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ABSTRACT 

Synchronous generators have proven over the decades to be the feasible solution for three-phase 

power systems and have consolidated as the vital piece in power plants in which the source of 

energy is renewable, as hydraulic or wind. Thus, with a constant increase in environmental 

concerns in current times, it is also expected an increase in synchronous machine usage, along 

with more research and development. A challenge would be to integrate the traditional 

consolidated knowledge with modern computational tools. Since when it comes to electrical 

machines, there is more than one procedure or technique to solve the same question, many 

combinations of new algorithms and books from a century ago have yet space to be approached. 

This work proposes and develops a set of tools to allow the analysis of magnetics effects in a 

salient pole machine with general, accurate, and fast solutions, applying what has been taught 

for the first “machinerists”, as Tingley and Park, alongside with MATLAB and Finite Element 

Method. Its objectives are to get Magnetomotive Force and Magnetic Flux Density of a given 

machine so then, in future work, to calculate the inductance matrix. MMF is calculated through 

Tingley Box, Winding Matrix, and Fourier Series, allowing the analysis for every single turn. 

Flux density is calculated through Finite Element Analysis, which allows the calculation of 

enclosure factors that support the accuracy of the tool by comparing it with manufacturers' 

benchmarks. In the end, a guide in MATLAB is shown, which aggregates everything exposed 

with a user-friendly interface. 

 

Index terms – Enclosure Factor, Finite Element Analysis, Magnetic Simulation, Magnetomotive 

Force, Salient Poles, Synchronous Generators, Winding Distribution. 
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1. INTRODUCTION 

Currently, scarcity of resources along with environmental and social conditions brings a global 

concern on energy supplies; those are some of the factors that make renewable generation 

experience a constant expansion, as seen in Figure 1.1 and Figure 1.2 [1]. There is a total 

hydropower generation capacity of 1.267 GW installed around the globe, and pumped storage 

capacity of 153 GW [2], which suggests it as a reasonable choice among renewable sources for 

large-scale production. Developing technologies and tools that allow better utilization of these 

resources help to maintain this growth, bringing investment and opportunities altogether. 

  

Figure 1.1 - Electricity generation by source, World 1990-2017 

Source: [1] 

 

Figure 1.2 - Renewable electricity generation by source (non-combustible), World 1990-2017  

Source: [1] 
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Improvements in electrical power generation as a centennial technology requires to target more 

than in the system physically, as much has been done in a macro scenario. Hence, unless another 

big breakthrough of physics or materials towards energy is made, changes tend to come from 

studying effects and behaviors that govern these systems. Studies can indicate generation’s 

vulnerabilities as well as points where improvements are more significant, and they are also 

essential to help to validate theories and simulating different scenarios, which is often 

impractical.  

This dissertation focus is in Synchronous Machines, a type of energy converter commonly 

adopted in hydro-generation and as a load for many applications, due to their advantageous 

characteristics such as: 

• Controllable power factor, by changing its excitation; 

• High efficiency, usually over 90%; 

• Wider air-gap lengths grant mechanical stability. 

As the use of mathematical modeling for the representation of actual phenomena, simulations 

are used in various fields as natural sciences, social sciences, and, of course, engineering. They 

enable studying different effects of what it is modeled, predicting, and, sometimes, controlling 

its behaviors. Such a powerful tool finds limitations in how complex a model can become, and 

the resources needed to solve it. Numerous models exist for synchronous generators, many 

coming from Park’s two reaction theory [3], and all use inputs from reality or acceptable 

presumptions of it. 

Modeling has constantly been evolving due to better analytical solutions and computation 

progress, in both hardware (better processors, memory, refrigeration techniques) and software 

(finite element methods, artificial intelligence, parallel processing). 

Finite element analysis (FEA) is suitable for handling magnetic problems, such as energy 

converters. Both motors and generators have been studied using this technique ( [4], [5], [6], 

and [7]). FEA is mentioned in most recent books about SM, with chapters dedicated to it [8]. 

An example of an FEA output is seen in Figure 1.3. 

For this work, it is used MATLAB and FEMM (Finite Element Method Magnetics), which is a 

suite of programs for solving low-frequency electromagnetic problems on two-dimensional 

planar and axisymmetric domains. 
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Figure 1.3 - Magnetic flux lines and flux density map in Induction Motor. 

Source: [5] 

1.1. Dissertation Outline 

This dissertation is composed of 5 chapters. In this chapter, a brief introduction is presented 

about the present scenario in energy sources and the importance of SGs and studies on them. 

The second chapter is a literature review, synthesizing SMs and FEM, and their elements that 

matter most for this work. 

The third chapter goes through this work methodology, separated into four sections, one for 

each tool: 

• Tingley Box and Winding Matrix, which is this work first objective, to set winding in a 

standard fashion and getting the Winding Matrix as a result. 

• Magnetomotive Force, which clarifies how MMF is obtained for any SG condition, 

from any given Winding Matrix. 

• Pole Shoe Enclosure Factor, which describes pole shoe geometry to thereby, used as 

FEM input, obtain their magnetic simulation overview and enclosure factor. 

• Effective Core Magnetic Length, goes through axial enclosure factor, getting the actual 

core length for magnetic calculations. 

The fourth chapter shows the Interaction with MATLAB and some Applications, with results 

from an interface that integrates all magnetic study done. 

The fifth chapter concludes this dissertation, analyzing its results and the usability of the created 

interface. 

The sixth and last chapter points to some future opportunities left open with this work, along 

with some improvements.    
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1.2. Objectives 

To provide a completer and more reliable set of tools for analyzing main components in a usual 

SM design. Grouping traditional procedures and Finite Element Analysis that enable validation 

of essential aspects, as MMF and flux density waveforms as well as pole and axial enclosure 

factors, based only in some machine dimensions and rated data. All together in a user-friendly 

interface using MATLAB and FEMM.  
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2. LITERATURE REVIEW 

With the intention of achieving tools development, some definitions need to be stated, both for 

Synchronous Machines and Finite Element Analysis. This chapter presents some key elements 

that one can understand and repeat the results.  

2.1. Synchronous Machines 

A SG, mostly, is constituted of elements that make use of Faraday’s principle, which foresee 

that the interaction of a magnetic field with an electric circuit creates an EMF, effect known as 

electromagnetic induction [9]. Therefore, one element is responsible for producing the magnetic 

field and another composed by a set of armature coils in which voltage is inducted, uniquely 

when there is relative motion between these elements. This inducted current, flowing through 

armature windings, also produces a magnetic field, which is opposite to the one that caused it. 

This phenomenon is called armature reaction, and it is based on Park’s theory [3]. 

The rotor is the moving part of a machine. In a SM rotor, an exciting magnetic field is produced 

by a set of coils on the rotor periphery, known as field winding [9]. There are two types of 

poles: salient (salient pole rotor) and non-salient (cylindrical, solid or round rotor), a cross-

section of both types can be seen respectively in Figures 2.1a and 2.1b. There are some rotors 

with no windings on them, as for PMSG (excitation field is generated by PM) and reluctance 

machines (torque is created through magnetic reluctance [10]). 

 

a) Salient Pole Rotor 

  

b) Round Rotor 

Figure 2.1- Cross-section of different types of a SM rotor. 

Source: [11] 

The second and stationary element, the stator (or armature), supports and provides a magnetic 

flux path for the armature windings [9]. For a vast majority of cases, SGs generate three-phase 
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power. Thus there are three sets of armature coils distributed in intervals of 120° (electrical 

degrees), so that is the difference between voltages phases. More about the disposition of 

armature windings and the difference between electrical and mechanical degrees are discussed 

further. A general stator cross-section can be seen in Figure 2.2. 

 

 

Figure 2.2 - Cross-section of a SM stator.  

Source: [11] 

Stator slots can be built as a) open, b) semi-open, c) and d) semi-closed, e) closed, as can be 

seen in Figure 2.3. Open and semi-open are usually rectangular, while semi-closed and closed 

ones can present rectangular or trapezoidal shapes with round angles [12]. 

 

Figure 2.3 - Different slots shapes. 

Source: [12] 

A slot shape depends mainly on the winding and how it is insulated, which in turn depends on 

the machine power. Closed slots are for specific purposes; semi-closed are applied in low 

voltage and low and medium power machines; semi-open slots are applied in low voltage and 

medium power machines; and open slots are applied in all high voltage machines and low 

voltage with medium or high-power machines [9]. 

Armature slots are built as single- or double-layer slots. Single-layer is more common in smaller 

machines, with a number of windings as half of the number of slots (to each winding occupies 
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two slots). For this configuration, it is preferable the use of semi-closed or closed slots. The 

double-layer reduces costs, allowing the number of windings to be equal to the number of slots, 

granting a uniform shape for the coils. Figure 2.4 shows a merely illustrative machine design 

with double layer slots. 

 

 

Figure 2.4 - Double-layer slot in a salient poles SG. 

One of the most significant SM features is the relationship between frequency, speed, and the 

number of pairs of poles, expressed in Equation 2.1. SM rotor, due to field excitation (or PM, 

depending on the machine), follows the magnetic field produced by the armature, rotating at 

the same speed [13]. This behavior is reciprocal to a machine working as a generator or a motor.  

 

 
𝑛 =

60 × 𝑓

𝑝
 (2.1) 

 

Salient poles SGs may present from a single pair of poles as in small machines to dozens of 

pairs of poles as in vertical generators (Figure 2.5), depending on the practice demand. As seen 

in Equation 2.1, a more significant number of poles means lower rotor speeds for a given 

frequency, setting it as a preferential generator to use in hydroelectric power plants, where 

turbines speeds are lower than 200 rpm.  
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Figure 2.5 –SG salient poles rotor being installed in Itaipu, 1760 ton, and 90 rpm. 

Source: [14] 

Although more elements of a machine are applicable for magnetic studies, this work focuses 

on armature windings and salient rotor design, which are vital information to calculate 

Magnetomotive Force and Magnetic Flux Density in air-gap. For this reason, more of these 

subjects are addressed in further chapters.  
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2.1.1. SMs Windings 

Three-phase windings require special attention in their construction because generated voltage 

wave shape depends directly on it. In [12] there is specific care at explaining the most common 

winding scenarios, whereas, for this work, only double layers windings are addressed. There is 

an essential link among the number of slots (𝑁𝑠), number of phases (𝑚) and number of pair of 

poles (𝑝) that dictates how to organize windings, and 𝑞 is commonly used to express this 

relation.  

 
𝑞 =

𝑁𝑠
𝑚 × 2𝑝

 (2.2) 

 

Reducing 𝑞 to minimum factors: 

 
𝑞 = 𝑎 

𝑏

𝑐
=
𝑑

𝑐
 (2.3) 

 

Some ponderations can be done concerning Equation 2.3 factors, which are: 

• Integral 𝑞 (𝑐 = 1) 

An integral 𝑞 is where first harmonic in pole fields coincide with armature reaction first 

harmonic (MMF). Different phases start in an interval of  2𝑞 (120°). 

• Fractional 𝑞 (𝑐 > 1) 

This case creates as good as a waveform than an integer 𝑞, and with fewer slots. 

A fractional 𝑞 also gives more options of placements; in a further chapter, a procedure known 

as Tingley Box is presented, which standardizes this work choice of placement. 
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a) Lap Winding 

Lap winding applies the same coil pitch for all coils, starting at a top layer, passing through a 

bottom layer, and then coming back, forming then, 𝑞 groups of phases. These groups are 

connected and form the machine terminals. 

Figure 2.6 shows an example of lap winding in AC machines. 

 

Figure 2.6 - Lap Winding for AC machine with 2 poles and 24 slots. 

Source: [15] 
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b) Wave Winding 

Wave winding presents no deviation in the magnetic field, which happens when windings from 

different phases share the same slot. One continuous coil goes from a slot to another spaced by 

one coil pitch, in a corrugated way. This coil composes a phase, and its terminals are then the 

machine terminals for that phase.  

Figure 2.7 shows an example of wave winding in AC machines. 

 

Figure 2.7 - Wave Winding in AC machine with 4 poles and 24 slots. 

Source: [15] 
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2.1.2. SM Mathematical Modeling and Park Transformation 

In this subchapter, it is shown how SM models can be deducted from elements previously 

exposed in this work. Park Transformation [3], which allows one to calculate machine 

quantities in a more comfortable and natural universe, changes an ordinary abc axis to one 

moving alongside the rotor, called 0dq. The following demonstration makes explicit why 

describing accurately magnetic quantities is fundamental for modeling. 

Firstly, it is considered a machine with 03 coils in its stator, 01 field winding, and 02 damper 

windings. Terminal voltages can be calculated using Equation 2.4. For magnetically coupled 

circuits, it is needed to consider voltage drops in windings (the first element in the equation) 

and reactions due to flux linkages (second element in the equation). The sums are to consider 

all drops (resistances) and flux linkages. 

 

 
𝑣 = ±∑(𝑟 × 𝑖) ±∑

𝑑𝜆

𝑑𝑡
 (2.4) 

𝑣 

𝑟 

𝑖 

𝜆 

- Terminal voltage 

- Winding resistance 

- Current flowing in the winding 

- Total flux linkage 

 

 

Where: 

 𝜆 = 𝐿 × 𝑖 (2.5) 

𝐿 - Winding inductance  

 

Figure 2.8 shows a generator with one pair of poles, rotating at speed ω. Stator windings a, b 

and c are out of phase by 120°. 𝑆 represents where a coil starts, and 𝐸 where it ends. Subscripts 

are used as follows: 

 

𝑎  Phase A  

𝑏 Phase B 

𝑐 Phase C  

𝑜 Zero sequence 

𝑑 Direct axis 

𝑞 Quadrature axis 
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𝐹 Field winding 

𝐷 Direct axis damper winding 

𝑄 Quadrature axis damper winding 

 

 

 

Figure 2.8 – Salient poles SG, with a single pair of poles. 

There are some considerations to be pointed out before further analysis: 

• 𝑑 axis is placed in minimum air-gap reluctance direction, and 𝑞 axis is 90° lagged, 

electrically; 

• The rotor rotation direction is counterclockwise; 

• The distance between adjacent poles is 180° (electrical degrees), where for a 𝑝 number of 

pair of poles: 

 𝑝 × (𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒𝑠) = 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 (2.6) 

   

• Magnetic flux flows from south to north (inside the core); 

• “A” axis is taken as reference for any angular displacement; 
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• Current has a positive direction when it flows out of generator terminals. 

Calculations for a primitive machine (with just one pair of poles), as in Figure 2.8, can be 

applied for any regular machine, which can be shown to be equivalent [16]. 

Given previous considerations, one can draw the following vector diagram with abc projections 

in 0dq axis. 

 

 

Figure 2.9 - Vector diagram in 0dq axis. 

From Figures 2.8 and 2.9 one can get Equation 2.7: 

 

 {

𝜆𝐹𝑑 = 𝐿𝐹𝐹𝑖𝐹 + 𝐿𝐹𝐷𝑖𝐷 − 𝐿𝑎𝐹(𝛴 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑜𝑛 𝑑 𝑎𝑥𝑖𝑠)
𝜆𝐷𝑑 = 𝐿𝐹𝐷𝑖𝐹 + 𝐿𝐷𝐷𝑖𝐷 − 𝐿𝑎𝐷(𝛴 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑜𝑛 𝑑 𝑎𝑥𝑖𝑠)

𝜆𝑄𝑞 = 𝐿𝑄𝑄𝑖𝑄 − 𝐿𝑎𝑄(𝛴 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑜𝑛 𝑞 𝑎𝑥𝑖𝑠)                 
 (2.7) 

 

 {
𝛴 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑜𝑛 𝑑 𝑎𝑥𝑖𝑠 = 𝑖𝑎 cos 𝜃 + 𝑖𝑏 cos (𝜃 −

2𝜋

3
) + 𝑖𝑐 cos (𝜃 +

2𝜋

3
)

𝛴 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑜𝑛 𝑞 𝑎𝑥𝑖𝑠 = 𝑖𝑎 sin 𝜃 + 𝑖𝑏 sin (𝜃 −
2𝜋

3
) + 𝑖𝑐 sin (𝜃 +

2𝜋

3
)  

 (2.8) 
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Thus, defining two fictitious currents, 𝑖𝑑 and 𝑖𝑞 , as follows: 

 

 {
𝑖𝑑 ∝ (𝛴 𝑜𝑓 𝑑 𝑎𝑥𝑖𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠)

𝑖𝑞 ∝ (𝛴 𝑜𝑓 𝑞 𝑎𝑥𝑖𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠)
 (2.9) 

 

 {
𝑖𝑑 ≜ 𝐾 [𝑖𝑎 cos 𝜃 + 𝑖𝑏 cos (𝜃 −

2𝜋

3
) + 𝑖𝑐 cos (𝜃 +

2𝜋

3
)]

𝑖𝑞 ≜ 𝐾 [𝑖𝑎 sin 𝜃 + 𝑖𝑏 sin (𝜃 −
2𝜋

3
) + 𝑖𝑐 sin (𝜃 +

2𝜋

3
)]

 (2.10) 

 

The value of 𝐾 that is used here comes from an improvement introduced by Leweis in [17]. 

There is defined 𝐾 to obtain a transformation invariant in power. More can be read in Lewis 

work, here it is just defined: 

 

 𝐾 ≜ √
2

3
 (2.11) 

 

To handle Equation 2.10 in matrix notation, a new variable must be created. So, the third 

reference quantity is stationary proportional to the zero-sequence current: 

 

 𝑖𝑜 ≜
1

√3
(𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐) (2.12) 

 

In equilibrium conditions 𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐 = 0, and considering a peak current value of IP: 

 

 

{
 
 

 
 
𝑖𝑎 = IPsin(𝜔𝑡)            

𝑖𝑏 = IPsin (𝜔𝑡 −
2𝜋

3
)

𝑖𝑐 = IPsin (𝜔𝑡 +
2𝜋

3
)

 (2.13) 

 

Then, there is the following set of equations: 
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{
 
 
 
 

 
 
 
 
𝑖𝑜 =

1

√3
(𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐) = √

2

3
(
1

√2
𝑖𝑎 +

1

√2
𝑖𝑏 +

1

√2
𝑖𝑐)      

𝑖𝑑 = √
2

3
[𝑖𝑎 cos 𝜃 + 𝑖𝑏 cos (𝜃 −

2𝜋

3
) + 𝑖𝑐 cos (𝜃 +

2𝜋

3
)]  

𝑖𝑞 = √
2

3
[𝑖𝑎 sin𝜃 + 𝑖𝑏 sin (𝜃 −

2𝜋

3
) + 𝑖𝑐 sin (𝜃 +

2𝜋

3
)]    

 (2.14) 

In matrix form: 

 

 [

𝑖𝑜
𝑖𝑑
𝑖𝑞

] = √
2

3

[
 
 
 
 
 
 
1

√2

1

√2

1

√2

cos 𝜃 cos (𝜃 −
2𝜋

3
) cos (𝜃 +

2𝜋

3
)

sin 𝜃 sin (𝜃 −
2𝜋

3
) sin (𝜃 +

2𝜋

3
)
]
 
 
 
 
 
 

[
𝑖𝑎
𝑖𝑏
𝑖𝑐

] (2.15) 

 

A simplified notation of Equation 2.15 is defined: 

 

 𝐼𝑜𝑑𝑞 ≜ ℙ𝐼𝑎𝑏𝑐 (2.16) 

 

ℙ is the modified Park Transformation operator, so: 

 

 ℙ ≜ √
2

3

[
 
 
 
 
 
 
1

√2

1

√2

1

√2

cos 𝜃 cos (𝜃 −
2𝜋

3
) cos (𝜃 +

2𝜋

3
)

sin 𝜃 sin (𝜃 −
2𝜋

3
) sin (𝜃 +

2𝜋

3
)]
 
 
 
 
 
 

 (2.17) 

 

Similar equations can be written for voltages and fluxes: 

 

 𝑉𝑜𝑑𝑞 = ℙ𝑉𝑎𝑏𝑐 (2.18) 

 

 𝜆𝑜𝑑𝑞 = ℙ𝜆𝑎𝑏𝑐 (2.19) 

 

Using the inverse of ℙ: 

 

 𝐼𝑎𝑏𝑐 = ℙ
−1𝐼𝑜𝑑𝑞 (2.20) 
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It can be shown that the inverse matrix of Equation 2.17 is as follows: [18] 

 

 ℙ−1 = √
2

3

[
 
 
 
 
 
 
1

√2
cos 𝜃 sin 𝜃

1

√2
cos (𝜃 −

2𝜋

3
) sin (𝜃 −

2𝜋

3
)

1

√2
cos (𝜃 +

2𝜋

3
) sin (𝜃 +

2𝜋

3
)
]
 
 
 
 
 
 

 (2.21) 

 

It can be noticed that ℙ𝑇 = ℙ−1, which makes ℙ orthogonal and invariant with power. And so, 

the following equation is valid: 

𝑃 = 𝑣𝑎𝑖𝑎 + 𝑣𝑏𝑖𝑏 + 𝑣𝑐𝑖𝑐 = [𝑣𝑎 𝑣𝑏 𝑣𝑐] [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] = 𝑉𝑎𝑏𝑐
𝑇 × 𝐼𝑎𝑏𝑐 

𝑃 = 𝑉𝑎𝑏𝑐
𝑇 × 𝐼𝑎𝑏𝑐 = (ℙ

−1𝑉𝑜𝑑𝑞)
𝑇
× (ℙ−1𝐼𝑜𝑑𝑞) 

𝑃 = 𝑉𝑜𝑑𝑞
𝑇 (ℙ−1)𝑇ℙ−1𝐼𝑜𝑑𝑞 = 𝑉𝑜𝑑𝑞

𝑇 ℙℙ−1𝐼𝑜𝑑𝑞 

 𝑃 = 𝑉𝑜𝑑𝑞
𝑇 × 𝐼𝑜𝑑𝑞 = [𝑣𝑜 𝑣𝑑 𝑣𝑞] [

𝑖𝑜
𝑖𝑑
𝑖𝑞

] = 𝑣𝑜𝑖𝑜 + 𝑣𝑑𝑖𝑑 + 𝑣𝑞𝑖𝑞 (2.22) 

 

Equation 2.22 makes explicit that Park Transformation only changes the reference of variables, 

without changing anything physically, creating fictional variables in axes d and q that turns 

solving synchronous machines problems more natural. 

In order to proceed with the demonstration, an explanation about the angle 𝜃 is presented, where 

it is considered a machine with EMF 𝐸̅ has a terminal voltage 𝑉̅ lagged 𝛿 electrical degrees by 

the impedance 𝑍̅. The EMF is induced by the magnetic flux 𝜑𝐹, being perpendicular to each 

other. Figure 2.10 illustrates this example for phase A. 

 

Figure 2.10 – Phasorial diagram for phase A. 
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If at instant 𝑡 = 0 phasor 𝑉̅ is over the phase A-axis (reference), then the q axis is 𝛿 far from it 

and the d axis is 𝜃0 = 𝛿 + 𝜋/2. 

For an instant 𝑡 > 0, the rotational axis moved 𝜔𝑅𝑡. And d axis is displaced with angle 𝜃: 

 

 𝜃 = 𝜃0 + 𝜔𝑅𝑡 = 𝜔𝑅𝑡 + 𝛿 +
𝜋

2
 (2.23) 

  

2.1.3. Magnetic Circuits Preamble 

Before advancing, a short preamble about electromagnetics with the equations needed to get to 

the inductances matrices.  

Defining MMF as ℱ, 𝑁 number of turns, 𝑖 current flowing on each turn, 𝜇0 permeability of free 

space, 𝐴 the area and 𝑙 the length covered by magnetic flux, and  the permeance: 

 ℱ = 𝑁 × 𝑖 (2.24) 

 

And: 𝜆 = 𝑁 × 𝜑 (2.25) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑒𝑟𝑚𝑒𝑎𝑛𝑐𝑒 = 𝒫 =
𝜑

ℱ
 (2.26) 

 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑙𝑢𝑥 = 𝜑 = ℱ𝜇0
𝐴

𝑙
= ℱ𝜇0 (2.27) 

 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝐵 = 𝜇0
ℱ

𝑙
= 𝜇0



𝐴
ℱ = 𝒫ℱ (2.28) 

 𝐼𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 = 𝐿 =
𝑁𝜙

𝑖
= 𝑁2𝜇0

𝐴

𝑙
= 𝑁2𝜇0 (2.29) 

 

From Equation 2.27 one can get to 𝜑 =  𝒫ℱ, something analogous to 𝑖 =  𝑌𝑣 in electric 

circuits, concluding that: 

 𝜆 = 𝑁𝒫ℱ  (2.30) 
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2.1.4. Flux Linkage Equations 

Figures 2.8 and 2.9 depict 6 coils mutually coupled, each one starting from 𝑆 and ending in 𝐸. 

Those coils are from three phases 𝑆𝑎 − 𝐸𝑎, 𝑆𝑏 − 𝐸𝑏 and 𝑆𝑐 − 𝐸𝑐; Coil from field winding 𝑆𝐹 −

𝐸𝐹; and two coils from damper windings 𝑆𝐷 − 𝐸𝐷 and 𝑆𝑄 − 𝐸𝑄. 

Adopting a matrix form to the flux linkage equations: 

 

 

[
 
 
 
 
 
 
𝜆𝑎
𝜆𝑏
𝜆𝑐
−
𝜆𝐹
𝜆𝐷
𝜆𝑄]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝐿𝑎𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐 | 𝐿𝑎𝐹 𝐿𝑎𝐷 𝐿𝑎𝑄
𝐿𝑏𝑎 𝐿𝑏𝑏 𝐿𝑏𝑐 | 𝐿𝑏𝐹 𝐿𝑏𝐷 𝐿𝑏𝑄
𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐𝑐 | 𝐿𝑐𝐹 𝐿𝑐𝐷 𝐿𝑐𝑄
− − − ÷ − − −
𝐿𝐹𝑎 𝐿𝐹𝑏 𝐿𝐹𝑐 | 𝐿𝐹𝐹 𝐿𝐹𝐷 𝐿𝐹𝑄
𝐿𝐷𝑎 𝐿𝐷𝑏 𝐿𝐷𝑐 | 𝐿𝐷𝐹 𝐿𝐷𝐷 𝐿𝐷𝑄
𝐿𝑄𝑎 𝐿𝑄𝑏 𝐿𝑄𝑐 | 𝐿𝑄𝐹 𝐿𝑄𝐷 𝐿𝑄𝑄]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑖𝑎
𝑖𝑏
𝑖𝑐
−
𝑖𝐹
𝑖𝐷
𝑖𝑄]
 
 
 
 
 
 

⇒ [𝜆] = [𝐿][𝑖] (2.31) 

 

Where: 

 

𝐿𝑗𝑘 = {
𝑖𝑓 𝑗 = 𝑘 ⇒ 𝑠𝑒𝑙𝑓 𝑖𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒      
𝑖𝑓 𝑗 ≠ 𝑘 ⇒ 𝑚𝑢𝑡𝑢𝑎𝑙 𝑖𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 

 

 

And: 

 𝐿𝑗𝑘 = 𝐿𝑘𝑗  𝑖𝑛 𝑒𝑣𝑒𝑟𝑦 𝑐𝑎𝑠𝑒  

 

The matrix in Equation 2.31 is divided in four parts, upper left destined to stator fluxes and 

bottom right to rotor fluxes. 

Next, inductances are calculated as a function of rotor position 𝜃, and the following subscripts 

are used: 

𝑙 Leakage 

𝑚 Mutual 

𝑠 Self 

 

a) Stator self-inductances 

Figures 2.11 and 2.12 show two SM diagrams, respectively, with flux linkage and MMF, 

corresponding to phase A. 
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Figure 2.11- Phase A Flux linkage. 

 

Figure 2.12 - MMF diagrams for phase A. 

By looking at phasors and considering they are in the same axis, the following equation can be 

written: 

 

 𝜆𝑎 = 𝜆𝑙 + 𝜆𝑚 (2.32) 

 

So, 

 𝜆𝑙 = 𝑁𝑎𝒫𝑙ℱ𝑎 (2.33) 

 

 𝜆𝑚 = 𝜆𝑑𝑎 cos 𝜃 + 𝜆𝑞𝑎 sin 𝜃 (2.34) 
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However: 

 

 {
ℱ𝑑𝑎 = ℱ𝑎 cos 𝜃 = 𝑁𝑎𝑖𝑎 cos 𝜃
ℱ𝑞𝑎 = ℱ𝑎 sin 𝜃 = 𝑁𝑎𝑖𝑎 sin 𝜃

 (2.35) 

   

 {
𝜆𝑑𝑎 = 𝑁𝑎𝒫𝑑ℱ𝑑𝑎
𝜆𝑞𝑎 = 𝑁𝑎𝒫𝑞ℱ𝑞𝑎

 (2.36) 

   

 {
𝜆𝑑𝑎 = 𝑁𝑎𝒫𝑑(𝑁𝑎𝑖𝑎 cos 𝜃) = 𝑁𝑎

2𝑖𝑎𝒫𝑑 cos 𝜃

𝜆𝑞𝑎 = 𝑁𝑎𝒫𝑞(𝑁𝑎𝑖𝑎 sin 𝜃) = 𝑁𝑎
2𝑖𝑎𝒫𝑞 sin 𝜃

 (2.37) 

 

 

Equation 2.37 in Equation 2.34: 

 

 𝜆𝑚 = (𝑁𝑎
2𝑖𝑎𝒫𝑑 cos 𝜃) cos 𝜃 + (𝑁𝑎

2𝑖𝑎𝒫𝑞 sin 𝜃) sin 𝜃  

   

 𝜆𝑚 = 𝑁𝑎
2𝑖𝑎(𝒫𝑑 cos

2 𝜃 + 𝒫𝑞 sin
2 𝜃) (2.38) 

 

Using the following identities: 

 {
cos2 𝜃 =

1

2
+
1

2
cos(2𝜃)

sin2 𝜃 =
1

2
−
1

2
cos(2𝜃)

  

It comes: 

 𝜆𝑚 = 𝑁𝑎
2𝑖𝑎 [

𝒫𝑑
2
+
𝒫𝑑
2
cos(2𝜃) +

𝒫𝑞

2
−
𝒫𝑞

2
cos(2𝜃)]  

 

 𝜆𝑚 = 𝑁𝑎
2𝑖𝑎 [(

𝒫𝑑 + 𝒫𝑞

2
) + (

𝒫𝑑 − 𝒫𝑞

2
) cos(2𝜃)]  (2.39) 

 

 

Analyzing Equation 2.33: 

 𝜆𝑙 = 𝑁𝑎𝒫𝑙ℱ𝑎 = 𝑁𝑎𝒫𝑙(𝑁𝑎𝑖𝑎)  

 𝜆𝑙 = 𝑁𝑎
2𝑖𝑎𝒫𝑙  (2.40) 
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Equations 2.39 and 2.40 in Equation 2.32: 

 𝜆𝑎 = 𝑁𝑎
2𝑖𝑎𝒫𝑙 + 𝑁𝑎

2𝑖𝑎 [(
𝒫𝑑 + 𝒫𝑞

2
) + (

𝒫𝑑 − 𝒫𝑞

2
) cos(2𝜃)] (2.41) 

And: 

 

 𝐿𝑎 = 𝑁𝑎
2𝒫𝑎  

 

 𝜆𝑎 = 𝐿𝑎𝑖𝑎  

 

 𝐿𝑎 =
𝜆𝑎
𝑖𝑎

  

 

From Equation 2.41: 

 𝜆𝑎 = 𝑁𝑎
2𝒫𝑙⏟  𝑖𝑎 + 𝑁𝑎

2 (
𝒫𝑑 + 𝒫𝑞

2
)

⏟        
𝑖𝑎 + 𝑁𝑎

2 (
𝒫𝑑 − 𝒫𝑞

2
)

⏟        
𝑖𝑎 cos(2𝜃) (2.42) 

 

Then, it is defined: 

 

{
 
 

 
 
𝐿𝑙 ≜ 𝑁𝑎

2𝒫𝑙                 

𝐿1 ≜ 𝑁𝑎
2 (
𝒫𝑑 + 𝒫𝑞

2
)

𝐿2 ≜ 𝑁𝑎
2 (
𝒫𝑑 − 𝒫𝑞

2
)

 (2.43) 

 

Equation 2.43 in 2.42: 

 𝜆𝑎 = 𝐿𝑎𝑖𝑎 = 𝐿𝑙𝑖𝑎 + 𝐿1𝑖𝑎 + 𝐿2𝑖𝑎 cos(2𝜃) (2.44) 

 

 𝐿𝑎 = 𝐿𝑎𝑎 = 𝐿𝑙 + 𝐿1 + 𝐿2 cos(2𝜃)  

 

 𝐿𝑠 ≜ 𝐿𝑙 + 𝐿1  

 

 𝐿𝑚 ≜ 𝐿2  

 

𝐿𝑠 and 𝐿𝑚 are constants and 𝐿𝑠 > 𝐿𝑚, finally: 

 

 𝐿𝑎𝑎 = 𝐿𝑠 + 𝐿𝑚 cos(2𝜃)  (2.45) 
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Similarly, the deduction can be done for both 𝐿𝑏𝑏 and 𝐿𝑐𝑐, changing the angle 𝜎 for each phase 

correspondence, as can be seen in Figure 2.13. 

 

Figure 2.13 – Angles σ for phases B and C. 

Lastly, the stator inductances are: 

 

 

{
 
 

 
 
𝐿𝑎𝑎 = 𝐿𝑠 + 𝐿𝑚 cos(2𝜃)                        

𝐿𝑏𝑏 = 𝐿𝑠 + 𝐿𝑚 cos [2 (𝜃 −
2𝜋

3
)] [𝐻]

𝐿𝑐𝑐 = 𝐿𝑠 + 𝐿𝑚 cos [2 (𝜃 +
2𝜋

3
)]         

 (2.46) 
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b) Stator mutual inductances 

Figure 2.14 shows a SM diagram for phases A and B. 

Mutual inductance between any pair of coils is determined with mutual flux linkage obtained 

when one coil is excited and the other open. In figure 2.14, it is considered coil in phase A 

excited and open in phase B. 

 

 

Figure 2.14 - Mutual flux linkages diagram for phases A and B. 

The angles: 

 

 𝜎 + 𝜃 =
2𝜋

3
  

 

 𝜎 =
2𝜋

3
− 𝜃  (2.47) 

 

 ∆ +
𝜋

2
+ 𝜎 = 𝜋  

 

 ∆=
𝜋

2
− 𝜎  

 

 ∆= 𝜃 −
𝜋

6
 (2.48) 
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As can be seen in Figure 2.14, mutual flux is decomposed in 𝜆𝑑𝑎 and 𝜆𝑞𝑎, which are project on 

b axis, and then calculated how much flux from phase A is concatenated on B. 

 𝜆𝑎𝑏 = 𝑢⃗ − 𝑣  (2.49) 

 

 𝑢⃗ = 𝜆𝑑𝑎 cos (
2𝜋

3
− 𝜃)  

 

 𝑢⃗ = 𝜆𝑑𝑎 cos (𝜃 −
2𝜋

3
) (2.50) 

 

 𝑣 = 𝜆𝑞𝑎 cos (𝜃 −
𝜋

6
) = −𝜆𝑞𝑎 sin (𝜃 −

𝜋

6
−
𝜋

2
)  

 

 𝑣 = −𝜆𝑞𝑎 sin (𝜃 −
2𝜋

3
) (2.51) 

 

Equations 2.50 and 2.51 in Equation 2.49: 

 

 𝜆𝑎𝑏 = 𝜆𝑑𝑎 cos (𝜃 −
2𝜋

3
) + 𝜆𝑞𝑎 sin (𝜃 −

2𝜋

3
) (2.52) 

 

And Equation 2.37 in Equation 2.34: 

 

 𝜆𝑎𝑏 = (𝑁𝑎
2𝑖𝑎𝒫𝑑 cos 𝜃) cos (𝜃 −

2𝜋

3
) + (𝑁𝑎

2𝑖𝑎𝒫𝑞 sin 𝜃) sin (𝜃 −
2𝜋

3
) (2.53) 

 

Using the following identities: 

 

{
 
 

 
 
cos 𝜃 cos (𝜃 ±

2𝜋

3
) = −

1

4
−
1

4
cos(2𝜃) ∓

√3

4
sin(2𝜃)

sin 𝜃 sin (𝜃 ±
2𝜋

3
) = −

1

4
+
1

4
cos(2𝜃) ±

√3

4
sin(2𝜃)

 
 

 

 

 𝜆𝑎𝑏 = 𝑁𝑎
2𝑖𝑎 [−

𝒫𝑑
4
−
𝒫𝑑
4
cos(2𝜃) +

√3

4
𝒫𝑑sin(2𝜃) −

𝒫𝑞

4
+
𝒫𝑞

4
cos(2𝜃) −

√3

4
𝒫𝑞sin(2𝜃)]  
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 𝜆𝑎𝑏 = 𝑁𝑎
2𝑖𝑎 [− (

𝒫𝑑 + 𝒫𝑞

4
) − (

𝒫𝑑 −𝒫𝑞

4
) cos(2𝜃) +

√3

4
(𝒫𝑑 −𝒫𝑞)sin(2𝜃)]  

 

 𝜆𝑎𝑏 = 𝑁𝑎
2𝑖𝑎 {− (

𝒫𝑑 +𝒫𝑞

4
) + (𝒫𝑑 − 𝒫𝑞) [−

1

4
cos(2𝜃) +

√3

4
sin(2𝜃)]}  

 

 

 

Also: 

 
cos (2𝜃 ±

2𝜋

3
) = −

1

2
cos(2𝜃) ∓

√3

2
sin(2𝜃) 

 

 

 𝜆𝑎𝑏 = 𝑁𝑎
2𝑖𝑎 [− (

𝒫𝑑 + 𝒫𝑞

4
) + (

𝒫𝑑 − 𝒫𝑞

2
) cos (2𝜃 −

2𝜋

3
)]  

 

 𝜆𝑎𝑏 = 𝐿𝑎𝑏𝑖𝑎 = −𝑁𝑎
2 (
𝒫𝑑 + 𝒫𝑞

4
)

⏟        
𝑖𝑎 + 𝑁𝑎

2 (
𝒫𝑑 − 𝒫𝑞

2
)

⏟        
𝑖𝑎 cos [2 (𝜃 −

𝜋

3
)] (2.54) 

 

And from Equation 2.43: 

 {

𝐿1
2
= 𝑁𝑎

2 (
𝒫𝑑 + 𝒫𝑞

4
)           

𝐿2 = 𝐿𝑚 = 𝑁𝑎
2 (
𝒫𝑑 − 𝒫𝑞

2
)

 
 

 

It is defined: 

 
𝑀𝑠 ≜

𝐿1
2

 
 

 

Again, 𝑀𝑠 and 𝐿𝑚 are constants and |𝑀𝑠| > 𝐿𝑚, and finally: 

 

 𝐿𝑎𝑏 = 𝐿𝑏𝑎 = −𝑀𝑠 + 𝐿𝑚 cos [2 (𝜃 −
𝜋

3
)]  (2.55) 
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For phases B and C, and A and C: 

 {
𝐿𝑏𝑐 = 𝐿𝑐𝑏 = −𝑀𝑠 + 𝐿𝑚 cos [2 (𝜎𝑏 −

𝜋

3
)]

𝐿𝑐𝑎 = 𝐿𝑎𝑐 = −𝑀𝑠 + 𝐿𝑚 cos [2 (𝜎𝑐 −
𝜋

3
)]

 
 

 

And yet: 

 {
𝐿𝑏𝑐 = 𝐿𝑐𝑏 = −𝑀𝑠 + 𝐿𝑚 cos[2(𝜃 − 𝜋)]    

𝐿𝑐𝑎 = 𝐿𝑎𝑐 = −𝑀𝑠 + 𝐿𝑚 cos [2 (𝜃 +
𝜋

3
)]  

 
 

 

 

{
 
 

 
 𝐿𝑎𝑏 = 𝐿𝑏𝑎 = −𝑀𝑠 + 𝐿𝑚 cos [2 (𝜃 −

𝜋

3
)]

𝐿𝑏𝑐 = 𝐿𝑐𝑏 = −𝑀𝑠 + 𝐿𝑚 cos(2𝜃)              

𝐿𝑐𝑎 = 𝐿𝑎𝑐 = −𝑀𝑠 + 𝐿𝑚 cos [2 (𝜃 +
𝜋

3
)]

 (2.56) 

 

 

{
 
 

 
 
𝐿𝑚 cos(2𝜃 + 2π) = 𝐿𝑚 cos(2𝜃) = −𝐿𝑚 cos(2𝜃 − π)                             

𝐿𝑚 cos (2𝜃 −
2𝜋

3
) = −𝐿𝑚 cos (2𝜃 −

2𝜋

3
+ π) = −𝐿𝑚 cos (2𝜃 +

𝜋

3
)   

𝐿𝑚 cos (2𝜃 +
2𝜋

3
) = −𝐿𝑚 cos (2𝜃 +

2𝜋

3
+ π) = −𝐿𝑚 cos (2𝜃 +

5𝜋

3
)

  

 

And finally: 

 

{
 
 

 
 𝐿𝑎𝑏 = 𝐿𝑏𝑎 = −𝑀𝑠 − 𝐿𝑚 cos [2 (𝜃 +

𝜋

6
)]             

𝐿𝑏𝑐 = 𝐿𝑐𝑏 = −𝑀𝑠 − 𝐿𝑚 cos [2 (𝜃 −
3𝜋

6
)]    [𝐻]

𝐿𝑐𝑎 = 𝐿𝑎𝑐 = −𝑀𝑠 − 𝐿𝑚 cos [2 (𝜃 +
5𝜋

6
)]           

 
(2.57) 
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c) Rotor self-inductances 

Neglecting saturation and slots effects, self-inductances in the rotor are constants, and using 

subscript notations: 

 {

𝐿𝐹𝐹 = 𝐿𝐹        
𝐿𝐷𝐷 = 𝐿𝐷 [𝐻]
𝐿𝑄𝑄 = 𝐿𝑄        

 
(2.58) 

 

d) Rotor mutual inductances 

Mutual inductance between field and direct axis damper winding is constant, and there are no 

mutual inductances among direct and quadrature axes, due to the fact of being 90° apart, so: 

 {

𝐿𝐹𝐷 = 𝐿𝐷𝐹 = 𝑀𝑅         
𝐿𝐹𝑄 = 𝐿𝑄𝐹 = 0      [𝐻]

𝐿𝐷𝑄 = 𝐿𝑄𝐷 = 0            
 

(2.59) 

 

e) Mutual inductances between stator and rotor 

They can be expressed directly by inspecting Figures 2.8 and 2.9. 

 

{
 
 

 
 
𝐿𝑎𝐹 = 𝐿𝐹𝑎 = 𝑀𝐹 cos 𝜃                        

𝐿𝑏𝐹 = 𝐿𝐹𝑏 = 𝑀𝐹 cos (𝜃 −
2𝜋

3
) [𝐻]

𝐿𝑐𝐹 = 𝐿𝐹𝑐 = 𝑀𝐹 cos (𝜃 +
2𝜋

3
)        

 
(2.60) 

 

And 𝑀𝐹 is the mutual-inductance maximum value between field winding and a phase winding. 

Similarly, 𝑀𝐷 for direct axis damper winding and 𝑀𝑄 for quadrature axis damper winding. 

 

{
 
 

 
 
𝐿𝑎𝐷 = 𝐿𝐷𝑎 = 𝑀𝐷 cos 𝜃                        

𝐿𝑏𝐷 = 𝐿𝐷𝑏 = 𝑀𝐷 cos (𝜃 −
2𝜋

3
) [𝐻]

𝐿𝑐𝐷 = 𝐿𝐷𝑐 = 𝑀𝐷 cos (𝜃 +
2𝜋

3
)         

 
(2.61) 

 

 

{
 
 

 
 
𝐿𝑎𝑄 = 𝐿𝑄𝑎 = 𝑀𝑄 sin 𝜃                        

𝐿𝑏𝑄 = 𝐿𝑄𝑏 = 𝑀𝑄 sin (𝜃 −
2𝜋

3
) [𝐻]

𝐿𝑐𝑄 = 𝐿𝑄𝑐 = 𝑀𝑄 sin (𝜃 +
2𝜋

3
)         

 
(2.62) 
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f) Inductances Transformation 

At once, that all admittance matrix (Equation 2.31) terms are known, the next step is relating 

all terms to a fixed rotor reference. Using Park Transformation simplifies Equation 2.31. 

Still, from Equations 2.4 and 2.5: 

 
𝜆̇ = 𝐿𝑖̇̇ + 𝐿̇𝑖 

(2.63) 

 

Treating 𝜆 as a vector: 

 [𝜆𝑎𝑏𝑐] = [𝐿][𝑖𝑎𝑏𝑐] 
(2.64) 

 

Applying Park Transformation: 

 {
𝜆𝑜𝑑𝑞 = ℙ𝜆𝑎𝑏𝑐 ⇒ 𝜆𝑎𝑏𝑐 = ℙ

−1𝜆𝑜𝑑𝑞

𝑖𝑜𝑑𝑞 = ℙ𝑖𝑎𝑏𝑐 ⇒ 𝑖𝑎𝑏𝑐 = ℙ
−1𝑖𝑜𝑑𝑞

 
(2.65) 

 

 ℙ−1𝜆𝑜𝑑𝑞 = 𝐿ℙ
−1𝑖𝑜𝑑𝑞  

 

Pre-multiplying both sides by ℙ: 

 ℙℙ−1𝜆𝑜𝑑𝑞 = ℙ𝐿ℙ
−1𝑖𝑜𝑑𝑞 

 

 

 {
𝜆𝑜𝑑𝑞 = ℙ𝐿ℙ

−1𝑖𝑜𝑑𝑞

ℙ𝜆𝑎𝑏𝑐 = ℙ𝐿ℙ
−1ℙ𝑖𝑎𝑏𝑐

 (2.66) 

 

Writing Equation 2.66 in a more general fashion: 

 
[
ℙ 0
0 𝑈3

] [
𝜆𝑎𝑏𝑐
𝜆𝐹𝐷𝑄

] = [
ℙ 0
0 𝑈3

] [
𝐿𝑆𝑆 𝐿𝑆𝑅
𝐿𝑅𝑆 𝐿𝑅𝑅

] [
ℙ−1 0
0 𝑈3

] [
ℙ 0
0 𝑈3

] [
𝑖𝑎𝑏𝑐
𝑖𝐹𝐷𝑄

] 
(2.67) 

 

Another way to reach Equation 2.67 is by pre-multiplying Equation 2.31 by [
ℙ 0
0 𝑈3

], Annex 

A presents this demonstration. 

Equation 2.67 results in the following matrix: 
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[
 
 
 
 
 
 
𝜆𝑜
𝜆𝑑
𝜆𝑞
−
𝜆𝐹
𝜆𝐷
𝜆𝑄]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐿𝑜 0 0 | 0 0 0
0 𝐿𝑑 0 | 𝐾𝑀𝐹 𝐾𝑀𝐷 0
0 0 𝐿𝑞 | 0 0 𝐾𝑀𝑄

−   − −   − −   − ÷ −   − −   − −   −
0 𝐾𝑀𝐹 0 | 𝐿𝐹 𝑀𝑅 0
0 𝐾𝑀𝐷 0 | 𝑀𝑅 𝐿𝐷 0
0 0 𝐾𝑀𝑄 | 0 0 𝐿𝑄 ]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝑖𝑎
𝑖𝑏
𝑖𝑐
−
𝑖𝐹
𝑖𝐷
𝑖𝑄]
 
 
 
 
 
 

 (2.68) 

 

And the following constants are defined: 

 

{
  
 

  
 𝐿𝑑 ≜ 𝐿𝑠 +𝑀𝑠 +

3

2
𝐿𝑚 [𝐻]

𝐿𝑞 ≜ 𝐿𝑠 +𝑀𝑠 −
3

2
𝐿𝑚 [𝐻]

𝐿𝑜 ≜ 𝐿𝑠 − 2𝑀𝑠 [𝐻]            

𝐾 = √3/2                            

 
(2.69) 

 

A great advantage brought by Park is to use constant values of inductances in calculations since 

the axes now “move” alongside the rotor. 

This transformation, with Lewis modifications, presents invariance in power and results in a 

symmetric matrix. 

In order to use any of these equations to represent a real machine, the magnetic inputs must be 

reliable, and for so, in this work, it is used Finite Element Analysis to get to some of these 

parameters. The next chapter goes through FEM and how it is applied in this work. 
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2.2. Finite Element Method 

On previous chapters were presented elements from SM and how to model it mathematically. 

To obtain a representative model, all parameters that matter must be reliable. Therefore, to 

obtain some of these parameters, this work makes use of the Finite Element Method (FEM). 

The FEM is one of the most widely applied methods in engineering for solving problems in 

structural analysis, fluid flow, heat transfer, electrostatic, magnetism, and others. It is 

complicated to give one person the title of FEM inventor. Although some authors like in [19] 

and [20] have been the pioneers employing similar methods. To discretize a problem in a mesh, 

i.e., transforming a difficult, maybe unsolvable, domain into lesser difficult elements, as seen 

in Figure 2.15. 

 

Figure 2.15 – Example of mesh grids, created by FEATool MATLAB. 

Source: [21] 

Some of FEM features  elects it as an appropriate tool to solve magnetic problems [22]. As for 

this work, the problem is to basically solve Maxwell’s equations in complex shapes as salient 

poles, which FEM solves by “breaking” it in sub-shapes where solving differential equations 

are simpler. 

This work uses a freeware software, FEMM, that simulates a magnetic problem and generates 

illustrative representations of flux lines and flux densities, as in Figure 2.16. 
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Figure 2.16 - Color flux density plot of an example solution  in FEMM website. 

Source: [23] 

2.2.1. Software - Finite Element Method Magnetics 

FEMM is a suite of programs for solving low-frequency electromagnetic problems on 

two-dimensional planar and axisymmetric domains. The program currently addresses 

linear/nonlinear magnetostatic problems, linear/nonlinear time harmonic magnetic 

problems, linear electrostatic problems, and steady-state heat flow problems [23]. 

For poles shoes and axial extremities, the targets for this dissertation simulations, planar 

modeling is enough (due to rotor symmetries). It is necessary to define properties in the air-gap 

and some boundaries, depending on the shape studied. The outputs of interest are magnetic flux 

densities on air-gap line. 

For magnetic problems to properties are the most important: boundaries and materials. Screens 

to set both are shown, respectively, in Figures 2.17 and 2.18. 
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Figure 2.17 - Boundary Property window. 

What FEM does in boundary regions, in magnetic problems, is to solve the following equations 

for the magnetic vector potential when set, respectively, as “Prescribed A” and “Mixed”: 

 

 ∇2𝐴 = 0 (2.67) 

   

 
1

𝜇0𝜇𝑟

𝜕𝐴

𝜕𝑛
+ 𝑐0𝐴 + 𝑐1 = 0 (2.68) 

 

An approach using only air-gap boundaries is much more straightforward than a complete 2D 

analysis. However, this choice makes it impossible to model any winding, making necessary 

the normalization of results. 

In order to generate a magnetic field, three boundary properties are set: 

• 𝐴 = 0 (Dirichlet) For rotor core outer perimeter 

• 𝐴 = 1 (Dirichlet) On air-gap 

• 
𝜕𝐴

𝜕𝑛
= 0  (Neumann) On iron parts, and over the quadrature imaginary-line (forcing 

magnetic flux to be perpendicular) 

In Figure 2.17, Dirichlet is set by choosing BC type as “Prescribed A” and A0 as 0 or to 1. 

Neumann is set by choosing BC type as “Mixed,” and c0 and c1 coefficients as 0. 

This work represents only boundaries of metallic parts, then the only material left to be set is 

air, which is done by using a pre-set “Air” property from FEMM library, as can be seen in 

Figure 2.18. 
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Figure 2.18 - FEMM Air property. 

In this work, FEA is used together with MATLAB with commands available in FEMM 4.2 that 

possibilities its integration with octave. 

Finally, the next chapter presents the assimilation of SM theory and procedures and FEM to 

achieve this work goal, which is to obtain essential magnetic parameters from SM design and 

rated data.  
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3. METHODOLOGY 

In this chapter, it is presented the four tools that are the fruit of this work. They use the theory 

exposed so far in this dissertation, together with methods that are described in each tool 

respective chapter. The four tools are Winding Matrix using Tingley Box, MMF calculation for 

any given Winding Matrix, Pole shoe magnetic simulation, and Effective magnetic length 

(package). 

In this work, the tools are focused on output parameters that serve as magnetic inputs (listed in 

section 2.1.2) to get the reactance matrix for any given synchronous machine. 

3.1. TINGLEY BOX AND WINDING MATRIX 

The first tool is aimed to sort windings in slots using a standard and traditional step by step 

procedure, Tingley Box. 

Tingley's work [24] discusses the distribution of windings for three and two-phase machines, 

elaborating a procedure not found in no other reference. Tingley’s proposal is simple but useful. 

It is a step-by-step process to set windings in a standard pattern, building a diagram called 

“Least-Common-Multiple-Diagram,” applying which has been used by many authors in a more 

illustrative method, using tables. Currently, there is a reasonable number of works exploiting 

techniques to distribute fractional q slots, as [25], [26] and [27], the choice for Tingley Box is 

due to its simplicity and tradition. 

Firstly, some concepts must be redeemed from previous chapters. 

Let it be, from Equation 2.2: 

 

𝑄𝑝 = 2𝑚𝑞 =
𝑁𝑠
𝑝
=
𝐷𝑝

𝐶𝑝
 (3.1) 

 

Then 𝐶𝑝 pair of poles contains in 𝐷𝑝 slots. These variables allow to define the number of virtual 

machines: 

 

𝑁𝑣𝑚 =
𝑁𝑠
𝐷𝑝
=
𝑝

𝐶𝑝
 (3.2) 

 

MMFs first harmonic stays over 𝐷𝑝 slots and covers 𝐶𝑝 pairs of poles, repeating it 𝑁𝑣𝑚 times.  
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And defining an MMF fundamental period 𝜏𝑓 (equivalent to two-pole pitches 𝜏𝑝) for a 

referential air-gap average radius 𝑅𝛿. 

 

𝜏𝑓 = 2𝜏𝑝 = 2
2𝜋𝑅𝛿
2𝑝

=
2𝜋𝑅𝛿
𝑝

 (3.3) 

 

With these concepts, it is possible to get to a SM Winding Matrix following procedures 

described hereafter. 

3.1.1. Building an induced voltage phasorial rosette (slot star) 

As introduced in [12], a slot star can be drawn by following these steps: 

 

• Working with Equations 3.1 and 3.2 as a function of chosen 𝑝 and 𝑁𝑠; 

• Draw two concentric circles;  

• If 𝐶𝑝 is odd, divide the circles into 6 sections;  

• If 𝐶𝑝 is even, divide the circles into 3 sections; 

• Identify each section following the desired phase sequence: 

Positive sequence 𝐴 − 𝐶     𝐵 − 𝐴      𝐶 − 𝐵 

Negative sequence 𝐴 − 𝐵     𝐶 − 𝐴      𝐵 − 𝐶    

• Divide the inner circle in 𝐷𝑝 equal parts; 

• Each radius represents a coil voltage induced phasor associated with the slot in question. 

The center of the circle corresponds to potential zero; the outer vertex of the radius 

represents the high-potential side; 

• The maximum negative or positive potential condition is defined by the phase identification 

being positive or negative, depending on the sector occupied; 

• Enumerate the zero-angle radius (right-hand horizontal radius) as corresponding to slot 1, 

count  𝐶𝑝 times, then slot 2, and so on following a spiral sequence to enumerate all radiuses; 

• The radiuses contained within each segment belong to the phasors of the corresponding 

phase. So, choose 3 colors, one for each phase, and identify the phasors corresponding to 

each phase; 

• The identified sequence of phasors will correspond to the winding unit required to describe 

one virtual machine; 
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• If the denominator 𝐶𝑝 is an even number, then this unit corresponds to a winding group 

able to be connected in series and/or parallel circuits; 

• If the denominator 𝐶𝑝 is odd, then the file sequence with 𝐷𝑝 elements that describe one 

virtual machine may be split into 2 winding-groups. Both subgroups have the same 

amplitude but with opposite phase angles. After caring upon the phasor directions, there is 

the possibility to double the parallel circuits when needed. Or just, each winding-subgroup 

may be arranged in series and/or parallel circuits. 

Examples are illustrated in Figure 3.1. 

 

 

a) p = 2, NS = 24, CP = 1 

 

b) p = 10, NS = 75, CP = 2 

 

c) p = 10, NS = 72, CP = 5 

Figure 3.1- Phasorial rosettes for different examples. 

3.1.2. Obtaining a regular three-phase winding scheme 

Applying a slot star in a “graph paper” can be obtained by following these steps: 

• Enumerate 𝐷𝑝 columns; 

• If 𝐶𝑝 is even, divide the columns into 3 vertical sections and identify the phase-sequence 

(A  B  C)  or  (A  C  B); 

• If 𝐶𝑝 is odd, divide de columns into 6 vertical sections and determine the phase sequence 

(A  -C   B   -A   C   -B) or (A  -B   C   -A   B   -C); 

• Begin the slots occupation, starting in 1, count until 𝐶𝑝 and mark 2, count until 𝐶𝑝 and mark 

3, so on until getting to 𝐷𝑝; 

• This operation occupies 𝐶𝑝 rows; 

• Relate each phase number in the bottom row and Sort them. 

These sets represent each phase winding scheme. For example, schemes in Figures 3.2 to 3.4 

correspond to rosettes in Figure 3.1. 
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Figure 3.2 - Winding scheme corresponding to Rosette 3.1a. 

 

Figure 3.3 - Winding scheme corresponding to Rosette 3.1b. 

 

Figure 3.4 - Winding scheme corresponding to Rosette 3.1c. 

3.1.3. Obtaining the Winding Matrix 

Dealing with windings in the form of a matrix brings a great advantage when applying it to 

calculate the MMF using Fourier Series. The next procedure explicit how to get from a winding 

scheme to the winding matrix.  

• Sort phases letters in each slot; 

• Define a coil pitch 𝑦 (number of slots between two legs of a coil). 

Equation 3.4 presents a value that mitigates 5th harmonic and its multiples; 

  

y ≜ round (
5

6

𝑁𝑠
2𝑝
) (3.4) 

 

• Take a winding scheme and insert a row below it with the same number of slots 

(representing the slot second layer); 



53 

 

• Repeat the scheme in this new row, shifting it to the right by y slots. 

The two resultant rows, with slots as columns, constitute the Winding Matrix. Figures 3.5 to 

3.7 show Winding Matrix corresponding to rosettes in Figure 3.1. 

 

 

Figure 3.5 - Winding Matrix corresponding to Figure 3.1a (y = 5). 

 

Figure 3.6 - Winding Matrix corresponding to Figure 3.1b (y = 3). 

 

Figure 3.7 - Winding Matrix corresponding to Figure 3.1c (y = 3). 

With the Winding Matrix in hand, it is possible to check the number of windings for each phase. 

For example, in Figure 3.5, one can separate the matrix in three, taking only slots that contain 

that phase and adding layers with the same phase, making the three matrices in Figure 3.8. 

 

 

Figure 3.8 - Winding Matrix for each phase. 

These Winding Matrices are required to the next chapter, which plots Magnetomotive Force 

using them as input.  
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3.2. MAGNETOMOTIVE FORCE 

The second tool uses the Winding Matrix, which is resulted from Tingley Box, to plot the 

Magnetomotive force in the air-gap of any machine. 

Also known as Ohm’s law for magnetic circuits, the relationship cited in Equation 2.27, sets 

MMF as a force analogous to the voltage, in electrics. It is a quantity that forces magnetic flux 

through a mean and a product of magnetic flux passage. 

This work calculates the MMF caused by armature reacting to the excitation field. Which makes 

current flow through armature winding that, considering its number of turns, respects Equation 

2.25. 

There is a singularity in a SM case that, besides the current varying with time and space, the 

number of turns varies with space (along the stator perimeter). For this matter, Fourier series 

are used, so it is easier to manipulate each spatial point, summing or subtracting effects of each 

wire in a slot. For that, a method to calculate the MMF of a single turn is exposed. 

3.2.1. MMF – Single Turn 

[28] depicts a method to calculate MMF for a single wire and further, in the same work, for a 

turn as sum of two wires with opposite direction currents. Making use of Fourier series for 

MMF calculation, endorsed with FEM simulations. 

Equation 3.5 reveals the MMF for a winding with 𝑁 turns (considering phase shifting of 𝛾 

radians for a correct slot placement) [25]. Figure 3.9 illustrates three MMF waveforms of a 

single turn (𝑁 = 1): “Proposed” represents an ideal square waveform; “Analytical” represents 

the use of the Fourier Series, and “FEM” is a plot obtained by simulation using FEM. 

 

ℱ(𝑥) = 2𝑁𝑖∑𝑏𝑘 sin (𝑘
𝜋

𝜏𝑓
𝛾) cos (2𝑘

𝜋

𝜏𝑓
𝑥 − 𝑘

𝜋

𝜏𝑓
𝛾)

𝑘

 (3.5) 

 

With 

𝑏𝑘 = (
𝜏𝑓

𝑘𝜋
)
2 2

𝑠(𝜏𝑓 − 𝑠)
sin (𝑘

𝜋

𝜏𝑓
𝑠) (3.6) 

 

Considering 𝜏𝑓 defined in Equation 3.3 and 𝑠 the slot width. 
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Figure 3.9- MMF of a single turn. 

Source: [28] 

3.2.2. MMF – Resultant and Fundamental Waveforms 

A resultant MMF, i.e., considering all windings and slots, is obtained by using Equation 3.5 

and considering the Winding Matrix in the place of 𝑁 and a pulsating current in the place of 𝑖. 

In a first approach, the current is kept as a variable, and MMF for each phase is calculated using 

Equation 3.5 and phases Winding Matrix (Figure 3.8). Waveforms for phase A are presented in 

Figures 3.10 to 3.12, respectively, for examples in Figures 3.1a, 3.1b, and 3.1c. 

The dashed line marks the end of a virtual machine, from where the waveform repeats itself, 

marking the ending of a MMF period. 

 

Figure 3.10 - 24 slots, 2 pair of poles, phase A MMF for a constant current. 
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Figure 3.11 - 75 slots, 10 pair of poles, phase A MMF for a constant current. 

 

 

Figure 3.12 - 72 slots, 10 pairs of poles, phase A MMF for a constant current. 
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Considering the current as a pulsating wave in Equation 3.5 and summing the MMFs from the 

three phases results in waveforms in Figures 3.13 to 3.15, that are presented at instant 𝑡 = 0 

(red line – phase A; blue line – phase B; green line – phase C; and black line – resultant). 

 

 

Figure 3.13 - 24 slots, 2 pairs of poles, resulting MMF at t = 0. 

 

Figure 3.14 - 75 slots, 10 pairs of poles, resulting MMF at t = 0. 
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Figure 3.15 - 72 slots, 10 pairs of poles, resulting MMF at t = 0. 

When introducing time, the current wave pulsates, and the sum of three pulsating waves delayed 

120° produces a traveling wave, the resultant MMF for the SG. 

What remains is to calculate the fundamental wave from the resultant MMF. From this 

fundamental, it is obtained the MMF magnitude. Figures 3.16 to 3.18 present resultant MMFs 

along with their fundamentals. 

 

 

Figure 3.16 - 24 slots, 2 pairs of poles, resultant MMF and fundamental at t = 0. 
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Figure 3.17 - 75 slots, 10 pairs of poles, resultant MMF and fundamental at t = 0. 

 

Figure 3.18 - 72 slots, 10 pairs of poles, resultant MMF, and fundamental at t = 0. 
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3.3. POLE SHOE ENCLOSURE FACTOR 

The third tool does deal with windings as the two before, but another essential parameter that 

feeds the reactances calculations, the pole shoe magnetic enclosure factor [29]. This factor is 

used to correctly represent the magnetic area that goes in the equation presented in section 2.1.3 

and varies depending on the pole shoe shape. For that matter, this tool simulates the pole shoe. 

Simulating salient poles in FEM includes, basically, two actions: defining its geometry in 

FEMM and its properties. 

Drawing a geometry using only FEMM is a laborious task, then a MATLAB interface was 

made to create a geometry and to export it to FEMM so that it can be simulated. In this interface, 

it is possible to draw three types of pole shoes, illustrated in Figure 3.19: 

• One arc pole shoe; 

• Two arcs pole shoe; 

• Three arcs pole shoe; 

 

 

One arc pole shoe 

 

Two arcs pole shoe 

 

Three arcs pole shoe 

Figure 3.19 – Illustrations of three types of pole-shoe addressed in this work, depicting where the arcs are 

located. 

3.3.1. Pole shoe Geometry 

Not all pole parameters need to be inputted, because some are obtainable with others in hand. 

This section presents input cases used in this work, and the calculations used to obtain the 

remaining parameters. 

Some parameters are common to any type of pole shoe (among those types addressed by this 

work), which are pole base height and width, respectively ℎ𝑏 and 𝜔𝑏. 

Other parameters are presented next, for each type. 
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3.3.1.1. One arc pole shoe 

General pole-shape with dimension parameters is shown in Figure 3.20. 

 

 

Figure 3.20 - One arc pole shoe dimensional parameters. 

• Input Parameters: 

𝛿0 − ℎ1 − 𝜔1 − 𝜔2 − 𝑅𝑒 − 𝑅1 − ℎ𝑏 − 𝜔𝑏 

 

• Calculated Parameters: 

 

𝛼1 = arcsin
𝜔1/2

𝑅1
 (3.7) 

 

ℎ0 = 𝑅1 cos(1 − cos 𝛼1) (3.8) 

 

𝑃1 =
𝐷𝑖
2
− 𝛿0 − 𝑅1 (3.9) 
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3.3.1.2. Two arcs pole shoe 

General pole-shape with dimension parameters is shown in Figure 3.21. 

 

 

Figure 3.21 - Two arcs pole shoe dimensions parameters. 

• Input Parameters: 

𝛿0 − ℎ1 − 𝜔1 − 𝜔2 − 𝑅𝑒 − 𝑅1 − 𝜔𝑅1 − 𝑅2 − ℎ𝑏 − 𝜔𝑏 

 

• Calculated Parameters: 

 

𝛼1 = arcsin
𝜔1/2

𝑅1
 (3.10) 

 

𝛼2 = arcsin
𝜔1/2 − (𝑅1 − 𝑅2) sin 𝛼1

𝑅2
− 𝛼1 (3.11) 
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3.3.1.3. Three arcs pole shoe 

General pole-shape with dimension parameters is shown in Figure 3.22. 

 

 

Figure 3.22 - Three arcs pole shoe dimensions parameters.  

• Input Parameters: 

𝛿0 − ℎ1 − 𝜔1 − 𝑅1 − 𝜔𝑅1 − 𝑅2 − ℎ𝑏 − 𝜔𝑏 
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• Calculated Parameters: 

 

𝛼1 = arcsin
𝜔𝑅1/2

𝑅1
 (3.12) 

 

𝑎 =
𝐷𝑖
2
− (𝑅1 − 𝑅2) cos 𝛼1 − 𝛿0 − ℎ1 (3.13) 

 

𝑏 =
𝜔1
2
− (𝑅1 − 𝑅2) sin 𝛼1 (3.14) 

 

𝑅2 − 𝑏

𝑎
cos(𝛼1 − 𝛼2) + sin(𝛼1 + 𝛼2) = 1 (3.15) 

 

Solving Equation 3.15 for 𝛼2 results in the remaining parameters: 

 

𝑅3 = 𝑅2 −
𝑎

cos(𝛼1 + 𝛼2)
 (3.16) 

 

𝛼3 =
𝜋

2
− 𝛼1 − 𝛼2 (3.17) 
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3.3.2. Finite element Simulation 

With geometry parameters defined and inputted, MATLAB draws and exports to FEMM the 

pole shoe shape along with appropriate boundaries. An example is shown in Figure 3.23, where 

not only the pole is drawn, but also the stator inner perimeter, rotor-rim outer perimeter, and 

symmetry imaginary lines over air-gap (direct and quadrature axes). 

 

 

Figure 3.23 - Three arcs pole example in FEMM. 

It can be seen that another arc is drawn, concentric to stator inner diameter that passes through 

the air-gap average “point.” That is due to the FEMM requirement to have a previously defined 

line (or arc) drawn over which graphics can be plotted. This arc is precisely the region of interest 

for magnetics studies in this work, where MMF was calculated and, in this section, where 

magnetic flux densities are plotted. 
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Materials properties are set for the only two areas inside the boundaries, which are air-gap areas, 

and as can be seen in Figure 3.23 they are set as “Air.” For the boundaries, correct properties 

are shown in Figure 3.24. 

 

 

Figure 3.24 - Boundaries properties for pole shoe simulation.  
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With boundaries and material appropriately set, a simulation can be done. It is interesting to see 

the example of the magnetic flux lines plot (Figure 3.25) and magnetic flux density over the 

air-gap arc (Figure 3.26). 

 

 

Figure 3.25 – Magnetic flux lines and color density plot. 

 

Figure 3.26 - Magnetic flux density plot over the air-gap line. 
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Data shown in Figure 3.26 is then imported to MATLAB, normalized, and first harmonic and 

mean value extracted (Figure 3.27). The normalization is done to neglect the saturation effect, 

as the simulation regards effects from pole shoe shape only. An important parameter is obtained 

from this tool since this mean value corresponds to the pole enclosure factor [29]. 

 

Figure 3.27 - Magnetic Flux Density with some extracted parameters. 
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3.4. EFFECTIVE PACKAGE MAGNETIC LENGTH 

The fourth and last tool calculates the effective package length, which, like the third tool, 

simulates actual shape to get density flux curves. The Effective Magnetic Length is something 

to be regarded when calculating magnetic flux in air-gap, because not all flux lines cross the 

air-gap following a minimum path (straight line). They are sparse in extremities due to leakage 

flux. Then, for an accurate portrayal of air-gap quantities, simulation is required to compensate 

for this difference, representing the pole-end actual geometry (damper slots ring and pole end) 

correctly.  

A core axial enclosure factor can be defined as the ratio between the flux density in a length 

that covers from the stator center to this critical region (pole extremity*) and that density 

without the critical region. Given a normalized density plot 𝐵(𝑧), where 𝑧 stand for axial length, 

a pole axial enclosure factor 𝛼𝑒: 

 

𝛼𝑒 =
1

𝑙𝑠/2
∫ 𝐵(𝑧)𝑑𝑧

𝑙𝑠

𝑙−𝑙𝑠/2

 (3.18) 

 

* For a stator with length 𝑙𝑠, the reference line 𝑙 that defines the critical region is chosen by 

taking some considerations further ahead. 

To correctly represent pole and stator extremities, the geometry in Figure 3.28 is applied. 
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Figure 3.28 - Axial dimensions around air-gap. 

Some considerations are made before simulating it: 

• It is considered actual stator axial height and pole axial height; 

• Length of interest (plotting region): 

o From 4 minimum air-gaps of distance before the damping winding slot (𝑙𝑑𝑎𝑚𝑝 − 4𝛿0); 

o To half minimum air-gap beyond stator axial length (𝑙𝑠 + 𝛿0/2); 

o 𝑙 = [𝑙𝑑𝑎𝑚𝑝 − 4𝛿0 , 𝑙𝑠 + 𝛿0/2]*  

These values were obtained after some simulations, where it was observed that results did 

not change significantly after increasing this interest region. 

• Instead of using open boundaries, it is defined as a squared region of air, with dimensions 

that do not affect the leakage significantly. 

In Figure 3.29 it is shown the geometry in FEMM, zoomed-in Figure 3.30. The geometry is 

defined by inputting parameters shown in Figure 3.28. 

*Figure 3.30 depicts the region of interest with dimensions 
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Figure 3.29 - A SM axial extremity in FEMM. 
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Figure 3.30 - A SM axial extremity in FEMM (Detail). 

  



73 

 

With boundaries set as in Figure 3.31. 

 

Figure 3.31 - Boundaries properties for pole end simulation 

Figures 3.32 to 3.34 show simulation results: 

 

 

Figure 3.32 - Magnetic flux lines and color density plot. 
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Figure 3.33 - Magnetic flux lines and color density plot (Detail). 

 

Figure 3.34 - Magnetic flux density over the region of interest. 
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Figure 3.35 shows the same graphic in Figure 3.34, normalized, and side to side to the geometry 

simulated, with a dashed line marking the stator end. Red line represents the plotting region. 

 

 

Figure 3.35 - Simulated geometry and normalized magnetic flux density plot. 

With density plots in hand, it is possible to calculate 𝛼𝑒 using Equation 3.8. The next chapter 

shows results from three different applications.  
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4. INTERACTION WITH MATLAB AND 

APPLICATIONS 

MATLAB is a software that has a set of tools to solve engineering problems, mainly when 

dealing with arrays and matrices. It was chosen for this work due to the availability of a set of 

commands present in FEMM made to work together with Octave (Same language as 

MATLAB). 

A set of routines were created using MATLAB guide, summarizing the tools described in this 

work in one application. 

Three benchmarks from General Electric are used for this work validation, two of them from 

real salient pole SG. The third one is created by replicating one of the two and changing its pole 

shoe shape. Table 4.1 presents all significant data. 

 

Table 4.1 - SGs parameters for validation. 

Parameter SG1 SG2 SG3 

Number of stator slots 144 408 144 

Number of pair of poles 4 20 4 

Stator outer diameter [mm] 3212.0 8900.2 3212.0 

Stator inner diameter [mm] 2350.0 8200 2350.0 

Stator slot height [mm] 131 150.08 131 

Stator slot width [mm] 16.42 22.72 16.42 

Type of Pole Shoe 3 arcs 3 arcs 1 arc 

Minimum air-gap [mm] 18 24 18 

Pole shoe height [mm] 75 35 75 

Pole shoe minor width [mm] - - 635 

Pole shoe greater width [mm] 635 480 635 

Corner radius [mm] - - 15 

Pole shoe greater radius [mm] 1157 4076 1014.4 

Pole shoe greater radius width [mm] 403.6 282.1 - 

Pole shoe minor radius [mm] 321.44 206.37 - 

Pole core height [mm] 201 226 201 

Pole core width [mm] 460 350 460 
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Stator end ladder total height [mm] 12 12 12 

Stator end ladder total width [mm] 20 20 20 

Number of stator end ladder steps 4 4 4 

Pole shoe axial length [mm] 1580 2010 1580 

Pole core axial length [mm] 1580 2050 1580 

Stator axial length [mm] 1600 2050 1600 

Difference height between Pole core and end [mm] 0 0 0 

Pole end heel height [mm] 0 0 0 

Damper ring slot ramp length [mm] 20 20 20 

Pole end minor length [mm] 200 65 200 

Pole end greater length [mm] 87.5 85 87.5 

Pole end ramp angle [°] 23.2 11.6 23.2 

Damper ring slot length [mm] 18 23 18 

Damper ring slot height [mm] 35 30 35 

4.1. Results for SG1 

Results in Figures 4.1 to 4.10. 

 

 

Figure 4.1 - Phasorial rosette and winding scheme for SG1. 
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Figure 4.2 - Stator data for SG1. 

 

Figure 4.3 - Winding Matrix for SG1. 
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Figure 4.4 - Resulting MMF for SG1. 

 

Figure 4.5 - Pole Shoe for SG1. 
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Figure 4.6 - Pole Shoe Magnetic Analysis for SG1. 

 

Figure 4.7 - Benchmark pole field curve for SG1. 
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Figure 4.8 - Effective Magnetic Length analysis for SG1. 

 

Figure 4.9 - Benchmark airgap field in axial direction for SG1. 
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Figure 4.10 - Stator with poles for SG1. 

4.2. Results for SG2 

Results in Figures 4.11 to 4.20. 

 

Figure 4.11 - Phasorial rosette and winding scheme for SG2. 
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Figure 4.12 -  Stator data for SG2 

 

Figure 4.13 - Winding Matrix for SG2. 
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Figure 4.14 - Resulting MMF for SG2. 

 

Figure 4.15 - Pole Shoe for SG2. 
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Figure 4.16 - Pole Shoe Magnetic Analysis for SG2. 

 

 

Figure 4.17 - Benchmark pole field curve for SG2. 
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Figure 4.18 - Effective Magnetic Length analysis for SG2. 

 

Figure 4.19 - Benchmark airgap field in axial direction for SG2. 
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Figure 4.20 - Stator with poles for SG2. 

4.3. Results for SG3 

Significant results in Figures 4.21 to 4.24. 

 

Figure 4.21 - Pole Shoe for SG3. 
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Figure 4.22 - Pole Shoe Magnetic Analysis for SG3. 

 

Figure 4.23 - Benchmark pole field curve for SG3. 
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Figure 4.24 - Stator with poles for SG3 

4.4. Results 

4.4.1. Pole enclosure factor 

From Figures 4.6, 4.16 and 4.22 the pole density flux plot is obtained, from that the pole 

enclosure factor is extracted and both, plot shape and factor value, can be compared with GE 

benchmark. By visual inspection, the curve shapes obtained coincides with the benchmark ones, 

even with the lack of information on the benchmark simulation parameters. Table 4.2 presents 

a comparison between factors obtained using this work tool and from GE benchmark.   

 

Table 4.2 - Pole enclosure results compared to benchmark 

SG GE Benchmark FEMM + MATLAB Error 

1 0.699 0.708 0.009 

2 0.729 0.721 0.008 

3 0.688 0.689 0.001 

 

  



90 

 

4.4.2. Axial enclosure factor 

From Figures 4.8 and 4.18 axial enclosure factors are obtained. Visually, it is notable the 

difference in pole extremity plots from this work tools and GE benchmark, that is due to the 

different parameters considered during simulations, for boundaries and materials. The access 

limitation to benchmark information (only SG dimensions, airgap field in axial direction plot 

as image and axial enclosure factor) caused this discrepancy. Although, factor values 

comparison in Table 4.3 shows how accurate results are. 

 

Table 4.3 - Axial enclosure results compared to benchmark. 

SG GE Benchmark FEMM + MATLAB Error 

1 0.9851 0.9852 0.0001 

2 0.9910 0.9909 0.0001 
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5. CONCLUSIONS 

This dissertation presented a collection of procedures together with FEM to provide a general, 

simple and organized way to evaluate most common salient pole SG magnetics effects with air-

gap line as reference, in a form of a set of tools using MATLAB interface. The tools calculate 

two important machine quantities: Magnetomotive force and factors that are key to estimate 

magnetic flux. The tools comprehend the study of: winding distribution using Tingley Box; 

Magnetomotive Force calculation from a given winding matrix; Pole shoe enclosure factor 

calculation for any salient pole machine; Axial enclosure factor calculation for any usual rotor 

construction. 

In winding distribution, Tingley box proved to be a suitable and simple algorithm to set any 

combination in number of stator slots and pair of poles into a well-balanced winding scheme. 

For generators with a large number of slots it is difficult to apply the method by hand, so the 

implementation of it as an algorithm embraces these cases. Tingley is a clean way to show 

distribution of windings in slots and provides the winding matrix as output. 

Applied examples of Winding Matrix maintains it status as a strong tool to manipulate windings 

in a more basic level, it allows changing the number of turns in each slot and the pitch of layers 

with ease, justifying its use, together with the MMF of a single turn formula, to determine the 

resultant MMF of any usual machine. 

The use of Winding Matrix to calculate MMF is the start of more complete analyzes for 

machines, allowing the inclusion of unbalances as short-circuits in turns in specific slots, which 

is a common fault in SGs. This aspect allied with a real-time simulation is a strong utility toward 

predictive maintenance of power systems.  

The two other tools presented in this dissertation makes a magnetic study using Finite Element 

Analysis in order to obtain enclosure factors, which are central to determine magnetic quantities 

that represent the machine. The use of MATLAB and FEMM provides a user-friendly interface 

that simulates salient pole shoes and their axial extremities with accuracy, which is confirmed 

when using GE benchmark data and comparing results. 

Individually, the tools have proven their value by presenting valuable outputs as winding 

matrix, MMF, pole shoe enclosure factor and axial enclosure factor. And yet, when mutually 

applied, they allow the estimation of important magnetic quantities that are for use of machine 

manufacturers and for dynamic studies and simulation, using input parameters known from 

design and rated information, for any usual salient pole SM. 
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6. FUTURE WORKS 

It is left to quantify the magnitudes of MMF and magnetic flux curves obtained in this work, 

and use this information to determine the machine reactance matrix. 

To include the fault analysis in the MMF determination tool, allowing one to add faulty turns 

in one or more specific slots. Consecutively, combine this tool to a real-time simulator that 

analyzes fault in power systems. 

To consider field and damper windings in the salient pole magnetic study, adapting the existing 

tools for their cases, completing the salient pole SM representation.  
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