
FEDERAL UNIVERSITY OF ITAJUBÁ - UNIFEI
GRADUATE PROGRAM IN

ELECTRICAL ENGINEERING

Robust Classification of Advanced Power
Quality Disturbances in Smart Grids

Gabriel Caldas Sardinha de Almeida

Itajubá, November 18, 2021



FEDERAL UNIVERSITY OF ITAJUBÁ - UNIFEI
GRADUATE PROGRAM IN

ELECTRICAL ENGINEERING

Gabriel Caldas Sardinha de Almeida

Robust Classification of Advanced Power
Quality Disturbances in Smart Grids

Dissertation submitted to the Graduate Program in Electrical
Engineering as part of the requirements to obtain the title of
Master of Science in Electrical Engineering.

Concentration Area: Electrical Power Systems

Supervisor: Prof. Ph.D. Paulo Fernando Ribeiro

November 18, 2021
Itajubá



Gabriel Caldas Sardinha de Almeida
Robust Classification of Advanced Power Quality Disturbances in Smart

Grids/ Gabriel Caldas Sardinha de Almeida. – Itajubá, November 18, 2021-
73 p. : il. (algumas color.) ; 30 cm.

Supervisor: Prof. Ph.D. Paulo Fernando Ribeiro

Dissertation (Master of Science)
Federal University of Itajubá - UNIFEI
Graduate program in electrical engineering, November 18, 2021.
1. Palavra-chave1. 2. Palavra-chave2. I. Orientador. II. Universidade xxx. III.

Faculdade de xxx. IV. Título

CDU 07:181:009.3



Gabriel Caldas Sardinha de Almeida

Robust Classification of Advanced Power Quality
Disturbances in Smart Grids

Dissertation submitted to the Graduate Pro-
gram in Electrical Engineering as part of the
requirements to obtain the title of Master
of Science in Electrical Engineering.

Work approved. Itajubá, November 18, 2021:

Prof. Ph.D. Paulo Fernando Ribeiro
Federal University of Itajubá (Supervisor)

Prof. Ph.D. Benedito Donizeti Bonatto
Federal University of Itajubá, Brazil

Prof. Dr. Carlos Augusto Duque
Federal University of Juiz de Fora, Brazil

Itajubá, November 18, 2021



Acknowledgements

I thank my parents for all the unconditional love that I have always received. If I
could get here, it was for all the effort they made. Thank you for supporting my decisions,
being my two eternal pillars in all phases of my life.

I want to deeply thank Professor Paulo Fernando Ribeiro for all kinds of help
provided. With your guidance, I could become a better student, a better professional, but
mainly, a better human being. Your advice made me a better person than when I started
this journey. I appreciate it. You and professor Antonio C. Zambroni were like fathers to
me.

I would also like to thank the professors of UNIFEI, employees, and all fellow
students who provided me with the opportunity to hold a master’s degree.

Finally, I would like to thank the funding agencies CAPES, CNPq, FAPEMIG,
and INERGE for the financial support that made my training possible. This work was
carried out with the support of the Coordination for the Improvement of Higher Education
Personnel - Brazil (CAPES) - Financial Code 001.



"Don’t count the things you do, do the things that count."

Zig Ziglar



Resumo
A inserção de novos dispositivos na rede, aumento do fluxo de dados, geração intermitente
e a informatização massiva aumentaram consideravelmente a complexidade dos sistemas
elétricos atuais. Esse aumento resultou em mudanças necessárias, como a necessidade de
redes elétricas mais inteligentes para se adaptarem a essa realidade diferente. A nova ger-
ação de técnicas de Inteligência Artificial, representada pelo "Big Data", Aprendizado de
Máquina ("Machine Learning"), Aprendizagem Profunda e Reconhecimento de Padrões
representa uma nova era na sociedade e no desenvolvimento global baseado na infor-
mação e no conhecimento. Com as mais recentes Redes Inteligentes, o uso de técnicas que
utilizem esse tipo de inteligência será ainda mais necessário. Esta dissertação investiga
o uso de processamento de sinais avançado e também algoritmos de Aprendizagem de
Máquina para desenvolver um classificador robusto de distúrbios de qualidade de energia
no contexto das Redes Inteligentes. Para isso, modelos já conhecidos de alguns proble-
mas de qualidade foram gerados junto com ruídos aleatórios para que o sistema fosse
similar a aplicações reais. A partir desses modelos, milhares de sinais foram gerados e a
Transformada Wavelet Discreta foi usada para extrair as principais características destas
perturbações. Esta dissertação tem como objetivo utilizar algoritmos baseados no con-
ceito de Aprendizado de Máquina para classificar os dados gerados de acordo com suas
classes. Todos estes algoritmos foram treinados, validados e por fim, testados. Além disso,
a acurácia e a matriz de confusão de cada um dos modelos foi apresentada e analisada. As
etapas de geração de dados, extração das principais características e otimização dos dados
foram realizadas no software MATLAB. Uma toolbox específica deste programa foi us-
ada para treinar, validar e testar os 27 algoritmos diferentes e avaliar cada desempenho.
Todas as etapas do trabalho foram previamente idealizadas, possibilitando seu correto
desenvolvimento e execução. Os resultados mostram que o classificador "Cubic Support
Vector Machine" obteve a máxima precisão entre todos os algoritmos, indicando a eficácia
do método proposto para classificação. As considerações sobre os resultados foram inter-
pretadas, como por exemplo a explicação da performance de cada técnica, suas relações
e suas justificativas.

Palavras-chaves: Aprendizado de Máquina. Qualidade de Energia. Redes Inteligentes.
Processamento de Sinais. Parâmetros Entrelaçados. Inteligência Artificial.



Abstract
The insertion of new devices, increased data flow, intermittent generation and massive
computerization have considerably increased current electrical systems’ complexity. This
increase resulted in necessary changes, such as the need for more intelligent electrical net-
works to adapt to this different reality. Artificial Intelligence (AI) plays an important role
in society, especially the techniques based on the learning process, and it is extended to the
power systems. In the context of Smart Grids (SG), where the information and innovative
solutions in monitoring is a primary concern, those techniques based on AI can present
several applications. This dissertation investigates the use of advanced signal processing
and ML algorithms to create a Robust Classifier of Advanced Power Quality (PQ) Dis-
turbances in SG. For this purpose, known models of PQ disturbances were generated with
random elements to approach real applications. From these models, thousands of signals
were generated with the performance of these disturbances. Signal processing techniques
using Discrete Wavelet Transform (DWT) were used to extract the signal’s main charac-
teristics. This research aims to use ML algorithms to classify these data according to their
respective features. ML algorithms were trained, validated, and tested. Also, the accuracy
and confusion matrix were analyzed, relating the logic behind the results. The stages of
data generation, feature extraction and optimization techniques were performed in the
MATLAB software. The Classification Learner toolbox was used for training, validation
and testing the 27 different ML algorithms and assess each performance. All stages of
the work were previously idealized, enabling their correct development and execution.
The results show that the Cubic Support Vector Machine (SVM) classifier achieved the
maximum accuracy of all algorithms, indicating the effectiveness of the proposed method
for classification. Considerations about the results were interpreted as explaining the per-
formance of each technique, its relations and their respective justifications.

Key-words: Advanced Power Quality. Artificial Intelligence. Interlaced Parameters. Ma-
chine Learning. Signal Processing. Smart Grids.
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1 Introduction

1.1 General Context
Massive computerization, insertion of new devices, increased data flow, and in-

termittent generation have considerably increased current electrical systems’ complexity.
This increase resulted in necessary changes, such as the need for more intelligent electrical
networks to adapt to this different reality. Artificial Intelligence (AI) may allow that these
systems can become more robust and reliable.

The use of advanced techniques of AI in power systems is becoming more and more
notorious in recent years. The new generation of AI technology represented by Big Data,
Machine Learning (ML), Deep Learning (DL), Pattern Recognition, and other methods
are closely related to the simulation analysis of large-scale power grids (TANG et al.,
2018).

AI represents a new era in society and global development based on information
and knowledge. With the recent Smart Grid (SG), the use of techniques that use this
type of intelligence will be even more necessary. The AI domain, with advanced ML and
cognitive computing capabilities, are a key enabler of unforeseen efficiency capabilities in
the context of smart energy grids (ŞERBAN; LYTRAS, 2020).

ML is an area of AI that has emerged as part of the ongoing search for build-
ing intelligent machines capable of learning. It is self-learning based on algorithms that
mean the system learns from its experience. It uses a statistical learning algorithm that
automatically learns and improves without human help (SHARMA; SHARMA; JINDAL,
2021).

One of the essential elements for a good functioning of an electrical system is Power
Quality (PQ). Therefore, a high-quality diagnosis of this grid is critical to identify and
solve eventual problems. Besides deteriorating grid performance, the loss of PQ also has
financial implications, resulting in extra costs related to the additional power consumed
(PEREIRA et al., 1998).

In recent years, PQ has become a growing concern for both energy utilities and
consumers of the power grid. The integration of distributed generation and renewable
energies is one of the major sources of PQ disturbances. The increasing application of
switching devices, nonlinear loads, rectifiers, lighting controls, protection, and relaying
equipment are also the causes of the PQ disturbances (KHOKHAR et al., 2015). If these
disturbances are not identified and classified, they can cause severe damage to distribution
systems.
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An adequate PQ guarantees the necessary compatibility between consumer equip-
ment and the grid. So, it is an essential aspect of the power system which cannot be
neglected (JWG C4.24/CIRED, 2018). In order to improve PQ, the sources and causes
of such disturbances must be known before appropriate mitigating actions can be taken.

Distribution companies have devices along with the network that captures wave-
forms related to various PQ problems. However, due to operational limits such as time,
money, qualified labor, and technical knowledge, most of these signals are stored in
databases and are not analyzed or classified (WILSON et al., 2020). This loss of informa-
tion can be vital for a better understanding of electrical distribution systems’ condition
operations.

Events such as voltage swell, capacitor switching transients, short-term faults, volt-
age sags, among others, are the leading causes of disturbances measured in the electrical
grid. In this way, ML applications become ideal for identifying and classifying these prob-
lems in SG, identifying in real-time the thousands of events that occur within a period.

1.2 Objectives
This dissertation investigates the use of advanced signal processing and ML algo-

rithms to create a Robust Classifier of Advanced PQ Disturbances in SG. For this purpose,
known models of PQ disturbances were generated in MATLAB with random elements to
approach real applications. From these models, thousands of signals were generated with
the pattern of these disturbances. Signal processing techniques using Discrete Wavelet
Transform (DWT) were used to extract the signal’s main characteristics. This research
aims to use ML algorithms to classify these data according to their respective features. ML
algorithms were trained, validated, and tested. Finally, a comparison between all models
was made, based on statistical analysis.

This process was carried out for different models of ML. Also, the accuracy and
confusion matrix were analyzed, relating the logic behind the results. The software used
was the Classification Learner from MATLAB, in which all stages of the process were
developed. Below are some specific goals:

1. Highlight the contribution of combine advanced signal processing techniques with
methods based on ML to carry out classification of PQ events in power systems;

2. Show that the use of statistical analysis tools is beneficial when comparing the
results of validated models;

3. Bring out the specificity of each tested model and the relationship with its perfor-
mance;
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4. Contextualize modern subjects in the literature and its alignment with applications
of the innovative SG context;

5. Develop and validate a robust classifier capable of differentiating ten types of PQ
events;

6. Execute a performance analysis of the obtained results;

7. Make data, codes, and methods available in public databases to share with the
community of professionals and researchers.

1.3 Relevance
The use of signal processing is recurrent in applications in electrical power sys-

tems. The Wavelet Transform (WT) can improve algorithms efficiency dealing with feature
extraction for the pattern recognition of PQ disturbances. This tool presents the charac-
teristic of decomposing a signal into different scales, with varying resolution levels from an
analyzed signal. This signal processing technique can support AI applications on power
systems monitoring and diagnosis since these two subjects present excellent development
synergy. In recent times, ML techniques have proven to be effective in numerous appli-
cations, including power system studies (ALIMI; OUAHADA; ABU-MAHFOUZ, 2020).
Therefore, there are more and more algorithms based on the joining of these elements.

Possibly, pattern recognition will be even more required in future power systems
due to the applications’ degree of complexity. Studies already demonstrate their potential
applications in Internet of Things (IOT) integrated power systems (FARHOUMANDI;
ZHOU; SHAHIDEHPOUR, 2021). In this way, ML algorithms play an essential role in
overcoming these problems and stand out as a safe and effective technique for possible
applications in SG.

1.4 Methodology
At first, an extensive literature review on the international databases and biblio-

graphic references was made to construct the logical basis of the investigation. MATLAB
software was used to perform the generation of signals database using mathematical mod-
els of the different quality events, extraction stages and optimization techniques. This tool,
widely used by researchers, also enabled, through the Classification Learner app (ML spe-
cific toolbox), the training, validation, and testing of 27 ML models. Although detection
is a vital tool in the PQ area, it was not the focus of our work. In this work, we start from
the point where the models have already been detected and focus mainly on the part of
disturbances classification.
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In the final part of the methodology, proposed analyses and presentation of results
with debates aimed at highlighting the work’s contribution were conducted. Performance
classification results were presented using accuracy and the confusion matrix only for the
best cases. However, in the appendix, it is possible to view the analysis of all models. The
methodology also provides the code and data used in this work. Fig. 1.1 illustrates the
methodology steps.

Figure 1.1 – Steps in the development of the PQ classifier.

1.5 Dissertation Structure
This dissertation is divided as follows:

Chapter 2 presents a literature review on pattern recognition for PQ disturbances.
The theoretical tools used in this work with advanced signal processing and ML frame-
works are presented. Also, the chapter describes the possible future context of SG.

Chapter 3 is directed towards the research’s development procedures, going through
the data generation, featuring extraction stage, optimization techniques, and ML algo-
rithms design and training steps.

Chapter 4 presents the performance obtained in the ML algorithms test stage and
some key considerations.

Finally, chapter 5 brings the research conclusions and the future works possibili-
ties.
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2 Theoretical Background

This chapter presents the theoretical background topics necessary for a better
understanding of the development of this research. Starting with the state-of-art, exploring
the SG context, presenting all advance PQ disturbances covered in this work, passing
through the topics involving the Signal Processing Stage, and finally, a ML framework.

2.1 State-of-Art
The use of AI in power systems covers several works. In Oliveira et al. (2017),

the authors developed a methodology for microgrid management in islanded conditions
using the fuzzy logic methodology. The proposed controller determines what actions will
be taken from the input data as renewable-based power, State of Charge (SOC) and
renewable power penetration ratio.

Reference Barrios (2015) proposed an energy management system of a microgrid
using Genetic Algorithm (GA) composed of two stages of optimization. MATLAB software
was used to develop the optimization algorithm, which, according to the author, has shown
good capabilities to improve PQ. In Moloi e Yusuff (2020) the authors applied neural
networks and wavelet in power system fault diagnostics. The performance of the protection
scheme mainly relied on the ability of the algorithm to classify the fault accurately. The
Particle Swarm Optimization (PSO) method was also implemented to evaluate the input
parameters of the Artificial Neural Network (ANN) classifier.

In Salles et al. (2020) the authors developed a fuzzy logic-based controller for bat-
tery energy storage systems and load management to support the operation of a microgrid
with photovoltaic (PV) farm generation. The software MATLAB/Simulink was used to
simulate the different scenarios. The results demonstrate that fuzzy logic improved the
system since it managed the loads and allowed a lower-cost operation properly.

Focused on ML techniques specifically, the literature is also plenty. The work of
Cerqueira et al. (2006) presented a method for the detection and classification of PQ
disturbances using ANN-based classifiers. The numerical results from computational sim-
ulation showed a good performance of the proposed method. Already in Yu e Wang
(2009), the authors also proposed a digital system for detection and classification of PQ
disturbance, but this time using WT and multiclass Support Vector Machine (SVM).

The study of Chapaloglou et al. (2019) developed a smart energy management
system for load smoothing and peak shaving based on a clustering algorithm capable of
forecasting the next day’s load pattern. The simulation results proved that by applying
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the proposed algorithm, they could achieve a smoother diesel generator operation and
peak shaving.

In Erişti et al. (2013) the author proposes a method to identify and classify several
PQ disturbances events using WT based signal processing technique and Least Square
SVM. Features like Mean, Skewness, Standard deviation, and Entropy were used to feed
the SVM. The authors in Cai et al. (2017) proposed a real-time detection of power system
disturbances based on K-Nearest Neighbor (KNN) analysis. The method consists of two
stages: offline modeling and online detection.

PQ is also a vital topic of this research. Therefore, it was necessary to highlight
some works covering it. Reference (KHOKHAR et al., 2014) reviewed the modeling and
simulation of the PQ disturbances due to the exploitation of some types of loads. The PQ
disturbances were created by using parametric equations and electrical power distribution
system models in MATLAB/SIMULINK environment. The simulation results show that
the PQ disturbances created by the two methods are very similar, validating the system.

In S. Salles et al. (2020) the authors presented an alternative for visualizing PQ dis-
turbances through 2-D images from scalograms based on the Continuous Wavelet Trans-
form (CWT). Signals from three different sources were used: mathematical equations,
models of transmission and distribution of energy in MATLAB/Simulink, and real signals
from a database. The results showed the method’s efficiency, showing the interlaced phe-
nomena with simultaneity and the relationship between different signal variation types.

In Aung, Milanovic e Simmons (2004), the authors describes a modular software
for assessment and visualization of voltage sag performance. It allows in-depth analysis
of the voltage sag performance of the individual buses and the performance of the entire
network at different voltage levels. In SALLES (2020) was developed a classifier of PQ
performance based on DL algorithms. The author compared each Convolutional Neural
Network (CNN) created and achieved high performance.

Focusing on signal processing, the use of WT is historical and constant. Reference
(RIBEIRO, 1994) was the first paper to propose using wavelets in PQ problems. The
author presented the basic concepts of wavelet theory, investigating its potential for power
distortion analysis. In Xu et al. (2006), the author presented some techniques for the
analysis and visualization of time-varying waveform distortions. The authors performed
a comparative study on four techniques and concluded that the DWT method gives the
best visualization for time-varying waveform distortions.

Reference (FRUNT; KLING; RIBEIRO, 2011) proposed using wavelets to analyze
fluctuations in load and generation profiles. The authors could determine the fluctuation
patterns of the profiles by filtering wavelet components based on their RMS values. They
used four different case studies, elaborating on a load profile, wind generation, photovoltaic
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generation, and the operation of a microgrid, and identified the most relevant frequency
detail scaling factors from the analysis. It was shown that the wavelet method could be
applied to determine in what time range the essential fluctuations occur in either or both
generation and load.

In Gomes et al. (2017) the authors presented the use of time-frequency analysis to
identify a time-varying nonlinear load behavior. The technique was applied to a supply
current measured at a university building where an elevator had been activated, allowing
identifying its behavior at the moment of operation, using Wavelet Packet Transform
(WPT). The authors concluded that time-varying harmonics provided by the wavelet
decomposition proved effective for determining the behavior of a nonlinear load.

In Souza (2017), the author proposes two PQ monitoring tools focused on micro-
grids. The first one uses DWT to decompose the waveform at different levels of frequency.
The second tool uses WPT to visualize better fundamental frequency and harmonics of
greater magnitudes in a given time interval.

The wavelet entropy is also highlighted in some works, like in Zhengyou et al.
(2011) where the authors proposed a power system transients classification based on this
feature. The method was applicable in power systems together with a neural network
classifier and achieved effective classifying result.

All these works make up the state-of-art related to the areas and applications of
this work. From them, it is possible to build a solid base for more advanced research
to be carried out, contributing to the knowledge of the entire scientific community. In
the following sessions, the theoretical basis and research topics will be presented and
discussed.

2.2 Smart Grid Context
The drastic transformation in the electric sector and global concern about climate

change influenced the necessary modernization of the sector. The strong insertion of new
technologies based on IOT and Industry 4.0 allowed the emergence of new concepts, such
as the concept of SG. The first official definition of SG was provided by the US Congress
(2007), describing with some characteristics as follows:

1. Increased use of digital information and controls technology to improve reliability,
security, and efficiency of the electric grid;

2. Deployment and integration of distributed resources and generation, including re-
newable resources;
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3. Deployment of smart technologies (real-time, automated, interactive technologies
that optimize the physical operation of appliances and consumer devices) for me-
tering, communications concerning grid operations and status, and distribution au-
tomation;

4. Integration of smart appliances and consumer devices;

5. Provision to consumers of timely information and control options.

Other important bodies have their own definition like (International Energy Agency,
2011): "A SG is an electricity network that uses digital and other advanced technologies
to monitor and manage the transport of electricity from all generation sources to meet
the varying electricity demands of end-users. SGs coordinate the needs and capabilities of
all generators, grid operators, end-users, and electricity market stakeholders to operate all
parts of the system as efficiently as possible, minimizing costs and environmental impacts
while maximizing system reliability, resilience, and stability."

Although there are similarities, to this day, there is still no global definition on the
subject. Some key points are the search for a more efficient (energy and economically),
reliable and sustainable system. Besides, there is also a strong relationship in the pro-
posal for decentralized systems, small-scale transmission, bidirectional communication,
and active prosumers (producer and consumer at the same time). The use of Information
and Communication Technology (ICT), Big Data and AI give the basement for the im-
plementation of SG. Fig. 2.1 illustrates the general context and some features present in
SG.

The crucial aspect of the SG s is the security concern. Not only physical security
(theft of equipment and energy) but also cybersecurity. This is a topic that several authors
widely address (XU et al., 2021; HUANG et al., 2019) because, in these new networks,
everything is digital and online. In fact, the use of IOT and ML in this area is recurrent
(DHARMADHIKARI et al., 2021).

Perhaps we can think that only nations with an advanced economy can bene-
fit from all these technologies and innovations. However, the literature shows different
(FADAEENEJAD et al., 2014; Saidani Neffati et al., 2021). In general, the changes re-
quired adaptation of the potential prime features of technology, covering niftier equipment
integration and internal cross-platform communication adaptable to the context of each
developing country. Another aspect of this energy transformation needs to be societal,
adapting to the mindset of the policymakers, users, and building general awareness and
sense of social responsibility towards clean energy ensuring the sustainability of the planet
(MARUF et al., 2020).
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Figure 2.1 – Features and technologies of SG.

In this way, SGs does not exist exclusively in economically advanced countries with
a high human development index. Quite the opposite, it is widely possible and viable to
implement these technologies in developing economies with proper investments. SGs can
also use modern technologies to identify and classification in real-time the thousands of
events that occur within a period in order to adopt appropriate mitigating actions.

2.3 Advanced Power Quality Disturbances
The study of PQ is not new. Researches have been dealing with this subject for

a long time, like reference IEEE (1994). However, with the modernization of power sys-
tems, new problems have arisen. That is why it is necessary to call them advanced PQ
disturbances and study them with new signal processing techniques so that they can be
understood and classified.

The term PQ refers to a wide variety of electromagnetic phenomena that charac-
terize the voltage and current at a given time and at a given location on the power system
(IEEE, 2019). These events can have their source in either the utility or customer wiring
system or equipment.

PQ is part of the latest challenges to which the grid is exposed and for which
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the transition to the SG is necessary. The switching frequency of the converters in wind
turbines can causes high-frequency signals flowing into the grid; Solar panels connected
to the low-voltage networks will result in overvoltages for example; EV chargers generate
harmonics, and the repeated starting of heat pumps can result in visible light flicker
(BOLLEN; BAHRAMIRAD; KHODAEI, 2014).

Fig. 2.2 show some of the mainly PQ issues. It is important to stress that these
issues generally do not occur separately. They often happen simultaneously, as is the
case, of a voltage sag with the presence of harmonics. Because of this, they can be called
Interlaced Parameters or interlaced parameters. This is one of the reasons for studying
these effects. Upon learning about each parameter, it is possible to model and replicate
them.

All of these disturbances have particular waveforms. The electrical waveforms’
representation of the electric grid can be compared to the description of the electrocar-
diogram, representing the automatic function of a human heart, giving insights into its
health and function. In the same manner, an evaluation of the electrical signals of a power
grid can provide the electrical engineer with the ability to diagnose and predict possible
malfunctions of the electric system (RIBEIRO et al., 2013).

Figure 2.2 – Advanced PQ Context.

This section aims to describe only the events covered by this research. Table 2.1
summarizes the disturbance parameters used in this work. For information on other PQ
events, it is advisable to read the standard IEEE (2019).
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Table 2.1 – Features of investigated PQ disturbances (Adapted from (IEEE, 2019)).

Categories Spectral Duration Magnitude
Transients
Impulsive 0.1 ms rise > 1 ms
Oscillatory <5 kHz 0.3-50 ms 0 - 4 pu

Short-term RMS variations
Sag < 0.5 - 30 cycles 0.1 - 0.9 pu

Swell 0.5 - 30 cycles 1.1 - 1.8 pu
Interruption 0.5 cycle - 3 sec < 0.1 pu

Waveform distortion
Harmonics 0 - 9 kHz steady state 0–20%

Voltage fluctuations <25 Hz intermittent 0.1-7%

2.3.1 Impulsive Transient

Transients usually caused by lightning strikes are known as impulsive. A lightning
strike to an overhead line or in the line’s neighborhood will lead to a high overvoltage on
the line. Such overvoltage often leads to an earth fault or a short-circuit fault (BOLLEN;
GU, 2006).

This phenomenon has short-duration, highly damped, non-oscillatory overvoltages,
with a few milliseconds or less of duration time. (JWG C4/C6.29, 2016) Due to the
high frequencies involved, impulsive transients are damped quickly by impedance circuit
elements. Fig. 2.3 illustrate an impulsive transient disturbance.

Figure 2.3 – Impulsive Transient Disturbance.
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2.3.2 Oscillatory Transient

An oscillatory transient consists of a voltage or current whose instantaneous value
changes polarity rapidly multiple times and usually decaying within a fundamental-
frequency cycle (IEEE, 2019). The transients related to disconnecting loads, energizing
the capacitor bank, and transformers are known as oscillatory transients.

The most severe case from a PQ viewpoint is the energizing of a capacitor. It will
lead to an initial change in the voltage waveform toward zero followed by an oscillation
with a frequency of a few hundred-hertz (BOLLEN; GU, 2006). The overvoltage is directly
proportional to the number of capacitors present in the system. Fig. 2.4 shows an example
of oscillatory transient.

Figure 2.4 – Oscillatory Transient Disturbance.

2.3.3 Voltage Sag

Voltage sags or voltage dips are one of the most common types of PQ problems.
They are generally associated with short circuit faults such as Single-line to Ground (LG),
Line to Line (LL), Double-line to Ground (LLG), Three-phase (LLL), Three-phase to
Ground (LLLG) faults. This problem can also be generated by energizing heavy loads such
as energizing large motors. Some of the expected future network functionalities will result
in more frequent or longer voltage sags and short interruptions (JWG C4.24/CIRED,
2018).
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Voltage sags are short-duration reductions in voltage magnitude. A sag decreases
rms voltage to between 0.1 pu and 0.9 pu for durations from 0.5 cycles to 1 min. Normal
values are between 0.1 pu and 0.9 pu (IEEE, 2019). The residual voltage (the voltage
magnitude during the event) may be anywhere close to zero and close to the nominal
voltage (BOLLEN; GU, 2006). Fig. 2.5 shows a typical voltage sag.

Figure 2.5 – Voltage Sag Disturbance.

2.3.4 Voltage Swell

A short-duration increase in voltage magnitude (JWG C4/C6.29, 2016), generally
associated with short-circuit failures in electrical systems. In a fault involving a ground
phase, this effect is created in the phase where the fault occurs while the swell is produced
in the other phases. This transient also occurs when connecting and disconnecting loads
or energizing a capacitor bank, for example.

They are the opposite of sags and much less common. A swell is an increase in rms
voltage above 1.1 pu for durations from 0.5 cycles to 1 min, with magnitudes between 1.8
pu (IEEE, 2019). Fig. 2.6 shows an example of voltage swell.

2.3.5 Interruption

Interruptions are defined as a situation in which the voltage magnitude is zero or
close to zero. Typical thresholds to detect an interruption are one and 10% of the nominal
voltage, for a time of not more than 1-minute (IEEE, 2019).
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Figure 2.6 – Voltage Swell Disturbance.

Interruptions are due to the disconnection of one or more customers from the
power network. The causes for this disconnection can be an opening of a circuit breaker
or a fuse due to a short circuit, a negligent operation of a circuit breaker or intentional
disconnection of part of the system (BOLLEN; GU, 2006). Fig. 2.7 illustrate an typical
interruption event.

2.3.6 Harmonic Distortion

Harmonics are sinusoidal voltages or currents with frequencies that are integers
multiple of the system’s fundamental frequency. The connection of Renewable Energy
Sources (RES) to the electricity network is mainly achieved through the use of Power
Electronic (PE) converters, which are sources of harmonic distortion (JWG C4/B4.38,
2019).

The complete harmonic spectrum describes harmonic distortion levels with mag-
nitudes and phase angles of each harmonic component. It is also common to use a single
quantity, the Total Harmonic Distortion (THD), as a measure of the practical value of
harmonic distortion (DUGAN et al., 2012).

Nonlinear devices in the power system cause harmonic distortion. Rectified input,
switching power supplies often used in electronic-based equipment is a major contributor
of harmonics in the power system (IEEE, 2019). A voltage source Pulse-width Modulation
(PWM) inverter supplied from a six-pulse rectifier is one of the most common configura-
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Figure 2.7 – Momentary Interruption.

tions used in variable frequency Alternating Current (AC) drives (JWG C4/B4.38, 2019).
Fig. 2.8 shows an example of harmonic distortion.

Figure 2.8 – Harmonic Distortion.
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2.3.7 Voltage fluctuations

Variations of the voltage envelope or a series of random voltage changes. The
magnitude of this Voltage fluctuations does not normally exceed the voltage ranges of
0.95 pu to 1.05 pu. Humans can perceive such voltage fluctuations by changes in lamp
illumination intensity (DUGAN et al., 2012).

Loads that exhibit continuous, rapid variations in load current magnitude can
cause voltage variations erroneously referred to as "flicker." The term is derived from the
impact of the voltage fluctuation on lighting intensity. Voltage fluctuation is an electro-
magnetic phenomenon, and flicker is an undesirable result of that phenomenon on lighting.
They are often confused to the point that the term voltage flicker is used in some docu-
ments when the term voltage fluctuation should be used. Such incorrect usage should be
avoided (IEEE, 2019).

An essential source of voltage fluctuations is the arc furnace - a large electric oven
in which metal is melted. The currents taken by an arc furnace vary at many different time
scales (BOLLEN; GU, 2006). An example of a voltage fluctuation is shown in Fig. 2.9.

Figure 2.9 – Voltage fluctuations.

2.3.8 Interlaced Parameters

In this work, interlaced parameters were also modeled in order to be classified. The
insertion of these parameters occurred so that the results to be obtained are even more
similar to what happens in real power systems. Fig. 2.10 illustrates a typical example of
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voltage sag occurring with harmonics, while Fig. 2.11 shows an example of voltage swell
occurring with harmonic distortion.

Figure 2.10 – Voltage Sag with Harmonics.

Figure 2.11 – Voltage Swell with Harmonics.
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2.4 Signal Processing Stage
In this section, we will present the theoretical basis regarding the signal processing

stage that was used in this work. Concepts involving WT, DWT, THD, energy and entropy
will be discussed. In this work, the original signal was decomposed with DWT to obtain
the coefficients’ energy and entropy. Also, THD was extracted to increase the amount of
information in the input data matrix of the next steps. Fig. 2.12 shows the big picture of
the signal processing methodology used in this work.

Figure 2.12 – Big Picture of the Signal Processing methodology used.

2.4.1 Discrete Wavelet Transform

The WT is an advanced signal processing tool that performs a significant role in
feature extraction for the pattern recognition of PQ disturbances (IBRAHIM; MORCOS,
2002). This tool presents the characteristic of decomposing a signal into different scales,
with varying levels of resolution from an analyzed signal (RODRIGUES; TOSTES, 2018).
WT also provides a multi-resolution analysis, examining the signal at different time and
frequency, separate from the Fourier transform, which only obtains information about the
frequency.

Harmonic distortion assumes steady-state conditions and is consequently inad-
equate to deal with time-varying waveforms (RIBEIRO, 2010). Therefore the use of
wavelets can be an alternative to the traditional harmonic analysis. In addition to per-
forming an analysis on the frequency, it also performs an analysis in time, which allows
its application in disturbance identification systems, for example.



Chapter 2. Theoretical Background 33

The signal is decomposed into various scales of a short-term waveform called
"mother wavelets" and analyzed. This typical wavelet is a fast decaying oscillating wave-
form with zero mean value. DWT is a transform derived from a CWT, with the scales
and positions discretized while the signal is also discretized. According to (SILVEIRA;
M.; RIBEIRO, 2007), DWT is represented as in Equation (2.1):

𝐷𝑊𝑇Ψ
𝑓 (𝑗, 𝑘) = 1√︁

𝑎𝑗
0

∞∑︁
𝑛=−∞

𝑓(𝑛)Ψ
[︃
𝑛− 𝑎𝑗

0 𝑘 𝑏0

𝑎𝑗
0

]︃
(2.1)

where 𝑗, 𝑘, 𝑛 ∈ Z and 𝑎0 > 1.

In the literature, there are several wavelet functions, such as Morlet, Shannon,
Mexican Hat, Meyer, Gabor, and Gaussian, which can be selected according to the nature
of the signal to be analyzed (BRONZINI et al., 2007). The wavelets are generated from
the mother wavelet by dilations and translations of these parameters, resulting in several
wavelet basis functions. Fig. 2.13 shows some examples of mother wavelets.

Figure 2.13 – Examples of different types of mother wavelets.

The choice of each wavelet must be consistent with the desired application, making
it model the acquired signal accurately. Therefore, a suitable choice of a mother wavelet
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is not only useful and elegant, but it is also efficient (GALLI; HEYDT; RIBEIRO, 1996).
In this work, the "dmey" mother wavelet was used in all PQ disturbs. This choice was
due to tests that were carried out, confirming a better performance for this set. However,
this mother wavelet is not always the best choice for all jobs involving PQ due to the
specificity of each algorithm.

2.4.1.1 Coefficients’ Entropy

The Shannon Entropy is an essential quantity in information theory associated
with a variable, which can be interpreted as the average level of information inherent in
the variable’s possible outcomes. According to (COIFMAN; WICKERHAUSER, 1992),
this feature can be represented in Equation (2.2):

𝐸(𝑠) = −
𝑁∑︁

𝑛=1
𝑠2

𝑖 𝑙𝑜𝑔(𝑠2
𝑖 ) (2.2)

where 𝐸(𝑠) is the Shannon Entropy, 𝑠 is the signal and 𝑠𝑖 the coefficients of 𝑠 in an
orthonormal basis.

This process resulted in the extraction of three inputs: the entropy of the origi-
nal signal, the entropy of the approximate coefficients, and the entropy of the detailed
coefficients.

2.4.1.2 Coefficients’ Energy

The energy of wavelet coefficients gives information about the strength of signals
(MathWorks Help Center, 2021d) and is given by the equation:

𝐸𝑛(𝑠) =
𝑁∑︁

𝑛=1
|𝑠𝑖|2 (2.3)

where 𝐸𝑛(𝑠) is the Energy, 𝑠 is the signal and 𝑠𝑖 the coefficients of 𝑠 in an orthonormal
basis. This process resulted in the extraction of two inputs: the mean value and the max
percentage value of the detailed coefficients energy.

2.4.2 THD

THD is an important parameter used to quantify the level of harmonics in voltage
or current waveforms. Along with other parameters, it can be an excellent indicator of
the quality of an electrical network, indicating the occurrence of a disturbance according
to its level of distortion.

According to IEC 61000-2-2:2002 (2002), THD is defined as the ratio of the Root
Mean Square (RMS) value of all the harmonic frequencies of the signal, over the RMS
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value of its fundamental frequency, where this signal is a measured voltage or current.
Equation (2.4) express the THD in percentage of a voltage signal.

𝑇𝐻𝐷(%) =

√︁∑︀∞
𝑛=2 𝑈

2
𝑛

𝑈𝑟𝑚𝑠

. 100 (2.4)

where 𝑈𝑛 is the RMS value of the harmonic n and 𝑈𝑟𝑚𝑠 is the RMS value of the funda-
mental frequency.

In MATLAB, the function 𝑡ℎ𝑑(𝑥) returns the THD of the real-valued sinusoidal
signal "x". The THD is determined from the fundamental frequency and the first five
harmonics using a periodogram of the same length as the input signal (MathWorks Help
Center, 2021f).

2.5 Machine Learning Basics
AI is a term that associates human thinking (decision-making, problem-solving,

and learning) and the automation of activities (BELLMAN, 1978). When inserting human
thinking into a machine, we can say that this machine has intelligence, even artificial. From
this main concept, numerous areas have emerged that implement human characteristics
in their algorithms, such as Robotics, Fuzzy Logic, GA, and ML. Fig. 2.14 illustrates the
relation between AI and ML.

Figure 2.14 – Relation between AI and ML (Adapted from(SINGH, 2018)).

The term "machine learning" was first quoted in (SAMUEL, 1959). After that,
several books, articles, and research on the term boosted and defined it as a branch of
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AI. ML is characterized by the ability with which machines learn from experience. The
main characteristic of this learning is that it is constant, allowing the model to produce
correct data based on previously known rules.

ML draws on concepts and results from many fields, including statistics, AI, phi-
losophy, information theory, biology, cognitive science, computational complexity, and
control theory (MITCHELL, 1997). Each learner type is based on one of these concepts,
and that is why there are so many types of learning. However, there are three main
types of learning problems in ML: supervised, unsupervised, and reinforcement learning.
Supervised learning was the main learning used in this work.

In supervised learning, the input and target examples are used to create the sys-
tem’s logic. Applications in which the training data contain examples of the input vec-
tors and their corresponding target vectors are known as supervised learning problems
(BISHOP, 2006). Among all types of supervised learning problems, two main types stand
out: classification, which involves predicting a class label, and regression, which consists
of predicting a numerical value.

As this work aims to classify different events from PQ, only ML classification
algorithms were used. But the entire area is much more expanded. Fig. 2.15 shows a
framework of some ML algorithms, highlighting the ones used in this research.

Figure 2.15 – Framework of ML algorithms.

In this work, ML is used to classify PQ disturbances employing six learner types,
which will be commented in the next section. The setup of the 27 algorithms and their
differentiation will also be presented to relate these characteristics in the future to the
results presented in chapter 3. Fig. 2.16 shows all learner types and algorithms used.
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Figure 2.16 – Learner types and algorithms used in this work.

2.5.1 Decision Trees

Decision tree learning is one of the simplest and yet most widely used and practical
methods for inductive inference. Decision trees classify instances by sorting them down
the tree from the root to some leaf node, which provides the classification of the instance
(MITCHELL, 1997). An example of a decision tree model is shown in Fig. 2.17.

Figure 2.17 – Example of decision tree model.

Each triangle is called a split, and generally, the more splits you have, the more
accurate your decision tree will be. The last node of the decision tree, where a decision
is made, is called the tree leaves. The following are the settings of the algorithms created
that was based on this learning:
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• Fine tree: a decision tree with many leaves that makes fine distinctions between
classes (maximum number of splits is 100);

• Medium tree: a decision tree of medium flexibility with fewer leaves (maximum
number of splits is 20);

• Coarse tree: a simple decision tree with few leaves that makes coarse distinctions
between classes (maximum number of splits is 4).

One limitation of decision trees is that the division of input space is based on hard
splits in which only one model is responsible for making predictions for any given value
of the input variables (BISHOP, 2006).

2.5.2 Naive Bayes Classifiers

It is a classification technique based on Bayes’ theorem assuming independence
between predictors to simplify the model structure. A Naive Bayes classifier assumes that
a particular feature in a class is unrelated to the presence of any other feature.

Fig. 2.18 exemplifies this theorem. Conditioned on the class label 𝑧, the compo-
nents of the observed vector 𝑥 = (𝑥1, ..., 𝑥𝐷)𝑇 are assumed to be independent.

Figure 2.18 – A graphical representation of the naive Bayes’ model for classification
(Adapted from (BISHOP, 2006)).

The main difficulty applying this method is that they normally require initial
knowledge of many probabilities. When these probabilities are not known in advance,
they are often estimated based on background knowledge, previously available data, and
assumptions about the form of the underlying distributions (MITCHELL, 1997). The
algorithms used with this type of learning and its configurations are described below:

• Gaussian Naive Bayes: a naive Bayes classifier that uses Gaussian distribution for
numeric predictors and Multivariate Multinomial Distribution (MVMN) for cate-
gorical predictors;
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• Kernel Naive Bayes: a naive Bayes classifier that uses kernel distribution for numeric
predictors and MVMN for categorical predictors.

2.5.3 Support Vector Machines

SVM are a type of ML tool that analyzes data and recognizes patterns or deci-
sion boundaries within the dataset used mainly for classification and regression analysis
(GHOSH; DASGUPTA; SWETAPADMA, 2019). A SVM classifies data by finding the
best hyperplane that separates data points of one class from those of the other class. The
best hyperplane for an SVM means the one with the most significant margin between the
two classes. This margin means the maximal width of the slab parallel to the hyperplane
that has no interior data points. Many planes can separate the two classes, but only one
plane can maximize the margin or distance between the classes.

The support vectors are the data points that are closest to the separating hy-
perplane. In Fig. 2.19, these points are on the boundaries. The location of the support
vectors defines the maximum margin hyperplane. Other data points can be moved around
freely (so long as they remain outside the margin region) without changing the decision
boundary, and so the solution will be independent of such data points (BISHOP, 2006).

Figure 2.19 – A SVM logic scheme (Adapted from (MathWorks Help Center, 2021b)).

Five algorithms based on SVM learning were selected. The kernel was used to
expand the algorithm limits, like the quadratic kernel, the cubic kernel, and the Gaussian
kernel. The following are the detailed settings for each model:

• Linear SVM: a support vector machine that makes a simple linear separation be-
tween classes, using the linear kernel;

• Quadratic SVM: a support vector machine that uses the quadratic kernel;

• Cubic SVM: a support vector machine that uses the cubic kernel;
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• Fine Gaussian SVM: a support vector machine that makes finely-detailed distinc-
tions between classes, using the Gaussian kernel;

• Medium Gaussian SVM: a support vector machine that makes fewer distinctions
than a fine gaussian SVM, using the Gaussian kernel;

• Coarse Gaussian SVM: a support vector machine that makes coarse distinctions
between classes, using the gaussian kernel.

2.5.4 Nearest Neighbour Classifiers

The learner KNN is a family of techniques that can be used for classification or
regression. As a non-parametric learning algorithm, KNN are not restricted to a fixed
number of parameters (GOODFELLOW; BENGIO; COURVILLE, 2016). This method
categorizes query points based on their distance to points (or neighbors) in a training
dataset.

K nearest neighbors is a simple algorithm that can stores all available cases and
classifies new cases by a majority vote of its k neighbors. The greater the number of
neighbors, the less accurate it will be. Fig. 2.20 shows an example of KNN algorithm.

Figure 2.20 – A graphical demonstration of the learning algorithm (Adapted from (Math-
Works Help Center, 2021b)).

The Euclidean metric distance was defined as a standard metric. The Cosine,
Cubic, and Weighted KNN have their own metrics distances. The algorithms used with
this type of learning and its complete setups are described below:

• Fine KNN: a nearest-neighbour classifier that makes finely-detailed distinctions be-
tween classes, with the number of neighbors set to 1;

• Medium KNN: a nearest-neighbour classifier that makes fewer distinctions than a
fine KNN, with the number of neighbors set to 10;
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• Coarse KNN: a nearest-neighbour classifier that makes coarse distinctions between
classes, with the number of neighbors set to 100;

• Cosine KNN: a nearest-neighbour classifier that uses the cosine distance metric;

• Cubic KNN: a nearest-neighbour classifier that uses the cubic distance metric;

• Weighted KNN: a nearest-neighbour classifier that uses distance weighting.

The main problem of this method is that it typically considers all instances when
retrieving similar training examples from memory. If the target concept depends on only
a few of the many available attributes, then the instances that are truly most similar may
well be a large distance apart (MITCHELL, 1997).

2.5.5 Ensemble Classifiers

Ensemble classifiers meld results from many weak learners into one high-quality
ensemble model (MathWorks Help Center, 2021b). The quality of each one depends on the
choice of algorithm. The ensemble method combines multiple models, where each model in
the ensemble makes a prediction. A majority vote determines the final prediction among
the models.

The Random Forest algorithm is a popular ensemble method used for decision
trees. In this method, multiple decision trees are created using bootstrapped datasets of
the original data and randomly selecting a subset of variables at each step of the decision
tree. The model then chooses the mode of all of the predictions of each decision tree
(SHIN, 2020). The bagged trees, for example, uses this method. In Fig. 2.21 is possible
to visualize the structure of the Random Forest model.

Ensemble methods train multiple learners to solve the same problem. In contrast
to common learning approaches, which try to construct one learner from training data,
ensemble methods try to build a set of learners and combine them. Ensemble learning is
also called committee-based learning or learning multiple classifier systems (ZHOU, 2012).
Much effort is put into what types of weak learners to combine and how to combine them.
The following items are the detailed settings for each ensemble classifier:

• Boosted Trees: the model creates an ensemble of medium decision trees using the
AdaBoost algorithm. Compared to bagging, boosting algorithms use relatively little
time or memory but might need more ensemble members;

• Bagged Trees: a bootstrap-aggregated ensemble of fine decision trees. Often very
accurate, but can be slow and memory intensive for large data sets;
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Figure 2.21 – An example of ensemble classifier: The random forest model (Adapted from
(PACKT, 2021)).

• Subspace Discriminant: good for many predictors, relatively fast for fitting and
prediction, and low on memory usage, but the accuracy varies depending on the
data. The model creates an ensemble of Discriminant classifiers using the random
subspace algorithm;

• Subspace KNN: the model creates an ensemble of nearest-neighbour classifiers using
the Random Subspace algorithm;

• RUSBoosted Trees: the model creates an ensemble of decision trees using the RUS-
Boost algorithm, using recommended for skewed data with many observations of
one class.

2.5.6 Neural Network Classifiers

The Neural Network is a computational model formed by individual processing
units, the artificial neurons. They are interconnected by weights that can be modified
according to the quality parameters that evaluate the proximity between the required
response and the one obtained (MONTEIRO et al., 2018).

This classifier is an universal approximator that can model any nonlinear function
with desired accuracies (WU; ZHANG; CHEN, 2016). The networks are arranged in layers,
with the first layer taking in inputs and the last layer producing outputs. The artificial
neurons are the central element of an ANN because they are responsible for connecting
each layer (HAYKIN, 2001). The model of a neuron is illustrated in Fig. 2.22
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Figure 2.22 – Model of a neuron.

Where the input signals vector 𝑋 := [𝑥1, 𝑥2, ..., 𝑥𝑛]𝑡, 𝑛 ∈ N = [1, |𝑋|], the neurons
synaptic weights 𝑊𝑘 := [𝑤𝑘1, 𝑤𝑘2, ..., 𝑤𝑘𝑛]𝑡, 𝑛 ∈ N = [1, |𝑋|], 𝑢𝑘 is the weight’s multiplica-
tion response with the input signals, 𝑏𝑘 is the bias which is an external parameter of the
neuron, 𝑓(.) is the activation function and 𝑦𝑘 is the output response of the neuron.

A back-propagation algorithm based on experimental results is used to train the
network. The multiple inputs are applied from previously recorded data to the input layer,
each multiplied by a weight, and the product summed (MIRIAM; SEKAR; AMBALA-
VANAN, 2013). The algorithm updates the network weights so that the Mean Squared
Error (MSE) in the network’s result is minimized.

Each unit has a set of input links from other units, a set of output links to other
units, a current activation level, and a means of computing the activation level at the
next step in time, given its inputs and weights (RUSSELL; NORVIG, 1995). The acti-
vation function of all trained models was the Rectified Linear Unit or ReLU Layer. The
algorithms based on these classifiers are described below:

• Narrow Neural Network: a neural network classifier with one fully connected layer
of size 10;

• Medium Neural Network: a neural network classifier with one fully connected layer
of size 25;

• Wide Neural Network: a neural network classifier with one fully connected layer of
size 100;

• Bilayered Neural Network: a neural network classifier with two fully connected lay-
ers, excluding the final fully connected layer for classification;

• Trilayered Neural Network: a neural network classifier with three fully connected
layers, excluding the final fully connected layer for classification.

Neural Networks are the most famous and used classification method, with massive
growth and popularity in the field. For example, DL algorithms also use this method. For
certain types of problems, such as learning to interpret complex real-world sensor data,
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ANNs are among the most effective learning methods currently known (MITCHELL,
1997).
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3 Methodology

This chapter describes the procedures and stages of development. First, all models
used to generate PQ signals will be detailed. After, the extraction stage is presented,
showing which inputs were extracted from the previous models. Soon after, the procedures
adopted for the correct filtering and separation of the data are presented. Finally, the
Classification Learner software is detailed, with all steps taken until the test stages.

3.1 Data Generation
In this section, functions were used to generate the disturbances, according to

Igual et al. (2018). The chosen sampling frequency was 10kHz, the nominal electrical
frequency was set at 50Hz, and all disturbances have 20 cycles. Nine PQ disturbances were
simulated: Voltage Sag, Voltage Swell, Momentary Interruption, Harmonic Distortion,
Impulsive Transient, Oscillatory Transient, Voltage Sag with Harmonics, Voltage Swell
with Harmonics and Voltage Fluctuations.

The healthy condition was also simulated so that the system is also able to identify
when the network has no disturbances. The simulation loop for the training group was
500 iterations for each disturbance, each one having little randomness to reduce problems
with overfitting. The loop for the test set was 250 iterations for each disturbance.

The Equation 3.1 represents a Voltage Sag disturbance, where 𝛼 value is between
0.1 and 0.9; 𝐴 is the amplitude, and 𝑣(𝑡) is the desired signal.

𝑣(𝑡) = 𝐴(1 − 𝛼(𝑢(𝑡− 𝑡1) − 𝑢(𝑡− 𝑡2)))𝑠𝑖𝑛(𝜔𝑡− 𝜑) (3.1)

Equation 3.2 describes a Voltage Swell disturbance, where 0.1 ≤ 𝛽 ≤ 0.8.

𝑣(𝑡) = 𝐴(1 + 𝛽(𝑢(𝑡− 𝑡1) − 𝑢(𝑡− 𝑡2)))𝑠𝑖𝑛(𝜔𝑡− 𝜑) (3.2)

A Momentary Interruption is represent in Equation 3.3, where 𝜌 value is between
0.9 and 1.0.

𝑣(𝑡) = 𝐴(1 − 𝜌(𝑢(𝑡− 𝑡1) − 𝑢(𝑡− 𝑡2)))𝑠𝑖𝑛(𝜔𝑡− 𝜑) (3.3)

Harmonic Distortion is represented in Equation 3.4, where 𝛼𝑛 value is between
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0.05 and 0.15; 𝑛 = [3, 5, 7].

𝑣(𝑡) = 𝐴[𝑠𝑖𝑛(𝜔𝑡− 𝜑) +
7∑︁

𝑛=3
𝛼𝑛𝑠𝑖𝑛(𝑛𝜔𝑡− 𝜐𝑛)] (3.4)

The Equation 3.5 represents a Impulsive Transient, where 𝜓 value is between 0.222
and 1.11.

𝑣(𝑡) = 𝐴[𝑠𝑖𝑛(𝜔𝑡− 𝜑) − 𝜓(𝑒−750(𝑡−𝑡𝑎) − 𝑒−344(𝑡−𝑡𝑎))((𝑢(𝑡− 𝑡𝑎) − 𝑢(𝑡− 𝑡𝑏)))] (3.5)

Equation 3.6 describes a Oscillatory Transient, where −𝜋 ≤ 𝜐 ≤ 𝜋.

𝑣(𝑡) = 𝐴[𝑠𝑖𝑛(𝜔𝑡− 𝜑) + 𝛽𝑒−(𝑡−1)/𝜏𝑠𝑖𝑛(𝑤𝑛(𝑡− 𝑡𝐼) − 𝜐)((𝑢(𝑡− 𝑡𝐼𝐼) − 𝑢(𝑡− 𝑡𝐼)))] (3.6)

Voltage Sag with Harmonics is represented in Equation 3.7, where 𝛼𝑛′ value is
between 0.05 and 0.15; 𝑛′ = [3, 5].

𝑣(𝑡) = 𝐴(1 − 𝛼(𝑢(𝑡− 𝑡1) − 𝑢(𝑡− 𝑡2)))[𝑠𝑖𝑛(𝜔𝑡− 𝜑) +
5∑︁

𝑛′=3
𝛼𝑛′𝑠𝑖𝑛(𝑛′𝜔𝑡− 𝜐𝑛′)] (3.7)

The Equation 3.8 represents a Voltage Swell with Harmonics.

𝑣(𝑡) = 𝐴(1 + 𝛽(𝑢(𝑡− 𝑡1) − 𝑢(𝑡− 𝑡2)))[𝑠𝑖𝑛(𝜔𝑡− 𝜑) +
5∑︁

𝑛′=3
𝛼𝑛′𝑠𝑖𝑛(𝑛′𝜔𝑡− 𝜐𝑛′)] (3.8)

Finally, Voltage Fluctuation disturbance is represented in Equation 3.9, where
0.05 ≤ 𝜆 ≤ 0.1, 𝑤𝑓 = 2𝜋𝑓𝑓 and 8𝐻𝑧 ≤ 𝑓𝑓 ≤ 25𝐻𝑧

𝑣(𝑡) = 𝐴[1 + 𝜆𝑠𝑖𝑛(𝑤𝑓 𝑡)]𝑠𝑖𝑛(𝜔𝑡− 𝜑) (3.9)

3.2 Feature Extraction Stage
After generating and saving the data, the next step is to extract the most im-

portant characteristics of each signal. Single-level DWT was applied using the mother
wavelet 𝑑𝑚𝑒𝑦 to extract this information. The good synergy between wavelet and en-
tropy is stressed in some papers, like in Erişti et al. (2013). This is because wavelet meets
the demands of transient signal analysis and entropy is ideal for the measurement of
uncertainty (ZHENGYOU et al., 2011). So, the six extracted inputs are:
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• Entropy of the original signal;

• Entropy of the approximate coefficients;

• Entropy of the detailed coefficients;

• Mean value of the energy of the detailed coefficients;

• Max percentage value of the energy of the detailed coefficients;

• THD from original signal.

The concatenation process is also necessary to obtain a full matrix with all inputs.
Here, every input becomes a column, being the final column of the related event. Fig. 3.1
shows this matrix after the concatenation process and before the normalization process.
In this figure, each line contains information about each disturbance.

Figure 3.1 – Matrix input data before normalization

3.3 Optimization Techniques
The normalization process aims to standardize all samples, with the minimal value

corresponding to 0 and the max value corresponding to 1. This process allows the system
to be more accurate. The normalization is represented in Equation 3.10, where 𝑁 is
the normalized data, 𝑥 is the original input data, 𝑚𝑎𝑥(𝑥) and 𝑚𝑖𝑛(𝑥) are maximal and
minimal values between all inputs. Fig. 3.2 shows the matrix after the normalization
process.

𝑁 = 𝑥−𝑚𝑖𝑛(𝑥)
𝑚𝑎𝑥(𝑥) −𝑚𝑖𝑛(𝑥) (3.10)

The last step before the Training Stage is the K-fold cross-validation. In this
method, a partition of the dataset is formed by splitting it into k non-overlapping subsets.
This procedure is based on the idea of repeating the training and testing computation on
different random splits of the original dataset. The method protects against overfitting by
partitioning the data set into folds and estimating accuracy on each fold. It also gives a
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Figure 3.2 – Matrix input data after normalization

reasonable estimate of the predictive accuracy of the final model trained with all the data
(MathWorks Help Center, 2021e). In this work, the dataset was divided into five subsets.

3.4 Training, Validation and Testing using the Classification Learner
toolbox
The toolbox presented in MATLAB, named Classification Learner, helped in this

step of the work. This software allows you to choose among various ML algorithms to train
and validate classification models for binary or multiclass problems (MathWorks Help
Center, 2021c). First, the data set from previous stages is inserted into the process. After
it is necessary to choose which classifiers will be used and their variations (as presented in
Chapter 2.5). Finally, the software performs training and shows the performance of each
classifier. Fig. 3.3 illustrates the main software’s window.

Figure 3.3 – Main window of Classification Learner toolbox

The sets of inputs used are explained in Fig. 3.4. The training and validation
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process used 5000 inputs, divided into five subsets as a consequence of cross-validation.
The test stage contained half of the data from the previous stage (2500 inputs), with these
data being new and unknown. The reason for using different data and less than what was
trained is precisely to obtain a more accurate assessment of accuracy, simulating what
would happen in a real situation.

Figure 3.4 – Train, Validation and Test sets
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4 Results and Discussion

This chapter presents the performance and classification results with each classi-
fication method for the test set. In this way, it is possible to verify the models’ validity
and compare the classification performance through accuracy. A discussion of the results
found is also taken into consideration.

4.1 Performance and Classification Results
A table was prepared with each classifier type, its accuracy, and training time to

gather all results. Table 4.1 shows the data for the set of tests after the network has been
trained and validated. The accuracy is the percentage of correctly classified observations
in relation to the total number of events.

In this work, the objective was to find the classifier with the most significant
accuracy, where the accuracy is the correct number of ratings out of the total number of
events. Therefore, the training time was not taken into account when choosing the best
algorithm. It can be seen from the data that the highest classification accuracy is 98.9%,
which was produced by Cubic SVM, followed by Medium Neural Network and Quadratic
SVM with 98.6% and the third in rank is the Medium Gaussian SVM with 98.5%.

The confusion matrix of the best classifier (Cubic SVM) is used to illustrate the
results in Fig. 4.1. This matrix helps us to understand how the currently selected classifier
performed in each class. The numbers in blue color represent the correct predictions, and
the remaining numbers are the wrong predictions. Also, the confusion matrix identifies
the areas where the classifier has performed poorly, like the 𝑠𝑎𝑔 − ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 class, with
12 wrong predictions. For a more detailed analysis, the confusion matrix of all classifiers
is present in Appendix C, ordered by the highest accuracy.

Another way to understand the classifier performance is by checking the Receiver
Operating Characteristic (ROC) curve. The ROC curve shows the true positive rate versus
the false positive rate for the currently selected trained classifier. In Fig. 4.2 is possible
to visualize the curve from the worst class of the classifier (𝑠𝑎𝑔 − ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐).

A perfect result with no misclassified points is a right angle to the top left of the
plot. A poor result that is no better than random is a line at 45 degrees. The area under
curve number is a measure of the overall quality of the classifier. Larger area under curve
values indicate better classifier performance (MathWorks Help Center, 2021a). In the case,
the classifier performed well, with a large area under the curve and a correct angle in the
top left of the plot.
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Table 4.1 – Results for each classifier

Classifier Classifier type Accuracy (%) Training time (sec)

Decision
Trees

Fine Tree 96.8 12.13
Medium Tree 95.3 02.21
Coarse Tree 49.8 01.73

Naive
Bayes

Gaussian Naive Bayes 92.6 07.31
Kernel Naive Bayes 95.6 34.44

SVM

Linear SVM 97.5 13.33
Quadratic SVM 98.6 09.18

Cubic SVM 98.9 09.13
Fine Gaussian SVM 98.4 16.74

Medium Gaussian SVM 98.5 08.82
Coarse Gaussian SVM 96.4 08.33

Nearest
Neighbor
Classifiers

Fine KNN 97.2 03.62
Medium KNN 96.6 01.91
Coarse KNN 92.1 01.97
Cosine KNN 95.2 02.13
Cubic KNN 96.2 02.87

Weighted KNN 97.0 01.72

Ensemble
Classifiers

Boosted Trees 96.4 32.35
Bagged Trees 97.8 10.03

Subspace Discriminant 92.2 09.16
Subspace KNN 97.7 10.53

RUSBoosted Trees 95.3 13.61

Neural
Network
Classifiers

Narrow Neural Network 97.8 38.72
Medium Neural Network 98.6 39.58

Wide Neural Network 98.3 83.57
Bilayered Neural Network 98.2 39.51
Trilayered Neural Network 93.1 44.91

4.2 Discussion and Considerations
All results achieved an accuracy of at least 92.1%, except for the Coarse Tree

that achieved only 49.8% of accuracy. In a general context, the models could classify
all events, reaching one of the work’s objectives. The use of confusion matrix and ROC
Curve brought a positive point to highlight the results since they enable to describe the
performance concisely.

The algorithms based on SVM achieved the best results overall. The best classifier
was based on a SVM model. In this classifier, the worst class performance was in the
𝑠𝑎𝑔−ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 class. This possible happened due to the interlaced parameters mentioned
in subsection 2.3.8

The Neural Network Classifiers were the ones that obtained the longest training
time among all models. This characteristic coincides with the nature of these classifiers,
the slow training speed. The wide neural type was better than the trilayered type, showing
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Figure 4.1 – Confusion Matrix of the best classifier (Cubic SVM)

that for this classification problem, increasing the layers of the network only increased
the complexity of the system.

Nearest Neighbor models are known for having a low training time but also a lower
accuracy. And this is precisely what we can see in Table 4.1. Although they were by far
the fastest in training, they failed to perform well in the results, obtaining an average of
95.7% accuracy among all models.

Decision Trees are good generalists but prone to overfitting. And that was precisely
what happened in the Coarse Tree model. Naive Bayes classifiers are widely used for
text applications, but that is not the context of this work. Maybe, these models did not
perform well because the input data of the system were dependent on each other: average
energy and maximum energy value, for example. Lastly, the Ensemble classifiers varied
the performance in each type, which is a characteristic of this type of model. However, it
managed to achieve good accuracy results in general.
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Figure 4.2 – ROC Curve of the best classifier (Cubic SVM)
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5 Conclusions

In this chapter, a retrospective of what was developed and the conclusions about
the research are presented. The future works possibilities are also highlighted at the end
of the chapter.

5.1 Research Conclusions
This work presented the design of a robust classifier of advanced PQ disturbances

in the context of SGs. In a first moment, the state-of-art of the application of AI in power
systems were discussed, followed by the use of ML techniques, PQ and Signal Processing
in this context. All background knowledge necessary for the understanding of this master’s
dissertation was also highlighted.

The objective of the work was to use DWT to extrude signal patterns from the
input data so that later the ML algorithms could correctly classify the events. The stages
of data generation, feature extraction and optimization techniques were performed in the
MATLAB software. The classification learner toolbox was used for training, validation
and testing the 27 different ML algorithms and assess each performance. So, the key
topics of this work are:

• Signal generation through mathematical models of the different PQ events;

• Application of DWT method to extract signal parameters (entropy, energy and
THD);

• Optimization techniques that improved processing, results and time;

• Training, validation and testing of the different ML models;

• Comparison between accuracy and confusion matrix across all models, proving the
effectiveness of the system.

All stages of the work were previously idealized, enabling their correct development
and execution. The results show that the Cubic SVM classifier achieved the maximum
accuracy of all algorithms, indicating the effectiveness of the proposed method for clas-
sification. This method also achieved a reasonable training time. Although, if a higher
priority were given to training time, this analysis would need to be different.

Some reasons can explain the justification for the excellent results: Firstly, the six
inputs extracted from the signal processing stage were fundamental, proving its ability to
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handle and map different events. The coefficients’ entropy extracted an essential level of
information in each input, making possible the model to self-learn the PQ disturbances
dynamics.

In addition, choosing the proper mother wavelet was extremely important for this
to happen. The normalization of the inputs is also responsible for improving the results,
turning them into data that could be better understood by the ML algorithms. Finally,
the vast amount of input data allowed all models to be exhaustively trained, validated
and tested, avoid overfitting.

The insertion of the SG context was vital to boost current research with what is dis-
cussed globally. The interlaced parameters are considered the advanced PQ disturbances
and therefore need to be studied more and more. The use of ML algorithms in power
systems is increasingly recurrent. Thus, the source code of this work will be available in
Appendix B to guarantee a starting point for expanding and exploring this application.

5.2 Future Works Possibilities
This work can be continued, embracing new opportunities for research like the

generation of more types of advanced PQ events to be analyzed by the classification
system. Also, implementing the system in real-time hardware using data collected within
a smart operational grid can be highly beneficial due to the models’ minimal training and
processing times.

The use of massive datasets extracted from real signals could validate the ML
models even better. It should also consider using the DL techniques as features extractors
in conjunction with the ML models for classification. CNN are becoming a trend in the
area due to their increased accuracy. Future works can implement a signal-noise ratio of
60db so that the model can be even more faithful to what happens in real systems.

Other know ML models could also be used, like linear regression, logistic regression,
learning vector quantization and clustering methods. Finally, using other signal processing
techniques for feature extraction can be considered, such as CWT, WPT, and Fast-Fourier
Transform for example.
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APPENDIX B – MATLAB Codes

All MATLAB codes used in this work can be found at:

• <https://bit.ly/3h4fUZg>

https://bit.ly/3h4fUZg
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APPENDIX C – Confusion Matrix of all ML
algorithms

In this appendix are the confusion matrix of the remaining ML algorithms for the
tests set, ordered by the highest accuracy.

Figure C.1 – Confusion Matrix of Medium Neural Network

Figure C.2 – Confusion Matrix of Quadratic SVM
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Figure C.3 – Confusion Matrix of Medium Gaussian SVM

Figure C.4 – Confusion Matrix of Fine Gaussian SVM

Figure C.5 – Confusion Matrix of Wide Neural Network
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Figure C.6 – Confusion Matrix of Bilayered Neural Network

Figure C.7 – Confusion Matrix of Narrow Neural Network

Figure C.8 – Confusion Matrix of Bagged Trees
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Figure C.9 – Confusion Matrix of Subspace KNN

Figure C.10 – Confusion Matrix of Linear SVM

Figure C.11 – Confusion Matrix of Fine KNN
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Figure C.12 – Confusion Matrix of Weighted KNN

Figure C.13 – Confusion Matrix of Fine Tree

Figure C.14 – Confusion Matrix of Medium KNN
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Figure C.15 – Confusion Matrix of Boosted Trees

Figure C.16 – Confusion Matrix of Coarse Gaussian SVM

Figure C.17 – Confusion Matrix of Cubic KNN
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Figure C.18 – Confusion Matrix of Kernel Naive Bayes

Figure C.19 – Confusion Matrix of Medium Tree

Figure C.20 – Confusion Matrix of RUSBoosted Trees
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Figure C.21 – Confusion Matrix of Cosine KNN

Figure C.22 – Confusion Matrix of Trilayered Neural Network

Figure C.23 – Confusion Matrix of Gaussian Naive Bayes
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Figure C.24 – Confusion Matrix of Subspace Discriminant

Figure C.25 – Confusion Matrix of Coarse KNN

Figure C.26 – Confusion Matrix of Coarse Tree
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