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Resumo
Este trabalho apresenta a caracterização elétrica de camadas de ZnSnxGe1-xN2 (ZTGN)
(10% < x < 90%) depositadas em substrato de vidro por sputtering combinatório e
avalia o desempenho de células solares de heterojunção de silício (SHJ) que apresentam
essas camadas como contatos elétron-seletivos. Bandgap, condutividade e energia de ati-
vação variaram significantemente entre amostras ricas em Sn e Ge. Quando tais camadas
foram aplicadas como contatos elétron-seletivos em células solares, os dispositivos apre-
sentaram baixo desempenho, com resultados surpreendentemente semelhantes apesar de
mudanças nas propriedades do material. A partir de análises e modelagem das caracterís-
ticas corrente-tensão de várias estruturas de células solares, com auxílio de um algoritmo
de Evolução Diferencial auto adaptativo, mostramos que a função trabalho do contato
elétron-seletivo está em torno de 4.35 eV para todas as composições investigadas de Sn
e Ge, o que é muito alto para formar um excelente contato. Através da comparação de
diferentes arquiteturas de células solares, identificamos ainda que camadas ricas em Ge
impõem uma barreira adicional à extração de elétrons, independentemente de sua baixa
seletividade, devido a baixos valores de condutividade. Após a identificação desses mecan-
ismos de perdas, MgSnN2 (MTN) foi considerado como um bom candidato, já que apre-
senta bandgap adequado e alta concentração de elétrons para uma composição de 50%
Mg/(Mg+Sn) (at.%). Desse modo, fabricamos camadas de MTN através de sputtering
combinatório, sem aquecimento do substrato e à 200 °C, obtendo amostras de MgxSn1-xN2

(43% < x < 55%), com bandgap em torno de 2 eV, exibindo condutividade e energia de
ativação que decrescem em amostras ricas em Mg. Características JV similares àque-
las observadas para ZTGN foram obtidas quando MTN foi empregado como camada
elétron-seletiva, mas com desempenho ligeiramente superior. As propriedades limitantes
foram as mesmas, com função trabalho estimada em 4.16 eV, aumentando para 4.3 eV
para amostras fabricadas à 200 °C. Amostras ricas em Sn exibiram ainda alta afinidade
eletrônica e aquelas ricas em Mg resultaram em curvas com severo perfil em “s” devido à
baixa dopagem, como foi o caso de amostras de ZTGN ricas em Ge. Portanto, a dopagem
desses materiais com elementos extrínsecos aparenta ser a abordagem mais relevante para
a construção de dispositivos eficientes com contatos formados com camadas de ZTGN ou
MTN.

Palavras-chaves: ZnSnN2, ZnGeN2, MgSnN2, contato seletivo, heterojunção de silício,
nitretos, células solares, estrutura de banda, meta-heurísticas, extração de parâmetros,
evolução diferencial.



Abstract
This work initially reports the electrical characterization of ZnSnxGe1-xN2 (ZTGN) layers
(10% < 𝑥 < 90%) deposited on glass by combinatorial sputtering and further assesses the
performance of silicon heterojunction (SHJ) solar cells featuring them as electron-selective
contacts. Bandgap, dark conductivity, and the activation energy of the latter were found
to significantly change between Sn and Ge-rich samples. When applying ZTGN layers as
electron-selective contacts for SHJ solar cells, poor solar-cell performance was observed,
with surprisingly similar results despite changes in material properties. From analysis
and modelling of the current-voltage characteristics of several device structures, through
a self-adaptive Differential Evolution algorithm, we show that the work function of the
electron-selective contact lies around 4.35 eV for all investigated Sn and Ge contents,
which is too high to form an excellent electron-selective contact. By comparing differ-
ent solar-cell architectures, we could further identify that the Ge-rich layer imposes an
additional barrier to electron extraction, independently of its poor selectivity, due to its
low conductivity. After having identified these loss mechanisms, MgSnN2 (MTN) was
envisioned as a good candidate, due to its high electron concentration and bandgap at
50% Mg/(Mg+Sn) (at.%). Thus, we fabricated MTN layers also through a combinatorial
sputtering approach, with no substrate heating and at 200 °C, resulting in MgxSn1-xN2

(43% < 𝑥 < 55%) samples, with bandgap around 2 eV, showing dark conductivity and
activation energy that decreased towards Mg-rich samples. When applied to SHJ solar
cells, JV characteristics similar to that when ZTGN was studied were obtained, and per-
formance was slightly better. The limiting properties were also of the same kind, with an
estimated work function around 4.16 eV, shifting to 4.3 eV for samples grown at 200 °C,
and Sn-rich samples showing a too high electron affinity. Mg-rich samples, as Ge-rich
ones, resulted in strong s-shapes due to poor doping. Thus, doping these compounds with
extrinsic elements appears as the most relevant approach to build efficient devices with a
ZTGN or MTN contact layer.

Keywords: ZnSnN2, ZnGeN2, MgSnN2, carrier-selective contact, silicon heterojunction,
nitrides, solar cells, band structure, metaheuristics, parameter extraction, differential evo-
lution.
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1 Introduction

1.1 Silicon Heterojunction solar cells

1.1.1 Theoretical background

Solar cells directly convert sunlight into electricity due to what is known as the
photovoltaic effect, first reported by Becquerel in 1839 [1]. In order to efficiently convert
sunlight into power, charge carriers, i.e., electron-hole pairs generated by the absorption
of light in the absorber must be efficiently collected at the contacts with minimal recom-
bination losses.

Although many solar cell technologies have been developed to address this goal,
c-Si solar cells are responsible for around 95% of the PV market [2], due to attractive char-
acteristics, such as high efficiencies, long-term stability and that Si is an Earth-abundant
material. Even so, a huge research effort has been carried out in order to approach the
maximum theoretical efficiency of 29.43% for crystalline silicon solar cells [3], since even
small enhancements in efficiency have significant impacts on the levelized cost of electricity
[4].

However, in conventional Aluminum Back-Surface-Field (Al-BSF) solar cells, metal
contacts are in direct contact with the silicon surface, which introduces a large density
of electronic states into the bandgap, which turns this interface into a huge sink for
minority carriers, leading to a strong reduction in the splitting of the quasi-Fermi levels
[5], undermining an efficient extraction of light generated charge-carriers.

Passivating contacts, which avoid direct contact between the metal and the silicon
absorber without imposing barriers for majority carrier extraction [5], emerged as an
alternative to reduce contact and surface recombination losses while enabling an efficient
selective charge-carrier extraction [6].

The definition of a passivating contact is closely linked to that of a selective contact.
According to Würfel et al., selectivity can be defined as [7]:

Selectivity is achieved by differences in conductivities of electrons and
holes in two distinct regions of the device, which, for one charge carrier,
allows transport to one contact and block transport to the other contact.

According to Hermle et al. [5], this definition encompasses all the requirements
for a passivating contact: suppression of recombination in the vicinity of the contact,
allowing a high internal voltage; constant majority Fermi energy in the contact region at
open-circuit conditions, and low resistivity for majority carrier transport.
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Figure 1.1 – Structure of a front-junction SHJ solar cell (left) with the corresponding
(simplified) band diagram in equilibrium (right). EC, EF and EV denote the
minimum of the conduction band (CB), the Fermi level and the maximum
of the valence band (VB).

The most successful passivating contact structure is the silicon heterojunction
(SHJ) solar cell [8], which set in 2017 a new world record for crystalline silicon solar
cells efficiency of 26.6% [9]. The SHJ solar cell structure, shown schematically in Fig. 1.1,
consists of a crystalline silicon wafer passivated on both sides by intrinsic hydrogenated
amorphous silicon — (i) a-Si:H — deposited by PECVD, typically 5–10 nm thick [5],
which can neutralize the dangling bonds at the crystalline silicon surface by attaching a
hydrogen atom to each dangling bond [10].

Following the (i) a-Si:H deposition, doped (p) and (n) a-Si:H layers (typically 10 nm
thick [5]) are deposited on top of the intrinsic layers. These layers, besides providing low
resistivity only for majority carriers, suppress minority carrier recombination due to the
band offsets with c-Si, as shown in the band diagram of Fig. 1.1. Moreover, due to their
higher bandgaps (∼1.7 eV [11]) compared to c-Si, these layers can keep a low minority
carrier concentration even when it increases by orders of magnitude at the operating point
of a solar cell [7], preventing the flow of minority carriers to the wrong contacts.

Furthermore, suitable doping levels of the a-Si:H layers cause a proper work func-
tion matching with c-Si, leading to an induced homojunction at the c-Si surface, which
is the case of the (p) a-Si:H/(i) a-Si:H/n-Si interface in Fig. 1.1, which dominates the
contact characteristics [5]. In this case, the resulting JV characteristics of the device can
be described by the traditional diode theory.

Then, a transparent conductive oxide (TCO), typically ∼80 nm Indium Tin Oxide
(ITO), is sputtered on top of the doped a-Si:H layers to provide lateral conductivity, also
serving as anti-reflection coating [4]. Ag is then sputtered on the rear and front size to
establish contacting, finishing the device processing.

Additionally, the TCO poses more requirements for the doped a-Si:H layers: if
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Figure 1.2 – Band diagrams illustrating an ideal voltage extraction from a solar cell (a),
where all the implied voltage (iV) generated by the quasi-Fermi level splitting
is transferred to the contacts (Vext); a solar cell limited by minority carrier
recombination in the absorber, low generation rate, or due to a significant
number of extracted carriers (b), where the quasi-Fermi level splitting is
lowered, but still transferred to the contacts; and a device where passivation
is good but the voltage extraction is limited by a gradient in the electron
quasi-Fermi level (c), due to problems to extract the intended majority carrier
[5].

their doping levels and thickness are not suitably adjusted, the work function mismatch
between the TCO and doped a-Si:H layers can lead to a depletion of the latter at the
interface with the TCO due to a Schottky-like junction, lowering the selectivity of the
doped a-Si:H layers. On the device level, this effect usually results in FF losses [4, 12].

Overall, if the device is well designed, with contacts selectively extracting their
intended charge carrier and promoting excellent passivation of the c-Si surface, the im-
plied voltage generated within the absorber due to light absorption and quasi-Fermi level
splitting can be entirely extracted from the device in the ideal case, shown in Fig. 1.2 (a).
In this case, the maximum voltage extracted from the device matches the implied voltage,
which is limited only by inherent silicon recombination processes.

On the other hand, if the device is limited by minority carrier recombination, the
quasi-Fermi level splitting is reduced but can still be extracted from the device, as shown
in Fig. 1.2 (b). However, when a contact fails to extract its intended majority carrier
due to transport losses, the corresponding quasi-Fermi level will drop within the contact,
strongly reducing the voltage that can be extracted from the device, even though the
implied voltage is still high. This situation is shown in Fig. 1.2 (c), in which a gradient in
the quasi-Fermi level in the electron contact can be seen.

In highly efficient SHJ solar cells, where recombination losses are mainly due to
the c-Si wafer, open-circuit voltages as high as 750 mV can be extracted from the device,
which is close to the upper limit defined by c-Si [3]. Besides enabling high efficiencies,
additional benefits of the silicon heterojunction solar cell technology include low tem-
perature processing (< 200 °C), stability and better performance at high temperatures
[5].

Nevertheless, important bottlenecks are still present, such as parasitic absorption



Chapter 1. Introduction 12

in the a-Si:H layers, which can also be damaged by the sputtering of the TCO, leading to
enhanced recombination that lowers Voc [4, 8]. These issues have motivated an increased
research for new materials that could replace the a-Si:H layers in SHJ solar cells, enabling
better properties, such as higher transparency, lower defect densities, doping efficiency,
and also even more suitable work functions [13].

The next section reviews some works addressing the search for new materials as
passivating contacts.

1.1.2 Novel contacts for SHJ solar cells: state of research

As previously discussed, novel passivating-contact schemes are actively being in-
vestigated. In [14], a hole-selective contact scheme for n-type SHJ solar cells based on
MoOx thin films was proposed. The results showed that a power conversion efficiency of
18.8% was obtained through the insertion of an intrinsic a-Si:H passivation layer between
the oxide contact and silicon absorber, MoOx/a-Si:H/c-Si.

Furthermore, this cell architecture was subjected to I-V measurements as a func-
tion of temperature in the range 25–60 °C under the AM1.5G spectrum to better under-
stand the “s-shaped” profile of the I-V curves observed at higher voltages. It was found
that this profile straightened out at higher temperatures, indicating a thermionic emission
barrier that must be overcome by holes.

The first demonstration of highly efficient devices with MoOx based hole collector
was carried out in [15]. The SHJ solar cell, with the p-type amorphous silicon film replaced
by a MoOx layer as hole collector in front of the SHJ solar cell achieved a certified
efficiency of 22.5%, proving that metal oxide layers can be used as a replacement for
p-doped amorphous silicon layers in highly efficient devices.

In [16], I-V measurements were carried out at several irradiance levels for a solar
cell with a-Si:H, TiO2 and Al electrode. It was seen that this cell architecture showed an
increase in Voc for decreased illumination, indicating that this contact scheme achieves
better charge-carrier selectivity at low illumination.

In reference [17], intrinsic amorphous silicon oxide (i a-SiOx:H) was compared
with a standard a-Si:H to assess its potential as buffer and window layer on the front
side. The solar cell with intrinsic a-SiOx:H showed a slightly lower absolute value for the
relative change in Voc, -0.22%/°C compared to -0.25%/°C obtained for the cell using a-
Si:H. Therefore, if the cell will operate at elevated temperatures, the cell with intrinsic
a-SiOx:H may be employed. Considering that in field conditions the working temperature
is in general far above room temperature, this design has a promising potential, especially
for warmer climates.

Recently, a 21.3 %-efficient crystalline silicon solar cell was demonstrated in [18],
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by using a ZnO/LiFx stack (on top of a passivating intrinsic a-Si:H) as electron-selective
contact. In [19], an electron selective contact for crystalline silicon solar cells based on
TaNx was proposed, achieving a power conversion efficiency over 20%.

In [20], p-type microcrystalline silicon was investigated as electron-selective con-
tacts for SHJ solar cells. With reduced deposition temperatures, < 200 °C, the performance
of this cell architecture was improved due to mitigated parasitic light absorption and en-
hanced hole extraction, achieving an efficiency of 23.45%. Moreover, variable-temperature
I-V measurements were carried out to investigate the effect of low temperature deposi-
tion on charge extraction. For cells with deposition at lower temperatures, the fill factor
exhibited an improvement for reduced cell temperatures, while for a cell with deposition
at 200 °C, the FF improved for higher operating temperatures.

In [21], a dopant-free asymmetric heterocontact, employing a LiFx/Al outer stack
for electron extraction and standard SHJ sunward-hole contact, was tested with thin
oxide protective layers to improve the stability of the contact. Four oxides were tested:
TiOx, Ta2Ox, HfOx and Al2Ox, and the results showed that the thermal stability of
electron-selective heterocontacts can be improved by using a TiOx layer between the a-
Si:H passivation layer and the LiFx/Al electrode. The I-V characteristics extracted under
STC showed an efficiency of 20.7%, the highest up to date obtained by this kind of cell
technology.

Moreover, it has been recently shown in [22] that, for hole-selective contacts, their
thickness, doping and valence band mismatch with c-Si strongly influence the FF on the
device level, whereas Voc would be more affected by interfacial defect density.

As seen in this literature review, deviations from the classical diode theory can
occur when new materials are studied as selective contacts: the superposition principle no
longer holds, resulting in anomalous I-V curves that exhibit features known as “s-shapes”,
that are now often reported in the literature.

Nevertheless, the reasons for this behavior are not totally clear, since the underly-
ing physics of passivating-contact solar cells is still not fully understood and it is difficult
to generalize theories, given that in these technologies the device construction involves
diverse materials that introduce many interfaces hampering charge flow.

1.2 Objectives
In the search for new materials as passivating contacts for SHJ solar cells, ternary

nitrides have emerged as potential candidates due to their compelling properties for het-
erojunction solar cells, such as high carrier concentration and wide bandgaps, which can
even be tuned upon changes in stoichiometry. Moreover, these materials are all composed
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of Earth-abundant materials, making them specially interesting for PV applications.

Yet, this is still a vastly unexplored research area, with few works reporting the
application of these materials as passivating contacts for SHJ solar cells, despite repre-
senting an excellent opportunity for an extensive study about contact selectivity, since
their electronic properties strongly depend on stoichiometry.

In this sense, the goal of this work is to assess the suitability of ZnSnxGe1-xN2

and MgxSn1-xN2 semiconductors as electron-selective contacts for silicon heterojunction
solar cells, given the variable electron concentration and bandgaps shown by these mate-
rials, depending only on composition, making them an excellent platform to investigate
the underlying properties of carrier selectivity in solar cells. It will be shown that these
compounds can experimentally reveal critical phenomena that must be accounted when
designing selective contacts, leading to a better understanding of the limiting properties
of SHJ solar cells.

1.3 Structure of this work
In an effort to make comprehensive, stand-alone chapters, information about ex-

perimental and analysis methods will be introduced when needed.

As it will be necessary to carry out an extensive parameter extraction from I-V
data to model the electrical performance of the fabricated solar cells and understand the
limiting properties of devices featuring nitride semiconductors as carrier-selective contacts,
this work firstly addresses the PV parameter extraction problem, targeting metaheuristics
algorithms. Selected algorithms, with simple implementation, will be reviewed, and their
performance and accuracy on the extraction of diode parameters from a benchmark,
noise-free, and noisy I-V curves will be discussed in Chapter 2.

Chapter 3, which is the bulk of this work, addresses the application of nitride
semiconductors, namely ZnSnxGe1-xN2 semiconducting alloys and MgxS1-xN2, as carrier-
selective contacts in SHJ solar cells, presenting basic material fabrication by a combi-
natorial sputtering approach and results from electro-optical characterization. Through
an extensive characterization of several architectures of SHJ solar cells, with subsequent
modelling of the resulting I-V data aided by a metaheuristic algorithm studied in Chap-
ter 2, it will be shown how this device-oriented approach can reveal critical phenomena
that must be accounted for when considering new materials as selective contacts. Finally,
Chapter 4 reviews the achievements of this work and discusses prospects.
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2 Stochastic optimization algorithms applied
to the PV parameter extraction problem

This chapter is based on the following publication: Fébba, D. M. et al. The effects
of noises on metaheuristic algorithms applied to the PV parameter extraction problem.
Solar Energy, v. 201, p. 420-436, 2020 [23].

2.1 Motivation
The most important information about a solar cell electrical behavior, such as

short-circuit current 𝐼𝑠𝑐, open-circuit voltage 𝑉𝑜𝑐, maximum power point 𝑃𝑚𝑝𝑝, can be
extracted from its current-voltage (I-V) characteristics (or I-V curves) and by analyzing
its equivalent circuit [24]. From this analysis, other important parameters such as series
𝑅𝑠 and shunt 𝑅𝑠ℎ resistance, diode ideality factor 𝑛 and reverse saturation current 𝐼0 may
also be obtained, providing valuable information about the electrical performance of solar
cells and modules.

There are many mathematical models in the literature describing the I-V charac-
teristics of solar cells, such as single, double and triple diode models [25]. However, due
to its simplicity and accuracy, the single-diode model with series and shunt resistance is
the most used one [26]. According to this model, the output current 𝐼 as a function of
voltage 𝑉 across the solar cell terminals is given by Eq. (2.1):

𝐼 = 𝐼𝑝ℎ − 𝐼0
[︁
𝑒𝑞(𝑉 +𝐼𝑅𝑠)/𝑛𝑘𝑇 − 1

]︁
− 𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ

, (2.1)

where 𝑘 is the Boltzmann constant, 𝑞 is the elementary charge, and T is the absolute
temperature.

Extracting the five diode parameters, i.e., the photocurrent 𝐼𝑝ℎ, diode reverse sat-
uration current 𝐼0, diode ideality factor 𝑛, series and shunt resistance 𝑅𝑠 and 𝑅𝑠ℎ, re-
spectively, from Eq. (2.1), is not a simple task and finding the best extraction method
remains a challenge, which has attracted the attention of researchers and produced many
manuscripts in recent years, given the importance of this problem to evaluate and compare
the performance and characteristics of new devices, as well as to improve power output
prediction [27].

Methods for extracting the diode parameters from I-V curves can be essentially
grouped into two main categories: analytical and numerical [27]. Within numerical meth-
ods, metaheuristic algorithms constitute powerful tools for the solar cells parameter ex-
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traction problem, since they do not rely on any prior knowledge about specific points of
the I-V curve, such as 𝐼𝑠𝑐, 𝑉𝑜𝑐, 𝑃𝑚𝑝𝑝, or slopes at these regions, which are usually required
for analytical methods [28], nor they rely on initial conditions or fitting algorithm, which
are required for numerical techniques that employ iterative methods [29].

The literature is vast regarding parameter extraction techniques, as can be seen
in recently published reviews [25, 30, 31]. However, manuscripts addressing the problem
of how parameter extraction methods are influenced by noise levels present on solar cells
I-V curves are rather scarce, and even scarcer regarding metaheuristic algorithms. This is
an important issue because solar cells I-V curves generally have some noise level due to
light variation during the measurement process, which is present in any I-V measurement
system for PV devices since light generation is a spatiotemporal stochastic process [32].
In this sense, it is important to evaluate how different noise levels affect the parameter
extraction procedure.

In this sense, considering that metaheuristic algorithms are increasingly being
applied to PV parameter extraction problem, as seen in the aforementioned reviews, the
aim of this work is to compare four metaheuristic methods according to the accuracy of
the obtained results for a benchmark, noise-free and noisy solar cell I-V curves, considering
the single-diode model.

We intend to identify how would the algorithms perform under noisy I-V charac-
teristics and identify the most reliable and robust ones against noise as well. Moreover, the
majority of works dealing with metaheuristics for the PV parameter extraction problem
employ the RMSE as the objective function [31], and do not consider the effects of other
functions on the extracted parameters. Therefore, in this work four different objective
functions were considered: the RMSE, MAPE, MAE and Huber loss function, to evaluate
how the objective function affects the extracted single-diode parameters under different
noise levels.

The compared algorithms, chosen among many others due to their promising re-
sults found in the literature, are the Self-Adaptive Differential Evolution (DE) algorithm,
proposed by [33], the Performance Guided JAYA algorithm (PGJAYA), proposed by [34],
the Self-Adaptive Teaching-Learning-based optimization (SATLBO) algorithm, proposed
in [35], and the Biogeography-based Heterogeneous Cuckoo Search algorithm (BHCS),
proposed by [36]. None of these methods were studied considering their performance on
the PV parameter extraction problem when noisy scenarios are taken into consideration.

2.2 Problem formulation
The extraction of the single-diode parameters from Eq. (2.1) can be converted

into an optimization problem by defining and minimizing an objective function (or cost
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function), which is essentially the error between the estimated and experimental data. In
general, for metaheuristic algorithms, a search mechanism tries to find the best solution
among a set of possible solutions, i.e., the objective is to find the solution that provides
the minimum value for the objective function.

For the single-diode parameter, each possible solution is of the form:

𝑋 = (𝐼𝑝ℎ, 𝐼0, 𝑅𝑠, 𝑛, 𝑅𝑠ℎ), (2.2)

and the most widely used objective function for the PV parameter extraction problem is
the Root Mean Square Error (RMSE), as stated by the review works mentioned in section
1.

The RMSE is defined by Eq. (2.3):

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=1

(𝐼𝑖,𝑒𝑥𝑝 − 𝐼𝑖,𝑒𝑠𝑡)2, (2.3)

where 𝑁 is the number of data points, 𝐼𝑖,𝑒𝑥𝑝 is the 𝑖𝑡ℎ experimental current point and 𝐼𝑖,𝑒𝑠𝑡

is the 𝑖𝑡ℎ estimated current point by the search algorithm, being a function of 𝑋𝑖. Thus,
for a given temperature T, 𝐼𝑖,𝑒𝑠𝑡 = 𝐼𝑖,𝑒𝑠𝑡(𝐼𝑖,𝑝ℎ, 𝐼𝑖,0, 𝑛𝑖, 𝑅𝑖,𝑠, 𝑅𝑖,𝑠ℎ, 𝑉𝑖,𝑒𝑥𝑝, 𝐼𝑖,𝑒𝑥𝑝). The RMSE
is a measure of the fitness quality between the estimated and experimental points, and
for a good fitting, its value should be minimized, which is accomplished by the search
procedure implemented by the optimization algorithm.

However, since the aim of this work is to investigate the influences of noises on
the selected algorithms, and considering that the results may depend on the cost function
which is minimized by the search algorithm, three other cost functions will be considered:
the Huber loss function, the Mean Average Percentage Error (MAPE) and the Mean
Average Error (MAE). The minimization of the Huber function is achieving by minimizing
Eq. 2.4:

𝐻𝑢𝑏𝑒𝑟 = 1
𝑁

𝑁∑︁
𝑖=1

𝜌𝑖, (2.4)

where

𝜌𝑖(𝑟) =
⎧⎨⎩𝑟2

𝑖 /2 if |𝑟𝑖| ≤ 𝑐 , (2.5a)
𝑐(|𝑟𝑖| − 𝑐/2) otherwise, (2.5b)

In Eqs. 2.5a and 2.5b 𝑟 is the residual between an experimental and estimated
point and 𝑐 is a tuning parameter, chosen as 1.345 [37, 38] in this work. The MAPE and
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MAE are define by Eqs. 2.6 and 2.7, respectively.

𝑀𝐴𝑃𝐸 = 1
𝑁

𝑁∑︁
𝑖=1

⃒⃒⃒⃒
⃒𝐼𝑖,𝑒𝑥𝑝 − 𝐼𝑖,𝑒𝑠𝑡

𝐼𝑖,𝑒𝑥𝑝

⃒⃒⃒⃒
⃒ (2.6)

𝑀𝐴𝐸 = 1
𝑁

𝑁∑︁
𝑖=1

|𝐼𝑖,𝑒𝑥𝑝 − 𝐼𝑖,𝑒𝑠𝑡| (2.7)

Therefore, the results will be compared considering these four objective functions.
This will be important since no study was previously carried out to evaluate the effects
of the objective function on the performance of the algorithms considered in this work for
the PV parameter extraction problem.

2.3 Review of the metaheuristic algorithms under study

2.3.1 Self-adaptive Differential Evolution

The Differential Evolution (DE) algorithm, first introduced by [39], is a population-
based stochastic function optimization algorithm [40], which optimizes a function by fol-
lowing evolutionary rules. It is a powerful tool to find the global minimum of non-linear
and multi-modal functions [41], and is among the most popular evolutionary algorithms
currently in use due to its simplicity and efficiency [42], being widely employed to the
solar cell parameters extraction problem [43].

The DE algorithm has four stages: initialization, mutation, recombination, and se-
lection. In the first stage, a set of NP individuals is randomly initialized to form the initial
population, which will evolve through 𝐺 generations or until some criteria is achieved.
Each individual 𝑋𝑖 = 𝑋𝑖 (𝐼𝑝ℎ, 𝐼0, 𝑅𝑠, 𝑛, 𝑅𝑠ℎ) is a candidate to the optimum solution that
minimizes the objective function 𝑓 . A possible scheme for the population initialization is

𝑋𝐺=1
𝑖,𝑗 = 𝑋𝐺=1

𝐿 + 𝑟𝑎𝑛𝑑𝑖,𝑗(0, 1)
(︁
𝑋𝐺=1

𝑈 − 𝑋𝐺=1
𝐿

)︁
, (2.8)

where the index 𝑖 goes from 1 to 𝑁𝑃 (population size), the index 𝑗 goes from 1 to 5
(since the vector 𝑋 has five components for the problem under study), 𝑋𝐿 and 𝑋𝑈 are
the lower and upper bounds for the individuals, respectively, and define what is called the
search space. Here, 𝑟𝑎𝑛𝑑𝑖,𝑗(0, 1) denotes a random number between 0 and 1 with uniform
probability distribution. The superscript 𝐺 denotes the generation number, running from
1 to the maximum iterations number 𝐺𝑚𝑎𝑥.

In the second stage, called mutation, a donor vector is formed. For that, there are
several different strategies in DE literature [42], and in this work, the current-to-best/1



Chapter 2. Stochastic optimization algorithms applied to the PV parameter extraction problem 19

strategy will be employed. A donor vector 𝑉 𝐺
𝑖 can be written as:

𝑉 𝐺
𝑖 = 𝑋𝐺

𝑖 + 𝐹
(︁
𝑋𝐺

𝑏𝑒𝑠𝑡 − 𝑋𝐺
𝑖

)︁
+ 𝐹

(︁
𝑋𝐺

𝑟1 − 𝑋𝐺
𝑟2

)︁
, (2.9)

where, at generation 𝐺, 𝑋𝐺
𝑖 denotes the current individual, 𝑋𝐺

𝑏𝑒𝑠𝑡 is the best individual,
i.e., the individual with the minimum value for the objective function, and 𝑋𝐺

𝑟1 and 𝑋𝐺
𝑟2

are randomly chosen individuals, different from each other and from the current individual
𝑋𝐺

𝑖 . Also, 𝐹 (𝐹 ∈ [0, 2]) is a real number, user defined, called mutation factor.

In the final stage, called recombination (or crossover) the donor vector is mixed
with the target vector 𝑋𝐺

𝑖 , yielding a trial vector 𝑈𝐺
𝑖 . For that, there are two common

schemes: binary and exponential crossover [41]. In this work, the binary scheme will be
used and it is described by:

𝑈𝐺
𝑖,𝑗 =

⎧⎨⎩𝑉 𝐺
𝑖,𝑗 if 𝑟𝑎𝑛𝑑(0, 1)𝑗 ≤ CR or 𝑗 = 𝑗𝑟𝑎𝑛𝑑 , (2.10a)

𝑋𝐺
𝑖,𝑗 otherwise, (2.10b)

where 𝑉 𝐺
𝑖,𝑗 is the donor vector, 𝑗𝑟𝑎𝑛𝑑 is a randomly integer chosen in the interval [1, 5] and

𝐶𝑅 (𝐶𝑅 ∈ [0, 1]) is another real number, user defined, known as crossover rate.

Finally, after recombination, the selection stage occurs. The trial and target vectors
are compared, and the vectors that minimize the objective function are selected to the
next generation, i.e.,

𝑋𝐺+1
𝑖 =

⎧⎨⎩𝑈𝐺
𝑖 if 𝑓(𝑈𝑖) < 𝑓(𝑋𝑖) , (2.11a)

𝑋𝐺
𝑖,𝑗 otherwise. (2.11b)

However, in its standard form, as described above, the performance of the DE
algorithm is highly dependent on the user-defined variables 𝐹 and 𝐶𝑅 [40, 43, 44] and,
moreover, there is no general rule for a suitable choice of these parameters for a given
problem [45]. To deal with the problem-dependent tuning of DE control parameters, many
self-adaptive DE variants have been proposed [41]. In this work, the self-adaptive control
parameters proposed by [33] will be employed.

This method was tested on twenty-one benchmark functions and it was found to
be better or at least comparable to the standard DE algorithm and other evolutionary
algorithms from literature considering the quality of the solutions [33]. According to this
work, the mutation factor is adjusted as:

𝐹 𝐺+1
𝑖 =

{︃
𝐹𝑙 + 𝑟𝑎𝑛𝑑1𝐹𝑢 if 𝑟𝑎𝑛𝑑2 < 𝜏1, (2.12a)
𝐹 𝐺

𝑖 otherwise, (2.12b)
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whereas the crossover rate is adjusted as:

𝐶𝑅𝐺+1
𝑖 =

{︃
𝑟𝑎𝑛𝑑3 if 𝑟𝑎𝑛𝑑4 < 𝜏2, (2.13a)
𝐶𝑅𝐺

𝑖 otherwise. (2.13b)

Here, 𝑟𝑎𝑛𝑑𝑘 with 𝑘 = 1, 2, 3, 4 are four random numbers chosen with uniform probability
distribution in the interval [0, 1]. 𝜏1 and 𝜏2 represent the probabilities to adjust 𝐹 and 𝐶𝑅

and are set as 𝜏1 = 𝜏2 = 0.1 and, considering 𝐹𝑙 = 0.1 and 𝐹𝑢 = 0.9, the new generated F
always takes a value from the interval [0.1, 1], and 𝐶𝑅 from [0, 1].

Furthermore, various values for 𝜏1 and 𝜏2 were tested and any significant difference
in results was found. Therefore, the problem of tuning the DE control parameters is
eliminated, since they are randomly initialized and are automatically adapted during the
optimization routine.

2.3.2 Performance Guided JAYA

Based on the concept that the solution for an optimization problem should move
towards the best and avoid the worst solution, the JAYA (a word deriving from the
Sanskrit meaning victory) was introduced in 2016 by [46].

The original JAYA algorithm has a very simple implementation. Let 𝑋𝑏𝑒𝑠𝑡 and
𝑋𝑤𝑜𝑟𝑠𝑡 be the best and worst solution at each iteration, respectively. Based on that, each
possible solution (or individual, in the language of evolutionary algorithms) is updated
as:

𝑋𝑖,𝑗 = 𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑1 (𝑋𝑏𝑒𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) − 𝑟𝑎𝑛𝑑2 (𝑋𝑤𝑜𝑟𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) , (2.14)

where the index 𝑖 denotes the individual (possible solution) and 𝑗 each individual’s com-
ponent; 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are two distinct random numbers in the interval [0, 1] generated
from a uniform probability distribution.

If the updated new solution provides a lower value for the objective function, the
new solution is accepted; otherwise, the previous solution is maintained. This process
continues until the maximum number of iterations is reached.

This algorithm was tested on 24 constrained and on 30 unconstrained benchmark
functions, and the results compared with well-established optimization algorithms. The
results showed that the proposed JAYA algorithm had a satisfactory performance for both
kinds of optimization problems.

The main problem with this algorithm, as stated by [34] is that the search proce-
dure, given by (2.14), may lead to a population stagnation, which undermines the explo-
ration ability. As a strategy to enhance the performance of the standard JAYA algorithm,
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promoting a better balance between exploitation and exploration, and make the algorithm
more suitable to the PV parameter extraction problem, [34] proposed the Performance
Guided JAYA (PGJAYA).

In this algorithm, an initial population is initialized, in a scheme such as the one
given by Eq. (2.8), and for each iteration, the population is sorted in ascending order with
respect to the RMSE values, and each individual is ranked according to:

𝑅𝑖 = 𝑁𝑃 − 𝑖, (2.15)

where 𝑖 = 1, 2, ..., 𝑁𝑃 , and a probability is assigned to each individual:

𝑃𝑖 =
(︂

𝑅𝑖

𝑁𝑃

)︂2
. (2.16)

In this way, better individuals, i.e., individuals with lower values for the objective
function will have a higher probability, since for these individuals the 𝑅𝑖 value is higher.
Initially, or each individual, a random number (𝑟𝑎𝑛𝑑0) in the range [0, 1] is generated from
a uniform probability distribution, and if this number is greater than the probability of the
individual, a search strategy aiming at enhancing the exploitation ability is implemented
and a new individual is created:

𝑋𝑛𝑒𝑤
𝑖,𝑗 = 𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑1 · (𝑥𝑏𝑒𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) − 𝑤 * 𝑟𝑎𝑛𝑑2 · (𝑥𝑤𝑜𝑟𝑠𝑡,𝑗 − |𝑋𝑖,𝑗|) , (2.17)

where 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are again random numbers within [0, 1] with uniform probability
distribution, and 𝑤 is a weight defined as:

𝑤 =
{︃

𝑓(𝑋𝑏𝑒𝑠𝑡)/𝑓(𝑋𝑤𝑜𝑟𝑠𝑡) if 𝑋𝑤𝑜𝑟𝑠𝑡 ̸= 0, (2.18a)
1 otherwise, (2.18b)

to optimize the search for the optimal region at early stages of the process.

However, if 𝑃𝑖 ≤ 𝑟𝑎𝑛𝑑0, a search strategy aiming at exploration ability is im-
plemented. For that, two individuals, different from the current individual, are selected
considering their probability 𝑃 defined by Eq. (2.16), and a new individual is formed:

𝑋𝑛𝑒𝑤
𝑖,𝑗 = 𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑

(︁
𝑋𝑃𝑙

𝑙,𝑗 − 𝑋𝑅
𝑚,𝑗

)︁
, (2.19)

with 𝑖 ̸= 𝑙 ̸= 𝑚.

If a random number (𝑟𝑎𝑛𝑑3) is greater than 𝑃𝑙, another individual 𝑋𝑙 is selected
until 𝑟𝑎𝑛𝑑3 ≤ 𝑃𝑙. Therefore, if 𝑋𝑙 is an individual with a low value for the objective
function, it has a high probability 𝑃𝑙 and the chance of 𝑟𝑎𝑛𝑑3 > 𝑃𝑙 is low, but if it
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happens, the random number in Eq. (2.19) has a high value, and therefore the search is
directed towards a better region.

Furthermore, a self-adaptive chaotic perturbation was added to find a better so-
lution around the current best solution for replacing the worst one [34]. In this way, a
logistic map was implemented:

𝑧𝑘 = 4𝑧𝑘 (1 − 𝑧𝑘) , (2.20)

where 𝑧𝑘 is the value of the 𝑘𝑡ℎ chaotic iteration and 𝑧0 is a random number in the interval
[0, 1]. Then, if 𝑟𝑎𝑛𝑑 < 1 − 𝐺/𝐺𝑚𝑎𝑥:

𝑋*
𝑗 = 𝑋𝑏𝑒𝑠𝑡,𝑗 + 𝑟𝑎𝑛𝑑(2𝑧𝑘 − 1). (2.21)

If not, 𝑋*
𝑗 = 𝑋𝑏𝑒𝑠𝑡,𝑗. The new individuals formed by Eqs. (2.17), (2.19) and (2.21)

survive to the new generation (iteration) if, and only if, the new individual provides a
lower RMSE value. This whole process is then repeated until the maximum number of
iterations, 𝐺𝑚𝑎𝑥 is reached.

The results obtained by employing PGJAYA to the PV parameter extraction
problem were considered competitive when compared with other state-of-art optimiza-
tion algorithms [34]. Since it has a simple implementation and just only one user-defined
parameter, this algorithm constitutes an interesting option for extracting the single and
double diode parameters from solar cells and modules.

2.3.3 Self-adaptive Teaching-Learning-based Optimization (SATLBO) algo-
rithm

The SATLBO algorithm was proposed by [35] as a modification to the Teaching-
Learning-based Optimization (TLBO) algorithm, proposed by [47], aiming at enhancing
the population diversity and search capabilities by considering the fitness of each individ-
ual.

The SATLBO, and therefore the TLBO algorithm, was inspired by the influence
of a teacher on the learners [47]. Each possible solution is called a learner and, at each
iteration, the learner with the minimum value for the objective function is called the
teacher.

Initially, a set of possible solutions is created as given by Eq. (2.8) and this initial
population is ranked according to the value for the objective function of each individual,
just like the ranking employed by the PGJAYA, given by Eq. (2.15). Then, a probability
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is assigned to each individual:

𝑃𝑖 = 0.5
[︂
1 − cos

(︂
𝑅𝑖𝜋

𝑁𝑃

)︂]︂
. (2.22)

Based on this probability, the learners (individuals) select the learning phases in
a self-adaptive way. If

𝑟𝑎𝑛𝑑 ≥ 𝑃𝑖, (2.23)

where 𝑟𝑎𝑛𝑑 is a random number in the interval [0, 1] from a uniform probability dis-
tribution, a teacher phase, which is focused on improving the mean result of the class,
is implemented. Otherwise, a learner phase, which focuses on enhancing the learners’
diversity, is implemented.

In the SATLBO algorithm, two learning strategies for the teacher phase were
implemented based on the current iteration number. If 𝑟𝑎𝑛𝑑 ≤ 1 − 𝐺/𝐺𝑚𝑎𝑥, the teacher
phase strategy of the original TLBO algorithm is employed:

𝑋𝑛𝑒𝑤
𝑖 = 𝑋𝑖 + 𝑟𝑎𝑛𝑑 · (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹 · 𝑀𝑒𝑎𝑛) , (2.24)

where 𝑇𝐹 = 𝑟𝑜𝑢𝑛𝑑 (1 + 𝑟𝑎𝑛𝑑) and

𝑀𝑒𝑎𝑛 = 1
𝑁𝑃

(︃
𝑁𝑃∑︁
𝑖=1

𝑋𝑖,1, . . . ,
𝑁𝑃∑︁
𝑖=1

𝑋𝑖,5

)︃
. (2.25)

Otherwise, an elite learning strategy is employed:

𝑋𝑛𝑒𝑤
𝑖 = 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 + 𝑟𝑎𝑛𝑑 · (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑋𝑖) , (2.26)

where 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 is the individual with the minimum RMSE value at the current iteration.
In this way, the learners approach the best region during the early stages and, at later
stages, the teacher is improved through a local search [35].

If the condition of Eq. (2.23) is not fulfilled, the learner phase of SATLBO is
implemented. In this phase, for each individual (learner), another learner 𝑋𝑘 is selected.
Then, if

𝑓(𝑋𝑘) ≤ 𝑓(𝑋𝑖), (2.27)

a new individual is generated through

𝑋𝑛𝑒𝑤
𝑖 = 𝑋𝑖 + 𝑟𝑎𝑛𝑑 · (𝑋𝑘 − 𝑋𝑖) . (2.28)
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Otherwise, two other learners 𝑋𝑟1 and 𝑋𝑟2, with 𝑋𝑟1 ̸= 𝑋𝑟2 ̸= 𝑋𝑖 are randomly
selected and used to generate a mutant vector. If 𝑅𝑀𝑆𝐸(𝑋𝑟1) < 𝑅𝑀𝑆𝐸(𝑋𝑟2),

𝑉𝑖 = 𝑋𝑗 + 𝑟𝑎𝑛𝑑 · (𝑋𝑟1 − 𝑋𝑟2) . (2.29)

Otherwise,

𝑉𝑖 = 𝑋𝑗 + 𝑟𝑎𝑛𝑑 · (𝑋𝑟2 − 𝑋𝑟1) . (2.30)

Then, a crossover operation is implemented, generating a new individual:

𝑋𝑛𝑒𝑤
𝑖,𝑗 =

⎧⎨⎩𝑋𝑖,𝑗 if 𝑟𝑎𝑛𝑑1 < 𝑟𝑎𝑛𝑑2, (2.31a)
𝑉𝑖,𝑗 otherwise, (2.31b)

enhancing the population diversity. The new individual generated by the teacher phase
or learner phase is accepted, i.e., goes to the next iteration, if, and only if, it reduces the
RMSE value. This whole process continues until the maximum number of iterations is
reached.

This algorithm was employed to the PV parameter extraction problem by [35],
and it was found to be better than other considered algorithms. More details about the
SATLBO algorithm and pseudo-code can be found in the work of [35] and [47].

2.3.4 Biogeography-based Heterogeneous Cuckoo Search algorithm (BHCS)

The hybrid metaheuristic algorithm called Biogeography-based Heterogeneous Cuckoo
Search (BHCS) combines both explorations of cuckoo search (CS) and exploitation of
Biogeography-based optimization (BBO) [36]. Both CS and BBO are meta-heuristic al-
gorithms. The CS is inspired by the behavior of the female cuckoo which lays its eggs in
nests of other birds. Each host bird egg represents a solution and a cuckoo egg represents
a new candidate solution. The BBO is inspired by island biogeography science, where each
solution is considered a habitat with a habitat adequacy index, which is used to measure
the quality of the individual. The BHCS has two stages of optimization that are described
below:

1. In the first stage the CS is based on the Levy flight to generate new solutions, which
is good for exploring the wide area [48]. The update rules are

𝑥𝐺+1
𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥𝐺

𝑖 + 𝛼(𝑥𝐺
𝑖 − 𝑥𝑔) ⊕ Levy𝛽 2

3 < 𝑟 ≤ 1,

�̄� + 𝛿 ln( 1
𝜂
)(�̄� − 𝑥𝐺

𝑖 ) 1
3 < 𝑟 ≤ 2

3 ,

𝑥𝐺
𝑖 + 𝛿 exp(𝜂)(𝑥𝑔 − 𝑥𝐺

𝑖 ) 𝑒𝑙𝑠𝑒,
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where 𝑁𝑃 is the population size, 𝑥𝑔 is the best solution in current the iteration, �̄�

is the mean of all 𝑁𝑃 solutions, 𝑟 and 𝜂 are random numbers in the interval [0,1].

2. In the second stage, the host bird can discovery alien eggs with a probability 𝑝𝑎,
then abandon old nests and generate new ones based on the biogeography-based
migration operator [49]. For this, the population is sorted from best to worst, and
each solution is assigned with emigration rates 𝜇

𝜇𝑖 = 𝐸
𝑆𝑖

𝑁𝑃
, (2.32)

where 𝐸 = 1 is the maximum emigration rate and 𝑆𝑖 = 𝑁𝑃 − 𝑖 is the number of
species in the solution.

In this manuscript were adopted the values presented in [36] for the parameters 𝑝𝑎 = 0.3,
𝛼 = 1.1, 𝛿 = 1.6 and 𝐸 = 1.

The results obtained by the BHCS method in the extraction of PV parameters
were considered competitive when compared with other optimization algorithms [36].
Thus, this algorithm is an interesting option for extracting the single and double diode
parameters from solar cells I-V curves.

2.4 Generation of noisy I-V curves and computational procedures
In order to study the effects of noisy current measurements on the accuracy of the

results provided by the optimization algorithms, artificial I-V curves were computationally
generated through the Lambert W-function. If the five single-diode parameters and voltage
points are known, the current points can be calculated for a given temperature T through
Eq. 2.33 [50]:

𝐼 = −𝑛𝑘𝑇

𝑞𝑅𝑠

𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊

{︃
𝑞𝑅𝑠𝐼0𝑅𝑠ℎ

𝑛𝑘𝑇 (𝑅𝑠 + 𝑅𝑠ℎ) exp
[︃

𝑞𝑅𝑠ℎ(𝑅𝑠𝐼𝑝ℎ + 𝑅𝑠𝐼0 + 𝑉 )
𝑛𝑘𝑇 (𝑅𝑠 + 𝑅𝑠ℎ)

]︃}︃

− 𝑉

𝑅𝑠 + 𝑅𝑠ℎ

+ 𝑅𝑠ℎ(𝐼0 + 𝐼𝑝ℎ)
𝑅𝑠 + 𝑅𝑠ℎ

.

(2.33)

In this way, it is possible to simulate I-V curves with arbitrary values for the single-
diode parameters for a given voltage interval and temperature condition. To simulate noisy
and noise-free I-V curves, the five parameters were chosen from the work of [51], since they
reproduce with a high degree of accuracy the I-V curve of a commercial 57 mm diameter
RTC France solar cell under 33 °C and 1000 W m−2 provided by [52], which is widely used
in literature as a benchmark curve for parameter extraction methods [31]. The I-V points
of this benchmark curve are given in Table 2.1.
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Table 2.1 – I-V curve points of a 57 mm diameter commercial (R.T.C. France) silicon solar
cell under 33 °C and 1000 W m−2 provided by [52].

Point Voltage (V) Current (A) Point Voltage (V) Current (A)

1 -0.2057 0.7640 14 0.4137 0.7280
2 -0.1291 0.7620 15 0.4373 0.7065
3 -0.0588 0.7605 16 0.459 0.6755
4 0.0057 0.7605 17 0.4784 0.6320
5 0.0646 0.7600 18 0.496 0.5730
6 0.1185 0.7590 19 0.5119 0.4990
7 0.1678 0.7570 20 0.5265 0.4130
8 0.2132 0.7570 21 0.5398 0.3165
9 0.2545 0.7555 22 0.5521 0.2120
10 0.2924 0.7540 23 0.5633 0.1035
11 0.3269 0.7505 24 0.5736 -0.010
12 0.3585 0.7465 25 0.5833 -0.123
13 0.3873 0.7385 26 0.59 -0.210

The single-diode parameters for all simulated I-V curves considered in this work
are: 𝐼𝑝ℎ = 0.7608 A, 𝐼0 = 3.223 × 10−7 A, 𝑛 = 1.4808, 𝑅𝑠 = 0.036 768 Ω and 𝑅𝑠ℎ =
57.746 14 Ω. The voltage points were chosen to vary from −0.2 V to 0.609 V in steps
of 1 mV and, for each voltage point, a current point was generated according to Eq.
(2.33). The temperature was set at 33 °C, since this is the temperature condition for the
benchmark curve.

This procedure generates a clean I-V curve, i.e., noise-free. Therefore, an artificial
random noise was added to each current point according to the approach proposed by
previous studies that considered the effect of noise on diode [53, 54] and solar cells I-V
curves [55–57], as given by Eq. (2.34):

𝐼𝑛𝑜𝑖𝑠𝑒 = 𝐼 (1 + 𝑁𝐿 · 𝑟𝑎𝑛𝑑) , (2.34)

where 𝑁𝐿 is the noise level and 𝑟𝑎𝑛𝑑 is a random number in the interval [−1, 1], with
a uniform probability distribution. In this study, besides the noise-free I-V curve, six
different noise levels (% of the current values) were considered: 0.001, 0.01, 0.1, 1, 5 and
10 %. Since the noise is essentially a set of random numbers, 10 noisy I-V curves were
generated for each noise level, allowing a statistical assessment of the performance of the
algorithms according to the noise level.

The advantage of this approach is that it is possible to guarantee that a method
has converged or not to the global optimum, since each single-diode parameter is known,
and evaluate the performance of the algorithms also in terms of relative errors between the
global optimum parameters and the ones that were effectively extracted. In this way, it is
possible to identify the most affected parameters according to the noise level. Furthermore,
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considering that the optimization methods in this work are stochastic processes, 40 runs
were executed for each I-V curve.

Given the computational effort, the optimization routines were executed in the
Giskard High-Performance Computing Cluster at the Federal University of Itajubá, which
is equipped with 6 computational nodes, each being composed of forty 2.20 GHz CPUs and
94.57 GB of RAM. All algorithms were implemented in Python 3 using the multiprocessing
library, which easily allows code parallelization. Therefore, in each computational node,
40 simultaneous runs were executed.

To maximize the possibility that for each run the algorithm would start at different
points, the system time was used as the random seed at the beginning of each run, which
means that for every initialization a different sequence of random numbers was created.
For all algorithms the same penalty function defined for the Self-Adaptive DE algorithm
was implemented, to guarantee that the searched values would remain inside the search
interval, defined in Table 2.2, for all I-V curves considered in this work.

Table 2.2 – Minimum and maximum allowed single-diode parameters, defining a search
interval that was applied to all algorithms.

𝐼𝑝ℎ (A) 𝐼0 (µA) 𝑛 𝑅𝑠 (Ω) 𝑅𝑠ℎ (Ω)

Min 0 0 1 0 0
Max 1 1 2 0.5 100.0

Initially, all algorithms were tested and evaluated on the aforementioned bench-
mark curve, to provide comparisons with the works where they originally published, and
with other algorithms that were tested on this same curve. For a better assessment of
the performances of these algorithms, three different population sizes were considered for
the benchmark curve: 20, 50 and 100 individuals; for the BHCS algorithm, the additional
control parameters required by it were taken from its original manuscript.

Furthermore, all algorithms were allowed to reach 50,000 iterations. Then, the
algorithms were tested on the noise-free and noisy I-V curves considering the population
size that provided a good trade-off between the required execution time and quality of the
results on the benchmark curve. Also, the maximum number of iterations was reduced
to 20,000 when the algorithms where applied on the noise-free and noisy I-V curves to
alleviate the computational burden.

The results for the benchmark curve were compared in terms of minimum, maxi-
mum, standard deviation, mean and median of the RMSE values obtained considering the
40 runs since the RMSE is the metric used for evaluating algorithms on this benchmark
curve. Also, comparisons were made in terms of execution time, best and worst runs, de-
fined as the minimum and the maximum number of iterations for achieving convergence,
success rate (SR), defined as the number of runs that converged divided by the total
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number of runs [58]. Since an RMSE of 9.86022E-04 is a commonly reported value for the
benchmark curve, as seen in the reviews mentioned in the literature review, an algorithm
was considered to converge when the RMSE was lower than 9.86023E-04.

Considering the noise-free and noisy I-V curves, the accuracy of the single-diode
parameters extracted by the studied algorithms, considering the four different objective
functions, was assessed in terms of the Absolute Relative Error, since the expected param-
eters were previously known. The Absolute Relative Error (%) is defined as the absolute
value of the relative error, as given by Eq. (2.35):

|𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟| = 100 ·
⃒⃒⃒⃒
⃒𝑃𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

𝑃𝑡𝑎𝑟𝑔𝑒𝑡

⃒⃒⃒⃒
⃒ , (2.35)

where 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 denotes the expected parameter and 𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 is the parameter extracted
from the I-V curve.

2.5 Results and discussion

2.5.1 Benchmark curve

Table 2.3 shows the statistical results for the RMSE and the performance metrics
mentioned in the previous section for each algorithm considering various population sizes.
The Self-Adaptive DE, PGJAYA, and SATLBO converged to the minimum RMSE value
of 9.86022E-04 for all 40 independent runs considering NP = 20, 50 and 100 individuals.
This RMSE value is in accordance with the minimum RMSE value obtained by many of
metaheuristic algorithms applied to the same benchmark curve [34, 36, 59, 60].

Table 2.3 – RMSE and performance metrics obtained for the Self-Adaptive DE, PGJAYA, SATLBO and BHCS algorithms
considering different population sizes NP.

RMSE Performance metrics
NP = 20

Algorithm Min Max Mean Median Std Best Worst SR (%) Time (min)
DE 9.86022E-04 9.86022E-04 9.86022E-04 9.86022E-04 0 474 1570 100 4.9
PGJAYA 9.86022E-04 9.86022E-04 9.86022E-04 9.86022E-04 2.20737E-16 230 5120 100 4.8
SATLBO 9.86022E-04 9.86022E-04 9.86022E-04 9.86022E-04 3.03843E-16 1651 3670 100 6.8
BHCS 9.86022E-04 3.11849E-03 1.13131E-03 9.96598E-04 3.69053E-04 9304 33903 30 4.4

NP = 50
DE 9.86022E-04 9.86022E-04 9.86022E-04 9.86022E-04 0 501 939 100 12.4
PGJAYA 9.86022E-04 9.86022E-04 9.86022E-04 9.86022E-04 0 129 450 100 11.7
SATLBO 9.86022E-04 9.86022E-04 9.86022E-04 9.86022E-04 0 703 1637 100 17.2
BHCS 9.86022E-04 1.34242E-03 1.0609E-03 9.92781E-04 1.09381E-04 28764 44003 10 10.7

NP = 100
DE 9.86022E-04 9.86022E-04 9.86022E-04 9.86022E-04 0 100 814 100 24.9
PGJAYA 9.86022E-04 9.86022E-04 9.86022E-04 9.86022E-04 0 73 274 100 23.3
SATLBO 9.86022E-04 9.86022E-04 9.86022E-04 9.86022E-04 0 694 1406 100 33.6
BHCS 9.86022E-04 1.21413E-03 1.01699E-03 9.89621E-04 5.35874E-05 9823 49971 15 47.2

On the other hand, the BHCS algorithm exhibited poor performance regardless of
the population size, always failing to converge for most of the 40 runs, showing a much
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higher instability than the other algorithms, as can be seen by the obtained standard
deviation, which differs from the results published by [36].

The BHCS algorithm showed its best performance for NP = 20 since its success
rate was higher. For all population sizes, this algorithm was seen to get trapped at many
different local optima, which leads to the conclusion that the search procedure was not
efficient compared to the other algorithms.

Moreover, the BHCS algorithm has many control parameters which, if not properly
set, may result in poor performance. In this manuscript, the parameters were taken from
the original manuscript that proposed this method. The Self-Adaptive DE outperformed
all algorithms for NP = 20 in terms of lower standard deviations and convergence speed.
For NP = 50 and 100, the standard deviations for the Self-Adaptive DE, PGJAYA, and
SATLBO were similar and it is useful to look at Fig. 2.1, which shows notched boxplots for
the iterations until convergence for these three algorithms as a function of the population
size NP.
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Figure 2.1 – Notched boxplots for the iterations until convergence (convergence speed) as
a function of the population size NP for the Self-Adaptive DE, PGJAYA and
SATLBO algorithms. The black dots denote outliers. The red line denotes
the median and each note denotes a 95 % confidence interval for the median.
Increasing NP results in fewer iterations for achieving convergence (higher
convergence speed).

It is clear from Fig. 2.1 that increasing NP results in fewer iterations until conver-
gence. However, this increases the execution time, as expected and confirmed by Table
2.3. For NP = 50 and 100, the PGJAYA outperformed all other algorithms in terms of
convergence speed and execution time. Therefore, considering the results from this analy-
sis, NP = 50 resulted in a good trade-off between execution time and quality of the results
and was selected as the population size for simulations with noisy I-V curves. The results
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obtained for the PGJAYA and SATLBO algorithms were even better than the ones ob-
tained in their original manuscripts considering the lower standard deviations obtained,
for all population sizes considered in this work.

Table 2.4 shows the minimum, maximum, mean and standard deviation for the
photocurrent, dark saturation current, ideality factor, series and shunt resistance obtained
from the benchmark curve at the last iteration (best individual) by all algorithms consid-
ering 40 runs for each algorithm and NP = 50. Even though the single-diode parameters
extracted by the BHCS algorithm had higher variation, their medians were similar to the
ones obtained by the Self-Adaptive DE, PGJAYA and SATLBO algorithm.

Table 2.4 – Minimum, maximum, mean, median and standard deviation (STD) of each
single diode parameter obtained for the best solution (best individual at last
iteration) considering 40 runs for each algorithm and NP = 50 individuals.

𝐼𝑝ℎ(A)

Algorithm Min Max Mean Median STD

DE 7.60776E-1 7.60776E-1 7.60776E-1 7.60776E-1 8.15238E-11
PGJAYA 7.60776E-1 7.60776E-1 7.60776E-1 7.60776E-1 1.63155E-10
SATLBO 7.60776E-1 7.60776E-1 7.60776E-1 7.60776E-1 6.73208E-11
BHCS 7.60776E-1 7.62195E-1 7.60669E-1 7.60633E-1 3.63901E-4

𝐼0(A)

DE 3.230208E-7 3.230208E-7 3.230208E-7 3.230208E-7 1.585105E-14
PGJAYA 3.230208E-7 3.230208E-7 3.230208E-7 3.230208E-7 1.326495E-14
SATLBO 3.230207E-7 3.230209E-7 3.230208E-7 3.230208E-7 3.446202E-14
BHCS 3.119682E-7 4.525398E-7 3.526014E-7 3.267161E-7 4.012027E-8

𝑛

DE 1.481184 1.481184 1.481184 1.481184 4.94543E-9
PGJAYA 1.481184 1.481184 1.481184 1.481184 4.126887E-9
SATLBO 1.481184 1.481184 1.481184 1.481184 1.074212E-8
BHCS 1.477763 1.515646 1.489472 1.482318 1.097064E-2

𝑅𝑠(Ω)

DE 3.637709E-2 3.637709E-2 3.637709E-2 3.637709E-2 1.975463E-10
PGJAYA 3.637709E-2 3.637709E-2 3.637709E-2 3.637709E-2 1.557372E-10
SATLBO 3.637709E-2 3.637709E-2 3.637709E-2 3.637709E-2 4.56818E-10
BHCS 3.526006E-2 3.646851E-2 3.610945E-2 3.634121E-2 3.542171E-4

𝑅𝑠ℎ(Ω)

DE 5.371852E1 5.371853E1 5.371852E1 5.371852E1 1.728338E-6
PGJAYA 5.371852E1 5.371853E1 5.371852E1 5.371852E1 2.253902E-6
SATLBO 5.371852E1 5.371853E1 5.371852E1 5.371852E1 2.601979E-6
BHCS 4.483672E1 8.123459E1 6.003299E1 5.505347E1 8.872389

Figs. 2.2 shows the evolution of the best RMSE as a function of the number of
iterations, from 1 to 50,000, for the four algorithms applied to the benchmark curve.
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Figure 2.2 – Evolution of the best RMSE achieved by the Self-Adaptive DE, PGJAYA,
BHCS and SATLBO algorithms applied to the benchmark IV curve, for all
the 40 runs with NP = 50 individuals. Each color represents a different run.

2.5.2 Noise-free I-V curve

To evaluate the performance of the studied algorithms in the most favorable sce-
nario, i.e., in the absence of noise, a noise-free I-V curve was considered. This curve was
generated as described in section 3.4, considering 𝑁𝐿 = 0. Fig. 2.3 shows the absolute
relative errors obtained for all the single-diode parameters as a function of the objective
function, for each algorithm considering 40 runs.

The Self-Adaptive DE algorithm showed the best performance on the noise-free
I-V curve since it achieved the lowest absolute relative errors for all parameters, with the
smallest variability in the results. The photocurrent was the parameter extracted with
the greatest accuracy by this algorithm, for all objective functions. For all 40 runs the
extracted 𝐼𝑝ℎ values were equal to the theoretical ones up to the 15th significant figure,
reason by which there is no notched boxplot for this parameter.

Considering the diode reverse saturation current, all objective functions provided
the same results for the Self-Adaptive DE algorithm, achieving an absolute relative error
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Figure 2.3 – Notched boxplots for the absolute relative errors obtained from the noise-
free I-V curve for the single-diode parameters as a function of the objective
function, for each algorithm, considering the best individual found at the
end of 20,000 iterations. The notches denote the 95 % confidence interval for
the medians. The black points denote outliers, while the red ones denote far
outliers. Where there are no boxplots, the extracted parameters were equal
to the theoretical ones up to the 15th significant figure, so the relative error
was null.

of 1.64E-14 % for all 40 runs. The less accurate parameter extracted by this algorithm
was the series resistance. The absolute relative errors achieved for this parameter were all
equal to 0.032 % for all objective functions, being followed by the shunt resistance, diode
ideality factor, and diode reverse saturation current in decreasing order of inaccuracy.

The MAPE provided slight higher absolute relative errors for the diode ideality
factor and shunt resistance, with all runs achieving a relative error of 4.73E-12 and 4.05E-
13 % for the shunt resistance and diode ideality factor, respectively. When the MAE was
the objective function, the relative errors were all equal to 1.48E-12 and 1.35E-13 % for
𝑅𝑠ℎ and 𝑛, respectively.

The RMSE and Huber loss function achieved the same results for the diode ideality
factor and shunt resistance when used as objective functions, with the first quartile of the
data being 6.0E-14 % for the diode ideality factor, which was equal to the minimum
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relative error. Furthermore, for this parameter, the median was 1.35E-13 %, which was
equal to the third quartile and maximum relative error. For the shunt resistance, the
minimum relative error obtained by the Self-Adaptive DE algorithm was 1.20E-12 %,
which was equal to the first quartile. The median, third quartile and maximum of the
absolute relative errors obtained for the shunt resistance were equal to 1.53E-12 %.

The MAPE showed a tendency to result in higher relative errors for 𝑛 and 𝑅𝑠ℎ. For
the first, all 40 runs resulted in an absolute error equal to 4.05E-13 %, while for the shunt
resistance the MAPE this number increased to 4.73E-12 %. Finally, considering that for
𝑛 and 𝑅𝑠ℎ the notches overlap for the RMSE, Huber function and MAE, differing only
when the MAPE was considered, it can be concluded that on the noise-free I-V curve
the Self-Adaptive DE algorithm provided accurate results and that the MAPE should be
avoided for achieving the lowest possible absolute relative errors between the expected
and estimated parameters.

The PGJAYA showed a similar performance to the Self-Adaptive DE algorithm.
The only differences were found for the diode ideality factor and shunt resistance. For 𝑛,
the results for all four objective functions on the 40 runs were all equal to 6.24E-06 %,
much higher than the worst-case obtained by the DE algorithm, which was of 4.05E-13
% when the MAPE was applied as the objective function.

Considering the shunt resistance, higher variance in the data according to the
objective function was observed. In this case, the MAE provided the lowest absolute
relative errors, with 75 % of the errors lower than 2.60E-12 % and achieving a maximum
of 7.14E-12 %. For the RMSE, these values increased to 4.29E-12 % and 9.49E-12 %,
respectively Also, considering the Huber loss function, these numbers increased to 7.47E-
12 and 2.70E-11 %. For the MAPE, 8.33021E-12 % and 1.21E-10 %, respectively.

Also, the presence of outliers below the lower fence was observed when the RMSE
and MAE were the objective functions. This means that for a few runs the PGJAYA
algorithm was capable of achieving an even lower minimum, escaping the local minima
at which it was trapped for most of the runs. For the shunt resistance, the lowest outlier
achieved by this algorithm was 1.84569E-13 % when the MAE was considered the objective
function. Besides, no significant differences were observed regarding the objective functions
for all single-diode parameters except 𝑅𝑠ℎ, for which the MAPE showed a tendency to
produce higher errors.

The SATLBO achieved higher variances than the PGJAYA algorithm for all pa-
rameters except for 𝐼0, for which the absolute relative errors were the same as the ones
obtained by the Self-Adaptive DE and PGJAYA algorithms. The MAPE as objective func-
tion consistently generated far outliers for all extracted parameters except for 𝐼𝑝ℎ, with
absolute relative errors as high 21.1, 2.1, 1.6 and 4.7 % for 𝐼0, 𝑅𝑠, 𝑛 and 𝑅𝑠ℎ, respectively,
which occurred for the same run and means that this algorithm was trapped at a local
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minimum. For 𝐼𝑝ℎ, the MAPE as objective function was responsible for a maximum error
of 2.0E-3 %. Excluding the outliers, the results obtained by the SATLBO algorithm for
the diode reverse saturation current, series resistance and diode ideality factor were the
same as the ones obtained by the PGJAYA algorithm. Following the same trend of the
PGJAYA algorithm, a higher variance was seen for the shunt resistance, for all objective
functions.

For 𝑅𝑠ℎ, the MAE provided the lowest absolute relative errors, with 75 % of the
data being lower than 1.54E-12 %. Also, outliers were seen for this parameter for all
objective functions except for the RMSE, and no significant differences were observed
between the RMSE and Huber loss function.

The BHCS algorithm exhibited the worst performance among all compared al-
gorithms on the noise-free I-V curve since the absolute relative errors obtained for all
single-diode parameters were significantly higher than those obtained by the other tested
algorithms. For the photocurrent, the MAE provided lower errors with lower variance,
with 75 % of the resulting errors being lower than 7.30E-3 %, and no significant differ-
ences were observed between the MAE and MAPE in terms of the obtained medians.
Furthermore, outliers and far outliers were observed.

The lowest absolute relative error achieved by this algorithm for 𝐼𝑝ℎ with the
RMSE as objective function was of 7.56E-09 %; with the Huber loss function, 0; with the
MAPE, 2.25E-04 %, and 0 with the MAE. This means that for some runs the algorithm
was able to extract more accurate parameters by escaping points of a local minimum.
However, even with higher relative errors, the photocurrent was considered accurate since
the highest absolute relative error was of 1.44E-01 % when the MAPE was employed.

For 𝐼0, high relative errors were obtained for all objective functions, reaching errors
as high as 9.29, 28.21, 34.2 and 96.06 % when the MAE, RMSE, Huber function and
MAPE were employed, respectively. Also, while the MAPE provided higher relative errors
than the other objective functions, no significant differences were observed in terms of the
medians considering the RMSE, Huber function and MAE. Also, the presence of outliers
was seen, meaning that for a few runs the algorithm extracted accurate 𝐼0 values by
escaping points of a local minimum. The most accurate values for this parameter were
provided by the MAE, with a maximum absolute relative error of 9.29 %.

The same trend was observed for 𝑅𝑠 and 𝑛, for which the BHCS algorithm with the
MAE as objective function extracted more accurate parameters, with maximum absolute
relative error of 0.7 % for 𝑅𝑠 and 0.6 % for 𝑛. The shunt resistance was, after 𝐼0, the
less accurate parameter extracted by this algorithm. The MAE provided lower relative
errors, with a maximum of 12.9 % and 75 % of the errors being lower than 7 %. When
the MAPE was employed, these numbers increased to 21 and 13 %; for the Huber loss
function, 45.7 and 19.8 %; for the RMSE, 41.6 and 22.9 %. However, considering the
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medians, no significant differences were observed.

Therefore, on the noise-free I-V curve, the Self-Adaptive DE algorithm had the
best performance, with lower relative errors and higher stability, being followed by the
PGJAYA, SATLBO and BHCS algorithms. Regarding the objective function, it was seen
that depending on the parameter, some functions provided lower errors than others. In
general, it can be stated that the RMSE, Huber loss function and MAE provided low
relative errors without significant differences for the Self-Adaptive DE, PGJAYA and
SATLBO algorithms considering all single-diode parameters. For the BHCS algorithm,
the MAE was seen to provide the best results for all parameters, but since this algo-
rithm showed higher relative errors and instability even for the noise-free I-V curve, its
performance was considered unsatisfactory.

2.5.3 Noisy I-V curves

Figures 2.4 to 2.6 show the noisy I-V curves for the different noise levels considered
in this work, with different zoom levels to provide a better distinction among the I-V
curves. As can be seen from these figures, noise levels above 1 % are quite unrealistic.
Yet, this analysis employed high noise levels to observe the highest noise levels for which
the extracted parameters would still be reliable.

Noise level (%)
0

0.001

0.01

0.1

1

5

10

-0.2 0.0 0.2 0.4 0.6
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Voltage (V)

C
ur
re
nt

(A
)

-0.02 -0.01 0.00 0.01 0.02
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84

Figure 2.4 – Noise I-V curves for all noise levels (% of the current values) considered
in this work. As can be seen, the noise levels of 5 % and 10 % are quite
unrealistic for a proper I-V characterization.

Each algorithm was tested on each of the 10 noisy I-V curves for each noise level,
considering 40 runs for each curve and the objective functions discussed in section 2. Given
the volume of information, each single-diode parameter will have a dedicated discussion.
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Fig. 2.7 shows the notched boxplot for the absolute relative errors obtained for 𝐼𝑝ℎ as a
function of the noise levels and objective function, for each algorithm.
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Figure 2.5 – Zoomed noisy I-V curves for noise levels (% of the current values) between
0 and 0.1 %. In this way, it is possible to observe how smaller noise levels
affect the current points.

The Self-Adaptive DE and PGJAYA algorithms resulted in a similar performance
for all noise levels and objective functions. The highest absolute relative errors obtained
by these algorithms were 0.83 % when the MAE was employed as the objective function
for the 10 % noise level. Also, for noise levels above 0.1 %, the RMSE and Huber loss
function showed a tendency to provide lower absolute relative errors than the MAPE and
MAE.

The SATLBO algorithm showed higher variances than the PGJAYA and Self-
Adaptive DE when the MAPE and MAE were employed as objective functions, with
the occurrence of many outliers and far outliers. Regarding the RMSE and Huber loss
function, the performance was equal to that obtained by the previous algorithms. For
all noise levels, some outliers above the upper fence were observed, indicating that this
algorithm was trapped at points of a higher local minimum.

Also, outliers below the lower fence were observed, meaning that the algorithm
was able to avoid being trapped at points with higher values of the objective function.
This was common when the MAPE and MAE were employed. For the 10 % noise level
the MAPE exhibited a maximum error of 1.05 %, exceeding the limit of 1 %. Therefore,
for I-V curves with high noise levels, the RMSE, Huber loss function or MAE should be
preferred over the MAPE for the SATLBO algorithm.

The BHCS algorithm showed the worst performance for extracting the photocur-
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Figure 2.6 – Zoomed noisy I-V curves for noise levels (% of the current values) between 0
and 0.01 %. In this way, it is possible to observe how the smallest considered
noise levels affect the current points.
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Figure 2.7 – Notched boxplots of the absolute relative errors obtained for the photocurrent
as a function of the noise levels and objective function, for each algorithm,
considering 10 I-V curves and 40 runs for each curve, amounting to a total
of 400 samples. The notches denote the 95 % confidence interval for the
medians. The black points denote outliers, while the red ones denote far
outliers.
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rent since it obtained higher relative errors than the previous algorithms even for low noise
levels, with higher instabilities. The presence of outliers was more pronounced, which in-
dicated the instability of the search procedure.

Although showing higher errors for low noise levels, the performance of the BHCS
algorithm for the 5 and 10 % noise levels was similar to the previous algorithms. Interest-
ingly, for some runs, it achieved lower relative errors than the PGJAYA and Self-Adaptive
DE algorithms, as can be seen from the outliers in Fig. 2.7. Therefore, for practical pur-
poses, if one is interested in extracting 𝐼𝑝ℎ, all four algorithms can extract highly accurate
values for it even for high noise levels regardless of the objective function.

Fig. 2.8 shows the absolute relative errors obtained for the diode reverse saturation
current as a function of the objective function and noise level for each algorithm.
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Figure 2.8 – Notched boxplots of the absolute relative errors obtained for the diode reverse
saturation current as a function of the noise levels and objective function,
for each algorithm, considering 10 I-V curves and 40 runs for each curve,
amounting to a total of 400 samples. The notches denote the 95 % confidence
interval for the medians. The black points denote outliers, while the red ones
denote far outliers.

As for the photocurrent, the Self-Adaptive DE and PGJAYA algorithms showed
similar performances. However, in this case, the absolute relative errors were much higher
than the ones obtained for 𝐼𝑝ℎ even for small noise levels. For the 0.001 % noise level, the
absolute relative errors in 𝐼0 are in the order of 1E-03 %, while this value was of 1E-05 %
for 𝐼𝑝ℎ. Also, these two algorithms were able to extract 𝐼0 values with errors lower than 1
% for noise levels up to 0.1 %.
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The RMSE and Huber loss functions were seen to provide more stability to these
algorithms and lower absolute relative errors than the other two objective functions, with
no significant differences. For the 0.1 % noise level, no significant differences were observed
in the medians considering the four objective functions, with the medians equal to 0.82
% for the RMSE and Huber loss function, 0.8 % for the MAPE and 0.98 % for the MAE.

For this same noise level, the maximum relative error achieved by the RMSE and
Huber function was 1.46 %, increasing to 1.85 % considering the MAPE and 2.39 %
considering the MAE. Also, the third quartiles were 1.31 % for the RMSE and Huber
function, 1.28 % for the MAPE and 1.1 % for the MAE. Therefore, for the 0.1 % noise
level, the threshold of 1 % was exceeded, but since the highest absolute relative error was
equal to 2.39 %, the 𝐼0 values extracted by the Self-Adaptive DE and PGJAYA algorithms
are still accurate. For the 1 % noise level, the medians obtained with the RMSE and Huber
loss function were equal to 5.6 %, increasing to 76.8 and 210 % for the 5 and 10 % noise
levels.

The SATLBO algorithm had similar performance to the Self-Adaptive DE and
PGJAYA algorithms when the RMSE and Huber loss function were employed, for all
noise levels. However, when the MAPE was used as the objective function, many outliers
above the upper fence were observed for noise levels between 0.001 and 0.1 %, which
means that this algorithm was trapped at many different points of a local minimum. Due
to this fact, errors as high as 48.87 % for the 0.001 % noise level; 63.8 % for the 0.01
% noise level and 85 % for the 0.1 % noise level. Therefore, considering that the MAPE
consistently provided higher errors, it should be avoided as the objective function for the
SATLBO algorithm.

In addition, for the 0.1 % noise level, the SATLBO performance was similar to the
two previous algorithms, except for the MAPE which, again, provided higher errors, with
a median equal to 2.73 %. Considering the stability and quality of results, the RMSE
and Huber loss function should be preferred as objective functions also for the SATLBO
algorithm, providing accurate results for noise levels up to 0.1 %.

The BHCS showed much higher instabilities for all noise levels and objective func-
tions, and even for a small noise level of 0.001 % relative errors as high as 36.8, 36.6, 113
and 11 % were observed when the RMSE, Huber loss function, MAPE, and MAE were
considered, respectively. Interestingly, for the 0.001 and 0.01 % noise levels, the MAE
provided better results as the objective function for the BHCS algorithm. Above that,
the RMSE and Huber function provided better results. However, due to the high relative
errors even for small noise levels, this algorithm cannot be recommended for extracting
the diode reverse saturation current.

Fig. 2.9 shows the absolute relative errors obtained for the diode ideality factor
as a function of the objective function and noise level for each algorithm. Even for high
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noise levels, such as 5 and 10 % of the current values, this parameter was not significantly
affected, with the highest errors in the order of 10 %. For noise levels below 1 %, these
two algorithms were able to extract the diode ideality factor with relative errors smaller
than 1 % when the RMSE and Huber loss functions were employed. Furthermore, the
Self-Adaptive DE and PGJAYA algorithms showed stable and similar performances, with
no significant differences observed when the RMSE and Huber function were considered
as objective functions.
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Figure 2.9 – Notched boxplots of the diode ideality factor obtained for the diode ideality
factor as a function of the noise levels and objective function, for each algo-
rithm, considering 10 I-V curves and 40 runs for each curve, amounting to
a total of 400 samples. The notches denote the 95 % confidence interval for
the medians. The black points denote outliers, while the red ones denote far
outliers.

The SATLBO showed higher instabilities than the Self-Adaptive DE and PGJAYA
algorithms, with the best results given when the RMSE or Huber function were considered
as objective functions. Also, the MAPE as objective function resulted in a much higher
instability, with many outliers and far outliers above the upper fences. With the RMSE
and Huber loss function, the performance of the SATLBO algorithm was similar to the
PGJAYA and Self-Adaptive DE with the same objective functions. The BHCS algorithm
again showed much higher instabilities than the other three, even for small noise levels.
For noise levels equal to 0.001 and 0.01 %, the MAE as the objective function provided
better results than the ones obtained for the other functions. For noise levels equal and
higher than 1 %, the RMSE and Huber function provided better results, while the MAPE
showed the worst results for all noise levels.
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From this analysis, it can be concluded that the diode ideality factor can be ac-
curately extracted by the Self-Adaptive DE, PGJAYA, and SATLBO algorithms if the
RMSE, Huber loss function or MAE are employed as the objective function, providing
errors lower than 1 % for noise levels up to 1 %.

Fig. 2.10 shows the absolute relative errors obtained for the series resistance. For
the noise level of 0.001 % of the current values, no significant differences were observed
for the PGJAYA and the Self-Adaptive DE considering the four objective functions. For
noise levels between 0.001 and 1 %, both algorithms extracted the series resistance with
relative errors smaller than 1 % for most cases, considering the four objective functions.

For this noise range, the MAPE resulted in a higher instability, with the presence
of more outliers and far outliers. For the 5 % noise level, the RMSE and Huber loss
function provided lower errors, with 75 % of the data being lower than 7.1 % for both
functions. Considering the same noise level, this number increased to 9.5 % when the
MAE was employed, and 9.44 % when the MAPE was considered as objective function.
For the 10 % noise level, all objective functions provided similar results, with relative
errors in the order of 16 %.
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Figure 2.10 – Notched boxplots of the absolute relative errors obtained for the series re-
sistance as a function of the noise levels and objective function, for each
algorithm, considering 10 I-V curves and 40 runs for each curve, amounting
to a total of 400 samples. The notches denote the 95 % confidence interval
for the medians. The black points denote outliers, while the red ones denote
far outliers.

The SATLBO algorithm showed a higher instability than the Self-Adaptive DE and
PGJAYA algorithms when the MAPE and MAE were employed as objective functions.
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Even for a 0.001 % noise level, the MAPE resulted in the occurrence of many far outliers,
with errors reaching 3.9 %. The results considering the RMSE and Huber function were
similar, with low relative errors and higher stability. For the 10 % noise level, the MAPE
resulted in lower errors, with 75 % of the errors being lower than 11.4 %, but many outliers
and far outliers were observed. For the other three objective functions, this number was
in the order of 16 %, the same as for the Self-Adaptive DE and PGJAYA algorithms.

The BHCS algorithm showed the worst performance, with higher relative errors
for small noise levels such as 0.001 and 0.01 %, considering the four objective functions.
The MAPE was seen to provide the worst results, with relative errors reaching 8 and 9 %
for the 0.001 and 0.01 % noise levels. For this algorithm, the MAE provided lower errors
for noise levels between 0.001 and 0.1 %, while for the 1 and 5 % noise levels the RMSE
and Huber loss function provided lower errors. For the noise levels of 1, 5 and 10 %, the
performance achieved by the BHCS algorithm was similar to the other three algorithms,
except for a higher occurrence of outliers and far outliers.

In general, for achieving absolute relative errors lower than 1 % for the series
resistance, the level of noise on the current values should be lower than 1 %. For higher
noise levels, the median of the relative errors was seen to increase to values between 15
and 20 % for all algorithms, considering all objective functions.

Finally, Fig. 2.11 shows the absolute relative errors obtained for the shunt resis-
tance as a function of the noise level and objective function for each algorithm. Again, the
Self-Adaptive DE and PGJAYA algorithms showed similar results for all noise levels and
objective functions, with the RMSE and Huber function providing lower relative errors.
The SATLBO algorithm showed higher instabilities than these previous two algorithms,
especially when the MAPE was employed. The RMSE and Huber function achieved lower
relative errors, except for the noise level of 10 % for which, again, the MAPE resulted in
lower errors but showed a higher instability.

The BHCS algorithm showed higher instabilities, as for the previous parameters,
and lower relative errors were found when the MAE function was considered for the noise
levels of 0.001 and 0.01 %. For the noise level of 0.1 %, the RMSE and Huber function
achieved lower relative errors, and for noise levels higher than that, the RMSE and Huber
function achieved results with no significant differences from the ones obtained when the
MAE was the objective function.

The errors obtained for the shunt resistance considering the Self-Adaptive DE,
PGJAYA and SATLBO algorithms jumped from the order of 0.001 % for a 0.001 % noise
level to 73 % for a 10 % noise level. In contrast, for the BHCS algorithm, the lowest
relative errors were obtained when the MAE was employed, with 75 % of the results
showing relative errors lower than 6.3 %. Considering the MAPE, to 12.7; considering the
Huber loss function, to 13.8 %; and considering the RMSE, to 17.1 %.
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Figure 2.11 – Notched boxplots of the absolute relative errors obtained for the shunt re-
sistance as a function of the noise levels and objective function, for each
algorithm, considering 10 I-V curves and 40 runs for each curve, amounting
to a total of 400 samples. The notches denote the 95 % confidence interval
for the medians. The black points denote outliers, while the red ones denote
far outliers.

Thus, for extracting accurate shunt resistance values, the Self-Adaptive DE, PG-
JAYA, and SATLBO algorithms should be preferred, with the RMSE and Huber loss
function as objective functions. For the 0.1 % noise level, these objective functions had
similar performance, with maximum errors of 1.14 % and 75 % of the resulting errors
being lower than 0.65 %. For noise levels above than 0.1 %, the extracted 𝑅𝑠ℎ values were
not considered accurate.

Finally, considering that the tolerance error for electronic components is in the
order of 0.2 % [61], the Self-Adaptive DE, PGJAYA, and SATLBO algorithms can be
considered excellent alternatives for extracting the single-diode parameters from noisy
I-V curves if the RMSE or Huber loss functions are employed as the objective function.

2.6 Conclusion
In this work, the metaheuristic optimization algorithms known as Self - Adaptive

Differential Evolution, Performance Guided JAYA (PGJAYA), Self - Adaptive Teach-
ing - Learning Based Optimization (SATLBO) and Biogeography - based Heterogeneous
Cuckoo Search (BHCS) were employed for extracting the single-diode parameters from
a widely used benchmark curve, noise-free and simulated noisy I-V curves, to study how
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these methods behave in noisy environments, including simulations considering four dif-
ferent objective functions: the Huber loss function, RMSE, MAPE, and MAE.

The results of this work showed that on the RTC France benchmark curve the
PGJAYA algorithm showed better performance considering the convergence speed and
execution time for a population size of 50 individuals. For the noise-free I-V curve, it was
seen that the Self-Adaptive DE algorithm provided the lowest absolute relative errors,
with lower variance, than all other algorithms, being followed by the PGJAYA, SATLBO
and BHCS algorithm, which showed severe difficulties for extracting accurate 𝐼0, and 𝑅𝑠ℎ

values considering all objective functions.

Considering the noisy I-V curves, it was seen that for noise levels smaller than
0.1 % of the current values the Self-Adaptive DE, PGJAYA and SATLBO algorithms
were able to extract all single-diode parameters with high accuracy, with absolute relative
errors smaller than 1 %. However, for the latter, the MAPE should be avoided as the
objective function since even for low noise levels it showed far outliers when employed a
the objective function for the SATLBO algorithm.

Regarding the objective functions, it was seen that for the Self-Adaptive DE,
PGJAYA and SATLBO algorithms, the RMSE and Huber loss function showed a tendency
to provide lower absolute relative errors for all parameters, especially for noise levels up
to 1 %. The MAE showed a higher variance for these algorithms, while the MAPE, when
applied to the SATLBO algorithm, resulted in far outliers even for small noise levels
such as 0.001 and 0.01 %. The BHCS algorithm was considered unsatisfactory for all
single-diode parameters except 𝐼𝑝ℎ, 𝑛 and 𝑅𝑠 when the MAE was used as the objective
function.

Furthermore, it was seen that the single-diode parameters showed different sensi-
tivity to noise levels, regardless of the algorithm and objective function. The photocurrent
values had the highest absolute relative errors in the order of 1 % for a 10 % noise level.
For this same noise level, the highest errors obtained for the diode ideality factor were in
the range 7-10 %. For the series resistance, the highest relative errors increased to values
between 15-20 % for a 10 % noise level. Shunt resistance and diode reverse saturation
current showed absolute relative errors as high as 73 and 210 % for noise levels above 5
%, being the most affected parameters.

Finally, this work showed that the performance of metaheuristic methods can
significantly change depending on the objective function, especially if noise levels are
considered. Therefore, it is recommended that future research works proposing new meta-
heuristics for extracting PV parameters from I-V curves take into account the effects of
different objective functions, as well as the robustness against noises.
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3 Nitride semiconductors as electron-
selective contacts for SHJ solar cells

This chapter is based on the following publications:

© 2021 IEEE. D. Febba, V. Paratte, L. Antognini, J. Dreon, J. Hurni, J. Thomet,
R. Rubinger,E. Bortoni, C. Ballif, and M. Boccard, “Effects of Work Function and Electron
Affin-ity on the Performance of Carrier-Selective Contacts in Silicon Solar Cells Using
ZnSnxGe1-xN2as a Case Study, IEEE Journal of Photovoltaics, pp. 1–8, 2021 [62].

© 2021 IEEE. D. Febba, V. Paratte, L. Antognini, J. Dreon, J. Hurni, J. Thomet,C.
Ballif, and M. Boccard, , ZnSnxGe1-xN2 as electron-selective contact for silicon heterojunc-
tion solar cells”,in 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE,
Jun. 2021, pp. 0854–0857 [63].

This work was developed at the Photovoltaics and Thin Film Electronics Laboratory
(PV-LAB), École Polytechnique Fédérale de Lausanne (EPFL), in Neuchâtel, Switzerland.

3.1 Zinc Tin Germanium nitride (ZnSnGeN2) alloys

3.1.1 Motivation

The search for new Earth-abundant and low-cost materials for PV applications
has led to a recent interest in II-IV-N2 semiconductors. Among these, ZnxSn1-xN2 is an
interesting candidate due to a tunable direct bandgap depending on stoichiometry (0 < x
< 1), with values ranging from 0.7 to 2.8 eV [64], and strong optical absorption in the solar
spectrum [65]. Alloying ZnSnN2 with ZnGeN2, another direct bandgap semiconductor but
with wider energy gaps in the range 2.7–3.4 eV [66], results in Zn(SnxGe1-x)N2 (ZTGN)
compounds that can extend the bandgap range further up.

Moreover, given the width of its bandgap tunability, ZTGN can be applied either
as a PV absorber (x = 1, corresponding to ZTN, for example), or as a contacting material
for heterojunction solar cells when the Ge concentration increases and ZTGN shows wide
bandgaps. In the latter case, it is interesting to note that this material could, at the same
time, be used as absorber and contact layer in the same structure, by only changing its
stoichiometry.

As a new system of materials, research on ZTGN is still in its early stages. The
first work reporting its synthesis and structural characterization dates back to 2012 [67].
This was motivated by the bandgap tunability of InxGa1-xN alloys, and proposed the
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replacement of the group III by group II (Zn) and IV (Sn, Ge) elements to improve
raw-material availability for large-scale PV applications.

Bandgap tunability of ZTGN was experimentally demonstrated in [68], which re-
ported an increase in bandgap from 2 eV to 3.1 eV, mostly due to a shift in the conduction
band to higher energies as the Ge content increased. Since then, other works reported
bandgaps in the range 2.1–3.01 eV [69] and 2.2–2.7 eV [70]. Moreover, ZTGN presents also
a wide range of conductivity (n-type) depending on composition, with an exponential
increase in conductivity as the Sn content increases, along with a decrease of its dark
conductivity activation energy [69, 70].

Yet, the accomplishment of PV devices with this family of semiconductors remains
a largely unexplored research topic, with few works reporting PV devices with ZTN as
absorber [71–73] and only one studying ZTN as electron-selective contact for silicon solar
cells [74]. Nevertheless, the wide ranges of values for bandgap and conductivity of ZTGN
alloys makes them interesting materials to study as electron-selective contact.

Historically, SHJ cells have been used as test platform for evaluating novel carrier-
selective contacts since it combines a nearly perfect absorber (crystalline silicon), interlay-
ers inherently providing excellent passivation without any selectivity (intrinsic amorphous
silicon), and nearly perfect carrier-selective layers (doped silicon layers) [2, 8].

In this context, we fabricated by combinatorial sputtering ZTGN layers of varying
Zn, Sn and Ge content to assess their effectiveness as electron-selective contacts in SHJ
solar cells. We characterized their optical and electrical properties and analyzed several
SHJ solar cells with different architectures featuring these layers as electron-selective
contact.

By modelling the current-voltage characteristics of these solar cells, we draw the
band alignment of Zn(SnxGe1-x)N2 with silicon for various x values. Based on these results,
we discuss the impact of work function and electron affinity on solar cell performance and
evidence two different possible causes for poor device performance.

3.1.2 Layers on glass

3.1.2.1 Fabrication and characterization methods

ZTGN layers were initially deposited on glass for material characterization through
a combinatorial co-sputtering approach to assess a wide range of composition in a single
deposition run. The chamber was first evacuated to a pressure of 2.6 × 10−7 mbar, and then
a constant flow of 17.5 sccm N2 was introduced in the chamber to reach 1.3 × 10−2 mbar.

The power of RF generators on the Sn (99.995% purity) and Ge (99.999% purity)
metallic targets (100-mm diameter) was adjusted at 59 and 100 W, respectively, while the
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Zn target (99.98% purity) was kept at a DC power of 45 W, leading to an estimated 50%
Zn/25% Sn/25% Ge composition at the central position of the substrate (assessed from
deposition rate from each target individually). The substrate was not rotated during de-
position, which created a gradient in composition. Deposition lasted 30 minutes, following
8 minutes of pre-sputtering.

The resulting combinatorial library, with 0.49 cm2 samples, was subjected to ellip-
sometry measurements over the range 0.6–6 eV at an angle of 70° using a Horiba Jobin
Yvon ellipsometer. The experimental data was fitted to the Tauc-Lorentz model through
the DeltaPsi2 software to extract thickness and optical bandgap (E04, the energy at which
the absorption coefficient falls below 1 × 104 cm−1).

For dark conductivity measurements, 100 nm thick and 8 mm long Al pads, 1
mm spaced, were evaporated on the samples which were then annealed at 210 °C for
30 min. The samples were placed on a temperature-controlled chuck inside a vacuum
chamber, with N2 atmosphere at 1 mbar, for temperature-dependent dark conductivity
measurements.

For these measurements, the samples were annealed at 180 °C for 1.5 hours, fol-
lowed by a slow temperature decrease down to 30 °C (5 hours in total) during which
conductivity was monitored. Conductivity at 20 °C and activation energy were both ex-
tracted from Arrhenius plots, by fitting conductivity data during the temperature ramp
down to 𝜎(𝑇 ) = 𝜎0 exp (−𝐸𝐴/𝑘𝑇 ), where k, 𝐸𝐴 and 𝜎0 are the Boltzmann constant, acti-
vation energy and an exponential factor which corresponds to the conductivity as 𝑇 → ∞,
respectively.

3.1.2.2 Opto-electronic properties

Fig. 3.1 shows a picture of the resulting ZTGN combinatorial library, together
with the Arrhenius conductivity plots, thickness and E04 for positions 1 to 5. Thickness
was around 100 nm, with the Sn-rich side appearing slightly thicker. Also, E04 shifted to
higher energies as the Ge content increased, which confirmed the findings obtained in
previous studies [68–70], where an increase in bandgap was seen for samples with higher
Ge content.

Conductivity and activation energy were found to strongly change between Sn and
Ge-rich samples, going from 7 S cm−1 and 17 meV at the Sn-rich position, to 2.5 × 10−10

S cm−1 and 610 meV at the Ge-rich position. These findings corroborated previous works
[69, 70], where a strong decrease in resistivity was observed when the Ge content increased,
along with an increase in activation energy. Moreover, as observed in [69], although the
Ge-rich sample showed an exponential increase in conductivity as the temperature in-
creased, the Sn-rich sample showed only a small and linear increase. This corresponds to
an intermediate behavior between semiconductor-like and metal-like, suggesting a (close-
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Figure 3.1 – Photograph of the combinatorial ZTGN samples deposited on glass (top
left), and material properties against position on the combinatorial library.
Position 1 and 5 are Sn and Ge-rich, respectively.

to-)degenerate doping. This explains the slightly higher E04 value for position 1 than
position 2 in spite of a higher Sn content.

Thus, increasing the Ge content resulted in more insulating samples showing an
increased bandgap and activation energy. This trend was attributed in [70] to the higher
electronegativity of Ge than of Sn, making it a poorer electron donor, ultimately leading
to a reduced density of thermally activated carriers in the conduction band.

3.1.3 Solar cells

3.1.3.1 Fabrication and characterization methods

Front-junction SHJ solar cells were fabricated through standard protocols on chem-
ically etched c-Si wafers. Both n- and p-type float zone (FZ) wafers were used, with
thickness and resistivity around 200 µm and 2 Ω cm, respectively. Intrinsic and doped
amorphous silicon (a-Si:H) were deposited by PECVD, and ITO was sputtered on top
of the Si wafer with a metallic grid, defining 0.49 cm2 solar cells as sketched in Fig. 3.2.
The backside of each wafer was covered with ITO/Ag by magnetron sputtering, and silver
paste contacts were then applied on the front of each cell to enable contacting. Also, as
reference, SHJ solar cells were fabricated with standard front-junction architecture on n
and p-type Si.

Fig. 3.2 also shows the results of Energy Dispersive Spectroscopy (EDS), which
was carried out on ZTGN layers grown on a Double Sided Polished (DSP) p-Si wafer to
investigate the Zn, Sn and Ge composition at five positions corresponding to the ones
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Figure 3.2 – a) Estimated composition (at.%) of each solar cell on 5 positions on the
silicon wafer, shown in b), where Zn, Sn and Ge denote the approximate
positions of the sputtering guns against the wafer; c) architectures of the
investigated SHJ solar cells with ZTGN, and the corresponding reference
cell.

of the studied solar cells. The sputtering conditions were the same as for solar cells, but
deposition time was increased to 1 hour, targeting 200 nm thick layers at the center of the
silicon wafer.

The resulting solar cells had a Sn/(Sn+Ge) ratio ranging from (90±1)% (position
1) to (10±1)% (position 5), which shows that the combinatorial approach was effective at
exploring a wide range of cation composition. The uncertainty of the atomic percentage of
each element was evaluated as the 95% confidence interval for the mean, estimated from
measurements over several areas on different spots at each position.

Furthermore, as sketched in Fig. 3.2, the ZTGN layer was placed either as pas-
sivating electron-selective contact (replacing both the intrinsic and (n) a-Si:H films), or
simply as electron-selective contacts on top of an (i) a-Si:H layer, or even as spectator
between the (n) a-Si:H layer and ITO, according to the methodology presented in [74].
The sputtering parameters were the same as for samples deposited on glass, except that
deposition time was reduced to 8 minutes, after a 2-minute pre-sputtering step, targeting
layers 20 nm thick at the central position of the silicon wafer, which was confirmed by
ellipsometry.

Five solar cells from each wafer were subjected to IV characterization using a
custom-made solar simulator developed at PV-LAB. For that, solar cells were covered
with a mask of 0.49 cm2 and positioned on a temperature-controlled vacuum chuck at
25 °C, kept stable by a PID controller, a PT100 temperature sensor and peltier modules.
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Figure 3.3 – JV curves at STC with a) Sn and b) Ge-rich ZTGN layers at STC (a standard
SHJ solar cell JV curve is also shown as reference). c) and d) show the
temperature effects on the JV characteristics of the Sn and Ge-rich solar cells,
respectively, from architecture “n(i)”, while e) and f) show the irradiance
effects on the same cells. JV curves were normalized to 𝐽𝑝ℎ in c), d), e) and
f), and arrows denote increasing temperature and irradiance.

The JV characteristics were then measured with the 4-wires approach by a Keithley 2601
Source Measure Unit (SMU) at five different levels of irradiance: 1, 5, 10, 50 and 100% of
1000 W cm−2, provided by LED and halogen lamps.

3.1.3.2 Device architecture: impacts on JV characteristics

Fig. 3.3 a) and b) show the JV characteristics (STC) of solar cells with Sn and Ge-
rich ZTGN composition, after annealing for 30 min at 210 °C, for the three architectures
tested on n-Si. The other three solar cells, at positions 2-4, showed a behavior similar to
that of the Sn-rich one, and therefore are not shown.

Common features were observed when ZTGN was used as selective contact, i.e.
structures n(-) and n(i), regardless of composition: two steps in current (one around Voc

and another at high bias) and a saturation behavior in forward bias (strict when a-Si:H
was present, but with a slight current drift as voltage increases in absence of the intrinsic
a-Si:H).
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Inserting an (n) a-Si:H before the ZTGN layer, which relaxes the electron-selectivity
requirements for the ZTGN layer, brings a clear difference between the two ZTGN com-
positions: in the Sn-rich case (Fig. 3.3 a)), the s-shape around Voc and the saturation
were suppressed, resulting in an IV curve similar to (and even slightly better than) the
reference cell. Conversely, for the Ge-rich sample, the rectification was suppressed, but
the strong s-shape around Voc was maintained. These results suggest that both layers lack
electron selectivity since device performance benefited from the addition of the (n) a-Si:H
layer, but the Ge-rich layer imposes an additional barrier to the electron flow compared to
the Sn-rich case. These two different sources of barrier to electron extraction are further
discussed in the next sections.

Fig. 3.3 c) to f) further show irradiance- and temperature-dependent IV measure-
ments of the devices using an intrinsic passivation layer under the ZTGN film (no (n)
a-Si:H layer), to further investigate the S-shape observed at STC. As reported in [75],
if transport through a barrier is the limiting factor, decreasing the temperature reduces
the amount of charge carriers crossing the barrier, leading to an accumulation of carriers
near the interface, reducing the collection efficiency and causing an early onset of the
s-shape curve. Accordingly, the s-shapes around Voc were reduced at high temperatures,
enhancing the fill factor, as shown in Fig. 3.3 c) and d). For the Ge-rich case, a prominent
S-shape remained, suggesting that a barrier is still present. This can be linked to the
high activation energy in the ZTGN layer itself (> 600 mV) for which a measurement
temperature of 55 °C is not high enough.

Furthermore, when increasing irradiance, a higher density of photogenerated car-
riers will be generated, causing also a carrier accumulation at the barrier. This induces a
higher band bending and therefore a higher barrier to be overcome, resulting in an earlier
onset of the s-shaped curve. Accordingly, Fig. 3.3 e) and f) shows that reducing the light
intensity while keeping the temperature at 25 °C reduced the s-shapes and its voltage on-
sets. Overall, these results suggest that a thermionic emission barrier is limiting electron
extraction in both cases, though more severely for the Ge-rich case.

3.1.3.3 Exchange current density modeling

To further investigate the limiting mechanisms behind these JV characteristics,
we fitted temperature-dependent JV measurements for solar cells from positions 1 to 5
using the architecture “n (i)”. We used a recent model, presented in [76], that describes
the JV characteristics of a contact-limited solar cell based on the equilibrium exchange
currents of electrons and holes at each contact, since the observed JV curves clearly violate
the superposition principle and thus the single-diode model seen in chapter 2 cannot be
applied. According to this model, the JV characteristics of a contact-limited solar cell can
be described by
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𝐽(𝑉 ) = −
(︁
𝐽𝐿 + 𝑗𝛼

0𝑛 + 𝑗𝛽
0𝑝

)︁
+ 𝐽𝐿 + 𝑗𝛼

0𝑛 + 𝐽𝛽
0𝑛

1 + 𝐽𝛽
0𝑛

𝑗𝛼
0𝑛

𝑒−(𝑉 −𝐽𝑅𝑠)/𝑉𝑇

+
𝐽𝐿 + 𝑗𝛽

0𝑝 + 𝐽𝛼
0𝑝

1 + 𝐽𝛼
0𝑝

𝑗𝛽
0𝑝

𝑒−(𝑉 −𝐽𝑅𝑠)/𝑉𝑇

(3.1)

where 𝑉𝑇 is the thermal voltage; 𝐽𝛼
0𝑝 and 𝐽𝛽

0𝑛 denote majority hole and electron currents to
the 𝛼 and 𝛽 contacts, while 𝑗𝛼

0𝑛 and 𝑗𝛽
0𝑝 represent the minority electron and hole currents

to the 𝛼 and 𝛽 contacts, which represent the hole and electron contacts, respectively.
Moreover, a series resistance term was added to account for ohmic losses, as in [18].
The resulting IV-T curves were then fitted to (3.1) between −0.2 V and 2 V, by the self-
adaptive Differential Evolution algorithm extensively discussed in the previous chapter.

Fig. 3.4 shows the JV data and the corresponding fittings for solar cells at positions
1 to 5 (a reference cell JV data was included for comparison), at STC. The leveling around
Voc and the saturation in forward bias are well reproduced with this model, resulting in
the J0 values shown in Table 3.1.

For positions 1 to 3, the JV data could be acceptably reproduced with similar,
realistic values for the currents on the p-aSi side (𝑗𝑝−𝑎𝑆𝑖

0𝑛 and 𝐽𝑝−𝑎𝑆𝑖
0𝑝 ). For positions 4 and

5, acceptable fitting is also obtained, but a strong decrease in the electron current to the
hole contact was required to match the experimental data. There is no physical reason
for this decrease since the hole contact is the same for all positions. This suggests that
the strong S-shape around open-circuit-voltage of these two samples cannot be modelled
with this exchange-current density formalism. Additional information about these fitting
results can be found in the appendix.

As will be discussed in more details in the last section, this is indicative of a
conductivity issue [77] for electron extraction, that is unrelated to the selective extraction
of charges from the silicon absorber. Nevertheless, the fitted values for the electron current
at the ZTGN contact (𝐽𝑍𝑇 𝐺𝑁

0𝑛 ) were not deviating significantly from the values obtained at
the other positions, since this current is indeed mostly governed by the saturation current
density in forward bias, and therefore the results were kept in this work. Conversely, the
hole current is mostly governed by the Voc value, which is not well defined due to the
very flat portion of the curve in this range.

The hole currents on the ZTGN side (𝑗𝑍𝑇 𝐺𝑁
0𝑝 ) did not show major changes be-

tween positions 1 and 3, indicative of similar (poor) passivation for all these cases, with a
marginal improvement for positions 4 and 5—these should however be taken with caution
in view of the questionable validity of the fits as discussed above.

Conversely, some improvement was seen for the electron current to the ZTGN con-
tact (which can be visualized on Fig. 3.4 by an increase of the value at which forward-bias
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a) b)

c) d)

e) f)

g) h)

Figure 3.4 – Top: JV data and the resulting fittings to the model given in (3.1) for solar
cells at positions 1 to 5 and for a reference cell, at STC. Bottom: Richardson
plot of the electron current to the electron contact for solar cells at positions
1 to 5, extracted from the fittings shown in the top box, between 25 and
55 °C at 1000 W m−2. A suggested band alignment between c-Si and ZTGN
is also presented.

current saturates). Using the formalism of [78], the contact carrier selectivity can be de-
fined by the ratio of the majority to minority carriers to a single contact (so 𝐽𝑍𝑇 𝐺𝑁

0𝑛 /𝑗𝑍𝑇 𝐺𝑁
0𝑝

and 𝐽𝑝−𝑎𝑆𝑖
0𝑝 /𝑗𝑝−𝑎𝑆𝑖

0𝑛 ).

Therefore, as expected the electron contact stack (ZTGN) is around 2 orders of
magnitude less selective than the hole contact. Conversely, the carrier selectivity of the
device can be defined as the ratio 𝐽𝑍𝑇 𝐺𝑁

0𝑛 /𝑗𝑝−𝑎𝑆𝑖
0𝑛 for electrons, and 𝐽𝑝−𝑎𝑆𝑖

0𝑝 /𝑗𝑍𝑇 𝐺𝑁
0𝑝 for holes,

respectively. Thus, holes are the limiting carriers in these solar cells, since ZTGN could
not prevent a strong hole current to the electron contact, therefore not providing enough
electron selectivity for a good cell performance.

Furthermore, considering that transport of electrons to the ZTGN contact is lim-
ited by thermionic emission over the barrier at the ZTGN / n-Si interface, the electron
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Table 3.1 – Equilibrium-exchange-current-density, series-resistance, and work-function
values extracted from the fits shown in Fig. 3.4

.

𝑗𝑝−𝑎𝑆𝑖
0𝑛 𝐽𝑝−𝑎𝑆𝑖

0𝑝 𝐽𝑍𝑇 𝐺𝑁
0𝑛 𝑗𝑍𝑇 𝐺𝑁

0𝑝 𝑅𝑠 WF
(𝑚𝐴/𝑐𝑚2) (Ω · 𝑐𝑚2) (eV)

Position 1 7.02E-10 0.96 14.28 1.35E-06 7.15 4.36 ± 0.03
Position 2 1.67E-09 2.86 37.37 2.13E-06 5.08 4.31 ± 0.02
Position 3 6.11E-10 2.91 48.69 1.65E-06 4.58 4.29 ± 0.02
Position 4 4.22E-13 1.83 51.80 9.71E-06 5.13 4.28 ± 0.02
Position 5 9.89E-19 3.29E-13 43.51 2.05E-09 12.36 4.30 ± 0.04
Reference (n) 2.09E-11 6.58 2.04E+06 4.00E-12 4.04 -
Position 5 - S 3.72E-11 0.10 43.60 1.94E-06 8.44 -

exchange currents at the ZTGN contact are expected to follow

𝐽𝑍𝑇 𝐺𝑁
0𝑛 = 𝐴*𝑇 2𝑒−𝜑/𝑘𝑇 (3.2)

where 𝐴* is the effective Richardson constant and 𝜑 is the barrier height, i.e. the difference
between the n-Si electron affinity and the ZTGN work function.

As recently shown in [79], if the thermionic emission hypothesis holds, fitting IV-T
to (3.1) is an effective way to estimate the work function at the contact. Therefore, we
plotted in Fig. 3.4 g) the natural logarithm of 𝐽𝑍𝑇 𝐺𝑁

0𝑛 /𝑇 2 against 1/𝑇 (Richardson plot),
and extracted the slope of the resulting trendline to estimate the effective work function
of the electron contact for all compositions. (The fittings at 35 °C, 45 °C and 55 °C are
not shown but yielded similar fitting quality to the 25 °C case).

These extracted work function values (shown in Table 3.1) shuffle around 4.3 eV,
with only a marginal decrease when going from Sn-rich to Ge-rich. This corresponds to a
Fermi-level position 0.25 eV below the conduction band of silicon (and 0.3 eV away from
mid-gap). This renders the ZTGN layers electron selective, although not sufficiently to
form a good contact as evidenced by the low obtained Voc below 600 mV, as discussed in
next section.

Combining this calculated work function with the activation energy and optical
bandgap measurements shown in Fig. 3.1, Fig. 3.4 h) shows the reconstructed band struc-
ture of the different ZTGN alloys, and in particular the alignment with the c-Si bands. A
shift of the conduction band minimum to higher energies (closer to the vacuum-level) and
little movement of the valence band maximum is seen, consistently with earlier reports
based on X-ray spectroscopy [68].

The relatively constant work function across variable compositions in spite of mov-
ing conduction and valence bands can be put in parallel with the InGaN alloy case. For
this alloy, a similar Fermi-level position around 4.6 eV below the vacuum energy was ob-
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tained upon introducing defects, independently from the alloy composition. This resulted
in defective high-In-content alloys being highly conductive [80]. A similar phenomenon is
indeed likely to be at play in the ZTGN family, and the samples fabricated via reactive
sputtering are likely to be inherently defective.

Going further, inferring from the universal alignment of hydrogen levels in semicon-
ductors and insulators [81], it is tempting to generalize these observations, and postulate
that intrinsically conductive semiconductors (which necessarily owes their conductivity
from intrinsic defects) are unlikely to perform efficiently as electron-selective contacts,
since their intrinsic conductivity is inextricably linked with a too high electron affinity for
this role. This would make doping a necessity to build efficient electron-selective contacts
which do not rely on an elaborate combination with a low-work-function metal electrode
(as in the TiO2/Al [82] or ZnO/Al [15] cases to name a few).

3.1.3.4 Symmetric samples

Besides the arguments given in the previous section about the identification of
the electron and hole currents, an experimental proof of it can be given by considering
symmetric devices, i.e., solar cells fabricated with the same structure on both sides of a
silicon wafer.

We fabricated three symmetrical samples, shown in Fig. 3.5. The ones on n-Si
actually probe the hole extraction from the c-Si absorber to the hole contact, while those
on p-Si probe how efficient is the electron extraction from the absorber to the electron
contact. Additionally, one symmetrical architecture on n-Si does not feature (i) a-Si:H
layers, to observe their contribution to the resulting JV curve when compared with the
architecture featuring them.

It was seen that the hole current from the absorber to the hole contact results
in an s-shape around 0 mA cm−2 in the JV characteristics, and saturation in reverse bias
around 25 mA cm−2, as shown by architecture “pi/nSi/ip” in Fig. 3.5. The JV curves were
not totally symmetrical because the rear contacts of the built solar cells were made full
area whereas a metallic grid masking the ITO deposition was employed for the front-side,
defining 0.49 cm2 cells, on which Ag paste was used to enable the external front contact.

For symmetrical samples, Eq. (3.1) reduces to

𝐽(𝑉 ) = − (𝐽𝐿 + 𝐽0𝑛 + 𝐽0𝑝) + 2𝐽𝐿 + 𝐽0𝑛 + 𝐽0𝑝

1 + 𝑒−𝑉/𝑉𝑇
, (3.3)

since 𝑗𝛼
0𝑛 = 𝐽𝛽

0𝑛 = 𝐽0𝑛 and 𝑗𝛽
0𝑝 = 𝐽𝛼

0𝑝 = 𝐽0𝑝. Thus, for symmetrical samples, two steps in
the JV characteristics are expected: one at reverse and one at forward bias, with same
height, given by (𝐽𝐿 + 𝐽0𝑛 + 𝐽0𝑝).
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Figure 3.5 – a) Symmetrical devices fabricated on p-Si and n-Si wafers. On n-Si, one of
them had no (i) a-Si:H passivating layers, to observe their contribution to
the JV curves; b) resulting JV characteristics at STC.

Indeed, these two steps are observed in Fig. 3.5 for architecture “pi/nSi/ip”. As this
structure probes the hole current to the hole contact, due to the high resistivity faced by
electrons in the (p) a-Si:H layers, 𝐽0𝑝 >> 𝐽0𝑛 and thus the step is given 𝐽𝐿 +𝐽0𝑝. However,
at reverse bias, the height of the step is approximately the photocurrent, which shows that
the majority hole current to the hole contact is in fact small, close to 0 mA cm−2.

Thus, this analysis shows that the hole currents determined in the previous section
are indeed small. Moreover, the s-shape seen for this architecture was strongly reduced
upon the removal of the (i) a-Si:H layer, demonstrating that the cause for s-shapes in
devices built on n-Si was the rectifying heterojunction (p) a-Si:H/(i) a-Si:H/n-Si.

On the other hand, the electron collection from the absorber to the (n) a-Si:H
contacts was seen to be much more efficient, since the resulting JV curve did not show
any sign of s-shapes or saturation in the explored voltage range (architecture “ni/pSi/in”),
since in this case 𝐽0𝑛 >> 𝐽𝐿 and 𝐽0𝑛 >> 𝐽0𝑝.

Going further, these JV curves can be better understood with the aid of band
diagrams of the interface (p/n) a-Si:H/ (i) a-Si:H/c-Si, constructed with PC1D simula-
tions, as shown in Fig. 3.6. In a), the hole extraction from the absorber is limited by the



Chapter 3. Nitride semiconductors as electron-selective contacts for SHJ solar cells 57

Figure 3.6 – Band diagrams at 0 V and STC for the interfaces a) c-Si/(i) a-Si:H/(p) a-Si:H;
b) c-Si/(p) a-Si:H, and c) c-Si/(i) a-Si:H/(n) a-Si:H. Solid red and blue curves
represent the c-Si CB and VB, respectively, while dashed red and blue lines
stand for the respective electron and hole quasi-Fermi levels. Temperature-
dependent JV curves at 1000 W m−2 for architecture “pi/nSi/ip”, with band
diagram represented by a).

spike of the (i) a-Si:H layer. The appearance of s-shapes at low temperatures is commonly
observed for this barrier [75], but the fact that s-shapes were observed already at 25 °C
suggests that this barrier was significant enough for our samples on DSP c-Si wafers, since
we did not adapt the thickness of the (i) a-Si:H layer from textured to DSP wafers.

Furthermore, as expected, these s-shapes were reduced upon increasing the tem-
perature, consistent with a thermionic emission barrier limiting hole extraction, which is
seen in Fig. 3.6 (d). Removing the (i) a-Si:H passivation layer caused a reduction of the
barrier height for hole extraction, as seen in Fig. 3.6 b), which results in a JV curve with
a slight s-shape.

Also, Fig. 3.6 c) confirms the more efficient electron extraction, since the barrier
for electrons at the interface (n) a-Si:H/ (i) a-Si:H/p-Si is much lower and can be easily
surpassed by thermionic emission, resulting in a JV curve with no saturation and s-shapes,
close to an ohmic behavior with low series resistance, as seen in Fig. 3.5 with architecture
“ni/pSi/in”.
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Figure 3.7 – a) Structures of the reference devices on p and n-Si, and of test device without
the passivation (i) a-Si:H layer between n-Si and (p) a-Si:H; b) JV charac-
teristics of the devices shown in a).

Therefore, the (i) a-Si:H layer in the hole contact stack plays an important role in
the s-shapes observed in the JV characteristics of the reference devices built on DSP n-Si.
More evidence for this can be seen with a test structure shown in Fig. 3.7, namely “Ref.
n: Test”, which does not feature this passivation layer, and thus the (p) a-Si:H layer is in
direct contact with the silicon absorber.

In this case, it can be seen that the s-shape around the open-circuit voltage disap-
pears, while the architecture “Ref. n-Si” features it. Despite eliminating this s-shape, the
lack of passivation leads to a reduction in Voc by about 110 mV, due to the formation of
a defective interface between (p) a-Si:H and n-Si, which is not feasible in terms of solar
cell operation, showing the need to carefully adapt the thickness of this passivation layer
according to the silicon wafer type (DSP or textured).

3.1.4 Device architecture: effect of the wafer type

We now discuss the influence of the solar cell architecture, i.e. wafer type, with the
presence or not of an (i)a-Si:H passivation layer, and of an (n)a-Si:H layer. In addition
to the three architectures discussed previously and shown on Fig. 3.2, two additional
architectures were compared, using a p-type silicon wafer, as shown on Fig. 3.8. A front-
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ITO
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ITO
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Figure 3.8 – Voc and FF at STC as a function of position and device architecture. Two
architectures were added, using p-type wafers. For the Ge-rich cell on p-
Si, the IV curve showed a strong blocking behavior in the entire voltage
range studied, and it was not possible to extract a reliable Voc. Results from
standard p and n SHJ solar cells are also shown for comparison. Blue and
red bands denote the 95% CI for the Voc (not visible) and FF from 10 SHJ
reference solar cells on n and p-Si.

junction configuration was used to avoid collection issues, and the (i)a-Si:H passivation
layer was used or omitted.

For cells featuring only the ZTGN layer as electron-selective contact (p(-) and n(-
)), the ZTGN composition does not affect Voc, but the wafer type significantly influences
it, suggesting that the wafer itself is contributing to the contact behavior [77]. The strong
Voc difference between p(-) and n(-) devices is an indication of Fermi-level pinning at the
c-Si surface, close to the (p) and (n) c-Si Fermi level, which suggests a defective interface.

For cells featuring an a-Si:H passivation layer, which enhances the role of the
contact work function [83], the Voc values were similar on either wafer type due to a
strong increase for cells on the p-Si, but a slight decrease for cells on the n-Si. The
presence of the (i) a-Si:H layer thus appears to efficiently suppress this quasi-Fermi-level
pinning. The Voc values were nevertheless still similar for all compositions, with a 100 mV
increase towards positions 5.

Since the Voc is determined by the quasi-Fermi level difference between the positive
and negative contacts (and the hole contact stack is the same for all cells), this similar
Voc regardless the wafer type means that the quasi-Fermi levels at the electron contact
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are essentially independent of composition, with a slight decrease in energy (i.e. moving
towards vacuum energy) for samples with higher Ge content. This is consistent with the
estimated work function values discussed in the previous section. Also, these Voc values
are in accordance with the ones obtained by Bivour et al. in [83], when using metal with
various work-functions in direct contact to the (i)a-si:H layer.

Annealing had a mild influence on Voc for all compositions, except the Ge-rich one
for which a close to 100 mV increase was seen. This can be attributed to a recovery of
sputtering damage, or an improvement of the electron-selectivity of the layer (e.g. decrease
of work-function). The better performance in terms of Voc of the Ge-rich sample when
the (i)a-Si:H layer is present does not correlate with the work function extracted from the
JV-curve fittings presented in previous section.

Specific care was taken to obtain accurate Voc values despite the flatness of the
curve around open circuit and is deemed trustworthy. Compared to the simulation results,
this indeed correlates to a lower leakage of holes from these fittings (lower 𝑗𝑍𝑇 𝐺𝑁

0𝑝 ) which
suggests improved passivation from this stack. This could be due to a lower defectivity
of the layer, or to the fact that the valence-band edge is getting further away from the
silicon one, preventing more efficiently hole recombination.

Samples including both an (i)a-Si:H and (n)a-Si:H layer under the ZTGN film
showed similar Voc to the reference sample, confirming that selectivity and passivation
are not affected in this case. Similar FF were also measured, except for the Ge-rich case.
For this composition, as also observed on Fig. 3.3, a prominent barrier to charge extraction
was still observed.

Turning to FF of samples not including the (n)a-Si:H layer, low values were ob-
served. The n(-) samples performed slightly better than the others (as also seen in Fig.
3.3), which indicates that the too high work function (low selectivity) of ZTGN is unable
to screen the barrier to charge extraction imposed by the a-Si:H layer, as was the case for
solar cells with ZTN as electron contacts [74].

In terms of JV characteristics, wafer type is shown to matter both for the reference
contact and for the ZTGN contact. On an n-Si wafer, the JV characteristics for the latter
shows a double s-shape and a saturating behavior at high forward bias. Upon changing
the hole contact stack from a rectifying p-n heterojunction (p) a-Si:H/(i) a-Si:H/n-Si to
an isotype heterojunction p-Si/(i) a-Si:H/(p) a-Si:H (architectures n-Si and p-Si in Fig.
3.9, respectively), the saturation at forward bias becomes a kink at 1 V followed by a
drifting saturation current, with a linear dependence on the applied bias.

Interestingly, the JV characteristics of a reference device on n-Si also show an s-
shape around Voc, which is not seen in the JV curve of the reference device on p-Si. In
a standard SHJ solar cell, the VB offset in the interface (p) a-Si:H/(i) a-Si:/n-Si and the



Chapter 3. Nitride semiconductors as electron-selective contacts for SHJ solar cells 61

(n) c-Si

Ref. n-Si

(n) c-Si

Ag

ITO
(p) a-Si:H

(i) a-Si:H
(n) a-Si:H

ITO
Ag

(p) c-Si

Ref. p-Sin-Si

(p) c-Si
ZTGN

p-Si

a)

b)

Figure 3.9 – a) Device structures of reference SHJ solar cells and test structures featuring
ZTGN as electron-selective contact, replacing (n) a-Si:H; b) resulting JV
characteristics at Standard Test Conditions (STC).

resulting thermionic emission barrier for holes is the limiting transport mechanism under
illumination [75], which can lead to s-shapes for JV curves at low temperature and high
irradiance conditions, as shown in Fig. 3.6.

Thus, considering the analysis from symmetrical samples, the s-shapes around
open-circuit have actually two sources on n-Si wafers (architecture “n-Si”): from the in-
terface with the test layer itself, but also from the hole extraction in the interface n-Si/(i)
a-Si:H/(p) a-Si:H, which was shown to be limited. On the other hand, the s-shapes around
Voc from architecture “p-Si” have only the contribution from the ZTGN side, since the
hole contact formed by (p) a-Si:H/(i) a-Si:H/p-Si does not lead to s-shapes, as seen from
reference devices with p-Si.

Hence, the disappearance of the second plateau on the JV curves of the device
“p-Si”, which features ZTGN as electron-selective layer (Fig. 3.9) can be explained by the
more efficient hole extraction when the hole contact stack is built on p-Si. This means
that the second plateau can only be observed if both contacts limit device performance,
which is the case of architecture “n-Si”, for which electron and hole extraction are limited
by thermionic emission barriers [62].
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3.1.5 Discussion

As seen in Fig. 3.4, the Fermi-level of ZTGN showed only a slight decrease in energy
(vacuum as reference) towards the Ge-rich sample. Upon increasing of the bandgap, the
conduction band of ZTGN is therefore shifting upwards, leading to better alignment with
c-si conduction band. However, since the changes in the Fermi level are much lower than
the shift of the CB, the carrier density in the Ge-rich ZTGN film remains too low to make
it a good electron-selective contact, leading to a strong decrease in FF. Therefore, the Sn-
rich layer is a low-bandgap conductive material, whereas Ge-rich films are higher-bandgap
yet insulating.

Looking at sample n(-) in Fig. 3.8 corresponding to no a-Si:H layer between the
c-Si wafer and the ZTGN layer, best FF is reached for position 2. From Fig. 3.4, this
corresponds to a highly doped layer with a slight negative conduction-band offset with
crystalline silicon. Conversely, when a-Si:H is present (samples n(i) and n(n/i)), best FF is
reached for position 3, which corresponds to a slight positive conduction-band offset with
c-Si, and an approximate band alignment with a-Si:H. Deviating from these conditions
leads to reduced FF, similarly to observations from [? ] for hole-selective contacts.

To illustrate the effects of work function, doping and electron affinity on the band
diagram of the n-Si/(i) a-Si:H/ZTGN, and therefore on the cell performance, simulations
were carried out in PC1D considering a front-junction solar cell with three regions: hole
contact/n-Si/a-Si:H/Test layer, where the test layer was making the role of Sn and Ge-rich
samples.

Two illustrative situations were considered: on the one hand an unfavorable elec-
tron affinity of 4.5 eV but high doping of 1 × 1019 cm−3, representative of the Sn-rich side,
and on the other hand a suitable electron affinity of 3.9 eV but low doping of 1 × 1010 cm−3,
representative of the Ge-rich side.

Fig. 3.10 shows the obtained band diagrams at open-circuit condition for these two
cases, for either only the studied layer as contact, or with the addition of an (i) a-Si:H
layer, or with an (i/n) a-Si:H layer stack. In Fig. 6a and b, the c-Si suffered a band bending
due to the work function mismatch. Moreover, in the case of Fig. 6b, an additional barrier
to transport is induced by the layer itself, independent of the bending in the c-Si.

Adding an (i) a-Si:H, most of the band bending is transferred to the a-Si:H layer.
Due to the additional band offset, the barrier is even slightly higher yet narrower. In
Fig. 6b, the resistive nature of the test layer, due to its poor doping, becomes even more
prominent than in the previous case, which correlates well with the very low FF seen in
Fig. 3.8. Inserting a doped (n) a-Si:H layer does not change the barrier height, but renders
it much narrower due to the high doping in the (n) a-Si:H layer.

The hole leakage towards the electron contact is also strongly decreased. This
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Figure 3.10 – PC1D simulations showing the band diagrams at Voc for a test layer with
high extrinsic electron doping and electron affinity (left column), and with
low doping and electron affinity (right column), for the interface between
the test layer and n-Si (a, b), n-Si/(i) a-Si:H (c, d), and n-Si/(i) a-Si:H/(n)
a-Si:H (e, f). Solid lines denote CB and VB positions, while dashed lines
represent the quasi-Fermi levels.

results in an increase in performance, as it was actually observed for architecture “n
(n/i)” in Fig. 3. In Fig. 6e, the band diagram suggests an efficient electron-selective
contact, which is what we observed. The appropriate work function of the (n) a-Si:H
layer ensures electron selectivity, and its high doping screens efficiently the workfunction
mismatch with the subsequent layer (mimicking here Sn-rich ZTGN, but the situation
would be similar with an ITO layer).

On the other hand, in Fig. 6f, although electron selectivity is similarly granted by
the (n) a-Si:H layer, the subsequent layer still imposes a barrier due to its low doping,
which cannot be screened. Strong resistive losses are thus expected in all architectures for
the Ge-rich solar cell, which was observed through strong s-shapes.

Thus, these simulations point that the s-shapes seen in Fig. 3.3 are caused by the
barriers for electron extraction at the interface c-Si/(i) a-Si:H/ZTGN as a result of a too
high work function in both cases, and additionally by the ZTGN layer itself when its
doping is low, as for the Ge-rich layer. Only the latter is expected when an (n) a-Si:H
layer is inserted underneath the ZTGN film. Thus going one step further in the analysis,
we can separate these two barriers as one being intrinsic to the contact selectivity, and
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Figure 3.11 – Equivalent circuits corresponding to the reference cell (a), architectures “n
(n/i)” (b) and “n (i)” (c). The s-shapes are represented by a resistor “S” in
series, while the red diode represents a bad contact quality. The resulting
JV curves from the operations given by (3.4) are shown in d) and e), where
s-only is given by 𝑉𝑛(𝑛/𝑖)(𝐽)−𝑉𝑟𝑒𝑓 (𝐽). The dashed red curve is the JV curve
of the intrinsic performance of the contact with the Ge-rich ZTGN layer.

the other one being external—thus being similar to e.g. the series resistance of the front
metallic grid of the solar cell.

Considering that this is a non-Ohmic passive element in series, we can draw an
equivalent circuit corresponding to the “n(n/i)”, “n(i)” and “Reference” structures from
Fig. 3.2. These are displayed on Fig. 3.11 a)-c), with the S-shape caused by the ZTGN
layer itself being represented as a resistor with an S, and the changes in the contact
selectivity being represented by a different diode color.

Using these equivalent circuits, an obvious equation to determine the intrinsic V(J)
characteristic of the contact is then:

𝑉𝑖𝑛𝑡(𝐽) = 𝑉𝑛(𝑖)(𝐽) − (𝑉𝑛(𝑛/𝑖)(𝐽) − 𝑉𝑟𝑒𝑓 (𝐽)) (3.4)

Normalizing each of the JV curves, it is therefore possible to isolate the JV char-
acteristic of the S-shape element by subtracting “Reference” from the “n(n/i)”. Removing
this from the “n(i)” JV curve renders the JV characteristic corresponding to the intrinsic
performance of the contact.

These operations are shown in Fig. 3.11 d)-e) for the Ge-rich case (position 5), and
the resulting JV characteristic is similar to the ones observed for the other four positions,
as was expected from the similar value of the work function. Fitting this calculated char-
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acteristic with the previously-used exchange-current model results in 𝐽0 values shown in
Table 1 as "Position 5 - S".

These are more consistent with the ones observed for Positions 1–4. Although these
calculations are simplistic, and neglect e.g. the influence of the electrode, this confirms
that the poor performance observed in position 5 can be split in two causes, with only
one of them respecting the hypothesis of the exchange current density model, i.e. only
one of them being an intrinsic contact selectivity issue.

3.1.6 A doping attempt

Considering that poor doping was the limiting characteristic of the Ge-rich ZTGN
layer, and that a recent computational work suggested that a concentration of 𝑛 =
1019 cm−3 could be achieved by doping ZnGeN2 with phosphorous, due to the PGe substi-
tutional impurity [84], we tried to incorporate phosphorous atoms on ZGN layers grown
on glass by sputtering, under different atmospheres (Ar, N2, N2/H2, N2+N2/H2), using
PH3 plasma in H2 and Ar atmospheres, and subsequent annealing at 300 °C, 450 °C, and
600 °C, under N2 atmosphere for 20 min. The resulting samples were then subjected to
dark conductivity measurements to check for activation energy and resistivity.

Fig. 3.12 shows the resistivity at 70 °C and activation energy extracted from Ar-
rhenius plots, including also reference samples not subjected to the PH3 treatment, and
the corresponding values for the Ge-rich ZTGN sample. Samples not subjected to the
PH3 treatment showed the highest observed resistivity values, which were reduced after
annealing at 300 °C, resulting in values similar to the Ge-rich ZTGN case.

The most promising case was for a ZGN layer grown under an N2 sputtering atmo-
sphere, and submitted to the PH3 treatment under H2, subsequently annealed at 300 °C.
However, the resulting conductivity was still too high, and the activation energy simi-
lar to the Ge-rich ZTGN layer. Therefore, ex-situ doping was not considered successful,
suggesting that in-situ doping is necessary.

3.2 Magnesium Tin nitride (MgSnN2)

3.2.1 Motivation

Interest in MgSnN2 (MTN) is also recent, with the first work addressing this com-
pound dating back to 2016 [85], motivated by the room to explore in chemical parameter
space, since these materials have two cations of different valence, and also by the fact that
replacing Zn by Mg in Zn-IV-N2 compounds could lead to bandgaps in the UV region
and thus extend the electronic properties of nitrides.
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Figure 3.12 – Conductivity and activation energy extracted from Arrhenius plots for
ZnGeN2 layers grown under several sputtering atmospheres and subjected
to different PH3 treatment under Argon and H2 atmospheres. The results for
a Ge-rich ZTGN layer grown under N2 and annealing at 210 °C for 30 min
are also shown.

In that pioneer work [85], through a computational investigation, MTN was found
to have a direct bandgap close to 3.5 eV. A couple of years later, MTN was synthesized
for the first time [86], using molecular beam epitaxy, with bandgaps ranging between
1.87 eV and 3.43 eV, depending on cation ordering. Another work reported the synthesis
of MTN using the metathesis reaction under high pressure and temperature [87], resulting
a MgSnN2 powder. Moreover, this work found a direct bandgap of 2.3 eV, in agreement
to that computationally predicted in [88].

More recently, MTN was synthesized across a range of cation compositions and
temperature by combinatorial sputtering [89]. A bandgap of 2.0 eV was found, consistent
with cation disorder. Of special interest for this thesis, electron concentration was reported
in the order of 1019-1020 cm−3 at Mg/(Mg+Sn) ≈ 0.5 for samples grown at 300 °C and
400 °C, which places this material as an interesting candidate as electron-selective contact
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Figure 3.13 – Left: Glass slab on which MgSnN2 layers were grown. The substrate was
rotated during deposition. Right: dark conductivity data from seven pieces
of the glass slab shown on the left picture.

for SHJ solar cells.

Given the results obtained in the previous section for ZTGN, MTN was envisioned
as an interesting candidate, since it could achieve good open-circuit voltages but also
higher FF, given the good electron concentrations reported in the literature, if good band
alignments with c-Si could be obtained. Therefore, this section presents the fabrication
details of MgSnN2 layers of varying Mg/(Mg+Sn) ratio, as well as the results when applied
as electron-selective contacts for SHJ solar cells.

3.2.2 Material fabrication and opto-electronic characterization

Layers of MgSnN2 were initially grown on glass substrate for material characteri-
zation. For that, the powers on the Mg and Sn metallic targets were calibrated to achieve
a 100 nm thick layer in approximately 40 min deposition, aiming at Mg/(Mg+Sn) ≈ 50%
(at.%).

The deposition chamber was first evacuated to a base pressure of 1.6 × 10−7 mbar,
after which a constant flow of 16.7 sccm N2 was introduced in the chamber to achieve
a working pressure of 1.3 × 10−2 mbar. Then, the powers of RF and DC generators were
adjusted to 140 W DC and 65 W RF on the Mg and Sn targets, respectively. Deposition
lasted for 45 min and 40 s, after a 10 min pre-sputtering step. Since a composition of 50%
Mg/(Mg+Sn) was targeted, the sample holder was rotated, which should guarantee a
homogeneous deposition along the substrate.

The substrate was then cleaved in several parts that were subjected to dark con-
ductivity measurements, as described for ZTGN samples in the previous sections. Fig. 3.13
shows a schematic view of the glass substrate and the samples subjected to conductivity
measurements, as well as the resulting data as function of temperature.
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Table 3.2 – Thickness (from ellipsometry), resistivity at 20 °C and activation energy ex-
tracted from temperature-dependent conductivity data shown in Fig. 3.13.

Sample Thickness (nm) 𝜌 (Ω 𝑐𝑚) 𝐸𝐴 (meV)

A 104.1 ± 0.8 737 ± 42 221.2 ± 1.1
B 98.9 ± 0.5 1.69 ± 0.04 57.1 ± 0.5
C 108.0 ± 0.8 245 ± 10 186.1 ± 0.8
D 97.1 ± 0.7 1.19 ± 0.02 49.3 ± 0.3
E 109.9 ± 0.9 1794 ± 157 244.6 ± 1.6
F 107.8 ± 0.6 836 ± 38 223.3 ± 0.9
G 100.8 ± 0.8 1.36 ± 0.03 52.3 ± 0.5

Resistivity at 25 °C and activation energy were extracted from Arrhenius plots,
resulting in the data shown in Table 3.2. Thickness values were obtained from ellipsometry
using the same setup for ZTGN samples. It can be seen that despite samples were all from
the same deposition run, large differences in resistivity and activation energy were found,
which were not consistent with a homogeneous deposition.

Nevertheless, these differences could be explained by variations in composition
during deposition, since it was reported that Mg-rich samples result in lower electron
concentrations, since excess Mg-rich layers include excess Mg (MgSn) that probably be-
have as an acceptor-like defect, suppressing the electron concentration, while excess Sn is
pointed as electron donor [90].

Thus, a detailed composition analysis was carried out to check if the composition
was changing along the substrate. For that, a glass slab and also a DSP silicon wafer
were positioned on the center of the substrate holder. A combinatorial mask covered both
substrates, so that MTN layers would grown on symmetrical positions on glass and silicon,
as shown in Fig. 3.14. Depositions at 200 °C and with no heating on the sample holder
were then carried out.

Samples on glass substrate were subjected to dark conductivity and ellipsometry
measurements, while the ones on silicon were subjected to EDS measurements for com-
position analysis, and the results are shown in Fig. 3.15. It can be seen that thickness
increased towards position 4 when the substrate was not heated during deposition (room
temperature - RT), which can be attributed to an increase in Mg content on the outer
edges of the substrate holder, as shown by EDS data.

The increase in resistivity and activation energy with increasing Mg content, as
seen in Fig. 3.15 (c), is consistent with the role of excess Mg as an acceptor-like defect, as
discussed before. However, upon the increasing the substrate temperature to 200 °C, the
same increase in thickness and Mg content was not observed, and the resulting samples
were Sn-richer, which led to lower values of resistivity and activation energy, also consistent
with [90].
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1 2 3 4

Figure 3.14 – Top: schematics showing the Sn and Mg sputtering targets relative to the
positions of the substrates on the sample holder, which was rotated during
deposition. MTN layers were grown on a glass substrate (left), and on a
DSP Si wafer (right). Al pads were evaporated on layers grown on glass for
temperature-dependent conductivity measurements.

For both growth temperatures, the E04 parameter shuffled around 2.0 eV, lower
than what is calculated for the cation-ordered wurtzite phase [89]. However, the value
measured at position 1 for MTN grown at 200 °C might be overestimated due to the
conduction band filling effect, known as Burstein-Moss shift [91], given the low activation
energy and resistivity found for this sample, and also that conductivity showed only a
small increase with temperature. A similar behavior was found for ZTGN samples in Fig.
3.1, where a Sn-rich sample also showed a higher bandgap in spite of a higher Sn content.

Fig. 3.16 shows XRD data obtained with a PanAnalytical X’Pert Pro diffractome-
ter, which has an incident wavelength of 1.540598 nm, from a Cu anode, and is equipped
with a Ni (002) k𝛽 filter. Four samples of MTN grown at room temperature and 200 °C
on a DSP silicon wafer, with the same sputtering parameters previously mentioned, were
analyzed.

Besides low layer crystallinity, Fig. 3.16 shows that for MTN grown with no heat-
ing (top), there was a coexistence of wurtzite (w) and rocksalt (rs) phases, changing
from the (101)w to (111)rs, with an increase of (200)rs and decrease of (102)w peaks as
the Mg content increased. Upon increasing the deposition temperature to 200 °C, only
wurtzite peaks were observed in the diffractograms, which shows that the rocksalt phase
disappeared. These results are consistent with [89], where no rocksalt peaks were observed
neither in MTN samples grown at temperatures equal or superior to 200 °C, nor in Sn-rich
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Figure 3.15 – Thickness and E04 (a,b) from ellipsometry measurements on glass substrate
for four MTN samples, as shown in Fig. 3.14, grown with no heating (room
temperature - RT), and at 200 °C. Dark conductivity data (c) and EDS
measurements (d) showed that the increase in Mg content towards position
4 is accompanied by an increase in resistivity and activation energy.

samples.

In addition, images obtained by a Zeiss Gemini450 scanning electron microscope
(SEM) for MTN samples grown at room temperature show an increase in triangular
crystallites, consistent with columnar growth often seen in layers grown by sputtering, as
the Mg content increases, which are consistent with the results recently reported in [89].

Thus, to summarize this section, it was observed that MgxSn1-xN2 layers grown
under 200 °C showed a bandgap close to 2.0 eV, low resistivity and activation energy, con-
sistent with high electron concentrations. For samples grown at room temperature, higher
changes in composition were observed, leading to more resistive Mg-rich layers. Despite
substrate rotation, the fabrication procedures also led to a combinatorial deposition, with
composition changing between 40% and 55% Mg/(Mg+Sn) (at.%).
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200 °C

Figure 3.16 – Top: normalized X-ray diffractograms for four samples (S1-S4) of MgSnN2
grown on a DSP silicon wafer with no heating, and at 200 °C (middle row).
Magnesium content (at.%) increases from sample 1 (S1) to 4 (S4). Bottom:
SEM images show an increase in triangular crystallites as the Mg content
increases. These structures are consistent with columnar growth often seen
in layers grown by sputtering [89].

3.2.3 Solar cells

After the thorough material characterization and analysis described in the previous
section, MgxSn1-xN2 (40% < 𝑥 < 55%) layers grown under 200 °C and with no substrate
heating were employed either as passivating electron-selective contacts (on p and n-Si),
as electron-selective contacts, and as spectator layer when selectivity was in charge of
the (n) a-Si:H layer, which were the same structures employed when ZTGN was under
investigation.

The fabrication procedures for standard layers were the same as for devices fea-
turing ZTGN, and the sputtering time for MTN layers was reduced to approximately
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Figure 3.17 – JV characteristics (bottom) for three device architectures (top) featuring
MTN as spectator layer, electron-selective contact, and passivating electron-
selective contact, denoted by architectures “n(n/i)”, “n(i)” and “n(-)”, re-
spectively. MTN layers were grown with no heating, and all devices were
annealed at 210 °C for 30 min before characterization. A reference device is
also included for comparison.

10 min, targeting 20 nm layers, as for ZTGN. Four solar cells were fabricated on the same
positions as the ones depicted in Fig. 3.14, while composition of MTN layers on these
four positions is shown in 3.15 (d). Furthermore, all devices were subjected to annealing
at 210 °C for 30 min before IV characterization, except the ones with MTN grown at high
temperature, which were characterized before and after this annealing procedure.

Fig. 3.17 shows the device architectures featuring MTN, as well as the result-
ing JV characteristics for solar cells with 45% and 54% Mg/(Mg+Sn) (at.%), which are
representative of all other JV characteristics. It can be seen that MTN showed a similar
behavior to ZTGN, with a saturation and drifting current at forward bias for architectures
“n(i)” and “n(-)”, respectively. Moreover, solar cells at position 4 in Fig. 3.14, correspond-
ing to approximately 54% Mg/(Mg+Sn), exhibited stronger s-shapes around 0 mA cm−2,
similarly to the Ge-rich ZTGN case, previously discussed.

For architecture “n(n/i)”, where selectivity was in charge of the (n) a-Si:H layer,
good performance was observed for the solar cell at position 1, with 45% Mg/(Mg+Sn),
which showed a similar JV curve to the reference device, with no saturation at forward
bias. However, for the Mg-rich solar cell, a strong s-shape was still seen, but the saturation
at forward bias disappeared as well.
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Figure 3.18 – Voc and FF obtained for several device architectures featuring MgSnN2
grown at room temperature and then annealed at 210 °C for 30 min (first
column); for MTN grown at 200 °C with no annealing (middle column), and
then annealed (last column). An additional architecture, on p-Si, was also
included to observe if the resulting Voc would be similar to that for ZTGN,
which could point to a Fermi level pinning around the (p) c-Si Fermi level.
The reference device was characterized after annealing.

More similarities with ZTGN can be seen by looking at Fig. 3.18, which shows
Voc and FF values obtained for several device architectures, including an additional one
on p-Si, to check for Fermi-level pinning when comparing with architecture “n(-)”, since
both do not have the passivating (i) a-Si:H layer between MTN and c-Si. Also, different
MTN growth and device conditions were studied: devices with MTN grown at room
temperature and subsequent annealing (first column), and with MTN grown at 200 °C
and no annealing (middle column), which were then annealed (last column). The reference
device was annealed before IV characterization.

When the passivating (i) a-Si:H was not present — architectures “n(-)” and “p(-)”
—, open-circuit voltages between 500 mV and 550 mV were observed for devices on n-Si,
decreasing to values around 250 mV on p-Si. Furthermore, these values were not affected
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by variations in Mg content. Interestingly, the Voc values on n-Si were roughly the same
as the ones obtained when ZTGN was in direct contact with n-Si. Considering that in
the absence of the passivating layer there is a defective interface formed between MTN
and c-Si, these values point to a Fermi-level pinning around the c-Si Fermi level, close to
those observed for ZTGN.

Again, changes in composition did not lead to significant changes in Voc, which was
always between 500 mV and 600 mV, with the highest value of 599 mV found for the solar
cell at position 4 when MTN was grown at 200 °C and the device subjected to annealing.

When MTN was applied just as spectator layer, leaving electron selectivity in
charge of the (n) a-Si:H layer, good Voc values were obtained, similar to that from the
reference device, showing again that the appropriate work function of the (n) a-Si:H layer
can efficiently screen the work function mismatch with the subsequent layer. If this last
layer has a good conductivity, which is the case of Sn-rich MTN (position 1), a FF close
or even higher than that of the reference device can be observed. On the other hand, the
poor doping of the Mg-rich MTN (position 4) imposes an additional barrier to electron
extraction, resulting in a low fill factor and in a strongly s-shaped JV curve, as seen in
Fig. 3.17.

For MTN grown at room temperature (first column of Fig. 3.18), FF values de-
crease towards position 4 due to the increase in Mg content, which leads to increased
resistivity and activation energy, as seen in Fig. 3.15. But when MTN was grown at high
temperature, this same decrease was not seen since this growth condition implied in a
higher Sn content, enhancing conductivity. Moreover, annealing the devices with MTN
grown at high temperature recovered sputtering damages, since there were gains in both
Voc and FF were observed.

However, after the devices with MTN grown at 200 °C were annealead, a sharp
decrease in FF was observed for architecture “n(n/i)” from position 3 to 4, which is not
consistent to the decrease observed due to the increase in Mg content (middle column),
since before annealing the FF was still close to the reference device. Since MTN was
already grown at 200 °C, further annealing the wafer at 210 °C might have damaged this
solar cell.

It is interesting to note that the devices with MTN grown at high temperature and
employed only as spectator layer showed superior performances than the reference device.
The same was observed for some solar cells featuring ZTGN, which implies that these
materials might be well suited as a buffer layer for electron transport, if well optimized
for this purpose.

Fig. 3.19 shows Voc and FF extracted from SHJ solar cells featuring ZTGN and
MTN as electron-selective contacts — architecture “n(i)”. Note that position 1-5 denote
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Figure 3.19 – Voc and FF obtained for SHJ solar cells featuring ZTGN and MTN as
electron-selective contacts. All devices were annealed at 210 °C for 30 min.

the previous positions for the five and four solar cells with ZTGN and MTN, respectively.
Thus, compositions for these positions are not the same, although the results are grouped
by position.

SHJ solar cells with MTN showed higher Voc than the ones with ZTGN, especially
for Sn-rich MTN layers (for Ge and Mg-rich layers, lower differences in Voc were observed),
pointing that the work function of MTN is lower (towards vacuum energy level) than
ZTGN, since the hole contact stack was the same for all devices. In terms of FF, both
materials resulted in similarly poor values.

Thus, all these results suggest that the same limiting mechanisms are in place when
MTN and ZTGN are employed as electron-selective contacts: work function mismatch,
causing a thermionic emission barrier for electron extraction, and an additional barrier
due to poor doping of Mg and Ge-rich layers.

To check if this was indeed the case for MTN, the same analysis of JV-T curves
and thermionic emission modelling, as applied to SHJ solar cells featuring ZTGN, was
carried out for devices featuring MTN as electron-selective contacts — architecture “n(i)”,
for MTN layers grown at room temperature.

It is seen in Fig. 3.20 that, again, the current at forward bias is very well fitted
by the model. However, if the s-shape around open-circuit gets stronger, the model fails
to accurately describe the experimental data. Additionally, the JV characteristics change
their slope as it goes from the power quadrant to the first quadrant, just before saturation
at forward bias. Since only one term was used to model the lumped series resistance, the
fitted JV curve does not fit the data accurately in the power quadrant region.

However, the 𝐽𝑀𝑇 𝑁
0𝑛 current is well fitted, and thus can be approximated by

the difference between the current at forward bias and the photocurrent, i.e., 𝐽𝑀𝑇 𝑁
0𝑛 =
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Figure 3.20 – Top: JV data and the resulting fittings to the model given by Eq. (3.1) for
solar cells featuring MTN as electron-selective contact — architecture ‘n(i)”
— at positions 1-4, at STC. Bottom: Richardson plots of the electron current
to the electron contact, extracted from the fittings shown for positions 1-4,
between 25 °C and 55 °C, at 1000 W cm−2.

𝐽𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐽𝐿, since the hole current to the hole contact is small. Since both parameters
are well defined, the analysis by Richardson plots is not affected. Thus, following the fit-
ting procedure, the estimated work function was extracted from the Richardson plots of
the electron current to the electron contact. Fig. 3.21 show the suggested band alignment
between c-Si and the electron contact of SHJ solar cells featuring MTN grown at room
temperature. The values obtained for ZTGN compounds are also shown for comparison.

The work function values obtained for the studied MTN layers grown with no sub-
strate heating were slightly lower (towards vacuum level) than those obtained for ZTGN
layers, which can account for the higher Voc observed when MTN was tested as electron-
selective contact, as it was suspected. Moreover, it is interesting to note the distribution
of the band diagrams for ZnSnxGe1-xN2 alloys and MgxSn1-xN2, with all work function
values between the Sn-rich ZTGN and Sn-rich MTN, with an average of (4.27 ± 0.06) eV.

In the case of MTN, the whole bandgapmoved towards the vacuum level as the
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Figure 3.21 – Suggested band alignment between c-Si and electron contacts of SHJ solar
cells featuring five ZTGN and two MTN compositions (at room temperature
- left, and 200 °C - right), as discussed in the text.

Mg content increased, while in the ZTGN case the CB minimum moved towards the
vacuum level as the Ge content increased. It has to be mentioned that these values were
not experimentally measured but result from a mathematical modelling, being indirect
measurements, and care should be taken when interpreting these values.

Moreover, for MTN layers grown at 200 °C, the valence and conduction bands were
pushed down, away from the vacuum level. As a result, the VB offset with c-Si increased,
which can explain why the Voc values for solar cells with MTN at high temperature were
still basically the same as for MTN at room temperature, despite these layers had higher
work functions.

Considering that the MTN layers grown at 200 °C were Sn-richer, and therefore
showed lower activation energy and resistivity than the ones grown with no heating,
these results indeed suggest that intrinsically conductive semiconductors have high work
function values, making the CB close to the Fermi level, as discussed for ZTGN layers.

3.3 Conclusions
This chapter initially reported the characterization of ZTGN layers on glass and

the performance assessment of SHJ solar cells featuring these layers as electron-selective
contacts. In the investigated composition range, bandgap was shown to be tunable between
1.6 eV and 2.3 eV and conductivity and activation energy from 7 S cm−1 and 17 meV to
2.5 × 10−10 S cm−1 and 610 meV, respectively. Nevertheless, for all compositions, ZTGN
performs similarly as electron-selective contact with low Voc (between 450 mV and 580 mV)
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and FF.

Following an exchange-current modeling, the poor electron-selective ability of these
layers can be attributed to the ZTGN work function being around 4.3 eV, i.e. within the
silicon bandgap, independently of the Sn and Ge contents. The Sn-rich composition is
suggested to be limited by its too high electron affinity, whereas the Ge-rich composition
combines a too low electron affinity with a too low doping (too high activation energy).
This causes two different barriers for electron extraction, one being intrinsic to the selec-
tivity of the contact and originating from unfavorable band bending in the silicon itself,
and the other being external and due to the resistivity of the layer itself.

After having identified the reasons limiting an efficient electron extraction in de-
vices featuring ZTGN, MgSnN2 (MTN) was envisioned as a good candidate, since it was
expected to have good doping levels and a suitable bandgap. Thus, MTN layers were
fabricated by a combinatorial sputtering approach, with no heating and at 200 °C, con-
firming high doping levels for Sn-rich MTN samples, which decreased towards Mg-rich
oens, with no significant changes in bandgap, which was estimated as being close to 2 eV,
in agreement with recent results reported in the literature.

When MTN layers were applied as electron-selective contacts in SHJ solar cells,
only a marginal improvement in performance was seen when compared to devices featuring
ZTGN. Strong s-shapes, similar to those obtained for Ge-rich ZTGN, were obtained for
devices featuring Mg-rich layers, which showed a high resistivity, while devices with Sn-rich
MTN showed lighter s-shapes, also similar to the ones obtained for ZTGN. Furthermore,
saturation of the JV characteristics at forward bias was again observed. Also, strong
Fermi-level pinning at the c-Si interface was observed when ZTGN or MTN layers were in
direct contact with the wafer, which was effectively suppressed when inserting an intrinsic
a-Si:H layer.

Following the same exchange-current modeling, the effective work function of the
electron contact featuring MTN was estimated as being around 4.16 eV, which was pushed
to 4.3 eV for more conductive layers, along with conduction and valence bands. These
results suggest that the effective work function of the electron-selective contact lies around
4.3 eV when ZTGN or MTN are employed as electron-selective layers in SHJ solar cells,
with Sn-rich samples showing high electron affinities, and Ge/Mg-rich ones having poor
doping levels.

This work function mismatch with c-Si causes a gradient in the electron quasi-
Fermi level in the electron contact, and induces a parasitic band bending in the absorber,
causing an increase in hole concentration in the c-Si close to the electron contact, low-
ering the electron to hole ratio, which reduces the contact selectivity due to enhanced
recombination. Hence, the implied voltage generated in the c-Si absorber is considerably
dropped to the observed low open-circuit voltage values that were extracted from the
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devices studied in this work.

Thus, since these semiconductors are conductive due to intrinsic defects, a way to
increase the performance of solar cells featuring these layers would be to dope Ge-rich
ZTGN and Mg-rich MTN layers with extrinsic elements, shifting their work functions to
lower levels (Voc improvement), improving conductivity and hence reducing the strong
s-shapes observed for these compositions (FF improvement).
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4 General conclusions and prospects

The search for new materials that could replace the a-Si:H layers as electron-
selective contacts in SHJ solar cells is not an easy task, as it was shown in this work.
Besides having high electron concentration to ensure good conductivity for majority elec-
trons and high resistivity for minority holes, work function matching, minor and high
CB and VB offsets with c-Si are additional properties that must be satisfied by these
materials.

Data from several structures of SHJ solar cells featuring ZTGN and MTN as
electron-selective layers strongly suggested that a thermionic emission barrier is hindering
an efficient electron extraction due to work function mismatches with c-Si, resulting in
a gradient in the electron quasi-Fermi level in the electron contact and parasitic band
bending in the absorber, enhancing the hole concentration and reducing the electron
to hole ratio in the vicinity of the contact, decreasing its selectivity. Thus, the voltage
generated in the c-Si absorber could not be fully extracted, resulting in low Voc obtained
for devices featuring either ZTGN or MTN.

Despite having tunable band gap and electron concentration as a function of sto-
ichiometry, the effective work function of the electron selective contact featuring ZTGN
or MTN was found to not be tunable, always lying around 4.3 eV, accompanied by a too
high electron affinity when conductivity was high. Even though better CB offsets could be
achieved upon changes in stoichiometry, the non-moving work function resulted in poorly
doped layers, which then imposed an additional barrier to electron extraction, strongly
affecting the fill factor on the device level. Therefore, doping these layers with extrinsic
elements could then move their work functions and result in better solar cell performance.

Considering that ZTGN and MTN own their conductivities to intrinsic defects, and
the similar open-circuit voltages obtained in this work, further studies could investigate in
more detail the position of the work function in these semiconductors, and also their band
alignments with silicon. Perhaps the work function of all these ternary nitride semicon-
ductors and their alloys lie around the same position, making extrinsic doping a necessity
to build efficient solar cells featuring these materials as electron-selective contacts.

Moreover, it was shown how important it is to find computational methods that
can effectively extract parameters from solar cell JV data. Also, since huge datasets are
commonly involved in this modelling procedure, methods that can be easily automated,
with low or no supervision by the user, such as metaheuristics, can be valuable tools if
properly evaluated, especially considering the presence of noisy data.

Hence, research on simple yet powerful stochastic optimization algorithms that
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can automatically regulate the search process is a fruitful research field, especially if these
methods are applied to the PV parameter extraction problem, considering the abundance
of diode models available in the literature.

Finally, anomalous JV curves are now commonly reported in the literature as the
research in new materials for solar cells moves forward, and many models describing these
curves can be found. However, a unified explanation, experimentally validated, has not
been published yet.



Appendix
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APPENDIX A – Error maps for the
exchange current density modelling

As discussed in Chapter 3, fitting the JV characteristics with the exchange current
density model resulted in good fittings for Sn-rich compositions. As the Ge-content (and
layer resistivity) increased, the fittings started to show accuracy issues around the flat
part of the JV characteristics, close to 0 mA cm−2. Despite these problems, the saturating
current at forward bias was always well fitted, and since this region was used for the
thermionic emission modelling, those fitting issues were not problematic for the analysis
carried out in this work.

Since the hole step occurs close to zero current, it can be difficult to determine
the hole current densities, since even the majority hole current is small. However, for the
Sn-rich ZTGN solar cell (Position 1 in Table 3.1 and Fig. 3.4), the Differential Evolution
algorithm used to fit the data was capable of finding well defined parameters, resulting in
a good matching between the fit and the experimental data.

Figure A.1 – Maps of the Root Mean Square Error (RMSE) between experimental and
fitted JV data for the solar cell at position 1 (Sn-rich ZTGN), for varying
j0p

ZTGN, J0p
p-aSi, and j0n

p-aSi, considering J0n
ZTGN and Rs well defined and

given in Table 3.1.
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Figure A.2 – Maps of the Root Mean Square Error (RMSE) between experimental and
fitted JV data for the solar cell at position 5 (Ge-rich ZTGN), for varying
j0p

ZTGN, J0p
p-aSi, and j0n

p-aSi, considering J0n
ZTGN and Rs well defined and

given in Table 3.1.

Fig. A.1 shows maps of the Root Mean Square Error (RMSE) between exper-
imental and fitted data, for varying j0p

ZTGN, J0p
p-aSi, and j0n

p-aSi, considering J0n
ZTGN

and Rs well defined and equal to 14.28 mA cm−2 and 7.15 Ω cm2, respectively. There is
clearly a small optimal region, where 10−10 < j0n

p-aSi < 10−9, 𝐽0p
p-aSi ≈ 1 mA cm−2, and

𝑗0p
ZTGN ≈ 10−6 mA cm−2, for which the RMSE has a minimum value, and thus the algo-

rithm was capable of finding this optimal region.

On the other hand, the same is not valid for position 5, which has a Ge-rich com-
position: many different values for the minority currents and majority hole current could
fit the JV characteristics, with only marginal differences in the fitting quality, measured
by the RMSE. Around the best parameters found by the algorithm, it was not possible
to clearly detect a region in which the RMSE has a minimum, as shown in Fig. A.2.

Moreover, besides the “optimal” region is where 𝐽0n
p-aSi ≈ 10−19, this value is

many orders of magnitude lower than that obtained for the solar cell at Position 1 (Sn-
rich). Since the hole contact was supposed to be the same for all solar cells, this value is
physically unreasonable, which suggests that the strong s-shape seen in the JV charac-
teristics of solar cells with Ge-rich ZTGN cannot be described by this exchange current
density model, as discussed in Chapter 3.
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