
FEDERAL UNIVERSITY OF ITAJUBÁ - UNIFEI
PROGRAM OF

ELECTRICAL ENGINEERING

Estimating the Family Bias to Autism: A
Bayesian Approach

Emerson Assis de Carvalho

Itajubá/MG, Brazil, Feb., 2022



FEDERAL UNIVERSITY OF ITAJUBÁ - UNIFEI
PROGRAM OF

ELECTRICAL ENGINEERING

Emerson Assis de Carvalho

Estimating the Family Bias to Autism: A
Bayesian Approach

Doctoral Dissertation presented to the Program of Electrical

Engineering in partial fulfillment of the requirements for the

Degree of Doctor in Science in Electrical Engineering.

Field: Automation and Industrial Electrical Systems

Advisor: Prof. Dr. Guilherme Sousa Bastos

Feb., 2022

Itajubá/MG, Brazil



Emerson Assis de Carvalho

Estimating the Family Bias to Autism: A Bayesian
Approach

Doctoral Dissertation presented to the Pro-
gram of Electrical Engineering in partial ful-
fillment of the requirements for the Degree of
Doctor in Science in Electrical Engineering.

Approved. Itajubá/MG, Brazil, Feb. 21, 2022:

Prof. Dr. Roberto Hirochi Herai

Prof. Dr. Lucelmo Lacerda de Brito

Prof. Dr. Ricardo Zorzetto N. Vêncio

Prof. Dr. Edmilson Marmo Moreira

Prof. Dr. Joao Paulo Reus R. Leite

Prof. Dr. Guilherme Sousa Bastos
Advisor

Itajubá/MG, Brazil
Feb., 2022



Acknowledgements

First, I would like to thank my advisor, professor Dr. Guilherme Sousa Bastos,

for supporting me over these years and giving me so much freedom to explore both areas

of autism and technology. I also must thank him for sharing such personal experiences,

allowing me to work with such a relevant topic, and for becoming a great friend. Finally,

I would like to congratulate him on being the best father that the lovely Alvina could

have.

My other committee members have also been very supportive. Lucelmo Lacerda

de Brito has long provided several reviews and has kept me attentive about all the details

of autism. Professor Dr. Edmilson Marmo Moreira has long been an inspiration since

my graduate degree. His classes have proved to be one of my best learning experiences.

Special thanks for the collaboration of professors Dr. João Paulo Reus Rodrigues Leite,

Dr. Ricardo Zorzetto Nicoliello Vêncio, and Dr. Roberto Hirochi Herai.

I want to thank my many colleagues at Unifei with whom I have enjoyed working

over these years. These include Caio Pinheiro Santana, Gustavo Leite Lopes, José Renato

Castro Milanez, Luiz Fernando Nunes, Vinícius de Almeida Paiva, and all the Automation

and Information Technology Group (GATI) members.

In particular, I would like to thank my friends Fábio Júnior Alves, Igor Rodrigues

Duarte, Lênio Oliveira Prado Júnior, and Ricardo Emerson Julio for providing a welcome

distraction from work, for their help, friendship, and support during the development of

this project. I am very grateful to all and for each one of these people.

Finally, I would like to thank my parents, Rosânia Fátima de Carvalho and Noé

Lourenço de Carvalho, and my daughter Luiza Oliveira Carvalho for putting up with my

absences, for listening about my work, which they often did not understand, for giving

me the motivation to finish this thesis, and for all love they offer to me, especially my

little girl.



"If you can dream it, you can do it. Always remember that this whole thing was started

with a dream and a mouse.”

(Walt Disney)



Abstract
Autism is an age- and sex-related lifelong neurodevelopmental condition characterized pri-

marily by persistent deficits in core domains such as social communication. It is estimated

that ≈ 2% of children have some ASD trait. The autism etiology is mainly due to inherited

genetic factors (>80%). The importance of early diagnosis and interventions motivated

several studies involving groups at high risk for ASD, those with a greater predisposition

to the disorder. Such studies are characterized by evaluating some characteristics of the

individual itself or the family members of diagnosed individuals, mainly aiming to predict

a future diagnosis or recurrence rates. One of the primary goals of Artificial Intelligence

is to create artificial agents capable of intelligent behaviors, such as prediction problems.

Prediction problems usually involve reasoning with uncertainty due to some information

deficiency, in which the data may be imprecise or incorrect. Such solutions may seek the

application of probabilistic methods to construct inference models. In this thesis, we will

discuss the development of probabilistic networks capable of estimating the risk of autism

among the family members given some evidence (e.g., other family members with ASD).

In particular, the main novel contributions of this thesis are as follows: the proposal of

some estimates regarding parents with ASD generating children with ASD; the highlight-

ing regarding the decrease in the ASD prevalence sex ratio among males and females

when genetic factors are taken into account; the corroboration and quantification of past

evidence that the clustering of ASD in families is primarily due to genetic factors; the

computation of some estimates regarding the risk of ASD for parents, grandparents, and

siblings; an estimate regarding the number of ASD cases in a family sufficient to attribute

the ASD occurrences to the genetic inheritance; the assessment of some estimates for

males and females individuals given evidence in grandparents, aunts-or-uncles, nieces-or-

nephews and cousins; and the proposition of some estimates indicating risk ranges for

ASD by genetic similarity.

Key-words: Autism Spectrum Disorder Prevalence. Autism Spectrum Disorder Etiology.

Probabilistic Graphical Models, Bayesian Networks, Markov Models.
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1 Introduction

1.1 Motivation

Composed by the Greek words “autos” (self) and “ismos” (action), the term autism

was initially borrowed from the description of schizophrenia given by Eugene Bleuler in

1911, characterizing the withdrawal from reality (SZATMARI, 2000). In 1943, Leo Kan-

ner adopted the term autism to describe children with an extreme inability to relate to

others, primarily due to severe difficulties in using language to communicate (KANNER

et al., 1943). In 2013, after a list of nomenclatures and classifications, the fifth edition of

the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) included autism in

a section named Autism Spectrum Disorder (ASD) (APA, 2013). From then on, ASD is

described as an age- and sex-related lifelong neurodevelopmental disorder characterized

primarily by persistent deficits in core domains as social communication across multi-

ple contexts, in addition to restricted and repetitive patterns of behavior, interests, or

activities (WANG et al., 2018; APA, 2013; RAPIN; TUCHMAN, 2008).

The ASD symptoms are mainly manifested in the early developmental period,

under three years of age, and impair the individuals’ everyday lives. ASD has a wide

range of severity. It is dimensionally defined, with borders that overlap normality on the

one hand and profound intellectual impairment caused by brain malfunctions on the other

hand. Thus, people who meet the criteria for ASD are diagnosed as having ASD Level 1,

ASD Level 2, or ASD Level 3. These three levels are based on a person’s strengths and

limitations and indicate how much support ASD people need. Level 1 indicates Requiring

Support; Level 2 indicates Requiring Substantial Support, and Level 3 indicates Requiring

Very Substantial Support (APA, 2013).

The most recent prevalence estimates indicate that we are witnessing an increase

in positive ASD diagnoses. It was estimated one case for every 150 United States children

in 2000, whereas it was estimated one case for every 54 children in 2016 (MAENNER et

al., 2020), and one case for every 44 children in 2018 (MAENNER et al., 2021). Estimated

increases in the ASD diagnoses, from 6-7% to 15% per year, make ASD the fastest-growing

developmental disability in the United States (BONIS, 2016; ÖZERK, 2016). Although,
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a global report highlights that the prevalence increase may be affected by changes in

diagnostic concepts, service availability, and awareness about the disorder (ELSABBAGH;

JOHNSON, 2010). Some statistics from other countries indicate one case for every 64

children in the United Kingdom (BARON-COHEN et al., 2009), one case for every 38

children in South Korea (KIM et al., 2011), one case for every 52 children in Sweden

(XIE et al., 2019), one case for every 83 children in a multi-national population-based

study1 (HANSEN et al., 2019), and one case for every 160 global children, no matter

the racial, ethnic or socioeconomic characteristics (ELSABBAGH et al., 2012). Although

these estimates range widely between genders, ASD is about three to four times more

common among boys than girls (BAIO et al., 2018; LOOMES; HULL; MANDY, 2017).

The economic cost estimates of ASD on individuals, their families, and society are

substantial, with a high financial burden in several domains such as medical, healthcare,

therapeutic, special education, and productivity loss (ROGGE; JANSSEN, 2019; KO-

GAN et al., 2008). The amount of money invested in supporting ASD individuals during

his/her lifetime is about US$1.4 million in the United States and the United Kingdom.

The costs with ASD in these countries can reach US$2.4 million and US$2.2 million if

the individuals present intellectual disability. Such charges include special education ser-

vices and parental productivity loss when children, plus special care, sheltered work, and

individual productivity loss when adults (BUESCHER et al., 2014). Children and adoles-

cents with ASD have medical expenses up to 6.2 times greater than those with Typical

Development (TD), with general costs from 8.4 to 9.5 times greater than the average

(SHIMABUKURO; GROSSE; RICE, 2008). Leigh and Du (2015) estimated an annual

total cost of US$268 billion with direct medical, non-medical, and productivity loss in the

United States for 2015, forecasting an expense of US$461 billion for 2025.

In addition to medical expenses, intensive behavioral interventions needed for the

ASD treatment has costs from US$40 thousand to US$60 thousand per child per year

(AMENDAH et al., 2011). ASD Children are more likely to have more significant health

care needs and difficulties accessing health care than children with other emotional or

behavioral disorders (e.g., anxiety, depression, attention-deficit, hyperactivity disorder,

developmental delay, Down syndrome, intellectual disability, learning disability) and chil-

dren without these conditions, even in high-income countries (KOGAN et al., 2018).
1 California, Denmark, Finland, Israel, Sweden and Western Australia
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Besides the economic costs, parents of children with ASD show higher stress levels

than other parents. Parental emotional overload is one of the main difficulties suffered

by families. The main stress factors for families with ASD children are diagnostic delay,

trouble dealing with the diagnosis, and reduced access to health assistance and social

support (GOMES et al., 2015). The daily care tasks affect all aspects of the children’s life

and the parent’s mental health (BONIS, 2016). The stress level experienced by mothers

of teenagers with ASD is comparable to that of combat soldiers or parents of children

with cancer (SELTZER et al., 2010).

Early diagnosis and proper interventions are critical factors in improving autistic

behaviors in children. Early treatments may result in improved communication and so-

cial interaction, stereotyped and repetitive behaviors, and fixed and restricted interests,

allowing an evolution that may lead to healthy adult life, as well as significant long-term

societal costs reductions (LANDA, 2018; HAZLETT et al., 2017; EMERSON et al., 2017;

ZWAIGENBAUM et al., 2015). The importance of early diagnosis motivated several stud-

ies regarding groups of people at high risk for ASD, those with a greater predisposition

to the disorder. Such studies are characterized by evaluating some characteristics of the

individual itself that could predict a future diagnosis, the family members of diagnosed

individuals, the most common are siblings, in addition to extensive studies to explain the

ASD etiology.

Despite the importance of early diagnosis and interventions, there are no low-cost

automated tests to identify the disorder. The ASD diagnosis is performed through clinical

observation, which is challenging to accomplish in young children (Brazil’s Ministry of

Health, 2014). Due to ASD heterogeneity, the process involving its cycle of diagnoses and

treatment is not at a very advanced stage of effectiveness. Consequently, there are limited

intervention options to improve the ASD core symptoms, including mental or medical

comorbidities (MASI et al., 2017).

The ASD has a multi-factorial etiology: neurobiological, genetic, and environmen-

tal (LYALL et al., 2017). In addition to other causes, several studies have related some

parents’ characteristics or the gestation environment with an ASD risk increase in their

descendants. However, the most evident characteristic concerning the ASD risk increase

is, for now, some genetic factors (GROVE et al., 2019; IAKOUCHEVA; MUOTRI; SE-

BAT, 2019; WANG et al., 2017; SANDIN et al., 2016; TICK et al., 2016; SANDIN et al.,
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2014; HALLMAYER et al., 2011). According to Almandil et al. (2019), Bai et al. (2019),

Sandin et al. (2017) and Kroncke, Willard and Huckabee (2016), from 80% to 90% of the

ASD cases is caused by hereditary factors, with a small environmental contribution. In

early 2020, an analysis of the genetic sequencing of more than 35 thousand people with

ASD, and their families, identified 102 genes as the primary genes associated with autism

(SATTERSTROM et al., 2020).

All these aspects motivated several studies that involve the use of the technol-

ogy applied to autism, such as to characterize autistic symptoms (PALMER; LAWSON;

HOHWY, 2017), diagnostic methods (HEINSFELD et al., 2018; BHAUMIK et al., 2018;

KHOSLA et al., 2018; LIAO; LU, 2018; ZHAO et al., 2018; DVORNEK; VENTOLA;

DUNCAN, 2018; DEKHIL et al., 2018b; DEKHIL et al., 2018a; HAZLETT et al., 2017;

EMERSON et al., 2017; DVORNEK et al., 2017; YAHATA et al., 2016), the use of robots

and other Artificial Intelligence (AI) techniques applied to the therapy processes (ALVES

et al., 2020), early prediction approaches (BUSSU et al., 2018), and several studies in-

volving groups at high risk for ASD (Sections 2.4, 2.5 and 2.6).

Nowadays, science and technology are omnipresent in our everyday lives, becoming

the new basis for belief and, together, bring new ways to improve the quality of life of our

entire society (FEENBERG, 2006). However, most real-world events are unpredictable,

demanding that intelligent applications need to handle partial observability, nondetermin-

ism, or any eventuality (RUSSELL; NORVIG, 2020). The uncertainty arises from some

information deficiency. Thus the information may be incomplete, imprecise, incorrect, or

contradictory (KLIR, 2006).

AI is the study of intelligent behaviors. Its primary goal is a theory of intelligence

that explains the behavior of natural intelligent entities and guides the creation of ar-

tificial agents capable of intelligent behaviors, such as prediction problems and decision

support. Prediction problems usually involve reasoning with uncertainty. Reasoning un-

der uncertainty has a long history and is a significant issue in AI. Many problems require

solutions for a better decision-making process. Such solutions may seek the application of

probabilistic methods to construct inference models (RUSSELL; NORVIG, 2020; GENE-

SERETH; NILSSON, 2012).

Probabilistic methods may involve, for example, graphical probabilistic models
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such as Bayesian Networks (BNs) and Markov Models (MMs), which are among the

best methods for reasoning about uncertainty (NEIL; FENTON; NIELSON, 2000). These

probabilistic networks allow inter-causal reasoning, a vital aspect that distinguishes them

from other inference systems (KJAERULFF; MADSEN, 2013). In inter-causal reasoning,

taking evidence about a hypothesis decreases the belief in the competing unobserved hy-

potheses automatically (KJAERULFF; MADSEN, 2013), establishing a safe and complete

inference mechanism (PEARL, 1988).

BNs are graphical representations of causal relationships in a particular domain

(HOLMES; JAIN, 2008). A BN is a directed and acyclic graph in which each node cor-

responds to a random variable. Directed edges connect pairs of nodes, indicating a direct

influence of one node over the other. In addition, each node has a conditional probability

table that quantifies the effect of its parent nodes over it. By using inference algorithms

over BNs, it is possible to estimate beliefs in the context of observed pieces of evidence

(RUSSELL; NORVIG, 2020). Employing rigorous formalism and practical algorithms for

probabilistic reasoning, BNs support any reasoning with causal variables, such as diagno-

sis, prediction, or causal explanation (RUSSELL; NORVIG, 2020; WILLIAMSON, 2002).

BNs have applications in engineering such as monitoring power generators (MOR-

JARIA; SANTOSA, 1996), displaying time-critical information at NASA’s mission control

systems (HORVITZ; BARRY, 1995), the field of network tomography (CASTRO et al.,

2004), and diagnosis-and-repair tools (BREESE; HECKERMAN, 1996; HORVITZ et al.,

1998). BNs also have practical applications for medicine (SAHEKI, 2005), such as diag-

nosing (ANDERSEN et al., 1989; POURRET; NAÏM; MARCOT, 2008), pathology finder

(HECKERMAN, 1990), genetic models (SILBERSTEIN et al., 2013; POURRET; NAÏM;

MARCOT, 2008), and clinical support (POURRET; NAÏM; MARCOT, 2008).

Hidden Markov Models (HMMs) are a double stochastic process, with a non-

visible stochastic process (not observable) that can be observed/predicted through another

stochastic process that produces the sequence of observations. The hidden processes are

a set of states connected by transitions with probabilities. In contrast, the observable

(non-hidden) processes are outputs or observable states, each one emitted by each not

observable state according to some output of a probability density function. HMMs allow

the designing of systems to predict a sequence of related states through a sequence of

observations (RABINER, 1989). For example, HMMs were used to propose data-driven
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tools to predict Power Quality disturbance based on past weather conditions (XIAO; AI,

2018).

Also used for modeling several different problems in medical researches (KROGH;

MIAN; HAUSSLER, 1994; MEYER; DURBIN, 2002; TESTA et al., 2015), HMMs have

been applied in several different areas of AI, such as Computer Vision (GHAHRAMANI,

2001), Robotics (BERG et al., 2018), Speech and Face Recognition (MUSTAFA; ALLEN;

APPIAH, 2019; RAHUL et al., 2019), and Computational Biology (TAMPOSIS et al.,

2019).

The causal nature of the ASD etiology combined with the possibility of structuring

the probabilistic networks as trees (like a pedigree chart) motivates the probabilistic

graphical models as a reasonable alternative to investigate the familiar bias to ASD.

1.2 Research Question

According to the assumptions/propositions presented in which: (1) there is an

increase in the ASD prevalence/diagnosis nowadays; (2) early diagnosis leads to better

outcomes for autism treatment and to a long term individual and societal costs reduction,

which corroborates the importance of investigating groups at high risk for ASD; (3) the

genetic nature of the ASD etiology with high heritability estimates, which makes it pre-

dominantly causal (from parents to children); and (4) the ability of probabilistic networks

to build transparent and efficient inference models in inter-causal domains combined with

the availability of statistical data in the literature, especially related to the prevalence, re-

currence, and heritability of ASD; the problem addressed by this work is: are probabilistic

networks a suitable approach to model the family bias to autism?

We intend to evaluate whether probabilistic networks are a suitable approach by:

• Simulation: in which we will validate the proposed inference model results compared

to the ASD heritability estimates and the ASD recurrence rate among siblings avail-

able in the state-of-the-art literature; and

• Quality Analysis: in which we will analyze the quality of the proposed model ac-

cording to the construction techniques of BNs.



Chapter 1. Introduction 24

Thus, we will consider probabilistic networks a suitable model if they estimate the

likelihood of autism in family members with a proper efficiency concerning the known

ASD prevalence and recurrence rates.

1.3 Objectives

This work’s primary objective is to develop probabilistic networks capable of esti-

mating the risk of autism among family members. Given some evidence, for example, the

ASD diagnosis of one family member, these models will estimate the risk of ASD among

other family members.

To achieve our primary goal, we also accomplish other steps:

1. Gather, assess, estimate, and summarize statistical information regarding the ASD

prevalence;

2. Gather, assess, estimate, and summarize statistical information regarding the ASD

etiology, specially heritability and recurrence rates among siblings;

3. Propose a probabilistic model to infer the general probability of parents with ASD

characteristics generating ASD children;

4. Propose a causal probabilistic model to infer the probabilities of ASD in family

members, given some evidence of ASD in the family genealogical tree;

5. Evaluate the proposed models with the ASD heritability and recurrence data exist-

ing in the state-of-the-art literature; and

6. Introduce some ASD probabilities estimates from predefined family compositions to

alert about the likelihood of ASD in other family members, both below and above

in the family tree.

1.4 Methodology

Most surveys regarding ASD etiology and recurrence rates explored first-degree

relatives, especially twins, full and half-siblings. Few surveys worked with second-degree

relatives, such as grandparents and cousins. Despite presenting deeply relevant results,
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these studies have general and static probabilities. For example, it is almost a consensus

that an autistic person has inherited the condition in ≈ 80% of the cases. However, to the

best of our knowledge, no estimate says how likely a person is to be autistic, given that

it has one, or maybe two, diagnosed maternal cousins.

We defined a Model approach for this work, a broadly used methodology to define

an abstract model for a natural system. Model approaches are usually used in combina-

tion with other methods, such as experimental methodologies. Experiments based on a

model are named simulations. A model checking might be necessary if there is a formal

description of the model to verify the system’s functionality or correctness (AMARAL et

al., 2011).

As a model and experimental methodology, this work was divided into three main

phases: an exploratory phase, a building phase, and an evaluation phase:

• In the exploratory phase, non-systematic bibliographic reviews will gather results

from previous works that 1) studied the association of genetics and environmental

factors with the ASD risk; 2) studied the ASD recurrence risk among siblings and

other family members; and 3) studied the association of other mental and neurolog-

ical disorders with the ASD risk (Chapter 2), we also will explore the most suitable

probabilistic graphical models (Chapter 3);

• In the modeling phase, the statistics gathered in the previous phase will base both

the study and building process of proper probabilistic models capable of inferring

the ASD risk given some specified family compositions (Chapters 4 and 5);

• In the evaluation phase, simulations of familial structure will estimate specific prob-

abilities that we must validate based on the empirical research outcomes gathered

in the initial phase (Chapters 6 and 7).

1.5 Thesis Outline

The general outline and the dependence among the chapters of this thesis are

depicted in Figure 1.

Chapter 2 brings a background on ASD, emphasizing its classification history,

prevalence rates, and etiology nature. We first introduce autism and some of its main
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Background

Autism Spectrum Disorder
(Chapter 2)

Probabilistic Graphical Models
(Chapter 3)

HMMs to Estimate the Probability of
Having Autistic Children

(Chapter 4)

Common Characteristics Among all
Bayesian Networks 

(Chapter 5)

Bayesian Net to Estimate the Risk of ASD
Given Evidence in Others Relatives 

(Chapter 7)

Bayesian Net to Estimate the Risk of ASD
in Siblings, Parents, and Grandparents

(Chapter 6)

Final Thoughts 
(Chapter 8)

Figure 1 – Outline and dependence among the chapters of this thesis.

classification. We then introduce the disorder prevalence data, which contains essential

prior probabilities to model the inference system. We then investigate the multifactorial

ASD etiology, in which genetic and environmental factors and their interactions con-

tribute to ASD risk factors. The chapter provides essential statistical information related

to the ASD etiology, such as 1) genetic factors (additive and dominant); 2) environmental

factors (shared or non-shared); and 3) recurrence rates among siblings. These statistical

data constitute the probabilistic basis for several conditional probabilities necessary to

construct the proposed models.

Chapter 3 provides an overview of probabilistic models applied to reasoning under

environments of uncertainty. It introduces some necessary concepts of probability theory

and presents two of the main probabilistic graphical approaches. Section 3.4 introduces the

BNs, highlighting their syntax, semantics, and methods of learning and inference. Section

3.5 introduces the MMs, highlighting the HMMs and their ability to model conditional

dependencies of hidden states. Also, the chapter presents the justification to use these

approaches to model causal domains. Moreover, the chapter shows related works on AI
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applied to medical researches.

Chapter 4 presents our proposed HMM used to estimate the likelihood of ASD

parents generating ASD children. Once genetic factors have been pointed out as the

primary root associated with the ASD risk, we used HMMs in conjunction with the ASD

heritability and recurrence rates among siblings to develop a model capable of estimating

the potential causal effect of ASD parents regarding their children. The chapter presents

our assumption regarding the statistical information used, as well as the model building

and validation process.

Chapter 5 introduces the design process used to model our BNs. The design process

of a BN requires a well-defined problem to be solved, careful identification and selection

of the relevant variables, a detailed description of independence relationships among the

selected variables, and a proper elicitation of the required prior and conditional proba-

bilities. The chapter presents and describes all aleatory variables we used, the domain of

the variables, and the base set of conditional and prior probabilities.

Chapters 6 and 7 define the problems to be investigated, which are the risk of

ASD in siblings, parents, grandparents, grandchildren, aunts, uncles, nieces, nephews,

and cousins. Then, they present the networks structures, the results of the inferences

performed, and discuss such results examining the literature.

Finally, Chapter 8 summarizes the achievements of our work, discussing its strengths,

limitations, and future works.
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2 Autism Spectrum Disorder

Autism and ASD are general terms for a collection of complex neurodevelopmental

disorders earlier classified as distinct subtypes (e.g., Autistic Disorder, Childhood Disinte-

grative Disorder, Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS),

and Asperger Syndrome). Autism is a complex lifelong neurodevelopmental disability cur-

rently merged into an umbrella of ASD diagnosis. Symptoms typically emerge during early

childhood (between 1 and 3 years of age) and affect communication and interaction with

others. Defined by a particular set of behaviors, autism is considered a spectral condition

that affects individuals differently and in varying degrees (SOCIETY, 2020).

The first autism studies started at the beginning of the 20th-century (SZATMARI,

2000; KANNER et al., 1943). Since then, its classification, prevalence, recurrence rates,

and etiology have undergone many changes over time, especially in the last few decades.

2.1 Autism Spectrum Disorder Classification

The category of autism diagnosis was not immediately recognized as a distinct cat-

egory. The Diagnostic and Statistical Manual of Mental Disorders (DSM) of the American

Psychiatric Association (APA) has already classified autism as:

• A psychiatric condition, an autistic sign in children with psychosis marked by a

detachment from reality (DSM-I) (ASSOCIATION, 1952);

• Infantile schizophrenia, understood as a behavior of schizophrenia in childhood

(DSM-II) (ASSOCIATION, 1968);

• A syndrome within the Global Developmental Disorders established with its separate

diagnosis and described as a Pervasive Developmental Disorder (PDD), distinct from

schizophrenia (DSM-III) (ASSOCIATION, 1980); and

• Invasive Developmental Disorders, characterized by a triad: impaired communica-

tion, impaired social interaction, and stereotyped and repetitive behavior, and fur-

ther divided into sub-conditions such as Classic Autism, Rett Syndrome, Asperger’s
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Syndrome, Childhood Disintegrative Disorder, and Global Development Disorder

with no other specification (DSM-IV) (ASSOCIATION, 1994).

The DSM fifth edition (DSM-V) (APA, 2013) named the disorder as Autism Spec-

trum Disorder. ASD was defined as a neurodevelopmental disorder categorized by the

dyad:

• Communication and social interaction: showing deficits in socioemotional reci-

procity, non-verbal communicative behaviors, and in the development, maintenance,

and understanding of relationships; and

• Repetitive and stereotyped behaviors with fixed and restricted interests:

showing deficits in motor movements, stereotyped or repetitive speech or use of

objects, fixed and highly restricted interests that are abnormal in intensity or focus,

strong adherence to routines, ritualized patterns of verbal or non-verbal behavior,

hyper/hypo reactivity to sensory stimuli or unusual interest in the environment

sensory aspects.

Alternatively, clinicians in many countries use the International Statistical Classifi-

cation of Diseases and Related Health Problems (ICD), a global standard for health data,

clinical documentation, and statistical aggregation. Released in the 1990s, ICD already

classified autism as:

• Infantile Autism, listed under the Schizophrenia group (ICD-8) (OUSLEY; CER-

MAK, 2014; LEEKAM et al., 2002);

• Infantile Autism, Disintegrative Psychosis, Other, and Unspecified, listed under the

Psychoses with Origin Specific to Childhood group (ICD-9) (OUSLEY; CERMAK,

2014; LEEKAM et al., 2002);

• Childhood Autism, Atypical Autism, Rett Syndrome, Other Childhood Disintegra-

tive Disorder, Overactive Disorder with Mental Retardation and Stereotyped Move-

ments, Asperger Syndrome, Other PDDs, and PDD Unspecified, listed under the

PDD group (ICD-10) (ORGANIZATION et al., 1992);
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The ICD eleventh edition (ICD-11) (ORGANIZATION et al., 2018) also named

the disorder as Autism Spectrum Disorder, placing ASD inside the Neurodevelopmental

Disorders group. ICD-11 characterizes ASD as persistent deficits in initiating and sustain-

ing reciprocal social interaction and communication. In addition to a range of restricted,

repetitive, and inflexible behavioral patterns, interests, or activities, usually atypical or

excessive for the individuals’ age and socio-cultural context. The disorder’s onset occurs

during the developmental period, typically in early childhood, but symptoms may not

become fully manifest until later when social demands exceed limited capacities. Deficits

are sufficiently severe to cause impairment in personal, family, social, educational, occu-

pational, or other important areas of functioning and are usually a pervasive feature of

the individuals functioning observable in all settings. However, they may vary according

to social, educational, or another context. Individuals along the spectrum exhibit a full

range of intellectual functioning and language abilities.

ICD-11 classifies the disorder as:

• ASD without disorder of intellectual development and with mild or no impairment

of functional language;

• ASD without disorder of intellectual development and with impaired functional

language;

• ASD with disorder of intellectual development and with mild or no impairment of

functional language;

• ASD with disorder of intellectual development and with impaired functional lan-

guage; and

• ASD with disorder of intellectual development and with absence of functional lan-

guage.

The DSM and ICD manuals, especially the latest versions, are currently the guides

used by specialized health professionals to provide ASD diagnosis.
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2.2 Autism Spectrum Disorder Prevalence

Prevalence, or prevalence rate, is the proportion of individuals in a population who

have a particular disease or attribute at a specified point in time or over a specified period.

Prevalence differs from incidence because it includes all cases, new and preexisting, in the

population at the specified time, whereas incidence is limited to new cases only (DICKER

et al., 2006).

The first autism epidemiological surveys indicated a prevalence from 0.4 to 2 cases

for every 1000 people (0.04%-0.2%). Recent works show a higher ASD prevalence than

previously estimated, although there is no standardization of autism survey methodology.

Relying on refined research methodologies, including large populations, from multiple ge-

ographical locations, stratified samples with detailed screening activities, and well-known

diagnostic procedures, some recent epidemiological surveys suggest an ASD prevalence

ranging from 1% to 2% in many countries and regions, although estimates over 2% also

have been presented (FOMBONNE, 2018).

In 2010, it was estimated 52 million ASD cases worldwide (BAXTER et al., 2015),

while in 2016, it was estimated 62.2 million ASD cases (VOS et al., 2017). Despite the

heterogeneity between ASD survey methodologies, there is a shared trend toward an

increasing ASD prevalence. Table 1 shows reputable ASD prevalence surveys published

in the last decade. We concentrated on recent surveys (previous ten years), with large

sample sizes (preferably diversified in terms of the subjects’ age and geographical area),

and the definition of ASD cases based on modern diagnostic tools and certified health

professionals.

Most studies concentrated on children and adolescents (0-18 years). Dietz et al.

(2020) simulated ASD prevalence in adults using ASD prevalence data from children and

adolescents (3-17 years). Grønborg, Schendel and Parner (2013) also worked with adults,

although ≈ 75% of their diagnosed ASD cases were adolescents (under 18 years old). The

systematic review of Baxter et al. (2015) included samples up to 27 years old, despite

not finding population-representative data for adults. Indeed, the ASD diagnosis usually

occurs up to 17 years of age (OFNER et al., 2018).

Most studies have had follow-up intervals ending in the previous 5-6 years, with a

few works with follow-up intervals ending in the latest ten years. These recent follow-up
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Table 1 – ASD prevalence.

General
(M:F)

%

Sex
Ratio
(M:F)

Site(s) ASD
Criteria

Sample
Size

Age
(years)

Follow Up
Interval Reference

2.21
(3.6:0.9) 4.5:1 US ⊕ ▷ 18-84 ⊘ (DIETZ et al., 2020)

1.85
(3.0:0.7) 4.3:1 US* DSM-V 275 419⋆ 8 2008-2016 (MAENNER et al., 2020)

1.74
(2.7:0.8) 3.4:1 US ∙ 88 530 3-17 1997-2017 (ZABLOTSKY et al., 2019)

1.20
(NA:NA) NA Multi⊙ DSM-IV

ICD-9/10 2 551 918 4-17 1998-2015 (HANSEN et al., 2019)

1.10
(1.6:0.5) 3.2:1 Multi◇ DSM†

ICD† 2 001 631 0-16 1998-2018 (BAI et al., 2019)

1.14
(1.8:0.4) 4.3:1 Qatar DSM-V 133 781 6-11 2015-2018 (ALSHABAN et al., 2019)

1.92
(2.7:1.1) 2.5:1 Sweden⊖ DSM-IV

ICD-10 567 436 0-17 1984-2011 (XIE et al., 2019)

2.50
(3.9:1.0) 3.5:1 US ∨ 43 021 3-17 1999-2016 (KOGAN et al., 2018)

1.50
(2.4:0.6) 4:1 Canada DSM-IV/V

ICD-9/10 ≀ 5-17 2003-2015 (OFNER et al., 2018)

2.47
(3.6:1.2) 2.9:1 US ± 30 502 3-17 1999-2016 (XU et al., 2018)

1.25
(2.0:0.5) 3.9:1 US∘ ICD-9 3 166 542 4-18 1998-2016 (PALMER et al., 2017)

0.80
(1.2:0.3) 4.2:1 Global△ DSM

ICD 50 378 584O NA-27 1980-2009 (BAXTER et al., 2015)

1.18
(NA:NA) NA Denmark ICD-8/10 1 546 667 06-30 1980-2010 (GRØNBORG; SCHENDEL; PARNER, 2013)

1.15
(1.6:0.7) 2.5:1 Sweden⊖ DSM-IV

ICD-10 444 154 0-17 1990-2007 (IDRING et al., 2012)

1.20
(2.2:0.5) 4.4:1 NL× ⊗ 62 505 4-16 NA (ROELFSEMA et al., 2012)

2.64
(3.7:1.5) 2.5:1 South

Korea ∓ 55 266 7-12 2006-2009 (KIM et al., 2011)

1.57
(NA:NA) NA UK‡ ICD-10 11 700 5-9 NA (BARON-COHEN et al., 2009)

(M:F)Male:Female; ⊕Reported by parents on the National Survey of Children’s Health (NSCH); ▷Estimated the
2017 national and state ASD prevalence by simulation; ⊘2016-2018 state ASD prevalence of male and female
children ages 3-17 (born 1999-2015), an estimate of the state populations in 2017, and state mortality rates
from 1999 to 2017; *Arizona, Arkansas, Colorado, Georgia, Maryland, Minnesota, Missouri, New Jersey, North
Carolina, Tennessee, and Wisconsin; ⋆Monitors ASD among children aged 8 years in participating communities;
∙National Health Interview Survey; ⊙California (US), Denmark, Finland, Israel, Sweden and Western Australia;
◇Denmark, Finland, Sweden, Israel, and Western Australia; †DSM-III-R/IV/IV-TR/V or ICD-8/9/10 according
to the period, and in-person diagnosis by psychiatrists or pediatric neurologists with expertise in neurodevelop-
mental disabilities in Israel before age three; ⊖Stockholm County; ∨Parent reported ASD children at the NSCH
who ever received an ASD diagnosis by a care provider; ≀40% of all children and youth aged 5–17 years across
Canada (based on 2011 Canadian census); ±Parent report of a physician diagnosis at the NSCH; ∘A de-identified
database from Aetna; △Tables S3 and S4 in the (BAXTER et al., 2015) supplementary material; OOf ASD cases;
×Netherlands (Eindhoven, Haarlem, and Utrecht); ⊗Diagnoses made by a clinical professional (e.g. psychologists
or psychiatrists); ∓Autism Spectrum Screening Questionnaire (ASSQ), ADOS, ADI-R, Korean WISC-III, Leiter
International Performance Scale-Revised (ASD diagnoses met DSM-IV criteria); ‡Cambridge City, East Cam-
bridgeshire, South Cambridgeshire, and Fenland districts; NACould not be determined with sufficient precision.

intervals guided the adoption of modern, widely used, and well-known ASD diagnostic

tools, especially DSM and ICD.

These recent researches investigated samples of multiple sizes (small to large),

geographically dispersed across states, countries, and even continents. Such a set of char-

acteristics contributes to the reliability of their results, mainly if analyzed collectively.
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According to these studies’ results, the overall ASD prevalence has a mean of ≈ 1.6%.

Table 2 shows some measures of the centrality of the ASD prevalence data pre-

sented in Table 1. Aiming to reduce outliers, we excluded results with overall ASD preva-

lence less than 1% or greater than 2%. In addition, we also excluded results that did

not present prevalence by gender. The mean and the median of ASD prevalence data are

close. Applying the standard deviation to the mean/median, we obtain an overall ASD

prevalence from ≈ 1.1% to ≈ 1.76%, an ASD prevalence among males from ≈ 1.71% to

≈ 2.73%, an ASD prevalence among females from ≈ 0.44% to ≈ 0.86%, and a male:female

sex ratio of ≈ 3-4:1.

Table 2 – Central tendencies of ASD prevalence from Table 1.

Measure General
(%)

Male
(%)

Female
(%)

Sex Ratio
(M:F)

Mean 1.43 2.22 0.65 3.57
Standard Deviation 0.33 0.51 0.21 0.79
Median 1.25 2.20 0.60 4.00

ASD occurs globally irrespective of culture, geography, or degree of industrializa-

tion. Some prevalence data from developed countries appear to be more comprehensive

and reliable than those from developing countries. In developed countries, the greater

availability of screening and diagnostic services usually increases ASD diagnosis. Anyway,

the global ASD prevalences are rising, even when considering data from both developed

and developing countries (ONAOLAPO; ONAOLAPO, 2017; ROTHOLZ et al., 2017;

JANVIER et al., 2016).

However, much remains necessary to figure out the ASD prevalence trend, espe-

cially in developing countries. While recent ASD prevalence among developed countries

tends to percentage values that approach 2%, epidemiological researches in developing

countries point to percentage values quite below (e.g., 0.11% in Ecuador, 0.15% in India,

0.27% in Brazil, 0.53% in Caribbean Islands, 0.68% in Uganda, 0.80% in Nigeria, and

0.87% in Mexico) (ONAOLAPO; ONAOLAPO, 2017). Even some recent epidemiological

researches in developed countries point to ASD prevalences under 1% (e.g., 0.51% in Is-

rael (1-12 years-old, 2010), 0.63% in Australia (6-12 years-old, 2005), 0.71% in Denmark

(5-6 years-old, 2006), 0.60-0.80% in Norway (0-11 years-old, 2010-2011), and 0.90% in

United Kingdom (5-16 years-old, 2004)) (ÖZERK, 2016). These short ASD prevalences
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in some countries/regions may explain the low ASD prevalences values from global esti-

mates (BAXTER et al., 2015; ELSABBAGH et al., 2012).

Methodological differences in case definition (CHIAROTTI; VENEROSI, 2020),

diagnostic criteria (KING; BEARMAN, 2009; MATTILA et al., 2007), sample size (ELSAB-

BAGH et al., 2012), surveyed areas due to educational or health care systems (MATSON;

KOZLOWSKI, 2011), the strategy for targeting risk individuals or groups (case-finding

procedures) (CHIAROTTI; VENEROSI, 2020; WAZANA; BRESNAHAN; KLINE, 2007),

socio-economic factors (DURKIN; WOLFE, 2020; DURKIN et al., 2017), ASD awareness

(HERTZ-PICCIOTTO; DELWICHE, 2009) and even cultural influence (TAYLOR; JICK;

MACLAUGHLIN, 2013), jointly, affect the ASD prevalence estimates.

The evolution of the manuals, the ASD diagnosis categories and subcategories, and

the differences between multiple versions of ICD and DSM over the past decades also have

had an evident impact on the ASD prevalence statistics, estimates, and rates (ÖZERK,

2016). Among others, some characteristics attributed to the rise of the ASD prevalence

are the ability to diagnose, with a possible reflection of the success in identifying children

who were previously not diagnosed (HANSEN; SCHENDEL; PARNER, 2015; NEVISON,

2014), and changes in awareness, earlier diagnosis, and redefinition of diagnostic criteria

(ZABLOTSKY et al., 2015).

Even with ASD awareness and more well-defined epidemiological studies, ASD

prevalence estimates still vary across and within geographical areas and countries, years

of research, and source of data used. Such variation conducts to the large variability

of prevalence estimates worldwide (CHIAROTTI; VENEROSI, 2020). For example, the

ASD prevalence varies widely across geographic areas in one of the most recent surveys

(MAENNER et al., 2021), from 1.65% (Missouri) to 3.89% (California), with an overall

ASD prevalence of 2.27%.

Some studies aimed to estimate the ASD prevalence in Brazil (BECK, 2017;

PAULA et al., 2011), despite they only evaluated a specific country area and obtained ex-

tremely low prevalence estimates even compared to the most modest estimates nowadays

(≈ 0.04% and ≈ 0.3% respectively). Thus, there is no reliable estimate of the population-

related prevalence of ASD in Brazil or any other Latin American country (HINBEST;

CHMILIAR, 2021; PAULA et al., 2011; ELSABBAGH et al., 2010). Considering the
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worldwide ASD prevalence estimated by the World Health Organization of 1% (ORGA-

NIZATION, 2019) and the estimated Brazilian population of ≈ 211 million people (IBGE,

2020), we could estimate that approximately 2 million individuals in Brazil have autism.

2.3 Autism Spectrum Disorder Etiology

Etiology refers to the study and determination of the causes of the diseases. Models

of etiology try to explain the processes that initiate a particular disorder. The necessary

conditions for developing the diseases are known as etiological factors. However, etiological

factors are only the causes that directly start the disease process, and necessarily such

causes have to precede the onset of the disease in terms of time. Several different conditions

(biological, immunological, environmental, etc.) may contribute to defining a particular

disease etiology (GELLMAN; TURNER et al., 2013).

Many complex mental and physical disorders (e.g., autism, depression, obesity)

have partially unknown etiology. The ASD etiology is multifactorial: neurobiological,

genetic, and environmental. Although incompletely understood, genetic and environ-

mental factors and their interactions contribute to ASD etiology (BÖLTE; GIRDLER;

MARSCHIK, 2019; LYALL et al., 2017; BAUMAN; KEMPER, 2005). Twin and family

studies have shown a predominant genetic contribution to the ASD etiology. A complex

interaction between common and rare genetic variants constitutes the genetic composi-

tion of ASD, with common genetic variants accounting for almost all ASD heritability

(ROSTI et al., 2014; GAUGLER et al., 2014; HALLMAYER et al., 2011; GARDENER;

SPIEGELMAN; BUKA, 2011).

2.3.1 Environmental Autism Spectrum Disorder Risk Factors

Environmental factors can be due to an aggregation of factors. Climatic, nutri-

tional, and the interaction of individuals with their environment are usually the most crit-

ical factors. Several environmental agents have been pointed as possible ASD risk factors.

We can highlight advanced parental age, the significant age difference between parents,

preterm birth, pre, peri, and post-natal factors, cesarian delivery, short interpregnancy

interval, exposure to air pollution, and still some events during pregnancy, such as the use

of valproic acid, maternal infections, and exposure to environmental toxins (HODGES;
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FEALKO; SOARES, 2020; BAI et al., 2019; BÖLTE; GIRDLER; MARSCHIK, 2019;

LYALL et al., 2017; SEALEY et al., 2016).

Some studies suggested that shared environmental factors have at least equal or

even more significant influence than genetic factors in ASD risk. The ASD liability vari-

ation in a clinical sample pointed primarily to shared environmental factors (58%) than

genetic effects (38%) (HALLMAYER et al., 2011). Frazier et al. (2014) suggest an even

higher estimate of shared environmental risk factors (64-78%). However, Frazier et al.

(2014) did not systematically collect probands from the general population; thus, affected

people had no equal chance to be selected.

Despite those previous associations in ASD risk, shared environmental factors have

accounted for a tiny percent of increases in ASD diagnosis. Maternal and paternal age

contributed to ≈ 2.7% of the 143% ASD prevalence increase among 0-3 years-old children

from 1994 to 2001 (QUINLAN et al., 2015). Cesarean delivery, multiple births, changes in

preterm delivery, assisted reproductive technology, and small for gestational age fetuses

contributed to less than 1% of the almost 60% ASD prevalence increase among eight-year-

old children born in 1994 contrasted to those born in 1998 (SCHIEVE et al., 2011).

Furthermore, a contrasting study using a sample cohort of ≈ two million peo-

ple revealed that the individual ASD risk increased with genetic relatedness, with no

shared environment effects (SANDIN et al., 2014). A meta-analysis comprising twin stud-

ies showed that ASD heritability is due to genetic effects. Previous studies that pointed

to significant shared environmental factors are probably statistical artifacts due to the as-

sumptions regarding ASD prevalence and dizygotic concordant pairs’ oversampling. Thus,

shared environmental effects seem unable to explain the majority of the ASD variance

(TICK et al., 2016). Similarly, a novel study pointed out that shared environmental factors

are unlikely to explain the rise in ASD prevalence. Once the ASD etiology consistently

reveals a more significant genetic role (TAYLOR et al., 2020).

2.3.2 Genetic Autism Spectrum Disorder Risk Factors

Human genetics is both a fundamental and applied science that studies the inher-

ited traits, their variations, and how they are transmitted in human beings. The transmis-

sion of features and biological information from parents to offspring is known as heredity.
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A key role in genetics is understanding the relative contribution of genetic and environ-

mental factors to phenotypic variance. The phenotypic (visible characteristic or effect on

health) variance of a trait due to genetic differences in a specific population at a given

time is known as heritability, also known as the proportion of the phenotypic variation

that is not explained by the environment or random chance. The heritability of human

traits is usually estimated based on the inference of genetic factors shared among relatives

(BASELMANS et al., 2020; LEWIS, 2018; BISWAS; SINGH; REDDY, 2017).

The hereditary units transmitted from parents to offspring are known as genes.

Consisting of the long molecules of deoxyribonucleic acid (DNA), human genes instruct

our cells how to produce specific proteins that regulate the characteristics that comprise

our individuality. The DNA sequences of the human genome (the entire collection of

genetic instructions of a human) are dispersed among 23 pairs of structures called chro-

mosomes and transmit information in its sequence of building blocks (like an alphabet)

(LEWIS, 2018; BISWAS; SINGH; REDDY, 2017). Several levels constitute our genetics

(genome, DNA, genes, chromosomes). Figure 2 shows the structure of human genetics.

Figure 2 – Human Genetics Structure

Genetics defines a trait as single-gene (also know as Mendelian or monogenic) or

polygenic. Single-gene traits are rare and caused by DNA changes in one particular gene.

Polygenic traits are more common and express actions of one or more genes, usually

including the contribution of environmental factors. Each human cell contains two copies

of the genome. They differ in appearance and activities according to the genes they use

once a cell uses only some of its genes. Environmental conditions (inside and outside the

body) determine which genes a cell uses at any given time. The environment can influence

single-gene and polygenic traits, which indicates that both can be multifactorial. The

more factors (inherited or environmental) contribute to a disease, the more difficult it is

to estimate the incidence risk (LEWIS, 2018).
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Twins and family studies support the genetic contribution to ASD etiology by ex-

posing high ASD heritability estimates and ASD recurrence rates among siblings (MAEN-

NER et al., 2020; PALMER et al., 2017). However, research groups differ significantly on

their assessments for the number of genes associated with ASD, ranging from a few to

hundreds (SCHAAF et al., 2020).

The ASD heritability relies on a complex combination of genes, mutations, and

chromosomal abnormalities. The ASD genetic architecture ranges from a rare single gene

mutation to a polygenic risk. The main components of ASD genetic risk include: 1) de

novo mutations, which occur spontaneously in offspring; 2) rare inherited single-gene dis-

orders, occurred relatively recently in humans; and 3) polygenic variation, genetic changes

in one or many genes widespread in humans. Many of the ASD risk genes operate as regu-

lators of neurodevelopment or neural activity (IAKOUCHEVA; MUOTRI; SEBAT, 2019;

BOURGERON, 2015).

2.3.2.1 Rare Inherited Variants and De Novo Mutations

Human genomics has identified a range of DNA sequence variations, including

insertions and deletions of nucleotides and translocations of various chromosome segments.

These mutations have been named Copy Number Variants (CNVs). CNVs are a DNA

segment present at a variable copy number compared to a reference genome (ZARREI

et al., 2015). CNVs are associated with certain human diseases’ etiology (GIRIRAJAN;

CAMPBELL; EICHLER, 2011; STANKIEWICZ; LUPSKI, 2010), although they are also

present in healthy individuals (CONRAD et al., 2010). Genetic analyses like genome

sequencing may expose which single-gene disease a person has, carry, or may develop. Tests

with infected children and their parents can indicate if the disease cause is a mutation

inherited from carrier parents or due to a dominant de novo mutation (LEWIS, 2018).

Part of the genetic risk for ASD consists of rare CNVs inherited from parents.

Most variants occur as recurrent de novo mutations transmitted from a parent, with mild

or no symptoms, due to variable levels of cognitive impairments. Thus, part of the ASD

genetic architecture consists of rare CNVs inherited from parents who do not meet ASD

diagnosis (IAKOUCHEVA; MUOTRI; SEBAT, 2019). De novo CNVs rates are up to ten

times higher among ASD individuals (RUBEIS et al., 2014; SANDERS et al., 2011; XU et

al., 2008), suggesting a substantial role of de novo CNVs in ASD. Advanced parental age
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could be associated with the increased risk of de novo spontaneous mutations (usually

paternal) (ATSEM et al., 2016; KONG et al., 2012). Approximately 70% of de novo

mutations originate from the father, and the rate of new mutations increases with the

father’s age (1-2 mutations per year of age) (MICHAELSON et al., 2012; KONG et al.,

2012).

Recent studies aiming to identify ASD susceptibility of de novo genes have impli-

cated 102 genes in ASD risk, with 53 genes having a greater frequency in ASD (SATTER-

STROM et al., 2018; SANDERS et al., 2015). Despite some estimates that de novo mu-

tations contribute to ≈ 30% of ASD cases (IOSSIFOV et al., 2014), rare variants seem to

explain at most 17% of ASD heritability (GAUGLER et al., 2014), with rare de novo and

inherited CNVs limited to 10% of children with nonsyndromic autism (TORRE-UBIETA

et al., 2016).

Although de novo mutations are considered genetic factors, they do not contribute

to the ASD heritability once they are present only in the affected descendant (excluding

rare germinal mosaicisms present in parental germline and transmitted to offspring). Thus,

de novo could be considered environmental causes of ASD acting on the DNA. From 500

to 1000 genes could account for these monogenic forms of ASD, reinforcing the high level

of genetic heterogeneity (HUGUET; BOURGERON, 2016).

2.3.2.2 Common Polygenic Risk

As polygenic disorders result from the joint contribution or interaction of several

independent genes and occur more frequently in humans, their genetic variance is es-

sentially due to the additive effects of recessive alleles of different genes. Few dominant

alleles can significantly affect the phenotype for some traits, but they do not contribute

to heritability considerably because they are rare (LEWIS, 2018; LVOVS; FAVOROVA;

FAVOROV, 2012).

A person carries nearly three million genetic variants compared with a genome

of reference. Most of these variants (≈ 95%) are called common variants (FU et al.,

2013). The most prevalent type of genetic variant in humans is called Single Nucleotide

Polymorphisms (SNPs). Each SNP expresses a variation in a single nucleotide (a DNA

building block). For example, an SNP may replace the nucleotide cytosine (C) with the

nucleotide thymine (T) in a specific DNA stretch. Common variants represent a key role
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in ASD susceptibility and the severity of symptoms, where numerous alleles contribute

additively to the overall ASD risk (HUGUET; BOURGERON, 2016).

Polygenic Risk Score (PRS) is a genetic measure that summarizes all common

SNPs’ contributions to a trait (DUDBRIDGE, 2013). There are pieces of evidence for the

additive contribution of rare and common genetic variants to ASD risk. Thus, common

polygenic variation can also influence the diagnosis of individuals who carry a rare variant

of significant effect. Compared with typically developing controls, ASD individuals with

de novo mutations have significantly increased PRSs for ASD (WEINER et al., 2017).

All three categories of ASD risk genes are similar once a gene regulatory network

broadly distributes their effects. For example, a genetic effect from a single gene muta-

tion can influence other ASD genes’ functions and spread extensively (IAKOUCHEVA;

MUOTRI; SEBAT, 2019). Iakoucheva, Muotri and Sebat (2019) suggest that the genetics

of ASD is typically compatible with an Omnigenic model (BOYLE; LI; PRITCHARD,

2017), in which the genetic basis of a complex trait is highly polygenic, being challenging

to distinguish core genes with direct effects from several marginal genes with indirect

effects.

2.3.2.3 Females Protective Effect

As with the ASD prevalence studies, increased male prevalences have been re-

ported in other studies regarding neurodevelopmental disorders, supporting the theory of

a female protective model. Such protective theory is supported mainly due to the excess

of deleterious autosomal CNVs in females compared to males concerning the molecular

basis of neurodevelopmental disorders. Females with ASD have more CNVs related to

autism than males with ASD (LEVY et al., 2011), and autistic females are three times

more likely to carry deleterious autosomal CNVs, besides having an excess of deleterious

SNPs (JACQUEMONT et al., 2014).

This female protective effect raises the hypothesis that females require a more

significant etiologic load to manifest the same level of impairment as males. A recent study

reinforces this hypothesis that girls may need a higher familial etiologic load to manifest

the ASD phenotype (ROBINSON et al., 2013). Other studies that support this hypothesis

point that ASD girls have a higher proportion of affected relatives (parents and siblings)

than ASD boys (WERLING; GESCHWIND, 2015; TSAI; STEWART; AUGUST, 1981).
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Despite sharing autistic features, such as impairments in social and communication

areas, repetitive or restricted interests and behavior, individuals with ASD are clinically

vastly heterogeneous and differ in their developmental course, the pattern of symptoms,

as well as in cognitive and language abilities. As advances in genome testing continue to

expose the complexity of ASD etiology, the efficient translation of this genomic informa-

tion needs to be incorporated into the clinical environment (HOANG; CYTRYNBAUM;

SCHERER, 2018).

Given this broad clinical spectrum and the diverse and complex genetics asso-

ciated with ASD, Hoang, Cytrynbaum and Scherer (2018) proposed a communication

model to facilitate communication and understanding regarding the clinical and genetic

heterogeneity of ASD known as the cup model. The cup model uses an analogy with cups

and balls, both of different sizes, and is widely accepted to explain the complexity of ASD

etiology and communicate genetic testing results comprehensively (CAMELI et al., 2021;

LUCAS et al., 2021).

According to the cup model, an individual will develop ASD if the cup is filled

with enough risk factors (balls) to reach a critical threshold. Risk factors can be highly

penetrant (e.g., strong genetic variants) or lightly penetrant (e.g., weak genetic variants or

environmental factors). Balls of different sizes represent risk factors. Bigger balls represent

higher risk factors, while smaller balls represent lower risk factors.

Thus, each individual has an ASD risk cup with balls representing risk factors.

Individuals without ASD may have some risk factors in their cups, but not enough to

develop ASD. Conversely, individuals with ASD have enough risk factors to exceed the

threshold to develop ASD.

The cup model points out that a genetic variant that contributes to the ASD di-

agnosis of a person can be inherited from a parent without ASD. Thus, the cup model

could be used to demonstrate the difference regarding ASD genetic effects among sib-

lings and between males and females. The ASD male:female sex ratio suggests a lower

penetrance in females than males, meaning females have a higher threshold than males.

The cup model illustrates this by using a larger cup for females, assuming females require

more risk factors than males to reach the threshold for ASD (HOANG; CYTRYNBAUM;

SCHERER, 2018).
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2.4 Autism Spectrum Disorder Heritability Estimates

High levels of heritability characterize the ASD etiology, with a genetic factor esti-

mated up to 98%, with a small environmental contribution. Although genetics is already

a widely accepted risk factor for ASD, there is no consensus on the percentage of autism

caused by genetic factors. Researches point to percentages ranging from 38% to 98% (BAI

et al., 2019; ALMANDIL et al., 2019; SANDIN et al., 2017; TICK et al., 2016; KRON-

CKE; WILLARD; HUCKABEE, 2016; HALLMAYER et al., 2011; BAILEY et al., 1995;

FOLSTEIN; RUTTER, 1977). In part, these discrepancies can be explained by the vari-

ation of the research methods. Thus, the ASD heritability estimates are sensitive to the

research methods, once these methods require several and often untestable assumptions

(SANDIN et al., 2017).

Table 3 presents reputable researches regarding ASD etiological origins. Most stud-

ies decompose the ASD liability variance into four components: (A) additive genetic ef-

fects, which means inherited additive effects from different alleles; (D) nonadditive genetic

(dominance) factors, usually due to the interaction effects between alleles at the same lo-

cus; (C) shared environmental effects, which means nongenetic influences contributing to

similarity within relatives; and (E) nonshared environmental effects, which make relatives

dissimilar. This liability model is usually known as the ACDE model (NEALE; CARDON,

2013). Since most studies have emphasized additive genetics, total heritability correlates

with the additive component, except for works by Sandin et al. (2017), Gaugler et al.

(2014), and Sandin et al. (2014).

Some studies also decompose the ASD liability variance into maternal effects (M).

Maternal effects indicate the effect of mothers on the environment of their offspring

(i.e., noninherited genetic influences originating from mother beyond what is inherited)

(NEALE; CARDON, 2013). However, such studies reveal a modest contribution, if any

exists, of maternal effects to the ASD liability (BAI et al., 2019; YIP et al., 2018).

Because of a time-to-event approach concerning the ASD diagnosis, the work of

Sandin et al. (2014) underestimates the sibling pairs concordant for ASD (possibly missing

about half of the concordant pairs). This underestimate may have reduced their heritabil-

ity estimates (SANDIN et al., 2014). Years later, Sandin et al. (2017) demonstrated their

hypothesis regarding underestimated heritability by performing a reanalysis of the same
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Table 3 – ASD Etiology Measures.

Heritability
(%)

Environmental
(%) Sample

Size Statistical
Model Reference

Total Additive
(A)

Nonadditive
(D)

Shared
(C)

Nonshared
(E) (Total)

81 81-83 NE ≈ 0.3 ≈ 18
(2001631)
1392096⊙
1748450⊘

GLMM (BAI et al., 2019)

85 73-87 NE ≈ 0.2 ≈ 15

(776212)
98570⊙
11780±
14865∓
650997⊘

GLMM (YIP et al., 2018)

83 79-87 ≈ 10 ≈ 4 ≈ 17

(2049973)
37570⊕
2642064⊙
445531±
432281∓

LTM (SANDIN et al., 2017)

≈ 81⋆ 64-93 NE 6-35 1-3 (21-7982)
⊕ LTM (TICK et al., 2016)

≈ 61 47-75 NE NE ≈ 40 (75)
⊕ CTM (DENG et al., 2015)

≈ 60 52 7 ∙ ∙ (3046)
⊕ ⊙ ± ∓ ⊘ GCTA (GAUGLER et al., 2014)

50 33-50 ≈ 16 ≈ 5 ≈ 48

(2049973)
37570⊕
2642064⊙
445531±
432281∓
5799875⊘

LTM (SANDIN et al., 2014)

21-35 21-35 NE 64-78 NE (1136)
⊕

DF
LTM (FRAZIER et al., 2014)

38 14-67 NE ≈ 58 NE (384)
⊕ CTM (HALLMAYER et al., 2011)

≈ 80 73-87 NE 0-15 13-27 (90)
⊕ SEM (TANIAI et al., 2008)

57 43-68 NE NE ≈ 43
(464)
370⊕
94⊙

SEM (HOEKSTRA et al., 2007)

NENot estimated; ⊙Full siblings; ⊘Cousins; ±Paternal half-siblings; ∓Maternal half-siblings; ⊕Twins; ⋆An approx-
imate median/average of the additive genetic effects from the six different meta-analyses configurations; ∙41% for
environmental (shared + nonshared); GCTAA software for Genome-wide Complex Trait Analysis based on Linear
Mixed Models. (YANG et al., 2011); DFDeFries-Fulker Regression (DEFRIES; FULKER, 1985); SEMStructural
Equation Modeling.

population. However, they used an alternative methodology to define sibling pairs as con-

cordant or discordant for ASD. Their new heritability estimate increased ≈ 66% (from

50% (SANDIN et al., 2014) to 83% (SANDIN et al., 2017)).

Liability collectively defines both the genetic and environmental factors that con-

tribute to the development of multifactorial diseases. A person will be affected by a con-

dition when it accumulates a specific liability. The diagnosis of several human disorders

results in a set of binary (e.g., affected or unaffected) or ordered (e.g., mild, moderate,

or severe) values. There are four primary methods to estimating the etiology of complex
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and quantitative binary traits: Liability Threshold Model (LTM), Classical Twin Model

(CTM), Falconer Model (FM), and (Generalized) Linear Mixed Model (GLMM) (BON-

NET, 2016; TENESA; HALEY, 2013).

Based on the correlation of the disease status among pairs of relatives of a specific

type extracted from a random sample of the population (known as tetrachoric correla-

tion) (PEARSON; LEE, 1900), LTMs assume that the disease’s liability is (or can be

transformed in) a normal distribution with a threshold above which all subjects manifest

the disease and below which no individuals manifest the disease. The disease prevalence

is the metric that usually defines the threshold estimates, and the model variables are all

genes and environmental conditions protecting or increasing the risk of disease (NEALE,

2005). This normal distribution of the liability is supported by the complex etiology of

most human diseases (VERHULST; NEALE, 2021) and by Genome-wide Association

Studies (GWAS) results, suggesting that the more complex a disease, the more polygenic

it is (BOYLE; LI; PRITCHARD, 2017). As much as this model description of the disease

liability appears simplistic, LTMs design has proven valuable, and no empirical data have

shown a reason to discard it (BASELMANS et al., 2020). Besides autism, LTMs using

family members also have been used to describe the etiology of other traits as skin cancer

(LINDSTRÖM et al., 2007), preeclampsia (NOH et al., 2006), and schizophrenia.

CTMs analyze the similarity among monozygotic and dizygotic twins (BOOMSMA;

BUSJAHN; PELTONEN, 2002). CTMs strength comes from the similarity in genetic shar-

ing of monozygotic twins (100% of genetic sharing) and dizygotic twins (50% of additive

genetic sharing and 25% of dominant genetic sharing). Such genetic sharing allows par-

titioning the phenotype variance into an ACDE model, assuming that these combined

sources result in the phenotypic variance. In CTMs, dominant effects tend to reduce the

dizygotic correlation relative to the monozygotic correlation, while the shared environment

increases the dizygotic correlation close to the monozygotic correlation. Thus, dominant

and shared effects are negatively confounded, and CTM studies usually estimate shared

or dominant effects (LITTLE, 2014). Indeed, this bias due to the common environment

and dominant effects is often a concern in full siblings studies (TENESA; HALEY, 2013).

The GLMMs (HOPPER, 1993) are the most flexible approach to estimate etiology

variance in families (TENESA; HALEY, 2013). GLMMs allow handling complex family

trees of diverse size and structure, which are a limitation of the previous methods once the
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data are structured into defined families of the same size. Broadly used in several areas

(e.g., agriculture, biology, and genetics), LMMs also have been used for heritability esti-

mates of binary human diseases (BONNET et al., 2015), as well as to measure genotypes

in GWAS with large samples using a large number of SNPs to identify genetic variants

that explain phenotypic variances (BASELMANS et al., 2020; YANG et al., 2011).

LMMs also support splitting the phenotypic variance into separate components:

a genetic variance, usually separated into additive, dominance, and epistatic; an envi-

ronmental, traditionally divided into common, maternal influence, and the stochastic;

and possibly a gene-environment interaction component. LMMs perform heritability es-

timates by the portion of total variation attributed to additive genetic components and

the amount of total variation attributed to other variance components similarly estimated

(BASELMANS et al., 2020; PAWITAN et al., 2004). Despite being computationally hard

to fit, GLMMs have shown exemplary performance in experimental groups. The statisti-

cal and computing advancements, allied with the ability to exploit complex family trees,

make GLMMs the preferred approach in practice (TENESA; HALEY, 2013).

Disorders with low prevalence rates (affecting one in a hundred) require huge sam-

ples to estimate heritability and recurrence rates among relatives (BASELMANS et al.,

2020; HILKER et al., 2018). Small sample sizes can lead to heterogeneous heritability

estimates (TENESA; HALEY, 2013). Many twin and family studies regarding ASD heri-

tability usually run with samples of small size, which is generally recognized as a limitation

(TICK et al., 2016; DENG et al., 2015; GAUGLER et al., 2014; FRAZIER et al., 2014;

HALLMAYER et al., 2011; TANIAI et al., 2008, 2008; HOEKSTRA et al., 2007). Sam-

ple ascertainment bias and different measurement tools also are potential causes for the

heterogeneity in ASD heritability (COLVERT et al., 2015).

However, recent studies (Table 3) that explored large and more diverse samples

(twins, full- and half-siblings, and cousins) and applied more flexible and robust heritabil-

ity estimation methods (GLMMs, LTMs, and SEMs), point to ASD heritability estimates

ranging from ≈ 80% to ≈ 85% (BAI et al., 2019; YIP et al., 2018; SANDIN et al., 2017;

TICK et al., 2016). It is important to note that ASD heritability may vary across popu-

lations, environments, sub-groups of people with different characteristics (e.g., age) and

may change over time, even in these more elaborated studies (VISSCHER; HILL; WRAY,

2008).
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2.5 Autism Spectrum Disorder Recurrence Rate Among Siblings

The risk of ASD recurrence in siblings of an ASD child is an important measure

of the genetic contribution to the ASD etiology (GRØNBORG; SCHENDEL; PARNER,

2013). The ASD recurrence among relatives of affected family members is high in com-

parison to the overall ASD prevalence. Both the level of relatedness and the individuals’

gender seem to be determinant factors to the recurrence extent among family members

(HANSEN et al., 2019).

The estimated ASD recurrence rates in siblings of an ASD proband (usually named

high-risk siblings) who do not manifest other diseases or syndromes range from ≈ 9% to

≈ 25%, varying according to the individual’s gender (Table 4). The ASD risk in younger

siblings ranges from ≈ 32% to ≈ 50% if there are two or more ASD children in the

family (WOOD et al., 2015; SCHAEFER; MENDELSOHN, 2013; OZONOFF et al., 2011;

SIMONOFF, 1998). This high ASD recurrence risk in affected families also reflects the

heritable nature of ASD (GIRAULT et al., 2020).

Table 4 – ASD Recurrence Among Siblings.

ASD ARR
(ASD RRR)

Sample
Size

ASD
Criteria

Male
↓

Female

Female
↓

Female

Male
↓

Male

Female
↓

Male

Both
↓

Female

Both
↓

Male

Both
↓

Both
Reference

20 882⊕ ICD-9 4.2 7.6 12.9 16.8 4.9 13.7 9.3 (PALMER et al., 2017)

13 997⊕ DSM-IV
ICD-9/10

3.8⋆
(7.5)

5.1⋆
(10.2)

13.0⋆
(6.6)

19.3⋆
(9.8)

4.1⋆
(8.2)

17.5⋆
(8.9)

10.1∙
(8.4) (HANSEN et al., 2019)

13 533⊖ DSM-III-R
DSM-IV 5.1 6.7 14.1 17.0 5.3 14.5 10.1 (RISCH et al., 2014)

592⊙ DSM-IV-R 6.1 6.1 15.4 19.3 6.2 16.1 11.3 (XIE; PELTIER; GETAHUN, 2016)
319⊕ DSM-IV-R 18.5 25.0 33.8 26.5 19.6 32.4 26.6 (ZWAIGENBAUM et al., 2012)
385⊕ DSM-IV-R - - - - 12.8 30.1 23.1 (GIRAULT et al., 2020)

1 241⊕ ADOS
DSM-IV - - - - 10.3 26.7 19.5 (MESSINGER et al., 2015)

664⊕
ADIR
ADOS
SCQ

- - - - 9.1 26.2 18.7 (OZONOFF et al., 2011)

19 710⊕ DSM-III-R
DSM-IV - - - - - - 10.1 (HOFFMANN et al., 2014)

13 164⊕ ICD-8/10 - - - - - - 6.1 (GRØNBORG; SCHENDEL; PARNER, 2013)

1 235⊖ ADIR
ADOS - - - - - - 14.2 (CONSTANTINO et al., 2010)

299⊖ DSM-IV
ICD-10 - - - - - - 24.7 (WOOD et al., 2015)

ARRAbsolute Recurrence Risk; RRRRelative Recurrence Risk; ⊖Families having one or more child with ASD;
⊕Infants with an older sibling with ASD; ⊙Infants with ASD with at least one older sibling; -Not available;
∙Estimated based on the overall ASD prevalence of Hansen et al. (2019) (1.2%); ⋆Estimated based on the ASD
prevalence by sex of Palmer et al. (2017) (male: 2.0%; female: 0.5%);

The ASD Relative Recurrence Risk (RRR) quantifies the ASD risk increase among

individuals who have one or more family members with ASD compared to the over-
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all ASD risk (prevalence) among individuals who do not have any family member with

ASD (HANSEN et al., 2019). The ASD Absolute Recurrence Risk (ARR) rate quanti-

fies the ASD probability among individuals with one or more family members with ASD

(PALMER et al., 2017).

Table 4 presents reputable researches that investigated the ASD recurrence among

siblings. The data are ordered by the level of information detail (sex-specific) and sample

size. Those works that investigated large sample size, Palmer et al. (2017) (≈ 21 thou-

sand siblings), Hoffmann et al. (2014) (≈ 20 thousand siblings), Hansen et al. (2019)

(≈ 14 thousand siblings), Risch et al. (2014) (≈ 13.5 thousand siblings), showed similar

recurrence rates estimates (overall: ≈ 9-10%; male: ≈ 14-18%; female: ≈ 4-5%). Except

for the work conducted by Grønborg, Schendel and Parner (2013), which investigated a

large sample size (≈ 13 thousand siblings), although exposed an overall ASD recurrence

lower than works mentioned above (≈ 6%, ranging from 4.5% to 10.5% over time). The

remainder of the studies explored relatively small sample sizes (from ≈ 300 to ≈ 1 300

siblings) and presented significantly high recurrence rates than those with larger sample

sizes (overall: ≈ 14-27%; male: ≈ 26-32%; female: ≈ 9-20%). Except for the work con-

ducted by Xie, Peltier and Getahun (2016), the recurrence rate tends to increase as the

samples become too small (GIRAULT et al., 2020; WOOD et al., 2015; ZWAIGENBAUM

et al., 2012).

2.6 The Broader Autism Spectrum Disorder Phenotype

The genetic risk to family members of ASD people extends not only to a possible

ASD diagnosis but also to less or milder expressions of the social and communication im-

pairments seen in the disorder. Such lesser expressions are usually below the threshold for

an ASD clinical diagnosis (SZATMARI et al., 2000). First-degree relatives of ASD people

are at increased risk for ASD-related characteristics. Such sub-clinical features, behaviors,

and traits, conceptually similar to ASD core symptoms but insufficient to meet diagnostic

criteria, have been referred to as the Broader Autism Phenotype (BAP) (GANGI et al.,

2021). Since the BAP is strongly associated with ASD, it may be considered a marker of

genes contributing to the risk of ASD (LOSH et al., 2009; DAWSON et al., 2002).

The BAP has been associated with difficulties in social relationships and poor
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mental health outcomes, such as language difficulties or delays, emotion recognition, so-

cial functioning deficits, less social interests, restricted or repetitive patterns of behav-

iors with higher rigidity and intense interests, difficulties in initiating and maintaining

friendships in emerging adulthood, lower efficiency in planning, less expressiveness in

nonverbal communication, attention shifting, and poorer conversational skills and ver-

bal fluency (JAMIL; GRAGG; DEPAPE, 2017; PISULA; ZIEGART-SADOWSKA, 2015;

SUCKSMITH; ROTH; HOEKSTRA, 2011).

More common among the family members of ASD individuals than in the gen-

eral population (RUBENSTEIN; CHAWLA, 2018), the BAP studies also investigate the

genetic mechanisms involved in ASD etiology. Most of the BAP measurement studies, al-

though they vary, have in common a focus on sub-clinical versions of ASD symptoms (less

functionally impairments) and reported several cognitive deficits in siblings of ASD chil-

dren (GANGI et al., 2021). Whereas the BAP and ASD symptoms share a commonality,

these symptoms’ structures may differ. Therefore, instead of the severity degree, the num-

ber of confirmed symptoms may better differentiate BAP traits (RANKIN; TOMENY,

2019).

Studies suggest different developmental pathways to ASD in children with an older

sibling with ASD (high-risk siblings). Assessing how ASD develops from birth is crucial to

understanding the ASD developmental mechanisms and providing more precise objectives

for genetic research (CHAWARSKA et al., 2014). Furthermore, as a complement of studies

regarding ASD children, investigations of the BAP in children can specifically inform in-

termediate developmental trajectories that are often the most difficult to distinguish from

typical development (KELLERMAN et al., 2019). In addition, a detailed understanding

of ASD developmental pathways can help identify the need for early intervention and

improve the range of available intervention options (JONES et al., 2014).

The BAP measurements are difficult due to the variety of functioning levels and

countless risk factors combinations. Thus, there are no current standardized criteria for

the BAP (KELLERMAN et al., 2019; PISULA; ZIEGART-SADOWSKA, 2015). The

main difficulty in studies involving siblings of ASD individuals is to distinguish clearly

the ASD symptoms from BAP traits. Mainly because the risk of ASD rather than the

BAP characteristics is the primary concern (PISULA; ZIEGART-SADOWSKA, 2015).

Usually defined using different domains, measurement tools, and report techniques, the
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BAP estimates vary significantly across studies (RUBENSTEIN; CHAWLA, 2018). At

three years of age, high-risk siblings present higher ASD symptomatology or lower devel-

opmental functioning levels than children without a family history of ASD, despite not

receiving an ASD diagnosis (CHARMAN et al., 2017; MILLER et al., 2015; MESSINGER

et al., 2013). However, atypical development in cognition, language, motor coordination,

and especially social communication may emerge before three years (OZONOFF et al.,

2014).

Table 5 presents reputable research on BAP in siblings of ASD individuals in the

last decade. As social impairment diagnoses such as ASD tend to be more stable after

30 months of age (TURNER; STONE, 2007), our central focus was to place estimates

of BAP effects in younger siblings of ASD individuals and the ASD recurrence in some

cases, around three years.

Thus, we excluded studies with a wide age range because it may compromise the

measure of developmental levels across multiple domains or the capability in specific func-

tions. In addition, a wide age range makes it difficult to determine subgroups functioning

levels by age, mainly due to small sample sizes, which limits statistical analysis. Studies on

siblings at preschool age or older were also avoided, mainly because of the lack of longitu-

dinal studies. Besides, subjects at such age may already overcome some of the difficulties

previously identified, losing the diagnosis condition (PISULA; ZIEGART-SADOWSKA,

2015). ASD and BAP measuring diagnoses around three years of age are especially mean-

ingful. Such research on infant siblings of ASD probands can provide valuable information

on early ASD characteristics, start the investigation of BAP features, and further clarify

the ASD genetic mechanisms (JONES et al., 2014).

In most works, ASD diagnosis in older siblings was confirmed via clinical best

estimates, mainly using the appropriate version of one or more of the following diagnostic

and measurement tools: ADI, ADI-R, ADOS, DAWBA, MSEL, SCQ, and VABS. We can

split these diagnostic tools into two classes: parents’ interviews and direct observations.

Interviews methods can be applied by parents, caregivers, or teachers. Such meth-

ods include Autism Diagnostic Interview (ADI) (COUTEUR et al., 1989), Autism Diag-

nostic Interview-Revised (ADI-R) (RUTTER et al., 2003), Social Communication Ques-

tionnaire (SCQ) (RUTTER; BAILEY; LORD, 2003), and Development and Well-Being
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Table 5 – ASD and BAP Among Siblings.

Sample
Size∙ Tools⊕ Age⊙

ASD
O(M:F)

(%)

BAP⊖
O(M:F)

(%)

ASD+BAP
O(M:F)

(%)
Reference

859

ADI-R, ADOS
DSM-IV, DSM-V
ICD-10, MSEL
VABS

36 19 29(33:25) 48 (CHARMAN et al., 2017)

719 ADOS, MSEL 36 22(29:12) 25(28:20) 47(57:32) (CHAWARSKA et al., 2014)
447 ADOS, MSEL 36 14 21 35 (MESSINGER et al., 2013)

294 ADOS, DSM-IV-TR
MSEL 36 17(26:06) 28(31:25) 46(57:31) (OZONOFF et al., 2014)

288 ADOS, DSM-IV
MSEL, VABS 36 36 19 55 (D’ABATE et al., 2019)

204 ADOS, MSEL
VABS 36 25(36:11) 15(19:09) 41(55:20) (LANDA et al., 2012)

188 ADOS, DSM-IV
LUI, MSEL 36 31 (MILLER et al., 2015)

135 ADOS, DSM-IV
MSEL 36 13(24:03) 27(34:19) 40(57:22) (SCHWICHTENBERG et al., 2010)

81 ADOS, DSM-IV
MSEL 36 17(24:10) 10(12:8) 27(37:18) (HUTMAN et al., 2012)

58 ADOS, DSM-IV
MSEL, SCQ 18-36 29(42:12) 21(18:24) 50(61:36) (CHRISTENSEN et al., 2010)

53
ADI-R, ADOS-G
ICD-10, MSEL
SCQ

38 32(53:19) 23(14:28) 55(67:47) (HUDRY et al., 2014)

53 ADI, ADOS-G
DSM-IV 24 23(25:17) 55(63:34) 77(88:52) (MACARI et al., 2012)

47 ADI-R, ADOS-G
ICD-10, MSEL 36 36(22:55) 26(33:15) 62(56:70) (GLIGA et al., 2014)

45 ADOS, MSEL
VABS 24-36 ≈ 13 ≈ 49 ≈ 62 (KELLERMAN et al., 2019)

43 ADI-R, ADOS
ICD-10, MSEL 12-36 28(47:15) 26(18:31) 53(65:46) (WAN et al., 2013)

43
ADI-R, ADOS
DSM-IV-TR
MSEL, STAT

34 15 20 35 (YODER et al., 2009)

42 ADOS, DSM-IV 30-42 14(21:06) 21(31:09) 36(52:16) (NICHOLS et al., 2014)

38 ADI-R, ADOS
DSM-IV-TR 18-36 21(30:06) 32 53 (CORNEW et al., 2012)

35 ADI-R, ADOS-G
ICD-10, MSEL 36 34 26 60 (BEDFORD et al., 2012)

24 ADOS-T, MSEL 24 29 25 54 (PAUL et al., 2011)

20 ADI-R, ADOS
DSM-IV, MSEL 33 40 20 60 (DAMIANO et al., 2013)

∙Infants at high risk for ASD (have at least one older sibling with an diagnosis of ASD); ⊕ASD/BAP diagnostic
and measurement tools; ⊙Age of infants in months when the measurement was performed; ⊖At least one BAP
trait or ASD-related behavioral characteristic; O(M:F)Overall(Male:Female).

Assessment (DAWBA) (GOODMAN et al., 2000). SCQ was designed to evaluate anyone

over age four, ADI for children of at least five years, ADI-R for children of at least 18

months, and DAWBA for children from 5 to 16 years old.

The second class refers to methods where there is direct observation of the chil-

dren during pre-modeling activities, specially elaborated to access domains related to
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ASD. Such methods include Autism Diagnostic Observation Schedule (ADOS) (LORD

et al., 1989), the Autism Diagnostic Observation Schedule Generic (ADOS-G) (LORD et

al., 2000), Mullen Scales of Early Learning for the assessment of young children (MSEL)

(MULLEN et al., 1995), Vineland Adaptive Behavior Scales (VABS) (SPARROW; CI-

CCHETTI, 1989), Language Use Inventory (LUI) (O’NEILL, 2009), and the Screening

Tool for Autism in two-year-olds (STAT) (STONE; OUSLEY, 2004).

Younger siblings of ASD children who do not receive an ASD diagnosis themselves

present a high risk for developing BAP than siblings with no history of ASD in the

family. The BAP estimates among these high-risk siblings range from 10% (HUTMAN

et al., 2012) to 55% (MACARI et al., 2012) at ≈ 36 months of age. Adding the ASD

estimates to the BAP estimates, the overall risk for developmental concerns in high-risk

siblings ranges from ≈ 27% to ≈ 77%, an average of ≈ 50%, with the average for males

nearly to 60% and the average for females nearly to 32% when excluding uncommon cases

in which ASD plus BAP estimates in females surpassed the estimates in males (GLIGA

et al., 2014). Added together, these ASD and BAP estimates point to a male:female sex

ratio of ≈ 1.9:1, which is lower than expected if compared to the ASD prevalence sex

ratio, but similar to that reported by D’Abate et al. (2019), which suggests a decrease in

sex ratio as diagnostic criteria become more rigorous and detailed.

Results showed more elevated severity of ASD traits in younger siblings of ASD in-

dividuals than individuals with no family history of ASD. In addition, the ASD severity is

even likely higher in multiplex ASD families (those with two or more ASD children). ASD

and BAP traits such as less expressiveness in nonverbal communication, less social inter-

est, poorer conversational skills, higher rigidity, and intense interests are more pronounced

in siblings from multiplex ASD families than in siblings from simplex ASD families (those

families with only one ASD child) (GERDTS et al., 2013; SCHWICHTENBERG et al.,

2010).

Some studies assessed ASD symptomatology only in non-affected siblings of ASD

children. Even in non-affected siblings, their results suggest a higher incidence of deficits

in at least one ASD typical domain. However, it is noteworthy that these results are not

entirely consistent in terms of the affected domains nor the depth of the deficits (PISULA;

ZIEGART-SADOWSKA, 2015).
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Other neurodevelopmental abnormalities also are more common among unaffected

siblings of ASD children. For example, compared to control groups (no history of ASD in

the family), unaffected siblings of ASD children are more likely to develop developmental

delays, such as developmental coordination disorder, developmental speech or language

disorder, attention-deficit hyperactivity disorder, anxiety disorders, unipolar depression,

intellectual disability, and disruptive behavior disorders (LIN et al., 2021).

Similar BAP results for social and communication domains in parents showed that

different genetic transfer mechanisms might operate in simplex ASD families compared

to multiplex ones. These results suggest that de novo mutations and non-inherited CNVs

may be significant risk factors for simplex ASD families, presenting a lesser degree in

multiplex ASD families (BERNIER et al., 2012; SEBAT et al., 2007). However, similar

studies did not confirm these findings, suggesting a low variability of ASD phenotype

in multiplex ASD families (PINTO et al., 2010; SPIKER et al., 1994). In addition, a

systematic review by Rubenstein and Chawla (2018) quantified the percentage of parents

of ASD children who had BAP themselves, presenting a rate of BAP in parents up to

80%, with more prevalent in fathers than mothers.

Several studies suggest a wide range of impairments in infant siblings of ASD chil-

dren. Qualitative analyses suggest that the overall performance of unaffected high-risk

children could be considered at an intermediate level, performing slightly worse than the

low-risk children and better than ASD children. Emerging by 24 months, the cognitive

differences support the increasing demand for early monitoring of high-risk children to

identify risk and promote optimal development (KELLERMAN et al., 2019). Although

BAP is not a clinical diagnosis, it does confer risks and challenges, supporting the impor-

tance of continuous monitoring in high-risk siblings, even in the absence of a complete

ASD diagnosis (GANGI et al., 2021). Some differences in these high-risk siblings are prob-

ably due to a later ASD diagnosis. Although, such infant siblings are also at a high risk of

developing BAP traits. Details about previous studies that studied the early phenotype

of ASD and the BAP traits can be seen at Pisula and Ziegart-Sadowska (2015), Jones et

al. (2014), and Yirmiya and Ozonoff (2007).
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2.7 Summary

This chapter presented an overview of ASD, especially concerning its classifica-

tion, prevalence, and etiology. We further explored these three domains because they are

essential to understanding the rest of this work. It was mainly dedicated to understand-

ing what autism is, how it is described, the penetration of autism in our society, and the

leading causes of the disorder.

We started showing the changes in ASD definition over time given by the two

primary and most used diagnostic manuals (DSM and ICD). Earlier defined by several

distinct nomenclatures, phenotypic descriptions, and diagnostic manuals, autism is cur-

rently recognized as a broad spectrum named Autism Spectrum Disorder. Although ASD

screening and diagnosis remain complex in practice, it has a more straightforward set of

definitions for its phenotypic manifestations and better diagnostic criteria.

Prevalence studies are essential to understand some characteristics of the disease,

such as its causes, the demography of affected individuals (e.g., sex and age), social,

racial, and geographical aspects. Prevalence rates are also essential to estimate other

disease dimensions, such as heredity patterns. Surveys regarding ASD prevalence showed

that autism does not seems related to race, ethnicity, or geographic location, with an

average prevalence of ≈ 1.5% (female: ≈ 0.7%; male: ≈ 2.55%), with a male:female ratio

of 3-4:1.

Due to the known genetic nature of ASD, we broadly explored heritability and

recurrence rate studies once these two types of studies pursuing to describe such nature of

ASD. Although presenting relatively different results concerning ASD heritability, studies

that investigated relatively larger sample sizes and employed powerful statistical methods

estimate an ASD heritability from ≈ 80% to ≈ 85%. Similar outcomes were observed

regarding the ASD recurrence rate and the BAP traits among siblings. ASD recurrence

researchers that explored relatively larger populations presented overall recurrence rates

from ≈ 10% to ≈ 25%, again showing differences between sex (from ≈ 14% to ≈ 35% for

males; from ≈ 5% to ≈ 20% for females). BAP recurrence researches presented overall

recurrence rates generally from ≈ 20% to ≈ 30%, including peaks up to 50%. The BAP

estimates show small differences between sex, with average of ≈ 32% for males and average

of ≈ 18% for females (male:female ratio of 1.8:1) when excluding uncommon cases in which
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the BAP estimates in females surpassed the BAP estimates in males.

As genetic factors seem to represent a consistently larger role regarding ASD risk

than environmental factors, we focused on genetic influences on ASD risk to model our

inference methods. Thus, the next chapter introduces the probabilistic graphical models

we aim to use.
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3 Probabilistic Graphical Models

Any technique that allows the computer to imitate human behaviors is popularly

classified as Artificial Intelligence (AI). However, we also have AI techniques based on

other biological systems, probability, statistics, and mathematics. Emerging in the 1950s,

AI is a relatively new science and engineering field that uses many spheres of human

knowledge, such as logic, probability, and mathematics. Its primary goal is a theory of

intelligence that explains the behavior of natural intelligent entities and guides the cre-

ation of artificial agents capable of smart behaviors. An intelligent agent must be capable

of precisely perceive the environment and perform proper actions. An agent is rational if

it does the right thing, given its acquired knowledge (RUSSELL; NORVIG, 2020; GENE-

SERETH; NILSSON, 2012).

In the AI context, we can define intelligence as human or rational. Human intel-

ligence is committed to human performance, while rational is a formal and ideal perfor-

mance measure called rationality. Different techniques are used to pursue these dimen-

sions. Human intelligence approaches usually use empirical science related to psychology,

cognitive science, biology, and neuroscience. These approaches involve observations, hy-

potheses, and the study of how humans behave, how our minds operate, and how human

brains process information. Rationalist approaches consist of a combination of formalism

from logic, mathematics, statistics, and control theory. These methods aim to create more

strict rules for the decision process (RUSSELL; NORVIG, 2020).

3.1 Artificial Intelligence Sub-fields

Russell and Norvig (2020) argue that most Artificial Intelligence comprises the

following sub-fields: Machine Learning, Natural Language Processing, Computer Vision,

Robotics, and Planning. These subdivisions relate more to the sub-fields’ practical goals

rather than the technologies employed by each one. For example, Artificial Neural Net-

works is a Machine Learning technique commonly used in Natural Language Processing,

Robotics, Computer Vision, and Planning.

Machine Learning techniques enable machines to learn by observing data and cre-
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ating models based on such information. Computers use these models as both a hypothesis

about the problem and software capable of solving then. There are three main types of

learning: 1) supervised learning, in which the computer observes pairs of input and output

data to learn a function that maps from inputs to outputs; 2) unsupervised learning, in

which the computer uses the inputted data to learn patterns but does not receive explicit

feedback; and 3) reinforcement learning, in which the computer learns through a set of

reinforcements that can be rewards or punishments.

Natural Language Processing techniques enable machines to communicate success-

fully in natural languages, such as English or Portuguese. However, as natural languages

are different from formal languages, a common problem is the language models, which are

models to predict the probability distribution of the language expressions.

Intelligent agents can use several sensors to sense the environment (e.g., images,

noises, distances, positions, temperatures). Through this perceptual channel, machines re-

ceive stimulus and create a representation of the real world. Computer Vision techniques

enable machines to perceive objects from the environment through the use of sensors like

cameras. Based on external information acquired by sensors (such as images), Computer

Vision agents can build a real-world model, known as reconstruction (e.g., creating ge-

ometries), or describe distinctions among the objects they “see” (e.g., labeling objects),

known as recognition.

Robotics are techniques that enable machines to move and manipulate the physical

world. Such machines (robots) usually are equipped with actuators (e.g., arms, grippers,

legs, wheels) designed to produce physical forces on the environment and sensors (e.g.,

gyroscopes, accelerometers, GPS, cameras, radars, lasers) dedicated to perceiving the

environment. This robot-environment interaction can change the state of the robot, the

state of the environment, and the state of the people around it.

Planning techniques allow finding a sequence of actions to achieve a goal. Given an

initial state, a goal (or a set of them), and a set of possible actions, the planning problem

synthesizes a sequence of steps to be executed in the initial state to turn the environment

into a goal state. Planning has applications in several areas such as Games, Logistics,

Robotics, Manufacturing, etc.

In general, real-world applications still require other abilities from so-called in-
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telligent agents, such as automated reasoning and knowledge representation. Automated

reasoning refers to performing reasoning sequences electronically and automatically find-

ing suitable reasoning steps to infer new knowledge from a given data, answer questions,

and outline new conclusions. Knowledge representation refers to how to represent real-

world events (what machines know, hear, or see) in a pattern that machines can use to

reason and solve problems (RUSSELL; NORVIG, 2020).

3.2 Probabilistic Networks

Nowadays, science and technology are omnipresent in our everyday lives, becoming

the new basis for belief and, together, bring new ways to improve the quality of life of our

entire society (FEENBERG, 2006). Most real-world events are unpredictable, demanding

that intelligent applications handle the uncertainty from partial observability, nondeter-

minism, or any eventuality (RUSSELL; NORVIG, 2020). The uncertainty arises from

some information deficiency. So the information may be incomplete, imprecise, incorrect,

or contradictory (KLIR, 2006).

Deductive Logic is insufficient for reasoning under uncertain environments once

it does not attribute a degree of uncertainty to the premises nor conclusions. Then, the

Inductive Logic, supported by the Probability Theory, has emerged as a proper alternative

for expressing reasoning (WILLIAMSON, 2002), once the nature of the knowledge from

which inferences are produced is uncertain and subjective (PEARL, 1986).

The probability theory provides ways to deal with the uncertainty coming from

laziness and ignorance. Laziness is due to the extensive work to consider every possible

explanation for given evidence. Ignorance is due to a non-complete knowledge about the

domain or uncertainty about a particular situation once we can not evaluate all premises.

Address uncertainty with numeric degrees of belief solves the qualification problem, which

specifies the impossibility of identifying all preconditions needed to succeed in the desired

action (RUSSELL; NORVIG, 2020).

Then emerged the probabilistic graphical models, a graph-based representation

for compactly encoding a complex distribution over a high dimensional space. Nodes

express variables, and edges denote the interactions between them. Known as proba-

bilistic networks, these models allow inter-causal reasoning, a vital aspect that distin-
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guishes them from other automated inference systems (KOLLER; FRIEDMAN, 2009;

KJAERULFF; MADSEN, 2013). In the inter-causal reasoning process, taking evidence

about a hypothesis decreases the belief in the competing unobserved hypotheses automat-

ically (KJAERULFF; MADSEN, 2013), which constitutes a safe and complete inference

mechanism (PEARL, 1988).

There are two graphical families to represent probability distributions. The Bayesian

Networks (BNs) (Section 3.4), and the Markov Models (MMs) (Section 3.5). Both models

provide the duality of independencies and factorization. However, they differ regarding

the set of independencies they can encode and the factorization of the distribution they

induce (KOLLER; FRIEDMAN, 2009).

3.3 Basic Probability Theory

Before introducing the graphical models, this subsection aims to introduce some

fundamental probability theories suited to the requirements of the probabilistic networks.

A sample space is the set of all possible worlds in a specified domain. The

possible worlds are mutually exclusive, once two or more possible worlds can not be the

case simultaneously. The possible worlds are also exhaustive because one possible world

must be the case. For example, the throw of two distinguishable dices has 36 possible

worlds {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), · · · , (6, 6)}. A fully specified sample

space associates a probability 𝑃 (with values between 0 and 1) to each possible world and

the total probability of all possible worlds must add up to 1. These associations are called

probability distribution (RUSSELL; NORVIG, 2020; KOLLER; FRIEDMAN, 2009).

Probability theory names its variables with the first letter in uppercase, and such

variables are called aleatory or random variables. An aleatory variable is a numerical

function defined in a sample space, and it maps from all possible worlds to a set of possible

values it can assume. It gives a numerical value 𝑋 to a phenomenon within the sample

space 𝑆 and is associated with a probability distribution (𝑃 (𝑋) in 𝑆) such that: Equation

3.1 (RUSSELL; NORVIG, 2020; KOLLER; FRIEDMAN, 2009):

∀𝑥 𝑃 (𝑋=𝑥) ≥ 0 𝑎𝑛𝑑
∑︁

𝑥

𝑃 (𝑋=𝑥) = 1 (3.1)

We can take the sum value obtained from two dices throw as an aleatory variable.



Chapter 3. Probabilistic Graphical Models 59

Function 3.2 is the numerical function (𝑥 and 𝑦 are the values obtained from each dice),

and Table 6 is the probability distribution for each possible sum.

𝐹 (𝑥, 𝑦) = 𝑋 = 𝑥 + 𝑦 (3.2)

Table 6 – Probability distribution of Function 3.2

X P(X) X P(X)

2 1
36 8 1

7.2

3 1
18 9 1

9

4 1
12 10 1

12

5 1
9 11 1

18

6 1
7.2 12 1

36

7 1
6

A variable can be discrete or continuous. Discrete random variables have a fi-

nite set of possible values, usually obtained by counting. Continuous random vari-

ables take any value in a given interval of real numbers, usually obtained by measuring

(KJAERULFF; MADSEN, 2013). From this point on, we deal with the discrete variables

aspects, once they are the type of variables used in this study.

Dealing with probability distributions of multiple variables requires a special no-

tation. Suppose a domain with the aleatory variables Weather 𝑊 = {𝑠𝑢𝑛𝑛𝑦, 𝑟𝑎𝑖𝑛, 𝑠𝑛𝑜𝑤}

and Traffic 𝑇 = {𝑗𝑎𝑚, 𝑛𝑜𝑟𝑚𝑎𝑙}, with probability distributions 𝑃 (𝑊 ) = {0.6, 0.25, 0.15}

and 𝑃 (𝑇 ) = {0.42, 0.58}, respectively. The probabilities of all combinations of the values

of 𝑊 and 𝑇 produce a matrix 𝑀3𝑥2 called the joint probability distribution of 𝑊

and 𝑇 . Joint probabilities measure the likelihood of two or more events co-occurring at

the same point in time. It can be represented as the probability of the intersection of the

co-occurring events. A full joint probability distribution determines the distribution

for all aleatory variables completely. This full joint distribution is sufficient as a knowledge

base to calculate the probability of any possible event in the model (RUSSELL; NORVIG,

2020; KOLLER; FRIEDMAN, 2009). Table 7 shows the joint probability distribution of

𝑊 and 𝑇 .
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Table 7 – Full joint probability distribution of 𝑊 and 𝑇

W
T

𝑗𝑎𝑚 𝑛𝑜𝑟𝑚𝑎𝑙

𝑠𝑢𝑛𝑛𝑦 0.10 0.50

𝑟𝑎𝑖𝑛 0.20 0.05

𝑠𝑛𝑜𝑤 0.12 0.03

A particular subset of possible worlds is called events. An example of an event is

the list of worlds where two rolled dice add up to 3 {(1, 2), (2, 1)}. Probabilistic assertions

and queries are usually about pre-defined events. The sum of the probabilities associated

with each world of an event defines the event probability. For example, the probability

that two rolled dice add up to 3 is 𝑃 (𝑆𝑢𝑚=3) = 𝑃 ((1, 2)) + 𝑃 ((2, 1)) = 1/36 + 1/36 =

1/18 (RUSSELL; NORVIG, 2020; KOLLER; FRIEDMAN, 2009). Equation 3.3 shows the

probability for any event 𝐸.

𝑃 (𝐸) =
∑︁
𝑤∈𝐸

𝑃 (𝑤) (3.3)

We could calculate the probabilities of some events in Table 7. To do so, we must

apply Equation 3.3 to add up the probability values where the desired event is true. For

example, the probability of 𝑟𝑎𝑖𝑛 (𝑃 (𝑊=𝑟𝑎𝑖𝑛) = 0.20 + 0.05 = 0.25), and the probability

of 𝑠𝑛𝑜𝑤 and traffic 𝑗𝑎𝑚 (𝑃 (𝑊=𝑠𝑛𝑜𝑤, 𝑇=𝑗𝑎𝑚) = 0.12).

Probabilities like 𝑃 (𝑊=𝑟𝑎𝑖𝑛) are called unconditional or prior probabilities

once probability theory does not require comprehensive knowledge of the sample space.

Prior probabilities refer to the belief in the events in the absence of any other infor-

mation (RUSSELL; NORVIG, 2020).

Most of the time, it is necessary to know the probability of an event given that

we have some information already revealed, usually called evidence. This probability

is called conditional or posterior probability and is written as 𝑃 (𝑋|𝑌 ) (RUSSELL;

NORVIG, 2020). Equation 3.4 shows how to compute the conditional probability of event

𝑋 given an event 𝑌 .

𝑃 (𝑋|𝑌 ) = 𝑃 (𝑋, 𝑌 )
𝑃 (𝑌 ) (3.4)
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For example, the probability of a traffic jam given that it is raining is:

𝑃 (𝑇 =𝑗𝑎𝑚|𝑊 =𝑟𝑎𝑖𝑛) = 𝑃 (𝑇 =𝑗𝑎𝑚, 𝑊 =𝑟𝑎𝑖𝑛)
𝑃 (𝑊 =𝑟𝑎𝑖𝑛)

𝑃 (𝑇 =𝑗𝑎𝑚|𝑊 =𝑟𝑎𝑖𝑛) = 0.2/0.25 = 0.8
(3.5)

Given a conditional probability, the joint distribution of 𝑋 and 𝑌 can be written

following the product rule (RUSSELL; NORVIG, 2020), as in Equation 3.6.

𝑃 (𝑋, 𝑌 ) = 𝑃 (𝑋|𝑌 ) 𝑃 (𝑌 ) (3.6)

We can apply the product rule to compute the joint probability of 𝑛 variables by

a successive product of conditional and joint probabilities of these same variables. Each

subsequent product reduces the joint probability to a conditional probability and a shorter

joint probability. Equation 3.7 presents the chain rule.

𝑃 (𝑋1, · · ·, 𝑋𝑛) = 𝑃 (𝑋1|𝑋2, · · ·, 𝑋𝑛) 𝑃 (𝑋2, · · ·, 𝑋𝑛)

= 𝑃 (𝑋1|𝑋2, · · ·, 𝑋𝑛) 𝑃 (𝑋2|𝑋3, · · ·, 𝑋𝑛) 𝑃 (𝑋3, · · ·, 𝑋𝑛)

· · ·

= 𝑃 (𝑋1|𝑋2, · · ·, 𝑋𝑛) 𝑃 (𝑋2|𝑋3, · · ·, 𝑋𝑛) 𝑃 (𝑋3, · · ·, 𝑋𝑛)· · ·𝑃 (𝑋𝑛−1|𝑋𝑛) 𝑃 (𝑋𝑛)

=

[︃
𝑛−1∏︁
𝑖=1

𝑃 (𝑋𝑖|𝑋𝑖+1, · · ·, 𝑋𝑛)

]︃
𝑃 (𝑋𝑛)

(3.7)

Given observed evidence, to compute the posterior probability for query propo-

sitions is known as probabilistic inference. We can use the full joint distribution to

perform inference. Given the full joint distribution of a model, Equation 3.8 can be used

to answer queries.

𝑃 (𝑋|𝐸=𝑒) = 𝛼𝑃 (𝑋, 𝐸=𝑒) = 𝛼
∑︁

𝑦

𝑃 (𝑋, 𝐸=𝑒, 𝑌 =𝑦) (3.8)

Where:

• 𝑃 (𝑋|𝐸=𝑒) is what we want to know (query);

• 𝑒 is the list of observed values;

• 𝑦 is all possible combinations of the values of the remaining unobserved variables;

• 𝛼 is a normalization constant.
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𝑋, 𝐸, and 𝑌 are the entire domain set of aleatory variables. 𝑃 (𝑋|𝐸=𝑒, 𝑌 =𝑦) is a

subset of the full joint distribution probabilities. The full joint distribution in tabular form

does not scale well. However, it is the theoretical foundation to build effective reasoning

systems (RUSSELL; NORVIG, 2020).

There is a fundamental property between events known as independence (also

known as marginal independence or absolute independence). If an event 𝑋 does not influ-

ence an event 𝑌 and vice-versa, they are independent events (𝑋 ⊥⊥ 𝑌 ). This independence

means that the occurrence of 𝑋 does not affect the probability of occurrence of 𝑌 and

vice-versa. The independence between two events (𝑋 and 𝑌 ) can be written as in Equation

3.9.

𝑃 (𝑋, 𝑌 ) = 𝑃 (𝑋) 𝑃 (𝑌 ) 𝑜𝑟

𝑃 (𝑋|𝑌 ) = 𝑃 (𝑋) 𝑜𝑟

𝑃 (𝑌 |𝑋) = 𝑃 (𝑌 )

(3.9)

The knowledge of the domain supports performing assertions over independent

events. Suppose we can split the aleatory variables into independent subsets. In that case,

we can factor the full joint distribution into separate joint distributions, which reduces the

size of the domain representation and the complexity of the inference model. However,

it is difficult to identify independent variables in complex domains once independence

will fail if a connection, even indirect, exists between two variables (RUSSELL; NORVIG,

2020).

Although independence is a valuable property, it is difficult to identify fully inde-

pendent events in real-world domains. It is most common to determine the independence

of two events, given a third event. Known as conditional independence, this relation-

ship of three variables defines the independence of two variables 𝑋 and 𝑌 , given a third

variable 𝑍 (𝑋 ⊥⊥ 𝑌 |𝑍), as in Equation 3.10.

𝑃 (𝑋, 𝑌 |𝑍) = 𝑃 (𝑋|𝑍) 𝑃 (𝑌 |𝑍) 𝑜𝑟

𝑃 (𝑋|𝑌, 𝑍) = 𝑃 (𝑋|𝑍) 𝑜𝑟

𝑃 (𝑌 |𝑋, 𝑍) = 𝑃 (𝑌 |𝑍)

(3.10)

As for absolute independence, conditional independence assertions also allow the

decomposition of the full joint distribution. Once conditional independence is more com-

monly available, it can enable probabilistic systems to scale up. This decomposition of

large probabilistic domains into weakly connected subsets makes conditional independence
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one of the most basic and robust structures of knowledge representation in uncertainty

environments (KOLLER; FRIEDMAN, 2009; RUSSELL; NORVIG, 2020).

3.4 Bayesian Networks

Bayesian Networks (also known as Causal Networks, Belief Networks, Causal Prob-

abilistic Networks, Probabilistic Cause-Effect Models, Probabilistic Influence Diagrams,

and Graphical Probability Networks) are graphical models of causal relationships in a

given domain. Describing dependencies among variables, BNs enable solving logical prob-

lems that involve probabilistic concepts, expanding the initial models of knowledge repre-

sentation and manipulation (HOLMES; JAIN, 2008; NEIL; FENTON; NIELSON, 2000).

Essentially, BNs can represent, concisely, any full joint probability distribution. By

employing a rigorous and efficient formalism to uncertain knowledge structuring as well

as practical algorithms for probabilistic reasoning, BNs support any reasoning with causal

variables, such as diagnosis, prediction, or causal explanation (RUSSELL; NORVIG, 2020;

WILLIAMSON, 2002).

BNs are models for knowledge representation consisting of two components: a

qualitative component, representing the network structure as a Directed Acyclic Graph

(DAG), and a quantitative component, representing the probabilistic element as a set

of conditional probabilities. Both components are fundamental to the definition, construc-

tion, and underlying inference process (KJAERULFF; MADSEN, 2013; DARWICHE,

2008).

Figure 3 shows the structure and the Conditional Probability Tables (CPTs) of

a BN representing part of the stock exchange domain. The 𝐼𝑅 variable represents the

country’s interest rate. The interest rate directly impacts the stock market (𝑆𝑀) perfor-

mance. The stock market performance usually indicates how the country’s gross domestic

product (𝐺𝐷𝑃 ) will perform. In addition to internal factors, the state of the stock market

(𝑆𝑀) and the performance of the company’s economic sector (𝐶𝑆) also impact the stock

price (𝑆𝑃 ) of a particular company.
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SM

SP

CS

IR

GDP

CS P(CS)

good 0.4

bad 0.6

IR P(IR)

high 0.7

low 0.3SM IR P(SM|IR)

bull high 0.2

bear high 0.8

bull low 0.7

bear low 0.3

GDP SM P(GDP|SM)

up bull 0.7

down bull 0.3

up bear 0.2

down bear 0.8

SP SM CS P(SP|SM,CS)

high bull good 0.8

low bull good 0.2

high bull bad 0.6

low bull bad 0.4

high bear good 0.5

low bear good 0.5

high bear bad 0.1

low bear bad 0.9

Figure 3 – A BN example over five variables. A CPT is associated with each node con-
taining the conditional probabilities of that node given its parents.

3.4.1 Syntax of Bayesian Networks

BNs represent its qualitative aspect using graphs that illustrate their probabilistic

distributions. A graph 𝐺 = (𝑉, 𝐸) consists of a finite set of distinct vertices (or nodes)

𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑁}, and a finite set of edges (or links) 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑁2} connecting

its vertices (ROSEN, 2017).

The connection pattern between nodes delimits some properties of a graph. The

notation 𝑣1 → 𝑣2 indicates a connection from vertice 𝑣1 to vertice 𝑣2 by a directed edge,

which means a directed graph (or digraph). The notation 𝑣1 — 𝑣2 designates a con-

nection from 𝑣1 to 𝑣2 by a not directed edge, which means an undirected graph. In a

digraph, the edges are unidirectional, indicating that the graph can be traversed only in

such directions. On the other hand, in an undirected graph, the edges are bidirectional,

indicating that the graph can be traversed in either direction (RUSSELL; NORVIG, 2020;

ROSEN, 2017).

A graph is connected if there is a path between every pair of its vertices. A

directed graph is acyclic if any path following the directions of the edges will never

produce a closed-loop (cycles). In a directed multiply connected graph, there is more

than one distinct path between two nodes. There is at most one path between any two
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nodes in a directed singly connected graph (trees). In simple trees, each node has

at most one parent. In polytrees, nodes can have more than one parent (RUSSELL;

NORVIG, 2020; ROSEN, 2017). Figure 4 illustrates these types of graphs.

Graph

Directed

Undirected

Connected

Acyclic

Cyclic

v4 v5

v2 v3

v1

Singly Connected

Multiply Connected

v4 v5

v2 v3

v1

Simple Trees

Polytrees

v4 v5

v2 v3

v1

v4 v5

v2 v3

v1

Disconnected

v4 v5

v2 v3

v1
v4 v5

v2 v3

v1

Directed Acyclic Graphs (DAGs)

Figure 4 – Types of graphs

Directed Acyclic Graphs (DAGs) represent the qualitative aspect of the BNs graph-

ically. Concerning the DAG that represents a BN, vertices represent the aleatory variables,

which correspond to the knowledge domain concepts. The directed edges of a DAG rep-

resent, in most cases, a dependency relation between the vertices they connect. Thus, the

relation 𝑣1 → 𝑣2 represents a direct dependence of variable 𝑣2 with regard to variable 𝑣1,

meaning typically that 𝑣1 has a direct influence on 𝑣2.

Some authors point out that the dependency relation is not necessarily a cause-

effect relationship and could be just some type of association (SCUTARI; DENIS, 2014).

Other authors argue the causal relationship, assuming that the dependency relation is a

cause-effect relationship (KJAERULFF; MADSEN, 2013). Based on probabilistic proper-

ties, other authors argue in favor of both points of view. They argue that the direction of

the edges does not need to have a specific meaning. Although they agree that meaningful

BNs express cause-effect relationships, once they correspond to more sparse and natu-

ral graphs, resulting in a more transparent and significant interpretation (PEARL, 2009;
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KOLLER; FRIEDMAN, 2009). Bayesian models in which the directed edges represent a

causal effect are called causal models.

3.4.2 Dependencies and Independencies in Graphs

Dependencies and independencies are crucial for understanding BNs behavior and

answering queries once the inference model estimates the probability of unobserved vari-

ables through other variables whose state has been observed (NIELSEN; JENSEN, 2009).

There is a direct dependency between 𝑋 and 𝑌 if a directed edge exists between

𝑋 and 𝑌 . Thus, 𝑋 and 𝑌 are correlated regardless of evidence about any other variable.

Given two not directly linked variables, 𝑋 and 𝑌 , a third variable, 𝑍, in the middle of

the undirected path determines conditional independence between 𝑋 and 𝑌 . A vertice

𝑍 connecting 𝑋 and 𝑌 specifies an indirect dependency between 𝑋 and 𝑌 (NIELSEN;

JENSEN, 2009).

The topology of a BN encodes mainly the conditional independence of the model.

Figure 5 illustrates the four cases where the vertice Z connects X and Y: a) indirect causal

effect; b) indirect evidential effect; c) common cause; and d) common effect.

X

Z

Y

Linear

Y

Z

X X

Z

Y

Diverging

X

Z

Y

Converging

(a) (b) (c) (d)

Figure 5 – D-connection types between vertices/variables.

Evidence can be forwarded through the variables of linear (serial) connections

unless the state of a variable in the middle is known. In the linear connection shown in

Figure 5a, if the state of 𝑍 is known the cause 𝑋 can not influence the effect 𝑌 . In the

linear connection shown in Figure 5b, if the state of 𝑍 is known the effect 𝑋 can not

evidence the cause 𝑌 (or the effect 𝑋 can evidence the cause 𝑌 only if 𝑍 is unknown)

(NIELSEN; JENSEN, 2009; CHARNIAK, 1991).
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Evidence can pass between all children of a parent variable (vertice) 𝑍 in diverg-

ing connections unless the state of 𝑍 is known. In the diverging connection shown in

Figure 5c, evidence can pass between 𝑋 and 𝑌 unless the state of 𝑍 is known (𝑋 is cor-

related with 𝑌 if and only if 𝑍 is not known) (NIELSEN; JENSEN, 2009; CHARNIAK,

1991).

It is impossible to infer anything about the parents of a variable 𝑍 in converging

connections unless something is known about 𝑍 or its descendants. In the converging

connection presented in Figure 5d, if something is known about 𝑍 or its descendants,

evidence in 𝑋 can tell us something about 𝑌 and vice-versa (NIELSEN; JENSEN, 2009).

In linear and diverging connections, 𝑋 and 𝑌 are independent only if the state

of 𝑍 is known. Thus 𝑋 and 𝑌 are d-separated given 𝑍 (d connotes “directional”). In

converging connections, 𝑋 and 𝑌 are independent and d-separated only if the state of 𝑍

or any of its descendants are not known (NIELSEN; JENSEN, 2009; CHARNIAK, 1991).

There are still other general conditional independence properties. As shown in

Figure 6, the Markov condition states that a variable 𝑋 is conditionally independent

of its non-descendants (𝑁𝐷1 and 𝑁𝐷2), given its parents (𝑃1 and 𝑃2).

P1

X

P2

D2D1

ND2ND1

Figure 6 – Conditional independence of non-descendants.

As shown in Figure 7, a variable 𝑋 is conditionally independent of all other vari-

ables in the BN given its Markov blanket. The Markov blanket of a variable 𝑋 is the

set composed of its parents, children, and children’s parents. Markov blankets follow the

d-separation property since the Markov blanket of a variable d-separates it from all other

variables.

Grays areas in Figure 6 and 7 represent evidence, these areas “block” probability

propagation (RUSSELL; NORVIG, 2020).
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P1

X

P2ND1 ND2

CP1 CP2

D2D1

ND3 ND4

Figure 7 – Conditional independence given the Markov blanket of a variable.

3.4.3 Semantics of Bayesian Networks

Sucintlly, BNs are DAGs in which each vertice corresponds to an aleatory vari-

able. Directed edges connecting pairs of vertices indicate a direct influence of one vertice

(parent) over another (child). The qualitative aspect of the BNs specifies the correspon-

dence between their syntax with the joint probability distribution over the BN variables.

Once the topology of a BN was specified, a conditional distribution must be computed

as the local probability for each variable given its parents. As a probabilistic model, each

vertice has a CPT that quantifies the effects of its parents on it. The topology and the

local probability define the full joint distribution for all variables of a BN (RUSSELL;

NORVIG, 2020).

As mentioned before, the full joint probability distribution of a domain will increase

as the number of its variables grows. However, given the topology of a BN, only the

conditional probabilities for the vertices involved in direct dependencies are required,

which means the probability for every node given all possible combinations of its parents.

A complete example of a BN (topology and CPTs) can be seen in Figure 3.

The edges in a BN specify the independence assumptions that must hold between

the random variables. These assumptions determine what probability information is re-

quired to specify the probability distribution among the network’s random variables. Each

node 𝑋𝑖 has an associated probability 𝑃 (𝑋𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) that quantifies the effect of its

parents on it (NIELSEN; JENSEN, 2009; RUSSELL; NORVIG, 2020). Therefore, the
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chain rule can be reduced, as shown in Equation 3.11.

𝑃 (𝑥𝑖|𝑥𝑖+1, · · ·, 𝑥𝑛) = 𝑃 (𝑥𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) (3.11)

Suppose a BN which contains 𝑛 variables {𝑋1, · · · , 𝑋𝑛}. The product of the rel-

evant elements of the local conditional distributions represents each entry in the joint

probability distribution table, as in Equation 3.12. Thus, BNs allow defining the joint dis-

tribution based only on their conditional probabilities, reducing the number of probability

values needed substantially (NIELSEN; JENSEN, 2009; RUSSELL; NORVIG, 2020).

𝑃 (𝑋1=𝑥1, · · ·, 𝑋𝑛=𝑥𝑛) =
𝑛∏︁

𝑖=1

𝑃 (𝑥𝑖|𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) (3.12)

Equation 3.13 presents the Bayes theorem, which is the probabilistic basis of the

BNs. The Bayes theorem allows computing unknown probabilities from known and stable

ones. This simple equation underlies all modern AI approaches for probabilistic inference

by helping to simplify the intermediate calculations (RUSSELL; NORVIG, 2020).

𝑃 (ℎ|𝐷) = 𝑃 (𝐷|ℎ) · 𝑃 (ℎ)
𝑃 (𝐷) (3.13)

Where:

• 𝑃 (ℎ) is the prior probability of a hypothesis ℎ;

• 𝑃 (𝐷) is the prior probability of the observed data 𝐷;

• 𝑃 (𝐷|ℎ) is the conditional probability of 𝐷 given ℎ; and

• 𝑃 (ℎ|𝐷) is the posterior probability of ℎ given 𝐷. It is the belief in the model after

seeing the data.

Given the topology and the conditional probabilities of a BN, it is possible to

infer the probability of any variable in the network applying basically the Bayes theorem

together with some new evidence. Thus, it is possible to take action or search for further

evidence to increase the network’s confidence (RUSSELL; NORVIG, 2020).
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3.4.4 Learning in Bayesian networks

Learning is the task of estimate and select models. Usually, the topology and the

probabilities required to define a BN are given by specialists, preview studies, or obtained

with experiments and calculus. It is also possible to reach the topology and the statistical

information using methods that extract them from the data available (CHARNIAK, 1991;

HECKERMAN, 2008; HECKERMAN; GEIGER; CHICKERING, 1995).

There are different learning approaches such as manual methods supported by the

experience of domain experts, known as supervised learning; (semi-)automatic meth-

ods that learn from data, known as unsupervised learning; or a combination of both ap-

proaches, which combines observed data with experts’ experience (KJAERULFF; MAD-

SEN, 2013).

We will adopt the manual construction approach to building our networks due to

our data and problem characteristics. Networks created exclusively from the knowledge

of experts encode known and expected causal relationships, resulting in the construction

of causal models (SCUTARI; DENIS, 2014).

The manual construction of a BN is usually a challenging task. It requires distinct

expertise such as model engineering abilities and a comprehensive understanding of the

problem domain. The model elicitation process requires: 1) a solid problem definition; 2)

a careful identification of the relevant variables; 3) a precise definition of dependences/in-

dependences relationships among the chosen variables; and 4) a proper elicitation of many

conditional and prior probabilities (KJAERULFF; MADSEN, 2013).

As the parameters of a BN are determined by its structure, creating a BN always

proceeds in three consecutive stages. The first step refers to the selection of the variables

of interest. The second step refers to identifying the causal, functional or informational

relations among the variables to construct the network structure (DAG). The last step

refers to estimating the set of conditional and prior probabilities for all network nodes.

3.4.4.1 Variables Identification

The aleatory variables constitute the entire model basis. Selecting variables is one

of the most pervasive selection problems in statistical applications. The problem is the un-

certainty about which set of variables should establish the relationship between a variable
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of interest and a subset of potential explanatory or predictor variables (GEORGE, 2000).

Domain experts are usually those who perform the selection of the aleatory variables.

There are some fundamental approaches to address this problem, such as the

clarity test proposed by Kjaerulff and Madsen (2013). According to the clarity test, a

variable 𝐴 must meet three principles to probe whether it has been clearly defined:

• All possible values in the 𝐴 domain must be exhaustive and mutually exclusive. If

the possible values of 𝐴 are not mutually exclusive, they should be split into several

variables;

• Usually, 𝐴 should represent a unique set of events with no competing variables.

That is, the state of A should not be given deterministically by the state of another

variable;

• 𝐴 must be clearly defined, leaving no ambiguity concerning its semantics.

Kjaerulff and Madsen (2013) also recommends that it is essential to understand the

types of variables that may arise. The identification and classification of the variables

make it easier to connect them.

• Problem or hypothesis variables are the variables of interest from which we may

want to calculate the posterior probability given some evidence (information vari-

ables). Usually non-observable, these variables relate to the diagnoses or predictions

to be made;

• Information variables are usually the observable variables that usually have rel-

evant information to the problem-solving. The author separates these variables into

the background and symptom variables:

– Background variables usually are among the network root variables and

represent the information available before a problem occurs, holding a causal

influence over both the problem variables and the symptom variables;

– Symptom variables are the consequence variables usually available after the

occurrence of a problem. These variables are children of the problem variables

or background variables.
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• Mediating variables are usually non-observable. Their posterior probability is not

of immediate interest, but they help maintain the essential network independence

relationships. They tend to be parents of symptom variables and children of problem

variables and background variables.

3.4.4.2 Developing the Network Structure

The network structure development defines the dependency relationship between

the selected variables. There are two main creational approaches: a basic approach

based on the natural causal ordering among the previously mentioned types of variables

and the Neil method proposed by Neil, Fenton and Nielson (2000).

The basic approach maintains a causal perspective in the model construction,

once this causality is crucial to construct influence diagrams. Such a causal approach may

lead to a more suitable representation of the dependence and independence relations and

a more reliable estimate of the conditional probabilities (KJAERULFF; MADSEN, 2013).

Thus, the next step in a BN construction process involves identifying and verifying

causal links among the selected variables. According to the types of variables, Figure 8

gives an overall view of the causal dependence relations of a BN. The process of eliciting

the network structure follows the structure in Figure 8.

Background Problem

Mediating

Symptom

Figure 8 – Typical overall causal structure of a BN. Adapted from Kjaerulff and Madsen
(2013).

The Neil method creates the network structure based on five commonly occur-

ring substructures. These substructures are known as idioms, and their semantics and

syntax represent different methods of uncertain reasoning, covering the vast majority of
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substructures that can occur in a BN. As described by Neil, Fenton and Nielson (2000),

the five idioms are:

• Definitional or synthesis integrates many variables into a single variable aiming

to organize the BN;

• Cause/consequence models cause-effect mechanisms;

• Measurement models the uncertainty associated with the accuracy of a measure-

ment instrument;

• Induction models inductive reasoning based on populations of similar or exchange-

able members;

• Reconciliation models the reconciliation of results from competing measurement

or prediction systems.

According to the types of variables defined in Section 3.4.4.1, the variables clas-

sification depends on their position in the DAG structure. Which of the idioms to chose

depends on how we perceive the relationships among the variables. However, the cause/-

consequence idiom is the most frequently used substructure. Thus, considering if the

relations among the subset of variables are best described using one or more cause/conse-

quence relations is a good starting point (KJAERULFF; MADSEN, 2013). Neil, Fenton

and Nielson (2000) present a guide to choosing the proper idiom.

3.4.5 Inference in Bayesian Networks

BNs answer questions concerning the nature of their data through the use of partial

queries. These queries are performed through techniques known as inference, probabilistic

reasoning or belief updating. Given a BN 𝐵 with 𝑛 variables {𝑋1, · · · , 𝑋𝑛}, a partial

question 𝑄 = {𝐵, 𝐴, 𝐸} consists of computing the conditional probability 𝑃 (𝐴|𝐸=𝑒)

where:

• 𝐴 is a target set of non-observed variables;

• The evidence 𝐸=𝑒 is a set of 𝑘 observed variables 𝐸 = (𝐸1=𝑒1, ..., 𝐸𝑘=𝑒𝑘);
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• Variables in 𝑋 not included in 𝐴 nor 𝐸 constitute the set of hidden variables 𝐻.

Evidence may combine multiple and not always perfect sources of information.

Thus, the observation can be uncertain and imprecise, which generates what is known as

uncertain evidence. Therefore, there are different types of evidence, such as hard evidence

and probabilistic evidence (virtual evidence and soft evidence) (MRAD et al., 2015).

The classic notion of evidence is hard or regular evidence that precisely specifies

the state of a random variable. It is an observation that a variable 𝐴 definitely has a

particular value (e.g., 𝐴=1) (PEARL, 1988).

Virtual evidence, also known as likelihood evidence, corresponds to the cases where

the observation is uncertain. It is usually interpreted as evidence with uncertainty and is

commonly represented as a likelihood ratio. A likelihood 𝑃 (𝐴) represents virtual evidence

of a variable 𝐴 as in Equation 3.14 (PEARL, 1988).

𝑃 (𝐴) = (𝑃 (𝑎1|𝑎1), ..., 𝑃 (𝑎𝑛|𝑎𝑛)) (3.14)

Where 𝑃 (𝑎𝑖|𝑎𝑖) is the probability of observe 𝐴 in the state 𝑎𝑖 if it really is in the

state 𝑎𝑖.

Soft evidence is usually interpreted as evidence of uncertainty and is represented

as a probability distribution of one or more variables. There is uncertainty concerning the

precise value of a variable 𝐴, but certainty regarding its probability distribution 𝑃 (𝐴).

Since 𝑃 (𝐴) distribution is a certain observation, updating network belief should preserve

it (VALTORTA; KIM; VOMLEL, 2002).

This preservation of the local distribution of the evidence variable is the main

difference between soft evidence and virtual evidence, once virtual evidence does not

require this preservation. Belief in virtual evidence is not fixed and can be modified by

further evidence on other variables (MRAD et al., 2015).

There are three main categories of partial queries: Conditional Probability Query

(CPQ), Maximum a Posteriori (MAP), and Most Probable Explanation (MPE) or Marginal

MAPs (SCUTARI; DENIS, 2014; KOLLER; FRIEDMAN, 2009).

Koller and Friedman (2009) classify CPQs as:

• Causal, deductive or predictive reasoning: that estimates the probability of a
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variable given the observation of non-descending variables (from causes to effects).

In the BN example in Figure 3, 𝑃 (𝑆𝑃 |𝑆𝑀, 𝐶𝑆) represents this type of query;

• Evidence, abductive or explanation reasoning: that estimates the probability

of a variable given the observation of descending variables (from effects to causes).

In the BN example in Figure 3, 𝑃 (𝐼𝑅|𝐺𝐷𝑃, 𝑆𝑃 ) represents this type of query;

• Inter-causal reasoning: that addresses the interaction of causing variables with

regard to the same effect variable. It refers to the decrease in the belief of competing

hypotheses once observed the occurrence of one or several hypotheses. In the BN

example in Figure 3, 𝑃 (𝐶𝑆|𝑆𝑀, 𝑆𝑃 ) represents this type of query.

MPAs and MPEs consist of identifying the most likely configuration for all vari-

ables in 𝐴 that maximize the posterior probability of 𝐸. In MPE, 𝐴 coincides with all

remaining variables in the subset {𝑋 − 𝐸}. In MAP, 𝐴 is a strict subset of “hypothesis”

variables in {𝑋 − 𝐸}. Thus, MPEs and MAPs calculate the most probable assignment

for 𝐴 (𝑎*) in a model 𝑋 given evidence 𝐸=𝑒, as in Equation 3.15 (DARWICHE, 2008).

(𝐴|𝐸=𝑒) = 𝑎* = argmax
𝐴

𝑃 (𝐴|𝐸) (3.15)

All these inference problems are complex. The decision version of MPEs, CPQs,

and MAPs are known to be NP-complete, PP-complete, and NPPP-complete1, respec-

tively. There are exact and approximate algorithms for answering these queries. All exact

inference algorithms have an exponential complexity regarding the BN treewidth. Ap-

proximate inference algorithms usually are not sensitive to the BN treewidth and can be

pretty efficient regardless of the BN topology. However, the approximate methods usually

present issues regarding the quality of answers they compute, which is commonly related

to the amount of time scheduled by the algorithm (DARWICHE, 2008).

The most suitable inference algorithm will depend on the accuracy required and

the computational cost. The structure of our BNs will be directed singly connected graph

(polytrees). Therefore, we will use exact inference algorithms to perform our queries.

Besides generate reliable results, the time and space complexity of exact inference in
1 NP-, PP-, and NPPP-complete are classifications for the complexity of common problems in computer

science. These classifications usually describe the amount of computer time (elementary operations
performed) and space an algorithm takes to run (OZTOK; CHOI; DARWICHE, 2016; PAPADIM-
ITRIOU, 1994).
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polytrees is linear in the size of the BN (the number of CPT entries) (RUSSELL; NORVIG,

2020; KOLLER; FRIEDMAN, 2009).

Variable elimination is the simplest algorithm for exact inference in PGMs, and is

very efficient on models whose DAG representation is a tree. Belief propagation is another

algorithm to satisfy CPQs with exact inference when the DAG is a tree (RUSSELL;

NORVIG, 2020; PEYRARD et al., 2019).

3.5 Markov Models

It may be necessary to model dynamic systems that allow reasoning about the state

of the world as it evolves. These systems states are also represented as a set of aleatory

variables, whose values at time 𝑡 are a snapshot of the relevant system attributes. It is

possible to model BNs representing a temporal probability model, known as Dynamic

Bayesian Networks (DBNs). DBNs model stochastic processes over time intervals (RUS-

SELL; NORVIG, 2020; KOLLER; FRIEDMAN, 2009).

DBMs are not the first temporal method of reasoning under uncertainty. Hidden

Markov Models have great popularity due to their compact representation, fast learn-

ing, and fast inference techniques (RUSSELL; NORVIG, 2020). According to Koller and

Friedman (2009), the Hidden Markov Models are the simplest nontrivial type of these

state-observation temporal models.

In probability theory, a Markov Model is a Stochastic Process (SP) which con-

sists of a family of variables that evolve regarding some parameter, usually time. An SP

is represented by {𝑋𝑡 | 𝑡 ∈ 𝑇}, where:

• 𝑇 is the parametric space, formed by a set of ordered values (e.g., time);

• 𝑡 is a given value in 𝑇 ; and

• Each 𝑋𝑡 is an aleatory variable. The set of its possible values is called the states

space, and its specific values at any given time are the process states.

In general, SPs are used to study the evolution of phenomena or systems. Given

an initial condition, all system evolution is unknown, having several possible trajectories

for its evolution. The SPs analysis determines the probability distributions for each set of
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aleatory variables, using them to predict future behaviors (states) given past behaviors

(states). In contrast with deterministic models, those specified by a set of equations that

describe exactly how a system evolves, the evolution of stochastic models is random, and

if the process runs several times (realizations of the process), it will not give the same

results (JELINEK, 1997; RABINER, 1989).

Let {𝑋0, 𝑋1, ... 𝑋𝑡, ..., 𝑋𝑇 } be a sequence of stochastic variables, where (0 ≤

𝑡 ≤ 𝑇 ) represents a discrete time order, defined for the same discrete and finite state

space. If nothing else is considered, the joint probability of these stochastic variables is

given by the chain rule (JELINEK, 1997), as shown in Equation 3.16.

𝑃 (𝑋0, 𝑋1, ..., 𝑋𝑇 ) =
𝑇∏︁

𝑡=0

𝑃 (𝑋𝑡|𝑋0, 𝑋1, ..., 𝑋𝑡−1)

= 𝑃 (𝑋0)𝑃 (𝑋1|𝑋0)𝑃 (𝑋2|𝑋0, 𝑋1) ...

𝑃 (𝑋𝑇 |𝑋0, 𝑋1, 𝑋2, ..., 𝑋𝑇 −1)

(3.16)

An SP is taken as Markovian if it satisfies the property shown in Equation 3.17.

𝑃 (𝑋𝑡|𝑋0, 𝑋1, 𝑋2, ..., 𝑋𝑡−1) = 𝑃 (𝑋𝑡|𝑋𝑡−1) (3.17)

When dealing with a markovian process, the Equation 3.16 can be simplified,

as shown in Equation 3.18.

𝑃 (𝑋0, 𝑋1, ..., 𝑋𝑇 ) =
𝑇∏︁

𝑡=0

𝑃 (𝑋𝑡|𝑋𝑡−1)

= 𝑃 (𝑋0)𝑃 (𝑋1|𝑋0)𝑃 (𝑋2|𝑋1)𝑃 (𝑋3|𝑋2) ...

𝑃 (𝑋𝑇 |𝑋𝑇 −1)

(3.18)

3.5.1 Markov Chains

Markovian processes in discrete state spaces are known as Markov Chains (MCs).

An MC is a memoryless SP whose future state depends only on its current state, disre-

garding past states. Satisfying what is known as Markov property, a MC 𝑋𝑡 is a SP

where given a value of 𝑋𝑡, the values of 𝑋𝑠 (𝑡 < 𝑠) are not influenced by the values of 𝑋𝑢

(𝑢 < 𝑡). Or, more succinctly, successive steps are statistically independent (REICHL,

2016).

Grinstead and Snell (1998) made an interesting description of MCs by defining it

as a set of states 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑟} in a process. The process starts in one of these states
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and moves successively from one state to another. Each move is called a step. If the chain

is in a current state 𝑠𝑖, then it moves to a state 𝑠𝑗 at the next step with a probability

denoted by 𝑝𝑖𝑗, and this probability does not depend upon which states the chain was

before the current state 𝑠𝑖. The probabilities 𝑝𝑖𝑗 are called transition probabilities. The

process can remain in the state it is in, and this occurs with probability 𝑝𝑖𝑖. An initial

probability distribution, defined on 𝑆, specifies the starting state and is calculated as

a vector 𝜋 that indicates the initial probability of each state.

This probability distribution of the states transitions is typically represented in

a transition matrix. If a MC has 𝑁 possible states, its transition matrix will be an

𝑁x𝑁 matrix, where each entry 𝑁𝑖𝑗 is the transition probability from state 𝑖 to state

𝑗. The transition matrix must be stochastic, which is a matrix where entries in each

row must add up to exactly one (∑︀𝑛
𝑗=1 𝑃𝑖𝑗 = 1) since each row represents its probability

distribution. The transition matrix probabilities can vary over time or be stationary (when

its probabilities are time-independent). The 𝜋 vector and the hidden states (BuM, StM,

BeM) in Figure 9 illustrate an MC.

Through the transition matrix it is possible to obtain the absolute probability

of the system states after a given number of transitions. The probability of a system

composed by: 1) 𝑁 states (1, 2 ... 𝑁); 2) a transition matrix 𝐴𝑁𝑥𝑁 ; and 3) an initial state

vector 𝜋0, stay in one of its 𝑁 states after 𝑘 transitions is seen in equation 3.19.

𝜋𝑘 = 𝜋0(𝐴𝑁𝑥𝑁 )𝑘 (3.19)

Where:

• Each 𝐴𝑘
𝑖𝑥𝑗 position is the probability of staying in state 𝑗, since it started in state 𝑖,

after 𝑘 transitions; and

• 𝜋𝑘 has the probabilities of staying in each state after 𝑘 transitions when considering

the initial state vector 𝜋0.

3.5.2 Hidden Markov Models

Most Markovian processes consist of states that can be directly observed. However,

HMMs are used to model Markovian processes that generate indirectly observable



Chapter 3. Probabilistic Graphical Models 79

states through the transitions between the states of the MC that govern the process,

but which can not be directly observed. HMMs are double-layered SPs with a nonvisible

SP that can be observed through another SP that produces the sequence of observations

(RABINER, 1989).

The hidden process is a set of states connected by transitions with probabilities

(an MC). In contrast, the observable process is a set of outputs or visible states emitted

by each not observable state according to some output of a probability density function.

The challenge is to determine the hidden states from the visible states (RABINER, 1989).

The fundamental difference between HMMs and the rest of the Markovian pro-

cesses is how the system is observed. HMMs have an indirect observation of the states,

carried out by inference since the observable ones are probabilistic functions regarding

the states of the chain or regarding the transition between these states. In contrast, the

rest of the markovian processes has direct observation, where the observable ones are the

states themselves.

Most Neural Networks are probabilistic methods. They work in a discriminative

approach to take inputs from a high-dimensional space and map it to a lower-dimensional

space. On the other hand, HMMs are statistical methods that work in a generative ap-

proach that models conditional dependencies of hidden states. Each state has a probability

distribution regarding the observations. An HMM hidden state is the entity’s identity that

caused each observation, and this hidden cause is translated statistically into the observed

data. Through the forward-backward algorithms, it is possible to find the conditional dis-

tribution over the hidden states (CAPPÉ; MOULINES; RYDÉN, 2006; RABINER, 1989).

Described for the first time in the late 1960s and early 1970s (BAUM; PETRIE,

1966; BAUM; EAGON, 1967), HMM applications began to be used in word recogni-

tion in the middle 1970s (BAKER, 1975). HMMs appear in the literature under various

names, such as Hidden Markov Processes, Markov Sources, Hidden Markov Chains, and

Probabilistic Functions of Markov Chains. HMM’s first applications focused on speech

and handwriting recognition and DNA sequencing, reaching, later, great importance in

bioinformatics.
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3.5.2.1 Hidden Markov Models Structure

An HMM structure is characterized by:

• 𝑇 : the observation sequence length;

• 𝑁 : the number of distinct states in the model;

• 𝑆: a set of states. Individual states are labeled {1, 2, ..., 𝑁} and the state at time 𝑡

as 𝑄𝑡;

• 𝑀 : the number of distinct observable symbols in the model.

• 𝑉 : a set of symbols. Individual symbols are denoted as {𝑣1, 𝑣2, ..., 𝑣𝑀};

• 𝐴 = {𝑎𝑖𝑗}: the transition probability distribution from state 𝑎, where: 𝑎𝑖𝑗 = 𝑃 [𝑞𝑡+1 =

𝑗|𝑞𝑡 = 𝑖], 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (𝑎𝑖𝑗 can be read as 𝑃 (𝑠𝑡𝑎𝑡𝑒 𝑞𝑗 𝑎𝑡 𝑡 + 1|𝑠𝑡𝑎𝑡𝑒 𝑞𝑖 𝑎𝑡 𝑡));

• 𝐵: a 𝑁𝑥𝑀 probability distribution matrix which relates the states of the set 𝑆

(rows) to the observable symbols of the set 𝑉 (columns). 𝐵 = {𝑏𝑗(𝑘)} defines the

observation probability distribution of symbols in the state 𝑗, {𝑗1, 𝑗2, ..., 𝑗𝑁}, where:

𝑏𝑗(𝑘) = 𝑃 [𝑂𝑡 = 𝑣𝑘|𝑞𝑡 = 𝑗], 1 ≤ 𝑘 ≤ 𝑀 . As 𝐴, 𝐵 is stochastic and its probabilities

𝑏𝑗(𝑘) are time independent ((𝑏𝑗(𝑘) can be read as 𝑃 (𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑘 𝑎𝑡 𝑡|𝑠𝑡𝑎𝑡𝑒 𝑞𝑗 𝑎𝑡 𝑡));

• 𝜋 = {𝜋𝑖}: the initial state distribution, where: 𝜋𝑖 = 𝑃 [𝑞1 = 𝑖], 1 ≤ 𝑖 ≤ 𝑁 .

Thus, the HMM specification requires the definition of two model parameters (𝑁

and 𝑀), a symbol observation specification, and the definition of three sets of probability

distribution 𝐴, 𝐵, and 𝜋. The complete set of model parameters is defined as 𝜆 = (𝐴, 𝐵, 𝜋).

This set of parameters defines the measure of probability for 𝑂, 𝑃 (𝑂|𝜆), where 𝑂 is a set

of observed states.

A different graphical notation depicts the HMMs structure. Directed (generally

cyclic) graphs represent the HMMs transition/emission model, in which vertices denote

the different states and edges indicate the transitions/emissions between states (KOLLER;

FRIEDMAN, 2009).

Figure 9 presents the structure of an HMM that represents part of the stock

exchange domain. The three hidden variables that form the hidden MC represent the
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stock market states, Bull Market (BuM), Bear Market (BeM), and Stagnant Market

(StM). The edges between these hidden states represent the possible transitions. The

values next to each edge indicate the transition probabilities between the hidden states.

The two observable symbols represent two critical economic indicators: a high interest

rate (HIR) and a growing gross domestic product (GGDP). The dashed edges arriving

at the observable states represent the possible emissions. The values next to each dashed

edge indicate the emission probabilities from hidden to observable states. This HMM

would make it possible to predict the stock market direction by observing the economic

indicators.

BuM BeM

GGDPHIR

0.2

StM

0.2

0.6

0.2
0.6

0.2

0.6
0.1

0.3

0.2

0.5 0.3

0.2

0.8

0.6 0.4
0.3

0.7

Observable States Hidden States Transition Edges Emission Edges

Figure 9 – An HMM example over five states (three hidden/non-observable states and
two observable states).

The parameters of the HMM displayed in Figure 9 are listed below:

• 𝑁 = 3; 𝑆 = {BuM, StM, BeM};

• 𝑀 = 2; 𝑉 = {HIR, GGDP};

• 𝐴=
BuM StM BeM⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦
0.2 0.2 0.6 BuM

0.5 0.2 0.3 StM

0.1 0.3 0.6 BeM
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• 𝐵=
HIR GGDP⎡⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎦
0.3 0.7 BuM

0.6 0.4 StM

0.8 0.2 BeM

• 𝜋=
BuM StM BeM[︂ ]︂
0.2 0.6 0.2

There are three main problems we can solve using HMMs:

1. Evaluation problem: given an observation sequence 𝑂, and a model 𝜆, how to

calculate the probability of 𝑂 be produced by the model (𝑃 (𝑂|𝜆));

2. Best sequence of states: given an observation sequence 𝑂, and a model 𝜆, how

to calculate an optimal state sequence 𝑄 for a given sequence of observations;

3. Training: how to adjust the model parameters 𝜆 = (𝐴, 𝐵, 𝜋) to maximize 𝑃 (𝑂|𝜆).

These three problems are traditionally solved, respectively, by Forward-backward,

Viterbi and Baum-Welch or K-Means algorithms (CAPPÉ; MOULINES; RYDÉN,

2006; RABINER, 1989).

3.6 Artificial Intelligence Applications in Medical Researches

Several AI techniques have been applied in medical research. Deep neural ar-

chitectures are being applied in different biomedical areas, such as public and medical

health management, bio and medical imaging, and brain and body machine interface (ZE-

MOURI; ZERHOUNI; RACOCEANU, 2019; LITJENS et al., 2017; LEE et al., 2017).

Current and potential uses of AI in healthcare also include dermatology, ophthalmology,

radiology, histopathology, and nuclear medicine (LEE et al., 2019).

Some researches involving the use of intelligent systems applied to autism propose

the formulation of diagnostic methods based on magnetic resonance imaging (HEINS-

FELD et al., 2018; BHAUMIK et al., 2018; KHOSLA et al., 2018; LIAO; LU, 2018; ZHAO
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et al., 2018; DVORNEK; VENTOLA; DUNCAN, 2018; DEKHIL et al., 2018b; DEKHIL

et al., 2018a; HAZLETT et al., 2017; EMERSON et al., 2017; DVORNEK et al., 2017;

YAHATA et al., 2016), early prediction approaches from behavioral and developmental

measures (BUSSU et al., 2018), the use of robots and other AI techniques applied to the

therapy processes of ASD children (ALVES et al., 2020), wearable assistive technologies

(BENSSASSI et al., 2018), approaches to predicting autism risk genes (BRUEGGEMAN;

KOOMAR; MICHAELSON, 2020; LIN et al., 2018; LE; VAN, 2017), to reveal differences

in regional brain structure between ASD and TD people (GÓRRIZ et al., 2019), and to

model the diagnostic heterogeneity of ASD (LOMBARDO; LAI; BARON-COHEN, 2019).

Applied in several areas, BNs are among the AI tools that have been most suc-

cessful in practical applications for medicine (SAHEKI, 2005). The most common ap-

proaches are for medical diagnoses, such as diagnosing diseases of the lymph node (HECK-

ERMAN; HORVITZ; NATHWANI, 1992), heart disease diagnosis (SPIEGELHALTER;

FRANKLIN; BULL, 2013; SAHEKI, 2005), and computerized tongue diagnosis (ZHANG;

ZHANG; ZHANG, 2017). Other human applications include automated language (CHAR-

NIAK; GOLDMAN, 1990) and text understanding (GOLDMAN, 1991), describing the

interaction between genes (FRIEDMAN et al., 2000) and control of Computer Vision

systems (LEVITT; AGOSTA; BINFORD, 1990).

Regarding mental disorders, Palmer, Lawson and Hohwy (2017) gathered Bayesian

approaches to autism within a framework that extends from simple to complex Bayesian

inference models. Given that the ASD core features relate to how individuals interact

with the world around them, they propose that ASD is characterized by a greater weight-

ing of sensory information in updating probabilistic representations of the environment.

Thus, ASD may relate to finer mechanisms involved in the adjustment of sensory per-

ception, and the hypotheses regarding atypical sensory weighting in ASD have direct

implications for behavior regulation. They base their work on a theory called predictive

processing, in which top-down and bottom-up messages passing across the cerebral cor-

tex implement hierarchical probabilistic inference on the sensory stimulation causes. The

hypothesis regarding ASD is that the incoming sensory signals are weighted more highly

when integrated with the brain’s existing model of the environment, such that neural pro-

cesses like perception are dictated to a greater extent by the present sensory data rather

than prior or contextual information.



Chapter 3. Probabilistic Graphical Models 84

HMMs also have been used for modeling several different problems in medical

researches (KROGH; MIAN; HAUSSLER, 1994; MEYER; DURBIN, 2002; TESTA et

al., 2015), including approaches to diagnose cancer (MANOGARAN et al., 2018), for

genotype imputation (BROWNING; BROWNING, 2009; LI et al., 2010; MARCHINI et

al., 2007; HOWIE; DONNELLY; MARCHINI, 2009; MARCHINI; HOWIE, 2010), and to

investigate heart abnormalities (FAHAD et al., 2018; DWIVEDI; IMTIAZ; RODRIGUEZ-

VILLEGAS, 2018; SARAÇOĞLU, 2012; CHAUHAN et al., 2008; WANG et al., 2007;

UĞUZ; ARSLAN; TÜRKOĞLU, 2007).

Regarding mental disorders, HMMs have been applied to evaluate the pronuncia-

tion quality and acquisition of language skills (SCHIPOR; PENTIUC; SCHIPOR, 2012;

SAZ et al., 2009), to forecast a possible future ASD diagnosis from infants with a high

risk of ASD (ALIE et al., 2011), to diagnose emotion-related mental diseases (GUO et

al., 2017), and to recognize the stereotyped gestures which are typical of ASD people

(CAMADA; CERQUEIRA; LIMA, 2017).

3.7 Summary

This chapter presented an overview of the AI sub-fields, with emphasis on the

probabilistic graphical models. We further explored these approaches because they are

widely used for inference in environments of uncertainty. Moreover, an overview concerning

probability theory also was necessary due to its importance to the probabilistic models.

We dedicated special attention to understanding the models’ fundamentals, how they

work, and what they can do.

We started showing the vast dimension of the AI field by succinctly defining it

and describing its main sub-fields. Then, we presented the probabilistic networks, which

allow inter-causal reasoning to build inference models. We also introduced both the prob-

ability theory basics and the graphs fundamentals since these techniques underlie the

development of the graphical models and the inference process.

Both Bayesian and Markovian approaches seem the most suitable methods to

model the complex genetic nature of ASD etiology. The statistical characteristics of the

ASD heritability and recurrence rates also contributed to the adoption of these methods.

Thus, BNs and HMMs were sufficiently explored once these two types of methodologies
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can infer unknown states given a piece of evidence.

HMMs were applied to model the causal relationship between diagnosed/non-

diagnosed parents regarding the ASD risk in their future descendants. Details in Chapter

4.

We will employ BNs to model an ASD causal network capable of estimating, for

example:

• The probability of a female individual being autistic, given that she has a paternal

male cousin, son of an aunt, diagnosed as autistic; or

• The probability of a male individual being autistic, given that he has one diagnosed

older brother and one typical older sister; or

• The risk of ASD in parents, given that they have one or more diagnosed children.

Details in Chapters 5, 6 and 7.
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4 Hidden Markov Models to Estimate the

Risk of Having Autistic Children

Genetic factors have been pointed out as the primary root associated with the risk

of autism. Recent works indicate that ≈ 80% of autistic people have inherited the condi-

tion from their parents (see Section 2.4). However, there are no estimates that indicate

the likelihood of an autistic parent having an autistic child. Using HMMs and the data of

autism heritability, we developed a model to investigate the likelihood of autistic parents

generating autistic children. Our model was built and validated using statistical data from

the association of gender with recurrence of autism among siblings and statistical data

from the association of genetic factors with autism.

Based on the possible observation of some characteristics of the parents, our ap-

proach was to estimate the probability variation of generating ASD children, a not observ-

able condition before birth. Given the statistical nature of ASD heritability and recurrence

data available in the literature, HMMs seemed to be the most straightforward, appropri-

ate, and transparent strategy to start this investigation. This adequacy is mainly due to

the HMMs generative approach, which, based on prior probabilities of each state, allows

to infer a distribution probability over the possible values of the hidden states.

For this, we used two sets of statistical data. A set of statistical information about

ASD recurrence among siblings was used to model the hidden states transition probabili-

ties, and a set of statistical data about ASD heritability was used to model the observable

states emission probabilities. We did not use direct individual observations to train our

HMMs parameters because, to the best of our acknowledgment, there is no such kind of

public data available. Thus, we used relevant statistical data in the literature for the ad-

justment (training) of the proposed model parameters. The use of these known statistical

relationships does not mean that our models are static or deterministic. Such data may

change when arising either new data to use as training data or new relevant statistical

data about ASD heritability.

The remaining sections explain our assumptions about the probabilities used to

model our HMMs. We used such HMMs to estimate the likelihood of ASD parents gen-
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erating ASD children. We created six variations of the chains, each one according to the

children’s gender and transition matrices. Thus, it was possible to estimate the proba-

bilities for ASD girls and ASD boys separately, which is essential given the difference in

the ASD prevalence between genders. The following sections describe our methodology

stages.

4.1 Hidden Markov Models States

It was necessary to define the hidden and observable states before creating our

HMMs.

The hidden chain was composed of two states (𝑁 = 2):

• TD: meaning a Typical Girl/Boy;

• ASD: meaning an ASD Girl/Boy.

The observable chain was composed of two states (𝑀 = 2):

• TP: meaning Typical Parents (father AND mother without ASD diagnosis);

• AP: meaning ASD Parents (father OR mother with ASD diagnosis).

A clinical investigation or genetic characteristics recognized as possible causes of

ASD may characterize an ASD diagnosis. In addition, specific autistic traits may indi-

cate an ASD diagnosis once there is a genetic sharing between ASD and some autistic

traits (e.g., childhood behavior, rigidity, and attention to detail) (BRALTEN et al., 2018;

LUNDSTRÖM et al., 2012; ROBINSON et al., 2011).

We used the hidden and observable states defined in this section for modeling all

of our HMMs.

4.2 Initial State Distribution (𝜋)

Although there are different and important studies related to ASD prevalence

(Table 1), we used an ASD prevalence among children calculated from the ASD diagnosis
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data presented by Palmer et al. (2017). From these diagnosis data, we calculated three

important probabilities: 1) the children general ASD prevalence, regardless of gender

(𝑃 (𝐴) = 0.0125); 2) the ASD prevalence among girls (𝑃 (𝐴𝐺) = 0.005); and 3) the ASD

prevalence among boys (𝑃 (𝐴𝐵) = 0.0197). One of the most important researches on ASD

prevalence indicates that 1/54 children were diagnosed inside the spectrum (MAENNER

et al., 2020). This same research shows that for each ASD girl (prevalence of 20%), there

are four ASD boys (prevalence of 80%). Although the prevalence calculated from Palmer

et al. (2017) shows a lower ASD prevalence, both general and by gender, it corroborates

the relation of four ASD boys to each ASD girl.

We chose to use the calculated prevalence because the research of Palmer et al.

(2017) was conducted among pairs of siblings, recording the probability of younger siblings

being autistic concerning the older sibling’s condition. Thus, this pattern was essential

to use that information to develop our transition data and validate our prediction model

accurately by simulating the population of Palmer et al. (2017).

From the probabilities and the hidden states previously defined, it was possible to

determine our initial state distribution vectors (𝜋) for both girls (𝜋𝐺) and boys (𝜋𝐵).

𝜋 =
TD ASD[︂ ]︂

1 − 𝑃 (𝐴𝑆𝐷) 𝑃 (𝐴𝑆𝐷)

𝜋G =
TG AG[︂ ]︂

0.995 0.005

𝜋B =
TB AB[︂ ]︂

0.9803 0.0197

These initial state distribution vectors were used for modeling all of our HMMs

according to the respective children’s gender.
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4.3 Transition Matrix (𝐴)

Several works have studied the ASD recurrence rates among siblings (Table 4).

Palmer et al. (2017) made a more uniform estimate of ASD sex-specific recurrence rates

among sibling pairs, with a similar amount of siblings pairs according to siblings gen-

der (395 220 male:male pairs, 400 249 female:male pairs, 359 679 female:female pairs, and

405 389 male:female pairs).

According to Palmer et al. (2017), when the older male sibling had the ASD

diagnosis, ASD was diagnosed in 4.2% of female siblings and 12.9% of male siblings.

When the older female sibling had the ASD diagnosis, ASD was diagnosed in 7.6% of

female siblings and 16.8% of male siblings. These statistics clearly show us the increased

likelihood of a younger sibling being diagnosed as autistic when he/she has an older

sibling already diagnosed. Alternatively, when the older male sibling did not have the

ASD diagnosis, ASD was diagnosed in 0.4% of female siblings and 1.5% of male siblings.

When the older female sibling did not have the ASD diagnosis, ASD was diagnosed in

0.4% of female siblings and 1.8% of male siblings. These statistics clearly show us the

decreased likelihood of a younger sibling being diagnosed as autistic when he/she has an

older sibling not diagnosed.

Although an ASD older sibling suggests an increase in the likelihood of ASD in a

younger sibling, the older sibling condition is not the determining genetic factor. Instead,

the determining genetic factor is what they have in common, their parents. Therefore,

as we aim to estimate the risk of ASD children based on the parents’ characteristics, we

used the data of ASD recurrence among siblings to calculate the transition probabilities

among our HMMs states.

We created three transition matrices for each gender since the probabilities signifi-

cantly changed according to the older sibling gender. Two of them, according to the older

sibling gender, and the other one disregarding the older sibling gender. We calculated all

transition probabilities presented in the following subsections from the diagnostic data of

the population studied by Palmer et al. (2017).
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4.3.1 Transition Matrices for the Birth of Females

To simulate female births, given that there is an older brother, we calculated the

following conditional probabilities: 1) a girl being autistic, given that she has an autistic

older brother (𝑃 (𝐴𝐺|𝐴𝐵) = 0.0422); 2) a girl being autistic, given that she has a typical

older brother (𝑃 (𝐴𝐺|𝑇𝐵) = 0.0038); 3) a girl being typical, given that she has an autistic

older brother (𝑃 (𝑇𝐺|𝐴𝐵) = 1 − 𝑃 (𝐴𝐺|𝐴𝐵)); and 4) a girl being typical, given that she

has a typical older brother (𝑃 (𝑇𝐺|𝑇𝐵) = 1−𝑃 (𝐴𝐺|𝑇𝐵)). These conditional probabilities

constitute the transition matrix 𝐴(𝑀𝐹 ).

A(MF) =

TG AG⎡⎣ ⎤⎦𝑃 (𝑇𝐺|𝑇𝐵) 𝑃 (𝐴𝐺|𝑇𝐵) TB

𝑃 (𝑇𝐺|𝐴𝐵) 𝑃 (𝐴𝐺|𝐴𝐵) AB

A(MF) =

TG AG⎡⎣ ⎤⎦0.9962 0.0038 TB

0.9578 0.0422 AB

For clarification purposes, position {𝐴(𝑀𝐹 )0,1 = 0.0038} is the conditional prob-

ability value of 𝑃 (𝐴𝐺|𝑇𝐵), which is the transition probability from the state 𝑇𝐵 to the

state 𝐴𝐺. In other words, it means the probability of a TD older brother having an ASD

younger sister.

To simulate female births, given that there is an older sister, we calculated the

following conditional probabilities: 1) a girl being autistic, given that she has an autistic

older sister (𝑃 (𝐴𝐺|𝐴𝐺) = 0.0759); 2) a girl being autistic, given that she has a typical

older sister (𝑃 (𝐴𝐺|𝑇𝐺) = 0.0045); 3) a girl being typical, given that she has an autistic

older sister (𝑃 (𝑇𝐺|𝐴𝐺) = 1 − 𝑃 (𝐴𝐺|𝐴𝐺)); and 4) a girl being typical, given that she

has a typical older sister (𝑃 (𝑇𝐺|𝑇𝐺) = 1 − 𝑃 (𝐴𝐺|𝑇𝐺)). These conditional probabilities

constitute the transition matrix 𝐴(𝐹𝐹 ).

A(FF) =

TG AG⎡⎣ ⎤⎦𝑃 (𝑇𝐺|𝑇𝐺) 𝑃 (𝐴𝐺|𝑇𝐺) TG

𝑃 (𝑇𝐺|𝐴𝐺) 𝑃 (𝐴𝐺|𝐴𝐺) AG
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A(FF) =

TG AG⎡⎣ ⎤⎦0.9955 0.0045 TG

0.9241 0.0759 AG

To simulate female births, regardless the older sibling gender, we calculated the

following conditional probabilities: 1) a girl being autistic, given that she has an autistic

older sibling (𝑃 (𝐴𝐺|𝐴𝑆𝐷) = 0.0486); 2) a girl being autistic, given that she has a typical

older sibling (𝑃 (𝐴𝐺|𝑇𝐷) = 0.0041); 3) a girl being typical, given that she has an autistic

older sibling (𝑃 (𝑇𝐺|𝐴𝑆𝐷) = 1−𝑃 (𝐴𝐺|𝐴𝑆𝐷)); and 4) a girl being typical, given that she

has a typical older sibling (𝑃 (𝑇𝐺|𝑇𝐷) = 1−𝑃 (𝐴𝐺|𝑇𝐷)). These conditional probabilities

constitute the transition matrix 𝐴(𝑋𝐹 ).

A(XF) =

TG AG⎡⎣ ⎤⎦𝑃 (𝑇𝐺|𝑇𝐷) 𝑃 (𝐴𝐺|𝑇𝐷) TD

𝑃 (𝑇𝐺|𝐴𝑆𝐷) 𝑃 (𝐴𝐺|𝐴𝑆𝐷) ASD

A(XF) =

TG AG⎡⎣ ⎤⎦0.9959 0.0041 TD

0.9514 0.0486 ASD

4.3.2 Transition Matrices for the Birth of Males

To simulate male births, given that there is an older brother, we calculated the

following conditional probabilities: 1) a boy being autistic, given that he has an autistic

older brother (𝑃 (𝐴𝐵|𝐴𝐵) = 0.1293); 2) a boy being autistic, given that he has a typical

older brother (𝑃 (𝐴𝐵|𝑇𝐵) = 0.0154); 3) a boy being typical, given that he has an autistic

older brother (𝑃 (𝑇𝐵|𝐴𝐵) = 1 − 𝑃 (𝐴𝐵|𝐴𝐵)); and 4) a boy being typical, given that he

has a typical older brother (𝑃 (𝑇𝐵|𝑇𝐵) = 1−𝑃 (𝐴𝐵|𝑇𝐵)). These conditional probabilities

constitute the transition matrix 𝐴(𝑀𝑀).
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A(MM ) =

TB AB⎡⎣ ⎤⎦𝑃 (𝑇𝐵|𝑇𝐵) 𝑃 (𝐴𝐵|𝑇𝐵) TB

𝑃 (𝑇𝐵|𝐴𝐵) 𝑃 (𝐴𝐵|𝐴𝐵) AB

A(MM ) =

TB AB⎡⎣ ⎤⎦0.9846 0.0154 TB

0.8707 0.1293 AB

To simulate male births, given that there is an older sister, we calculated the

following conditional probabilities: 1) a boy being autistic, given that he has an autistic

older sister (𝑃 (𝐴𝐵|𝐴𝐺) = 0.1681); 2) a boy being autistic, given that he has a typical

older sister (𝑃 (𝐴𝐵|𝑇𝐺) = 0.0180); 3) a boy being typical, given that he has an autistic

older sister (𝑃 (𝑇𝐵|𝐴𝐺) = 1 − 𝑃 (𝐴𝐵|𝐴𝐺)); and 4) a boy being typical, given that he

has a typical older sister (𝑃 (𝑇𝐵|𝑇𝐺) = 1 − 𝑃 (𝐴𝐵|𝑇𝐺)). These conditional probabilities

constitute the transition matrix 𝐴(𝐹𝑀).

A(FM ) =

TB AB⎡⎣ ⎤⎦𝑃 (𝑇𝐵|𝑇𝐺) 𝑃 (𝐴𝐵|𝑇𝐺) TG

𝑃 (𝑇𝐵|𝐴𝐺) 𝑃 (𝐴𝐵|𝐴𝐺) AG

A(FM ) =

TB AB⎡⎣ ⎤⎦0.9820 0.0180 TG

0.8319 0.1681 AG

To simulate male births, regardless the older sibling gender, we calculated the

following conditional probabilities: 1) a boy being autistic, given that he has an autistic

older sibling (𝑃 (𝐴𝐵|𝐴𝑆𝐷) = 0.1368); 2) a boy being autistic, given that he has a typical

older sibling (𝑃 (𝐴𝐵|𝑇𝐷) = 0.0167); 3) a boy being typical, given that he has an autistic

older sibling (𝑃 (𝑇𝐵|𝐴𝑆𝐷) = 1−𝑃 (𝐴𝐵|𝐴𝑆𝐷)); and 4) a boy being typical, given that he

has a typical older sibling (𝑃 (𝑇𝐵|𝑇𝐷) = 1−𝑃 (𝐴𝐵|𝑇𝐷)). These conditional probabilities

constitute the transition matrix 𝐴(𝑋𝑀).
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A(XM ) =

TB AB⎡⎣ ⎤⎦𝑃 (𝑇𝐵|𝑇𝐷) 𝑃 (𝐴𝐵|𝑇𝐷) TD

𝑃 (𝑇𝐵|𝐴𝑆𝐷) 𝑃 (𝐴𝐵|𝐴𝑆𝐷) ASD

A(XM ) =

TD ASD⎡⎣ ⎤⎦0.9833 0.0167 TD

0.8632 0.1368 ASD

4.4 Emission Data (𝐵)

Because genetic factors may point to an ASD risk increase, we took ASD diagno-

sis/genes in parents as the observable characteristic, which may predict the probability

of generating ASD children. We assumed that parents’ characteristics (genetics or clinical

diagnosis) could be observed before having children.

4.4.1 Autistic Parents Given They Have Autistic Children

A study conducted among siblings has identified 14 516 children diagnosed with

ASD. Such work studied 37 570 twin pairs; 2 642 064 full sibling pairs; and 432 281 ma-

ternal and 445 531 paternal half-sibling pairs. LTMs were fitted using monozygotic or

dizygotic twins, full siblings, and paternal and maternal half-siblings to decompose the

variance into four factors: 1) additive genetic effect (inherited); 2) non-additive genetic

factors; 3) shared environmental factors; and 4) non-shared environmental factors. This

data was used to determine concordant and discordant sibling pairs, which allowed them

to calculate ASD heritability. The best model was the one that used additive genetic

and non-shared environmental parameters. The ASD heritability estimated was ≈ 83%

(SANDIN et al., 2017).

Another recent multinational cohort study with more than two million people

also used additive genetic factors and nonshared environmental to estimate the ASD

heritability. They estimated that the ASD heritability is ≈ 80%, with possible modest

differences in the sources of ASD risk replicated across countries (BAI et al., 2019).
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No specific estimates indicate the likelihood of a couple of parents being autistic

(either one of them or both), given that they have an ASD child. Some of the best ASD

heritability estimates are the genetic factors calculated by Sandin et al. (2017) and Bai et

al. (2019). These estimates suggest that more than 80% of ASD people have inherited the

condition directly from their parents. Thus, we have assumed that given an ASD child,

there is a likelihood of 83% that its parents are also autistic (𝑃 (𝐴𝑃 |𝐴𝑆𝐷) = 0.83). Once

the ASD heritability estimates of Sandin et al. (2017) do not take the children’s gender

into account, we used the conditional probability (𝑃 (𝐴𝑃 |𝐴𝑆𝐷)) as the emission data for

ASD children of both genders.

4.4.2 Autistic Parents Given They Have Typical Children

Similarly, no known estimates indicate the likelihood of a couple of parents being

autistic (either one of them or both), given that they have a TD child. Therefore, the

ASD diagnosis data presented by Palmer et al. (2017) also were used for estimating

the probability of ASD parents, given that they have a TD child. Such estimates were

calculated as follows.

Firstly, we calculated the percentage of parents having both one ASD child and

one TD child. Let’s call this group of parents as 𝑃𝑤𝐴𝑇 . According to the ASD heritability

data, having an ASD child suggests that 𝑃𝑤𝐴𝑇 have a higher likelihood to be autistic,

although they also have a TD child. The fact that 𝑃𝑤𝐴𝑇 also have a TD child is the

starting point to estimate the probability of TD children having ASD parents. Through

a statistical analysis over the data of Sandin et al. (2017), the percentage of 𝑃𝑤𝐴𝑇 is

2.26% (𝑃 (𝑃𝑤𝐴𝑇 ) = 0.0226).

Secondly, we determined the percentage of children with 𝑃𝑤𝐴𝑇 according to their

gender. The percentage of TD boys with 𝑃𝑤𝐴𝑇 is 46.82% (𝑃 (𝑇𝑇𝐵|𝑃𝑤𝐴𝑇 ) = 0.4682).

The percentage of TD girls with 𝑃𝑤𝐴𝑇 is 53.18% (𝑃 (𝑇𝑇𝐺|𝑃𝑤𝐴𝑇 ) = 0.5318). These two

conditional probabilities will allow us to estimate the likelihood of a 𝑃𝑤𝐴𝑇 occurrence

according to the children’s gender.

Thirdly, we calculated the prevalence of TD children in the population studied by

Palmer et al. (2017). Regardless of the children condition, such population sex-ratio is

51.1% of boys (𝑃 (𝐵) = 0.511), and 48.9% of girls (𝑃 (𝐺) = 0.489). Given that, the total
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percentage of TD boys (𝑃 (𝑇𝑇𝐵)) and TD girls (𝑃 (𝑇𝑇𝐺)) was obtained as follows.

𝑃 (𝑇𝑇𝐵) = (1 − 𝑃 (𝐴𝐵)) · 𝑃 (𝐵)

= 0.9803 · 0.511

= 0.501

(4.1)

𝑃 (𝑇𝑇𝐺) = (1 − 𝑃 (𝐴𝐺)) · 𝑃 (𝐺)

= 0.995 · 0.489

= 0.487

(4.2)

Finally, we calculated the likelihood of a 𝑃𝑤𝐴𝑇 occurrence with regard to the

children’s gender. We calculated two probabilities: the probability of 𝑃𝑤𝐴𝑇 , given that

they have a TD boy (𝑃 (𝑃𝑤𝐴𝑇 |𝑇𝑇𝐵)); and the probability of 𝑃𝑤𝐴𝑇 , given that they

have a TD girl (𝑃 (𝑃𝑤𝐴𝑇 |𝑇𝑇𝐺)). These two conditional probabilities were calculated

using Bayes’ theorem.

𝑃 (𝑃𝑤𝐴𝑇 |𝑇𝑇𝐵) = 𝑃 (𝑇𝑇𝐵|𝑃𝑤𝐴𝑇 ) · 𝑃 (𝑃𝑤𝐴𝑇 )
𝑃 (𝑇𝑇𝐵)

= 0.4682 · 0.0226
0.501

= 0.0211

(4.3)

𝑃 (𝑃𝑤𝐴𝑇 |𝑇𝑇𝐺) = 𝑃 (𝑇𝑇𝐺|𝑃𝑤𝐴𝑇 ) · 𝑃 (𝑃𝑤𝐴𝑇 )
𝑃 (𝑇𝑇𝐺)

= 0.5318 · 0.0226
0.487

= 0.0247

(4.4)

As mentioned before, 𝑃𝑤𝐴𝑇 are those with both one ASD child and one TD child.

Thus, 𝑃 (𝑃𝑤𝐴𝑇 |𝑇𝑇𝐵) and 𝑃 (𝑃𝑤𝐴𝑇 |𝑇𝑇𝐺) represent, in fact, the probability of a TD

child having an ASD sibling. However, according to Sandin et al. (2017), ASD people have

inherited the disorder from their parents in ≈ 83% of the cases. This heritability suggests

that 𝑃𝑤𝐴𝑇 have the likelihood of 83% to be autistic once they also have one ASD child.

Taking the ASD heritability into account, we calculated the probability of at least one or

both parents (mother OR father) being autistic concerning the children’s gender.
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Equation 4.5 estimates the probability of APs given that they have a TD boy.

𝑃 (𝐴𝑃 |𝑇𝐵) = 𝑃 (𝑃𝑤𝐴𝑇 |𝑇𝑇𝐵) · 𝑃 (𝐴𝑃 |𝐴𝑆𝐷)

= 0.0211 · 0.83

= 0.0175

(4.5)

Equation 4.6 estimates the probability of APs given that they have a TD girl.

𝑃 (𝐴𝑃 |𝑇𝐺) = 𝑃 (𝑃𝑤𝐴𝑇 |𝑇𝑇𝐺) · 𝑃 (𝐴𝑃 |𝐴𝑆𝐷)

= 0.0247 · 0.83

= 0.0205

(4.6)

We used similar reasoning for estimating the overall prevalence of ASD parents in

the population studied by Palmer et al. (2017). In such population, 2.38% of the parents

had at least one ASD child (𝑃 (𝑃𝑤𝐴) = 0.0238). Taking the ASD heritability into account,

we calculated the overall prevalence of ASD parents as in Equation 4.7.

𝑃 (𝐴𝑃 ) = 𝑃 (𝑃𝑤𝐴) · 𝑃 (𝐴𝑃 |𝐴𝑆𝐷)

= 0.0238 · 0.83

= 0.0197

(4.7)

We used this estimate of ASD parents to validate our model results by estimating

the potential prevalence of ASD in their offspring. We compared the ASD estimated

prevalence with the real ASD prevalence of Palmer et al. (2017).

4.4.3 Final Emission Matrices

The emission matrices were defined from the genetic probabilities and the preva-

lence data referred to above (Subsections 4.4.1 and 4.4.2). Two emission matrices were

defined, one for boys (𝐵(𝐵)) and one for girls (𝐵(𝐺)). These two matrices were used for

modeling all of our HMMs according to the children’s gender.
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B(B) =

TP AP⎡⎣ ⎤⎦1 − 𝑃 (𝐴𝑃 |𝑇𝐵) 𝑃 (𝐴𝑃 |𝑇𝐵) TB

1 − 𝑃 (𝐴𝑃 |𝐴𝑆𝐷) 𝑃 (𝐴𝑃 |𝐴𝑆𝐷) AB

B(B) =

TP AP⎡⎣ ⎤⎦0.9825 0.0175 TB

0.1700 0.8300 AB

B(G) =

TP AP⎡⎣ ⎤⎦1 − 𝑃 (𝐴𝑃 |𝑇𝐺) 𝑃 (𝐴𝑃 |𝑇𝐺) TG

1 − 𝑃 (𝐴𝑃 |𝐴𝑆𝐷) 𝑃 (𝐴𝑃 |𝐴𝑆𝐷) AG

B(G) =

TP AP⎡⎣ ⎤⎦0.9795 0.0205 TG

0.1700 0.8300 AG

4.5 Hidden Markov Models Structures and Probabilities

This section intends to simplify the visualization of the proposed methodology.

Figure 10 and Figure 11 show our resulting HMMs structures and probabilities for female

and male births, respectively. There are HMMs groups divided by gender because of the

difference in statistical data regarding the prevalence and genetic inheritance of autism

between male and female children.

The initial state distribution vectors of each group of HMMs have the same values

for the three chains belonging to the same group. They were fitted according to the ASD

prevalence data for each gender, Section 4.2.

Inside each group, the three distinct chains vary basically by the difference between

the probabilities distribution between the transition states. This probability distribution

variation is related to the gender of the older sibling, as presented in Section 4.3.

The emission data were computed according to the statistical data about autism

heritability. Statistics on genetically inherited autism did not take gender into account,
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case of TD/ASD parents potentially generating ASD children with equal probabilities

for both genders, Subsection 4.4.1. Our calculated statistics on non-genetically inherited

autism take the gender into account, case of TD/ASD parents potentially generating TD

children with distinct probabilities for each gender, Subsection 4.4.2.

0.995

TD ASD

APTP A(XF)

0.005

0.9959 0.04860.0041

0.9514

0.9795

0.0205

0.83

0.17

0.995

TD ASD

APTP A(MF)

0.005

0.9962 0.04220.0038

0.9578

0.9795

0.0205

0.83

0.17

0.995

TD ASD

APTP A(FF)

0.005

0.9955 0.07590.0045

0.9241

0.9795

0.0205

0.83

0.17

G G

G

Figure 10 – HMMs for predicting the probability of having ASD girls. A(MF): transition
data given that the older sibling is a boy; A(FF): transition data given that
the older sibling is a girl; A(XF): transition data regardless the older sibling
gender.

4.6 The risk of ASD

There is no consensus regarding the concept of risk, having several different ways of

understanding the risk definition. There are definitions based on probability, undesirable

events or danger, and others based on uncertainties. In addition, there are subjective and

epistemic definitions of risk, dependent on the available knowledge, besides definitions

that grant risk an ontological status independent of the assessors (AVEN, 2012).
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Figure 11 – HMMs for predicting the probability of having ASD boys. A(MM): transition
data, given that the older sibling is a boy; A(FM): transition data, given
that the older sibling is a girl; A(XM): transition data regardless of the older
sibling gender.

The daily use suggests that the term risk can be considered positive or negative,

and it could be both a noun (taking risks) and a verb (to risk losses). In this context, there

are three main perspectives to the risk definition: 1) a situation involving a possibility of

loss, damage, or other unwelcome circumstance; 2) A hazardous journey, undertaking, or

course of action; and 3) something with the potential to produce a good or bad outcome

in a particular domain (AVEN, 2012).

Even in the scientific context, many risk definitions can be found and classified in

different risks categories, such as risk as a quantitative measure, qualitative concepts, or

undesirable consequences (AVEN, 2012). However, in the context of our work, the risk

refers to the quantitative product of the probability of some future event, without implying

any qualitative judgment. Thus, the risk of ASD should be understood exclusively as the

probability of a positive ASD diagnosis.
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4.7 Implementation

The hmmlearn1 library (version 0.2.1) was used for developing our HMMs. We

used MultinomialHMM models with multinomial (discrete) emissions. Hmmlearn is an

open-source set of algorithms and models usually used for modeling HMMs in the Python

language. Built on scikit-learn2, NumPy3, and SciPy4, hmmlearn adapts and uses these

tools to sequence data.

We used the predict_proba function for estimating the probabilities of the HMMs’

hidden states. This function computes the posterior probability for each state in the

model. Viterbi was employed as the predict_proba decoder algorithm. In an attempt to

decrease accuracy errors, our probabilities were rounded to the 15th decimal place. Our

HMMs implementation code can be seen at our code repository5.

4.8 Simulations

We simulated the generation of children from two different parents’ profiles. Such

profiles were the parents’ states defined in Section 4.1 and used for modeling our observable

states.

For each HMM set (boys and girls) and parents states/profiles (TP and AP), we

simulated the birth of two children, maintaining the pattern of two children per couple

presented by Palmer et al. (2017).

We observed the probabilities of the generated children being in one of the states

defined in Section 4.1, those states which were used for modeling our HMMs’ hidden

chains.

4.9 Results

We organized our results according to the parents’ profiles and the children’s gen-

der. The key findings of this study are shown on the graph displayed in Figure 12, which
1 <https://hmmlearn.readthedocs.io>
2 <http://scikit-learn.org>
3 <http://www.numpy.org>
4 <https://www.scipy.org/>
5 <https://github.com/emerson-prof-carvalho/hmm>

https://hmmlearn.readthedocs.io
http://scikit-learn.org
http://www.numpy.org
https://www.scipy.org/
https://github.com/emerson-prof-carvalho/hmm
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summarizes the probabilities of TD/ASD parents generating TD/ASD children. For com-

parison purposes, the overall ASD prevalence calculated from the data of Palmer et al.

(2017) was also plotted.
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Figure 12 – ASD risk probability according to the parents’ profile (TD, ASD); in addition
to the overall ASD Prevalence from Palmer et al. (2017).

The following subsections detail our results.

4.9.1 Typical Parents

We displayed our results in tables. Each table row shows results concerning the

corresponding transition matrix. Results from 𝐴(𝐹𝐹 ) matrix is 7.3% greater than those

from 𝐴(𝑀𝐹 ) matrix (Table 8). This difference was already expected due to the greater

likelihood of ASD when there is an older ASD sister. The 𝐴(𝑋𝐹 ) matrix shows results

close to the mean of the three matrices results. The mean probability of an ASD girl is

(𝑃 (𝐴𝐺|𝑇𝑃 ) = 0.078%). This probability is ≈ 6.5 times lower than the overall probability

of ASD girls (𝑃 (𝐴𝐺) = 0.5%), Section 4.2.

States
TG(%) AG(%)

Transition
Matrix

A(MF) 99.9250 0.0750
A(FF) 99.9195 0.0805
A(XF) 99.9221 0.0779

Table 8 – Probabilities of TD parents generating TD/ASD girls.
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For boys, the ASD probability increases ≈ 4 times with regard to ASD girls (Ta-

ble 9). Results from 𝐴(𝐹𝑀) matrix is 6.6% greater than those from 𝐴(𝑀𝑀) matrix.

Taking the transition matrix 𝐴(𝑋𝑀) into account, the mean probability of an ASD boy

is (𝑃 (𝐴𝐵|𝑇𝑃 ) = 0.306%). This probability is also ≈ 6.5 times lower compared to the

overall probability of ASD boys (𝑃 (𝐴𝐵) = 1.97%), Section 4.2.

States
TB(%) AB(%)

Transition
Matrix

A(MM) 99.7051 0.2949
A(FM) 99.6855 0.3145
A(XM) 99.6938 0.3062

Table 9 – Probabilities of TD parents generating TD/ASD boys.

Our experiments suggest that it is unlikely that TD parents could generate an

ASD child when genetic inheritance is taken into account. Although, according to the

genetic factors presented by Palmer et al. (2017) and Bai et al. (2019), from ≈ 17% to

19% of ASD children are generated by TD parents, with no evident hereditary genetic

causes. This percentage of TD parents generating ASD children is due mainly to genetic

mutations (not inherited) or gestational environment issues.

4.9.2 Autistic Parents

Results from 𝐴(𝐹𝐹 ) matrix is 32% greater than those from 𝐴(𝑀𝐹 ) matrix (Table

10). Taking the transition matrix 𝐴(𝑋𝐹 ) into account, the probability of an ASD girl

is (𝑃 (𝐴𝐺|𝐴𝑃 ) ≈ 33%). This probability is ≈ 65 times higher compared to the overall

probability of ASD girls (𝑃 (𝐴𝐺) = 0.5%), Section 4.2.

States
TG(%) AG(%)

Transition
Matrix

A(MF) 69.2311 30.7689
A(FF) 59.3439 40.6561
A(XF) 67.0081 32.9919

Table 10 – Probabilities of ASD parents generating TD/ASD girls.

For boys, the ASD probability increases ≈ 2.5 times with regard to ASD girls

(Table 11). Results from 𝐴(𝐹𝑀) matrix is 4.3% greater than those from 𝐴(𝑀𝑀) matrix.
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Taking the transition matrix 𝐴(𝑋𝑀) into account, the mean probability of an ASD boy

is (𝑃 (𝐴𝐵|𝐴𝑃 ) = 79.6%). This probability is ≈ 40 times higher compared to the overall

probability of ASD boys (𝑃 (𝐴𝐵) = 1.97%), Section 4.2.

States
TB(%) AB(%)

Transition
Matrix

A(MM) 21.0140 78.9860
A(FM) 17.6446 82.3554
A(XM) 20.3818 79.6182

Table 11 – Probabilities of ASD parents generating TD/ASD boys.

4.10 Discussions

The overall direction of our results showed compelling evidence that could help

learn about the ASD genetic risk among TD/ASD parents. Our data suggest that the

ASD risk significantly increases from 40 to 65 times in parents with ASD diagnosis/risk

genes.

Although many authors have investigated AI approaches to predict ASD, to the

best of our knowledge, this is the first attempt to use genetic statistics related to the

parents’ condition to infer the risk of autism in their children. Most works used some data

from the subject itself to predict ASD diagnosis. Even studies aimed at predicting autism

in newborns used samples of materials from the individuals themselves (BAHADO-SINGH

et al., 2019; SKAFIDAS et al., 2014). Therefore, we validate and compare our model

results against some well-known statistical data about the heritability and prevalence of

autism.

We simulated the population studied by Palmer et al. (2017) to validate our mod-

els’ results (Section 4.2). Such population contains 3 121 074 children (1 596 078 males and

1 524 996 females), with two children per parents. The parents’ states (observable ones)

were randomly defined as TPs (98.03%) and APs (1.97%). These percentages of parents’

states follow the overall APs prevalence estimated at the end of Subsection 4.4.2. In addi-

tion to the gender distinction, we also considered the number of children as first or second

descendants.
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Using the probabilities for generating ASD children obtained from our HMMs

(Section 4.9), our strategy was to estimate the ASD prevalence in that known population.

Our estimated ASD prevalence was 0.7% among females. Concerning males, the estimated

ASD prevalence was 1.9%. The overall estimated ASD prevalence was 1.3%. As expected,

it appears our estimated ASD prevalence is close to the ASD prevalence of the real pop-

ulation. The highest ASD prevalence variation was among females, which suggests that

the calculated probabilities of ASD parents generating ASD girls would be a maximum

probability.

On the other hand, our estimated prevalence is lower than or equal to the preva-

lence found by Baio et al. (2018). Their estimates were 0.7% among girls, 2.6% among

boys, and 1.7% for the overall ASD prevalence. These statistics corroborate that our prob-

abilities of ASD parents generating ASD girls would be at their maximum and that the

probabilities of ASD parents generating ASD boys could be even higher. Thus, it seems

that our ASD risk probabilities for TD/ASD parents lead to ASD prevalence estimates

close to the real ASD prevalence nowadays.

For ASD parents, our study indicates that the ASD risk for boys (≈ 80%) is

approximately 2.5 times higher than it is for girls (≈ 33%). The current literature indicates

that the ASD prevalence is three to four times higher in boys, suggesting that the ASD

risk difference should be more significant between boys and girls. However, the difference

between boys and girls concerning ASD prevalence is reduced when the genetic factors

is considered. Messinger et al. (2015) obtained a 3.2:1 male:female ASD ratio among a

large sample of high-risk siblings for ASD. In an analysis of the population studied by

Palmer et al. (2017), we observed that the difference in ASD prevalence between genders

decreases when there is more evidence about the presence of the disorder in the family.

Having two children with ASD increases the likelihood of ASD inheritance in a family.

Taking only families in the population of Palmer et al. (2017) with both siblings with

ASD diagnosis, the ASD sex ratio is approximately 2.8 ASD boys (74%) for each ASD girl

(26%), approaching our results concerning the risk of ASD parents having ASD children.

There are pieces of evidence that ASD parents are likely to have more ASD boys

than ASD girls (SANDIN et al., 2017; BAI et al., 2019; BAIO et al., 2018; PALMER et

al., 2017). Quite distinct probabilities for ASD parents generating ASD children could be

obtained if there were more accurate data about the likelihood of a(n) TD/ASD boy/girl
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having TD/ASD parents. This indicates that we may have in the future a more appropriate

emission matrix (𝐵) data, whether by having more assertive data about the genetic factors

(currently tending to be close to 80% for both genders) or by having more assertive data to

distinguish between TD boys/TD girls concerning the probability of having ASD parents

(assumed in this work as 1.75% for boys and 2.05% for girls). A larger sample to create

the transition data also would be able to make more accurate predictions.

Some improvements that could lead to different results would be to consider more

than one level in the family ancestry chart (HANSEN et al., 2019), and take the parents’

age into account (SANDIN et al., 2016). Since only the previous state influences the

current state in the Markovian models, there is no reference, for example, about the

genetic influence of the grandparents. Such analysis could require other types of statistics

about genetic factors in autism and the use of different AI techniques, such as Bayesian

Networks.

4.11 Summary

Using our HMMs models, we estimated that ASD parents could generate ASD

children with probabilities of ≈ 33% for girls and ≈ 80% for boys. As no previous work

has evaluated the ASD risk from parents’ characteristics, by quantifying the risk of ASD

parents having ASD children, we gave a first look at how much the ASD risk increases for

ASD parents (≈ 40 to ≈ 65 times), as well as how much the ASD risk decreases for TD

parents (≈ 6.5 times). We also highlighted the decrease between the rate of ASD girls and

ASD boys when genetic factors are taken into account (≈ 2.5 boys for each girl). This

decrease suggests that genetically inherited autism may affect girls more than other causes

of autism. Another key point was the estimation of the (emission) probabilities of ASD

parents, even though they have TD children (𝑃 (𝐴𝑃 |𝑇𝐵) and 𝑃 (𝐴𝑃 |𝑇𝐺)). Most ASD

cases tend to cluster in families. Thus, our findings support and quantify past evidence

that this clustering is due to genetic factors.

Although it is too early to draw statistically significant conclusions, the possibil-

ity of contributing to estimating the ASD risk according to the parents’ condition is a

fascinating proposition. We believe we provide an initial model that can be applied and

improved as long as new and potentially more accurate ASD statistical data emerge. For
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people who intend to have children and have autistic characteristics/diagnoses, our es-

timates could help clarify the ASD risk and alert them in planning the process of early

investigation on their children.

By having more accurate statistical data about the genetic factors in autism,

future works could accurately estimate the potential risk of ASD parents generating ASD

children. However, these causal probabilities regarding the likelihood of TD/ ASD parents

generating TD/ASD children can be used as a basis for building causal models (e.g., BNs)

capable of inferring over a family tree, as can be seen in the following three chapters.
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5 Common Characteristics Among all

Bayesian Networks

Chapter 4 presented some estimates of autistic parents having autistic children.

Based on such estimates, we developed a set of BNs to investigate the likelihood of ASD in

several family members, given some evidence. Our models’ basic structures were built and

validated using statistical data from the association of gender with recurrence of autism

among siblings and statistical data of the association of genetic factors with autism.

Our approach was to predict future conditions among relatives based on the possi-

ble observation of some family individuals’ characteristics (e.g., an ASD diagnosis). Given

the causal nature of ASD heredity, BNs seemed to be the most straightforward, appropri-

ate, and transparent strategy to start this investigation. This adequacy is due mainly to

the BNs causal approach, which allows building an inference system over causal models.

We did not use direct individual observations to train our BNs parameters because,

to the best of our acknowledgment, there is no such kind of public data available. Thus,

we used the causal probabilities estimates from Carvalho et al. (2020) for the adjustment

(“training”) of the models’ parameters.

The remainder of this chapter explains the design process, the primary structure,

and the assumptions about the probabilities used to model our BNs.

5.1 Bayesian Networks Development Process

The manual construction of a BN requires a well-defined problem to solve, a care-

ful identification and selection of the relevant variables, a precise description of depen-

dences/independences relationships among the selected variables, and a proper elicitation

of the required prior and conditional probabilities (KJAERULFF; MADSEN, 2013).

We defined each problem to be solved essentially by describing the posterior prob-

abilities that we would like to infer. Thus, such probabilities guided the selection of the

smallest possible set of aleatory variables of interest, and the other necessary ones, given

the problem specification.
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Constructing a suitable graph structure is a prerequisite to correctly representing

the dependencies among the model variables and accurately eliciting the required prob-

abilities. However, to specify an adequate graph structure as a practical model of the

types of reasoning expected is one of the main barriers to building BNs efficiently (NEIL;

FENTON; NIELSON, 2000).

As we adopted the manual construction approach to develop our networks, for all

proposed BNs we sought to define their structures following the natural configuration of a

family tree, managing the dependence between variables as a cause and effect relationship.

This causal modeling performs the substructures of our networks mainly as the cause-

consequence idiom proposed by Neil, Fenton and Nielson (2000). Given the BN structure,

we defined the type of its random variables as suggested by Kjaerulff and Madsen (2013).

The other classic barrier for creating valuable BNs occurs when eliciting the con-

ditional probability values from a specific domain (NEIL; FENTON; NIELSON, 2000).

Following a family tree structure allow both to represent each variable as a unique set of

events with no competing ones and clearly define their semantics, leaving no ambiguity.

The clarity test proposed by Kjaerulff and Madsen (2013) requires these two principles

to probe whether a variable was clearly defined.

This natural modeling for the BNs structures as a family tree and the causal

nature of the ASD heritability aimed to eliminate the two classic barriers when building

effective BNs identified by Neil, Fenton and Nielson (2000). Therefore, we ensured that

the directions of the edges do not conflate cause to effect directions with the directions

intended by the inferences we might want to perform.

5.2 The Bayesian Networks Variables

For each BNs designed, we defined the smallest possible number of variables given

the problem to be solved. However, we described the entire set of random variables in this

section since some appear in more than one BN. We will present the variables by levels

once we investigate the risk of ASD over three generations. In general, we adopted two

children per couple, except for the variables F and M in the BN in Section 6.2, where we

adopted six children (three of each gender) to estimate the effect of different combinations

among siblings. Thus, the children of the couple composed of F and M represents a central
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reference point from which we will make several inferences.

The first level variables include the grandparents, paternal and maternal:

• Paternal grandparents

– GFF: representing the Grandfather from Father side;

– GMF: representing the Grandmother from Father side;

• Maternal grandparents

– GFM: representing the Grandfather from Mother side;

– GMM: representing the Grandmother from Mother side;

The Second level variables include parents, maternal and paternal uncles and

aunts, and their partners:

• Parents

– F: representing the Father;

– M: representing the Mother;

• Half-siblings parents

– FP: representing another Father Partner (the mother of half-siblings from Fa-

ther side);

– MP: representing another Mother Partner (the father of half-siblings from Mother

side);

• Paternal uncles and aunts.

– UF: representing an Uncle from Father Side;

– UFP: representing the Partner of the Uncle from Father Side;

– AF: representing an Aunt from Father Side;

– AFP: representing the Partner of the Aunt from Father Side;

• Maternal uncles and aunts.
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– AMP: representing the Partner of the Aunt from Mother Side;

– AM: representing an Aunt from Mother Side;

– UMP: representing the Partner of the Uncle from Mother Side;

– UM: representing an Uncle from Mother Side;

The third level variables include full-siblings, half-siblings, and cousins:

• Full-siblings

– FB: representing a First Boy (a first male child);

– SB: representing a Second Boy (a second male child);

– TB: representing a Third Boy (a third male child);

– FG: representing a First Girl (a first female child);

– SG: representing a Second Girl (a second female child);

– TG: representing a Third Girl (a third female child);

• Half-siblings

– BFP: representing a Boy (half-brother) from Father Partner;

– GFP: representing a Girl (half-sister) from Father Partner;

– BMP: representing a Boy (half-brother) from Mother Partner;

– GMP: representing a Girl (half-sister) from Mother Partner;

• Paternal cousins

– BUF: representing a Boy (male cousin) son of an Uncle from Father Side;

– GUF: representing a Girl (female cousin) daughter of an Uncle from Father Side;

– BAF: representing a Boy (male cousin) son of an Aunt from Father Side;

– GAF: representing a Girl (female cousin) daughter of an Aunt from Father Side;

• Maternal cousins

– BAM: representing a Boy (male cousin) son of an Aunt from Mother Side;

– GAM: representing a Girl (female cousin) daughter of an Aunt from Mother Side;
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– BUM: representing a Boy (male cousin) son of an Uncle from Mother Side;

– GUM: representing a Girl (female cousin) daughter of an Uncle from Mother

Side;

5.3 Domain of the Random Variables (States)

Our main objective is to estimate the family bias to autism, which means to infer

the probability of an individual being typical or presenting some autistic traits. Thus,

each node included in the BNs represents a family member and shares the same domain.

As will be seen in the following chapters, the states representing the family members can

assume one of the following domain values:

• asd: reveal/indicates a person with ASD traits;

• ang: reveal/indicates a person with ASD traits, with non-hereditary factors (envi-

ronmental factors or de novo mutations) as the most likely cause;

• td: reveal/indicates a person with a typical development.

We included the ang domain value for two purposes: 1) to allow using virtual

evidence in the inference process, especially concerning explanation queries. For example,

when evaluating the impact of particular evidence on non-descendant nodes (e.g., parents

and grandparents), it is necessary to consider that ASD may have a non-hereditary factor

as a cause; and 2) to consider in causal inferences the ASD cases caused by non-hereditary

factors. It would not be correct to assume that all ASD people have genes associated with

the syndrome since some of these cases are caused by environmental factors that do not

necessarily change the individual’s genotype.

This domain sharing enabled all our defined variables concerning the last clarity

test principle proposed by Kjaerulff and Madsen (2013), which requires that all possible

values in the variable domain must be exhaustive and mutually exclusive.
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5.4 Model Probabilities

Among other essential points, the manual construction of a BN requires a proper

elicitation of many prior and conditional probabilities. We created the BNs according to

the family structure we wanted to investigate. Although we modeled different BNs, we

used a standard set of prior and conditional probabilities. We separated these probabilities

by gender due to the already known male-female sex ratio difference regarding the ASD

prevalence/risk.

5.4.1 Prior Probabilities

Supposing there is no evidence about an individual concerning an ASD diagnosis,

we assumed that the best information to represent this prior probability is the ASD preva-

lence data. Therefore, we used as prior probabilities the ASD prevalence data gathered in

Section 2.2, whose central tendencies we summarized in Table 2.

Tables 12 and 13 present the prior probabilities for root nodes (those nodes without

a parent node). We calculated the ang values using an additive genetic factor of ≈ 81%.

This percentage is the mean value attributed to additive genetics calculated from the

results of Bai et al. (2019), Yip et al. (2018), Sandin et al. (2017) and Tick et al. (2016).

Consequently, the value attributed to non-genetic factors is ≈ 19%.

Table 12 – Prior probabilities used for any root node that represents a male individual.

Male
asd 0.0222

ang 0.0043

td 0.9778

Table 13 – Prior probabilities used for any root node that represents a female individual.

Female
asd 0.0065

ang 0.0012

td 0.9935

Figure 13 displays that the ASD prevalence median values are located at the center

of the quartiles limits. The histogram shown in Figure 14 displays that the peak frequency

of ASD prevalences is also pretty close to the means. The data in these graphs indicate
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that using the ASD prevalence mean values as prior probabilities seem adequate for this

investigation.

Females General Males
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

A
SD

 P
re

va
le

nc
e 

(%
)

Figure 13 – Dispersion and skewness of the ASD prevalence data from Table 1.
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5.4.2 Conditional Probabilities

We used as conditional probabilities the causal ASD data gathered in Section

4.9. All conditional probabilities that involve ASD parents are equal, regardless of the

parents’ gender. We expected such equality once we estimated the probability of autistic

parents (father OR mother) generating autistic children. We expected the probability

P(Male=asd|Father=asd,Mother=td) to be equal to the probability P(Male=asd|Father

=td,Mother=asd) as well as the probability P(Female=asd|Father=asd,Mother=td) to

be equal to the probability P(Female=asd|Father=td,Mother=asd) because there is no

evidence that gender determines how much risk an ASD person represents to the offspring.

Even the so-called maternal effect does not represent a greater risk of ASD associated with

an ASD mother than an ASD father (BAI et al., 2019; YIP et al., 2018).

However, it is explicit the increased genetic risk for those children who have both

parents diagnosed with autism, despite being a scarce case. To have a more realistic con-

ditional probability, we estimated the genetic risk for children with ASD parents (father

AND mother) using the probability rule of addition. In our case, it means the probability

that an individual will inherit autism from his/her father, or inherit autism from his/her

mother, or even inherit autism due to factors coming from both parents. Equation 5.1

presents the rule of addition.

𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴, 𝐵) (5.1)

Consequently, we estimated P(Male=asd|Father=asd,Mother=asd) and P(Female

=asd|Father=asd,Mother=asd) according to Equations 5.2 and 5.3, respectively.

𝑃 (𝑀𝑎𝑙𝑒=𝑎𝑠𝑑|𝐹 𝑎𝑡ℎ𝑒𝑟=𝑎𝑠𝑑, 𝑀𝑜𝑡ℎ𝑒𝑟=𝑎𝑠𝑑) = 𝑃 (𝑀𝑎𝑙𝑒=𝑎𝑠𝑑|𝐹 𝑎𝑡ℎ𝑒𝑟=𝑎𝑠𝑑, 𝑀𝑜𝑡ℎ𝑒𝑟=𝑡𝑑)+

𝑃 (𝑀𝑎𝑙𝑒=𝑎𝑠𝑑|𝐹 𝑎𝑡ℎ𝑒𝑟=𝑡𝑑, 𝑀𝑜𝑡ℎ𝑒𝑟=𝑎𝑠𝑑)

−

𝑃 (𝑀𝑎𝑙𝑒=𝑎𝑠𝑑|𝐹 𝑎𝑡ℎ𝑒𝑟=𝑎𝑠𝑑, 𝑀𝑜𝑡ℎ𝑒𝑟=𝑡𝑑)·

𝑃 (𝑀𝑎𝑙𝑒=𝑎𝑠𝑑|𝐹 𝑎𝑡ℎ𝑒𝑟=𝑡𝑑, 𝑀𝑜𝑡ℎ𝑒𝑟=𝑎𝑠𝑑)

= 0.958458

(5.2)
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𝑃 (𝐹 𝑒𝑚𝑎𝑙𝑒=𝑎𝑠𝑑|𝐹 𝑎𝑡ℎ𝑒𝑟=𝑎𝑠𝑑, 𝑀𝑜𝑡ℎ𝑒𝑟=𝑎𝑠𝑑) = 𝑃 (𝐹 𝑒𝑚𝑎𝑙𝑒=𝑎𝑠𝑑|𝐹 𝑎𝑡ℎ𝑒𝑟=𝑎𝑠𝑑, 𝑀𝑜𝑡ℎ𝑒𝑟=𝑡𝑑)+

𝑃 (𝐹 𝑒𝑚𝑎𝑙𝑒=𝑎𝑠𝑑|𝐹 𝑎𝑡ℎ𝑒𝑟=𝑡𝑑, 𝑀𝑜𝑡ℎ𝑒𝑟=𝑎𝑠𝑑)

−

𝑃 (𝐹 𝑒𝑚𝑎𝑙𝑒=𝑎𝑠𝑑|𝐹 𝑎𝑡ℎ𝑒𝑟=𝑎𝑠𝑑, 𝑀𝑜𝑡ℎ𝑒𝑟=𝑡𝑑)·

𝑃 (𝐹 𝑒𝑚𝑎𝑙𝑒=𝑎𝑠𝑑|𝐹 𝑎𝑡ℎ𝑒𝑟=𝑡𝑑, 𝑀𝑜𝑡ℎ𝑒𝑟=𝑎𝑠𝑑)

= 0.550991

(5.3)

Results from Equations 5.2 and 5.3 imply that given both parents with ASD,

they would generate ASD boys and ASD girls with probabilities of ≈ 96% and ≈ 55%,

respectively. Thus, we defined the conditional probabilities for the intermediate and leaf

nodes according to Tables 14 (males) and 15 (females). ASD cases due to environmental

factors or de novo mutations do not depend on the parents’ genetics. Thus, the conditional

probability for ang has the same values as the prior probabilities.

Table 14 – CPT for a male individual given his parents.

Father asd asd asd ang ang ang td td td

Mother asd ang td asd ang td asd ang td

Male
asd 0.9585 0.7962 0.7962 0.7962 0.0031 0.0031 0.7962 0.0031 0.0031

ang 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043

td 0.0415 0.2038 0.2038 0.2038 0.9969 0.9969 0.2038 0.9969 0.9969

For clarification purposes, the probability value 0.0415 in Table 14 is P(Male=td|

Father=asd,Mother=asd). We followed this pattern for all CPTs presented in the rest of

this thesis, where the horizontal headlines are the evidence, and the vertical headlines are

the variables of interest.
Table 15 – CPT for a female individual given her parents.

Father asd asd asd ang ang ang td td td

Mother asd ang td asd ang td asd ang td

Female
asd 0.5510 0.3299 0.3299 0.3299 0.0008 0.0008 0.3299 0.0008 0.0008

ang 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012

td 0.4490 0.6701 0.6701 0.6701 0.9992 0.9992 0.6701 0.9992 0.9992

Based on Tables 14 and 15, the male:female ASD risk rate decreases to 1.75:1 if

we assume both parents with ASD. This value emphasizes the decreasing tendency of

this rate as more extensive and intense genetic factors are associated with parents, as

discussed in Sections 2.3.2.3 and 4.10, suggesting that inheriting more genetic factors

related to autism would imply a higher ASD prevalence for females.
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5.5 Implementation Tools

We used Pgmpy1, an open-source Python library that provides an easy-to-use

Application Programming Interface (API) for working with PGMs. It allows creating

graphical models and answer inference or map queries over them once it has implemented

many inference algorithms (ANKAN; PANDA, 2015), including the Variable Elimination

algorithm used in our queries. Pgmpy is one of the most suitable BNs software packages,

with a modular architecture designed for extensibility and an active software community

that usually provides new updates (MICHIELS; LARRAÑAGA; BIELZA, 2021).

Other Python libraries used include: Pandas2, an open-source data analysis and

manipulation tool designed to work with structured and time-series data. We used Pandas

as the data source for producing our graphics; NumPy3, an open-source Python library

fundamental for scientific computing, with an extensive set of mathematical functions to

operate on large multi-dimensional arrays; and Seaborn4, an open-source Python library

for data visualization. Based on Matplotlib5, Seaborn provides a high-level API for drawing

statistical graphics.

Our environment used Python version 3.9.4 and Pgmpy version 0.1.15. Our BNs

implementation code can be seen at our code repository6.

5.6 Summary

This chapter introduced some fundamental aspects regarding our BNs developing

process. Such aspects involve the process of structuring the BNs’ topology, the definition

of their variables, including its domain, the set of prior and conditional probabilities, and

the tools we used.

We seek to evaluate the adequacy of the random variables concerning the clar-

ity test and define the type of each one of them. The BNs topologies follow the cause-

consequence idiom, attempting to understand the role of each variable given the BN

structure.
1 <https://pgmpy.org>
2 <https://pandas.pydata.org/>
3 <https://numpy.org/>
4 <https://seaborn.pydata.org/>
5 <https://matplotlib.org/>
6 <https://github.com/emerson-prof-carvalho/bns>

https://pgmpy.org
https://pandas.pydata.org/
https://numpy.org/
https://seaborn.pydata.org/
https://matplotlib.org/
https://github.com/emerson-prof-carvalho/bns
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To the best of our knowledge, the set of prior and conditional probabilities used are

the state-of-the-art literature concerning the ASD prevalence, recurrence, and heritability

data. Such studies calculated these estimates based on the clinical diagnosis of ASD,

which seeks to diagnose phenotypic manifestations of the disorder. Thus, the ASD risk

estimates that our BNs will evaluate aim to assess the risk of a clinical diagnosis of ASD

traits, which is different from estimating the presence or absence of ASD genetic variants.

The subsequent chapters use the guidelines specified in this chapter to create BNs

that will investigate specific problem definitions.
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6 Bayesian Network to Estimate the Risk of

ASD in Siblings, Parents, and Grandpar-

ents

The ASD heritability and recurrence among siblings are well-explored subjects,

performed mainly by studies that evaluated sibling pairs. Therefore, we aim to assess the

risk of ASD in parents, grandparents, and siblings of ASD individuals so that we can

explore different and distinct pieces of evidence.

6.1 Problem Definition

We aimed to estimate conditional probabilities such as:

• P(Father|Boy), P(Father|Girl), P(Father|Boy, Girl, ...);

• P(Mother|Boy), P(Mother|Girl), P(Mother|Boy, Girl, ...);

• P(Boy|Boy), P(Boy|Girl), P(Boy|Boy, Girl), P(Boy|Boy, Boy, ...);

• P(Girl|Boy), P(Girl|Girl), P(Girl|Boy, Girl), P(Girl|Girl, Girl, ...);

• P(Grandfather|Boy), P(Grandfather|Girl), P(Grandfather|Boy, Girl, ...);

• P(Grandmother|Boy), P(Grandmother|Girl), P(Grandmother|Boy, Girl, ...);

Notations like P(Father|Boy) summarizes the following conditional probabilities

P(Father=asd|Boy=asd), P(Father=asd|Boy=td), P(Father=td|Boy=asd), and P(Fa-

ther=td|Boy=td).

6.2 Bayesian Network Structure

Using a portion of the variables previously defined in Section 5.2, we created a BN

to estimate the risk of ASD in siblings, parents and grandparents. Figure 15 presents the

BN structure.
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Figure 15 – The structure of a BN to estimate the risk of ASD in siblings, parents, and
grandparents.

According to the types of variables defined in Section 3.4.4.1, the nodes repre-

senting grandparents can be classified as background or hypothesis variables. They work

as background variables because they have an indirect causal relationship regarding the

symptom variables. They act as hypothesis variables because they are among the vari-

ables of interest given the problem definition (to estimate the risk of ASD in grandparents

given evidence in their grandchildren).

The nodes representing parents can be classified as hypothesis variables. They work

as hypothesis variables because they have a direct causal relationship with the symptom

variables and are among the variables of interest given the problem definition (to estimate

parents as the probable explanation given evidence in their children).

The nodes representing children can be classified as symptom or hypothesis vari-

ables. They act as symptom variables while we take them as evidence. They serve as

hypothesis variables when we make inferences about them, given some evidence at the

variables in the same level (to estimate the recurrence among siblings).

We used the prior probabilities defined in Tables 12 and 13 as the discrete prob-

ability distributions for root nodes (those representing grandparents, father partner and

mother partner). Nodes representing parents (F and M) and children have their CPTs pro-

duced from the conditional probabilities presented in Tables 14 and 15. We emphasize

that the probabilities correspond to the gender of the family member represented by each

node.
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6.3 Marginal Probabilities without Evidence

First, we investigated the probabilities estimated by the BN when no evidence is

given. This analysis aimed to evaluate the propagation of uncertainty across the network

levels. Table 16 shows the estimated probabilities.

Table 16 – Marginal probabilities of the BN nodes in Figure 15 if no evidence is given.

Males Females

GFF GFM MP F BFP BMP FB SB TB GMF GMM FP M GFP GMP FG SG TG

asd 0.022 0.026 0.028 0.031 0.007 0.010 0.011 0.012

td 0.974 0.970 0.968 0.965 0.992 0.989 0.988 0.987
GFFGrandfather from Father side; GFMGrandfather from Mother side; MPMother Partner; FFather; BFPBoy (half-
brother) from Father Partner; BMPBoy (half-brother) from Mother Partner; FBFirst Boy; SBSecond Boy; TBThird
Boy; GMFGrandmother from Father side; GMMGrandmother from Mother side; FPFather Partner; MMother; GFPGirl
(half-sister) from Father Partner; GMPGirl (half-sister) from Mother Partner; FGFirst Girl; SGSecond Girl; TGThird
Girl.

Marginal probabilities range from ≈ 2.2% (root nodes) to 3.1% (leaf nodes) for

nodes representing males. Regarding nodes representing females, marginal probabilities

range from 0.7% to 1.2%. These results show an uncertainty propagation through the

BN, especially in leaf nodes. However, these probabilities range are corroborated by the

variation also noticed in the ASD prevalence data, which suggests a suitable fit to start

our investigation.

We used these estimates to evaluate the BN results when applying the evidence

sets we aim to investigate.

6.4 Estimating the Risk of ASD in Parents

We performed conditional probability queries (explanation reasoning queries) to

compute the risk of ASD in parents given evidence regarding their descendants. In all

inference cases, the non-explicit definition for a variable state means no evidence. We

started the investigation by analyzing one child per couple. Following this, we increased

the number of children to explore the impacts on the causal explanation. We performed

inferences and presented results in such a way we could analyze genders separately.
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6.4.1 Risk of ASD in Parents Given One Child

Tables 17 presents the inference results for parents given the evidence regarding a

first child. Values in parentheses indicate results when virtual evidence was used.

Table 17 – Inference results for fathers and mothers given one child.

FB FG

asd td asd td

F
asd (0.6333) 0.6529 0.0053 (0.6636) 0.6786 0.0173

td (0.3651) 0.3456 0.9903 (0.3349) 0.3200 0.9784

M
asd (0.2528) 0.2606 0.0021 (0.2668) 0.2728 0.0068

td (0.7463) 0.7385 0.9967 (0.7323) 0.7263 0.9919
FBFirst Boy; FGFirst Girl; FFather; MMother.

Given one ASD child, the risk of ASD for fathers ranges from ≈ 63% (ASD boy)

to ≈ 68% (ASD girl), a 24−26-fold increase in the probability risk of ASD. Meanwhile,

the risk of ASD for mothers ranges from ≈ 25% (ASD boy) to ≈ 27% (ASD girl), a

25−27-fold increase in the probability risk of ASD. As expected, if the child with ASD

is a girl, the causality associated with the parents’ genetics is slightly higher. Figure 16

summarizes the average risk of ASD in parents given the evidence regarding a first child.
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Figure 16 – Risk of ASD in parents given evidence regarding one child.
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6.4.2 Risk of ASD in Parents Given Two Children

Table 18 presents the inference results for parents given the evidence regarding

two children. Given two ASD children, the risk of ASD for fathers is ≈ 72%, a 28-fold

increase in the probability risk of ASD. In comparison, the risk of ASD for mothers is

≈ 29−30%, a 29-fold increase in the probability risk of ASD.

Table 18 – Inference results for parents given two children.

FB FB FG
asd asd td td asd asd td td asd asd td td

SB SG SG
asd td asd td asd td asd td asd td asd td

F
asd

(0.7210)
0.7212

(0.4274)
0.4748 0.0011 (0.7223)

0.7225
(0.5966)
0.6229

(0.5016)
0.5467 0.0036 (0.7240)

0.7241
(0.6370)
0.6579 0.0117

td
(0.2778)
0.2776

(0.5701)
0.5229 0.9946 (0.2765)

0.2763
(0.4016)
0.3754

(0.4963)
0.4513 0.9921 (0.2748)

0.2747
(0.3614)
0.3406 0.9840

M
asd

(0.2889)
0.2889

(0.1681)
0.1867 0.0004 (0.2918)

0.2919
(0.2367)
0.2471

(0.1975)
0.2153 0.0014 (0.2959)

0.2959
(0.2539)
0.2623 0.0046

td
(0.7103)
0.7102

(0.8309)
0.8123 0.9983 (0.7073)

0.7072
(0.7624)
0.7519

(0.8015)
0.7837 0.9973 (0.7033)

0.7032
(0.7451)
0.7368 0.9942

FBFirst Boy; FGFirst Girl; SBSecond Boy; SGSecond Girl; FFather; MMother;

On the other hand, there is a 2−25-fold decrease in the probability risk of ASD

for parents given the evidence of two TD children. The risk of ASD for parents decreases

25-fold if the two TD children are boys and 7-fold if at least one TD child is a boy. In other

words, having two TD sons reduces the chances of ASD in parents substantially. However,

the risk rate reduction given evidence regarding two TD daughters is considerably shorter

(2-fold), which is corroborated by studies that point to females being more immune to

ASD genetic load. Therefore, we expected that having two TD daughters should not

reduce the risk of ASD in parents by the same dimension as if they had two TD sons.

For groupings including one ASD child and one TD child, the risk of ASD for

fathers ranges from ≈ 43% to ≈ 66%, while the risk of ASD for mothers ranges from

≈ 17% to ≈ 26%. For parents who have one ASD child, having one TD boy as a second

child is a factor that mitigates parental causality by ≈ 15−35% for mothers and ≈ 17−35%

for fathers. Having one TD girl as a second child also mitigates the parental causality,

although in a modest proportion of at most ≈ 8−9%. As in cases with a single ASD child,

if the children with ASD are girls, the parental causality is slightly higher given the same

remaining set of evidence.

Figure 17 summarizes the average risk of ASD in parents given the evidence re-
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garding two children.
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Figure 17 – Risk of ASD in parents given evidence regarding two children.

6.4.3 Risk of ASD in Parents Given Three Children

Tables 19-22 present the inference results for fathers given the evidence regarding

three children. Fathers with three ASD children have ≈ 72−73% of ASD risk, with no

significant increase than two children with ASD. Thus, this set of evidence shows that one

TD child after two ASD cases does not decrease the risk of ASD for fathers meaningfully.

However, given the evidence of three TD children, the risk of ASD for fathers tends to

zero if at least one child is a boy.

Table 19 – Inference results for fathers given three boys.

FB
asd asd asd asd td td td td

SB SB
asd asd td td asd asd td td

TB TB TB TB
asd td asd td asd td asd td

F
asd (0.7221) 0.7221 (0.7167) 0.7177 (0.1655) 0.2042 (0.7167) 0.7177 (0.1655) 0.2042 0.0002
td (0.2767) 0.2767 (0.2821) 0.2810 (0.8309) 0.7923 (0.2821) 0.2810 (0.8309) 0.7923 0.9954

FBFirst Boy; SBSecond Boy; TBThird Boy; FFather.

Figure 18 summarizes the risk of ASD in fathers with three children. Given only one

ASD case among three children, the causality associated with fathers varies substantially,
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Table 20 – Inference results for fathers given two boys and one girl.
FB

asd asd asd asd td td td td
SB SB

asd asd td td asd asd td td
TG TG TG TG

asd td asd td asd td asd td

F
asd (0.7235) 0.7235 (0.7198) 0.7201 (0.7178) 0.7185 (0.3562) 0.4067 (0.7178) 0.7185 (0.3562) 0.4067 (0.2298) 0.2822 0.0007
td (0.2753) 0.2753 (0.2790) 0.2787 (0.2810) 0.2803 (0.6410) 0.5907 (0.2810) 0.2803 (0.6410) 0.5907 (0.7668) 0.7147 0.9949

FBFirst Boy; SBSecond Boy; TGThird Girl; FFather.

Table 21 – Inference results for fathers given one boy and two girls.

FB
asd asd asd asd td td td td

SG SG
asd asd td td asd asd td td

TG TG TG TG
asd td asd td asd td asd td

F
asd (0.7253) 0.7254 (0.7208) 0.7211 (0.5496) 0.5835 (0.7187) 0.7192 (0.4364) 0.4888 0.0024
td (0.2735) 0.2735 (0.2780) 0.2777 (0.4485) 0.4147 (0.2801) 0.2796 (0.5612) 0.5090 0.9933

FBFirst Boy; SGSecond Girl; TGThird Girl; FFather.

Table 22 – Inference results for fathers given three girls.

FG
asd asd asd asd td td td td

SG SG
asd asd td td asd asd td td

TG TG TG TG
asd td asd td asd td asd td

F
asd (0.7279) 0.7279 (0.7221) 0.7222 (0.6017) 0.6300 (0.7221) 0.7222 (0.6017) 0.6300 0.0078
td (0.2709) 0.2709 (0.2767) 0.2766 (0.3966) 0.3684 (0.2767) 0.2766 (0.3966) 0.3684 0.9878

FGFirst Girl; SGSecond Girl; TGThird Girl; FFather.

according to the evidence regarding the other two children. The risk of ASD for fathers

decreases to:

• ≈ 17−28% if the two TD children are boys, which represents a decrease of ≈ 58−74%

in comparison to only one child with ASD (Section 6.4.1);

• ≈ 36−49% if exactly one of the TD children is a boy, a decrease of ≈ 26−45% in

comparison to only one child with ASD; and

• ≈ 55−63% if the two TD children are girls, only ≈ 5−17% lower than cases where

there is no evidence of TD children.

Tables 23-26 present the inference results for mothers given the evidence regarding

three children. Mothers with three ASD children have ≈ 29−31% risk of ASD, presenting
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Figure 18 – Risk of ASD in fathers given evidence regarding three children.

no significant increase than in cases when they have two ASD children. As for fathers,

this set of evidence shows that one TD child after two ASD cases does not decrease the

risk of ASD for mothers significantly. Again, given the evidence of three TD children, the

risk of ASD for mothers tends to zero if at least one child is a boy.

Table 23 – Inference results for mothers given three boys.

FB
asd asd asd asd td td td td

SB SB
asd asd td td asd asd td td

TB TB TB TB
asd td asd td asd td asd td

M
asd (0.2906) 0.2906 (0.2820) 0.2825 (0.0649) 0.0800 (0.2820) 0.2825 (0.0649) 0.0800 0.0001
td (0.7085) 0.7085 (0.7171) 0.7166 (0.9340) 0.9188 (0.7171) 0.7166 (0.9340) 0.9188 0.9987

FBFirst Boy; SBSecond Boy; TBThird Boy; MMother.

Table 24 – Inference results for mothers given two boys and one girl.
FB

asd asd asd asd td td td td
SB SB

asd asd td td asd asd td td
TG TG TG TG

asd td asd td asd td asd td

M
asd (0.2941) 0.2941 (0.2863) 0.2864 (0.2830) 0.2833 (0.1399) 0.1597 (0.2830) 0.2833 (0.1399) 0.1597 (0.0901) 0.1107 0.0003
td (0.7051) 0.7050 (0.7128) 0.7127 (0.7161) 0.7158 (0.8590) 0.8392 (0.7161) 0.7158 (0.8590) 0.8392 (0.9087) 0.8882 0.9985

FBFirst Boy; SBSecond Boy; TGThird Girl; MMother.
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Table 25 – Inference results for mothers given one boy and two girls.

FB
asd asd asd asd td td td td

SG SG
asd asd td td asd asd td td

TG TG TG TG
asd td asd td asd td asd td

M
asd (0.2988) 0.2988 (0.2883) 0.2884 (0.2171) 0.2305 (0.2841) 0.2842 (0.1715) 0.1922 0.0009
td (0.7003) 0.7003 (0.7108) 0.7107 (0.7819) 0.7685 (0.7150) 0.7149 (0.8274) 0.8068 0.9978

FBFirst Boy; SGSecond Girl; TGThird Girl; MMother.

Table 26 – Inference results for mothers given three girls.
FG

asd asd asd asd td td td td
SG SG

asd asd td td asd asd td td
TG TG TG TG

asd td asd td asd td asd td

M
asd (0.3053) 0.3053 (0.2911) 0.2912 (0.2385) 0.2497 (0.2911) 0.2912 (0.2385) 0.2497 0.0031
td (0.6938) 0.6938 (0.7080) 0.7079 (0.7606) 0.7494 (0.7080) 0.7079 (0.7606) 0.7494 0.9957

FGFirst Girl; SGSecond Girl; TGThird Girl; MMother.

Figure 19 summarizes the risk of ASD for mothers with three children. Given only

one ASD case among three children, the causality associated with mothers also varies

substantially according to the evidence regarding the other two children. The risk of ASD

for mothers decreases to:

• ≈ 6−11% if the two TD children are boys, a decrease of ≈ 58−77% in comparison

to the case of only one child with ASD (Section 6.4.1);

• ≈ 14−19% if exactly one of the TD children is a boy, a decrease of ≈ 27−46% in

comparison to the case of only one child with ASD; and

• ≈ 22−25% if the two TD children are girls, only ≈ 4−15% lower than cases where

there is no evidence of TD children.

6.4.4 Risk of ASD in Parents Given Six Children

We also estimated six children per couple to evaluate the limits of the risk of ASD

for parents and the emerging hypothesis that having two children with ASD seems suffi-

cient to assume a high risk of ASD for parents, despite evidence regarding other children.

Tables 27 and 28 present the inference results for fathers and mothers, respectively, given
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Figure 19 – Risk of ASD in mothers given evidence regarding three children.

the evidence regarding six children (three children of each gender in this case). These

estimates allowed us to achieve two significant findings.

Table 27 – Inference results for fathers given six children.
FB asd asd asd asd asd asd asd asd asd asd asd asd td td td td
SB asd asd asd asd asd asd asd asd td td td td td td td td
TB asd asd asd asd td td td td td td td td td td td td
FG asd asd asd td asd asd asd td asd asd asd td asd asd asd td
SG asd asd td td asd asd td td asd asd td td asd asd td td
TG asd td td td asd td td td asd td td td asd td td td

asd
(0.7344)
0.7345

(0.7252)
0.7252

(0.7212)
0.7212

(0.7196)
0.7196

(0.7214)
0.7214

(0.7197)
0.7197

(0.7190)
0.7190

(0.7105)
0.7140

(0.7190)
0.7190

(0.7187)
0.7187

(0.7017)
0.7092

(0.0595)
0.0768

(0.7185)
0.7186

(0.6841)
0.6999

(0.0298)
0.0403 0.0001

F
td

(0.2644)
0.2644

(0.2737)
0.2736

(0.2776)
0.2776

(0.2792)
0.2792

(0.2774)
0.2774

(0.2791)
0.2791

(0.2798)
0.2798

(0.2882)
0.2847

(0.2798)
0.2798

(0.2801)
0.2801

(0.2970)
0.2895

(0.9365)
0.9192

(0.2802)
0.2802

(0.3145)
0.2988

(0.9660)
0.9555 0.9956

FBFirst Boy; SBSecond Boy; TBThird Boy; FGFirst Girl; SGSecond Girl; TGThird Girl; FFather.

Table 28 – Inference results for mothers given six children.
FB asd asd asd asd asd asd asd asd asd asd asd asd td td td td
SB asd asd asd asd asd asd asd asd td td td td td td td td
TB asd asd asd asd td td td td td td td td td td td td
FG asd asd asd td asd asd asd td asd asd asd td asd asd asd td
SG asd asd td td asd asd td td asd asd td td asd asd td td
TG asd td td td asd td td td asd td td td asd td td td

asd
(0.3221)
0.3221

(0.2983)
0.2983

(0.2883)
0.2883

(0.2842)
0.2842

(0.2887)
0.2887

(0.2844)
0.2844

(0.2826)
0.2826

(0.2787)
0.2801

(0.2827)
0.2827

(0.2819)
0.2819

(0.2750)
0.2780

(0.0233)
0.0301

(0.2816)
0.2817

(0.2680)
0.2742

(0.0117)
0.0158 0.0000

M
td

(0.6771)
0.6770

(0.7008)
0.7008

(0.7108)
0.7108

(0.7149)
0.7149

(0.7104)
0.7104

(0.7147)
0.7147

(0.7165)
0.7165

(0.7204)
0.7190

(0.7164)
0.7164

(0.7172)
0.7172

(0.7241)
0.7211

(0.9755)
0.9687

(0.7175)
0.7174

(0.7311)
0.7249

(0.9871)
0.9830 0.9987

FBFirst Boy; SBSecond Boy; TBThird Boy; FGFirst Girl; SGSecond Girl; TGThird Girl; MMother.

First, it was possible to estimate the maximum risk of ASD for parents. Such

limits are ≈ 32% for mothers and ≈ 73% for fathers. We believe in these limits because
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increasing the number of evidence (e.g., the number of ASD children from two to six) did

not significantly increase parental causality.

Second, given the evidence of two children with ASD, we may attribute these

ASD occurrences to genetics regardless of evidence about other children. We believe this

because the risk of ASD for parents with only two children, both autistic, is similar to

the risk of ASD for parents with six children (with two of them autistic). The closeness of

these two estimates led us to believe that after two ASD children, evidence of TD children

does not seem to decrease the parental causality significantly. Figure 20 summarizes the

risk of ASD for parents with six children.
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Figure 20 – Risk of ASD in parents given evidence regarding six children.

6.4.5 Results Accordance with ASD Heritability

This section aims to assess our inference results regarding the risk of ASD for

parents contrasted to the well-known data regarding ASD heritability and prevalence.

As described in Section 2.4, the ASD heritability ranges from ≈ 80% to ≈ 93%.

These probabilities indicate cases where an ASD child inherited the condition from at

least one of his/her parents.

We calculated the joint probability for fathers and mothers given evidence of ASD

children to estimate genetics as the most likely explanation for ASD cases. The inferences
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performed by our BN attribute to genetics from ≈ 88% to ≈ 94% if one ASD child, and

nearly 100% if two or more ASD children. Observing values regarding only one individual,

the mean probability attributed to genetics is ≈ 91%, which is supported by the ASD

heritability estimates of Bai et al. (2019), Yip et al. (2018), and Sandin et al. (2017). In

families with at least two ASD children, both parents present BAP features in ≈ 59% of

cases. In ≈ 92% of these families, BAP features are present in at least one parent (LOSH

et al., 2008).

The risks of ASD attributed to fathers were ≈ 2.5-fold greater than the risks

attributed to mothers. If we take the ASD prevalence rate between males and females

into account, this father:mother ASD risk ratio (2.5:1) is supported by the male:female

ASD prevalence rate when there is evidence of genetic factors, as discussed in Sections

2.3.2.3 and 4.10.

6.5 Estimating the Risk of ASD in Grandparents

We evaluated the risk of ASD in grandparents by investigating ASD evidence in

their grandchildren. We estimated the risk of ASD given they have up to two grandchil-

dren, once having two children with ASD seems sufficient to assume a high risk of ASD

for parents.

6.5.1 The Risk of ASD in Grandparents given One Grandchild

Table 29 presents the inference results for grandparents given the evidence re-

garding one grandchild. Given one ASD grandchild, the risk of ASD ranges from ≈ 6%

for maternal grandmothers to ≈ 13−14% for paternal grandmothers. Regarding grandfa-

thers, the risk ranges from ≈ 19−21% (maternal) to ≈ 44−47% (paternal). These results

represent a ≈ 9−21-fold increase in the risk of ASD for grandparents given one grandchild

with ASD.

Figure 21 summarizes the risk of ASD in grandparents given one grandchild.
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Table 29 – Inference results for grandparents given one grandchild.

FB FG

asd td asd td

GFF
asd (0.4371) 0.4505 0.0083 (0.4579) 0.4681 0.0165

td (0.5604) 0.5471 0.9874 (0.5398) 0.5296 0.9793

GMF
asd (0.1284) 0.1323 0.0024 (0.1345) 0.1375 0.0048

td (0.8705) 0.8666 0.9963 (0.8645) 0.8615 0.9939

GFM
asd (0.1933) 0.1988 0.0164 (0.2031) 0.2074 0.0198

td (0.8032) 0.7978 0.9793 (0.7934) 0.7892 0.9760

GMM
asd (0.0571) 0.0587 0.0048 (0.0600) 0.0613 0.0058

td (0.9417) 0.9401 0.9940 (0.9388) 0.9375 0.9930
FBFirst Boy; FGFirst Girl; GFFGrandfather from Father side; GMFGrandmother from Father side; GFMGrandfather from
Mother side; GMMGrandmother from Mother side.
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Figure 21 – Risk of ASD in grandparents given evidence regarding one grandchild.

6.5.2 The Risk of ASD in Grandparents given Two Grandchildren

Table 30 presents the inference results for grandparents given the evidence re-

garding two grandchildren. Given two ASD grandchildren, the risk of ASD ranges from

≈ 6−7% for maternal grandmothers to ≈ 15% for paternal grandmothers. Regarding

grandfathers, the risk ranges from ≈ 22% (maternal) to ≈ 50% (paternal).

For groupings including one ASD grandchild and one TD grandchild, the risk

of ASD for grandparents decreases ≈ 33−38% when the TD grandchild is a boy, and

≈ 13−17% when the TD grandchild is a girl.
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Table 30 – Inference results for grandparents given two grandchildren.

FB FB FG
asd asd td td asd asd td td asd asd td td

SB SG SG
asd td asd td asd td asd td asd td asd td

GFF
asd

(0.4970)
0.4972

(0.2965)
0.3289 0.0054 (0.4979)

0.4981
(0.4121)
0.4301

(0.3472)
0.3780 0.0071 (0.4991)

0.4992
(0.4397)
0.4540 0.0126

td
(0.5008)
0.5006

(0.7004)
0.6682 0.9903 (0.4999)

0.4998
(0.5854)
0.5675

(0.6500)
0.6193 0.9886 (0.4987)

0.4987
(0.5579)
0.5437 0.9831

GMF
asd

(0.1460)
0.1460

(0.0871)
0.0966 0.0016 (0.1462)

0.1463
(0.1210)
0.1263

(0.1019)
0.1110 0.0021 (0.1466)

0.1466
(0.1291)
0.1333 0.0037

td
(0.8530)
0.8529

(0.9118)
0.9023 0.9972 (0.8527)

0.8527
(0.8779)
0.8726

(0.8969)
0.8879 0.9967 (0.8524)

0.8524
(0.8698)
0.8656 0.9951

GFM
asd

(0.2187)
0.2188

(0.1335)
0.1467 0.0153 (0.2208)

0.2209
(0.1819)
0.1893

(0.1543)
0.1668 0.0160 (0.2237)

0.2237
(0.1941)
0.2000 0.0182

td
(0.7779)
0.7778

(0.8627)
0.8496 0.9805 (0.7758)

0.7758
(0.8145)
0.8072

(0.8420)
0.8295 0.9798 (0.7730)

0.7729
(0.8024)
0.7966 0.9775

GMM
asd

(0.0646)
0.0647

(0.0394)
0.0433 0.0044 (0.0653)

0.0653
(0.0538)
0.0559

(0.0456)
0.0493 0.0047 (0.0661)

0.0661
(0.0574)
0.0591 0.0053

td
(0.9342)
0.9342

(0.9594)
0.9555 0.9943 (0.9336)

0.9336
(0.9451)
0.9429

(0.9532)
0.9495 0.9941 (0.9327)

0.9327
(0.9415)
0.9397 0.9934

FBFirst Boy; FGFirst Girl; SBSecond Boy; SGSecond Girl; GFFGrandfather from Father side; GMFGrandmother from
Father side; GFMGrandfather from Mother side; GMMGrandmother from Mother side.

Figure 22 summarizes the risk of ASD for grandparents given two grandchild.
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Figure 22 – Risk of ASD in grandparents given evidence regarding two grandchild.

Given two grandchildren with ASD, the risk of ASD is up to ≈ 77% for grandfa-

thers and ≈ 23% for grandmothers if the two grandchildren with ASD are not siblings.

That is, they are grandchildren of different children (simulated using the BN defined in
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Chapter 7).

6.5.3 Results Accordance with Mental and Neurological Disorders Among

Grandparents

This section aims to assess our inference results regarding the risk of ASD for

grandparents contrasted to the literature concerning family history of mental or neuro-

logical disorders with shared symptomatic and possibly etiologic overlap with ASD.

A study conducted by Xie et al. (2019) pointed that ≈ 81% of ASD people have

a grandparent with some mental or neurological disorder, reaching up to 90% for some

autistic subgroups. Given one ASD grandchild, our results suggest that the combined risk

of ASD in grandparents ranges from ≈ 82% to ≈ 88%, ≈ 26% for maternal grandparents,

and ≈ 58% for paternal grandparents. The combined risk of ASD in grandparents can

be up to ≈ 94% given two ASD grandchildren, ≈ 29% for maternal grandparents, and

≈ 65% for paternal grandparents. Once few works quantified the association between

family history of mental or neurological disorders with ASD beyond first-degree relatives,

we believe this is a reasonable comparison.

6.6 Estimating the Risk of ASD Among Siblings

We evaluated the risk of ASD in some individuals by investigating ASD evidence

in their siblings. We estimated the risk of ASD in individuals with one older sibling with

ASD since most of the works that studied ASD heritability/recurrence evaluated pairs of

siblings. Nevertheless, we also estimated the risk of ASD in the case of two affected older

siblings to assess the ASD risk thresholds in the younger siblings.

6.6.1 The Risk of ASD Given One Affected Sibling

Table 31 presents the inference results for full- and half-siblings given evidence

regarding one older sibling.

Given one older ASD sibling, the risk of ASD for younger full brothers ranges from

≈ 70% to ≈ 75%, approximately 23-fold increase in the risk of ASD. Regarding younger

half brothers, the risk of ASD ranges from ≈ 51% to ≈ 54% for paternal half brothers
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Table 31 – Inference results for second siblings given one older sibling.

FB FG

asd td asd td

SB
asd (0.6980) 0.7194 0.0089 (0.7308) 0.7472 0.0220

td (0.2978) 0.2763 0.9869 (0.2649) 0.2485 0.9737

BFP
asd (0.5057) 0.5211 0.0124 (0.5296) 0.5413 0.0217

td (0.4900) 0.4747 0.9834 (0.4662) 0.4544 0.9740

BMP
asd (0.2166) 0.2227 0.0222 (0.2275) 0.2322 0.0258

td (0.7791) 0.7731 0.9736 (0.7683) 0.7636 0.9699

SG
asd (0.2912) 0.3002 0.0032 (0.3054) 0.3123 0.0087

td (0.7075) 0.6986 0.9955 (0.6933) 0.6865 0.9901

GFP
asd (0.2106) 0.2171 0.0047 (0.2206) 0.2255 0.0086

td (0.7881) 0.7817 0.9941 (0.7782) 0.7732 0.9902

GMP
asd (0.0905) 0.0931 0.0087 (0.0951) 0.0971 0.0103

td (0.9082) 0.9057 0.9900 (0.9036) 0.9017 0.9885
FBFirst Boy; FGFirst Girl; SBSecond Boy; BFPBoy (half-brother) from Father Partner; BMPBoy (half-brother) from
Mother Partner; SGSecond Girl; GFPGirl (half-sister) from Father Partner; GMPGirl (half-sister) from Mother Partner.

and ≈ 22% to ≈ 23% for maternal half brothers, nearly 17 and 7-fold increase in the risk

of ASD, respectively.

The risk of ASD for younger full sisters ranges from ≈ 29% to ≈ 31% given one

older ASD sibling, approximately 25-fold increase in the risk of ASD. Regarding younger

half sisters, the risk of ASD ranges from ≈ 21% to ≈ 23% for paternal half sisters and

≈ 9% to ≈ 10% for maternal half sisters, nearly 18 and 8-fold increase in the risk of ASD,

respectively.

For all second siblings cases, the higher risk occurs when the older sibling is a girl.

Figures 23 and 24 summarize the risk of ASD in second brothers and sisters, respectively.

6.6.2 The Risk of ASD Given Two Affected Siblings

Table 32 presents the inference results for younger siblings given the evidence

regarding two older siblings.

Given two older ASD siblings, the risk of ASD for younger full brothers is ≈ 79%,

approximately 25-fold increase in the risk of ASD. Regarding younger half brothers, the

risk of ASD is ≈ 57% for paternal half brothers and ≈ 25% for maternal half brothers,
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Figure 23 – Risk of ASD in second brother given evidence regarding one older sibling.
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Figure 24 – Risk of ASD in second sister given evidence regarding one older sibling.

nearly 18 and 8-fold increase in the risk of ASD, respectively. These risks estimates do

not increase significantly given three older siblings with ASD.

The risk of ASD for younger full sisters is ≈ 33% given two older ASD siblings,
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Table 32 – Inference results for third siblings given two older siblings.

FB FB FG
asd asd td td asd asd td td asd asd td td

SB SG SG
asd td asd td asd td asd td asd td asd td

TB
asd

(0.7940)
0.7942

(0.4727)
0.5248 0.0043 (0.7948)

0.7950
(0.6581)
0.6870

(0.5541)
0.6037 0.0070 (0.7958)

0.7960
(0.7022)
0.7251 0.0159

td
(0.2018)
0.2016

(0.5231)
0.4710 0.9915 (0.2009)

0.2008
(0.3377)
0.3088

(0.4417)
0.3921 0.9888 (0.1999)

0.1998
(0.2936)
0.2707 0.9799

BFP
asd

(0.5747)
0.5748

(0.3440)
0.3812 0.0090 (0.5757)

0.5758
(0.4769)
0.4976

(0.4022)
0.4377 0.0110 (0.5770)

0.5771
(0.5087)
0.5251 0.0173

td
(0.4211)
0.4209

(0.6518)
0.6145 0.9867 (0.4201)

0.4200
(0.5188)
0.4982

(0.5935)
0.5580 0.9848 (0.4187)

0.4187
(0.4871)
0.4707 0.9784

BMP
asd

(0.2446)
0.2447

(0.1509)
0.1654 0.0209 (0.2470)

0.2470
(0.2042)
0.2123

(0.1738)
0.1876 0.0216 (0.2501)

0.2501
(0.2175)
0.2240 0.0241

td
(0.7511)
0.7511

(0.8448)
0.8304 0.9749 (0.7488)

0.7488
(0.7916)
0.7835

(0.8220)
0.8082 0.9741 (0.7457)

0.7456
(0.7782)
0.7718 0.9717

TG
asd

(0.3316)
0.3317

(0.1964)
0.2181 0.0013 (0.3326)

0.3327
(0.2742)
0.2862

(0.2304)
0.2511 0.0024 (0.3339)

0.3339
(0.2929)
0.3025 0.0061

td
(0.6671)
0.6670

(0.8023)
0.7806 0.9975 (0.6662)

0.6661
(0.7246)
0.7125

(0.7684)
0.7477 0.9963 (0.6649)

0.6648
(0.7059)
0.6963 0.9926

GFP
asd

(0.2394)
0.2395

(0.1431)
0.1587 0.0033 (0.2399)

0.2399
(0.1986)
0.2073

(0.1674)
0.1823 0.0041 (0.2404)

0.2404
(0.2119)
0.2187 0.0067

td
(0.7593)
0.7593

(0.8556)
0.8401 0.9955 (0.7589)

0.7589
(0.8001)
0.7915

(0.8313)
0.8165 0.9947 (0.7584)

0.7583
(0.7869)
0.7800 0.9920

GMP
asd

(0.1023)
0.1024

(0.0629)
0.0690 0.0082 (0.1033)

0.1033
(0.0853)
0.0887

(0.0725)
0.0783 0.0085 (0.1046)

0.1046
(0.0909)
0.0936 0.0096

td
(0.8964)
0.8964

(0.9359)
0.9298 0.9906 (0.8955)

0.8954
(0.9135)
0.9101

(0.9262)
0.9204 0.9902 (0.8942)

0.8941
(0.9078)
0.9051 0.9892

FBFirst Boy; FGFirst Girl; SBSecond Boy; SGSecond Girl; TBThird Boy; BFPBoy (half-brother) from Father Partner;
BMPBoy (half-brother) from Mother Partner; TGThird Girl; GFPGirl (half-sister) from Father Partner; GMPGirl (half-
sister) from Mother Partner.

approximately 28-fold increase in the risk of ASD. Regarding younger half sisters, the risk

of ASD is ≈ 24% for paternal half sisters and ≈ 10% for maternal half sisters, nearly 20

and 8-fold increase in the risk of ASD, respectively. These risk of ASD estimates do not

increase significantly given three older siblings with ASD.

Figures 25 and 26 summarize the risk of ASD in third brothers and sisters, respec-

tively.

Some research present a recurrence risk increases up to 2.5-fold for third-born

children with two younger siblings with ASD than for second-born children with one

younger sibling with ASD (RISCH et al., 2014). However, our results suggest a more

modest increase in the recurrence risk for third-born children, approximately a 1.1-fold

increase compared with second-born children.

The ASD etiology is primarily due to inherited genetics. Thus, we believe in the

accuracy of our estimates once which determines the risk is the parents’ genetics, not
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Figure 25 – Risk of ASD in third brother given evidence regarding two older siblings.
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the number of affected children. An aspect that can explain this difference is the curtail-

ment of reproduction, known as reproductive stoppage. The stoppage is a phenomenon

that parents tend to stop having children after the birth of an affected one, which has

implications for recurrence risk estimation and genetics, once it can bias recurrence risk

estimates negatively if not addressed accurately (HANSEN et al., 2019; WOOD et al.,

2015; HOFFMANN et al., 2014).

6.6.3 Results Accordance with ASD and BAP Recurrence Among Siblings

This section assesses our inference results concerning the risk of ASD in siblings

contrasted to the well-known data regarding ASD and BAP recurrence among siblings.

As previously described in Section 2.6, overall estimates of ASD plus BAP for high-

risk siblings are up to 77% (average: 50%), up to 52% for females (average: 32%), and up

to 88% for males (average: 60%). These probabilities indicate the risk of ASD/BAP for

younger full siblings given an older sibling with ASD.

Our results suggest an ASD risk of ≈ 72% for males and ≈ 30% for females given

one older full sibling with ASD. In cases with two older siblings with ASD, the risk of ASD

in younger full siblings is ≈ 79% for males and ≈ 33% for females. These estimates are

similar to the ASD plus BAP recurrences estimated by Hudry et al. (2014), Chawarska

et al. (2014), Ozonoff et al. (2014), Hoffmann et al. (2014), Wan et al. (2013), Macari et

al. (2012), Schwichtenberg et al. (2010) and Christensen et al. (2010).

Compared to full-siblings, our results suggest that maternal half-siblings have ≈ 3-

fold decrease in the risk of ASD, while paternal half-siblings have ≈ 1.4-fold decrease.

Studies on ASD recurrence among siblings have reported risk for full-siblings up to 3-fold

that of half-siblings (HANSEN et al., 2019; WOOD et al., 2015; SANDIN et al., 2014;

RISCH et al., 2014; GRØNBORG; SCHENDEL; PARNER, 2013).

However, the estimates made by Risch et al. (2014) presented a recurrence for

maternal half-siblings twice as high as paternal half-siblings. Similarly, the estimates of

Hansen et al. (2019), and Grønborg, Schendel and Parner (2013) showed an ASD recur-

rence for maternal half-siblings slightly larger than for paternal half-siblings, although not

significantly different. Factors associated with pregnancy and the maternal intrauterine

environment may support these higher recurrence risks in maternal half-siblings (GRØN-



Chapter 6. Bayesian Network to Estimate the Risk of ASD in Siblings, Parents, and Grandparents 138

BORG; SCHENDEL; PARNER, 2013).

It suggests that the genotype of the disorder comes in similar amounts from both

parents, although the ASD phenotype in fathers is more common. Thus, ASD recurrence

between half-siblings must be interpreted carefully, as the genetic inheritance may have

come from either parent, possibly even both. Consequently, it is suitable to assume the

risk of ASD for half-siblings to be half the risk of full-siblings.

6.7 Interpreting Virtual Evidences

Cases with uncertainty about the evidence can be better evaluated using virtual

evidence, as they allow addressing such situations. The use of virtual evidence allowed

treating the possible cause of ASD in individuals diagnosed according to the disorder’s eti-

ology. Thus, it was possible to attribute the cause to hereditary factors and non-hereditary

factors.

The use of virtual evidence regarding one ASD individual reduced the risk of ASD

by only ≈ 2−3% for parents, grandparents, and siblings. The extremely low prevalence of

ASD due to non-hereditary factors, ≈ 0.1% for females and ≈ 0.4% for males can explain

this slight decrease.

There was no decrease in the risk of ASD for cases with virtual evidence of two or

more ASD individuals. Results from Messinger et al. (2015), Gerdts et al. (2013), and Losh

et al. (2008) suggest that genetic causes of ASD may vary between simplex and multiplex

families. ASD and BAP traits are higher among members of multiplex families, and such

individuals are more vulnerable to ASD symptoms. Thus, we have further evidence that

two cases of autism in a family are sufficient to attribute the ASD cause to inherited

genetic factors, even using virtual evidence.

Therefore, estimates obtained from virtual evidence are helpful for cases of a single

affected individual. In those cases, where some uncertainty is added to the only evidence,

the risk of ASD is slightly reduced. Although statistically insignificant, this information

decreases the range of ASD risk and can be important as directives for different decision

processes.
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6.8 Summary

This chapter proposed a BN to assess the risk of ASD in parents, grandparents,

and siblings. Our results produced the following contributions:

• Well reasoned estimates regarding the risk of ASD for parents, grandparents, and

siblings given evidence of ASD individuals in the family;

• The estimate of reliable limits to the risk of ASD for parents, grandparents, and

siblings;

• An estimate regarding the number of ASD cases in a family sufficient to attribute

the ASD occurrences to the genetic inheritance;

• Having an ASD child indicates a higher risk for ASD in parents, even higher if

the ASD child is a girl. Having a TD child implies a lower risk of ASD in parents,

even lower if the ASD child is a boy. Our results corroborate and quantify these

implications.

Besides these suggested contributions, when it was reasonable to compare, some

of our estimates have substantial similarities to the ASD heritability and recurrence data

in the literature, which validates the adequacy of our proposed BN model as a tool to

estimate the risk of ASD in family members.

The next chapter presents a BN proposed to estimate the risk of ASD in males

and females given additional evidence sets still unexplored.
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7 Bayesian Network to Estimate the Risk of

ASD Given Evidence in Others Relatives

The current literature suggests that the ASD recurrence risk dimension among

family members depends significantly on relatedness (genetic similarity) and likely on

their genders. The more closely the affected family member, the higher the risk of ASD

(XIE et al., 2019; HANSEN et al., 2019).

This chapter aims to assess the risk of ASD in male and female individuals given

evidence regarding some of their second- and third-degree relatives. Thus, we will esti-

mate the risk of ASD given evidence in grandparents, aunts, uncles, nieces, nephews, and

cousins.

7.1 Problem Definition

We aimed to estimate conditional probabilities such as:

• P(Individual|Paternal Grandparents);

• P(Individual|Maternal Grandparents);

• P(Individual|Paternal Uncle), P(Individual|Maternal Uncle);

• P(Individual|Paternal Aunt), P(Individual|Maternal Aunt);

• P(Individual|Nieces), P(Individual|Nephews); and

• P(Individual|Paternal Cousins), P(Individual|Maternal Cousins).

Notations like P(Individual|Paternal Grandparents) summarizes the follow-

ing conditional probabilities P(Male=asd|GFF=asd), P(Male=asd|GMF=asd), P(Male=asd

|GFM=asd), P(Male=asd|GMM=asd), P(Female=asd|GFF=asd), P(Female=asd|GMF=asd),

P(Female=asd|GFM=asd), P(Female=asd|GMM=asd). We also explored combinations with

two individuals as evidence, such as P(Male=asd|GFF=asd,GMF=asd), P(Female=asd|GFF

=asd,GMM=asd).
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7.2 Bayesian Network Structure

Using a portion of the variables previously defined in Section 5.2, we created a BN

to estimate the risk of ASD in second- and third-degree relatives. Figure 27 presents the

structure of the proposed BN.

F M

GFF GMF GFM GMM

AMP UMPAFUF AM

BAM GAM

UM

BUM GUM

UFP AFP

BUF GUF BAF GAF FB FG

Figure 27 – The structure of a BN to estimate the risk of ASD in second- and third-degree
relatives.

According to the types of variables defined in Section 3.4.4.1, the nodes repre-

senting grandparents can be classified as background variables. They work as background

variables because they will be observed and have an indirect causal relationship regarding

the symptom variables.

The nodes representing parents, uncles, and aunts can be classified as background

or problem variables. The nodes representing relatives in law (white nodes) work as back-

ground variables because they directly relate to the symptom variables. The nodes rep-

resenting blood relatives (blue and red nodes) work as problem variables because they

are parents of symptom variables and children of background variables. Furthermore, in

a few cases, some of these variables are among the variables of interest given the problem

definition (to estimate the risk of ASD given evidence regarding nephews and nieces).

The nodes representing children and cousins can be classified as symptom or hy-

pothesis variables. The variables representing cousins (yellow nodes) work as symptom

variables while we take them as evidence. The variables representing children (green nodes)

act as hypothesis variables when we make inferences about them given the problem def-
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inition (to estimate the risk of ASD given evidence in grandparents, uncles, aunts, and

cousins).

We used the prior probabilities defined in Tables 12 and 13 as the discrete prob-

ability distributions for root nodes, those representing grandparents (gray nodes), uncles

in law, and aunts in law (white nodes). Nodes representing parents, blood uncles, blood

aunts (blue and red nodes), children (green nodes), and cousins (yellow nodes) have their

CPTs produced from the conditional probabilities presented in Tables 14 and 15. We em-

phasize that the probabilities correspond to the gender of the family member represented

by each node.

Given no evidence, the marginal probabilities produced by this BN are similar to

those in Section 6.3, considering variables at the same level and relationship type. Our

inferences were performed using both hard and virtual evidence, which allowed us to

consider the uncertainty of the evidence.

7.3 Risk of ASD Given Evidence Regarding Grandparents

Given the ASD diagnosis in one grandparent, the risk of ASD for male individuals

ranges from ≈ 27% (if maternal grandparent with ASD) to ≈ 64% (if paternal grandparent

with ASD). The risk of ASD for female individuals ranges from ≈ 11% (if maternal

grandparent with ASD) to ≈ 27% (if paternal grandparent with ASD). In all cases, the

risk of ASD is slightly higher when there is evidence of ASD in grandmothers. Figure 28

summarizes the average risk of ASD given the evidence regarding grandparents.

The cup model assumes that females have a higher cup representing ASD risk

than males. Larger cups mean a higher tolerance threshold to develop ASD in women

(HOANG; CYTRYNBAUM; SCHERER, 2018). For example, a couple of children from

the same parents share their genetics. Suppose both children received the same ASD-

related genetic variants. In this case, the necessary variants for boys to develop ASD may

not be enough for girls to develop ASD, despite ASD genetic variants being present in

these unaffected girls.

Since ASD-related genetic variants may be present in unaffected females, these

females may transfer such variants onto their offspring, likewise affected males. There-

fore, we can conclude that the ASD diagnosis in males reflects the ASD genotype more
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Figure 28 – Risk of ASD given evidence regarding one grandparent.

efficiently. Once this premise is supported by ASD prevalence, recurrence, and genetic

data, hereafter, we will take as truth the proposition that the ASD phenotype in males

better reflects the ASD genotype.

As the probabilities of our BNs are based on data related to the ASD phenotype

(clinical diagnosis), it is most accurate to interpret the results of causal queries taking the

paths involving male individuals into account.

Thus, taking results from the path “paternal grandparents→father”, the risk

of ASD tends to be:

• ≈ 26% for females and ≈ 62% for males given one grandparent with ASD, regardless

of being paternal or maternal (Figure 29a);

• ≈ 31% for females and ≈ 75% for males given two grandparents with ASD, the

paternal grandparents or the maternal grandparents (Figure 29b); and

• ≈ 45% for females and ≈ 85% for males given two grandparents with ASD, one pa-

ternal grandparent and one maternal grandparent (estimated using the probability

addition rule and the conditional probability of males in the node representing the

mother, Figure 29c).
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Evidence Variable of Interest

a)

b)

c)

Figure 29 – Evidence setup for the risk of ASD given evidence regarding grandparents.

7.4 Risk of ASD Given Evidence Regarding Uncles and Aunts

Given the ASD diagnosis in one uncle-or-aunt, the risk of ASD for male individuals

ranges from ≈ 24% (if one uncle from the mother side with ASD) to ≈ 59% (if one aunt

from the father side with ASD). The risk of ASD for female individuals ranges from ≈ 10%

(if one uncle from the mother side with ASD) to ≈ 25% (if one aunt from the father side

with ASD). In all cases, the risk of ASD is slightly higher when there is evidence of ASD

in aunts. Figure 30 summarizes the average risk of ASD given the evidence regarding

uncles and aunts.

Considering males reflects the ASD genotype more efficiently, and taking results

from the path “uncle-or-aunt→paternal grandparents→father”, the risk of ASD

tends to be:

• ≈ 24% for females and ≈ 57% for males given one uncle-or-aunt with ASD, regard-

less of being paternal or maternal (Figure 31a);

• ≈ 26% for females and ≈ 63% for males given one uncle and one aunt with ASD,

both from the father side or both from the mother side (Figure 31b); and

• ≈ 42% for females and ≈ 80% for males given one paternal uncle-or-aunt with ASD
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Figure 30 – Risk of ASD given evidence regarding one uncle-or-aunt.

and one maternal uncle-or-aunt with ASD (estimated using the probability addition

rule and the conditional probability of males in the node representing the mother,

Figure 31c).

a)

b)

c)

Evidence Variable of Interest

Figure 31 – Evidence setup for the risk of ASD given evidence regarding uncles and aunts.
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7.5 Risk of ASD Given Evidence Regarding Nephews and Nieces

Given the ASD diagnosis in one nephew-or-niece, the risk of ASD for male indi-

viduals ranges from ≈ 21% (if ASD in one nephew, son of a sister) to ≈ 53% (if ASD

in one niece, daughter of a brother). The risk of ASD for female individuals ranges from

≈ 9% (if ASD in one nephew, son of a sister) to ≈ 22% (if ASD in one niece, daughter of

a brother). In all cases, the risk of ASD is slightly higher when there is evidence of ASD

in nieces. Figure 32 summarizes the average risk of ASD given the evidence regarding

nephews and nieces.
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Figure 32 – Risk of ASD given evidence regarding one nephew-or-niece.

Considering males reflects the ASD genotype more efficiently, and taking results

from the path “nephew-or-niece→brother→parents”, the risk of ASD tends to be:

• ≈ 21% for females and ≈ 51% for males given one nephew-or-niece with ASD,

regardless of being a child of a sister or a child of a brother (Figure 33a);

• ≈ 24% for females and ≈ 57% for males given one nephew and one niece with ASD,

children of the same brother or sister (Figure 33b); and

• ≈ 33% for females and ≈ 79% for males given one nephew-or-niece with ASD, child

of a brother-or-sister, and another nephew-or-niece with ASD, child of a distinct
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brother-or-sister (Figure 33c).

a)

b)

c)

Evidence Variable of Interest

Figure 33 – Evidence setup for the risk of ASD given evidence regarding nephews and
nieces.

7.6 Risk of ASD Given Evidence Regarding Cousins

Given the ASD diagnosis in one cousin, the risk of ASD for male individuals ranges

from ≈ 9% (if ASD in one male cousin, son of an aunt from the mother side) to ≈ 42%

(if ASD in one female cousin, daughter of an uncle from the father side). The risk of

ASD for female individuals ranges from ≈ 4% (if ASD in one cousin, child of an aunt

from the mother side) to ≈ 18% (if ASD in one female cousin, daughter of an uncle from

the father side). In all cases, the risk of ASD is slightly higher when there is evidence of

ASD in female cousins. Figure 34 summarizes the average risk of ASD given the evidence

regarding cousins.
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Figure 34 – Risk of ASD given evidence regarding one cousin.

Considering males reflects the ASD genotype more efficiently, and taking results

from the path “cousin→paternal uncle→paternal grandparents→father”, the risk

of ASD tends to be:

• ≈ 17% for females and ≈ 41% for males given one cousin with ASD, regardless of

being paternal or maternal (Figure 35a);

• ≈ 19% for females and ≈ 46% for males given two cousins with ASD, children of

the same uncle-or-aunt (Figure 35b);

• ≈ 26% for females and ≈ 61% for males given two cousins with ASD, one cousin

child of an uncle and one cousin child of an aunt, both from the father side or both

from the mother side (Figure 35c); and

• ≈ 31% for females and ≈ 65% for males given two cousins with ASD, one cousin from

the father side and one cousin from the mother side (estimated using the probability
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addition rule and the conditional probability of males in the node representing the

mother - Figure 36).

a)

b)

c)

Evidence Variable of Interest

Figure 35 – Evidence setup for the risk of ASD given evidence regarding two cousins (both
maternal or paternal).

7.7 Risk of ASD and the Genetic Similarity

Genetic similarity is a measure of the genetic relatedness among individuals. Hu-

man beings have 23 pairs of chromosomes, of which 22 pairs are autosomes. An autosome

is any numbered chromosome that does not differ between the sexes. Autosomal DNA

is inherited equally from both parents and describes DNA inherited from the autosomal

chromosomes. Therefore, the statistics regarding autosomal DNA represent the amount

of autosomal DNA shared between two people, describing the connection between the
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Evidence Variable of Interest

Figure 36 – Evidence setup for the risk of ASD given evidence regarding two cousins (one
maternal and one paternal).

genealogical relationship. There are mathematical methods to calculate the autosomal

DNA shared by two individuals. Such methods show the average amount of DNA shared

by pairs of relatives in percentages (ISOGG, 2022; LEWIS, 2018).

Parents, children, and full-siblings have 50% of genetic similarity. Given one of

these relatives with ASD, the risk of ASD ranges from ≈ 26% to ≈ 33% for females and

≈ 66% to ≈ 80% for males.

Grandparents, grandchildren, aunts-or-uncles, nieces-or-nephews, and half-siblings

have 25% of genetic similarity. Given one of these relatives with ASD, the risk of ASD

ranges from ≈ 21% to ≈ 26% for females and ≈ 51% to ≈ 62% for males.

Cousins have 12.5% of genetic similarity. Given one cousin with ASD, the risk of

ASD is ≈ 17−18% for females and ≈ 41−42% for males. Once double cousins have 25%

of genetic similarity, we can assume that the risk of ASD for this type of cousins is higher,

approaching the estimated risk for relatives with equivalent genetic similarity.
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Figure 37 summarizes the risk of ASD by genetic similarity given one relative with

ASD.
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Figure 37 – Risk of ASD by genetic similarity given one relative with ASD.

These estimates increase as new evidence of relatives with ASD is exposed. Figure

38 summarizes the risk of ASD by genetic similarity given two relatives with ASD.

7.8 Results Accordance with Mental and Neurological Disorders

Among Relatives

This section aims to assess our inference results regarding the risk of ASD for

second-degree relatives contrasted to the literature concerning family history of mental or

neurological disorders. The work carried out by Xie et al. (2019) investigated the following

mental disorders: alcohol misuse, drug misuse, nonaffective psychotic disorders, bipolar

disorder, depression, anxiety disorders, obsessive-compulsive disorder, stress-related dis-

orders, other neurotic disorders, eating disorders, personality disorder, intellectual disabil-

ity, attention-deficit/hyperactivity disorder, and other childhood disorders. In addition,

they also examined the following neurological disorders: cerebral palsy, epilepsy, multi-

ple sclerosis, migraine, dementia, stroke, and Parkinson’s disease. These disorders shared

symptomatic and possibly etiologic overlap with ASD.
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Figure 38 – Risk of ASD by genetic similarity given two relatives with ASD.

The outcomes achieved by Xie et al. (2019) in an autistic sample (71% males)

show that from ≈ 80% to ≈ 90% of people with ASD have at least one grandparent with

a mental or neurological condition. Let us consider this association between grandchildren

and grandparents in terms of recurrence. Maintaining this same proportion of males, our

results suggest an ASD recurrence of ≈ 53% given one grandparent with ASD, ≈ 62%

given two grandparents with ASD (both paternal or maternal), and up to ≈ 74% given

two grandparents with ASD (one paternal and one maternal).

Regarding uncles or aunts, Xie et al. (2019) point that from ≈ 49% to ≈ 61% of

people with ASD have at least one uncle-or-aunt with a mental or neurological condition.

Maintaining the same proportion of males, our results suggest an ASD recurrence of

≈ 44% given one nephew or one niece with ASD, ≈ 47% given one nephew and one niece

with ASD (children of the same brother or sister), and up to ≈ 63% given one nephew-

or-niece with ASD (child of a brother) and another nephew-or-niece with ASD (child of

a sister). Our estimates concerning uncles and aunts have similar values to nephews and

nieces, which we expected due to genetic similarity (25%). Therefore, our results suggest

an ASD recurrence of ≈ 49% given one uncle-or-aunt with ASD, ≈ 52% given one uncle

and one aunt with ASD (both from the father side or both from the mother side), and

up to ≈ 70% given one paternal uncle-or-aunt with ASD and one maternal uncle-or-aunt
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with ASD.

Finally, Xie et al. (2019) point that from ≈ 44% to ≈ 61% of people with ASD

have at least one first cousin with a mental or neurological condition. Maintaining the

same proportion of males, our results suggest an ASD recurrence of ≈ 35% given one

cousin with ASD, ≈ 38% given two cousins with ASD (children of the same uncle-or-

aunt), ≈ 51% given two cousins with ASD, one cousin child of an uncle and one cousin

child of an aunt (both from the father side or both from the mother side), and up to

≈ 55% given two cousins with ASD (one cousin from the father side and one cousin from

the mother side).

The work performed by Trevis et al. (2020) assessed two large multiplex ASD

families. When two or more siblings were identified with ASD/BAP traits in these families,

the recurrence of ASD/BAP is widespread among their children, nephews and nieces,

grandchildren, parents, uncles and aunts, and cousins, as can be noticed in Figure 39.

7.9 Summary

This chapter proposed a BN to assess the risk of ASD given evidence regarding

second- and third-degree relatives. Our results produced the following contributions:

• Well reasoned estimates regarding the risk of ASD/BAP traits in second- and third-

degree relatives, assuming one and two affected individuals as evidence;

• Well reasoned estimates regarding the risk of ASD/BAP traits by genetic similarity,

suggesting a risk range according to such similarity.

Besides these suggested contributions, although it was not a simple and explicit

comparison, some of our estimates have substantial similarities regarding the risk of ASD

and the family history of mental and neurological disorders, which also supports validating

the adequacy of our proposed BN model as a tool to estimate the risk of ASD in family

members.
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Figure 39 – ASD and BAP recurrence in two multiplex ASD families (a and b). Pedantic,
obsessive, socially unaware, and aloof are BAP endophenotypes. All individu-
als with at least one of these endophenotypes had a BAP diagnosis. Adapted
from Trevis et al. (2020).
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8 Final Thoughts

The previous chapters described some essential aspects of autism concerning our

work aims, including its classification, etiology, and recurrence rates. Also, we introduced

the AI approaches we used to estimate the family bias to autism. Moreover, we build an

HMM-based model to infer the likelihood of ASD parents generating ASD children. Our

HMM results have shed light on fundamental causal probabilities to propose BN models

with the potential to infer the ASD risk over a given family structure. We then proposed

the manual construction of BN models representing the family tree. Finally, we used these

BN models to perform several inferences regarding the risk of ASD given a set of evidence.

Our outcomes demonstrated that our BNs seem promising towards our primary

objective once the central structure and the set of probabilities we used to build the models

were validated by reputable statistical data regarding ASD in the literature. This chapter

intends to summarize the achievements of our work, discussing its strengths, limitations,

and future works.

8.1 Project Achievements

In Chapter 1, we defined some critical steps to achieve our primary objective. In

this section, we discuss the achievement of these specific objectives.

As probabilistic models, the quality of Bayesian and Markov models fundamentally

depends on an accurately defined set of probabilities. Thus, we needed to investigate state-

of-the-art statistical information regarding ASD prevalence, heritability, and recurrence

rates. In addition to supporting the models’ construction, these data also helped validate

our results.

The ASD prevalence data were used as probabilities for the HMMs initial states

and the BNs root nodes. Regarding prevalence, we believe to be achieved adequate ac-

curacy in Section 2.2. We used the heritability data to model the emission probabilities

of our HMMs. Regarding heritability, we believe to be achieved adequate accuracy in

Section 2.4.
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Such HMMs were used to calculate the conditional probabilities for the BN mod-

els, specifically regarding the likelihood of autistic parents generating autistic children,

which we believe to be achieved adequate accuracy in our estimates, as can be seen in

Chapter 4. We also investigate and summarize statistical information regarding ASD and

BAP recurrence rates among siblings, which we believe to be achieved adequate accuracy

in Section 2.5.

Then, we aimed a causal probabilistic model to infer the probabilities of ASD in

family members, given some evidence of ASD in the family genealogical tree. We believe

we have achieved this objective in Section 4.9 once our HMMs model gave us the causal

probabilities of ASD/TD parents generating ASD/TD children and in Sections 6.4, 6.5,

and 6.6 in which we estimated the risk of ASD in parents, grandparents, and siblings. We

evaluate the proposed BN models with the ASD heritability, prevalence, and recurrence

data existing in the state-of-the-art literature, as seen in Sections 6.4.5, 6.5.3, and 6.6.3,

where we discussed our results accordance.

The last objective was to introduce some ASD probabilities estimates from prede-

fined family compositions to infer the likelihood of ASD in other family members, both

below and above in the family tree. We achieved this goal in Chapter 7, in which we

estimated the risk of ASD in males and females given evidence in grandparents, aunts-

or-uncles, nieces-or-nephews, and cousins. Along with the results obtained in Chapter 6,

these results culminated in estimating ASD risk ranges by genetic similarity, an essential

measurement for risk analysis.

Thus, we believe that we achieved our main objective once:

• Our BNs were created respecting the fundamental rules required to ensure the qual-

ity of the models;

• Our BNs used state-of-the-art probabilities we obtained through in-depth literature

reviews; and

• Mainly because our BN models could estimate the risk of ASD reliably.

Therefore, the answer to our research question is that probabilistic networks are

a suitable and promising approach to model the family bias to autism. Although they

provide highly relevant information, it is noteworthy that our estimates do not intend
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to be assertive. Such estimates must always be taken as directive information once non-

deterministic models provide them.

8.2 Strengths and Limitations

Among the diverse strengths of this work, it is noteworthy that:

• The PGMs typical structure allowed to represent family structures naturally. Fur-

thermore, this similarity enabled the assembly of the networks’ syntax following

best practices;

• In-depth literature reviews produced the set of probabilities that comprised the

semantics of the networks;

• The adequacy of our inference results regarding de risk of ASD if compared to the

well-known probabilities in the literature; and

• The option and flexibility to estimate the risk of ASD by evaluating different sets

of evidence.

Among possible limitations of this work, it is noteworthy that:

• Although the probabilities employed resulted from in-depth literature reviews, these

probabilities reflect the ASD phenotype. Therefore, genotype-based probabilities

could lead to more accurate estimates, especially when females are involved;

• Since females require additional genetic variants to manifest the disorder in general,

it is rational to assume that females with ASD diagnosis impose a higher risk of ASD

to their offspring than males. However, our models do not handle this specificity once

the ASD heritability data in the literature do not measure this potential difference

concerning the causality; and

• The female protective effect decreases the risk of ASD in females, which is a known

fact. However, given our BNs structures, such reduction in the ASD risk conse-

quently reduces the risk of ASD in their descendants, which seems inaccurate, es-

pecially when the offspring are males. Such limitation also exists when explanation

queries with females in the path are considered.
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8.3 Future Works

Future works may assess the use of genotype-related probabilities, although there

are no sufficient probabilistic data of this nature, if any exists. Genotype-related data

could minimize the impact of the female protective effect over the estimates and deal

with the causality of the disorder differently according to gender.

A dynamic system for building the network’s syntax and semantics and defining

the set of evidence and variables of interest could simplify the investigation of on-demand

real-world scenarios, in addition to providing a straightforward process to fit the networks

when new probabilities become available.

Finally, variables representing other ASD risks could be added to the networks,

such as parental age or environmental factors. However, inferences using such causes

depend on a robust set of conditional probabilities, which are not entirely known or

available yet.
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APPENDIX A – Publications

This appendix presents our published and (to be) submitted works. To date, the

results include two published papers, one published book chapter, one book chapter under

review, two papers submitted for acceptance, and two papers to be submitted.

Published papers:

• Hidden Markov Models to Estimate the Probability of Having Autistic Children

(CARVALHO et al., 2020); and

• Applied Behavior Analysis for the Treatment of Autism: A Systematic Review of

Assistive Technologies (ALVES et al., 2020).

Published book chapter:

• Chapter Robôs como suporte às intervenções baseadas em aba para o Transtorno

do Espectro Autista: uma revisão narrativa in the book Autismo: Tecnologias e

formação de professores para a escola pública (ALVES et al., 2021).

Submitted book chapter:

• Chapter Tecnologias Assistivas Aplicadas ao TEA: Aspectos Filosóficos, Éticos e

Legais in the book Autismo: Tecnologias Educacionais e Práticas nas Escolas (to be

published).

Submitted papers:

• Identifying Potential Brain Regions for Autism Severity Diagnosis using Machine

Learning and fMRI ; and

• rs-fMRI and Machine Learning for ASD Diagnosis - A Systematic Review and Meta-

analysis.

Papers to be submitted:
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• Autism Spectrum Disorder: A Literature Review on Prevalence and Etiology Mea-

sures, which refers to Chapter 2 of this thesis;

• Estimating the Family Bias to Autism: A Bayesian Approach, which refers to Chap-

ters 5, 6, and 7 of this thesis.
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