UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Análise através de Simulação em Tempo Real do Sistema Elétrico de uma Plataforma Off-shore para Produção de Petróleo

Jully Andrea Calderón Coello

Itajubá, 13 de outubro de 2021

UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Jully Andrea Calderón Coello

Análise através de Simulação em Tempo Real do Sistema Elétrico de uma Plataforma *Off-shore* para Produção de Petróleo

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Elétrica como parte dos requisitos para obtenção do Título de Mestre em Ciências em Engenharia Elétrica.

Área de Concentração: Sistemas Elétricos de Potência

Orientador: Prof. Dr. Paulo Márcio da Silveira Coorientador: Prof. Dr. Carlos A. Villegas Guerrero

13 de outubro de 2021 Itajubá

"Você nasceu com a oportunidade e responsabilidade de se tornar uma pessoa lendária" (Robin Sharma)

Agradecimentos

Agradeço a Deus, por todas as oportunidades colocadas em meu caminho, por estar sempre ao meu lado e ser meu guia em cada momento.

Ao meu amado marido Johnny, meu parceiro de anos, com quem assumimos este novo desafio de amor e estudo.

Aos meus pais Efrén e Katty e às minhas irmãs Tati e Leti, porque não existe distância que enfraqueça o nosso amor CPDR.

Aos meus sogros Johnny e Gladys e cunhada Nicole por estarem sempre presentes neste projeto.

Aos meus avós Telma, Estherfilia e Àngel Vicente (*in memorian*) por serem exemplos de luta.

À família Villegas Cabrera (Carlos, Laura e Mia), pelo apoio e hospitalidade, pois nos sentimos parte de sua família, nosso pequeno Equador em Itajubá.

Aos professores Paulo Márcio da Silveira e Carlos Villegas Guerrero, pelas orientações, confiança e prontidão em ajudar.

Aos demais professores e colegas do QMAP e do projeto de pesquisa, que contribuíram direta ou indiretamente para a realização deste trabalho.

À FUPAI, a Petrobrás, ao QMAP e à UNIFEI, pelo apoio financeiro e estrutural.

Resumo

O controle dinâmico do sistema de geração de energia elétrica é um dos elementos mais importantes em uma plataforma offshore, pois é responsável por manter a estabilidade do sistema elétrico tanto em regime estacionário quanto após uma perturbação, evitando assim a perda total do fornecimento de energia e, consequentemente, grandes perdas econômicas. Nesse sentido, o Simulador Digital em Tempo Real (RTDS) torna-se uma ferramenta importante, pois permite simular a dinâmica do sistema de geração em tempo real. Normalmente, estudos de simulação off-line do controle dinâmico do gerador são realizados com informações limitadas dos fabricantes, o que leva ao uso de dados típicos para os modelos de controle, podendo, assim, conduzir a respostas não confiáveis. Assim, para se obter um comportamento realista da dinâmica do sistema elétrico no RTDS, é necessária uma representação precisa dos equipamentos e seus sistemas de controle. Nesse sentido, este trabalho apresenta a modelagem detalhada no RTDS do sistema de excitação e do regulador de velocidade do sistema de geração de uma plataforma de extração de petróleo. A validação dos modelos matemáticos dos controladores desenvolvidos no RTDS foi feito através da análise comparativa entre os resultados dos ensaios em campo e de laboratório. O sistema elétrico da plataforma foi submetido a diversos distúrbios, uma vez que o comportamento real do controle do sistema de geração foi obtido.

Palavras-chaves: RTDS, Plataforma *offshore*, Sistema de Excitação, Regulador de Velocidade, Sistema de Geração.

Abstract

The dynamic control of the power generation system is one of the most important elements in an offshore platform, since it is responsible for maintaining the electrical system stability both in steady-state and transient operation, thus avoiding the complete loss of power supply and, consequently, large economic losses. In this regard, the Real-Time Digital Simulator (RTDS) becomes an important tool, as it allows to simulate the generation system dynamic in real-time with the possibility of testing actual control and protection devices, through a hardware-in-the-loop scheme. Typically, off-line simulation studies of the generator dynamic control are carried out with limited information from manufacturers, which leads to the use of typical data for models and, therefore, the possibility of unreliable responses. However, to obtain a realistic behavior of the electrical system dynamic in the RTDS, an accurate representation of its models is necessary. In this sense, this work presents the detailed modeling of the excitation system and the speed regulador of the power generation system of an oil extraction platform in the RTDS. The validation of the mathematical models of the controllers developed in the RTDS was done through a comparative analysis between the results of field data and laboratory test. The electrical system of the platform was subject to several disturbances, once the real behavior of the generation system control was obtained.

Keywords: RTDS, Offshore Platform, Excitation System, Speed Regulator, Generation System.

Lista de ilustrações

Figura 1.1 – Evolução da produção do petróleo no Brasil	19
Figura 2.1 – Tipos de turbinas	24
Figura 2.2 – Elementos do sistema de excitação	26
Figura 2.3 – Excitatriz CC	27
Figura 2.4 – Excitatriz CA com retificador estacionário	28
Figura 2.5 – Excitatriz CA com retificador rotativo ou sem escova	28
Figura 2.6 – Excitatriz estática	29
Figura 2.7 – Diagrama de blocos do compensador de carga	30
Figura 2.8 – Curva de tempo inverso do limitador de sobre-excitação	31
Figura 2.9 – Diagrama de controle no modo <i>Takeover</i>	32
Figura 2.10–Diagrama de controle no modo Summing Point	32
Figura 2.11–Curva característica do limitador de sub-excitação-UEL1	33
Figura 2.12–Curva característica do limitador de sub-excitação, linha reta de seg-	
mento único- UEL2	33
Figura 2.13–Curva característica do limitador de sub-excitação, linha reta de seg-	
mento múltiplo- UEL2 \ldots \ldots \ldots \ldots \ldots \ldots	34
Figura 2.14–Curva característica do limitador de corrente do estator	34
Figura 2.15–Curva típica de compensação de sub-frequência	35
Figura 2.16–Curva típica do limitador ao 1,1 pu $\mathrm{V/Hz}$	35
Figura 2.17–Diagrama de blocos completo do controle da turbina	37
Figura 2.18–Modo de operação do regulador de velocidade	38
Figura 2.19–Sistema de controle de malha fechada	39
Figura 2.20–Sistema de controle de malha aberta	39
Figura 2.21–Reposta da malha de controle a um sinal degrau	41
Figura 2.22–Reposta da malha de controle com variações apenas do parâmetro $k_p \ .$	41
Figura 2.23–Reposta da malha de controle quando é mudado o parâmetro $k_i \ .$	42
Figura 2.24–Reposta da malha de controle quando é mudado o parâmetro k_d	43
Figura 3.1 – Disposição da capacidade máxima de processamento do RTDS da UNIFEI	47
Figura 3.2 – Tela dos módulos RSCAD/Draft e RSCAS/ Runtime	48
Figura 3.3 – Diagrama unifilar simplificado do sistema elétrico da plataforma offshore	49
Figura 3.4 – Diagrama de bloco dos equipamentos de potência que conformam o	
sistema de geração	49
Figura 3.5 – Conexão em Duplo I \ldots	51
Figura 3.6 – Conexão em L \ldots	51
Figura 3.7 – Diagrama de bloco do sistema de geração	53
Figura 3.8 – Modelo matemático do sistema de excitação	55

Figura 3.9 – Modelo matemático do OEL	. 57
Figura 3.10–Modelo matemático do UEL	. 58
Figura 3.11–Modelo matemático do V/Hz $\ .\ .\ .\ .\ .\ .\ .\ .\ .$.	. 59
Figura 3.12–Modelo matemático do conjunto governador-turbina	. 60
Figura 3.13–Curva característica da válvula de combustível	. 61
Figura 3.14–Bloco INDM da biblioteca do RSCAD / $Draft$. 62
Figura 3.15–Bloco de carga dinâmica da biblioteca do RSCAD/ $Draft$. 63
Figura 3.16–Bloco do transformador de potência de 2 enrolamentos da biblioteca do RSCAD/Draft	. 63
Figura 3.17–Bloco do transformador de potência de 3 enrolamentos da biblioteca do RSCAD/Draft	. 64
Figura 3.18–Distribuição do sistema elétrico da plataforma nos 4 <i>racks</i>	. 65
Figura 3.19–Representação dos transformadores de acoplamento no RTDS	. 65
Figura 4.1 – Comparação da reposta de frequência entre o registro de campo da plataforma e o cenário 1- inserção de carga.	. 69
Figura 4.2 – Comparação da reposta de tensão terminal entre o registro de campo	
da plataforma e o cenário 1- inserção de carga	. 70
Figura 4.3 – Comparação da reposta de frequência entre o registro de campo da plataforma e o cenário 1- rejeição de carga	. 71
Figura 4.4 – Comparação da reposta de tensão terminal entre o registro de campo	
da plataforma e o cenário 1- rejeição de carga	. 72
Figura 4.5 – Sintonia do controlador PID do regulador de velocidade, cenário 2- inserção de carga.	. 74
Figura 4.6 – Reposta de tensão terminal devido à sintonia do controlador PID do regulador de velocidado, conário 2, inserção de carga	75
Figura 4.7 – Sintonia do controlador PID do regulador de velocidade, cenário 2-	. 10
Figura 4.8 – Reposta de tensão terminal devido à sintonia do controlador PID do	. 78
regulador de velocidade, cenário 2- rejeição de carga	. 78
Figura 4.9 – Ampliação do passo 4 e passo 5 da sintonia do controlador PID do regulador de velocidade, cenário 2- rejeição de carga	. 79
Figura 4.10–Ampliação do passo 4 e passo 5 da reposta da tensão terminal devido à sintonia do controlador PID do regulador de velocidade, cenário 2- rejeição de carga.	. 80
Figura 4.11–Sintonia do controlador PID do regulador de velocidade, cenário 3- insercão de carga.	. 81
Figura 4.12–Reposta de tensão terminal devido à sintonia do controlador PID do regulador de velocidade, cenário 3- inserção de carga.	. 82

Figura 4.13–Sintonia do controlador PID do regulador de velocidade cenário 3- re-	
jeição de carga	83
Figura 4.14–Reposta de tensão terminal devido à sintonia do controlador PID do	
regulador de velocidade, cenário 3- rejeição de carga	83
Figura 4.15–Comparação da reposta de frequência entre o registro de campo da	
plataforma, o cenário 2 e o cenário 3- inserção de carga	84
Figura 4.16–Comparação da reposta de tensão terminal entre o registro de campo	
da plataforma, o cenário 2 e o cenário 3- inserção de carga	85
Figura 4.17–Comparação da reposta da frequência entre o registro de campo da	
plataforma, o cenário 2 e o cenário 3- rejeição de carga	85
Figura 4.18–Comparação da reposta da tensão terminal entre o registro de campo	
da plataforma, o cenário 2 e o cenário 3- rejeição de carga	86
Figura 4.19–Comparação da reposta da frequência entre o registro de campo da	
plataforma e o cenário 3- inserção de carga.	88
Figura 4.20–Comparação da reposta da tensão terminal entre o registro de campo	
da plataforma e o cenário 3- inserção de carga	88
Figura 4.21–Comparação da reposta da frequência entre o registro de campo da	
plataforma e o cenário 3- rejeição de carga	89
Figura 4.22–Comparação da reposta da tensão terminal entre o registro de campo	
da plataforma, o cenário 2 e o cenário 3- rejeição de carga	89
Figura 4.23–Carregamento imposto ao sistema elétrico da plataforma	90
Figura 4.24–Curva de capacidade de potência- Caso 1	91
Figura 4.25–Comportamento do sistema- Caso de estudo 1	92
Figura 4.26–Curva de capacidade de potência- Caso 2	93
Figura 4.27–Comportamento do sistema- Caso de estudo 2	94
Figura 4.28–Curva de capacidade de potência- Caso 3	95
Figura 4.29–Comportamento do sistema- Caso de estudo 3	95
Figura 4.30–Curva de capacidade de potência- Caso 4	96
Figura 4.31–Comportamento do sistema- Caso de estudo 4	97
Figura 4.32–Curva UEL do sistema de excitação- Caso 4	97
Figura 4.33–Comportamento do sistema- Caso de estudo 5	98
Figura 4.34–Diagrama de impedância.	99
Figura 4.35–Comportamento do sistema- Caso de estudo 6	100

Lista de tabelas

Tabela 2.1 – Característica dos parâmetros do controlador PID	43
Tabela 3.1 – Equipamento de geração instalado na plataforma	50
Tabela 3.2 – Transformadores de potência instalados na plataforma	52
Tabela 3.3 – Carga instalada na plataforma	52
Tabela 3.4 – Parâmetros nominais do gerador síncrono . \ldots . \ldots . \ldots . \ldots . \ldots	54
Tabela 3.5 – Inércia total referida a 3600 rpm	54
Tabela 3.6 – Parâmetros do modelo matemático do sistema de excitação. $\ .\ .\ .$	55
Tabela 3.7 – Parâmetros do modelo matemático do compensador de carga . \ldots .	56
Tabela 3.8 – Parâmetros do modelo matemático do OEL	57
Tabela 3.9 – Parâmetros do modelo matemático do UEL	58
Tabela 3.10–Parâmetros do modelo matemático do V/Hz. \ldots	59
Tabela 3.11–Parâmetros do modelo matemático simplificado do conjunto regulador	
de velocidade-turbina \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	61
Tabela 4.1 – Tempo limite para exceder a corrente do estator.	91

Lista de abreviaturas e siglas

А	Aberto
ABNT	Associação Brasileira de Normas Técnicas
ACO	Ant Colony Optimization
AIS	Artificial Inmune System
ANN	Artificial Neural Network
ANP	Agência Nacional do Petróleo, Gás Natural e Biocombustível
AVR	Automatic Voltage Regulator
CA	Corrente alternada
CIBE	Centro Brasileiro de Infraestrutura
CC	Corrente contínua
CCM	Centro de controle de motores
CDC	Centro de distribuição de carga
DE	Differential Evolution
DEI	Dispositivos eletrónicos inteligentes
DRP	Droop
F	Fechado
FSC	Frequência sem carga
GA	Genetic Algorithm
GG	Gerador de gás
GS	Gerador síncrono
HIL	Hardware-in-the-loop
HV	High value
IEC	International Electrotechnical Commission

IEEE	Institute of Electrical and Electronics Engineers
IFT	Interactive Feedback Test
MM	Multi-massa
MS	Máquina síncrona
OEL	Overexcitation Limiter- Limite de sobre-excitação
PID	Propocional- Integral- Derivativo
PN	Painel
PSO	Particle Swarm Optimization
QmaP	Centro de Estudos em Qualidade da Energia e Proteção Elétrica
RSM	Response Surface Methodology
RTDS	Real Time Digital Simulator
RV	Redutor de velocidade
SA	Simulated Annealing
SCL	Stator Current Limiter- Limitador de corrente do estator
SVM	Support Vector Machine
TG	Turbina a gás
TL	Turbina livre
TR	Transformador de potência
UEL	Underexcitation Limiter- Limitador de sub-excitação
UEP	Unidade Estacionária de Produção
UF	Underfrequency Limiter- Limitador de sub-frequência
UNIFEI	Universidade Federal de Itajubá
UPS	Uninterrupted Power Supply
VM	Variável manipulada
VP	Variável de processo

Lista de símbolos

ΔW	Variação de velocidade
E_f	Tensão de campo
f	Frequência elétrica
f_G	Frequência do GS
$f_{UF_{ref}}$	Frequência de referência do limitador UF
I_{dc}	Corrente direta
I_f	Corrente de campo
$I_{OEL_{ref}}$	Corrente de referência do OEL
I_t	Corrente do estator do GS
k_d	Ganho do termo derivativo
k_G	Ganho do amplificador
k_i	Ganho do termo integral
k_p	Ganho do termo proporcional
n_m	Velocidade mecânica
р	Número de polos
P_{amb}	Pressão do ambiente
Р	Potência ativa
P_m	Potência mecânica
P_{ref}	Potência de referência do UEL
Q	Potência reativa;
$Q_{UEL_{ref}}$	Potência reativa de referência do UEL
R_a	Resistência de armadura
R_c	Resistência de compensação

S	Potência nominal
T_{amb}	Temperatura do ambiente
T'_{do}	Constante de tempo transitório de circuito aberto não saturado de eixo direto
$T_{do}^{\prime\prime}$	Constante de tempo sub-transitório de circuito aberto não saturado de eixo direto
T_e	Torque elétrico
T_{max}	Temperatura máxima
$T_{qo}^{\prime\prime}$	Constante de tempo sub-transitório de circuito aberto não saturado de eixo de quadratura
V	Tensão nominal
V/Hz	Volts/ Hertz
V_{ac}	Tensão alternada
V_c	Sinal do compensador de carga
V_{lim}	Sinal da somatória dos limitadores
V_{OEL}	Sinal de saída da malha do controle do OEL
V_p	Tensão da excitatriz
V_{ref}	Tensão de referência da malha de controle do sistema de excitação
V_{RLMT}	Limitador máximo e mínimo
V_t	Tensão terminal do GS
V_{UEL}	Sinal de saída da malha de controle do UEL
X_a	Reatância de armadura do GS
X_c	Reatância de compensação
X_d	Reatância não saturada do eixo direto
X'_d	Reatância transitória não saturada do eixo direto
X_d''	Reatância sub-transitória não saturada do eixo direto
X_q	Reatância não saturada do eixo de quadratura
X_q''	Reatância sub-transitória não saturada do eixo de quadratura

Sumário

1	INTRODUÇÃO	17
1.1	Sínteses	17
1.2	Motivação	19
1.3	Objetivos	21
1.4	Estrutura da dissertação	21
2	TEORIA DO SISTEMA DE GERAÇÃO	23
2.1	Considerações Iniciais	23
2.2	Turbina a Gás	23
2.3	Gerador Síncrono	25
2.4	Sistema de Excitação	25
2.4.1	Excitatriz	26
2.4.1.1	Excitatriz CC	26
2.4.1.2	Excitatriz CA	27
2.4.1.3	Excitatriz Estática	28
2.4.2	Regulador de Tensão Automático	29
2.4.3	Compensador de Carga	30
2.4.4	Estabilizador de Potência (PSS- <i>Power System Stabilizer)</i>	30
2.4.5	Limitadores	30
2.4.5.1	Limitador de sobre-excitação (OEL- <i>Overexcitation Limiter</i>)	31
2.4.5.2	Limitador de sub-excitação (UEL- <i>Underexcitation Limiter</i>)	32
2.4.5.3	Limitador de corrente do estator (SCL- <i>Stator Current Limiter</i>)	34
2.4.5.4	Limitador de sub-frequência (UF- <i>Underfrequency Limiter</i>) ou Limitador Volts por	
	Hertz (V/Hz)	34
2.5	Regulador de Velocidade	36
2.6	Sintonia PID	38
2.7	Considerações Finais	45
3	MODELAGEM DO SISTEMA ELÉTRICO DA PLATAFORMA NO	
	RTDS	46
3.1	Simulador Digital em Tempo Real - RTDS	46
3.2	Descrição do sistema elétrico da plataforma offshore	48
3.2.1	Descrição do sistema de geração	49
3.2.2	Tipos de conexão	50
3.2.3	Sistema de distribuição	51
3.3	Sistema de Geração no RTDS	52

3.3.1	Modelo matemático do sistema de excitação	53
3.3.1.1	Limitador de sobre-excitação (OEL)	. 56
3.3.1.2	Limitador de sub-excitação (UEL)	. 57
3.3.1.3	Limitador de sub-frequência (UF)	. 58
3.3.2	Modelo matemático do regulador de velocidade	. 59
3.4	Sistema de Distribuição no RTDS	61
3.5	Premissas adotadas na modelagem do sistema no RTDS	64
3.6	Considerações Finais	66
4	RESULTADOS	67
4.1	Validação do controle do sistema de geração	67
4.1.1	Cenário 1	. 68
4.1.1.1	Inserção de Carga	. 69
4.1.1.2	Rejeição de Carga	. 70
4.1.2	Cenário 2	. 72
4.1.2.1	Inserção de Carga	. 73
4.1.2.2	Rejeição de carga	. 77
4.1.3	Cenário 3	. 80
4.1.3.1	Inserção de carga	. 81
4.1.3.2	Rejeição de carga	. 82
4.2	Análise do comportamento do sistema integrado	89
4.2.1	Estudo de caso 1	. 91
4.2.2	Estudo de caso 2	. 93
4.2.3	Estudo de caso 3	. 94
4.2.4	Estudo de caso 4	. 96
4.2.5	Estudo de caso 5	. 98
4.2.6	Estudo de caso 6	. 99
4.3	Considerações Finais	100
5	CONCLUSÕES	102
5.1	Considerações finais	102
5.2	Sugestões para desenvolvimentos futuros	103
5.3	Publicações	104

.05