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ABSTRACT

Synchronous generators have proven over the decades to be the feasible solution for three-phase
power systems and have consolidated as the vital piece in power plants in which the source of
energy is renewable, as hydraulic or wind. Thus, with a constant increase in environmental
concerns in current times, it is also expected an increase in synchronous machine usage, along
with more research and development. A challenge would be to integrate the traditional
consolidated knowledge with modern computational tools. Since when it comes to electrical
machines, there is more than one procedure or technique to solve the same question, many
combinations of new algorithms and books from a century ago have yet space to be approached.
This work proposes and develops a set of tools to allow the analysis of magnetics effects in a
salient pole machine with general, accurate, and fast solutions, applying what has been taught
for the first “machinerists”, as Tingley and Park, alongside with MATLAB and Finite Element
Method. Its objectives are to get Magnetomotive Force and Magnetic Flux Density of a given
machine so then, in future work, to calculate the inductance matrix. MMF is calculated through
Tingley Box, Winding Matrix, and Fourier Series, allowing the analysis for every single turn.
Flux density is calculated through Finite Element Analysis, which allows the calculation of
enclosure factors that support the accuracy of the tool by comparing it with manufacturers'
benchmarks. In the end, a guide in MATLAB is shown, which aggregates everything exposed
with a user-friendly interface.

Index terms — Enclosure Factor, Finite Element Analysis, Magnetic Simulation, Magnetomotive
Force, Salient Poles, Synchronous Generators, Winding Distribution.
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1. INTRODUCTION

Currently, scarcity of resources along with environmental and social conditions brings a global
concern on energy supplies; those are some of the factors that make renewable generation
experience a constant expansion, as seen in Figure 1.1 and Figure 1.2 [1]. There is a total
hydropower generation capacity of 1.267 GW installed around the globe, and pumped storage
capacity of 153 GW [2], which suggests it as a reasonable choice among renewable sources for
large-scale production. Developing technologies and tools that allow better utilization of these

resources help to maintain this growth, bringing investment and opportunities altogether.
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Figure 1.1 - Electricity generation by source, World 1990-2017
Source: [1]
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Figure 1.2 - Renewable electricity generation by source (non-combustible), World 1990-2017
Source: [1]



16

Improvements in electrical power generation as a centennial technology requires to target more
than in the system physically, as much has been done in a macro scenario. Hence, unless another
big breakthrough of physics or materials towards energy is made, changes tend to come from
studying effects and behaviors that govern these systems. Studies can indicate generation’s
vulnerabilities as well as points where improvements are more significant, and they are also
essential to help to validate theories and simulating different scenarios, which is often
impractical.

This dissertation focus is in Synchronous Machines, a type of energy converter commonly
adopted in hydro-generation and as a load for many applications, due to their advantageous
characteristics such as:

e Controllable power factor, by changing its excitation;

e High efficiency, usually over 90%;

e Wider air-gap lengths grant mechanical stability.

As the use of mathematical modeling for the representation of actual phenomena, simulations
are used in various fields as natural sciences, social sciences, and, of course, engineering. They
enable studying different effects of what it is modeled, predicting, and, sometimes, controlling
its behaviors. Such a powerful tool finds limitations in how complex a model can become, and
the resources needed to solve it. Numerous models exist for synchronous generators, many
coming from Park’s two reaction theory [3], and all use inputs from reality or acceptable
presumptions of it.

Modeling has constantly been evolving due to better analytical solutions and computation
progress, in both hardware (better processors, memory, refrigeration techniques) and software
(finite element methods, artificial intelligence, parallel processing).

Finite element analysis (FEA) is suitable for handling magnetic problems, such as energy
converters. Both motors and generators have been studied using this technique ( [4], [5], [6],
and [7]). FEA is mentioned in most recent books about SM, with chapters dedicated to it [8].
An example of an FEA output is seen in Figure 1.3.

For this work, it is used MATLAB and FEMM (Finite Element Method Magnetics), which is a
suite of programs for solving low-frequency electromagnetic problems on two-dimensional

planar and axisymmetric domains.
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Figure 1.3 - Magnetic flux lines and flux density map in Induction Motor.
Source: [5]

1.1. Dissertation Outline

This dissertation is composed of 5 chapters. In this chapter, a brief introduction is presented
about the present scenario in energy sources and the importance of SGs and studies on them.
The second chapter is a literature review, synthesizing SMs and FEM, and their elements that
matter most for this work.
The third chapter goes through this work methodology, separated into four sections, one for
each tool:
e Tingley Box and Winding Matrix, which is this work first objective, to set winding in a
standard fashion and getting the Winding Matrix as a result.
e Magnetomotive Force, which clarifies how MMF is obtained for any SG condition,
from any given Winding Matrix.
e Pole Shoe Enclosure Factor, which describes pole shoe geometry to thereby, used as
FEM input, obtain their magnetic simulation overview and enclosure factor.
e Effective Core Magnetic Length, goes through axial enclosure factor, getting the actual
core length for magnetic calculations.
The fourth chapter shows the Interaction with MATLAB and some Applications, with results
from an interface that integrates all magnetic study done.
The fifth chapter concludes this dissertation, analyzing its results and the usability of the created
interface.
The sixth and last chapter points to some future opportunities left open with this work, along

with some improvements.
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1.2. Objectives

To provide a completer and more reliable set of tools for analyzing main components in a usual
SM design. Grouping traditional procedures and Finite Element Analysis that enable validation
of essential aspects, as MMF and flux density waveforms as well as pole and axial enclosure
factors, based only in some machine dimensions and rated data. All together in a user-friendly
interface using MATLAB and FEMM.
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2. LITERATURE REVIEW

With the intention of achieving tools development, some definitions need to be stated, both for
Synchronous Machines and Finite Element Analysis. This chapter presents some key elements

that one can understand and repeat the results.

2.1. Synchronous Machines

A SG, mostly, is constituted of elements that make use of Faraday’s principle, which foresee
that the interaction of a magnetic field with an electric circuit creates an EMF, effect known as
electromagnetic induction [9]. Therefore, one element is responsible for producing the magnetic
field and another composed by a set of armature coils in which voltage is inducted, uniquely
when there is relative motion between these elements. This inducted current, flowing through
armature windings, also produces a magnetic field, which is opposite to the one that caused it.
This phenomenon is called armature reaction, and it is based on Park’s theory [3].

The rotor is the moving part of a machine. In a SM rotor, an exciting magnetic field is produced
by a set of coils on the rotor periphery, known as field winding [9]. There are two types of
poles: salient (salient pole rotor) and non-salient (cylindrical, solid or round rotor), a cross-
section of both types can be seen respectively in Figures 2.1a and 2.1b. There are some rotors
with no windings on them, as for PMSG (excitation field is generated by PM) and reluctance

machines (torque is created through magnetic reluctance [10]).
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a) Salient Pole Rotor b) Round Rotor

Figure 2.1- Cross-section of different types of a SM rotor.
Source: [11]

The second and stationary element, the stator (or armature), supports and provides a magnetic

flux path for the armature windings [9]. For a vast majority of cases, SGs generate three-phase
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power. Thus there are three sets of armature coils distributed in intervals of 120° (electrical
degrees), so that is the difference between voltages phases. More about the disposition of
armature windings and the difference between electrical and mechanical degrees are discussed

further. A general stator cross-section can be seen in Figure 2.2.

‘\ \ . A8 -"j
T /s

\S’Q?Q/

-

Figure 2.2 - Cross-section of a SM stator.
Source: [11]

Stator slots can be built as a) open, b) semi-open, ¢) and d) semi-closed, €) closed, as can be
seen in Figure 2.3. Open and semi-open are usually rectangular, while semi-closed and closed
ones can present rectangular or trapezoidal shapes with round angles [12].

D) <) d) €)
' V22 i V2%
1 1
Z Z Z Z
/// Z

Figure 2.3 - Different slots shapes.
Source: [12]

A slot shape depends mainly on the winding and how it is insulated, which in turn depends on
the machine power. Closed slots are for specific purposes; semi-closed are applied in low
voltage and low and medium power machines; semi-open slots are applied in low voltage and
medium power machines; and open slots are applied in all high voltage machines and low
voltage with medium or high-power machines [9].

Armature slots are built as single- or double-layer slots. Single-layer is more common in smaller

machines, with a number of windings as half of the number of slots (to each winding occupies
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two slots). For this configuration, it is preferable the use of semi-closed or closed slots. The
double-layer reduces costs, allowing the number of windings to be equal to the number of slots,
granting a uniform shape for the coils. Figure 2.4 shows a merely illustrative machine design

with double layer slots.

F‘”ERS

Figure 2.4 - Double-layer slot in a salient poles SG.

One of the most significant SM features is the relationship between frequency, speed, and the
number of pairs of poles, expressed in Equation 2.1. SM rotor, due to field excitation (or PM,
depending on the machine), follows the magnetic field produced by the armature, rotating at

the same speed [13]. This behavior is reciprocal to a machine working as a generator or a motor.

(2.1)

Salient poles SGs may present from a single pair of poles as in small machines to dozens of
pairs of poles as in vertical generators (Figure 2.5), depending on the practice demand. As seen
in Equation 2.1, a more significant number of poles means lower rotor speeds for a given
frequency, setting it as a preferential generator to use in hydroelectric power plants, where

turbines speeds are lower than 200 rpm.
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Figure 2.5 —SG salient poles rotor being installed in Itaipu, 1760 ton, and 90 rpm.
Source: [14]

Although more elements of a machine are applicable for magnetic studies, this work focuses
on armature windings and salient rotor design, which are vital information to calculate
Magnetomotive Force and Magnetic Flux Density in air-gap. For this reason, more of these

subjects are addressed in further chapters.
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2.1.1. SMs Windings

Three-phase windings require special attention in their construction because generated voltage
wave shape depends directly on it. In [12] there is specific care at explaining the most common
winding scenarios, whereas, for this work, only double layers windings are addressed. There is
an essential link among the number of slots (N,), number of phases (m) and number of pair of

poles (p) that dictates how to organize windings, and g is commonly used to express this

relation.
N 2.2
Reducing g to minimum factors:
b d
g=a-—-=— (2.3)
c c

Some ponderations can be done concerning Equation 2.3 factors, which are:

e Integral g (c =1)

An integral g is where first harmonic in pole fields coincide with armature reaction first
harmonic (MMF). Different phases start in an interval of 2q (120°).

e Fractional g (c > 1)

This case creates as good as a waveform than an integer g, and with fewer slots.

A fractional g also gives more options of placements; in a further chapter, a procedure known

as Tingley Box is presented, which standardizes this work choice of placement.
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a) Lap Winding

Lap winding applies the same coil pitch for all coils, starting at a top layer, passing through a
bottom layer, and then coming back, forming then, g groups of phases. These groups are
connected and form the machine terminals.

Figure 2.6 shows an example of lap winding in AC machines.

~

Figure 2.6 - Lap Winding for AC machine with 2 poles and 24 slots.
Source: [15]
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b) Wave Winding

Wave winding presents no deviation in the magnetic field, which happens when windings from
different phases share the same slot. One continuous coil goes from a slot to another spaced by
one coil pitch, in a corrugated way. This coil composes a phase, and its terminals are then the
machine terminals for that phase.

Figure 2.7 shows an example of wave winding in AC machines.
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Figure 2.7 - Wave Winding in AC machine with 4 poles and 24 slots.
Source: [15]
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2.1.2. SM Mathematical Modeling and Park Transformation

In this subchapter, it is shown how SM models can be deducted from elements previously
exposed in this work. Park Transformation [3], which allows one to calculate machine
quantities in a more comfortable and natural universe, changes an ordinary abc axis to one
moving alongside the rotor, called 0dg. The following demonstration makes explicit why
describing accurately magnetic quantities is fundamental for modeling.

Firstly, it is considered a machine with 03 coils in its stator, 01 field winding, and 02 damper
windings. Terminal voltages can be calculated using Equation 2.4. For magnetically coupled
circuits, it is needed to consider voltage drops in windings (the first element in the equation)
and reactions due to flux linkages (second element in the equation). The sums are to consider

all drops (resistances) and flux linkages.

vziZ(rxi)i-Z% 2.4)

v - Terminal voltage
r - Winding resistance
i - Current flowing in the winding
y) - Total flux linkage
Where:
A=LXi (2.5)
L - Winding inductance

Figure 2.8 shows a generator with one pair of poles, rotating at speed w. Stator windings a, b
and c are out of phase by 120°. S represents where a coil starts, and E where it ends. Subscripts

are used as follows:

a Phase A

b Phase B

c Phase C

0 Zero sequence
d Direct axis

q Quadrature axis



27

F Field winding
D Direct axis damper winding

Q Quadrature axis damper winding

Figure 2.8 — Salient poles SG, with a single pair of poles.

There are some considerations to be pointed out before further analysis:
e d axis is placed in minimum air-gap reluctance direction, and g axis is 90° lagged,

electrically;

The rotor rotation direction is counterclockwise;

The distance between adjacent poles is 180° (electrical degrees), where for a p number of
pair of poles:

p X (mechanical degrees) = electrical degrees (2.6)

Magnetic flux flows from south to north (inside the core);

e “A”axis is taken as reference for any angular displacement;
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e  Current has a positive direction when it flows out of generator terminals.

Calculations for a primitive machine (with just one pair of poles), as in Figure 2.8, can be
applied for any regular machine, which can be shown to be equivalent [16].

Given previous considerations, one can draw the following vector diagram with abc projections

in 0dq axis.

Figure 2.9 - Vector diagram in 0dq axis.

From Figures 2.8 and 2.9 one can get Equation 2.7:

Arq = Lppip + Lgpip — Lop (2 of currents projected on d axis)
Apa = Lppip + Lppip — Lap (2 of currents projected on d axis)  (2.7)
Aoq = Logio — Lag(Z of currents projected on q axis)

2 2m
2 of currents projected on d axis = i, cos 6 + i}, cos (9 - ?> + i, cos <9 +—=

) g

2m 2m
2 of currents projected on q axis = i, sin 6 + i}, sin (6 - ?) +i.sin (6 + ?)
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Thus, defining two fictitious currents, i, and iy, as follows:

ig < (X of d axis currents) ) g
{iq x (X of q axis currents) (2.9)

) , , 21 ) 21
ig = K[laC089 + ip cos(@ ——) + lCCOS<9 +—>]

in 2 (2.10)
[PES K[iasinB +ip sin(@ —?) + icsin<0 +?>]

The value of K that is used here comes from an improvement introduced by Leweis in [17].

There is defined K to obtain a transformation invariant in power. More can be read in Lewis
work, here it is just defined:

K= |2 2.11
3 (2.11)

To handle Equation 2.10 in matrix notation, a new variable must be created. So, the third
reference quantity is stationary proportional to the zero-sequence current:

1
o2 —=(,+ip+i.) 2.12
[ \/§ a b c ( )
In equilibrium conditions i, + i, + i, = 0, and considering a peak current value of Ip:

i, = Ipsin(wt)

) _ 21
ip = Ipsin (a)t - ?>

. . 21
i, = Ipsin (a)t + ?>

(2.13)

Then, there is the following set of equations:



In matrix form:

1 1

: N NG

° 2 21

la|= [5lcos@ cos (9 — —) cos (0 +
iq 3 3

2T
sinf@ sin (0 — ?> sin (9 +

A simplified notation of Equation 2.15 is defined:

Iodq = ]P)Iabc

IP is the modified Park Transformation operator, so:

1 1

V2 V2

N 21 21
P = |>lcos@ cos(@—?) cos<9+ >

2T 2T
sinf@ sin (0 — ?> sin (9 + )

Similar equations can be written for voltages and fluxes:

Vodq = PVape
Aodq = PAgpc

Using the inverse of P:

Lope = [P_llodq

21
0+ —

)

[ L v 4 i 2(1.+ .+1.>
lo, =—=U l le) = [=|—=1 —1 —1
] \/ga b c sﬁa \/ib \/EC

. 27. . 2my | 2n
Vig = §[laC059+leOS(9—?)+lCCOS(9+?)]
. 21, . o 2my
\lq = §[la51n9+lb51n(9—?>+1CSIH<

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

30
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It can be shown that the inverse matrix of Equation 2.17 is as follows: [18]

it
— cos 6 sin 6
V2

1 211 21 _ 21

P~ = 3 ﬁ cos (9 — ?) sin (0 - ?> (2.21)
1 2 21

— cos (9 + —) sin (9 + —)
\/2 3 3/

It can be noticed that PT = P~1, which makes IP orthogonal and invariant with power. And so,
the following equation is valid:

lq
Ip

le

P =v4iq +vplp + vl = [Va Vb V] [ = ngc X lape

P = ngc X Iabc = ([P_IVodq)T X (P_llodq)
P = V(qu (P_l)T[P)_llodq = VonqIPP_llodq
lo
P = Vonq X lpgq =[Vo Va Vq] [l:d] = Vplo + Vgig + V4l (2.22)

lq

Equation 2.22 makes explicit that Park Transformation only changes the reference of variables,
without changing anything physically, creating fictional variables in axes d and q that turns
solving synchronous machines problems more natural.

In order to proceed with the demonstration, an explanation about the angle 6 is presented, where
it is considered a machine with EMF E has a terminal voltage V lagged & electrical degrees by
the impedance Z. The EMF is induced by the magnetic flux ¢, being perpendicular to each

other. Figure 2.10 illustrates this example for phase A.

Figure 2.10 — Phasorial diagram for phase A.
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If at instant t = 0 phasor V is over the phase A-axis (reference), then the g axis is & far from it
andthed axisis 8y = 6 + /2.

For an instant t > 0, the rotational axis moved wxt. And d axis is displaced with angle 6:

T

2.1.3. Magnetic Circuits Preamble

Before advancing, a short preamble about electromagnetics with the equations needed to get to
the inductances matrices.
Defining MMF as F, N number of turns, i current flowing on each turn, u, permeability of free

space, A the area and [ the length covered by magnetic flux, and s the permeance:

F=NXi (2.24)
And: A=NXgp (2.25)
Specific permeance = P = % (2.26)
A
Magnetic flux = ¢ = Fu, 7= Fuo 2 (2.27)
. . F P
Magnetic induction = B = p, 7= Ko Z?‘ =PF (2.28)
N A
Inductance = L = Tqb = NZ,uOT = N2uy 2 (2.29)

From Equation 2.27 one can get to ¢ = PF, something analogous to i = Yv in electric

circuits, concluding that:

1 = NPF (2.30)
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2.1.4. Flux Linkage Equations

Figures 2.8 and 2.9 depict 6 coils mutually coupled, each one starting from S and ending in E.
Those coils are from three phases S, — E,;, S, — E;, and S, — E; Coil from field winding Sp —
Er; and two coils from damper windings S, — Ep, and S, — Ej.

Adopting a matrix form to the flux linkage equations:

Where:

_ {ifj = k = self inductance
Jk = \if j # k = mutual inductance

And:

Ljx = Lyj in every case
The matrix in Equation 2.31 is divided in four parts, upper left destined to stator fluxes and
bottom right to rotor fluxes.

Next, inductances are calculated as a function of rotor position 8, and the following subscripts

are used:
[ Leakage
m Mutual
s Self

a) Stator self-inductances
Figures 2.11 and 2.12 show two SM diagrams, respectively, with flux linkage and MMF,

corresponding to phase A.
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Figure 2.11- Phase A Flux linkage.
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Figure 2.12 - MMF diagrams for phase A.

By looking at phasors and considering they are in the same axis, the following equation can be

written:

Ao = + Ay (2.32)

So,
Al = NaPlTa (233)

Am = Agq €Os 0 + 444 sin 6 (2.34)



However:

{

Faq = F,cos8 = N,i, cos b
Fga = Fgsin@ = Nyigsinf

{Ada = NoPaF4a
Aqa = Na:PqTqa

Agq = NgPs(Nyiycos0) = N2i,P,cosb
Aga = NgPy(Ngigsinf) = NFi,P, sin 6

Equation 2.37 in Equation 2.34:

Am = (N2iyPg cos ) cos @ + (N2i,P,sin@)sin @

Am = N2iy(Py cos? 6 + P, sin? 9)

Using the following identities:

It comes:

Py P PP
Am = N2i, [7‘1 + 7dcos(29) + 7(1 - 7qcos(29)]

cos? 0 = =+ =cos(26)

cos(26)

sin? 9 =

N RN -
N =N =

A, = N2i, [(?d - ?q) + (jjd ; ﬂ’) Cos(29)]

2

Analyzing Equation 2.33:

A = NP F, = Na:Pl(Naia)

A= chia?z

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
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Equations 2.39 and 2.40 in Equation 2.32:

Pa+PN  (Py—P
Ay = N2i, P, + N2i, [( d ")+( a q)eos(ze)]

2 2
And:
Ly = NP,
Aa = Lgi,
Aa
L, =—
a l'a

From Equation 2.41:

P+ P Py—P
AazNgyaliava( dz ")ia+N§( dz q)iacos(ZH)

Then, it is defined:

(L 2 N;P,

P, +P
LléNj( dz q)

P, —P
LzéNg(—dZ ")

Equation 2.43 in 2.42:
Aq = Lgig = Lyjig + Lyi, + Lyi, cos(26)

La = Laa = Ll + L1 + LZ COS(ZQ)

L2 L +1L,

L, 2L,

3

L¢ and L,,, are constants and L > L,,, finally:

Loy =Ls+ Ly, cos(29)|

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

36
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Similarly, the deduction can be done for both L, and L., changing the angle ¢ for each phase

correspondence, as can be seen in Figure 2.13.

a a
q
b* b
o, d
2]
2]
d
C C
q
6 =120 + oy 6 = 240 + o,
2w 2m
ap = g — ? O, = g+ ?
Figure 2.13 — Angles ¢ for phases B and C.
Lastly, the stator inductances are:
Lga = Lg + L,y cos(26)
2m
Lyp = Ls + Ly, cos [2 (9 - ?)] [H] (2.46)

2m
Lee=Ls+ Ly, cos|2 (9 + ?)]



b) Stator mutual inductances
Figure 2.14 shows a SM diagram for phases A and B.

38

Mutual inductance between any pair of coils is determined with mutual flux linkage obtained

when one coil is excited and the other open. In figure 2.14, it is considered coil in phase A

excited and open in phase B.

Fy
B \ ®

Figure 2.14 - Mutual flux linkages diagram for phases A and B.

The angles:

+9_2Tl’
oTv =73
_27'[ p
E

A+n+ =
) O=T
A_ﬂ'
_2 O'
A==
B 6

(2.47)

(2.48)
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As can be seen in Figure 2.14, mutual flux is decomposed in A4, and 4,44, Which are project on

b axis, and then calculated how much flux from phase A is concatenated on B.
Aap =U— T (2.49)

2
U = Agq COS (0 - _n) (2.50)

U = —Agqsin (0 - Z_n) (2.51)
Equations 2.50 and 2.51 in Equation 2.49:
Ay = Agq COS (9 _ 2?”) + Agq sin (9 _ 2?”) (2.52)
And Equation 2.37 in Equation 2.34:
Agp = (N2i, P4 cos @) cos (9 - 2;) + (NZ2i P, sin6) sin (0 - 2;) (2.53)
Using the following identities:

21 1 1 _V3
cos 6 cos (9 + —) = ————cos(20) ¥ Tsin(ze)

3 4 4
21 1 1 V3
. . LMot 2 L
sin 6@ sin (9 + 3) 4+4cos(26?) 3 sin(26)

| Pa P v3_ Py Py V3
Aap = NZig [— z TCOS(ZG) + T?dsm(ZG) - + Tcos(ZG) - T?qsm(ZG)



Py + P,
4

Aap = NZ2i, [—( ) - (Pd 4_?‘1) cos(20) + ?(?d - .’Pq)sin(ZH)]

Agp = N2i, {— (?d ZPq) +(Py—7,) l—%cos(Z@) + ?sin(ze)l}
Also:

21 1 _ V3
cos (29 + ?) = — Ecos(ZB) + 75in(20)

Pa+ PN (Pa—P 21
dan = Miia |~ (Z5=) + (S eos (20 - )

Py+P Py— 7P n
/’lab=Labia=—N5( = q)ia+1vg( = q)iacos[Z(B—g)] (2.54)

And from Equation 2.43:

Ly Py+P
2o (M)
2 a 4
Py — P,
LZ:Lm:Né( > q)
It is defined:
Ly
Mg 2 —
$ 2

Again, M, and L,, are constants and |M| > L,,, and finally:

Lab = Lpa = =M + Ly cos [2 (6 - %)] (2.55)
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For phases B and C, and A and C:

Lye = Lep = =My + Ly cos |2y - E)]

Leq = Lgc = —Ms + Ly, cos [2 (Uc - %)]

And yet:

Lyc = Loy = —Mg + Ly, cos[2(0 — m)]
T
Lea = Lac = =M + Ly cos [2 (6 + §)]

I
rLab = Lpq = —Ms + L, cos |2 (0 _5)]
Lye = L¢ep = —Mg + L, cos(26) (2.56)

LLca =Ly, = —Mg + L, cos [2 (0 + g)]

( Ly cos(20 + 2m) = L,, cos(20) = —L,, cos(20 — )

21 2 I8
L.y, cos (29 - ?> = —L,, cos (29 -3 + 11) = —L,, cos (20 + 5)

2 21 5n
Ly, cos (29 + ?) = —L,, cos (29 + 3 + 11) = —L,, cos (29 + ?)

And finally:

Lap = Lpg = —My — Ly cos [2(6 + E)]

o
6

LbC=ch=—Ms—meos[ ( -
5t
LcazLacz—MS—meos[ (0 +?)

] (H] (2.57)
|

41
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¢) Rotor self-inductances
Neglecting saturation and slots effects, self-inductances in the rotor are constants, and using

subscript notations:

Lpp = Lp
Lpp = Lp [H] (2.58)
Log = Lg

d) Rotor mutual inductances
Mutual inductance between field and direct axis damper winding is constant, and there are no

mutual inductances among direct and quadrature axes, due to the fact of being 90° apart, so:

Lpp = Lpp = Mg
Lpg=Lop =0 [H] (2.59)
LDQ = LQD = 0

e) Mutual inductances between stator and rotor
They can be expressed directly by inspecting Figures 2.8 and 2.9.

Lor = Lpg = Mg cos @

2m

21
LCF = LFC = MF CcoSs (9 +?)

And My is the mutual-inductance maximum value between field winding and a phase winding.

Similarly, My, for direct axis damper winding and M, for quadrature axis damper winding.

LaD = LDa = MD COSH

21
LbD = LDb = MD COS (9 — ?) [H] (261)

2m
LCD = LDC = MD COoSs (9 +?)

2
Lyg = Ly = Mg sin (e - ;) [H] (2.62)

. 21
LCQ = LQC = MQ Sin (9 + ?)
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f) Inductances Transformation

At once, that all admittance matrix (Equation 2.31) terms are known, the next step is relating
all terms to a fixed rotor reference. Using Park Transformation simplifies Equation 2.31.

Still, from Equations 2.4 and 2.5:

A=Li+1Li (2.63)
Treating A as a vector:
(ael = [L]lianc] (264
Applying Park Transformation:
{Aodq = PAapc = Aave = P Aoaq (2.65)
toaq = Plape = lape = P ioaq
IP’"l/lodq = L[P’"liodq
Pre-multiplying both sides by P:
PP~ Aqq = PLP iy,
(i = pir i, e

Writing Equation 2.66 in a more general fashion:
[ [ abc] [ 0 ] [LSS LSR] [P_l 0 ] []P) 0 ] [iabc] (2.67)
0 U3 AFDQ 0 U3 LRS LRR O U3 O U3 iFDQ

Another way to reach Equation 2.67 is by pre-multiplying Equation 2.31 by []g 19 ] Annex
3

A presents this demonstration.

Equation 2.67 results in the following matrix:
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1 T Lo 0 0 | 0 0 0 1rig]
e 0 Ly 0 | KMp KM, 0 ||i
Aq 0 0 L, | 0 0 KM, ||i.
-t=--—-—- === -=- - - - —-||- (2.68)
Ap 0 KMz 0 | Lp Mg 0 ||ir
Ap 0 KM, 0 | My Lp 0 |lip
Ao 0 0 KM, | O 0 Ly Ilig
And the following constants are defined:
( 3
La 2 L+ M + 5 Ly [H]
3
{Lq 2 Ls+M;— 5Ly [H] (2.69)
L, & Ly — 2M, [H]
\K =/3/2

A great advantage brought by Park is to use constant values of inductances in calculations since
the axes now “move” alongside the rotor.

This transformation, with Lewis modifications, presents invariance in power and results in a
symmetric matrix.

In order to use any of these equations to represent a real machine, the magnetic inputs must be
reliable, and for so, in this work, it is used Finite Element Analysis to get to some of these

parameters. The next chapter goes through FEM and how it is applied in this work.
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2.2. Finite Element Method

On previous chapters were presented elements from SM and how to model it mathematically.
To obtain a representative model, all parameters that matter must be reliable. Therefore, to
obtain some of these parameters, this work makes use of the Finite Element Method (FEM).

The FEM is one of the most widely applied methods in engineering for solving problems in
structural analysis, fluid flow, heat transfer, electrostatic, magnetism, and others. It is
complicated to give one person the title of FEM inventor. Although some authors like in [19]
and [20] have been the pioneers employing similar methods. To discretize a problem in a mesh,

i.e., transforming a difficult, maybe unsolvable, domain into lesser difficult elements, as seen

in Figure 2.15.

\\\
\\
\
‘\\\\\\\“\\\

\
)
|

N
8
)

K
A% ees
SNSRI

NS

NN

N\
SRR i

';III"

Figure 2.15 — Example of mesh grids, created by FEATool MATLAB.
Source: [21]

Some of FEM features elects it as an appropriate tool to solve magnetic problems [22]. As for
this work, the problem is to basically solve Maxwell’s equations in complex shapes as salient
poles, which FEM solves by “breaking” it in sub-shapes where solving differential equations
are simpler.

This work uses a freeware software, FEMM, that simulates a magnetic problem and generates

illustrative representations of flux lines and flux densities, as in Figure 2.16.
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e S
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Figure 2.16 - Color flux density plot of an example solution in FEMM website.
Source: [23]

2.2.1. Software - Finite Element Method Magnetics

FEMM is a suite of programs for solving low-frequency electromagnetic problems on
two-dimensional planar and axisymmetric domains. The program currently addresses
linear/nonlinear magnetostatic problems, linear/nonlinear time harmonic magnetic

problems, linear electrostatic problems, and steady-state heat flow problems [23].

For poles shoes and axial extremities, the targets for this dissertation simulations, planar
modeling is enough (due to rotor symmetries). It is necessary to define properties in the air-gap
and some boundaries, depending on the shape studied. The outputs of interest are magnetic flux
densities on air-gap line.

For magnetic problems to properties are the most important: boundaries and materials. Screens
to set both are shown, respectively, in Figures 2.17 and 2.18.
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Boundary Property >

Mame | Mew Boundary

Cancel

BC Type |Prescribed A ﬂ
Small skin depth parameters Prescribed A parameters
L, relative 0 A ’70
o 5 MS;’m 0 A 0

Mixed BC parameters

~ A ’07
€a coefficent "_'7 2
) coeffident ’.37 @, deg ’07

Figure 2.17 - Boundary Property window.

What FEM does in boundary regions, in magnetic problems, is to solve the following equations
for the magnetic vector potential when set, respectively, as “Prescribed A” and “Mixed”:

V24 = 0 (2.67)
1 0A
Lot % + CoA + 1 = O (268)
T

An approach using only air-gap boundaries is much more straightforward than a complete 2D
analysis. However, this choice makes it impossible to model any winding, making necessary
the normalization of results.

In order to generate a magnetic field, three boundary properties are set:

e A=0 (Dirichlet) For rotor core outer perimeter

e A=1 (Dirichlet) On air-gap

0A
an

magnetic flux to be perpendicular)

0 (Neumann) On iron parts, and over the quadrature imaginary-line (forcing

In Figure 2.17, Dirichlet is set by choosing BC type as “Prescribed A” and Ao as 0 or to 1.
Neumann is set by choosing BC type as “Mixed,” and co and ¢ coefficients as 0.

This work represents only boundaries of metallic parts, then the only material left to be set is
air, which is done by using a pre-set “Air” property from FEMM library, as can be seen in
Figure 2.18.



Block Property

Mame | Air

B-H Curve |Linear B-H Relationship ﬂ

Linear Material Properties

Relative 2 1 Relative A, 1
B, .dea [o ., e [o

Maonlinear Material Properties

| ¢hma!( ,deg |©

Coercivity Electrical Conductivity

H. , Afm ] T, M5/m 0

Source Current Density

1, MAfm~2 | o

Spedial Attributes: Lamination & Wire Type
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Lam thickness, mm | 0 Larm fill factor 1
Mumber of strands |0 Strand dia, mm |0

Cancel |

Figure 2.18 - FEMM Aiir property.
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In this work, FEA is used together with MATLAB with commands available in FEMM 4.2 that

possibilities its integration with octave.

Finally, the next chapter presents the assimilation of SM theory and procedures and FEM to

achieve this work goal, which is to obtain essential magnetic parameters from SM design and

rated data.
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3. METHODOLOGY

In this chapter, it is presented the four tools that are the fruit of this work. They use the theory
exposed so far in this dissertation, together with methods that are described in each tool
respective chapter. The four tools are Winding Matrix using Tingley Box, MMF calculation for
any given Winding Matrix, Pole shoe magnetic simulation, and Effective magnetic length
(package).

In this work, the tools are focused on output parameters that serve as magnetic inputs (listed in

section 2.1.2) to get the reactance matrix for any given synchronous machine.

3.1. TINGLEY BOX AND WINDING MATRIX

The first tool is aimed to sort windings in slots using a standard and traditional step by step
procedure, Tingley Box.

Tingley's work [24] discusses the distribution of windings for three and two-phase machines,
elaborating a procedure not found in no other reference. Tingley’s proposal is simple but useful.
It is a step-by-step process to set windings in a standard pattern, building a diagram called
“Least-Common-Multiple-Diagram,” applying which has been used by many authors in a more
illustrative method, using tables. Currently, there is a reasonable number of works exploiting
techniques to distribute fractional g slots, as [25], [26] and [27], the choice for Tingley Box is
due to its simplicity and tradition.

Firstly, some concepts must be redeemed from previous chapters.

Let it be, from Equation 2.2:
D
_ P
= _Cp (3.1)

Then C,, pair of poles contains in D,, slots. These variables allow to define the number of virtual

machines:
(3.2)

MMFs first harmonic stays over D,, slots and covers C, pairs of poles, repeating it N, times.
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And defining an MMF fundamental period 7, (equivalent to two-pole pitches 7,) for a

referential air-gap average radius Rg.

27TR5 _ 27TR5
2p p

T = 2Ty = (3.3)

With these concepts, it is possible to get to a SM Winding Matrix following procedures

described hereafter.

3.1.1. Building an induced voltage phasorial rosette (slot star)

As introduced in [12], a slot star can be drawn by following these steps:

e  Working with Equations 3.1 and 3.2 as a function of chosen p and Ng;
e Draw two concentric circles;

e If C, is odd, divide the circles into 6 sections;
e If C, is even, divide the circles into 3 sections;

e Identify each section following the desired phase sequence:
Positive sequence A-C B—A C(C-B
Negative sequence A-B C—-A B-C

e Divide the inner circle in D,, equal parts;

e Each radius represents a coil voltage induced phasor associated with the slot in question.
The center of the circle corresponds to potential zero; the outer vertex of the radius
represents the high-potential side;

e The maximum negative or positive potential condition is defined by the phase identification
being positive or negative, depending on the sector occupied,;

e Enumerate the zero-angle radius (right-hand horizontal radius) as corresponding to slot 1,

count C, times, then slot 2, and so on following a spiral sequence to enumerate all radiuses;

e The radiuses contained within each segment belong to the phasors of the corresponding
phase. So, choose 3 colors, one for each phase, and identify the phasors corresponding to
each phase;

e The identified sequence of phasors will correspond to the winding unit required to describe

one virtual machine;
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If the denominator C,, is an even number, then this unit corresponds to a winding group
able to be connected in series and/or parallel circuits;

If the denominator C, is odd, then the file sequence with D, elements that describe one
virtual machine may be split into 2 winding-groups. Both subgroups have the same
amplitude but with opposite phase angles. After caring upon the phasor directions, there is
the possibility to double the parallel circuits when needed. Or just, each winding-subgroup

may be arranged in series and/or parallel circuits.

Examples are illustrated in Figure 3.1.

a)p:27NS:24,CP:]_ b)p:].O,N5:75,Cp:2 C)p:lO,Ns:72,Cp:5

Figure 3.1- Phasorial rosettes for different examples.

3.1.2. Obtaining a regular three-phase winding scheme

Applying a slot star in a “graph paper” can be obtained by following these steps:

Enumerate D,, columns;

If C, is even, divide the columns into 3 vertical sections and identify the phase-sequence
(ABC)or (AC B),

If C, is odd, divide de columns into 6 vertical sections and determine the phase sequence
(A-CB-AC -Bor(A-B C -A B -C);

Begin the slots occupation, starting in 1, count until C,, and mark 2, count until C,, and mark
3, so on until getting to D,,;

This operation occupies C, rows;

Relate each phase number in the bottom row and Sort them.

These sets represent each phase winding scheme. For example, schemes in Figures 3.2 to 3.4

correspond to rosettes in Figure 3.1.
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A € B -A c -B
1 2 3 4 5 6 7 8 9 |10 | 11 | 12
1 2 3 4 5 6 7 8 | 9 | 10 | 11 | 12
1 2 3 4 5 6 7 8 | 9 | 10 | 11 | 12
Figure 3.2 - Winding scheme corresponding to Rosette 3.1a.
A c B
1|2 |3 |4 |66 |7 |89 1011|1213 | 14|15
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15
1|9 |2 |10|3 [11 |4 (12| 5 (13| 6 |14 | 7 |15 | 8
Figure 3.3 - Winding scheme corresponding to Rosette 3.1b.
A £ B -A c -B
1|2 |3|4[5|6|7|8|9[10|11]12]13|14|15/16|17|18]|19|20|21|22|23|24|25| 26|27 |28 |29|30|31|32|33|34|35|36
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 3 32 33 34 s 36
1|30(23(16| 9 | 2 |31]24]17|10| 3 |32(25(18[11] 4 |33|26|19(12| 5 [34|27|20(13| 6 |35/28]21|14| 7 |36|29]22[15] 8

Figure 3.4 - Winding scheme corresponding to Rosette 3.1c.

3.1.3. Obtaining the Winding Matrix

Dealing with windings in the form of a matrix brings a great advantage when applying it to

calculate the MMF using Fourier Series. The next procedure explicit how to get from a winding

scheme to the winding matrix.

Sort phases letters in each slot;

Define a coil pitch y (number of slots between two legs of a coil).

Equation 3.4 presents a value that mitigates 5™ harmonic and its multiples;

5N,

e
y £ roun 62p

(representing the slot second layer);

(3.4)

Take a winding scheme and insert a row below it with the same number of slots
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e Repeat the scheme in this new row, shifting it to the right by y slots.
The two resultant rows, with slots as columns, constitute the Winding Matrix. Figures 3.5 to

3.7 show Winding Matrix corresponding to rosettes in Figure 3.1.

123|456 |7 [8]9 101112

ala|l=x<|=x|b|b|a|l-a|lcl|lc|-b]|-b

al|l—<|=<<|b|b|al-alc|lc|-b|-b]| a

Figure 3.5 - Winding Matrix corresponding to Figure 3.1a (y = 5).

112 (3|4 |5 |6 |7 (8|9 101112 13|14 |15

ala|la|l=x<|=<<|[b|b|b|a|la|c|c|c|-b]|-b

<|b|b|lala|la|c|c|b|b|b|la|al|-=x|-=

Figure 3.6 - Winding Matrix corresponding to Figure 3.1b (y = 3).

=&
(M3
Lol
I
LT
o
|

B9 1010213041 50168171 811 9202 12 22 3242526|2 728293031 F.?'J.EliEM-BEJE
|bfalc|-bl-bla|c|bl-alc|c|l-bla|l-c|bl-al-a|c|-bla|-clb|blalc|-bla]|-c|-c/b|-alc|-b
al-clbl-aFalcl-blal-clb|bl-alcl-blal<clc/lbl-alctblalal-clblalcl-b-blal-clbFalc|c|-b

ui]

Figure 3.7 - Winding Matrix corresponding to Figure 3.1c (y = 3).

With the Winding Matrix in hand, it is possible to check the number of windings for each phase.
For example, in Figure 3.5, one can separate the matrix in three, taking only slots that contain
that phase and adding layers with the same phase, making the three matrices in Figure 3.8.

1 2 | 6 7 B | 12
A
2 11| 2| 1
4 5 | 6 | 10 | 11 | 12
B
1 2 1 -1 -2 -1
2 3 | 4 ;] 9 | 10
C
a4 | 2| 1 2 1

Figure 3.8 - Winding Matrix for each phase.

These Winding Matrices are required to the next chapter, which plots Magnetomotive Force

using them as input.
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3.2. MAGNETOMOTIVE FORCE

The second tool uses the Winding Matrix, which is resulted from Tingley Box, to plot the
Magnetomotive force in the air-gap of any machine.

Also known as Ohm’s law for magnetic circuits, the relationship cited in Equation 2.27, sets
MMF as a force analogous to the voltage, in electrics. It is a quantity that forces magnetic flux
through a mean and a product of magnetic flux passage.

This work calculates the MMF caused by armature reacting to the excitation field. Which makes
current flow through armature winding that, considering its number of turns, respects Equation
2.25.

There is a singularity in a SM case that, besides the current varying with time and space, the
number of turns varies with space (along the stator perimeter). For this matter, Fourier series
are used, so it is easier to manipulate each spatial point, summing or subtracting effects of each

wire in a slot. For that, a method to calculate the MMF of a single turn is exposed.

3.2.1. MMF - Single Turn

[28] depicts a method to calculate MMF for a single wire and further, in the same work, for a
turn as sum of two wires with opposite direction currents. Making use of Fourier series for
MMEF calculation, endorsed with FEM simulations.

Equation 3.5 reveals the MMF for a winding with N turns (considering phase shifting of y
radians for a correct slot placement) [25]. Figure 3.9 illustrates three MMF waveforms of a
single turn (N = 1): “Proposed” represents an ideal square waveform; “Analytical” represents

the use of the Fourier Series, and “FEM” is a plot obtained by simulation using FEM.

s T s
F(x) = 2NiZbk sin<k—y> cos <2k—x—k—y> (3.5)
- Ty i Iy
With
_ Tf 2 2 i T
by = (kn) e sin <k - s) (3.6)

Considering 7 defined in Equation 3.3 and s the slot width.
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05

Magnetic flux density (T)
(=)

05
FEM
= = = Analytical
----- Proposed | |
-3000 -2000 -1000 v 1000 2000 3000

x-coordinate (mm)

Figure 3.9- MMF of a single turn.
Source: [28]

3.2.2. MMF - Resultant and Fundamental Waveforms

A resultant MMF, i.e., considering all windings and slots, is obtained by using Equation 3.5
and considering the Winding Matrix in the place of N and a pulsating current in the place of i.
In a first approach, the current is kept as a variable, and MMF for each phase is calculated using
Equation 3.5 and phases Winding Matrix (Figure 3.8). Waveforms for phase A are presented in
Figures 3.10 to 3.12, respectively, for examples in Figures 3.1a, 3.1b, and 3.1c.

The dashed line marks the end of a virtual machine, from where the waveform repeats itself,
marking the ending of a MMF period.

1 2 6 7 8 12

2 1

I
S
—

Figure 3.10 - 24 slots, 2 pair of poles, phase A MMF for a constant current.
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1
Figure 3.11 - 75 slots, 10 pair of poles, phase A MMF for a constant current.
11214 (5|89 [12)15(16(19|20(22)123 26|27 |30|33 (34
2 A2 (1211121121121
I
I
I
n | N
12 3 24 25 / 34 35 35(1

EQSE 10 11 §2 A3 14 151817 18

Figure 3.12 - 72 slots, 10 pairs of poles, phase A MMF for a constant current.
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Considering the current as a pulsating wave in Equation 3.5 and summing the MMFs from the
three phases results in waveforms in Figures 3.13 to 3.15, that are presented at instant t = 0

(red line — phase A; blue line — phase B; green line — phase C; and black line — resultant).

Phase A
Phase B

Phase C

Resultant

Figure 3.13 - 24 slots, 2 pairs of poles, resulting MMF att = 0.

I
Phase A I
B ' | Phase B {_,—
Phase C
J—
i i Resultant
- r_J
| —1— | I f t 1
02 04 U6 08 | 1‘ T2
L J —

5
:

Figure 3.14 - 75 slots, 10 pairs of poles, resulting MMF at t = 0.
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Phase A
Phase B

Phase C

[
I
Resultant :
I

Figure 3.15 - 72 slots, 10 pairs of poles, resulting MMF att= 0.

When introducing time, the current wave pulsates, and the sum of three pulsating waves delayed
120° produces a traveling wave, the resultant MMF for the SG.

What remains is to calculate the fundamental wave from the resultant MMF. From this
fundamental, it is obtained the MMF magnitude. Figures 3.16 to 3.18 present resultant MMFs

along with their fundamentals.

/

05 1 15 \ 2 2.5 3

/

Figure 3.16 - 24 slots, 2 pairs of poles, resultant MMF and fundamental at t = 0.
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02 0.4 \ 06 0.8 1 / 1.2

Figure 3.17 - 75 slots, 10 pairs of poles, resultant MMF and fundamental at t = 0.

e
e

Figure 3.18 - 72 slots, 10 pairs of poles, resultant MMF, and fundamental at t = 0.
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3.3. POLE SHOE ENCLOSURE FACTOR

The third tool does deal with windings as the two before, but another essential parameter that
feeds the reactances calculations, the pole shoe magnetic enclosure factor [29]. This factor is
used to correctly represent the magnetic area that goes in the equation presented in section 2.1.3
and varies depending on the pole shoe shape. For that matter, this tool simulates the pole shoe.
Simulating salient poles in FEM includes, basically, two actions: defining its geometry in
FEMM and its properties.

Drawing a geometry using only FEMM is a laborious task, then a MATLAB interface was
made to create a geometry and to export it to FEMM so that it can be simulated. In this interface,
it is possible to draw three types of pole shoes, illustrated in Figure 3.19:

e One arc pole shoe;

e Two arcs pole shoe;

e Three arcs pole shoe;

— 1starc 1starc

2nd gres

One arc pole shoe Two arcs pole shoe Three arcs pole shoe

Figure 3.19 — lllustrations of three types of pole-shoe addressed in this work, depicting where the arcs are
located.

3.3.1. Pole shoe Geometry

Not all pole parameters need to be inputted, because some are obtainable with others in hand.
This section presents input cases used in this work, and the calculations used to obtain the
remaining parameters.

Some parameters are common to any type of pole shoe (among those types addressed by this
work), which are pole base height and width, respectively h;, and w,,.

Other parameters are presented next, for each type.



3.3.1.1. One arc pole shoe

General pole-shape with dimension parameters is shown in Figure 3.20.

Py

Figure 3.20 - One arc pole shoe dimensional parameters.

e Input Parameters:

6o —hy —w; —wy; — R, —R; —hy — wy

e Calculated Parameters:

w1/2
Ry

aq = arcsin (3.7)

ho = Ry cos(1 — cos a;) (3.8)

D
P, = 5 50— Ry (3.9

61



62

3.3.1.2. Two arcs pole shoe

General pole-shape with dimension parameters is shown in Figure 3.21.

wR, : '

[y

R, A —

Py

Figure 3.21 - Two arcs pole shoe dimensions parameters.

Input Parameters:

0p—hy—wy—wy,—R,— Ry —wR; — R, — hy, —wy

Calculated Parameters:

aq

. wy/2
a, = arcsin (3.10)
Ry
(1.)1/2 - (R1 - Rz) Sln a1 _ (3.11)

a, = arcsin
R,
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Three arcs pole shoe

3.3.1.3.

General pole-shape with dimension parameters is shown in Figure 3.22.

=

;- s ol ] = ===

T Sttt

-

3

o
3

————— A o e e L e

Figure 3.22 - Three arcs pole shoe dimensions parameters.

Input Parameters:

60_h1_w1_R1_wR1_R2_hb_wb



e Calculated Parameters:

wR,/2
R,

a, = arcsin

a:?i_(Rl_Rz)Cosal_SO_hl

w
b =71— (Ry —R,)sina,

Rz_b

cos(a; —ay) +sin(a; +a) =1

Solving Equation 3.15 for a, results in the remaining parameters:

a
Ry =Ry ———
3 2 cos(ay + ay)

U3 =5 — 01 — Ay

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

64
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3.3.2. Finite element Simulation

With geometry parameters defined and inputted, MATLAB draws and exports to FEMM the
pole shoe shape along with appropriate boundaries. An example is shown in Figure 3.23, where
not only the pole is drawn, but also the stator inner perimeter, rotor-rim outer perimeter, and

symmetry imaginary lines over air-gap (direct and quadrature axes).

E femm - [PS] - O e
E File Edit View Preblemn Grid Operation Properties Mesh  Analysis Window Help -

=)

Air

I

Air

g rs

(x=374.0000,=3804.0000)

Figure 3.23 - Three arcs pole example in FEMM.

It can be seen that another arc is drawn, concentric to stator inner diameter that passes through
the air-gap average “point.” That is due to the FEMM requirement to have a previously defined
line (or arc) drawn over which graphics can be plotted. This arc is precisely the region of interest
for magnetics studies in this work, where MMF was calculated and, in this section, where

magnetic flux densities are plotted.
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Materials properties are set for the only two areas inside the boundaries, which are air-gap areas,
and as can be seen in Figure 3.23 they are set as “Air.” For the boundaries, correct properties

are shown in Figure 3.24.

Neumann
A=0
A=1

Figure 3.24 - Boundaries properties for pole shoe simulation.
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With boundaries and material appropriately set, a simulation can be done. It is interesting to see
the example of the magnetic flux lines plot (Figure 3.25) and magnetic flux density over the

air-gap arc (Figure 3.26).

E femm - [PS] — O X
& File Edit Zoom View Operation  Plot X-Y  Integrate  Window Help - 8 x

D|@| [= /(x| ksl |SS8
ll’lllllllll N8

iy

3.373e+000 : >=3.551e+000
3.196e+000 : 3.373e+000
3.018e+000 : 3.196e+000
2.841e+000 : 3.018e+000
2.663e+000 : 2.841e+000
2.486e+000 : 2.663e+000
2.309e+000 : 2.486e+000
2.131e+000 : 2.309e+000
1.954e+000 : 2.131e+000
1.776e+000 : 1.954e+000
1.599e+000 : 1.776e-+000
1.421e+000 : 1.599e-+000
1.244e+000 : 1.421e+000
1.066e+000 : 1.244e+000
8.801e-001 : 1.066e+000
7.116e-001 : 8.891e-001
5.342e-001 : 7.116e-001
3.568e-001 : 5.342e-001
1.793e-001 : 3.568e-001
<1.888e-003 : 1.793e-001

ensity Plot: |B], Tesla

'
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I
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wa e |
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[x=491.0000.=4006.0000]

Figure 3.25 — Magnetic flux lines and color density plot.

E| femm - [Untitled] - O X
b‘Eile Edit View Window Help - 8 x
O|&=
2| -
- B.n, Teda

3

2

1

D T T T T T T

0 =1 100 150 200 23] 300
Length, mm
52 PS5 I Untitled

{x=404.239,=2.20958)

Figure 3.26 - Magnetic flux density plot over the air-gap line.
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Data shown in Figure 3.26 is then imported to MATLAB, normalized, and first harmonic and
mean value extracted (Figure 3.27). The normalization is done to neglect the saturation effect,
as the simulation regards effects from pole shoe shape only. An important parameter is obtained

from this tool since this mean value corresponds to the pole enclosure factor [29].

. Paole Field -
— Fields 1st Harmaonic
—-—- Mean Value

Figure 3.27 - Magnetic Flux Density with some extracted parameters.
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3.4. EFFECTIVE PACKAGE MAGNETIC LENGTH

The fourth and last tool calculates the effective package length, which, like the third tool,
simulates actual shape to get density flux curves. The Effective Magnetic Length is something
to be regarded when calculating magnetic flux in air-gap, because not all flux lines cross the
air-gap following a minimum path (straight line). They are sparse in extremities due to leakage
flux. Then, for an accurate portrayal of air-gap quantities, simulation is required to compensate
for this difference, representing the pole-end actual geometry (damper slots ring and pole end)
correctly.

A core axial enclosure factor can be defined as the ratio between the flux density in a length
that covers from the stator center to this critical region (pole extremity*) and that density
without the critical region. Given a normalized density plot B(z), where z stand for axial length,

a pole axial enclosure factor a,:

f B(z)dz (3.18)

* For a stator with length [, the reference line [ that defines the critical region is chosen by
taking some considerations further ahead.

To correctly represent pole and stator extremities, the geometry in Figure 3.28 is applied.
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Is

ldamp i l5

lps

Figure 3.28 - Axial dimensions around air-gap.

Some considerations are made before simulating it:

e Itis considered actual stator axial height and pole axial height;

e Length of interest (plotting region):
o From 4 minimum air-gaps of distance before the damping winding slot (lzgmp — 46);
o To half minimum air-gap beyond stator axial length (I + &,/2);
o 1= [laamp — 480,15 + 8o/2]*
These values were obtained after some simulations, where it was observed that results did
not change significantly after increasing this interest region.

e Instead of using open boundaries, it is defined as a squared region of air, with dimensions
that do not affect the leakage significantly.

In Figure 3.29 it is shown the geometry in FEMM, zoomed-in Figure 3.30. The geometry is

defined by inputting parameters shown in Figure 3.28.

*Figure 3.30 depicts the region of interest with dimensions
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Figure 3.29 - A SM axial extremity in FEMM.
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Figure 3.30 - A SM axial extremity in FEMM (Detail).




With boundaries set as in Figure 3.31.

Neumann
A=0
A=1

=

Figure 3.31 - Boundaries properties for pole end simulation

Figures 3.32 to 3.34 show simulation results:

B femm - [EL] — O *
s File Edit Zoom View Operation Plot X-V  Integrate Window Help -8 x
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3.973e+000 : 4.257e+000
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3.406e+000 : 3.689e+000
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2.838e+000 @ 3.122e+000
2.554e+000 : 2.838e+000
2.270e+000 @ 2.554e+000
1.987e+000 @ 2.270e+000
1.703e+000 : 1.987e+000
1.419e+000 @ 1.703e+000
1.135e+000 : 1.419e+000
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Figure 3.32 - Magnetic flux lines and color density plot.
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Figure 3.33 - Magnetic flux lines and color density plot (Detail).
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Figure 3.34 - Magnetic flux density over the region of interest.
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Figure 3.35 shows the same graphic in Figure 3.34, normalized, and side to side to the geometry
simulated, with a dashed line marking the stator end. Red line represents the plotting region.
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Ae =019938

Figure 3.35 - Simulated geometry and normalized magnetic flux density plot.

With density plots in hand, it is possible to calculate a, using Equation 3.8. The next chapter

shows results from three different applications.
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4. INTERACTION WITH MATLAB AND
APPLICATIONS

MATLAB is a software that has a set of tools to solve engineering problems, mainly when
dealing with arrays and matrices. It was chosen for this work due to the availability of a set of
commands present in FEMM made to work together with Octave (Same language as
MATLAB).

A set of routines were created using MATLAB guide, summarizing the tools described in this
work in one application.

Three benchmarks from General Electric are used for this work validation, two of them from
real salient pole SG. The third one is created by replicating one of the two and changing its pole

shoe shape. Table 4.1 presents all significant data.

Table 4.1 - SGs parameters for validation.

Parameter SG1 SG2 SG3
Number of stator slots 144 408 144
Number of pair of poles 4 20 4
Stator outer diameter [mm] 3212.0 8900.2 3212.0
Stator inner diameter [mm] 2350.0 8200 2350.0
Stator slot height [mm] 131 150.08 131
Stator slot width [mm)] 16.42 22.72 16.42
Type of Pole Shoe 3arcs 3arcs 1arc
Minimum air-gap [mm] 18 24 18
Pole shoe height [mm)] 75 35 75
Pole shoe minor width [mm] - - 635
Pole shoe greater width [mm] 635 480 635
Corner radius [mm] - - 15
Pole shoe greater radius [mm] 1157 4076 1014.4
Pole shoe greater radius width [mm)] 403.6 282.1 -
Pole shoe minor radius [mm] 321.44 206.37 -
Pole core height [mm] 201 226 201
Pole core width [mm] 460 350 460




Stator end ladder total height [mm] 12 12 12
Stator end ladder total width [mm] 20 20 20
Number of stator end ladder steps 4 4 4
Pole shoe axial length [mm] 1580 2010 1580
Pole core axial length [mm] 1580 2050 1580
Stator axial length [mm] 1600 2050 1600
Difference height between Pole core and end [mm] 0 0 0
Pole end heel height [mm] 0 0 0
Damper ring slot ramp length [mm] 20 20 20
Pole end minor length [mm] 200 65 200
Pole end greater length [mm] 87.5 85 87.5
Pole end ramp angle [°] 23.2 11.6 23.2
Damper ring slot length [mm] 18 23 18
Damper ring slot height [mm] 35 30 35

4.1. Results for SG1

Results in Figures 4.1 to 4.10.
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Figure 4.1 - Phasorial rosette and winding scheme for SG1.



|4 SMfrom0 —
QS|
Winding Scheme MMF Resultant MMF Pole Shoe Inductances dgq0 Pole Length
Stator
Outer Diameter 3212| mm
Inner Diameter 2350 mm
Slot's height 131 mm
Slot's width 16.42| mm
Add Poles
Figure 4.2 - Stator data for SG1.
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Figure 4.3 - Winding Matrix for SG1.
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Figure 4.4 - Resulting MMF for SG1.

|4 SMfrom0

:+‘.\_ :,\_\. | {”’?

Winding Scheme

Type 3 Arcs-R2

o0

R1

wh1

a3

hi

wh

Draw Pole

1s7

40386

321.44

Stator MMF R MWF Pole Shoe Inductances dgq0 Pole Length

mm

mm

mm

mm

mm

mm

mm

Pole Shoe

///—\

Figure 4.5 - Pole Shoe for SG1.
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Figure 4.7 - Benchmark pole field curve for SG1.
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Figure 4.10 - Stator with poles for SG1.
4.2. Results for SG2
Results in Figures 4.11 to 4.20.
— X

(4] sMfrom0

GLI&y | &
N Al

Winding Scheme

MNumber of stator slots | 408

Number of poles pairs 20

Winding Scheme Stator MMF Resulttant MMF Pole Shoe Shoe Magnetice Effective Length

=l
E
Cad
=

Generate Scheme 9457 E’E’Zmﬂ‘ﬂa 67263746 5
RN
_ 49 ANVl o
q=32/5 NNANNLLL L i i), 34
/0 SNV d /7 80y
Dp = 102 o0 SV 1777/
0 ST 777
Cp=5 71 WL .'I;Hy
! -
Nvm = 4 i o
Z
A __€ . B
1]2[3 14567 [8]afdr 1213145161718 oo 122232aRs2eb7l2a2g30/31[: ¢w435£373&i39|40414243441454ﬁ47 Jagle
1 2 3 [Tlal [T {[s[ [ [T]7e 7l [ [ []s HE) [ I
22 l23 Fa H \% 27] ’@‘ P 3ol [ [ | [a1
| s l43] 44 a5 a7 n }y
%r_sa |§4 Ilﬁ‘—flﬁﬂp ﬁ%l%%\m 71 i
[ g3l [p4] lgs| |87 Ia8] lodl [ o1 [ o T
[43342964[3 [a4la524 5 4 45 5 laela7l26l67] 6 la7lasl2766] 7 4siagl2el6el 8 glooi20]70 o [solatl3ol7af1ol51l02fa

Figure 4.11 - Phasorial rosette and winding scheme for SG2.
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Figure 4.12 - Stator data for SG2
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Figure 4.13 - Winding Matrix for SG2.
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Figure 4.15 - Pole Shoe for SG2.
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Figure 4.18 - Effective Magnetic Length analysis for SG2.
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Figure 4.19 - Benchmark airgap field in axial direction for SG2.
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Figure 4.20 - Stator with poles for SG2.

4.3. Results for SG3

Significant results in Figures 4.21 to 4.24.
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Figure 4.21 - Pole Shoe for SG3.
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Figure 4.24 - Stator with poles for SG3

4.4. Results

4.4.1. Pole enclosure factor

From Figures 4.6, 4.16 and 4.22 the pole density flux plot is obtained, from that the pole
enclosure factor is extracted and both, plot shape and factor value, can be compared with GE
benchmark. By visual inspection, the curve shapes obtained coincides with the benchmark ones,
even with the lack of information on the benchmark simulation parameters. Table 4.2 presents

a comparison between factors obtained using this work tool and from GE benchmark.

Table 4.2 - Pole enclosure results compared to benchmark

SG GE Benchmark FEMM + MATLAB Error
1 0.699 0.708 0.009
2 0.729 0.721 0.008
3 0.688 0.689 0.001
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4.4.2. Axial enclosure factor

From Figures 4.8 and 4.18 axial enclosure factors are obtained. Visually, it is notable the
difference in pole extremity plots from this work tools and GE benchmark, that is due to the
different parameters considered during simulations, for boundaries and materials. The access
limitation to benchmark information (only SG dimensions, airgap field in axial direction plot
as image and axial enclosure factor) caused this discrepancy. Although, factor values

comparison in Table 4.3 shows how accurate results are.

Table 4.3 - Axial enclosure results compared to benchmark.

SG GE Benchmark FEMM + MATLAB Error
1 0.9851 0.9852 0.0001
2 0.9910 0.9909 0.0001
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5. CONCLUSIONS

This dissertation presented a collection of procedures together with FEM to provide a general,
simple and organized way to evaluate most common salient pole SG magnetics effects with air-
gap line as reference, in a form of a set of tools using MATLAB interface. The tools calculate
two important machine quantities: Magnetomotive force and factors that are key to estimate
magnetic flux. The tools comprehend the study of: winding distribution using Tingley Box;
Magnetomotive Force calculation from a given winding matrix; Pole shoe enclosure factor
calculation for any salient pole machine; Axial enclosure factor calculation for any usual rotor
construction.

In winding distribution, Tingley box proved to be a suitable and simple algorithm to set any
combination in number of stator slots and pair of poles into a well-balanced winding scheme.
For generators with a large number of slots it is difficult to apply the method by hand, so the
implementation of it as an algorithm embraces these cases. Tingley is a clean way to show
distribution of windings in slots and provides the winding matrix as output.

Applied examples of Winding Matrix maintains it status as a strong tool to manipulate windings
in a more basic level, it allows changing the number of turns in each slot and the pitch of layers
with ease, justifying its use, together with the MMF of a single turn formula, to determine the
resultant MMF of any usual machine.

The use of Winding Matrix to calculate MMF is the start of more complete analyzes for
machines, allowing the inclusion of unbalances as short-circuits in turns in specific slots, which
isa common fault in SGs. This aspect allied with a real-time simulation is a strong utility toward
predictive maintenance of power systems.

The two other tools presented in this dissertation makes a magnetic study using Finite Element
Analysis in order to obtain enclosure factors, which are central to determine magnetic quantities
that represent the machine. The use of MATLAB and FEMM provides a user-friendly interface
that simulates salient pole shoes and their axial extremities with accuracy, which is confirmed
when using GE benchmark data and comparing results.

Individually, the tools have proven their value by presenting valuable outputs as winding
matrix, MMF, pole shoe enclosure factor and axial enclosure factor. And yet, when mutually
applied, they allow the estimation of important magnetic quantities that are for use of machine
manufacturers and for dynamic studies and simulation, using input parameters known from

design and rated information, for any usual salient pole SM.
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6. FUTURE WORKS

It is left to quantify the magnitudes of MMF and magnetic flux curves obtained in this work,
and use this information to determine the machine reactance matrix.

To include the fault analysis in the MMF determination tool, allowing one to add faulty turns
in one or more specific slots. Consecutively, combine this tool to a real-time simulator that
analyzes fault in power systems.

To consider field and damper windings in the salient pole magnetic study, adapting the existing

tools for their cases, completing the salient pole SM representation.
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