Universidade Federal de Itajubá

Instituto de Ciências Exatas

André Oliveira Paiva Cirurgião-Dentista

Obtenção, caracterização e estudo *in vitro* do vidro bioativo VH30 e compósitos vidro bioativo/polihidroxibutirato

Dissertação apresentada à Universidade Federal de Itajubá Para obtenção do título de mestre em Materiais para Engenharia Área de concentração Biomateriais

Itajubá 2005

Universidade Federal de Itajubá

Instituto de Ciências Exatas

Obtenção, caracterização e estudo *in vitro* do vidro bioativo VH30 e compósitos vidro bioativo/polihidroxibutirato

Dissertação apresentada à Universidade Federal de Itajubá Para obtenção do título de mestre em Materiais para Engenharia Área de concentração Biomateriais

Autor: André Oliveira Paiva

Orientador: Dr. Necesio Gomes Costa

Banca examinadora: Dr. Oscar Peitl Filho

Dr. Ricardo Almeida Risso

Dr. Necesio Gomes Costa

Itajubá 2005

"O conhecimento não representa necessariamente sabedoria, mas com certeza a ignorância nunca é uma opção razoável." (M. Gleiser) "Qual será o absurdo de hoje que será a verdade amanhã?" (Whitehead)

Dedicatória

Aos meus pais **José Francisco** e **Ana Izabel** pelo apoio inestimável e exemplos de retidão e honestidade.

Aos meus avós pelo carinho e amor.

A minha irmã Lígia por ser dura, porém sem perder a ternura.

À minha futura esposa Carla pela compreensão e por me fazer tão feliz.

À **Deus** sobre todas as coisas.

Agradecimentos

À Universidade Federal de Itajubá pela estrutura disponibilizada para o desenvolvimento do curso de mestrado.

Ao Prof. Dr. Necesio Gomes pela orientação e dedicação.

À Universidade de Aveiro por me acolher e permitir a realização de parte desta pesquisa.

À Prof^a. Dr^a. Maria Helena Fernandes por me abrir as portas em Portugal e pela coorientação exemplar.

À Dr^a Gabriela Duarte pela colaboração com os polímeros e pelas gostosas conversas.

À Eng^a. Sandra Cachinho pela sua meiguice em me auxiliar ensinando.

À Prof^a. Dr^a. Paula Marques pelos esclarecimentos e ensinamentos no laboratório.

À Funcionária Eng^a. Conceição pela presteza.

À Funcionária Dr^a Marta Ferro pela alegria em auxiliar e ensinar a utilizar o MEV.

À Universidade de Coimbra por permitir a realização do DSC e a produção dos compósitos.

À Prof^a. Dr^a Maria Helena Gil por me abrir as portas da Universidade de Coimbra.

Ao Prof. Dr. Rui Correa pelas discussões em relação aos polímeros.

À Universidade Estadual de Campinas por também permitir realização de parte desta pesquisa.

À Prof^a.Dr^a Cecília Zavaglia da UNICAMP/FEM pelo companheirismo nos congressos.

À Prof^a.Dr^a Mônica Cotta da UNICAMP/IFGW por me permitir o uso do MFA.

Ao Doutorando João Clerici pelas idéias e pelo auxilio no uso do MFA.

À Funcionária Claudenete Leal da UNICAMP/FEM pela paciência e dedicação.

Ao Graduando Mauro Neto pela ajuda indispensável em algumas horas.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro.

Índice

Lista de figuras	xi
Lista de tabelas	
Nomenclatura	XV
Resumo	
Abstract	02
1. Introdução	03
2. Revisão de literatura	
2.1 Biocerâmicas e vidros bioativos	
2.1.1 Composições químicas dos vidros bioativos	07
2.1.2 Aplicações dos vidros bioativos	10
2.2 Polihidroxibutirato (PHB)	12
2.3 Compósitos	15
2.4 Bioatividade	17
2.5 Adsorção de proteínas	21
2.6 Considerações sobre algumas técnicas de caracterização	23
2.6.1 Difração de Raios-X	23
2.6.2 Análise da distribuição granulométrica	24
2.6.3 Análise da área superficial	25
2.6.4 Calorimetria Exploratória Diferencial	26
2.6.5 Microdureza Vickers	27
2.6.6 Microscopia Eletrônica de Varredura	27
2.6.7 Microscopia de Força Atômica	29
2.6.8 Espectroscopia de Massa com Plasma Indutivamente Acoplado	30
3. Metodologia experimental	32
3.1 Obtenção do vidro VH30	32
3.2 Caracterização do vidro VH30	34
3.2.1 Difração de Raios-X (DRX)	34
3.2.2 Análise granulométrica	34
3.2.3 Análise da área superficial das partículas	34
3.3 Polihidroxibutirato	35
3.4 Caracterização do polihidroxibutirato	35

3.4.1 Difração de Raios-X	35
3.4.2. Calorimetria Exploratória Diferencial	35
3.5 Produção do compósito vidro bioativo/PHB	35
3.6 Ensaio de microdureza Vickers dos compósitos	36
3.7 Estudo da bioatividade in vitro do vidro bioativo	36
3.7.1 Preparação do Simulated Body Fluid (SBF)	36
3.7.2 Ensaio da bioatividade <i>in vitro</i> do vidro bioativo VH30 em SBF sem albumina	37
3.7.3 Ensaio da bioatividade <i>in vitro</i> do vidro bioativo VH30 em SBF com albumina	37
3.7.4 Ensaio da bioatividade <i>in vitro</i> dos compósitos vidro bioativo/PHB em SBF	38
3.7.5 Caracterização via MEV-EDS do vidro bioativo após imersão em SBF	38
3.7.6 Caracterização via MFA do vidro bioativo após imersão em SBF	38
3.7.7 Difração de Raios-X do vidro bioativo após imersão em SBF e SBFA	39
3.7.8 Caracterização via MEV-EDS dos compósitos após imersão em SBF	39
3.7.9 Difração de Raios-X dos compósitos após imersão em SBF	39
3.7.10 Espectroscopia de Massa com Plasma Indutivamente Acoplado (ICP) do SBF no qual foram imersas as amostras dos compósitos	40
4. Resultados e Discussão	41
4.1 Difração de Raios-X do vidro VH30 e do PHB	41
4.2 Análise dos tamanhos de partícula por Coulter Counter	42
4.3 Análise da área superficial do vidro VH30 por BET	43
4.4 Calorimetria Exploratória Diferencial	43
4.5 Microdureza Vickers	44
4.6 Caracterização vidro VH30 através de MEV	45
4.7 Análise química por EDS do vidro VH30	49
4.8 Caracterização do vidro VH30 através de MFA	50
4.9 Difração de Raios-X do vidro VH30 após imersão em SBF e SBFA	57
4.10 Observação da morfologia dos compósitos vidro bioativo/PHB através de MEV	58

4.11 Análise química dos compósitos vidro bioativo/PHB por EDS	63
4.12 Difração de Raios-X dos compósitos vidro bioativo/PHB	67
4.13 ICP das soluções de SBF utilizada nos ensaios in vitro	68
5. Conclusões	
6. Trabalhos futuros	
Referências	
Anexos	79

Lista de Figuras

Figura 1	Mandíbula com três pedaços de conchas do mar implantadas; este é o primeiro exemplo de um implante endosteal aloplástico realizado com êxito.	3
Figura 2	Fluxograma de desenvolvimento dos biomateriais.	5
Figura 3	Projeções bidimensionais de estruturas dos vidros. (a) vidro de sílica Y=4; (b) vidro de silicato $2 \le Y \le 4$; (c) vidro invertido $Y \le 2$. \bullet Si, \odot O°, O O ⁻ , \textcircled{O} Na e Ca.	10
Figura 4	Diagrama de fases dos vidros do sistema SiO ₂ -3CaO.P ₂ O ₅ -MgO.	11
Figura 5	Fórmula estrutural do PHB.	12
Figura 6	Processo biosintético do PHB por ações sucessivas de enzimas.	14
Figura 7	Forma das partículas biocerâmicas usadas em biomateriais.	16
Figura 8	Diagrama de fases da bioatividade do biovidro onde se demonstra o efeito da composição na bioatividade. Região A = bioativo; região B = bioinerte; região C = dissolução; região D = não formação de vidro.	18
Figura 9	Diagrama dos estágios $(I - V)$ das reações na superfície no vidro bioativo, formando uma dupla camada, uma rica em SiO ₂ e outra em Ca-P.	21
Figura 10	Diagrama esquemático de um difratômetro de Raios-X.	24
Figura 11	Esquema de funcionamento do Coulter Counter.	25
Figura 12	Esquema de uma célula de DSC de fluxo de calor.	26
Figura 13	Esquema de um Microscópio Eletrônico de Varredura (MEV) com Espectroscopia de Energia Dispersiva (EDS).	28
Figura 14	Esquema de um Microscópio de Força Atômica.	30
Figura 15	Desenho esquemático de um sistema ICP. As linhas tracejadas mostram a introdução da amostra gasosa; as linhas contínuas mostram a injeção das amostras líquidas.	31
Figura 16	Fluxograma das etapas de preparação do vidro e dos compósitos vidro bioativo/PHB e ensaios envolvidos.	32
Figura 17	Difratograma do vidro bioativo VH30 como preparado.	41
Figura 18	Difratograma do PHB como preparado.	41

Figura 19	DSC do PHB como preparado.	44
Figura 20	Fotomicrografia de MEV do Vidro bioativo VH30 como preparado.	46
Figura 21	Fotomicrografia de MEV da superfície do vidro bioativo após imersão em SBF por 2 horas.	46
Figura 22	Fotomicrografia de MEV da superfície do vidro bioativo após imersão em SBF por 7 dias.	47
Figura 23	Fotomicrografia de MEV da superfície do vidro bioativo após imersão em SBF por 14 dias.	47
Figura 24	Fotomicrografia de MEV da superfície do vidro bioativo após imersão em SBF por 21 dias.	48
Figura 25	Fotomicrografia de MEV superfície do vidro bioativo após imersão em SBF por 30 dias.	48
Figura 26	Espectro de EDS do vidro bioativo VH30 como preparado.	49
Figura 27	Espectro de EDS do vidro bioativo após imersão em SBF por 7 dias.	50
Figura 28	Fotomicrografia de MFA do vidro bioativo VH30 como preparado.	51
Figura 29	Fotomicrografia de MFA (3D) do vidro bioativo VH30 como preparado.	51
Figura 30	Fotomicrografia de MFA do vidro bioativo após imersão em SBFA por 7 dias.	52
Figura 31	Fotomicrografia de MFA (3D) do vidro bioativo após imersão em SBFA por 7 dias.	53
Figura 32	Fotomicrografia de MFA do vidro bioativo após imersão em SBFA por 14 dias.	53
Figura 33	Fotomicrografia de MFA (3D) do vidro bioativo após imersão em SBFA por 14 dias. A presença dos picos na imagem é provavelmente artefato causado pelo toque da sonda do AFM na amostra.	54
Figura 34	Fotomicrografia de MFA do vidro bioativo após imersão em SBF por 14 dias.	54
Figura 35	Fotomicrografía de MFA (3D) do vidro bioativo após imersão em SBF por 14 dias.	55
Figura 36	Difratograma dos vidros bioativos imersos em SBF por 7 dias (a) e 14 dias (b) .	57

Figura 37	Difratograma dos vidros bioativos imersos em SBFA por 7 dias (a) e 14 dias (b).	58
Figura 38	Fotomicrografía por MEV do compósito 30Bio/70PHB como preparado.	60
Figura 39	Fotomicrografia por MEV do compósito 30Bio/70PHB após 7 dias de imersão em SBF.	60
Figura 40	Fotomicrografia por MEV do compósito 30Bio/70PHB após 14 dias de imersão em SBF.	61
Figura 41	Fotomicrografia por MEV do compósito 40Bio/60PHB como preparado.	61
Figura 42	Fotomicrografia por MEV do compósito 40Bio/60PHB após 7 dias de imersão em SBF.	62
Figura 43	Fotomicrografia por MEV do compósito 40Bio/60PHB após 14 dias de imersão em SBF.	62
Figura 44	Espectrograma de EDS do compósito 30Bio/70PHB como preparado.	63
Figura 45	Espectrograma de EDS do compósito 40Bio/60PHB como preparado.	64
Figura 46	Espectrograma de EDS do compósito 30Bio/70PHB após 7 dias de imersão em SBF.	64
Figura 47	Espectrograma de EDS do compósito 40Bio/60PHB após 7 dias de imersão em SBF.	65
Figura 48	Razões Ca/P das camadas formadas sobre as amostras do compósito 30Bio/70PHB.	66
Figura 49	Razões Ca/P das camadas formadas sobre as amostras do compósito 40Bio/60PHB.	67
Figura 50	Difratograma do compósito 30Bio/70PHB após imersão em SBF por 7 dias.	67
Figura 51	Difratograma do compósito 40Bio/60PHB após imersão em SBF por 7 dias.	68
Figura 52	Evolução das concentrações iônicas das soluções de SBF nas quais foram imersas as amostras do compósito 30Bio/70PHB.	69
Figura 53	Evolução das concentrações iônicas das soluções de SBF nas quais foram imersas as amostras do compósito 30Bio/70PHB.	69

Lista de Tabelas

Tabela 1	Composições de biovidros (% vol).	8
Tabela 2	Concentrações de íons (mM) no plasma e no SBF.	19
Tabela 3	Composições ponderais do vidro bioativo VH30.	33
Tabela 4	Massa dos reagentes para produção do VH30.	33
Tabela 5	Composição dos compósitos vidro bioativo/PHB.	35
Tabela 6	Seqüência e quantidade de reagentes para preparação do SBF.	37
Tabela 7	Resultados das medidas de microdureza Vickers nos compósitos vidro bioativo/PHB.	45

Nomemclatura

- d.C: depois de Cristo
- PMMA: polimetilmetacrilato
- Ca-P: cálcio-fósforo
- HA: hidroxiapatita
- 45S5: 45% de silício
- Ti-6Al-4V: liga de Titânio-6% de Alumínio-4% de Vanádio
- HCA: hidroxicarbonato de apatita
- PHA: polihidroxialcanoato
- PHB: polihidroxibutirato
- phbA: polihidroxibutirato A
- phbB: polihidroxibutirato B
- phbC: polihidroxibutirato C
- NADPH: Nicotinamina adenina dinucleotídeo fosfato hidrogênio
- HV: hidroxivalerato
- PLLA: poli(L-lactato)
- SBF: Simulated Body Fluid
- DRX: Difração de Raios-X
- JCPDS: Joint Committee of Powder Diffraction Standards
- BET: Burnauer, Emmet e Teller
- DSC: Calorimetria Exploratória Diferencial
- MEV: Microscopia Eletrônica de Varredura
- EDS: Espectroscopia de Energia Dispersiva
- TRC: Tubo de raios catódicos
- MFA: Microscopia de Força Atômica
- ICP: Espectroscopia de Massa com Plasma Indutivamente Acoplado
- 40Bio/60PHB: 40% de vidro bioativo e 60% de polihidroxibutirato
- 30Bio/70PHB: 30% de vidro bioativo e 70% de polihidroxibutirato
- PHV: polihidroxivalerato
- TCP: tricálcio fosfato
- DCPD: dicálcio fosfato dihidratado
- OCP: octafosfato de cálcio