idxhist);
else
Thnew(idxhist) = -2 * gkm(b) * (V(k,n)-V(m,n)) + Thold(idxhist);
end
elseif strcmp(type(b), 'C')
if k ==
Thnew(idxhist) = -2 * gkm(b) * V(m,n) - Thold(idxhist);
elseif m ==
Thnew(idxhist) = 2 * gkm(b) * V(k,n) - Thold(idxhist);
else
Thnew(idxhist) = 2 * gkm(b) * (V(k,n)-V(m,n)) - Thold(idxhist);
end

% Code for Transmission lines ommited.
end
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end

Listing 5.31: Th vector buffer in Matlab ETR-P

buildVBVector: creating the vector with sources values

The code for the vB Vector is pretty straightforward, as seen in listing 5.32.

buildVBVector :: [ComponentData] -> Double -> [Double] -> Vector Double
buildVBVector [] _ buffer = Vector.fromList buffer
buildVBVector (c:components) time buffer =
case (componentType c) of EDC -> buildVBVector components time ((magnitude c)
— buffer)
EAC -> buildVBVector components time (((magnitude c *
< cos (2 * pi * param2 c * time + (paraml c * (pi
— /180))))) : buffer)
_ -> buildVBVector components time buffer

Listing 5.32: Creating the vector with sources values: buildVBVector

buildVBVector receives the list of components, the current time and a temporary
buffer with the vector values to be returned after the recursion. It filters the sources
(EAc and EDC ) and calculates the voltage vectors accordingly. Triangular sources are
not supported yet.

Compare the listing 5.32 with the Matlab ETR-P implementation in listing 5.33:

%% Build the VB vector for the time t

x =1;

for b = 2:bmax
k = from(b);
m = to(b);

if strcmp(type(b), 'EDC')
% DC Voltage Source

VB(x,1)= val4(b);
X = x+1;
elseif strcmp(type(b), 'EAC')
% AC Voltage Source
VB(x,1)= vald(b)*cos(2*pi*val6(b)*time + valb5(b)*(pi/180) );
X = x+1;
end
% Omitting Triangular sources; not implemented in the Haskell Version

Listing 5.33: VB vector buffer in Matlab ETR-P

thataControl: The core of the THTA Algorithm

The next auxiliary function is thtaControl in the listing 5.34, which implements
the "Trapezoidal History Term Averaging" [17] (THTA) method.
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thtaControl :: Int -> Double -> Vector Double -> Vector Double -> SimulationData
< -> (Int, Vector Double, Double)
thtaControl thtactl time ihnew ih simulation
| thtactl <= 0 = (thtactl, ihnew, (stepSize simulation + time))
| thtactl < 3 = (thtactl + 1, (Vector.map (\i -> i/2) $ Vector.zipWith (+) ih
— ihnew), (time + (stepSize simulation/2)))
| otherwise = (0, ihnew, (stepSize simulation + time))

Listing 5.34: Trapezoidal History Term Averaging ETR-P

The function thtaControl receives the previous thtacCtl value (which is an integer
argument that determines the next timestamp), the current timestamp (a Dou-
ble), the calculated innew values, the Ih that should be updated and finally, the
SimulationData. It returns the results in a Tuple of three elements: the updated
thtaCtl integer, the updated 1h (which was called ihnew) and finally, the timestamp.
This function uses Haskell guards (|) to compare and pattern match against the
thtaCtl value.

Compare with the original Matlab implementation at listing 5.35.

%% THTA Control Here!

if Damp ==
THTACtl = O;

end

if THTACtl > O
if THTACtl ==

fprintf ('THTA activated at t = %2.50f.\n', time);

end

if THTACtl < 3
fprintf (' THTA step %d at t = %2.50f.\n', THTACtl, time);

Ih = (Ih + Ihnew)/2;

THTACtl = THTACtl + 1;

time = time + dt/2;
else

Ih = Ihnew;

THTACtl = 0;
time = time + dt;
end
else
Ih = Ihnew;
% Regular operation
% Increment the time
time = time + dt;
end

Listing 5.35: THTA Control in Matlab
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buildIVector: Calculating the current values for each iteration step

After obtaining the updated values for the In with the thtactl function, it is
possible to calculate the values for the I vector. The function buildIVector receives
the list of ComponentData elements (already filtered for L and C only), the Ih vector
and a zero-valued vector for buffering purposes. It returns the calculated 1 Vector,
based on Pattern Matching a Tuple with the nodes Kk and M of each component,
along with its ComponentType. It is also a recursive function, iterating over all the
components of the circuit, as shown in listing 5.36.

buildIVector :: [ComponentData] -> [Double] -> Vector Double -> Vector Double
buildIVector [] _ iVector = iVector
buildIVector (component:cs) (ihEl:ih) iVector =
case (componentType component, nodeK component, nodeM component) of
(Inductor, k, 0) -> buildIVector cs ih (iVector Vector.// [((k - 1), ((
< iVector Vector.! (k-1)) + ihE1l))])
(Inductor, 0, m) -> buildIVector cs ih (iVector Vector.// [((m - 1), ((
— iVector Vector.! (m-1)) - ihE1l))])
(Inductor, k, m) -> buildIVector cs ih (iVector Vector.// [((m - 1), ((
< iVector Vector.! (m-1)) - ihEl)), ((k-1), ((iVector Vector.! (k-1)) +
— ihE1))1)
(Capacitor, k, 0) -> buildIVector cs ih (iVector Vector.// [((k - 1), ((
— iVector Vector.! (k-1)) + ihE1l))])
(Capacitor, 0, m) -> buildIVector cs ih (iVector Vector.// [((m - 1), ((
< iVector Vector.! (m-1)) - ihEl1l))])
(Capacitor, k, m) -> buildIVector cs ih (iVector Vector.// [((m - 1), ((
< iVector Vector.! (m-1)) - ihEl)), ((k-1), ((iVector Vector.! (k-1)) +
— ihEIND)
(_, _, _) -> buildIVector cs ih iVector

Listing 5.36: Building I Vector: buildIVector

The original Matlab ETR-P version consists of the code presented at listing 5.37.

%% Clear vector I
I = zeros(N,1);

%% Add History Current Sources, evaluated at time t-dt for R,L,C elements
% or evaluated at t-Tau for TL, into vector I

%

for b = 2:bmax
k = from(b);
m = to(b);

% idx = transmission line index for history terms
% or the lumped element index for history term
idx = val8(b);
if strcmp(type(b), 'L') || strcmp(type(b), 'C')
if m == 0;
I(k)= I(k) + Ih(idx);
elseif k == 0;
I(m)= I(m) - Ih(idx);
else
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I(k)= I(k) + Ih(idx);
I(m)= I(m) - Ih(idx);
end
end
end

Listing 5.37: Building the I Vector with Matlab ETR-P

ETR-P Matlab version uses several auxiliary indexes (such as idx at listing 5.37)
to keep track of Vector indexes in order to calculate output values accordingly.
The Haskell version uses recursion and pattern matching, not requiring any sort of
temporary index to keep track of the operations.

solver: putting the pieces together for I and V

The last auxiliary function is the solver, which receives the following arguments:
each submatrix of the G Matrix (split into GAA, GAB, GBA and GBB), the 1
Vector, the vB vector and the SimulationData. It returns a Tuple with the final value
of T and the updated column for the v Matrix (see listing 5.38).

solver :: HMatrix.Vector Double -> HMatrix.Matrix Double -> HMatrix.Matrix Double
<~ -> HMatrix.Matrix Double -> HMatrix.Matrix Double -> HMatrix.Vector
< Double -> SimulationData -> (Vector Double, Vector Double)
solver iVector gaa gab gba gbb vb simulation =
let ia = HMatrix.subVector O ((nodes simulation) - (voltageSources simulation))
— 1iVector
rhsa = ia - (gab HMatrix.#> vb)
va = gaa HMatrix.<\> rhsa
ib = (gba HMatrix.#> va) + (gbb HMatrix.#> vb)
iVec = HMatrix.vjoin [ia, ib]
HMatrix.vjoin [va, vb]

vVec
in
((fromHMatrixVectorTransformer iVec), (fromHMatrixVectorTransformer vVec))

Listing 5.38: Calculating the final values for I and V in each iteration step

To determine the vaA value, there is a requirement to solve a Linear System Equa-
tions GAA\RHSA. It would have been possible to solve it manually using Linear Algebra.
However, it was easier to use the tools provided by the library HMatrix. In order
to use the HMatrix, it was necessary to convert the Matrix type from the default
package to a HMatrix Matrix (same situation for vector). They are declared as dif-
ferent types: in Object Oriented Languages, such as C++ or Python, that would
be similar to having two different Matrix classes (coming from different packages or
modules). The type signature of the solver function requires a HMatrix Matrix and
it returns a Tuple of Standard Vectors. For converting these types back and forth,
four auxiliary functions were created. They are described at listing 5.39.

fromHMatrixTransformer :: HMatrix.Matrix Double -> Matrix Double
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fromHMatrixTransformer matrix =
Matrix.fromLists $ HMatrix.toLists matrix

toHMatrixTransformer :: Matrix Double -> HMatrix.Matrix Double
toHMatrixTransformer matrix =
HMatrix.fromLists $ Matrix.tolLists matrix

fromHMatrixVectorTransformer :: HMatrix.Vector Double -> Vector Double
fromHMatrixVectorTransformer vec =
Vector.fromList $ HMatrix.toList vec

toHMatrixVectorTransformer :: Vector Double -> HMatrix.Vector Double
toHMatrixVectorTransformer vec =
HMatrix.fromList $ Vector.tolList vec

Listing 5.39: Converting between Matrices and Vectors - HMatrix and standard types

Inside the function solver, all the operations are based on the HMatrix library.
It would have been possible to use a single type of Matrix/Vector; for example the
ones from the HMatrix library. However, this is a tool that focuses on advanced linear
operations which are not required for most parts of the ETR-P Haskell algorithm.
The principle of "Less is More" is one baseline of this work, and over-engineering is
avoided in order to keep the results as concise and straightforward as possible.

The matrix type comes from the library Data.Matrix [46]. It enforces the functional
programming behaviour, so it is not possible to mutate an existing Matrix. The
matrix type on HMatrix [47|, on the other hand, allows the user to apply a more
imperative approach by implementing mutable structures.

Since the solver function returns the updated column for the v Matrix, it is
necessary to update the matrix itself with the values. Back to the thtaSimulationStep
— function, the binding vMatr = Matrix.mapCol (\r _ -> vVec Vector. (r - 1)) (n-1)
— vMatrix updates the previous column of the v Matrix, making it ready for the next
step of the iteration.

Compare the solver function with the equivalent operations in ETR-P in list-
ing 5.40.

%% Build vector IA for the time t
IA = I(1:D, 1);

%% Build the vector RHSA for the time t
RHSA = IA - GAB%VB;

%% Solve for vector VA at the time t

VA = GAA\RHSA;

IB = GBA*VA+GBB*VB;

I = [IA; IB];

%% Build vector V at the time t (i.e., time counter or point n)
V(:, n) = [VA; VB];

Listing 5.40: Calculating the final values for I and V in Matlab ETR-P
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5.3.1 Improvements to the simulation loop

There is a lot of space for code refactoring in the scope of the simulation loop
functions. Some enhancements are listed below, and their corresponding issues are
already tracked on Github:

e Some functions could be treated as internal (or Lambda) functions. They
wouldn’t need to be declared as a separate function. This work made all
the functions to be external functions in order to discuss their signatures and
make the algorithm more explicit in terms of types. It is not possible to explicit
the function declaration when creating internal functions. It would invalidate
several discussions on this chapter.

e Some functions have a long parameter list. It would be possible to rewrite
their calls as partial applications.

e Implementing support for external current sources (IAC, IDC) is a desired
feature.

e Implementing support for Triangular voltage sources (ETR) and Triangular
current sources (ITR) is another desired feature.

e Implementing support for Switches is another upgrade to be developed.
e Supporting for Transmission Lines is a desired functionality.

e Plotting Charts for Current and Voltage information is another feature.

5.4 Running the code

Now that the previous section presented an overview of the main functions of the
program, the basic project settings are explained and detailed. This Haskell project
is built with Stack [8] - it creates a simple way to compile and run the main code
together with its dependencies - and Cabal [9], a tool to easily manage external
libraries as project dependencies. Since this is a short program, all the content was
kept in a single file in a single module. The Main.hs file has a main function, which is
called when the command stack run is invoked in the project’s directory. Detailed
build information can be found at the project’s README.md instruction file [20].

In the main function, the functions to parse the csv files are invoked, creating the
initial setup and moving into the simulation loop (shown on listing 5.41).

main :: I0 ()
main = do
eitherSimulation <-
fmap getSingleSimulationLine
<$> decodeSimulationFromFile "data/simulation.csv"
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case eitherSimulation of
Left reason ->
Exit.die reason

Right simulation -> do
components_list <- decodeltemsFromFile "data/components.csv
case components_list of
Left reason -> Exit.die reason
Right components -> do
let results = thtaSimulation components simulation
putStr "Simulation: \n"
print (results)

n

Listing 5.41: Main function

In the code on listing 5.41, the initial Either structure holds the result of a suc-
cessful parsing of the simulation file or a failure which throws an error and exits
the program. If the parsing operation was successful (Right simulation), the same
process is repeated for the components file. In case of another successful pars-
ing, then the simulation is invoked with thtaSimulation. It is necessary to provide
the two parameters this function requires: the parsed ComponentData Vector and the

SimulationData.

An improvement that can be implemented is transforming the file names into
parameters of the main function call. See [20]. This single file could also be split
into smaller files. The logic for the nodal analysis could be encapsulated in a mod-
ule. This is not the goal of this project, but it is interesting to acknowledge the
importance of modularity.

The complete code of the Haskell ETR-P is listed on the Appendix D.

The Matlab ETR-P version does not hold these operations in an isolated function.
It completes the simulation by procedurally by parsing the input files and running
for loops.

5.4.1 Open Source implementation on Github

As a final remark for this chapter, it is important to emphasize that all the code
is open source. It is hosted on Github at https://github.com/hannelita/thtahs.
A broader analysis of the benefits of open source projects is beyond the scope of
this work. However, it is possible to list a few key points: benefits for learning and
e-learning [48], quick feedback from end-users [49], distributed management [50] and
the advantage of easily sharing source code.



6 Results

6.1 Simulation outputs - RL Circuit

In order to demonstrate that the results obtained by the Haskell ETR-P ver-
sion are the same as the ones in the Matlab version, a simulation using the same
parameters in both Matlab and Haskell version is adopted. The chosen circuit con-
figuration, components and simulation values are presented at listing 6.1 and at
listing 6.2 (which happen to be the same values used at chapter 5). The circuit is
shown in fig. 6.1.
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Figure 6.1: DC Circuit

Element Type,Node K,Node M,Value,Source param 1,Source param 2,Plot
EDC,2,0,10,0,0,0

R,2,1,10,0,0,0

L,1,0,1,0,0,0

Listing 6.1: Input data file for components in the Haskell implementation

Number of Nodes,Number of Voltages Sources,Step Size,Maximum time for simulation
2,1,0.0001,0.0005

Listing 6.2: Input data file for time

The same setup in ET