# UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Aplicação de Redes Neurais Multicamadas Associadas a Algoritmos Genéticos Aplicadas a Operação de Redes de Distribuição de Água com Vistas a Eficiência Hidroenergética em Cidades Inteligentes.

Alex Takeo Yasumura Lima Silva

# UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Alex Takeo Yasumura Lima Silva

Aplicação de Redes Neurais Multicamadas Associadas a Algoritmos Genéticos Aplicadas a Operação de Redes de Distribuição de Água com Vistas a Eficiência Hidroenergética em Cidades Inteligentes

> Tese submetida ao Programa de Pós-Graduação em Meio Ambiente e Recursos Hídricos como parte dos requisitos para obtenção do título de doutor.

> Área de Concentração: Meio Ambiente e Recursos Hídricos

**Orientador:** Prof. Dr. Fernando das Graças Braga da Silva

Dedico meu doutorado aos meus tios: Joaquim Tavares de Lima (In memoriam) Sergio Yoshiaki Yasumura (In memoriam) Dalva Lima Silva (In memoriam).

#### AGRADECIMENTOS

A minha mãe Edna Shizue, e a minha avó Cida pela garra e coragem para enfrentar as dificuldades da vida sempre com otimismo e bom humor, sendo um exemplo e incentivo para superar os desafios da vida e a meu pai Danilo (*in memoriam*) por ter sempre me incentivado aos estudos e a pesquisa científica, através de sua inteligência, bom humor e desejo de aprender.

A toda minha família pelo apoio e incentivo, em especial aos meus primos William, Aline, Talyta, Paula, Sávio e Maria Rita, bem como às minhas tias Aurora, Tiemi, Rita e meu tio Sérgio (*in memoriam*) pela força nas horas difíceis.

A minha tia, Dalva Lima Silva (*in memoriam*), pelo seu apoio em momentos cruciais da minha vida, em especial durante minha graduação e mestrado, os quais sem sua generosa ajuda não teriam se concretizado. E no doutorado, pelas inúmeras lições de vida que me deu com a sua costumeira firmeza, mas sempre com bom humor.

Agradeço a República Vó Gina, minha segunda família que muito me ajudou nessa caminhada, em especial ao Pedro Vieira Bertoni (*Hagrid*) e ao Anderson Rodrigo de Queiroz pelas inestimáveis ajudas com a parte computacional do trabalho, fora a amizade e respeito construídos ao longo do tempo.

Ao meu orientador, Prof. Dr. Fernando das Graças Braga da Silva, pela amizade, compreensão, apoio técnico e acima de tudo, humano em momentos dificílimos pelos quais passei neste doutorado. Muito obrigado!

Aos amigos que fiz na UNIFEI, dentre eles: Paula Oda, minha "irmã acadêmica" a qual devo a enorme ajuda acadêmica e pela amizade forte que constuimos; Gabriela Vasconcellos, pela lealdade e amizade; à Sara Marques, pela amizade e pela competência que muito me auxiliou nos trabalhos e nos algoritmos; Matheus Barbedo e Mateus Cortez, pelo respeito e apoio; ao Alexandre Marciano "Xandinho" pelo apoio e amizade construídos nesse período.

Agradeço ao Projeto Redecope Finep – MCT (Ref. 0983/10) - Ministério da Ciência e Tecnologia, intitulado "Desenvolvimento de tecnologias eficientes para a gestão hidro energética em sistemas de abastecimento de água" e Programa Pesquisador Mineiro da Fapemig pelo PPM - 00755-16 além de ser grato ao NUMMARH- Núcleo de Modelagem em Simulação em Meio Ambiente e Recursos e Sistemas Hidricos da UNIFEI.

Agradeço a Universidade Federal de Itajubá pela Bolsa Institucional de nº 23088.037588/2021-72.

"Lei zero: Um robô não pode causar mal à humanidade ou, por omissão, permitir que a humanidade sofra algum mal". Isaac Asimov.

#### **RESUMO**

A escassez de recursos naturais, especialmente água e energia, colocam em risco o abastecimento de água para a população. Portanto, tornam-se necessários procedimentos para garantir a operação ótima de uma rede de distribuição de água. O uso de técnicas de otimização como os algoritmos genéticos garante a operação ótima da rede, contudo, apenas encontrar os pontos ótimos não bastam, uma vez que as oscilações da demanda produzem flutuações nas pressões, exigindo também uma capacidade de aprendizado que garanta a adaptabilidade da distribuição de água conforme as demandas, indo de encontro com o conceito de cidades inteligentes. Assim, para dar a rede de distribuição de água essa capacidade de aprendizado, foram empregadas Redes Neurais Artificiais (RNA) do tipo "perceptron" de uma camada oculta, sendo uma delas simples para atuar apenas em um ponto de demanda prevendo os valores dos parâmetros operacionais (RNF, válvulas e bombas), como prova de conceito e então foi elaborada uma RNA mais avançada, com sete camadas ocultas, de modo a prever os parâmetros operacionais para as últimas 72 horas. As Redes de Distribuição de Água utilizadas foram duas redes teóricas com 13 nós, 2 Reservatórios de Nível Fixo (RNF), 2 bombas e 3 válvulas, variando apenas a posição da malha. Para ambas as redes de distribuição, as previsões chegaram a um bom resultado na maioria dos pontos baseado na Norma NBR 12218/2017. Como conclusão, as Redes Neurais Artificiais demonstraram boa capacidade de previsão de operação quando aplicados a redes de distribuição de água devido a sua complexidade inerente, possuindo potencial para melhores resultados.

**Palavras-chave:** Algoritmos genéticos, Cidades inteligentes, Distribuição de água, Eficiência hidroenergética, Redes Neurais Artificiais.

#### ABSTRACT

The scarcity of natural resources, especially water and energy, put the population at risk of water supply. Therefore, they become necessary procedures to guarantee the optimal operation of a water distribution network. The use of optimization techniques such as genetic algorithms guarantees the optimal operation of the network, however, just finding the optimal points is not enough, since demand oscillations affect fluctuations in those presented, also presenting a learning capacity that guarantees the adaptability of the network. distribution of water according to demand, meeting the concept of smart cities. Thus, to give the water distribution network this learning capability, Artificial Neural Networks (ANN) of the "perceptron" type of a hidden layer were used, one of which is simple to act only at a demand point, predicting the values of the operational parameters (RNF, valves and pumps), as a proof of concept and then a more advanced ANN was developed, with seven hidden classes, in order to predict the operational specifications for the last 72 hours. The Water Distribution Networks used were two theoretical networks with 13 nodes, 2 Fixed Level Reservoirs (RNF), 2 pumps and 3 valves, varying only the mesh position. For both distribution networks, the predictions reached a good result in most points based on Norma NBR 12218/2017. As a conclusion, Artificial Neural Networks are proven to have a good capacity to predict operation when applied to water distribution networks due to their inherent complexity, having the potential for better results with future adjustments.

Keywords: Efficient Operation, Smart Cities, Neural Networks, Water Distribution.

# LISTA DE ILUSTRAÇÕES

| Figura 1 – Rede de distribuição de água                  | 16 |
|----------------------------------------------------------|----|
| Figura 2 – Índice de perdas na distribuição (%)          |    |
| Figura 3 – Fluxograma de um algoritmo genético           | 22 |
| Figura 4 – Comparação dos Resultados                     | 23 |
| Figura 5 – Rede Hanoi                                    | 24 |
| Figura 6 – Circuito hidráulico esquemático de Bagmalek   | 26 |
| Figura 7 – Pressões na rede da cidade de Rasht           | 27 |
| Figura 8 – Rede hidráulica da cidade de Nagpur, Índia    |    |
| Figura 9 – Fluxograma simplificado do modelo             | 29 |
| Figura 10 – Rede BWFL adaptada.                          |    |
| Figura 11 – Neurônio biológico                           |    |
| Figura 12 – Estrutura de um neurônio artificial          |    |
| Figura 13 – Funções de ativação mais usadas              | 32 |
| Figura 14 – Associação de neurônios no cérebro           |    |
| Figura 15 – Estrutura de uma rede perceptron multicamada |    |
| Figura 16 – Metodologia Hold-Out                         |    |
| Figura 17 – K-Fold.                                      |    |
| Figura 18 – Rede Neural Artificial utilizada no trabalho |    |
| Figura 19 – Rede teórica para os testes.                 |    |
| Figura 20 – Acurácia dos modelos                         | 41 |
| Figura 21 – Fluxograma das etapas de trabalho            | 43 |
| Figura 22 - Interface gráfica de entrada de dados.       | 44 |
| Figura 23 - Fluxograma da rotina de cálculo hidráulico   | 45 |
| Figura 24 - Rede T1 com os identificadores dos nós.      | 46 |
| Figura 25 - Arranjo da rede T2                           |    |
| Figura 26 - Fluxograma do Algoritmo Genético             | 51 |
| Figura 27 - Redes Neurais de Operação                    | 55 |
| Figura 28 – Arquitetura das Redes Neurais de Operação    | 56 |
| Figura 29 - RNA de previsão                              | 59 |
| Figura 30 - Diagrama de blocos da RNA de Previsão        | 60 |
| Figura 30 - Algoritmo da RNA de Operação.                | 64 |
| Figura 31 - Comparação dos resultados                    | 68 |
|                                                          |    |

| Figura 33 - Fluxograma do Algoritmo de RNA de Previsão       | 69 |
|--------------------------------------------------------------|----|
| Figura 33 - Demanda dos nós 3 a 8                            | 70 |
| Figura 34 - Demandas dos nós 9 a 14                          | 71 |
| Figura 35 - Demanda do nó 15                                 | 71 |
| Figura 37 - Parâmetros de RNF 1 para a T1                    | 72 |
| Figura 38 - Parâmetros de RNF 2 para T1                      | 73 |
| Figura 39 - Parâmetros de bomba 1 para a rede T1             | 73 |
| Figura 40 - Parâmetros da Bomba 2 para a rede T1             | 74 |
| Figura 41 - Parâmetros da Válvula 1 para a rede T1           | 74 |
| Figura 42 - Parâmetros da Válvula 2 para a rede T1           | 75 |
| Figura 43 - Parâmetros da Válvula 3 para a rede T1           | 75 |
| Figura 44 – Parâmetros previstos de RNF 1 para a T1          | 76 |
| Figura 45 – Parâmetros previstos de RNF 2 para T1.           | 77 |
| Figura 46 - Parâmetros previstos de bomba 1 para a rede T1   | 77 |
| Figura 47 – Parâmetros previstos da Bomba 2 para a rede T1   | 78 |
| Figura 48 - Parâmetros previstos da Válvula 1 para a rede T1 | 78 |
| Figura 49 - Parâmetros da Válvula 2 para a rede T1           | 79 |
| Figura 50 - Parâmetros da Válvula 3 para a rede T1           | 79 |
| Figura 51 - Perdas e pressão média da rede T1                |    |
| Figura 52 - Dados da RNF 1 para a rede T2                    |    |
| Figura 53 – Dados da RNF 2 para a rede T2                    |    |
| Figura 54 – Dados da bomba 1 para a rede T2                  |    |
| Figura 55 – Dados da bomba 2 para a rede T2                  |    |
| Figura 56 – Dados da válvula 1 para a rede T2                |    |
| Figura 57 – Dados da Válvula 2 para a rede T2                | 86 |
| Figura 58 - Dados da Válvula 3 para a rede T2                | 86 |
| Figura 59 – Dados previstos da RNF 1 para a rede T2          |    |
| Figura 60 - Dados previstos da RNF 2 para a rede T2          |    |
| Figura 61 - Dados da bomba 1 para a rede T2                  |    |
| Figura 62 - Dados da bomba 2 para a rede T2                  |    |
| Figura 63 - Dados da valvula 1 para a rede T2                |    |
| Figura 64 - Dados da valvula 2 para a rede T2                | 90 |
| Figura 65 - Dados da válvula 3 para a rede T2                | 90 |
| Figura 66 - Perdas e pressões médias para a rede T2          | 92 |
|                                                              |    |

## LISTA DE TABELAS

| Tabela 1 - Dados de cotas e demandas da rede T1                            | .46 |
|----------------------------------------------------------------------------|-----|
| Tabela 2 - Dados das tubulações e válvulas da rede                         | .47 |
| Tabela 3 - Dados de cotas e demandas da rede T2                            | .48 |
| Tabela 4 - Dados das tubulações e válvulas da rede T2                      | .49 |
| Tabela 5 – Cenário-base para a rede T1                                     | .62 |
| Tabela 6 – Cenário-base para a rede T2                                     | .63 |
| Tabela 7 - Resultados para a rede T1                                       | .65 |
| Tabela 8 - Resultados para a rede T2                                       | .66 |
| Tabela 9 - Resultados de pressões para a rede T1                           | .80 |
| Tabela 10 – Pressões calculadas com os parâmetros previstos para a rede T2 | .91 |

#### LISTA DE SIGLAS

- AG Algoritmo Genético
- KNN *K-Nearest Neighbor* (K-vizinho mais próximo)
- LSTM Long Short Term Memory (Memória de longo e curto prazo)
- ML Machine Learning (Aprendizado de máquina)
- NBC Naive Bayesian Classification (Classificação naive Bayesiana)
- PRV Pressure Reduction Valve (Válvula redutora de pressão)
- ReLU Rectified Linear Unit (Unidade linear retificada)
- RF-Random Forest (Floresta Aleatória)
- RNA Redes Neurais Artificiais
- SOM Self-Organizating Maps (Mapas auto-organizáveis)
- SVM Support Vector Machine (Vetor de suporte de máquina)
- VRP Válvula Redutora de Pressão

# SUMÁRIO

| 1.     | INTRODUÇÃO13                                                                  |
|--------|-------------------------------------------------------------------------------|
| 2.     | OBJETIVOS                                                                     |
| 2.1    | Objetivo geral15                                                              |
| 2.2    | Objetivos específicos15                                                       |
| 3.     | FUNDAMENTAÇÃO TEÓRICA16                                                       |
| 3.1    | Redes de distribuição de água e perdas na distribuição16                      |
| 3.2    | Eficiência hidroenergética nas redes de distribuição de água                  |
| 3.3    | Aplicações atuais de algoritmos genéticos em redes de distribuição de água20  |
| 3.4    | Operação em redes de distribuição de água: trabalhos recentes relacionados a  |
| temáti | ica em estudo25                                                               |
| 3.5    | Redes Neurais Artificiais                                                     |
| 3.6    | Redes Neurais Artificiais e seu uso em redes de distribuição de água37        |
| 4.     | METODOLOGIA43                                                                 |
| 4.1    | Etapa 1 – Elaboração da rotina de cálculo hidráulico43                        |
| 4.2    | Etapa 2 – Elaboração das Redes de Distribuição de Água teóricas para o estudo |
|        | 45                                                                            |
| 4.3    | Etapa 3 – Escolha de fatores de otimização e Algoritmos Genéticos50           |
| 4.4    | Etapa 4 – Elaboração das Redes Neurais Artificiais53                          |
| 4.5    | Cálculo das perdas nas redes de distribuição de água60                        |
| 5.     | RESULTADOS E DISCUSSÃO                                                        |
| 5.1    | Resultados dos cenários-base                                                  |
| 5.2    | Resultados para a Rede Neural de Operação63                                   |
| 5.3    | Resultados para a Rede Neural de Previsão69                                   |
| 6.     | CONCLUSÕES94                                                                  |
| 7.     | RECOMENDAÇÕES PARA TRABALHOS FUTUROS96                                        |
| REFE   | RÊNCIAS98                                                                     |
| Anexo  | 9 I                                                                           |
| Anexo  | 9 II                                                                          |
| Anexo  | 9 III                                                                         |
| Anexo  | • IV                                                                          |
| Anexo  | • V                                                                           |

## 1. INTRODUÇÃO

A água é de suma importância para a humanidade, uma vez que dela literalmente depende a sobrevivência do ser humano. Sua disponibilidade, em quantidade e qualidade, pode definir as condições de desenvolvimento, saúde e até mesmo a habitabilidade de uma determinada região. Assim, seu fornecimento de forma segura e confiável são indispensáveis para o progresso da sociedade como um todo.

Contudo, não basta apenas ter o acesso a água. É preciso submetê-la ao tratamento para que se enquadre nos padrões de potabilidade necessários para garantir a saúde humana e dispor de infraestrutura para fazer sua distribuição. É nesse ponto que começam os problemas, uma vez que as perdas se concentram nesta etapa, uma vez que podem ser tanto perdas comerciais referentes a erros de medição e ligações clandestinas como podem ser perdas reais, geradas por vazamentos resultantes de falhas nas tubulações, em grande parte resultante do excesso de pressões.

O controle das perdas reais passa pelo controle das pressões na distribuição, que envolve o ajuste de estratégias operacionais através de parâmetros como o bombeamento e o controle de válvulas de redução de pressão. Contudo, são necessárias simulações computacionais para se estudar as consequências das alterações dos parâmetros e o emprego de técnicas de otimização que permitam obter os valores para os parâmetros que cheguem a uma estratégia operacional mais próxima possível da ótima.

No entanto, há de se lembrar que as demandas (variável importante que influi nas pressões da rede), oscilam durante o dia devido aos hábitos dos consumidores. Assim, é fundamental que a rede de distribuição de água seja capaz também de ajustar seus parâmetros conforme as demandas, impedindo que em momentos de menor consumo as pressões excedam a Norma NBR 12218/17 ou a falta de abastecimento em períodos de maior consumo.

Assim, o uso de técnicas de aprendizado de máquina como as Redes Neurais Artificiais tornam-se fundamentais para garantir que a rede de distribuição de água seja capaz de aprender a operar ao longo de um dia através das flutuações de demanda, indo de encontro com o conceito de cidades inteligentes, aplicado para redes de distribuição de energia elétrica, trânsito, comunicações, dentre outros serviços essenciais ao cidadão e cuja integração e racionalização tornam-se cada vez mais necessários devido a escassez de recursos naturais, espaço e energia disponíveis nos centros urbanos.

Portanto, este trabalho busca associar a otimização da rede utilizando algoritmos genéticos com a sua operação inteligente utilizando redes neurais artificiais de modo que a rede sempre opere em condições ótimas e seja capaz de se adaptar a variações na demanda, indo de encontro com a necessidade das cidades inteligentes do futuro em que recursos como água e energia precisarão de gestão eficaz para garantir o suprimento a população.

#### 2. OBJETIVOS

#### 2.1 Objetivo geral

O presente trabalho propõe dois algoritmos para controle ótimo de redes de distribuição de água utilizando Redes Neurais Artificiais supervisionado por Algoritmos Genéticos para a previsão de seus parâmetros de operação através de suas demandas, sendo um apenas para um horário específico e outro, capaz de realizar a previsão de 24 horas de parâmetros de uma rede.

### 2.2 **Objetivos específicos**

Os objetivos específicos desta tese são:

- a) Desenvolver um algoritmo de cálculo hidráulico em Python3, utilizando o pacote em R epanet2toolkit, para ler e simular arquivos *.inp* gerados pelo software EPANET;
- b) Propor um algoritmo genético capaz de otimizar uma rede de distribuição de água de modo a minimizar as perdas através da redução das pressões e atender aos requisitos de pressão mínimas e máximas;
- c) Elaborar uma Rede Neural Artificial do tipo *perceptron* capaz de realizar a operação da rede de distribuição de água para um determinado ponto de consumo, e assim, validar o conceito;
- d) Criar uma Rede Neural Artificial de aprendizagem profunda do tipo *perceptron* multicamada, utilizando as bibliotecas *tensorflow* e *keras*, capaz de aprender os parâmetros de operação da rede e se ajustar ao longo do tempo as variações de demanda;

## 3. FUNDAMENTAÇÃO TEÓRICA

#### 3.1 Redes de distribuição de água e perdas na distribuição

Uma rede de distribuição de água é composta por tubulações, bombas, acessórios, reservatórios e demais equipamentos que lhe permitam atender, dentro de condições sanitárias e de vazão e pressão, aos pontos de consumo de uma cidade (PORTO, 2006). A Figura 1 apresenta um exemplo de arranjo de rede de distribuição de água.



Fonte: EOS Organização e Sistemas<sup>1</sup>

Para que a rede de distribuição de água possa cumprir satisfatoriamente seu objetivo, é necessário um correto dimensionamento, que deve levar em conta fatores como a topografia, tipo de manancial disponível no local, população a ser atendida e a sua estimativa de crescimento, de modo que o sistema seja capaz de atender adequadamente a população durante muitos anos conforme (Tsutiya, 2006), sendo que os mananciais para abastecimento podem ser poços profundos e/ou rasos, lagos, rios e reservatórios formados por barragens.

Existem perdas em redes de distribuição de água, que podem ser segundo Kanakoudis e Muhammetoglu (2014) que podem ser aparentes ou comerciais, isto é, a água não faturada devido a ligações clandestinas, falhas em hidrômetros, contabilizações erradas do consumo de água e demais usos não autorizados de água e reais, ou seja, aquelas geradas por vazamentos oriundos de excessos de pressão, trincas nas tubulações, vazamentos, dentre outras causas.

Eletricidade e água são recursos essenciais para o desenvolvimento econômico e social. A demanda mundial por água vem crescendo continuamente ao longo dos anos,

<sup>&</sup>lt;sup>1</sup> Disponível em: https://www.eosconsultores.com.br/sistema-de-distribuicao-de-agua/. Acesso em: 22 jan 2023.

aproximadamente 1% ao ano, enquanto o consumo de energia está previsto para crescer 28% até 2040, sendo que para se evitar a exploração de novas fontes, busque-se a redução das perdas para assegurar o atendimento (BAGRIYANIK; SONMEZ; BAGRIYANIK, 2023; CHINI; STILLWELL, 2018; PUGLIESE; GIUGNI, 2022).

Kanakoudis e Muhammetoglu (2014) mencionam perdas na ordem de 45 bilhões de m<sup>3</sup> em todo o mundo, sendo que a redução pela metade dessas perdas seria capaz de abastecer cerca de 200 milhões de pessoas – quase o total da população brasileira - sem a necessidade de exploração de novos mananciais.

Já Fontana, Giugni e Portolano (2012) mencionam perdas na casa de 30 a 40% nas redes, na maioria das vezes devido a deterioração de seus componentes ao longo do tempo (tubulações, conexões, etc...) devido à falta de manutenção. Mutikanga, Sharma e Vairavamoorthy (2013), enfatizam que o fato de as tubulações estarem enterradas leva a negligência na manutenção até que apresentem vazamentos ou falhas, uma vez que usualmente se priorizam obras com maior impacto visual perante a população.

As perdas representam significativo prejuízo financeiro as companhias, na ordem de US\$ 14 bilhões de dólares ao ano em todo o mundo sendo particularmente mais crítico em países em desenvolvimento, pois tolhem a capacidade das companhias de investir em melhorias e expansão do sistema (MUTIKANGA; SHARMA; VAIRAVAMOORTHY, 2013).

Pinnto et al. (2016) mencionam que um projeto de rede de distribuição de água deveria balancear o custo de implantação, geralmente baixo, se comparado com o custo de manutenção que acaba por ser elevado devido à alta frequência de intervenções.

As perdas reais afetam diversos aspectos da operação das redes de distribuição de água, como a qualidade do serviço, piora no consumo energético e de insumos para tratamento, perdas econômicas e até mesmo riscos sanitários, sendo diretamente relacionadas ao envelhecimento das tubulações e ao excesso de pressão na rede, que causam rupturas. Assim, dada a importância do problema, as companhias de saneamento envidam esforços para reduzir suas perdas reais através do controle de pressões (GIUSTOLISI et al., 2023; SIMONE et al., 2018).

#### 3.2 Eficiência hidroenergética nas redes de distribuição de água

A distribuição e o tratamento da água respondem por cerca de 7% do consumo mundial de energia, com previsão de aumento nos próximos anos segundo Coelho e Andrade-Campos (2014).

Portanto a melhoria da eficiência na operação de uma rede de distribuição de água é imperativa, uma vez que os consumos energético e de água vem crescendo constantemente ano após ano, possuindo significativo impacto econômico e ambiental (BAGRIYANIK; SONMEZ; BAGRIYANIK, 2023; PUGLIESE; GIUGNI, 2022).

O cenário brasileiro aponta perdas crescentes ao longo do tempo. O relatório do Serviço Nacional de Informações sobre Saneamento (BRASIL, 2021) vem apontando através do indicador IN049 – Índice de perdas na distribuição (perdas reais), um constante crescimento das perdas de água na distribuição desde 2015, como pode ser observado no gráfico da Figura 2.





Fonte: Brasil (2021).

Assim, considerando todos os impactos que uma operação ineficiente associada as perdas crescentes possuem na economia, saúde e meio ambiente, torna-se necessário implementar medidas que aprimorem a eficiência das redes de distribuição de água, reduzindo perdas e naturalmente, reduzindo o consumo energético associado a água, utilizando, dentre outras possibilidades, o controle das pressões nas redes.

A norma técnica ABNT NBR nº 12.218/2017 (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2017), preconiza como limites de pressão nas redes de distribuição de

água os valores de 100 kPa (10 m.c.a.) para a pressão dinâmica mínima e 400 kPa (40 m.c.a.) de pressão estática máxima, sendo que pode ser admitido até 500 kPa (50 m.c.a.) em circunstancias excepcionais, desde que justificadas.

Tsutiya (2006a) alerta para o pensamento equivocado de que pressões elevadas nas redes são sinônimo de um bom padrão de abastecimento de água.

Tal situação resulta, na realidade, em maior consumo energético devido ao bombeamento desnecessário, resultando em desperdício de energia, além do aumento do índice de perdas na distribuição, falhas nas tubulações e interrupções de serviço (TSUTIYA, 2006<sup>a</sup>).

Como uma das medidas de melhoria de eficiência, Tsutiya (2006b) mostra a necessidade da adequação do projeto de bombeamento no que diz respeito ao dimensionamento dos motores, devendo ser feito de modo a evitar um baixo fator de carga.

Já Makisha e Kazimirova (2018) apontam um conjunto de medidas, que compreendem desde medidas de baixo custo até intervenções mais dispendiosas na rede. As medidas de baixo custo compreendem a operação adequada da rede de distribuição de água e seus equipamentos uma vez que muitas vezes carecem de instruções e/ou treinamentos adequados, e a correta manutenção dos equipamentos.

Dentre as medidas de baixo custo, Makisha e Kazimirova (2018) ressaltam a necessidade da operação adequada da rede de distribuição de água, uma vez que dentro da realidade brasileira, muitas vezes observa-se um grande desconhecimento das condições da rede.

Em alguns casos, chega-se ao ponto de faltarem informações básicas sobre as tubulações, como seu material e tempo de vida, prejudicando as ações de manutenção preventiva como recondicionamentos e substituições, que poderiam incrementar a eficiência com maior rapidez e menor custo.

As medidas de custo médio, segundo Makisha e Kazimirova (2018) compreendem melhorias na rede de distribuição de água como readequação do projeto dos condutos em termos de diâmetro, cujo aumento em até 50% pode ser capaz de reduzir 75% das perdas de carga bem como a adoção de condutos com revestimentos menos rugosos, controle do consumo de água e prevenção de vazamentos, campanhas de uso consciente com a população, análise do consumo de água e operação econômica das bombas.

Assim, tais medidas certamente contribuem para a melhoria da eficiência hidroenergética da distribuição de água. Contudo, o foco deste trabalho é a melhoria obtida

através de otimizações na sua operação, incluindo a operação de bombas e válvulas, cujos pormenores serão abordados na seção 3.3 e 3.4.

#### 3.3 Aplicações atuais de algoritmos genéticos em redes de distribuição de água

A técnica de otimização aqui descrita foi desenvolvida por John Holland em 1975, sendo baseada no princípio do naturalista inglês Charles Darwin, que é o da seleção natural e da sobrevivência dos mais aptos, onde afirma que o indivíduo mais bem adaptado ao seu ambiente terá maior chance de sobreviver e gerar descendentes (LACERDA; CARVALHO, 1999).

Durante a reprodução, fenômenos como a mutação – onde partes do material genético armazenado nos cromossomos sofrem alterações aleatórias – podem ocorrer, bem como o cruzamento, isto é, a mistura do material genético dos pais, que resulta em uma nova combinação nos filhos, que herdam suas características, fazendo assim com que haja a variabilidade nas espécies, essencial para a sua sobrevivência (LACERDA; CARVALHO, 1999).

Os Algoritmos Genéticos (AG) são empregados em diversas áreas do conhecimento humano onde há a necessidade de otimização de variáveis. Contudo, sua terminologia é fortemente baseada nos conceitos biológicos, como Lacerda e Carvalho (1999) descrevem como sendo como uma metáfora da seleção natural, listando então os termos mais utilizados:

- a) Cromossomo ou genoma: Genoma é o conjunto completo de genes de um organismo, podendo possuir vários cromossomos. Nos AGs, representam a estrutura de dados que codifica uma solução para um problema, logo, um cromossomo ou genoma representa um simples ponto no espaço de busca;
- b) Gene: A unidade de hereditariedade transmitida pelo cromossomo, nos AGs é um parâmetro codificado no cromossomo;
- c) Individuo: Um membro da população, nos AGs é formado pelo cromossomo e sua aptidão;
- d) Genótipo: A composição genética contida no Genoma, nos AGs é a informação contida no cromossomo;
- e) Fenótipo: Nos AGs, representa o objeto constituído pelas informações do genótipo;
- f) Alelo: Uma das formas alternativas de um gene, sendo que nos AGs representa os valores que o gene pode assumir;

g) Epistasia: Interação entre os genes do cromossomo, ou seja, quando um valor de gene influencia o valor de outro gene. Problemas com altas epistasias são difíceis de serem resolvidos por AGs.

Assim, Lacerda e Carvalho (1999) também elencam uma série de vantagens dos Ags, sendo que algumas delas tornam-se particularmente interessantes para utilização em recursos hídricos, como:

- a) Capacidade de funcionar com parâmetros contínuos, discretos, ou uma combinação de ambos;
- b) Realização de buscas simultâneas em várias regiões pois trabalham com uma população e não um ponto;
- c) Capacidade de otimizar grande número de variáveis;
- d) Fácil implementação em computadores;
- e) Modularidade e portabilidade: O mecanismo de evolução é separado do problema, podendo ser transferido e adaptado de um problema para outro;
- f) Flexibilidade com restrições arbitrárias e capacidade de otimizar múltiplas funções com objetivos conflitantes;
- g) Podem ser hibridizados com outras técnicas e heurísticas.

De todas essas vantagens, destacam-se para este trabalho a capacidade de otimização de grande número de variáveis, a facilidade de implementação computacional, sua modularidade e principalmente a capacidade de ser hibridizada com outras técnicas, uma vez que se prevê um uso conjunto com Redes Neurais Artificiais.

Uma grande questão no algoritmo genético é o critério de parada. Conforme Lacerda e Carvalho (1999), podem ser utilizados um número determinado de iterações (chamadas gerações), uma quantidade de soluções obtidas ou a obtenção de uma solução apenas que atenda aos requisitos.

A Figura 3 ilustra de modo bastante simples, mas didático, o funcionamento de um algoritmo genético:



Figura 3 – Fluxograma de um algoritmo genético

Fonte: Computação Inteligente - O algoritmo genético<sup>2</sup>

Os Algoritmos Genéticos são uma técnica que pode ser considerada clássica na solução de diversos problemas de otimização em redes de distribuição de água. Nesse sentido, Savic e Walters (1997) os utilizam com a finalidade de se obter o menor custo para o projeto de uma rede de distribuição de água através do desenvolvimento de um modelo computacional chamado GANET.

Savic e Walters (1997) não mencionam maiores detalhes acerca da linguagem de programação utilizada, mas afirmam que o uso de algoritmo genético se mostra vantajoso pois é capaz de solucionar problemas como o de minimização de custos sem necessidade de linearizações, com a vantagem de ser capaz de atuar com valores discretos – no caso, os diâmetros das tubulações.

Na mesma linha de se obter o menor custo possível no projeto e expansão de redes de distribuição, Gupta, Gupta e Khanna (1999), onde os autores desenvolveram o algoritmo genético em linguagem FORTRAN e o comparam com técnicas de programação não-linear.

Gupta, Gupta e Khanna (1999) ressaltando a superioridade do algoritmo genético, enfatizaram que por ser capaz de obter vários picos de solução durante a busca, reduzindo o risco de ficarem presos a um ponto de mínimo local, ainda que os resultados convirjam mais lentamente.

Já visando a operação ótima, Van Zyl, Savic e Walters (2004) empregaram algoritmos genéticos híbridos e puros para a otimização da operação de uma rede de distribuição de água

<sup>&</sup>lt;sup>2</sup> Disponível em: http://computacaointeligente.com.br/algoritmos/o-algoritmo-genetico/. Acesso em: 23 nov. 2017.

em Richmond, Reino Unido. Segundo os autores, a hibridização tornou-se necessária pois os algoritmos genéticos possuem uma boa convergência inicial, contudo, tornam-se menos eficientes ao longo das gerações para obter soluções quase ótimas.

Van Zyl, Savic e Walters (2004) utilizaram o método de busca de subida de montanha (*Hillclimb Method*) incorporado ao algoritmo genético, obtendo em 8000 gerações resultados próximos aos obtidos em 200000 gerações do algoritmo genético puro, como pode ser visto na Figura 4.





■ AG após 200000 gerações
■ Hibrido após 8000 gerações
Fonte: Van Zyl, Savic e Walters (2004) (Adaptado).

Na mesma linha dos algoritmos genéticos hibridizados, Costa, Ramos e De Castro (2010) compararam um algoritmo genético simples e um algoritmo genético hibridizado para reduzir custos de operação para a rede de distribuição da cidade de Ourém, Portugal. No caso, a hibridização consiste em adicionar penalidades as soluções não aptas, de modo a 23idde-las inviáveis.

Os algoritmos foram desenvolvidos utilizando a toolkit EPANET, sem que os autores fornecessem maiores dados acerca da linguagem de programação utilizada. Assim, Costa, Ramos e De Castro (2010) obtiveram com o algoritmo genético hibridizado resultados em 4 minutos, resultado superior ao algoritmo simples que levou 22 minutos para tal, fato que os

autores ressaltam como vantagem para fornecer aos gestores da rede estratégias operacionais em menor tempo, assegurando a operação ótima e econômica da rede.

Em uma abordagem mais recente, Van Dijk, Van Vuuren e Van Zyl (2018) empregaram algoritmos genéticos para desenvolver um software, em conjunto com o simulador EPANET de otimização de redes de distribuição de água, utilizando penalidades ponderadas, denominado GANEO, o qual foi testado em alguns *benchmarks* do EPANET como a rede Hanoi, vista na Figura 5, obtendo resultados em 2,7 minutos, quando comparados a outros algoritmos genéticos.





Fonte: Van Dijk, Van Vuuren e Van Zyl (2018) (Adaptado)

Embora tenham se tornado populares para se obter soluções ótimas ou quase-ótimas em otimizações em redes de distribuição de água, possuem também o inconveniente de consumir grande tempo computacional em determinados casos, chegando a ponto de consumir dias de processamento ou exigir computadores muito poderosos em simulações de redes reais (TANYIMBOH; SEYOUM, 2017).

Assim, Tanyimboh e Seyoum (2017), apontam como solução o uso de computação paralela, ou seja, a utilização em paralelo de dois processadores sendo um responsável pela geração da população inicial e outro responsável pela seleção, cruzamento e mutação da população. Assim, consegue-se uma redução de tempo computacional para apenas 6,7% do

tempo de um algoritmo em série, uma vantagem que não se pode desprezar em situações de otimização de muitos parâmetros ou a necessidade de utilização do algoritmo repetidas vezes.

Para analisar as incertezas decorrentes da operação de redes de distribuição malhadas, como demandas, rugosidades, diâmetros, níveis de reservatório, dentre outras, Sivakumar, Prasad e Chandramouli (2016) utilizaram algoritmos genéticos incorporados ao EPANET, programados em MATLAB.

Sivakumar, Prasad e Chandramouli (2016) mostraram como vantagem que o método é capaz de solucionar as questões das incertezas de operação da rede independente de seu tamanho, ainda que ao custo de um maior tempo computacional e das análises separadas de pressões e vazões da rede.

# 3.4 Operação em redes de distribuição de água: trabalhos recentes relacionados a temática em estudo

Operar uma rede de distribuição de água envolve uma série de fatores, entre eles o custo relativo ao funcionamento de bombas, cujo objetivo é suprir as demandas, que por sua vez são revestidas de incerteza, conforme Ougui (2003).

Ougui (2003) ressalta a importância do dimensionamento e operação das bombas, que precisam ser adequadas para evitar desperdícios de energia elétrica. Além do bombeamento, Van Dijk, Van Vuuren e Van Zyl (2018) mencionam também como parâmetros operacionais os níveis de reservatório e controle de válvulas, que foram empregados nesta tese.

Este trabalho não tem a pretensão de esgotar a literatura sobre o assunto, mas sim apontar exemplos recentes que se enquadrem no escopo deste trabalho. Assim, a revisão sistemática da literatura realizada por Santos (2021), voltada a aplicação de métodos de otimização em redes de distribuição de água será a base desta seção.

Portanto, do trabalho de Santos (2021) foram selecionados alguns trabalhos os quais, pelas suas abordagens, irão embasar a parte de operação desta tese, buscando uma aderência com os temas observados e a proposta do trabalho.

Assim, Marchi, Simpson e Lambert (2016) realizaram uma modificação na *toolkit* EPANET2 com o emprego de algoritmos genéticos para a otimização das operações de bombeamento, de modo a se resolver os problemas associados ao computo da energia gasta no bombeamento e seus custos.

Marchi, Simpson e Lambert (2016) afirmam que a nova *toolkit*, denominada ETTAR-EPANET2, passou a obter soluções melhores em custo-benefício, ainda que as custas de maior tempo computacional, uma vez que o algoritmo genético acaba criando um conjunto de regras operacionais ótimos para as bombas, consequentemente demandando mais tempo para tal.

Já Makaremi, Haghighi e Ghafouri (2017) também utilizaram algoritmos genéticos e o simulador EPANET para otimizar a operação de bombas em uma rede real na cidade de Baghmalek, Irã, cujo esquemático pode ser visto na Figura 6.

Figura 6 - Circuito hidráulico esquemático de Bagmalek.



Fonte: Makaremi, Haghighi e Ghafouri (2017) (adaptado).

Aqui, Makaremi, Haghighi e Ghafouri (2017) ressaltam que um bom software de operação de bombas pode trazer ganhos significativos apenas na operação, ressaltando que houve uma redução no custo energético de 10%, além de melhorias na confiabilidade da operação.

A gestão das pressões em uma rede é tratada por Monsef et al. (2018), onde foram empregados algoritmos de evolução diferencial na linguagem MATLAB, juntamente ao simulador hidráulico EPANET para a otimização de parâmetros de bombas e válvulas em uma rede real na cidade de Rasht, Irã.

As perdas, inicialmente de 32,06 L/s passaram para 13,49 L/s e a potência consumida pelas bombas caiu de 158,82 kW para 76,18 kW. A Figura 7 mostra o mapa de pressões na rede ao longo das otimizações.



Figura 7 – Pressões na rede da cidade de Rasht.

Fonte: Monsef et al. (2018) (adaptado).

O trabalho de Gupta, Dinesh e Kulat (2018) também segue a linha da busca pela redução de perdas por vazamentos através da gestão de pressões usando bombas de rotação variável e válvulas de redução de pressão, para a rede da zona central da cidade de Nagpur, Índia.

Foram utilizados o simulador hidráulico EPANET e um algoritmo genético implementado em MATLAB. O esquema hidráulico da rede pode ser observado na Figura 8.



Figura 8 – Rede hidráulica da cidade de Nagpur, Índia.

Fonte: Adaptado de Gupta, Dinesh e Kulat (2018).

Os autores apresentam resultados bastante expressivos com a melhor gestão da rede, com reduções de perdas de 16,57% até 26,30% conforme as mudanças nos padrões de demanda, gerando uma economia média diária de 5,066 MI de água, e mantendo as pressões dentro dos limites mínimos requeridos, sem que haja deficiências na rede.

Na mesma linha de operação, porém agora em condições críticas, Khatavkar e Mays (2019) propuseram um modelo de otimização e simulação em tempo real para operação de bombas e válvulas em redes de distribuição de água operando em condições críticas como disponibilidade limitada de energia e água em emergências como secas, falhas na rede elétrica, desastres naturais e promovidos por ação humana, entre outras contingências.

O modelo foi desenvolvido por Khatavkar e Mays (2019) em MATLAB, também empregando o simulador EPANET e algoritmos genéticos para a sua otimização, como pode ser visto no fluxograma simplificado da Figura 9.



Figura 9 – Fluxograma simplificado do modelo.

Fonte: Adaptado de Khatavkar e Mays (2019).

Khatavkar e Mays (2019) ressaltam em seu trabalho a nova metodologia, enfatizando que a mesma pode ser aplicada em redes reais minimizando a diferença entre as demandas solicitadas e atendidas na rede, podendo ser associadas a modelos de otimização e simulação convencionais como uma solução mais robusta em situações de falhas sequenciais ocasionadas por contingências diversas.

O trabalho de Nerantzis, Pecci e Stoianov (2020) também segue a linha de operação ótima, mas desta vez para redes sem reservatórios, formulando e resolvendo a operação da rede matematicamente, sem uso de simuladores como o EPANET, através do uso de programação não-linear não-convexa para se obter curvas ótimas para as bombas de velocidade variável e válvulas de redução de pressão.

O estudo foi feito utilizando a "*Bristol Water Field Lab*" (BWFL) modificada para o propósito, como pode ser visto na Figura 10.





Fonte: Adaptado de Nerantzis, Pecci e Stoianov (2020).

Uma vez que não utiliza simuladores hidráulicos e nem algoritmos genéticos, os autores enfatizam a velocidade de solução da otimização, que segundo eles, pode chegar a segundos com computadores convencionais, algo que é desejável para operações em tempo real de grandes redes.

#### 3.5 Redes Neurais Artificiais

O conceito de Redes Neurais Artificiais não é exatamente novo, iniciando-se em 1943 com McCulloch, o qual realizou a modelagem matemática de um neurônio, sendo esse neurônio artificial essencialmente uma soma ponderada das entradas utilizadas em uma função de ativação para calcular uma saída, conforme Silva, Alves e Savio (2022).

Assim, uma boa definição para as Redes Neurais Artificiais (RNA) pode ser encontrada em Amaral (2020) que as define como modelos matemáticos que buscam simular o comportamento do cérebro, sendo capazes de adquirir, manter e generalizar conhecimentos, possuindo como estrutura básica o neurônio artificial.

Fazendo uma analogia com o neurônio real, que pode ser visto na Figura 10, possui n entradas para os estímulos externos, ou seja, a camada de entrada do neurônio artificial pode ser comparada aos dendritos, sendo que esses estímulos (sinais) são ponderados através de pesos para então serem linearmente combinados e então estão sujeitos a ação de uma função de ativação, que atua de forma análoga ao corpo celular, cuja característica principal é ser uma função diferenciável (AMARAL, 2020).

Assim, o sinal produzido irá para a camada de saída, que faz as vezes do axônio e suas terminações. A Figura 11 mostra um neurônio biológico enquanto a Figura 12 exemplifica a estrutura de um neurônio artificial, ficando bastante nítida a semelhança do conceito computacional com o neurônio biológico (AMARAL, 2020).





Fonte: https://metodosupera.com.br/neuronios-glossario-do-cerebro/. Acesso em 29 jan. 2023.

Figura 12 – Estrutura de um neurônio artificial.



Fonte: Amaral (2020).

A função de ativação controla o nível de ativação do neurônio, gerando a resposta (saída) do mesmo, sendo então utilizadas funções de ativação não-lineares que possuem capacidade para aproximar funções. Dentre as funções de ativação mais comuns, destacam-se

a sigmoidal, tangente hiperbólica e a unidade linear retificada (ReLU), conforme equações 1, 2 e 3, respectivamente.

$$g(z) = \tanh(z) = \frac{(e^{z} - e^{-z})}{(e^{z} + e^{-z})}$$
(1)

$$g(z) = \sigma(z) = \frac{(1)}{(1+e^{-z})}$$
 (2)

$$g(z) = z, se \ z \ge 0. \ g(z) = 0, \ se \ z < 0$$
 (3)

#### A Figura 13 mostra o comportamento das funções anteriormente elencadas.

Figura 13 - Funções de ativação mais usadas.



Fonte: https://www.mql5.com/pt/articles/3473 Acesso em 10 fev. 2023

As redes neurais tipo *perceptron* de camada simples tem como limitação a sua capacidade de aprendizado, uma vez que consegue apenas lidar com um hiperplano. Da mesma maneira que em um ser humano não existe apenas um neurônio, sendo na realidade o cérebro uma associação destes em várias camadas, como pode ser observado na Figura 14.

Logo, interconectam-se neurônios para formar as redes multicamadas, organizadas em camadas que são a de entrada (*input layer*), que transmite o dado externo para os elementos da próxima camada, as camadas ocultas (*hidden layer*), e a camada de saída (*output layer*) que externaliza o resultado processado pela rede, como pode ser visto na Figura 15 (AMARAL, 2020).



Figura 14 – Associação de neurônios no cérebro.

Fonte: https://www.infoescola.com/neurologia/neuroanatomia/. Acesso em 29 jan. 2023.

Figura 15 – Estrutura de uma rede perceptron multicamada.



Fonte: Amaral (2020) (Adaptado).

A quantidade de neurônios, camadas e a função de ativação dependem do problema a ser solucionado, no entanto usualmente são obtidas através de testes empíricos embora a literatura apresente métodos para se obter a melhor configuração da rede (AMARAL, 2020).

Contudo, tais métodos apresentam limitações e a rede neural também precisa aprender o comportamento da função, passando por um processo de treinamento antes da sua efetiva operação (AMARAL, 2020).

Cabe lembrar que nem sempre uma rede neural mais complexa implicará em melhor desempenho, uma vez que sua complexidade pode exceder a necessidade do projeto, além de acarretar um custo computacional desnecessário, implicando em maior tempo de execução.

Pode-se também desenvolver um algoritmo que permita o teste de diferentes configurações para a rede neural, permitindo testar e comparar os resultados utilizando diferentes funções de ativação, quantidade de camadas ocultas e a quantidade de neurônios nas camadas (GOOGLE, 2023).

Tais algoritmos, embora levem considerável tempo para serem executados, permitem a seleção de parâmetros para a rede neural de forma mais racional e menos demorada que testes do tipo "tentativa-e-erro" feitos de forma manual. Bibliotecas como o *keras* dispõem de algoritmos internos que permitem testar diferentes funções de ativação, taxas de aprendizagem, erro, dentre outros (GOOGLE, 2023).

Para redes neurais multicamada há o método do gradiente descendente, que é utilizado para controlar a velocidade e a direção do aprendizado da rede. Nela, os dados de entrada e saída são apresentados a rede neural, sendo que a saída da rede é comparada ao valor real e se gera um erro, que é propagado da saída para a entrada, camada por camada (AMARAL, 2020).

Logo, são realizadas as atualizações dos pesos de acordo com sua contribuição com o erro na saída, sendo chamado de *backpropagation* ou retropropagação, sendo nestes casos considerados algoritmos de aprendizagem supervisionada, conforme Amaral (2020).

Outro ponto que deve ser levado em consideração em Redes Neurais é a necessidade de avaliar a qualidade de seus resultados, isto é, sua capacidade de generalização, uma vez que modelos superadequados (*overfitting*) para uma condição podem ser incapazes de produzir bons resultados em outras redes. Assim, para avaliar sua capacidade de generalização utilizam-se técnicas de validação (SCACCIA, 2020).

A Divisão Treino e Teste simples (*Hold-out*) consiste em dividir o conjunto original de dados em um conjunto de treino e outro de teste. Assim, ajusta-se o modelo ao conjunto de treino e usando o conjunto de teste verifica-se o desempenho do modelo em dados nunca vistos, sendo que usualmente se divide os dados em 80% para treino e 20% para teste (SCACCIA, 2020).

Quando é necessário comparar modelos diferentes, separa-se uma parte dos dados para calcular seus erros e assim modificar seus parâmetros de forma a reduzi-los, como visto na Figura 16 (SCACCIA, 2020).





Fonte: Scaccia (2020) (Adaptado).

Há também a Validação Cruzada (*K-fold*), bastante utilizada para selecionar os melhores modelos em um conjunto de modelos ou ajustar os hiperparametros de um modelo já escolhido, uma vez que resolve o problema da variância do conjunto de validação e produz uma avaliação mais robusta do modelo (SCACCIA, 2020).

Durante a sua execução, é produzido um conjunto de medidas de performance que podem ser resumidas em uma só, sendo esse valor final uma medida mais robusta que apenas avaliar o modelo uma vez, resultando na diminuição do viés que pode haver em um conjunto de validação, resultando em um modelo mais capaz de generalizar para dados nunca vistos (SCACCIA, 2020).

Uma das abordagens mais populares é o *K-Fold* para realizar a validação das redes neurais, sendo que a sua implementação em Python costuma ser feita através de bibliotecas como a *sklearn* e a *Tensorflow*, tendo também a possibilidade de utilização dos núcleos das placas de vídeo através das bibliotecas CUDA e CUDNN (GOOGLE, 2023b).

O algoritmo do K-fold é o seguinte, conforme Scaccia (2020):

- Dividir os dados em dois subconjuntos, um para treino e validação, outro para teste;
- Dividir o conjunto de treino e validação em k grupos de tamanhos iguais (k folds);
- Para cada grupo, repetir k vezes:
  - Escolher um dos k grupos para ser o conjunto de validação (Hold-out);
  - Usar os k-1 grupos restantes para treinar o modelo;

- Após o treino, avaliar o modelo no conjunto de validação e armazenar o desempenho obtido.

- Sumarizar o desempenho do modelo, tendo assim o erro médio ou o desvio padrão dos erros calculados;
- Se preciso, ajustar os hiperparametros e repetir os passos de 1 a 4 até obter um desempenho satisfatório;
- Avaliar o desempenho do modelo no conjunto de teste, sendo essa a medida real da capacidade de generalização do modelo.



A Figura 17 esquematiza a validação cruzada com k = 5.

Fonte: Scaccia (2020) (Adaptado).

O uso da capacidade das placas de vídeo acelera o treinamento quando utilizados em computadores domésticos, uma vez que as placas de vídeo chegam a ter centenas de núcleos de processamento atuando em paralelo, se comparados aos processadores.

Portanto, as redes neurais, dada a sua elevada capacidade de generalização e adaptação, encontram usos na classificação de padrões, *clustering*, aproximação de funções de otimização e previsão ou estimação de valores (AMARAL, 2020).

Assim, dadas tais qualidades, há o potencial de seu emprego em redes de distribuição de água, como pode ser observado nos trabalhos do tópico seguinte.

Figura 17 – *K-Fold*.
#### 3.6 Redes Neurais Artificiais e seu uso em redes de distribuição de água

Um dos usos de Redes Neurais em distribuição de água é detalhado por Dawidowicz (2018) onde as RNA foram empregadas para avaliar pressões e zonas de pressões em redes de distribuição de água.

O tipo de rede usada foi a *Perceptron* multicamada, onde a camada de entrada consiste em 8 neurônios correspondentes ao vetor de entrada X, a primeira camada oculta consiste em 85 neurônios usando a função logística como função de ativação, a segunda camada oculta com 68 neurônios também com a função logística e a camada de saída com 6 neurônios com a função de ativação *Softmax*.

O esquema da rede neural utilizada pode ser visto na Figura 18.



Figura 18 - Rede Neural Artificial utilizada no trabalho.

Fonte: Dawidowicz (2018).

O vetor de entrada X consiste das seguintes variáveis

- X<sub>1</sub>: pressão nos nós da rede;
- X<sub>2</sub>: comprimento da menor distância entre o reservatório e o nó;
- X<sub>3</sub>: diferença de cota entre o reservatório e o nó;
- X<sub>4</sub>: maior diferença de cota entre a menor distância entre o reservatório e o nó;
- X<sub>5</sub>: soma das perdas de pressão entre a menor distância entre o reservatório e o

nó;

• X<sub>6</sub>: maior pressão entre a menor distância entre o reservatório e o nó;

• X<sub>7</sub>: média ponderada da rugosidade absoluta k das tubulações entre o reservatório e o nó;

• X<sub>8</sub>: pressão nos nós.

Segundo Dawidowicz (2018), redes de água frequentemente são avaliadas computacionalmente muitas vezes apenas para cada variável, assim, não obtendo resultados na primeira tentativa. Contudo, dada a sua característica, as redes neurais aprimoram seu funcionamento ao longo do tempo, logo, o autor concluiu que o algoritmo se mostrou uma técnica complementar aos métodos tradicionais de cálculo.

Dawidowicz (2018) também apontou que as técnicas de modelagem neural combinadas com elementos de diagnósticos de processos na rede devem aprimorar o funcionamento de uma rede de distribuição de água, tanto nos custos operacionais como na melhoria das condições operacionais de serviço.

O trabalho de Carvalho, Filho e Porto (2021) traz uma constatação sobre o uso de técnicas de ML no Brasil: As mesmas vem recebendo atenção cada vez maior a medida que pesquisadores começam a compreender que tais algoritmos podem aprender sobre dados de demanda de água e capturar relações não lineares entre demanda e outras variáveis relevantes.

Assim, em seu trabalho, utilizaram as técnicas de Mapas Auto-organizáveis (SOM), Floresta Aleatória (RF) e Redes Neurais Artificiais para avaliar padrões de demanda e desenvolver um modelo de previsão para a cidade de Fortaleza. Foram então utilizadas informações em escala fina (CT – malhas censitárias) e grosseira (CB – blocos censitários).

As redes neurais utilizadas foram do tipo *perceptron* multicamada e ressalta-se aqui uma observação feita por Carvalho, Filho e Porto (2021) que tem relevância para esta tese: apontam que redes multicamadas *perceptron* com uma ou duas camadas ocultas são suficientes para solucionar qualquer problema não-linear.

Carvalho, Filho e Porto (2021) afirmam que mais camadas podem acarretar em maior tempo computacional e um set de dados maior para treinamento. Assim, utilizaram uma rede com apenas uma camada oculta. As redes neurais tiveram um desempenho ligeiramente melhor na escala fina, e no geral, as técnicas de ML empregadas conseguiram uma boa capacidade de explicação da demanda de água em Fortaleza.

O uso de Redes Neurais Artificiais como meio de detecção e gestão de perdas em redes de distribuição de água é reportado por Hu *et al.* (2021), no qual foram utilizadas as técnicas de

*clustering* baseados em densidade espacial associadas a Redes Neurais Convolucionais Multiescala para a detecção e controle de perdas.

Os resultados, se comparados a técnicas de vetor de suporte de máquina (SVM), classificador Bayes (NBC) e k-próximo vizinho (KNN) foram 78%, 72% e 28% superiores. Contudo, o artigo chama a atenção pela sua conclusão, onde os autores pretendem em estudos futuros adicionar algoritmos de otimização.

Hu *et al.* (2021) mencionam dentre eles os algoritmos genéticos, para otimizar as estruturas das redes neurais e assim comparar os resultados com os obtidos pelo trabalho, demonstrando a possibilidade de associação de algoritmos genéticos com redes neurais para obtenção de melhores resultados.

Outra abordagem com uso das redes neurais é a de Xing e Sela (2022), os quais utilizaram Redes Neurais para Grafos para estimar vazões e pressões em regiões não monitoradas de uma rede, utilizando a linguagem Python e o simulador hidráulico EPANET. Os testes foram realizados em uma rede teórica de 51 nós, 65 tubulações e um reservatório de nível fixo, onde pode-se observar na Figura 19 os pontos de monitoramento.



Figura 19 – Rede teórica para os testes.

Fonte: Adaptado de Xing e Sela (2022).

Os autores ressaltam a robustez das Redes Neurais para Grafos, enfatizando que em trabalhos futuros deve-se checar a escalabilidade do modelo, que trará vantagens por permitir um monitoramento mais econômico da rede, com menos pontos de monitoramento ou mesmo uma redundância, em caso de falhas.

O conceito de cidades inteligentes é caracterizado pela interação entre três componentes: tecnologia, pessoas e instituições, que são avaliadas e desenvolvidas por seis características distintas: economia, população, governança, mobilidade, meio-ambiente e qualidade de vida (CORAGGIO; HAN; TRYFONAS, 2023).

Assim, segundo os autores, ainda que a água seja uma parte essencial da infraestrutura urbana, muitas vezes é sonegada pois muitos projetos de cidades inteligentes não incluem a gestão inteligente da água, um erro gravíssimo, uma vez que a medida que as ações antrópicas progridem e a população cresce e ocorre a melhoria de qualidade de vida, a água torna-se um recurso cada vez mais escasso.

Portanto, nesse sentido, surge a hidroinformática, que é o elemento de ligação entre as cidades inteligentes e a gestão inteligente da água, se aproveitando da cada vez mais difundida Internet das Coisas, que permite que sensores possam enviar dados em tempo real para que os mesmos possam ser processados (CORAGGIO; HAN; TRYFONAS, 2023).

A hidroinformática vem cada vez mais se difundindo nos últimos anos e espera-se que com as novas tecnologias, venha a permitir uma gestão inteligente dos recursos hídricos sem esquecer das preocupações ambientais e sociais que o uso da água naturalmente possui (CORAGGIO; HAN; TRYFONAS, 2023).

Assim, Predescu *et al.* (2020) utilizaram algoritmos de ML tradicionais e Redes Neurais para criar um sistema supervisório para estações de bombeamento em uma rede de distribuição inteligente. Aqui, além de técnicas tradicionais de ML como árvores de decisão e floresta aleatória foram usados o modelo denso, de redes neurais artificiais com múltiplas camadas ocultas e as redes neurais recorrentes.

As redes neurais recorrentes são na realidade redes neurais artificiais organizadas em células que incorporam o conceito de memória para processar sequencias ou entradas de dados, se destacando as LSTM (*Long Short Term-Memory* – Memória de curto e longo prazo).

As LSTM utilizam componentes de dois estados para aprender o vetor de entrada de dados: um de curto prazo, representada pelas células ocultas e as de longo prazo, representadas pelo estado interno das células. A rede neural utilizada foi uma Rede Neural Recorrente com três camadas LSTM ocultas e a camada de saída. Os autores chegaram a desenvolver um modelo experimental físico para testar o conceito.

As Redes Neurais Recorrentes superaram os modelos Denso, Floresta Aleatória (RF) e Árvores de Decisão (DT), conforme Figura 20.



Figura 20 - Acurácia dos modelos

Fonte: Predescu et al. (2020).

Predescu *et al.* (2020) então constataram a superioridade das redes neurais recorrentes, reforçando que técnicas de aprendizado reforçado como as Redes Neurais, em especial as recorrentes, possuem resultados promissores para estruturas de controle altamente adaptáveis, essenciais em futuras cidades inteligentes, onde cada vez mais se faz necessário um controle cada vez mais preciso da distribuição de recursos como água e energia para satisfazer as necessidades populacionais.

Até então, foram encontradas apenas abordagens de operação utilizando sistemas supervisórios como Filho *et al.* (2018) ou plataformas de Internet das Coisas (IoT) como em Predescu *et al.* (2020), sendo que nesses casos não se considerou a possibilidade de otimização utilizando algoritmos genéticos ou qualquer outra técnica existente para tal.

Em relação as redes neurais, muitos artigos trazem abordagens relativas a modelagens e previsão de demanda, como pode ser visto em Carvalho, Filho e Porto (2021) ou até mesmo a previsão de falhas, como em Snider e Mcbean (2020), contudo, não se encontrou na literatura trabalhos que associassem o cálculo hidráulico do EPANET, a otimização dos algoritmos genéticos e o aprendizado das redes neurais.

O diferencial da tese a ser elaborada pelo discente consiste no fato que até o presente momento não foram observados trabalhos acadêmicos que buscassem desenvolver um algoritmo de otimização utilizando algoritmos genéticos e operação de rede utilizando Redes Neurais Artificiais multicamada e a bibliotecas como a *EPANET2TOOLKIT* em linguagem R, empregada em Python através da biblioteca *rpy2*, com vistas a operação ótima da rede de distribuição de água e realizar o aprendizado conforme a oscilação das demandas.

#### 4. METODOLOGIA

O trabalho é dividido em etapas, conforme o fluxograma ilustrado na Figura 21.



#### 4.1 Etapa 1 – Elaboração da rotina de cálculo hidráulico

A etapa 1 consistiu na elaboração de uma rotina de cálculo hidráulico utilizando o pacote "epanet2toolkit" na linguagem R, uma vez que se trata do uso do EPANET via toolkit, uma ferramenta de cálculos para redes hidráulicas conhecida por sua confiabilidade nos resultados. Contudo, para permitir seu uso em linguagem Python, fez-se necessário o uso da biblioteca "*rpy2*", que permite utilizar pacotes e comandos da linguagem R no Python.

Tal opção foi adotada pois o grupo de pesquisa no qual esta tese está inserida faz uso da linguagem R, além de as bibliotecas disponíveis para uso do EPANET em Python não terem se mostrado confiáveis em iterações, apresentando uma falha onde a cada 167 iterações o programa de cálculo hidráulico interrompia seu funcionamento, inviabilizando seu uso nas etapas 2 e 3, que exigiram, ao todo, 50000 iterações.

Contudo, o formato das saídas do pacote R serem em "*arrays*" individuais para cada valor de pressão, demanda, e outros parâmetros da rede consultados pelo algoritmo exigiu que

fossem realizadas conversões através da biblioteca "*numpy*", com o comando "*np.asarray*", convertendo, então, os "*arrays*" individuais em um "*array*" simples. Assim, há a entrada dos dados da rede a ser simulada em formato *.inp* através de interface de janelas via biblioteca "*PySimpleGUI*", como pode ser observado na Figura 22.



Figura 22 - Interface gráfica de entrada de dados.

Fonte: O autor.

O fluxograma da Figura 23 mostra o funcionamento da rotina de cálculo hidráulico através dos acionamentos dos pacotes e bibliotecas necessários ao seu funcionamento. A rotina de cálculo, então, será utilizada nas fases posteriores desta tese, podendo gerar resultados diretamente no terminal ou em arquivos externos em formato *.txt* ou *.xls*, conforme necessário.



Figura 23 - Fluxograma da rotina de cálculo hidráulico



# 4.2 Etapa 2 – Elaboração das Redes de Distribuição de Água teóricas para o estudo

As redes de distribuição de água utilizadas neste trabalho foram elaboradas possuindo 13 nós, 2 RNFs, 2 bombas e 3 válvulas, de modo que as cotas dos nós e dos reservatórios representassem uma região de topografia irregular, condição desfavorável para sua operação. Foram então criadas duas redes, T1 e T2, descritas a seguir.

A rede T1 possui o seguinte arranjo como pode se observar na Figura 24.





Fonte: O autor.

A Tabela 1 mostra os valores de cota dos nós e dos RNF.

|          | -        |               |
|----------|----------|---------------|
| ID do nó | Cota (m) | Demanda (l/s) |
| 3        | 845      | 1             |
| 4        | 840      | 1             |
| 5        | 835      | 2             |
| 6        | 830      | 1             |
| 7        | 825      | 2             |
| 8        | 830      | 3             |
| 9        | 810      | 2             |
| 10       | 805      | 1             |
| 11       | 815      | 1             |
| 12       | 800      | 1             |
| 13       | 805      | 1             |
| 14       | 915      | 2             |

Tabela 1 - Dados de cotas e demandas da rede T1.

| 15    | 920 | 3   |  |  |
|-------|-----|-----|--|--|
| RNF 1 | 890 | N/A |  |  |
| RNF 2 | 890 | N/A |  |  |
|       |     |     |  |  |

Fonte: O autor.

Na Tabela 2 encontram-se os valores referentes as tubulações da rede.

| ID do link     | Comprimento (m) | Diâmetro (mm) | Rugosidade (mm) |  |
|----------------|-----------------|---------------|-----------------|--|
| 3              | 100             | 100           | 0,06            |  |
| 4              | 100             | 100           | 0,06            |  |
| 5              | 150             | 100           | 0,06            |  |
| 6              | 100             | 100           | 0,06            |  |
| 7              | 100             | 100           | 0,06            |  |
| 8              | 100             | 75            | 0,06            |  |
| 9              | 100             | 75            | 0,06            |  |
| 10             | 100             | 75            | 0,06            |  |
| 12             | 150             | 50            | 0,06            |  |
| 26             | 500             | 200           | 0,06            |  |
| 27             | 100             | 50            | 0,06            |  |
| 16             | 300             | 200           | 0,06            |  |
| 18             | 100             | 100           | 0,06            |  |
| Bomba 1        | N/A             | N/A           | N/A             |  |
| Bomba 2        | N/A             | N/A           | N/A             |  |
| Válvula 1 (11) | N/A             | 50            | N/A             |  |
| Válvula 2 (13) | N/A             | 50            | N/A             |  |
| Válvula 3 (14) | N/A             | 75            | N/A             |  |

Tabela 2 - Dados das tubulações e válvulas da rede.

Fonte: O autor.

A rede T2 trata-se de um novo arranjo das tubulações da rede T1, fazendo com que se tornasse mais ramificada ao deslocar a malha dos nós 9, 10, 11, 12 e 13 para os nós 3, 4, 5, 6, 7 e 8, além do reposicionamento da válvula 1 (11 no desenho da rede), que, como pode ser observado na Figura 25.





Fonte: O autor.

Os valores dos nós estão apresentados na Tabela 3.

| ID do nó | Cota (m) | Demanda (l/s) |
|----------|----------|---------------|
| 3        | 845      | 1             |
| 4        | 840      | 1             |
| 5        | 835      | 2             |
| 6        | 830      | 1             |
| 7        | 825      | 2             |
| 8        | 830      | 3             |
| 9        | 810      | 2             |
| 10       | 805      | 1             |
| 11       | 815      | 1             |
| 12       | 800      | 1             |
| 13       | 805      | 1             |
| 14       | 915      | 2             |
| 15       | 920      | 3             |

Tabela 3 - Dados de cotas e demandas da rede T2.

| RNF 1           | 890 | N/A |  |
|-----------------|-----|-----|--|
| RNF 2           | 890 | N/A |  |
| Fonte: O autor. |     |     |  |

De forma análoga, os valores das tubulações relativos ao comprimento, diâmetro e rugosidade estão contidos na Tabela 4.

| ID do link     | Comprimento (m) | Diâmetro (mm) | Rugosidade (mm) |  |
|----------------|-----------------|---------------|-----------------|--|
| 3              | 100             | 100           | 0,06            |  |
| 4              | 100             | 100           | 0,06            |  |
| 5              | 150             | 100           | 0,06            |  |
| 6              | 100             | 100           | 0,06            |  |
| 7              | 100             | 100           | 0,06            |  |
| 26             | 500             | 200           | 0,06            |  |
| 16             | 300             | 200           | 0,06            |  |
| 18             | 100             | 100           | 0,06            |  |
| 9              | 150             | 75            | 0,06            |  |
| 12             | 150             | 75            | 0,06            |  |
| 15             | 100             | 75            | 0,06            |  |
| Bomba 1        | N/A             | N/A           | N/A             |  |
| Bomba 2        | N/A             | N/A           | N/A             |  |
| Válvula 1 (11) | N/A             | 50            | N/A             |  |
| Válvula 2 (13) | N/A             | 75            | N/A             |  |
| Válvula 3 (14) | N/A             | 75            | N/A             |  |

Tabela 4 - Dados das tubulações e válvulas da rede T2.

Fonte: O autor.

Para ambas as redes, utilizaram-se as mesmas configurações de bomba, inclusive sua curva característica, dada pela equação 4.

$$P = 41,00 - 0,004017 \times Q^{2,19} \tag{4}$$

A operação das bombas pelos algoritmos a seguir visa apenas controlar a sua rotação, e não seu ponto de maior eficiência, simulando bombas de rotação variável alterando sua rotação conforme a necessidade da rede, não havendo a preocupação de se alterar curvas ou potencia do motor.

#### 4.3 Etapa 3 – Escolha de fatores de otimização e Algoritmos Genéticos

Para a operação ótima das redes de distribuição de água a serem tratadas nesta tese, foram então elencados os seguintes parâmetros: Reservatório de Nível Fixo (RNF), pressão de saída nas Válvulas de Redução de Pressão (VRP) e porcentagem de rotação das bombas.

A variação de RNF, no caso, deve ser entendida como se fosse uma variação provocada pelo bombeamento na saída dos reservatórios, sendo feita em metros de coluna d'água (m.c.a.).

Quanto as VRP, considera-se a variação da pressão a sua jusante causada pela sua abertura ou fechamento, também em metros de coluna d'água (m.c.a.). Para as bombas, considera-se o proporcional de sua rotação, sendo o valor 0 para a bomba parada e 1 para 100% da sua rotação nominal.

Assim, para se obter os pontos ótimos dos parâmetros anteriormente mencionados, desenvolveu-se uma rotina computacional de otimização utilizando algoritmos genéticos. O algoritmo genético foi desenvolvido objetivando atingir pontos ótimos dos parâmetros, mantendo as pressões entre 10 e 50 m.c.a. e buscando minimizar a pressão média da rede, quando possível.

Sua função objetivo consiste em minimizar a pressão média da rede, estando sujeita aos limites impostos pela norma NBR 12218, sendo que para esta tese foi considerado o limite superior de 50 m.c.a. A equação 5 mostra a função objetivo, junto de suas restrições, sendo Pi a pressão em cada nó e n o número de nós da rede.

Min. F. O. = 
$$\frac{\sum_{i=0}^{n} Pi}{n}$$
, sujeito a  $Pi \ge 10 m. c. a. e Pi \le 50 m. c. a.$  (5)

O algoritmo genético é descrito pelo fluxograma da Figura 26. As simulações são feitas pela rotina de cálculo hidráulico descrita na Figura 22 e a quantidade de gerações pode ser ajustada conforme a necessidade.



Figura 26 - Fluxograma do Algoritmo Genético

Fonte: O autor.

De modo a se evitar uma maior complexidade na rotina computacional que pudesse impactar na sua velocidade de execução, optou-se por um algoritmo genético de simples objetivo no qual as condições de contorno referente as pressões mínima e máxima da rede, bem como a redução da pressão média estão contidas nas restrições de sua função objetivo.

Este não seria um problema para a Rede Neural de operação, uma vez que ela obtém resultado apenas para um horário, contudo, seria uma grave questão quando utilizado para a geração dos parâmetros da Rede Neural de Previsão, uma vez que precisaria fazê-lo 72 vezes (uma por hora), sendo que para cada hora o computador utilizado levava cerca de 15 minutos para obter os resultados, totalizando aproximadamente 18 horas para gerar um conjunto de dados completo.

Uma peculiaridade na execução deste Algoritmo Genético de Otimização é que para a Rede Neural de Previsão, foi utilizada o conceito de semente aleatória. Foram empregados quatro computadores, de mesmo modelo, marca e configurações, do Laboratório de Hidráulica Computacional da UNIFEI para executarem, simultaneamente, o algoritmo.

Como para gerar os valores aleatórios se utilizou o comando *random.uniform* da biblioteca *random* do Python, em cada computador será então iniciado um valor diferente para cada execução do algoritmo, possibilitando que cada máquina encontrasse respostas diferentes, o que permitiu um ganho de tempo, pois em apenas 18 horas de funcionamento foram obtidos 4 conjuntos de dados e assim, a seleção dos melhores parâmetros.

Para comparação, se fosse executado 4 vezes seguidas, um computador apenas levaria cerca de 72 horas (3 dias), algo impraticável não apenas pela demora na obtenção dos resultados, mas também pelos transtornos que potencialmente seriam gerados uma vez que o laboratório é utilizado para aulas e demais pesquisas, bem como os riscos inerentes a um longo período de funcionamento do computador, como interrupções de energia, travamentos, aquecimento, dentre outros que poderiam comprometer a obtenção dos resultados.

#### 4.4 Etapa 4 – Elaboração das Redes Neurais Artificiais

Para este trabalho foram desenvolvidas duas redes neurais, descritas a seguir:

a) Redes Neurais Artificiais de Operação:

Esta rede neural tem por característica principal trabalhar com as demandas de apenas um horário específico, ou seja, ela não visa receber um conjunto de dados como é usual, mas sim aprender a operar apenas em um ponto específico.

Optou-se por tal abordagem devido a sua implementação mais simples e mais rápida obtenção de resultados, tanto pelo Algoritmo Genético de Otimização (AGO) que precisa produzir resultados para apenas um horário, como também por não utilizar bibliotecas especificas, além de permitir ajustes mais facilmente, permitindo, portanto, que se validasse a possibilidade de uso das redes neurais como elemento de controle em redes de distribuição de água.

Ela recebe diretamente os parâmetros ótimos de operação obtidos no algoritmo genético, que é incorporado a este algoritmo e recebe em sua camada de entrada as demandas, produzindo em sua saída os parâmetros de RNF, VRP e bomba na camada de saída. É do tipo *perceptron* multicamada, com uma camada oculta, sendo a função de ativação em todos os neurônios a função linear.

Para se evitar discrepâncias geradas pelas ordens de grandeza diferentes entre as variáveis, realizou-se a normalização das variáveis através da equação 6, através da técnica MinMax, na qual a normalização se baseia na amplitude dos valores.

$$Valor Normalizado = \frac{Valor - Valor_{minimo}}{Valor_{máximo} - Valor_{minimo}}$$
(6)

A quantidade de neurônios na camada de entrada é igual a de nós, uma vez que é a quantidade de demandas a serem processadas, enquanto a camada de saída é igual a soma das RNFs, VRPs e bombas disponíveis na rede de distribuição, sendo que a camada oculta possui a mesma quantidade de neurônios da camada de entrada.

Caso a rede não possua VRPs ou bombas, não há problema em seu funcionamento, uma vez que o algoritmo dispõe de mecanismos para verificar suas existências ou não, bem como as quantidades, além de identificar também a quantidade de nós, sendo requisito fundamental para

o funcionamento a existência de pelo menos um RNF, um nó e uma tubulação que faça sua ligação.

Por utilizar a função linear como função de ativação, não é possível utilizar o gradiente de descida, razão pela qual adotou-se a diferença entre os parâmetros ótimos e os calculados pela rede neural, para realizar o cálculo dos pesos novos na camada de saída, conforme equação 7.

Pesos novos Camada de Saída = Parâmetro ótimo - Parâmetro obtido pela RNAOp(7)

O cálculo dos pesos novos da camada oculta é feito com a diferença entre as pressões ótimas e as pressões calculadas pela rotina de cálculos hidráulicos incorporada a mesma como o erro, como pode ser visto na equação 8.

$$Pesos novos Camada Oculta = Pressões ótimas - Pressões obtidas pela RNAOp$$
(8)

Logo, quanto maior o erro, maior será o ajuste feito pela rede neural e vice-versa. Para evitar um efeito análogo ao da explosão de gradiente, isto é, quando os ajustes da rede neural passam a ser descontroladamente altos a ponto de inviabilizar os resultados, adotou-se uma taxa de aprendizagem de 0,001 (0,1%), sendo fixada a quantidade de épocas em 30000.

Aqui, cabe relembrar: as épocas em uma rede neural são análogas as gerações em um algoritmo genético, ou seja, suas iterações. A equação 9 descreve o funcionamento das Redes Neurais de Operação, mais precisamente a obtenção dos valores de saída dos parâmetros.

 $Par \hat{a} metro_{j} = \sum_{1}^{j=elementos \ de \ saida} \left( \sum_{1}^{i=n \delta s} demanda_{i} \times peso \ novo \ Camada \ Oculta_{i \times i} \right) \times peso \ novo \ Camada \ de \ Saida_{i \times j}$ (9)

O fluxograma da Figura 27 mostra a sequência de seu funcionamento.



Figura 27 - Redes Neurais de Operação

Fonte: O autor.

A Figura 28 mostra um diagrama de neurônios das Redes Neurais de operação para uma rede com 13 nós, 2 RNFs, 2 bombas e 3 VRPs, no caso tanto para a rede de distribuição teórica T1 como para a T2, ambas com 13 nós, 2 bombas, 2 RNFs e 3 VRPs, totalizando 13 neurônios na camada de entrada, 13 na camada oculta e 7 na camada de saída.





Fonte: O autor.

Uma das grandes vantagens deste algoritmo de Redes Neurais é que o mesmo é praticamente capaz de rodar quaisquer rede em formato *.inp* do EPANET, desde que possua no mínimo um RNF, uma tubulação e um nó, uma vez que possui mecanismos para a identificação dos seus elementos, bem como suas quantidades nas redes, tornando o algoritmo versátil para estudos em redes de diferentes configurações.

Uma eventual modificação seria simples e rápida para otimizar e operar outros parâmetros como Reservatórios de Nível Variável, Válvulas de Pressão Contínua, dentre outros, sendo até mesmo capaz de operar parâmetros não relacionados diretamente a operação como rugosidade, diâmetro e demandas.

Tais modificações, a despeito de não serem diretamente relacionadas a esta tese, podem permitir estudos posteriores incluindo outros parâmetros, calibrações ou sobre configurações ótimas para a criação ou expansão de redes de distribuição de água, possuindo um potencial para compor, por si só, um futuro algoritmo de otimização de redes, sem a assistência dos Algoritmos Genéticos.

b) Redes Neurais Artificiais de Previsão de parâmetros operacionais:

Esta rede neural tem como característica a capacidade de receber um conjunto de dados ("*dataframe*") com no mínimo 72 horas de dados de demandas da rede e dados de parâmetros operacionais (RNF, VRP e bombas) e com isso fazer previsão para as próximas 24 horas baseado nos dados das últimas 24 horas de demanda.

Os parâmetros ótimos são gerados pelo algoritmo genético de otimização, este com 50000 gerações, que produz um *dataframe* com as demandas utilizadas e os parâmetros obtidos em formato *.xls*. Após, a rotina de redes neurais é executada, que foi elaborada utilizando as bibliotecas "*tensorflow*" e "*keras*".

A grande vantagem de tais bibliotecas reside no fato que, para além de sua otimização em termos de desempenho e a possibilidade de inúmeros arranjos com funções de ativação, camadas ocultas, dentre outras, a possibilidade de utilizar a aceleração de placa gráfica, quando disponível no computador, permitindo uma maior velocidade de execução, em especial quando do uso de conjunto de dados extensos.

De forma similar a Rede Neural de Previsão, foi necessária a normalização das variáveis. Contudo, aqui foi empregada a técnica de normalização via média e desvio-padrão, como pode ser visto na equação 10.

$$X_{normalizado} = \frac{X - \bar{X}}{\sigma_X} \tag{10}$$

Para esta rede neural, foi estabelecido 30000 épocas e utilizado o *dataframe* gerado anteriormente com 72 horas de demandas para uma rede de 13 nós, 2 RNFs, 2 bombas e 3 VRPs.

A rede neural foi treinada de hora em hora (batch = 1), sendo estabelecidas 24 horas (1 dia) para treinamento, 24 horas para teste e 24 horas para validação cruzada dos resultados (k-fold) com k = 3, portanto sendo 1/3 para cada etapa. Trata-se de um arranjo pouco usual, uma vez que segundo Scaccia (2020), costuma-se usar 80% e 20% para teste.

Não existem recomendações explicitas na literatura acerca das porcentagens a serem utilizadas, uma vez que costumam ser decididas empiricamente, contudo, a divisão de 1/3 dos dados para cada etapa foi a que se mostrou com melhor desempenho nos testes realizados.

Adicionalmente, tal arranjo faz sentido nas condições impostas pelo trabalho, uma vez que a rede aprenderia em um dia, validaria seus dados no dia seguinte e realizaria o teste no dia final, uma vez que devido a variação de consumo durante o dia, treinar a rede com apenas algumas horas de um dia completo poderia produzir distorções graves na sua operação.

A taxa de aprendizagem estabelecida foi de 0,01 (1%) e a RNA possui 7 camadas ocultas interligadas entre si (função "*dense*" do "*keras*"), sendo que cada camada oculta possui 128 nós e, sequencialmente, cada camada oculta possui como camada de saída um parâmetro.

A função de ativação utilizada é a unidade linear retificada (*ReLU*) e ao fim da execução da rede neural, a rotina de cálculo hidráulico é acionada para utilizar os parâmetros previstos com as demandas das últimas 24 horas e os resultados são salvos em arquivo externo. O fluxograma da Figura 29 explica o funcionamento do algoritmo.



Figura 29 - RNA de previsão.

Fonte: O autor.

Pela grande quantidade de nós nas camadas ocultas, que tornaria impraticável a sua exibição através de diagrama de neurônios como no caso das Redes Neurais de Operação, o

diagrama referente as Redes Neurais de Previsão é mostrado em diagrama de blocos, conforme a Figura 30.



Figura 30 - Diagrama de blocos da RNA de Previsão.

# 4.5 Cálculo das perdas nas redes de distribuição de água

O cálculo das perdas realizado nesta tese é baseado em Tucciarelli, Criminisi e Termini (1999), que consideram que as perdas em uma rede de distribuição de água são proporcionais aos pequenos vazamentos ao redor de cada nó, elevados a uma potência *a* da pressão no referido nó.

O expoente *a* possui um valor mínimo de 0,5, correspondendo ao valor constante da área dos pequenos vazamentos ao redor dos nós, sendo que os valores podem ser ajustados para se adequar as características das redes.

Para esta tese, foi adotada uma abordagem similar a de Silva et al. (2020), onde se utiliza o mesmo conceito de Tucciarelli, Criminisi e Termini (1999) aplicado a pressão média da rede, resultando na equação 11.

$$\sum_{i=1}^{nos} Perdas = Pmedia^{0,5} \times 7,27 \tag{11}$$

Diferente de Silva et al. (2020), o cálculo das perdas não é feito direto no algoritmo, mas sim no *dataset* gerado em planilha *excel*. Tal solução foi adotada para se evitar custo computacional na geração dos *datasets* nos algoritmos genéticos e nas redes neurais utilizadas no trabalho.

# 5. RESULTADOS E DISCUSSÃO

# 5.1 Resultados dos cenários-base

O cenário-base para a T1 em relação as pressões, está apresentado na Tabela 5.

| ID do nó | Pressão (m.c.a.) |
|----------|------------------|
| 3        | 44,69            |
| 4        | 49,51            |
| 5        | 54,23            |
| 6        | 59,58            |
| 7        | 64,49            |
| 8        | 59,83            |
| 9        | 79,06            |
| 10       | 83,32            |
| 11       | 74,59            |
| 12       | 85,70            |
| 13       | 79,61            |
| 14       | 15,49            |
| 15       | 28,22            |
|          |                  |

Tabela 5 - Cenário-base para a rede T1.

Fonte: O autor.

Já o cenário-base para a T2 em relação as pressões, está apresentado na Tabela 6.

| ID do nó | Pressão (m.c.a.) |
|----------|------------------|
| 3        | 44,71            |
| 4        | 49,46            |
| 5        | 54,48            |
| 6        | 59,52            |
| 7        | 64,40            |
| 8        | 59,82            |
| 9        | 50,00            |
| 10       | 20,00            |
| 11       | 74,73            |
| 12       | 59,90            |
| 13       | 20,00            |
| 14       | 15,44            |
| 15       | 28,47            |

Tabela 6 – Cenário-base para a rede T2.

Fonte: O autor.

Pode-se observar um problema em comum aos cenários-base, que é a existência de pontos acima da pressão máxima estabelecida pela norma, estabelecida em 50 m.c.a.

Assim, serão apresentados os resultados obtidos pela Rede Neural de Operação, cujo objetivo foi o de aprender a operar na melhor condição possível obtida pelo Algoritmo Genético de otimização para um determinado horário e após, os resultados para a operação nas últimas 24 horas obtidas pela Rede Neural de Previsão.

### 5.2 Resultados para a Rede Neural de Operação.

A Rede Neural de Operação é um algoritmo produto deste trabalho, cujo funcionamento é descrito pelo fluxograma da Figura 30.



Figura 31 - Algoritmo da RNA de Operação.

Fonte: Autor (2023).

O algoritmo funciona da seguinte forma: Seleciona-se o arquivo *.inp* da rede a ser submetida a operação (no caso, as redes T1 e T2) e então se estabelece, através do terminal, a faixa mínima e máxima dos parâmetros a serem otimizados, sendo que caso a rede não disponha do referido parâmetro – por exemplo: uma rede sem bombas – o algoritmo irá ignorá-los.

Assim, após a otimização pelo algoritmo genético, os dados ótimos obtidos irão para a Rede Neural de Operação, a qual irá executar 30000 épocas para então obter os parâmetros previstos para as demandas do horário estabelecido, submetendo os parâmetros ao cálculo hidráulico e então realizando o cálculo do erro face ao resultado ótimo obtido pelo algoritmo genético.

Em seguida, conforme o erro, realiza-se o recálculo dos pesos e reinicia-se a operação na Rede Neural até que se atinjam todas as épocas. Para a rede T1, foram obtidos os seguintes resultados, incluindo o cálculo das perdas, como pode ser observado na Tabela 7, onde "AG" se refere aos resultados obtidos pelo algoritmo genético e "RNAOp" aos resultados obtidos pela Rede Neural Artificial de Operação.

| Base T1        |                     | AG T1          |                     | RNAOpT1        |                     |
|----------------|---------------------|----------------|---------------------|----------------|---------------------|
| ID do nó       | Pressão<br>(m.c.a.) | ID do nó       | Pressão<br>(m.c.a.) | ID do nó       | Pressão<br>(m.c.a.) |
| 3              | 44,69               | 3              | 10,79               | 3              | 10,80               |
| 4              | 49,51               | 4              | 15,61               | 4              | 15,62               |
| 5              | 54,23               | 5              | 20,33               | 5              | 20,35               |
| 6              | 59,58               | 6              | 15,12               | 6              | 15,13               |
| 7              | 64,49               | 7              | 20,04               | 7              | 20,04               |
| 8              | 59,83               | 8              | 12,55               | 8              | 12,56               |
| 9              | 79,06               | 9              | 32,61               | 9              | 32,62               |
| 10             | 83,32               | 10             | 36,87               | 10             | 36,88               |
| 11             | 74,59               | 11             | 27,55               | 11             | 27,55               |
| 12             | 85,70               | 12             | 39,26               | 12             | 39,26               |
| 13             | 79,61               | 13             | 33,17               | 13             | 33,17               |
| 14             | 15,49               | 14             | 38,18               | 14             | 38,19               |
| 15             | 28,22               | 15             | 42,50               | 15             | 32,89               |
| média (m.c.a.) | 59 <i>,</i> 87      | média (m.c.a.) | 26,51               | média (m.c.a.) | 25,77               |
| perdas (%)     | 56,25%              | perdas (%)     | 37,43%              | perdas (%)     | 36,91%              |

Tabela 7 - Resultados para a rede T1.

Fonte: O autor.

Para o sistema de distribuição de água T1, destacam-se os resultados relativos as pressões obtidas pelo Algoritmo Genético, onde observa-se uma redução nas pressões da rede, que passaram a atender integralmente o disposto na norma NBR 12218 (ABNT, 2017).

Deve-se notar, porém, que o nó 15 apresentou um ligeiro aumento na sua pressão, no caso, um aumento de 14,28 m.c.a. em comparação ao cenário-base. A despeito desse aumento, a pressão média caiu 33,36 m.c.a., e as perdas sofreram uma redução de 18,82 pontos percentuais, apresentando uma redução de 33,46 % em relação ao cenário-base.

Os resultados obtidos pelas Redes Neurais Artificiais mostraram uma redução na pressão e nas perdas em comparação aos obtidos pelos Algoritmos Genéticos, inclusive com o nó 15 apresentando um aumento de 4,67 m.c.a. em relação ao cenário base.

Observando-se os valores de pressão média, nota-se uma redução de 0,73 m.c.a., resultando em uma perda 0,52% menor e uma redução de 0,93% em relação aos resultados obtidos pelos Algoritmos Genéticos.

Os resultados podem indicar um potencial das Redes Neurais de Operação para incorporar outros parâmetros de supervisão que permitam maior aderência dos demais nós aos valores de pressão da norma, além dos resultados dos Algoritmos Genéticos.

Agora, para o sistema de distribuição de água T2, os resultados estão na Tabela 8 juntamente com suas perdas.

| Base T2        |                     | AG T2          |                     | RNAOpT2        |                     |
|----------------|---------------------|----------------|---------------------|----------------|---------------------|
| ID do nó       | Pressão<br>(m.c.a.) | ID do nó       | Pressão<br>(m.c.a.) | ID do nó       | Pressão<br>(m.c.a.) |
| 3              | 44,71               | 3              | 17,56               | 3              | 17,57               |
| 4              | 49,46               | 4              | 20,97               | 4              | 20,98               |
| 5              | 54,48               | 5              | 24,49               | 5              | 24,50               |
| 6              | 59,52               | 6              | 25,65               | 6              | 25,65               |
| 7              | 64,40               | 7              | 30,91               | 7              | 30,92               |
| 8              | 59,82               | 8              | 21,18               | 8              | 21,18               |
| 9              | 50,00               | 9              | 15,25               | 9              | 10,69               |
| 10             | 20,00               | 10             | 20,51               | 10             | 10,69               |
| 11             | 74,73               | 11             | 36,09               | 11             | 36,10               |
| 12             | 59,90               | 12             | 25,15               | 12             | 20,59               |
| 13             | 20,00               | 13             | 10,69               | 13             | 10,69               |
| 14             | 15,44               | 14             | 16,00               | 14             | 16,01               |
| 15             | 28,47               | 15             | 29,42               | 15             | 9,51                |
| média (m.c.a.) | 46,23               | média (m.c.a.) | 22,61               | média (m.c.a.) | 19,62               |
| perdas (%)     | 49,43%              | perdas (%)     | 34,57%              | perdas (%)     | 32,20%              |

Tabela 8 - Resultados para a rede T2

Fonte: O autor.

Assim como na rede T1, o Algoritmo Genético obteve uma redução da pressão média no sistema de distribuição de água, passando de 46,23 m.c.a. no cenário base para 22,61 m.c.a.,

resultando na redução das perdas de 49,43% para 34,57%, uma redução de 14,86 pontos percentuais e redução de 30,07% em relação ao cenário base.

As Redes Neurais obtiveram uma pressão média de 19,62 m.c.a. e 32,20% de perdas, sendo 2,36 pontos percentuais inferior aos algoritmos genéticos e representando numa melhoria de 34,85%.

Destacam-se os nós 9, 10 e 12, cujas pressões foram 4,56 m.c.a., 9,82 m.c.a. e 4,56 m.c.a. inferiores aos obtidos pelos Algoritmos Genéticos, respectivamente. No entanto, o nó 15 obteve uma pressão de 9,51 m.c.a., ligeiramente inferior aos 10 m.c.a. estabelecidos pela NBR 12218.

Como o nó 15 é suprido pela Bomba 2, é possível que algum fator não esteja permitindo um ajuste adequado da referida bomba pela Rede Neural de Operação, o que não ocorre na rede T1. Assim, há a possibilidade que a malha formada pelos nós 3, 4, 5, 6, 7 e 8 na rede T2 possa ter criado alguma condição que a Rede Neural de Operação não tenha conseguido contornar satisfatoriamente.

Assim, pode-se recomendar que o algoritmo incorpore futuramente algum dispositivo que permita pequenas correções nos parâmetros para tais situações, permitindo pequenos ajustes nos parâmetros de bomba para suprir pequenas deficiências, menores que 0,5 m.c.a.

Uma comparação entre os resultados obtidos da rede T1 com a rede T2 é pertinente, uma vez que trata-se de comparação entre redes cujas cotas e demandas são idênticas, variando apenas o arranjo de tubulações, sendo a T1 concentrando a malha mais na região baixa e a T2, na região alta.

Tal diferença influi no desempenho de válvulas, uma vez que na rede T1 as mesmas estão localizadas em região malhada, que tende a redistribuir a pressão da rede, enquanto na T2 as válvulas estão em região ramificada, que potencializa seu desempenho. Portanto, a diferença de pressões entre as redes pode ser observada no gráfico da Figura 30.



Figura 32 - Comparação dos resultados.

#### Fonte: O autor.

Observa-se que na rede T1, a presença da malha formada pelos nós de 7 a 15 acaba por redistribuir a pressão, fazendo com que as válvulas tenham menor eficácia se comparadas a rede T2, onde a configuração malhada dos nós anteriormente mencionados permite um controle das válvulas mais preciso.

Deve-se atentar também que na rede T1, as bombas, que suprem os nós 14 e 15 enviam mais pressão que seria necessário, indicando que poderiam funcionar com menos rotação para evitar sobrepressão nos referidos nós.

Assim, os resultados apontam que as redes neurais do tipo *perceptron*, ainda que com apenas uma camada oculta e utilizando uma função de ativação simples como a linear, podem ser utilizadas para controle de sistemas de distribuição de água.

As Redes Neurais de Operação, tanto para a rede T1 como para a rede T2 se mostraram capazes de controlar os parâmetros de distribuição de água, ainda que o nó 15 da rede T2 tenha ficado ligeiramente abaixo de 10 m.c.a., sugerindo que as redes neurais recebam algum mecanismo que permita pequenas correções.

Portanto, o conceito de se utilizarem Redes Neurais para a obtenção de parâmetros de operação de sistemas de distribuição de água através de dados de demanda dos nós mostra-se válido, permitindo que o trabalho prosseguisse com um conceito mais complexo, de realizar a previsão dos parâmetros utilizando como dados de entrada as demandas nos nós de dias seguidos, fazendo com que a rede de distribuição de água passe a aprender a operar conforme as suas demandas.

### 5.3 Resultados para a Rede Neural de Previsão

O principal produto deste trabalho foi o algoritmo de Redes Neurais de Previsão, cujo funcionamento é explicado no fluxograma da Figura 33.



Figura 33 - Fluxograma do Algoritmo de RNA de Previsão.

Fonte: Autor (2023).

O Algoritmo da RNA de Previsão funciona da seguinte forma: Primeiro, entra-se com o arquivo *.inp* das redes T1 ou T2 e com a faixa dos parâmetros a serem otimizados, sendo eles bombas, RNF e válvulas, e também com o arquivo *.xls* contendo as 72 horas de demandas para os nós das redes.

Após, exporta-se o *dataset* em *.xls* com os pontos ótimos e então é feita a otimização para cada horário com os algoritmos genéticos, sendo esse o processo mais demorado de todos.

Assim, com os parâmetros ótimos obtidos e as demandas, alimenta-se as Redes Neurais de Previsão, que irão realizar, por 30000 épocas, as previsões para as últimas 24 horas do modelo, que irão para o módulo de cálculo hidráulico e assim, o arquivo *.xls* com as pressões calculadas será obtido.

Assim, para T1 e T2, foram utilizadas as demandas como fatores preditores para 72 horas (3 dias) mostradas nas figuras 32, 33 e 34, respectivamente, podendo seus valores serem consultados no Anexo I.



Figura 34 - Demanda dos nós 3 a 8.

Fonte: O autor.





Fonte: O autor.

Figura 36 - Demanda do nó 15.



Fonte: O autor.

Observa-se que as demandas seguem um padrão geral, variando apenas a faixa de consumo, com pontos apresentando demandas maiores como os nós 8 e 15, pontos de consumo intermediário como os nós 5, 7, 9 e 14, e pontos de baixo consumo como os demais nós.

O Objetivo era de simular uma rede de distribuição de água com diferenças de consumo entre os pontos, sendo que se pode considerar que os pontos de consumo são residências, que os consumos caem nos períodos de noite e vão aumentando progressivamente durante o dia. Apresenta-se um pico nos horários próximos ao almoço (entre 11 e 13 horas), caindo novamente até um ponto de vale nas 16 horas, e voltando a subir para um novo pico correspondente as 20 horas, caindo novamente e assim sucessivamente nos 2 dias seguintes.

Assim, pelo uso do Algoritmo Genético de Otimização, obtiveram-se os seguintes parâmetros de reservatório de nível fixo, bombas e válvulas para a rede T1, para serem utilizados pelas Redes Neurais de Previsão em conjunto com os fatores preditores, para seu aprendizado. Maiores detalhes acerca dos valores podem ser consultados na tabela do Anexo II.

Nota-se que conforme a Figura 37, para o RNF 1 o Algoritmo Genético obteve resultados com oscilações de no máximo 6 m.c.a., excetuando-se nos horários 21, 36, 56, 58 e 66, onde notam-se os picos. Não parece haver uma relação entre os picos apontados e o consumo no horário 21, contudo, nos demais horários mencionados aparentam existir uma relação entre os picos e o consumo nos horários.





Fonte: O autor.

Já para o RNF 2, como se verifica na Figura 38, houve menos de 6 m.c.a. de amplitude entre o valor mínimo e máximo de funcionamento. Chama a atenção o salto dos horários 22 para 23, o de maior amplitude para este parâmetro


Figura 38 - Parâmetros de RNF 2 para T1.

Fonte: O autor.

A Figura 39 mostra que a bomba 1 esteve oscilando de 1,2 a 1,6. Chama a atenção o salto entre os horários 48 e 49, uma vez que é momento de menor consumo da rede, conforme as demandas.



Figura 39 - Parâmetros de bomba 1 para a rede T1.

Fonte: O autor.

A bomba 2, como se vê na Figura 40, também não apresentou um salto como apresentado na bomba 1.



Figura 40 - Parâmetros da Bomba 2 para a rede T1.

A válvula 1, como na Figura 41 apresentou uma grande oscilação nos parâmetros, indo de 1,31 m.c.a. no horário 10 até 49,41 m.c.a. no horário 19. A grande amplitude dos parâmetros se repete em praticamente todos os horários.



Figura 41 - Parâmetros da Válvula 1 para a rede T1.

Fonte: O autor.

Fonte: O autor.

De forma análoga a válvula 1, também se observa uma grande amplitude dos parâmetros obtidos para a válvula 2 como pode ser visto na Figura 42.





A válvula 3, como se observa na Figura 43, também apresenta uma grande amplitude nos parâmetros. Assim, pode-se concluir que os parâmetros das válvulas apresentaram grande oscilação na sua obtenção por Algoritmos Genéticos.





Fonte: O autor.

Fonte: O autor.

Os parâmetros previstos pela Rede Neural de Previsão para as próximas 24 horas (hora 48 a hora 71, correspondentes as últimas 24 horas de demandas da série mostrada) estão contidos nos gráficos das figuras 44 a 50, com seus valores numéricos podendo ser observados no Anexo III.

Aqui, a despeito da estabilidade geral, chama a atenção o comportamento anômalo no horário 67, sendo significantemente superior aos demais horários como é destacado na Figura 44.



Figura 44 – Parâmetros previstos de RNF 1 para a T1.

Fonte: O autor.

Para o RNF 2, houve menos estabilidade que no RNF 1, e verificou-se o mesmo comportamento anômalo no horário 67, como é visível na Ffigura 45. Aventa-se como uma possível causa o fato de o horário 67 ser o de maior demanda em toda a série de dados utilizada.





Fonte: O autor.

Observando os parâmetros da bomba 1 na Figura 46, chama a atenção a amplitude de oscilação de apenas 0,3, excetuando-se os horários 49, 50 e 56. Não se observa a anomalia do horário 67, presente nos RNF 1 e 2.



Figura 46 - Parâmetros previstos de bomba 1 para a rede T1.

Fonte: O autor.

Já a bomba 2 apresentou oscilações de cerca de 0,2, excetuando-se os horários 58, 68 e 70, também não sofrendo da anomalia do horário 67, como pode ser observado na Figura 47.

![](_page_77_Figure_1.jpeg)

Figura 47 – Parâmetros previstos da Bomba 2 para a rede T1.

A válvula 1 apresentou oscilação de até 40 m.c.a. nos seus parâmetros. Destaca-se o ponto 67, onde também ocorreu a anomalia, tal como nos RNF 1 e 2, visível na Figura 48.

![](_page_77_Figure_5.jpeg)

Figura 48 - Parâmetros previstos da Válvula 1 para a rede T1.

Fonte: O autor.

Fonte: O autor.

A válvula 2 também apresentou oscilação de aproximadamente 40 m.c.a. em seus parâmetros, porém sem apresentar a anomalia do horário 67, como foi registrado na Figura 49.

![](_page_78_Figure_1.jpeg)

Figura 49 - Parâmetros da Válvula 2 para a rede T1.

Novamente, similarmente a válvula 2, há amplitude de até aproximadamente 50 m.c.a. nos parâmetros, porém, não há registro da anomalia do horário 67, como registrado na Figura 50.

![](_page_78_Figure_5.jpeg)

Figura 50 - Parâmetros da Válvula 3 para a rede T1.

Fonte: O autor.

Fonte: O autor.

Assim, os resultados de pressão obtidos com os parâmetros previstos, para a rede T1, estão contidos na Tabela 9, onde se destacam em vermelho as pressões que excederam a norma em mais de 1 m.c.a., em azul as que o fizeram em menos de 1 m.c.a. e em amarelo a anomalia do horário 67.

| HORA            | HORA            | ID3                | ID4                | ID5                | ID6                | ID7                | ID8                | ID9                | ID10               | ID11               | ID12               | ID13               | ID14               | ID15               |
|-----------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| S<br>(DIA)      | S<br>(PREVI     |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| ()              | SÃO)            |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| 48              | 0               | 12,64              | 17,64              | 22,63              | 16,58              | 21,58              | 12,48              | 34,46              | 39,44              | 27,84              | 44,37              | 39,34              | 24,78              | 27,16              |
| 49              | 1               | 12,48              | 17,48              | 22,47              | 15,20              | 20,20              | 10,51              | 32,91              | 37,90              | 25,96              | 42,86              | 37,86              | 53,92              | 28,76              |
| 50              | 2               | 12,48              | 17,48              | 22,47              | 15,20              | 20,20              | 10,51              | 32,91              | 37,90              | 25,96              | 42,86              | 37,86              | 53,92              | 28,76              |
| 51              | 3               | 12,74              | 17,74              | 22,72              | 17,29              | 22,29              | 13,52              | 35,24              | 40,20              | 28,83              | 45,07              | 40,02              | 16,75              | 15,98              |
| 52              | 4               | 12,76              | 17,76              | 22,74              | 17,34              | 22,33              | 13,62              | 35,27              | 40,23              | 28,92              | 45,08              | 40,01              | 18,87              | 17,07              |
| 53              | 5               | 12,73              | 17,72              | 22,67              | 16,30              | 21,29              | 12,41              | 33,95              | 38,86              | 27,68              | 43,56              | 38,42              | 21,13              | 27,01              |
| 54              | 6               | 12,71              | 17,69              | 22,63              | 15,60              | 20,58              | 11,62              | 33,04              | 37,91              | 26,86              | 42,45              | 37,25              | 29,80              | 28,52              |
| 55              | 7               | 12,73              | 17,71              | 22,61              | 15,27              | 20,25              | 11,37              | 32,57              | 37,36              | 26,55              | 41,67              | 36,37              | 17,39              | 47,67              |
| 56              | 8               | 12,70              | 17,66              | 22,52              | 14,39              | 18,86              | 11,12              | 33,33              | 38,86              | 26,47              | 42,97              | 37,55              | <mark>50,44</mark> | 43,51              |
| 57              | 9               | 13,02              | 17,96              | 22,71              | 16,39              | 21,33              | 13,24              | 33,76              | 38,43              | 28,27              | 42,58              | 37,47              | 17,76              | 23,45              |
| 58              | 10              | 12,93              | 17,84              | 22,47              | 14,74              | 19,64              | 11,43              | 31,63              | 35,89              | 26,43              | 38,27              | 32,18              | 30,18              | 54,62              |
| 59              | 11              | 13,23              | 18,02              | 22,11              | 15,46              | 20,25              | 12,96              | 32,59              | 36,27              | 27,72              | 37,32              | 31,46              | 30,42              | 13,78              |
| 60              | 12              | 13,23              | 17,98              | 21,88              | 15,09              | 19,84              | 12,76              | 31,96              | 34,83              | 27,43              | 32,32              | 24,38              | 35,47              | 19,63              |
| 61              | 13              | 13,22              | 18,06              | 22,37              | 15,95              | 20,79              | 13,34              | 33,16              | 36,79              | 28,23              | 36,92              | 29,93              | 32,35              | 28,23              |
| 62              | 14              | 12,93              | 17,86              | 22,56              | 15,20              | 19,53              | 12,67              | 33,98              | 39,53              | 27,84              | 43,98              | 38,10              | 18,17              | 18,35              |
| 63              | 15              | 12,70              | 17,69              | 22,63              | 15,66              | 20,65              | 11,67              | 33,14              | 38,02              | 26,91              | 42,60              | 37,41              | 25,85              | 38,45              |
| 64              | 16              | 12,75              | 17,74              | 22,71              | 16,72              | 21,72              | 12,9,              | 34,48              | 39,41              | 28,19              | 44,15              | 39,04              | 23,50              | 31,96              |
| 65              | 17              | 12,94              | 17,86              | 22,52              | 15,02              | 19,94              | 11,74              | 31,98              | 36,29              | 26,75              | 38,87              | 32,86              | 29,84              | 32,04              |
| 66              | 18              | 13,23              | 18,00              | 21,98              | 15,24              | 19,25              | 13,54              | 33,84              | 38,99              | 28,46              | 43,07              | 38,46              | 20,27              | 21,37              |
| <mark>67</mark> | <mark>19</mark> | <mark>25,21</mark> | <mark>29,92</mark> | <mark>33,61</mark> | <mark>24,04</mark> | <mark>28,75</mark> | <mark>21,14</mark> | <mark>40,21</mark> | <mark>42,63</mark> | <mark>35,76</mark> | <mark>38,36</mark> | <mark>29,61</mark> | <mark>41,78</mark> | <mark>20,27</mark> |
| 68              | 20              | 13,21              | 18,06              | 22,38              | 15,91              | 20,76              | 13,28              | 33,11              | 36,77              | 28,18              | 36,97              | 30,00              | 32,06              | 33,59              |
| 69              | 21              | 13,00              | 17,94              | 22,66              | 16,01              | 20,95              | 12,87              | 33,19              | 37,63              | 27,90              | 40,66              | 34,83              | 12,81              | 11,18              |
| 70              | 22              | 12,71              | 17,70              | 22,65              | 16,01              | 21,00              | 12,07              | 33,59              | 38,49              | 27,33              | 43,15              | 38,00              | 18,76              | 40,39              |
| 71              | 23              | 12,74              | 17,74              | 22,72              | 17,29              | 22,29              | 13,52              | 35,24              | 40,20              | 28,83              | 45,07              | 40,02              | 16,75              | 15,98              |

Tabela 9 - Resultados de pressões para a rede T1

Fonte: O autor.

Observa-se que em linhas gerais, as Redes Neurais conseguiram realizar uma previsão dos parâmetros, produzindo resultados dentro do estabelecido da norma, excetuando-se os horários 49, 50 e 56 (Horas 01, 02 e 08 do dia) onde as pressões excederam o estabelecido pela NBR 121228, ficando em 53,92 m.c.a., 53,92 m.c.a. e 50,44 m.c.a., respectivamente.

Nota-se que os valores fora da faixa são relacionados a bomba 1 operando aproximadamente a 160% da sua rotação nominal, enquanto no nó 15, o horário 58 obteve uma pressão de 54,62 m.c.a., sendo este último um nó relacionado a bomba 2. No entanto, um ajuste geral nos hiperparâmetros nas Redes Neurais de Previsão realizado de forma descoordenada poderia comprometer todo o seu funcionamento, podendo fazer com que os demais parâmetros previstos gerem resultados fora da faixa.

Assim, sugere-se que a implantação de um mecanismo que, após as previsões e os resultados obtidos, seja capaz de fazer ajustes finos na bomba 1 e 2 de modo a reduzir sua rotação para garantir que as pressões se enquadrem na norma e reenviar os resultados novos para as próximas épocas da rede neural, fazendo-a operar de forma ótima.

Pode-se notar no horário 67 um comportamento anômalo das pressões, sensivelmente mais altas que o restante dos horários, com exceção do nó 13. Uma possível causa deste comportamento seriam as demandas, consideradas de pico nos três dias de dados, levando a Rede Neural a produzir parâmetros que, em geral, produzem resultados acima da média como uma forma de compensação da maior demanda.

No entanto, tal situação pode sugerir também a necessidade de implantação de algum mecanismo que evite uma atuação tão agressiva, uma vez que as demandas nos horários 19, 43 e 67 acabaram por induzir as Redes Neurais a exacerbar o ajuste dos parâmetros.

Avaliando o desempenho das Redes Neurais sob o ponto de vista das perdas, observase uma redução em relação aos 56,25% em relação ao cenário-base, com valores que oscilam de 35,02% no horário 69 ao pior caso, 40,89%, no horário 67. Novamente, a anomalia do horário 67 se repete, com a rede apresentando maior pressão média e maiores perdas, como pode ser visto na Figura 51.

![](_page_81_Figure_0.jpeg)

Figura 51 - Perdas e pressão média da rede T1.

Fonte: O autor.

Portanto, feitas as ressalvas, as Redes Neurais de Previsão conseguiram prever, através das demandas, parâmetros de operação da rede e reduzir as perdas se comparados ao cenáriobase, ainda que com as ressalvas da anomalia do horário 67 e dos pontos acima de 50 m.c.a., mostrando-se com potencial para obtenção de melhores resultados com futuros ajustes no algoritmo.

Para a rede T2, foram obtidos os seguintes parâmetros pelo AG de otimização como se vê nas Figuras 52 a 59. Maiores detalhes podem ser consultados no Anexo IV.

Para a rede T2, o Algoritmo Genético teve uma oscilação de aproximadamente 20 m.c.a., se comparada a T1, destacando-se o salto entre os horários 25 e 26, de aproximadamente 15 m.c.a como pode ser observado na Figura 52, indicando um ajuste maior por parte do algoritmo.

![](_page_82_Figure_0.jpeg)

Figura 52 - Dados da RNF 1 para a rede T2.

Fonte: O autor.

O RNF 2, como visto na Figura 53, apresentou amplitudes de até 20 m.c.a., destacandose um salto de aproximadamente 17 m.c.a. entre os horários 48 e 49.

![](_page_83_Figure_1.jpeg)

Figura 53 – Dados da RNF 2 para a rede T2.

Já a bomba 1, como registrado na Figura 54, comportou-se de forma análoga a rede T1, com oscilações de até 0,3, porém, não apresentando o salto dos horários 48 e 49.

![](_page_83_Figure_5.jpeg)

Figura 54 – Dados da bomba 1 para a rede T2.

Fonte: O autor.

Fonte: O autor.

A bomba 2 também apresentou oscilações de até 0,3, como pode ser observado na Figura

![](_page_84_Figure_1.jpeg)

![](_page_84_Figure_2.jpeg)

55.

A válvula 1 apresentou oscilações de até 40 m.c.a. , tal como na rede T1, destacando-se a diferença nos horários 39 e 40, como se observa na Figura 56.

![](_page_84_Figure_5.jpeg)

Figura 56 – Dados da válvula 1 para a rede T2.

Fonte: O autor.

Fonte: O autor.

![](_page_85_Figure_1.jpeg)

![](_page_85_Figure_2.jpeg)

Figura 57 – Dados da Válvula 2 para a rede T2.

Fonte: O autor.

A válvula 3 também teve comportamento similar ao apresentado na rede T1, destacando-se os horários 21 e 22 com pressões praticamente idênticas, como visto na figura 58.

![](_page_85_Figure_6.jpeg)

Figura 58 - Dados da Válvula 3 para a rede T2.

Fonte: O autor.

Para a previsão das próximas 24 horas, utilizando as últimas 24 horas da série de demandas apresentadas, os valores dos parâmetros previstos são mostrados nos gráficos das figuras 59 a 64. Mais dados estão disponíveis no Anexo V.

Para a previsão realizada pela rede neural para a RNF 1, destaca-se, além da anomalia do horário 67 que voltou a ocorrer, uma ligeira queda nos horários 49 e 50, como registrado na Figura 59.

![](_page_86_Figure_2.jpeg)

Figura 59 – Dados previstos da RNF 1 para a rede T2.

Já na RNF 2, ocorre também a anomalia do horário 67, porém, há outro pico, ligeiramente maior, no horário 60, como observado na Figura 60. Não parece estar relacionado a demanda e a nenhuma outra variável, não se sabendo a sua causa.

Fonte: O autor.

![](_page_87_Figure_0.jpeg)

Figura 60 - Dados previstos da RNF 2 para a rede T2.

Fonte: O autor.

Já a bomba 1 não apresentou anomalias, com amplitudes de até 0,3, como na rede T1, conforme pode ser visto na Figura 61.

![](_page_87_Figure_4.jpeg)

Figura 61 - Dados da bomba 1 para a rede T2.

Fonte: O autor.

A bomba 2 se comportou de forma similar a bomba 1, como pode ser observado na Figura 62.

![](_page_88_Figure_1.jpeg)

![](_page_88_Figure_2.jpeg)

Tal como na rede T1, a válvula 1 também se comportou com oscilações, sem, contudo, apresentar a anomalia do horário 67. Destaca-se a diferença de aproximadamente 33 m.c.a. entre os horários 57 e 58, que pode ser visto na Figura 63.

![](_page_88_Figure_5.jpeg)

Figura 63 - Dados da valvula 1 para a rede T2.

Fonte: O autor.

Fonte: O autor.

A válvula 2 também apresentou oscilações, com destaque para os horários 68 e 69, com aproximadamente 31 m.c.a. de diferença, como visto na Figura 64.

![](_page_89_Figure_1.jpeg)

Figura 64 - Dados da valvula 2 para a rede T2.

Fonte: O autor.

Já a válvula 3 apresentou menor amplitude de oscilação que as válvulas 1 e 2, bem como as válvulas em geral na rede T1. Destacam-se os picos dos horários 69 e 70, como visto na Figura 65.

![](_page_89_Figure_5.jpeg)

![](_page_89_Figure_6.jpeg)

Fonte: O autor.

Logo, com os parâmetros, foram realizados os cálculos das pressões, conforme Tabela 10, onde destacam-se as pressões que ficaram abaixo da norma em mais de 1 m.c.a. em vermelho e em amarelo, a anomalia do horário 67.

| HORA            | HORA                | ID3                | ID4                | ID5                | ID6                | ID7                | ID8                | ID9                | ID10               | ID11               | ID12               | ID13               | ID14               | ID15               |
|-----------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| S<br>(DIA)      | S<br>(PREVI<br>SÃO) |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| 48              | 0                   | 13,66              | 18,15              | 22,39              | 24,83              | 30,23              | 20,46              | 15,83              | 15,83              | 35,46              | 25,83              | 15,83              | 29,16              | 15,41              |
| 49              | 1                   | 11,48              | 15,89              | 19,99              | 21,84              | 27,84              | 16,26              | 23,31              | 23,31              | 31,26              | 33,31              | 23,31              | 23,55              | 11,10              |
| 50              | 2                   | 11,48              | 15,89              | 19,99              | 21,84              | 27,84              | 16,26              | 23,31              | 23,31              | 31,26              | 33,31              | 23,31              | 23,55              | 11,10              |
| 51              | 3                   | 13,78              | 18,03              | 21,92              | 23,22              | 28,78              | 16,93              | 12,92              | 12,92              | 31,93              | 22,92              | 12,92              | 23,98              | 11,71              |
| 52              | 4                   | 13,32              | 17,43              | 21,10              | 21,67              | 27,34              | 14,13              | 13,21              | 13,21              | 29,12              | 23,20              | 13,21              | 13,70              | 19,66              |
| 53              | 5                   | 13,06              | 17,04              | 20,55              | 20,80              | 26,48              | 12,99              | 21,41              | 21,41              | 27,98              | 31,39              | 21,41              | 21,34              | 16,16              |
| 54              | 6                   | 13,11              | 17,06              | 20,56              | 20,98              | 26,59              | 13,68              | 15,11              | 15,11              | 28,67              | 25,10              | 15,11              | 26,56              | 14,28              |
| 55              | 7                   | 13,17              | 17,09              | 20,58              | 21,20              | 26,74              | 14,55              | 12,45              | 12,45              | 29,53              | 22,42              | 12,45              | 36,16              | 23,90              |
| 56              | 8                   | 13,24              | 17,13              | 20,61              | 21,45              | 26,92              | 15,42              | 23,77              | 23,77              | 30,39              | 33,73              | 23,77              | 44,21              | <mark>8,62</mark>  |
| 57              | 9                   | 13,41              | 17,26              | 20,73              | 22,07              | 27,39              | 17,36              | 16,01              | 16,01              | 32,30              | 25,95              | 16,01              | 23,97              | <mark>6,26</mark>  |
| 58              | 10                  | 13,60              | 17,41              | 20,89              | 22,69              | 27,91              | 19,07              | 19,02              | 19,02              | 33,98              | 28,92              | 19,02              | 37,96              | 10,89              |
| 59              | 11                  | 12,54              | 15,69              | 18,39              | 19,63              | 24,75              | 16,32              | 25,41              | 25,41              | 31,12              | 35,18              | 25,41              | 24,43              | 19,71              |
| 60              | 12                  | 15,35              | 19,43              | 23,35              | 27,83              | 32,77              | 27,79              | 12,61              | 12,61              | 42,55              | 22,33              | 12,61              | <mark>50,17</mark> | 34,68              |
| 61              | 13                  | 12,45              | 15,68              | 18,45              | 19,25              | 24,46              | 14,96              | 14,57              | 14,57              | 29,81              | 24,39              | 14,57              | 35,19              | 10,71              |
| 62              | 14                  | 13,49              | 17,31              | 20,79              | 22,32              | 27,60              | 18,07              | 12,83              | 12,83              | 33,01              | 22,75              | 12,83              | 14,87              | 18,37              |
| 63              | 15                  | 13,10              | 17,05              | 20,55              | 20,93              | 26,56              | 13,51              | 24,54              | 24,54              | 28,50              | 34,52              | 24,54              | 23,25              | 19,64              |
| 64              | 16                  | 13,05              | 17,03              | 20,55              | 20,74              | 26,44              | 12,74              | 21,08              | 21,08              | 27,73              | 31,07              | 21,08              | 19,95              | 17,57              |
| 65              | 17                  | 13,56              | 17,38              | 20,85              | 22,55              | 27,80              | 18,71              | 19,39              | 19,31              | 33,63              | 29,30              | 19,34              | 31,84              | 38,95              |
| 66              | 18                  | 15,22              | 19,27              | 23,17              | 27,46              | 32,43              | 27,33              | 10,75              | 10,75              | 42,11              | 20,49              | 10,75              | <mark>50,55</mark> | 37,99              |
| <mark>67</mark> | <mark>19</mark>     | <mark>25,39</mark> | <mark>27,53</mark> | <mark>28,95</mark> | <mark>27,84</mark> | <mark>33,08</mark> | <mark>22,23</mark> | <mark>16,90</mark> | <mark>16,90</mark> | <mark>36,94</mark> | <mark>26,56</mark> | <mark>16,90</mark> | <mark>54,24</mark> | <mark>22,74</mark> |
| 68              | 20                  | 12,49              | 15,73              | 18,52              | 19,34              | 24,56              | 15,07              | 14,64              | 14,64              | 29,92              | 24,46              | 14,64              | 35,30              | 12,52              |
| 69              | 21                  | 13,46              | 17,29              | 20,76              | 22,22              | 27,52              | 17,81              | 33,66              | 33,66              | 32,74              | 43,59              | 33,66              | 17,73              | 14,12              |
| 70              | 22                  | 13,08              | 17,04              | 20,55              | 20,85              | 26,50              | 13,17              | 29,74              | 29,74              | 28,15              | 39,72              | 29,74              | 24,38              | 23,21              |
| 71              | 23                  | 13,78              | 18,03              | 21,92              | 23,22              | 28,78              | 16,93              | 12,92              | 12,92              | 31,93              | 22,92              | 12,92              | 23,98              | 11,72              |
|                 |                     |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |

Tabela 10 – Pressões calculadas com os parâmetros previstos para a rede T2.

Fonte: O autor.

Observa-se que as condições se assemelham ao do cenário com a rede T1, destacandose a anormalidade no horário 67. Contudo, para a rede T2 a ocorrência de pressões abaixo da norma ocorreu no nó 15 e nos horários 56 e 57, com pressões de 8,62 m.c.a. e 6,26 m.c.a., respectivamente.

Já as pressões acima da norma foram no nó 14, nos horários 60 e 66, com 50,17 m.c.a. e 50,55 m.c.a., respectivamente.

Na rede T2, portanto, recomenda-se algo análogo ao que se recomenda na rede T1, isto é, a adição de algum mecanismo que permita a compensação das bombas 1 e 2, de modo a se permitir o atendimento adequado em situações excepcionais.

Recomenda-se também, analogamente a rede T1, algum mecanismo que coíba o ajuste demasiadamente agressivo no horário 67, de modo a evitar um aumento desnecessário da pressão média, uma vez que sendo as demandas comuns as duas redes (T1 e T2), a anomalia ocorre novamente.

O gráfico da Figura 66 mostra as perdas e as pressões médias para a rede T2.

![](_page_91_Figure_3.jpeg)

![](_page_91_Figure_4.jpeg)

Fonte: O autor.

Novamente, observando pelo prisma das perdas, observa-se a sua redução em relação ao cenário base, cuja pressão média e perdas foram, respectivamente, de 46,23 m.c.a. e 49,43 %.

Tal como na rede T1, observa-se que o pior ponto foi o horário 67, devido a anomalia de previsão, e a Rede Neural de Previsão mostra-se, igualmente, com potencial para resultados ainda melhores, levando-se em consideração as ressalvas das subpressões no nó 15, relativas a bomba 2 e a anomalia do horário 67.

Observa-se também que a anomalia do horário 67 foi menos influente que na rede T1.

Assim, de um modo geral, as Redes Neurais de Previsão obtiveram previsões de parâmetros para as redes T1 e T2 que, a despeito de possuírem a mesma demanda, nós,

elementos e cotas, possuem arranjos diferentes de tubulações, sendo a T2 ligeiramente mais propensa a subpressões e a T1 mais propensa a excesso de pressão.

Na rede T1 e T2, ambas as bombas tiveram pontos fora da norma. Logo, o algoritmo deverá incorporar em aperfeiçoamentos futuros algum mecanismo que permita pequenas compensações dos parâmetros após a previsão, bem como a retroalimentação da Rede Neural com os novos parâmetros para bombas.

#### 6. CONCLUSÕES

O objetivo deste trabalho foi a proposição de um algoritmo de otimização e operação de redes de distribuição de água utilizando algoritmos genéticos associados a redes neurais multicamadas do tipo *perceptron*, sendo uma rede voltada mais para a operação em um horário específico e outra mais voltada a previsão de parâmetros ao longo de uma série temporal.

Para tal, utilizaram-se ferramentas computacionais como o EPANET, bem como a sua *toolkit*, a linguagem de programação R e Python 3, as bibliotecas *rpy2, keras, tensorflow* (Python) e o pacote *epanet2toolkit* (R), sendo a sua aplicação em duas redes teóricas (T1 e T2) elaboradas de forma a atender os requisitos deste trabalho.

Assim, foram então criadas duas redes neurais: a Rede Neural de Operação, mais simples, que visava o controle das redes de distribuição de água recebendo apenas um horário de demandas, e a Rede Neural de Previsão, que recebia 72 horas de demandas e parâmetros ótimos para então realizar a previsão das próximas 24 horas da série de dados.

Os resultados para a Rede Neural de Operação atenderam a expectativa, pois mostrouse capaz de aprender a operar, ainda que o nó 15 da rede T2 tenha ficado 0,5 m.c.a. abaixo do preconizado pela norma NBR 12218. Assim, este trabalho pôde então prosseguir com uma abordagem mais complexa de redes neurais, agora destinada a fazer a previsão para 24 horas a partir de um conjunto de dados de 72 horas de demandas e parâmetros.

Os resultados obtidos pela Rede Neural de Previsão atenderam o disposto na NBR 12218, ainda que na rede T1, o nó 14 tenha apresentado pressões acima da norma nos horários 49, 50 e 56, bem como no nó 15 houve pressão acima da norma no horário 58.

Já para a rede T2, foi registrada pressão acima da norma no nó 14 para o horário 60 e 66, bem como pressões abaixo da preconizada pela norma nos horários 56 e 57 no nó 15.

Observou-se também, tanto em T1 como em T2 uma anomalia no horário 67, com pressões substancialmente acima da média, sem, contudo, apresentar resultados fora do especificado pela norma.

Pode-se creditar tal fato a uma tentativa mais agressiva de ajuste das redes neurais, uma vez que os horários 19, 43 e 67 apresentavam as maiores demandas, levando a Rede Neural de Previsão a entender o horário de pico (19 horas dos dias 1, 2 e 3) como uma necessidade de maior pressurização da rede.

As pressões acima da média no horário 67 mostraram a necessidade de adotar um dispositivo no algoritmo que seja capaz de contornar os ajustes mais acentuados caso se mostrem desnecessários ou exagerados.

Portanto, as Redes Neurais de Previsão empregadas neste trabalho mostraram potencial para obter todos os resultados dentro da norma, e no caso das Redes Neurais de Operação, até mesmo um potencial futuro para elas próprias se tornarem otimizadoras de redes, com os devidos ajustes.

Logo, espera-se que em desenvolvimentos futuros as Redes Neurais de Previsão passem a ser integradas a Internet das Coisas, nas quais possuirão conexões sem fio com hidrômetros, manômetros e demais dispositivos que lhe alimentarão com dados em tempo real de demandas, vazões e pressões de redes de distribuição de água e, assim, passem, em um momento inicial, controlar pequenos distritos de medição e controle, melhorando assim sua eficiência e passando a aprender a operar conforme oscilações das demandas.

A capacidade de detecção de padrões pode auxiliar na manutenção preventiva da rede, apontando regiões suscetíveis a falha e até mesmo, se forem corretamente alimentadas com dados sobre os componentes da rede (material e data das tubulações por exemplo), prever futuras falhas permitindo o planejamento da substituição ou reparo de componentes de modo a minimizar-se os transtornos normalmente causados.

## 7. RECOMENDAÇÕES PARA TRABALHOS FUTUROS

Este trabalho deixa as seguintes recomendações para um aprimoramento das Redes Neurais de Operação:

- Realizar o cálculo do erro baseado somente nas pressões dos nós, e não na diferença dos parâmetros, de modo a se eliminar a necessidade dos resultados obtidos pelo Algoritmo Genético, tornando as Redes Neurais de Operação um dispositivo de otimização de operação por si só;
- Testes com outros parâmetros como Reservatórios de Nível Variável, outras válvulas, dentre outras configurações que permitam a Rede Neural de Operação atuar com outras redes de distribuição de água;
- Testes com parâmetros não envolvidos diretamente na operação, como comprimento, rugosidade e diâmetro de tubulações, com vistas a elaboração futura de uma Rede Neural de Projeto de redes hidráulicas ótimas;
- Elaborar uma futura configuração com as sugestões anteriormente mencionadas de forma a se obter uma futura Rede Neural de Obtenção de Estratégias Operacionais Ótimas baseada em demandas;
- Teste utilizando outros parâmetros como preditores ao invés das demandas.

Já para as Redes Neurais de Previsão, deixam-se as seguintes recomendações:

- Adição de um mecanismo de controle após a previsão dos parâmetros, de modo que se permitam pequenos ajustes para corrigir eventuais excessos ou faltas de pressão, permitindo também que os novos parâmetros passem a retroalimentar a Rede Neural de Previsão, para reforçar seu aprendizado;
- Testes com um conjunto de dados maiores, se possível com pelo menos uma semana (168 horas) de dados de demandas e parâmetros ótimos;
- Testes com novas configurações de disposições de neurônios nas camadas ocultas, bem como o uso de novas funções de ativação e mesmo o uso de diferentes funções de ativação por camada;

- Com um conjunto de dados maior, testar diferentes disposições dos conjuntos de treino, teste e validação, tomando por base o arranjo de 50% para treino, 20% para teste e 30% para validação;
- Testes utilizando outros preditores em conjunto com as demandas.

## REFERÊNCIAS

AMARAL, Haroldo Luiz Moretti do. **Desenvolvimento de uma nova metodologia para previsão do consumo de energia elétrica de curto prazo utilizando redes neurais artificiais e decomposição de séries temporais.** 2020. 113 f. Universidade de São Paulo, 2020. Disponível em: <a href="http://www.teses.usp.br/teses/disponiveis/3/3143/tde-07022020-113308/">http://www.teses.usp.br/teses/disponiveis/3/3143/tde-07022020-113308/</a>>.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **ABNT NBR 12.218**: projeto de rede de distribuição de água para abastecimento público: procedimento. Rio de Janeiro: ABNT, 2017.

BAGRIYANIK, F.G.; SONMEZ, M.A.; BAGRIYANIK, M. The impact of mutual interaction between electric and water distribution systems via demand response. **Sustainable Energy, Grids and Networks**, v. 34, p. 101008, jun. 2023. Disponível em: <a href="https://doi.org/10.1016/j.segan.2023.101008">https://doi.org/10.1016/j.segan.2023.101008</a>>.

BRASIL. **Panorama do Saneamento Básico do Brasil**. **SNIS**. [S.l: s.n.], 2021. Disponível em: <a href="http://www.ufrgs.br/actavet/31-1/artigo552.pdf">http://www.ufrgs.br/actavet/31-1/artigo552.pdf</a>>.

CARVALHO, Taís Maria Nunes; FILHO, Francisco de Assis de Souza; PORTO, Victor Costa. Urban Water Demand Modeling Using Machine Learning Techniques: Case Study of Fortaleza, Brazil. **Journal of Water Resources Planning and Management**, v. 147, n. 1, p. 05020026, jan. 2021. Disponível em: <a href="http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001310">http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001310</a>>.

CHINI, Christopher M.; STILLWELL, Ashlynn S. The State of U.S. Urban Water: Data and the Energy-Water Nexus. **Water Resources Research**, v. 54, n. 3, p. 1796–1811, 2018.

CORAGGIO, Elisa; HAN, Dawei; TRYFONAS, Theo. Chapter 22 - Smart cities and hydroinformatics. In: ESLAMIAN, Saeid; ESLAMIAN, Faezeh (Org.). **Handb. Hydroinformatics**. Elsevier, 2023. p. 341–355. Disponível em: <a href="https://www.sciencedirect.com/science/article/pii/B9780128219614000294">https://www.sciencedirect.com/science/article/pii/B9780128219614000294</a>>.

COSTA, L. H.M.; RAMOS, H. M.; DE CASTRO, M. A.H. Hybrid genetic algorithm in the optimization of energy costs in water supply networks. **Water Science and Technology: Water Supply**, v. 10, n. 3, p. 315–326, 2010.

DAWIDOWICZ, Jacek. Evaluation of a pressure head and pressure zones in water distribution systems by artificial neural networks. **Neural Computing and Applications**, v. 30, n. 8, p. 2531–2538, 2018.

FILHO, Emânuel Guerra Barros et al. Intelligent system for control of water distribution networks. **Water Science and Technology: Water Supply**, v. 18, n. 4, p. 1270–1281, 2018.

FONTANA, Nicola; GIUGNI, Maurizio; PORTOLANO, Davide. Losses Reduction and Energy Production in Water-Distribution Networks. **Journal of Water Resources Planning and Management**, v. 138, n. 3, p. 237–244, 2012. Disponível em: <a href="http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0000179">http://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0000179</a>>.

GIUSTOLISI, Orazio et al. Leakage Management Influence on Water Age of Water Distribution Networks. **Water Resources Research**, v. 59, n. 1, p. 1–18, 17 jan. 2023. Disponível em: <a href="https://onlinelibrary.wiley.com/doi/10.1029/2021WR031919">https://onlinelibrary.wiley.com/doi/10.1029/2021WR031919</a>.

GOOGLE. Keras. Disponível em: <https://keras.io/>. Acesso em: 30 jan. 2023.

GUPTA, Aditya Dinesh; KULAT, Kishore. Leakage reduction in water distribution system using efficient pressure management techniques. Case study: Nagpur, India. Water Science and Technology: Water Supply, v. 18, n. 6, p. 2015–2027, 2018.

GUPTA, Indrani; GUPTA, A; KHANNA, P. Genetic algorithm for optimization of water distribution systems. **Environmental Modelling & Software**, v. 14, n. 5, p. 437–446, mar. 1999. Disponível em: <a href="https://linkinghub.elsevier.com/retrieve/pii/S1364815298000899">https://linkinghub.elsevier.com/retrieve/pii/S1364815298000899</a>>.

HU, Xuan et al. Novel leakage detection and water loss management of urban water supply network using multiscale neural networks. **Journal of Cleaner Production**, v. 278, p. 123611, 2021. Disponível em: <a href="https://doi.org/10.1016/j.jclepro.2020.123611">https://doi.org/10.1016/j.jclepro.2020.123611</a>.

KANAKOUDIS, Vasilis; MUHAMMETOGLU, Habib. Urban water pipe networks management towards non-revenue water reduction: Two case studies from Greece and Turkey. **Clean - Soil, Air, Water**, v. 42, n. 7, p. 880–892, 2014.

KHATAVKAR, Puneet; MAYS, Larry W. Optimization-simulation model for real-time pump and valve operation of water distribution systems under critical conditions. **Urban Water Journal**, v. 16, n. 1, p. 45–55, 2 jan. 2019. Disponível em: <a href="https://doi.org/10.1080/1573062X.2019.1634108">https://doi.org/10.1080/1573062X.2019.1634108</a>>.

LACERDA, Estefáne George Macedo; CARVALHO, André Carlos Ponce de Leon Ferreira. Introdução aos Algoritmos Genéticos - Sistemas Inteligentes - Aplicações a Recursos Hídricos e Ciências Ambientais. 1. ed. Porto Alegre: Editora da Universidade Federal do Rio Grande do Sul, 1999.

MAKAREMI, Yasaman; HAGHIGHI, Ali; GHAFOURI, Hamid Reza. Optimization of Pump Scheduling Program in Water Supply Systems Using a Self-Adaptive NSGA-II; a Review of Theory to Real Application. **Water Resources Management**, v. 31, n. 4, p. 1283–1304, 2017.

MAKISHA, Nikolay; KAZIMIROVA, Tatiana. Principles of energy saving in water supply and sewage systems. v. 04013, p. 1–6, 2018.

MARCHI, Angela; SIMPSON, Angus R.; LAMBERT, Martin F. Optimization of Pump Operation Using Rule-Based Controls in EPANET2: New ETTAR Toolkit and Correction of Energy Computation. **Journal of Water Resources Planning and Management**, v. 142, n. 7, p. 1–11, jul. 2016. Disponível em: <a href="https://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0000637">https://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0000637</a>>.

MONSEF, H. et al. Pressure management in water distribution systems in order to reduce energy consumption and background leakage. **Journal of Water Supply: Research and Technology - Aqua**, v. 67, n. 4, p. 397–403, jun. 2018. Disponível em: <a href="https://iwaponline.com/aqua/article/67/4/397-403/38998">https://iwaponline.com/aqua/article/67/4/397-403/38998</a>>.

MUTIKANGA, HE; SHARMA, Saroj K.; VAIRAVAMOORTHY, Kalanithy. Methods and tools for managing losses in water distribution systems. **Journal of Water Resources Planning and management**, v. 139, n. April, p. 166–174, 2013. Disponível em: <a href="http://ascelibrary.org/doi/abs/10.1061/(ASCE)WR.1943-5452.0000245">http://ascelibrary.org/doi/abs/10.1061/(ASCE)WR.1943-5452.0000245</a>>.

NERANTZIS, Dimitrios; PECCI, Filippo; STOIANOV, Ivan. Optimal control of water distribution networks without storage. **European Journal of Operational Research**, v. 284, n. 1, p. 345–354, 2020. Disponível em: <a href="https://doi.org/10.1016/j.ejor.2019.12.011">https://doi.org/10.1016/j.ejor.2019.12.011</a>>.

OUGUI, Jorge Yutaka. **Estudo da operação otimizada de sistema de bombeamento de água**. 2003. 145 f. Universidade de São Paulo, 2003.

PINNTO, Marcos Rodrigues et al. Dimensionamento econômico otimizado de redes de distribuição de água considerando custos de manutenção. **Engenharia Sanitaria e Ambiental**, v. 22, n. 1, p. 145–153, 2016. Disponível em: <a href="http://www.scielo.br/scielo.php?script=sci\_arttext&pid=S1413-41522017000100145&lng=pt&tlng=pt">http://www.scielo.br/scielo.php?script=sci\_arttext&pid=S1413-41522017000100145&lng=pt&tlng=pt>.</a>

PORTO, Rodrigo de Melo. Hidráulica Básica. 4. ed. São Carlos: EESC/USP, 2006.

PREDESCU, Alexandru et al. An Advanced Learning-Based Multiple Model Control Supervisor for Pumping Stations in a Smart Water Distribution System. **Mathematics**, v. 8, n. 6, p. 887, 1 jun. 2020. Disponível em: <a href="https://www.mdpi.com/2227-7390/8/6/887">https://www.mdpi.com/2227-7390/8/6/887</a>.

PUGLIESE, Francesco; GIUGNI, Maurizio. An Operative Framework for the Optimal Selection of Centrifugal Pumps As Turbines (PATs) in Water Distribution Networks (WDNs). **Water (Switzerland)**, v. 14, n. 11, 2022.

SANTOS, Haline Costa dos. APLICAÇÃO DE MÉTODOS DE OTIMIZAÇÃO PARA OPERAÇÃO DE REDES DE DISTRIBUIÇÃO DE ÁGUA: Uma Revisão Sistemática da Literatura. 2021. 80 f. Universidade Federal de Itajubá, 2021.

SAVIC, Dragan A.; WALTERS, Godfrey A. Genetic Algorithms for Least-Cost Design of Water. Journal of Water Resources Planning and Management, v. 123, n. 2, p. 67–77, 1997.

SCACCIA, Kevin. Validação Cruzada Aninhada com Scikit-learn. Disponível em: <a href="https://dataml.com.br/validacao-cruzada-aninhada-com-scikit-learn/">https://dataml.com.br/validacao-cruzada-aninhada-com-scikit-learn/</a>>.

SILVA, Alex Takeo Yasumura Lima et al. Proposal of optimal operation strategy applied to water distribution network with statistical approach. **Revista Ambiente e Agua**, v. 15, n. 2, p. 10, 2020.

SILVA, Daniel Henrique Cordeiro; ALVES, Vladmir Kronemberger; SAVIO, Ernandes. Redes neurais artificiais aplicadas à moagem de minério de ferro combinadas a modelos empíricos. **Research, Society and Development**, v. 11, n. 13, p. e84111332329, 2 out. 2022. Disponível em: <a href="https://rsdjournal.org/index.php/rsd/article/view/32329">https://rsdjournal.org/index.php/rsd/article/view/32329</a>>.

SIMONE, Antonietta et al. Centrality metrics for Water Distribution Networks. n. July, p. 1–8, 2018.

SIVAKUMAR, P.; PRASAD, R. K.; CHANDRAMOULI, S. Uncertainty Analysis of Looped Water Distribution Networks Using Linked EPANET-GA Method. **Water Resources Management**, v. 30, n. 1, p. 331–358, 2016. Disponível em: <a href="http://dx.doi.org/10.1007/s11269-015-1165-x">http://dx.doi.org/10.1007/s11269-015-1165-x</a>>.

SNIDER, Brett; MCBEAN, Edward A. Improving Urban Water Security through Pipe-Break Prediction Models: Machine Learning or Survival Analysis. Journal of Environmental Engineering, v. 146, n. 3, p. 04019129, mar. 2020. Disponível em: <a href="http://ascelibrary.org/doi/10.1061/%28ASCE%29EE.1943-7870.0001657">http://ascelibrary.org/doi/10.1061/%28ASCE%29EE.1943-7870.0001657</a>>.

T. TUCCIARELLI; A. CRIMINISI; TERMINI, D. Leak Analysis in Pipeline Systems by Means of Optimal Valve Regulation. n. March, p. 277–285, 1999.

TANYIMBOH, T T; SEYOUM, A G. Efficient parallel evolutionary optimization algorithm applied to a water distribution system. n. c, p. 375–381, 2017.

TSUTIYA, Milton Tomoyuki. **Abastecimento de Água**. 3. ed. São Paulo: Departamento de Engenharia Hidráulica e Sanitária da Escola Politécnica da Universidade de São Paulo - USP, 2006a.

TSUTIYA, Milton Tomoyuki. **Redução do Custo de Energia Elétrica em Sistemas de Abastecimento de Água**. 1. ed. São Paulo: Associação Brasileira de Engenharia Sanitária e Ambiental - ABES, 2006b.

VAN DIJK, M; . Optimising water distribution systems using a weighted penalty in a genetic algorithm. **Water SA**, v. 34, n. 5, p. 537, 7 dez. 2018. Disponível em: <a href="https://www.ajol.info/index.php/wsa/article/view/180651">https://www.ajol.info/index.php/wsa/article/view/180651</a>>.

VAN ZYL, Jakobus E.; SAVIC, Dragan A.; WALTERS, Godfrey A. Operational Optimization of Water Distribution Systems Using a Hybrid Genetic Algorithm. Journal of Water Resources Planning and Management, v. 130, n. 2, p. 160–170, 2004.

XING, Lu; SELA, Lina. Graph Neural Networks for State Estimation in Water Distribution Systems: Application of Supervised and Semisupervised Learning. **Journal of Water Resources Planning and Management**, v. 148, n. 5, p. 1–14, maio 2022. Disponível em: <a href="https://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001550">https://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0001550</a>>.

## ANEXO I

| HORAS | ID3  | ID4  | ID5  | ID6  | ID7  | ID8  | ID9  | ID10 | ID11 | ID12 | ID13 | ID14 | ID15 |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0     | 0,15 | 0,15 | 0,3  | 0,15 | 0,3  | 0,45 | 0,3  | 0,15 | 0,15 | 0,15 | 0,15 | 0,3  | 0,45 |
| 1     | 0,1  | 0,1  | 0,2  | 0,1  | 0,2  | 0,3  | 0,2  | 0,1  | 0,1  | 0,1  | 0,1  | 0,2  | 0,3  |
| 2     | 0,1  | 0,1  | 0,2  | 0,1  | 0,2  | 0,3  | 0,2  | 0,1  | 0,1  | 0,1  | 0,1  | 0,2  | 0,3  |
| 3     | 0,2  | 0,2  | 0,4  | 0,2  | 0,4  | 0,6  | 0,4  | 0,2  | 0,2  | 0,2  | 0,2  | 0,4  | 0,6  |
| 4     | 0,25 | 0,25 | 0,5  | 0,25 | 0,5  | 0,75 | 0,5  | 0,25 | 0,25 | 0,25 | 0,25 | 0,5  | 0,75 |
| 5     | 0,3  | 0,3  | 0,6  | 0,3  | 0,6  | 0,9  | 0,6  | 0,3  | 0,3  | 0,3  | 0,3  | 0,6  | 0,9  |
| 6     | 0,4  | 0,4  | 0,8  | 0,4  | 0,8  | 1,2  | 0,8  | 0,4  | 0,4  | 0,4  | 0,4  | 0,8  | 1,2  |
| 7     | 0,5  | 0,5  | 1    | 0,5  | 1    | 1,5  | 1    | 0,5  | 0,5  | 0,5  | 0,5  | 1    | 1,5  |
| 8     | 0,6  | 0,6  | 1,2  | 0,6  | 1,2  | 1,8  | 1,2  | 0,6  | 0,6  | 0,6  | 0,6  | 1,2  | 1,8  |
| 9     | 0,8  | 0,8  | 1,6  | 0,8  | 1,6  | 2,4  | 1,6  | 0,8  | 0,8  | 0,8  | 0,8  | 1,6  | 2,4  |
| 10    | 1    | 1    | 2    | 1    | 2    | 3    | 2    | 1    | 1    | 1    | 1    | 2    | 3    |
| 11    | 1,6  | 1,6  | 3,2  | 1,6  | 3,2  | 4,8  | 3,2  | 1,6  | 1,6  | 1,6  | 1,6  | 3,2  | 4,8  |
| 12    | 1,8  | 1,8  | 3,6  | 1,8  | 3,6  | 5,4  | 3,6  | 1,8  | 1,8  | 1,8  | 1,8  | 3,6  | 5,4  |
| 13    | 1,4  | 1,4  | 2,8  | 1,4  | 2,8  | 4,2  | 2,8  | 1,4  | 1,4  | 1,4  | 1,4  | 2,8  | 4,2  |
| 14    | 0,9  | 0,9  | 1,8  | 0,9  | 1,8  | 2,7  | 1,8  | 0,9  | 0,9  | 0,9  | 0,9  | 1,8  | 2,7  |
| 15    | 0,4  | 0,4  | 0,8  | 0,4  | 0,8  | 1,2  | 0,8  | 0,4  | 0,4  | 0,4  | 0,4  | 0,8  | 1,2  |
| 16    | 0,3  | 0,3  | 0,6  | 0,3  | 0,6  | 0,9  | 0,6  | 0,3  | 0,3  | 0,3  | 0,3  | 0,6  | 0,9  |
| 17    | 0,95 | 0,95 | 1,9  | 0,95 | 1,9  | 2,85 | 1,9  | 0,95 | 0,95 | 0,95 | 0,95 | 1,9  | 2,85 |
| 18    | 1,7  | 1,7  | 3,4  | 1,7  | 3,4  | 5,1  | 3,4  | 1,7  | 1,7  | 1,7  | 1,7  | 3,4  | 5,1  |
| 19    | 1,9  | 1,9  | 3,8  | 1,9  | 3,8  | 5,7  | 3,8  | 1,9  | 1,9  | 1,9  | 1,9  | 3,8  | 5,7  |
| 20    | 1,4  | 1,4  | 2,8  | 1,4  | 2,8  | 4,2  | 2,8  | 1,4  | 1,4  | 1,4  | 1,4  | 2,8  | 4,2  |
| 21    | 0,85 | 0,85 | 1,7  | 0,85 | 1,7  | 2,55 | 1,7  | 0,85 | 0,85 | 0,85 | 0,85 | 1,7  | 2,55 |
| 22    | 0,35 | 0,35 | 0,7  | 0,35 | 0,7  | 1,05 | 0,7  | 0,35 | 0,35 | 0,35 | 0,35 | 0,7  | 1,05 |
| 23    | 0,2  | 0,2  | 0,4  | 0,2  | 0,4  | 0,6  | 0,4  | 0,2  | 0,2  | 0,2  | 0,2  | 0,4  | 0,6  |
| 24    | 0,14 | 0,14 | 0,28 | 0,14 | 0,28 | 0,42 | 0,28 | 0,14 | 0,14 | 0,14 | 0,14 | 0,28 | 0,42 |
| 25    | 0,11 | 0,11 | 0,22 | 0,11 | 0,22 | 0,33 | 0,22 | 0,11 | 0,11 | 0,11 | 0,11 | 0,22 | 0,33 |
| 26    | 0,09 | 0,09 | 0,18 | 0,09 | 0,18 | 0,27 | 0,18 | 0,09 | 0,09 | 0,09 | 0,09 | 0,18 | 0,27 |
| 27    | 0,19 | 0,19 | 0,38 | 0,19 | 0,38 | 0,57 | 0,38 | 0,19 | 0,19 | 0,19 | 0,19 | 0,38 | 0,57 |
| 28    | 0,23 | 0,23 | 0,46 | 0,23 | 0,46 | 0,69 | 0,46 | 0,23 | 0,23 | 0,23 | 0,23 | 0,46 | 0,69 |
| 29    | 0,28 | 0,28 | 0,56 | 0,28 | 0,56 | 0,84 | 0,56 | 0,28 | 0,28 | 0,28 | 0,28 | 0,56 | 0,84 |
| 30    | 0,39 | 0,39 | 0,78 | 0,39 | 0,78 | 1,17 | 0,78 | 0,39 | 0,39 | 0,39 | 0,39 | 0,78 | 1,17 |
| 31    | 0,51 | 0,51 | 1,02 | 0,51 | 1,02 | 1,53 | 1,02 | 0,51 | 0,51 | 0,51 | 0,51 | 1,02 | 1,53 |
| 32    | 0,65 | 0,65 | 1,3  | 0,65 | 1,3  | 1,95 | 1,3  | 0,65 | 0,65 | 0,65 | 0,65 | 1,3  | 1,95 |
| 33    | 0,88 | 0,88 | 1,76 | 0,88 | 1,76 | 2,64 | 1,76 | 0,88 | 0,88 | 0,88 | 0,88 | 1,76 | 2,64 |
| 34    | 1    | 1    | 2    | 1    | 2    | 3    | 2    | 1    | 1    | 1    | 1    | 2    | 3    |
| 35    | 1,57 | 1,57 | 3,14 | 1,57 | 3,14 | 4,71 | 3,14 | 1,57 | 1,57 | 1,57 | 1,57 | 3,14 | 4,71 |
| 36    | 1,78 | 1,78 | 3,56 | 1,78 | 3,56 | 5,34 | 3,56 | 1,78 | 1,78 | 1,78 | 1,78 | 3,56 | 5,34 |
| 37    | 1,41 | 1,41 | 2,82 | 1,41 | 2,82 | 4,23 | 2,82 | 1,41 | 1,41 | 1,41 | 1,41 | 2,82 | 4,23 |
| 38    | 0,95 | 0,95 | 1,9  | 0,95 | 1,9  | 2,85 | 1,9  | 0,95 | 0,95 | 0,95 | 0,95 | 1,9  | 2,85 |
| 39    | 0,44 | 0,44 | 0,88 | 0,44 | 0,88 | 1,32 | 0,88 | 0,44 | 0,44 | 0,44 | 0,44 | 0,88 | 1,32 |
| 40    | 0,32 | 0,32 | 0,64 | 0,32 | 0,64 | 0,96 | 0,64 | 0,32 | 0,32 | 0,32 | 0,32 | 0,64 | 0,96 |

Tabela 1 – Demandas utilizadas na RNA de previsão.

| 41 | 0,9  | 0,9  | 1,8  | 0,9  | 1,8  | 2,7  | 1,8  | 0,9  | 0,9  | 0,9  | 0,9  | 1,8  | 2,7  |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 42 | 1,65 | 1,65 | 3,3  | 1,65 | 3,3  | 4,95 | 3,3  | 1,65 | 1,65 | 1,65 | 1,65 | 3,3  | 4,95 |
| 43 | 1,91 | 1,91 | 3,82 | 1,91 | 3,82 | 5,73 | 3,82 | 1,91 | 1,91 | 1,91 | 1,91 | 3,82 | 5,73 |
| 44 | 1,41 | 1,41 | 2,82 | 1,41 | 2,82 | 4,23 | 2,82 | 1,41 | 1,41 | 1,41 | 1,41 | 2,82 | 4,23 |
| 45 | 0,83 | 0,83 | 1,66 | 0,83 | 1,66 | 2,49 | 1,66 | 0,83 | 0,83 | 0,83 | 0,83 | 1,66 | 2,49 |
| 46 | 0,33 | 0,33 | 0,66 | 0,33 | 0,66 | 0,99 | 0,66 | 0,33 | 0,33 | 0,33 | 0,33 | 0,66 | 0,99 |
| 47 | 0,21 | 0,21 | 0,42 | 0,21 | 0,42 | 0,63 | 0,42 | 0,21 | 0,21 | 0,21 | 0,21 | 0,42 | 0,63 |
| 48 | 0,14 | 0,14 | 0,28 | 0,14 | 0,28 | 0,42 | 0,28 | 0,14 | 0,14 | 0,14 | 0,14 | 0,28 | 0,42 |
| 49 | 0,09 | 0,09 | 0,18 | 0,09 | 0,18 | 0,27 | 0,18 | 0,09 | 0,09 | 0,09 | 0,09 | 0,18 | 0,27 |
| 50 | 0,09 | 0,09 | 0,18 | 0,09 | 0,18 | 0,27 | 0,18 | 0,09 | 0,09 | 0,09 | 0,09 | 0,18 | 0,27 |
| 51 | 0,19 | 0,19 | 0,38 | 0,19 | 0,38 | 0,57 | 0,38 | 0,19 | 0,19 | 0,19 | 0,19 | 0,38 | 0,57 |
| 52 | 0,21 | 0,21 | 0,42 | 0,21 | 0,42 | 0,63 | 0,42 | 0,21 | 0,21 | 0,21 | 0,21 | 0,42 | 0,63 |
| 53 | 0,31 | 0,31 | 0,62 | 0,31 | 0,62 | 0,93 | 0,62 | 0,31 | 0,31 | 0,31 | 0,31 | 0,62 | 0,93 |
| 54 | 0,39 | 0,39 | 0,78 | 0,39 | 0,78 | 1,17 | 0,78 | 0,39 | 0,39 | 0,39 | 0,39 | 0,78 | 1,17 |
| 55 | 0,49 | 0,49 | 0,98 | 0,49 | 0,98 | 1,47 | 0,98 | 0,49 | 0,49 | 0,49 | 0,49 | 0,98 | 1,47 |
| 56 | 0,59 | 0,59 | 1,18 | 0,59 | 1,18 | 1,77 | 1,18 | 0,59 | 0,59 | 0,59 | 0,59 | 1,18 | 1,77 |
| 57 | 0,81 | 0,81 | 1,62 | 0,81 | 1,62 | 2,43 | 1,62 | 0,81 | 0,81 | 0,81 | 0,81 | 1,62 | 2,43 |
| 58 | 1    | 1    | 2    | 1    | 2    | 3    | 2    | 1    | 1    | 1    | 1    | 2    | 3    |
| 59 | 1,61 | 1,61 | 3,22 | 1,61 | 3,22 | 4,83 | 3,22 | 1,61 | 1,61 | 1,61 | 1,61 | 3,22 | 4,83 |
| 60 | 1,78 | 1,78 | 3,56 | 1,78 | 3,56 | 5,34 | 3,56 | 1,78 | 1,78 | 1,78 | 1,78 | 3,56 | 5,34 |
| 61 | 1,39 | 1,39 | 2,78 | 1,39 | 2,78 | 4,17 | 2,78 | 1,39 | 1,39 | 1,39 | 1,39 | 2,78 | 4,17 |
| 62 | 0,89 | 0,89 | 1,78 | 0,89 | 1,78 | 2,67 | 1,78 | 0,89 | 0,89 | 0,89 | 0,89 | 1,78 | 2,67 |
| 63 | 0,37 | 0,37 | 0,74 | 0,37 | 0,74 | 1,11 | 0,74 | 0,37 | 0,37 | 0,37 | 0,37 | 0,74 | 1,11 |
| 64 | 0,28 | 0,28 | 0,56 | 0,28 | 0,56 | 0,84 | 0,56 | 0,28 | 0,28 | 0,28 | 0,28 | 0,56 | 0,84 |
| 65 | 0,96 | 0,96 | 1,92 | 0,96 | 1,92 | 2,88 | 1,92 | 0,96 | 0,96 | 0,96 | 0,96 | 1,92 | 2,88 |
| 66 | 1,71 | 1,71 | 3,42 | 1,71 | 3,42 | 5,13 | 3,42 | 1,71 | 1,71 | 1,71 | 1,71 | 3,42 | 5,13 |
| 67 | 1,95 | 1,95 | 3,9  | 1,95 | 3,9  | 5,85 | 3,9  | 1,95 | 1,95 | 1,95 | 1,95 | 3,9  | 5,85 |
| 68 | 1,38 | 1,38 | 2,76 | 1,38 | 2,76 | 4,14 | 2,76 | 1,38 | 1,38 | 1,38 | 1,38 | 2,76 | 4,14 |
| 69 | 0,86 | 0,86 | 1,72 | 0,86 | 1,72 | 2,58 | 1,72 | 0,86 | 0,86 | 0,86 | 0,86 | 1,72 | 2,58 |
| 70 | 0,33 | 0,33 | 0,66 | 0,33 | 0,66 | 0,99 | 0,66 | 0,33 | 0,33 | 0,33 | 0,33 | 0,66 | 0,99 |
| 71 | 0,19 | 0,19 | 0,38 | 0,19 | 0,38 | 0,57 | 0,38 | 0,19 | 0,19 | 0,19 | 0,19 | 0,38 | 0,57 |

Fonte: O autor.

# ANEXO II

Tabela 2 - Parâmetros da rede T1.

| HORAS | RNF1     | RNF2     | BOMBA1   | BOMBA2   | VALVULA1 | VALVULA2 | VALVULA3 |
|-------|----------|----------|----------|----------|----------|----------|----------|
| 0     | 857,5069 | 842,3598 | 1,429777 | 1,427071 | 26,89599 | 10,97097 | 19,52648 |
| 1     | 856,5327 | 839,826  | 1,596495 | 1,382626 | 21,9065  | 46,28178 | 0,921687 |
| 2     | 856,5327 | 839,826  | 1,596495 | 1,382626 | 21,9065  | 46,28178 | 0,921687 |
| 3     | 859,7089 | 840,8732 | 1,428483 | 1,424214 | 6,726048 | 29,32947 | 12,14273 |
| 4     | 856,6666 | 842,7546 | 1,485498 | 1,359915 | 11,53783 | 14,26492 | 4,559414 |
| 5     | 859,2581 | 841,3315 | 1,314141 | 1,453412 | 45,93937 | 15,06098 | 37,01432 |
| 6     | 857,4918 | 841,4963 | 1,515846 | 1,392398 | 26,47708 | 23,69064 | 0,972973 |
| 7     | 862,2952 | 840,8261 | 1,287008 | 1,503765 | 8,900359 | 35,92584 | 34,75858 |
| 8     | 856,8103 | 840,0765 | 1,589517 | 1,513267 | 23,98691 | 2,890986 | 42,99701 |
| 9     | 859,0227 | 842,8109 | 1,390041 | 1,349522 | 38,90409 | 43,13035 | 37,83644 |
| 10    | 858,6891 | 840,6631 | 1,350533 | 1,627547 | 1,307958 | 8,207648 | 28,06672 |
| 11    | 860,7018 | 840,6261 | 1,36587  | 1,386819 | 3,520147 | 17,84276 | 31,31626 |
| 12    | 859,2477 | 841,3761 | 1,418284 | 1,387947 | 11,0677  | 33,65472 | 24,04414 |
| 13    | 858,2898 | 843,1196 | 1,342022 | 1,463613 | 15,42329 | 47,32617 | 24,84759 |
| 14    | 859,3793 | 842,217  | 1,344514 | 1,364139 | 39,79272 | 27,25368 | 48,23718 |
| 15    | 861,7075 | 839,643  | 1,37795  | 1,447345 | 48,29379 | 32,75499 | 11,40562 |
| 16    | 862,3678 | 842,3405 | 1,340578 | 1,345297 | 28,99044 | 33,3304  | 29,67589 |
| 17    | 861,3623 | 840,0995 | 1,414798 | 1,385045 | 12,428   | 48,59427 | 0,767874 |
| 18    | 862,014  | 843,0114 | 1,275146 | 1,478913 | 35,25146 | 17,57515 | 38,77996 |
| 19    | 863,0357 | 840,3231 | 1,342897 | 1,357771 | 49,13802 | 25,62229 | 10,24223 |
| 20    | 861,7069 | 842,2242 | 1,389119 | 1,378485 | 33,44537 | 27,04876 | 11,95668 |
| 21    | 868,2145 | 841,6003 | 1,214815 | 1,258788 | 17,15685 | 2,642793 | 12,16711 |
| 22    | 858,5172 | 839,9654 | 1,485009 | 1,584965 | 47,13524 | 26,55525 | 25,79834 |
| 23    | 860,346  | 844,5974 | 1,292938 | 1,330019 | 31,69326 | 3,30643  | 18,17198 |
| 24    | 859,0642 | 842,5363 | 1,368455 | 1,356629 | 28,0587  | 44,1797  | 35,07081 |
| 25    | 857,5777 | 842,8376 | 1,295218 | 1,339155 | 31,49374 | 6,297521 | 38,45669 |
| 26    | 860,1493 | 840,6273 | 1,500869 | 1,41995  | 4,819573 | 45,79752 | 28,64804 |
| 27    | 859,9443 | 839,4105 | 1,439047 | 1,531841 | 46,55973 | 10,98468 | 40,46862 |
| 28    | 857,3628 | 839,4904 | 1,323009 | 1,377215 | 24,74623 | 35,10154 | 27,72004 |
| 29    | 859,719  | 840,6444 | 1,552169 | 1,351474 | 48,52212 | 15,85715 | 34,59476 |
| 30    | 856,8888 | 840,0349 | 1,533286 | 1,473295 | 31,26175 | 0,104761 | 37,21569 |
| 31    | 862,5801 | 842,9936 | 1,304762 | 1,315714 | 29,29256 | 19,51407 | 16,59851 |
| 32    | 858,3538 | 841,1315 | 1,349328 | 1,424954 | 7,078754 | 36,11706 | 22,95433 |
| 33    | 857,5078 | 842,9708 | 1,332038 | 1,405944 | 34,16444 | 11,85448 | 26,45586 |
| 34    | 865,5459 | 840,3436 | 1,307455 | 1,307551 | 32,92941 | 32,89955 | 18,21489 |
| 35    | 859,569  | 841,8648 | 1,458688 | 1,404875 | 34,57118 | 24,02223 | 0,762496 |
| 36    | 871,374  | 840,5475 | 1,315315 | 1,327758 | 21,00278 | 22,75298 | 9,865769 |
| 37    | 857,7016 | 841,0613 | 1,445115 | 1,511823 | 19,24358 | 7,611877 | 18,45311 |
| 38    | 858,1321 | 841,7941 | 1,352836 | 1,362448 | 35,04562 | 1,549309 | 38,85541 |
| 39    | 859,0974 | 839,8043 | 1,345863 | 1,468067 | 8,049374 | 12,31479 | 22,87663 |

| 40 | 858,1873 | 841,9173 | 1,296515 | 1,408899 | 46,12384 | 32,95421 | 14,42607 |
|----|----------|----------|----------|----------|----------|----------|----------|
| 41 | 857,9145 | 841,6222 | 1,349646 | 1,664287 | 16,80646 | 24,39923 | 10,83776 |
| 42 | 861,8423 | 841,8643 | 1,337288 | 1,499704 | 18,51122 | 22,75358 | 4,427255 |
| 43 | 858,2614 | 841,4998 | 1,314072 | 1,415843 | 40,68787 | 21,58485 | 30,16651 |
| 44 | 864,2283 | 842,4518 | 1,251799 | 1,34503  | 26,98467 | 23,77592 | 2,665711 |
| 45 | 858,869  | 842,2008 | 1,299929 | 1,481866 | 18,54078 | 15,05971 | 20,90597 |
| 46 | 856,925  | 839,8792 | 1,355203 | 1,350321 | 13,25848 | 47,53133 | 47,15316 |
| 47 | 857,7265 | 842,6691 | 1,302834 | 1,537911 | 36,13148 | 8,715081 | 28,21961 |
| 48 | 860,2087 | 843,7035 | 1,276256 | 1,344007 | 6,885387 | 1,703331 | 13,12663 |
| 49 | 858,4232 | 839,9597 | 1,578238 | 1,386127 | 30,20922 | 15,75082 | 22,34043 |
| 50 | 858,4232 | 839,9597 | 1,578238 | 1,386127 | 30,20922 | 15,75082 | 22,34043 |
| 51 | 856,9102 | 839,4652 | 1,541766 | 1,518874 | 22,21115 | 41,99264 | 34,84961 |
| 52 | 857,0212 | 839,4758 | 1,514917 | 1,412789 | 9,415432 | 14,51967 | 40,1382  |
| 53 | 857,4897 | 840,3946 | 1,439117 | 1,352433 | 43,13739 | 22,75044 | 32,93641 |
| 54 | 857,3506 | 841,0293 | 1,340095 | 1,354129 | 22,44001 | 31,18837 | 22,23756 |
| 55 | 856,4552 | 843,4496 | 1,454478 | 1,429746 | 13,82168 | 0,49234  | 17,5568  |
| 56 | 866,2455 | 841,3886 | 1,238336 | 1,279737 | 36,30468 | 24,87254 | 38,52159 |
| 57 | 858,5584 | 841,5184 | 1,422491 | 1,351165 | 25,41451 | 45,68139 | 31,40642 |
| 58 | 868,111  | 841,5724 | 1,285961 | 1,304565 | 13,86939 | 45,15661 | 1,994145 |
| 59 | 859,8072 | 842,2806 | 1,364069 | 1,382627 | 8,320663 | 32,45108 | 15,02751 |
| 60 | 860,0662 | 844,3684 | 1,358048 | 1,378543 | 5,829592 | 36,74632 | 38,32674 |
| 61 | 864,8487 | 842,308  | 1,300093 | 1,365785 | 21,59728 | 17,64444 | 32,1084  |
| 62 | 859,9284 | 843,6099 | 1,360993 | 1,354018 | 1,777476 | 26,89896 | 34,35058 |
| 63 | 858,8084 | 839,9136 | 1,335257 | 1,541375 | 10,47019 | 1,644437 | 14,92757 |
| 64 | 860,6237 | 839,9707 | 1,281136 | 1,448484 | 24,74155 | 41,41578 | 28,01352 |
| 65 | 859,8519 | 841,1269 | 1,409816 | 1,393569 | 22,50002 | 23,42788 | 27,89908 |
| 66 | 868,5047 | 840,2279 | 1,237168 | 1,318122 | 10,72614 | 21,87859 | 0,92984  |
| 67 | 859,6278 | 843,7023 | 1,378893 | 1,541733 | 22,6777  | 21,13116 | 8,131329 |
| 68 | 858,8644 | 842,3523 | 1,322119 | 1,414576 | 16,87915 | 13,40461 | 18,23744 |
| 69 | 863,7416 | 841,4302 | 1,392451 | 1,404382 | 38,50258 | 2,373857 | 45,4598  |
| 70 | 856,8205 | 842,1762 | 1,326358 | 1,514759 | 20,82803 | 6,234916 | 26,10304 |
| 71 | 858,6471 | 841,7085 | 1,374357 | 1,502472 | 13,62878 | 23,72923 | 11,25685 |

Fonte: O autor.

# ANEXO III

| HORAS (DIA)     | HORAS (PREVISÃO) | RNF1                     | RNF2                     | BOMBA1                 | BOMBA2                 | VALVULA1                | VALVULA2                | VALVULA3                |
|-----------------|------------------|--------------------------|--------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|
| 48              | 0                | 858,8865000              | 841,8921500              | 1,4153875              | 1,4777513              | 27,3034780              | 11,3150660              | 19,8436450              |
| 49              | 1                | 858,8078000              | 839,8274000              | 1,6486486              | 1,4921395              | 22,0859490              | 46,2883800              | 1,1058234               |
| 50              | 2                | 858,8078000              | 839,8274000              | 1,6486486              | 1,4921395              | 22,0859490              | 46,2883800              | 1,1058234               |
| 51              | 3                | 858,9652000              | 843,0036000              | 1,3435350              | 1,3815546              | 20,0018120              | 16,6024740              | 14,9864290              |
| 52              | 4                | 858,9966400              | 843,1161000              | 1,3624542              | 1,3910683              | 18,6846160              | 15,6053980              | 14,2954560              |
| 53              | 5                | 859,1540500              | 841,9153000              | 1,3829690              | 1,4761776              | 39,7904360              | 25,5851060              | 32,0900500              |
| 54              | 6                | 859,2800000              | 841,1401000              | 1,4575840              | 1,4890023              | 39,2376630              | 27,4165250              | 6,2140346               |
| 55              | 7                | 859,4372600              | 840,9280000              | 1,3496639              | 1,6384801              | 9,3191820               | 36,9381980              | 34,1117500              |
| 56              | 8                | 859,5947000              | 840,6980600              | 1,6213511              | 1,6079004              | 22,4745770              | 2,9784410               | 42,9721200              |
| 57              | 9                | 859,9409000              | 842,9964600              | 1,3507248              | 1,4463209              | 36,8513400              | 40,9109080              | 37,4694750              |
| 58              | 10               | 860,2400500              | 841,2074000              | 1,4595991              | 1,6906993              | 1,1198809               | 8,0986080               | 28,3570120              |
| 59              | 11               | 861,2001300              | 842,9249000              | 1,4601308              | 1,3685147              | 3,0464547               | 18,3096310              | 31,4580060              |
| 60              | 12               | 861,4676500              | 842,7515000              | 1,5020629              | 1,4219395              | 13,3928550              | 32,6142850              | 24,3771690              |
| 61              | 13               | 860,8538000              | 843,2701000              | 1,4758197              | 1,4893011              | 24,3621200              | 37,3783800              | 17,8747770              |
| 62              | 14               | 860,0668300              | 842,4206000              | 1,3553177              | 1,4040174              | 37,8359300              | 25,3952520              | 47,3435480              |
| 63              | 15               | 859,2485400              | 841,1780400              | 1,4242436              | 1,5682140              | 43,5608520              | 27,5208680              | 17,8342200              |
| 64              | 16               | 859,1068000              | 842,4344000              | 1,4035121              | 1,5162600              | 29,3720700              | 20,2690810              | 27,0573560              |
| 65              | 17               | 860,1770000              | 841,5127600              | 1,4565936              | 1,5186820              | 10,2670765              | 45,0545960              | 1,9483739               |
| 66              | 18               | 861,3574000              | 843,5191700              | 1,3729116              | 1,4358116              | 34,9113900              | 18,0633430              | 38,9946700              |
| <mark>67</mark> | <mark>19</mark>  | <mark>874,1356000</mark> | <mark>851,1210300</mark> | <mark>1,4556466</mark> | <mark>1,3237818</mark> | <mark>53,0840570</mark> | <mark>25,8298130</mark> | <mark>10,8809100</mark> |
| 68              | 20               | 860,8381300              | 843,2110600              | 1,4734622              | 1,5325328              | 24,2904530              | 37,3143920              | 17,7130340              |
| 69              | 21               | 860,0196500              | 842,6365000              | 1,3054725              | 1,3393744              | 21,1663130              | 6,0830936               | 14,9592330              |
| 70              | 22               | 859,1855500              | 841,5690000              | 1,3620754              | 1,5829757              | 44,4208300              | 26,8592760              | 28,4131240              |
| 71              | 23               | 858,9652000              | 843,0036000              | 1,3435350              | 1,3815546              | 20,0018120              | 16,6024740              | 14,9864290              |

Tabela 11 - Resultados dos parâmetros previstos para a segunda rodada da rede T1.

Fonte: O autor.

#### ANEXO IV

| HORAS | RNF1     | RNF2     | BOMBA1   | BOMBA2   | VALVULA1 | VALVULA2 | VALVULA3 |
|-------|----------|----------|----------|----------|----------|----------|----------|
| 0     | 858,6126 | 853,6415 | 1,470896 | 1,416139 | 10,36166 | 18,81698 | 15,11636 |
| 1     | 857,2327 | 843,8277 | 1,406985 | 1,411186 | 25,30607 | 43,24067 | 22,88102 |
| 2     | 857,2327 | 843,8277 | 1,406985 | 1,411186 | 25,30607 | 43,24067 | 22,88102 |
| 3     | 865,1686 | 841,4658 | 1,3107   | 1,338368 | 21,09516 | 15,63209 | 14,0817  |
| 4     | 861,6925 | 839,6488 | 1,361492 | 1,527769 | 41,1549  | 44,36418 | 27,20062 |
| 5     | 860,7969 | 843,5135 | 1,387564 | 1,348187 | 46,22151 | 19,87153 | 20,38952 |
| 6     | 865,846  | 838,9283 | 1,544789 | 1,405319 | 23,00035 | 10,66892 | 17,38577 |
| 7     | 857,0442 | 853,1672 | 1,506829 | 1,526509 | 19,12958 | 10,05302 | 12,33887 |
| 8     | 861,8726 | 839,0378 | 1,533175 | 1,377664 | 43,11053 | 19,4461  | 23,7246  |
| 9     | 867,9428 | 840,1576 | 1,418844 | 1,344031 | 45,52225 | 19,69844 | 15,97306 |
| 10    | 855,6203 | 854,8097 | 1,518027 | 1,359314 | 11,9327  | 22,7976  | 19,04925 |
| 11    | 860,8547 | 841,9269 | 1,38118  | 1,436991 | 13,11844 | 39,60632 | 25,31343 |
| 12    | 857,5415 | 854,119  | 1,55404  | 1,426874 | 16,913   | 13,66758 | 12,90008 |
| 13    | 862,9899 | 843,7365 | 1,482347 | 1,376115 | 24,59655 | 12,6467  | 17,44167 |
| 14    | 862,2856 | 845,674  | 1,330125 | 1,451329 | 19,03593 | 17,89383 | 12,58705 |
| 15    | 859,4585 | 840,6598 | 1,412964 | 1,379622 | 34,91055 | 26,72825 | 12,98529 |
| 16    | 864,0269 | 840,6358 | 1,36056  | 1,460875 | 23,53546 | 10,24461 | 20,06665 |
| 17    | 859,3046 | 843,6978 | 1,455095 | 1,574246 | 22,16194 | 10,56506 | 19,24371 |
| 18    | 860,7894 | 853,8558 | 1,53454  | 1,529017 | 15,12064 | 11,36006 | 10,58254 |
| 19    | 868,3572 | 843,0164 | 1,475316 | 1,379265 | 16,00514 | 27,12863 | 16,36361 |
| 20    | 877,1255 | 840,5913 | 1,432608 | 1,334594 | 12,12798 | 11,4068  | 11,60321 |
| 21    | 860,7466 | 843,1158 | 1,30531  | 1,372567 | 24,79671 | 42,67499 | 33,90851 |
| 22    | 864,0997 | 839,787  | 1,282015 | 1,49823  | 28,2554  | 12,85658 | 33,95373 |
| 23    | 857,6797 | 843,8844 | 1,417171 | 1,399773 | 33,41813 | 41,24332 | 11,74089 |
| 24    | 866,3985 | 845,2398 | 1,27034  | 1,346735 | 13,28865 | 14,25903 | 11,08727 |
| 25    | 859,4266 | 850,3648 | 1,30645  | 1,539579 | 11,07729 | 12,33821 | 11,97509 |
| 26    | 875,2082 | 848,5396 | 1,173283 | 1,332294 | 12,1826  | 21,78776 | 16,16389 |
| 27    | 861,1076 | 840,0453 | 1,376326 | 1,468278 | 46,4046  | 40,78867 | 16,59518 |
| 28    | 858,4564 | 838,8451 | 1,51609  | 1,534158 | 12,32684 | 40,08329 | 17,32394 |
| 29    | 867,6765 | 838,9059 | 1,356628 | 1,514923 | 13,43    | 22,76359 | 21,63688 |
| 30    | 867,53   | 839,7924 | 1,327455 | 1,47864  | 33,43332 | 11,09067 | 11,14704 |
| 31    | 858,8965 | 841,803  | 1,463872 | 1,510111 | 19,76939 | 13,0653  | 22,24917 |
| 32    | 858,9499 | 845,7842 | 1,335706 | 1,451214 | 21,59531 | 15,51721 | 24,14322 |
| 33    | 858,8145 | 845,8267 | 1,392223 | 1,449895 | 27,27213 | 49,19332 | 15,83684 |
| 34    | 859,1611 | 845,3507 | 1,516309 | 1,607942 | 30,18627 | 40,88493 | 12,1753  |
| 35    | 862,7866 | 843,6691 | 1,617836 | 1,478209 | 14,25731 | 12,72691 | 28,5416  |
| 36    | 872,3289 | 846,6776 | 1,295707 | 1,444827 | 27,20266 | 10,00778 | 17,85395 |
| 37    | 858,7441 | 848,1905 | 1,54003  | 1,623001 | 21,65253 | 11,02651 | 11,63033 |
| 38    | 862,9115 | 853,5843 | 1,309003 | 1,381538 | 10,70148 | 14,5423  | 16,26355 |
| 39    | 872,2542 | 840,4637 | 1,286894 | 1,327165 | 10,76151 | 29,69463 | 17,94326 |

Tabela 4 - Parâmetros da rede T2 obtidos pelo AG.

| 40 | 861,4755 | 840,7043 | 1,41713  | 1,480308 | 47,90529 | 26,28393 | 14,06137 |
|----|----------|----------|----------|----------|----------|----------|----------|
| 41 | 865,1519 | 840,7516 | 1,298606 | 1,492413 | 42,08484 | 11,6372  | 18,473   |
| 42 | 866,3477 | 839,5385 | 1,496849 | 1,483234 | 10,04198 | 22,42885 | 10,32414 |
| 43 | 868,5818 | 840,3534 | 1,348275 | 1,362548 | 12,51828 | 32,7693  | 12,24347 |
| 44 | 864,129  | 843,915  | 1,410273 | 1,375219 | 24,04266 | 20,05183 | 25,28333 |
| 45 | 865,4673 | 845,3266 | 1,316826 | 1,371799 | 25,14537 | 21,96244 | 10,74832 |
| 46 | 864,0049 | 841,9281 | 1,27025  | 1,393357 | 12,48434 | 48,13875 | 16,97811 |
| 47 | 861,6926 | 848,0808 | 1,278454 | 1,337083 | 47,85884 | 36,63333 | 10,48914 |
| 48 | 857,3652 | 843,1352 | 1,41921  | 1,59683  | 15,27786 | 28,94086 | 26,34765 |
| 49 | 856,4195 | 860,3239 | 1,308139 | 1,426893 | 23,25879 | 16,76017 | 11,8197  |
| 50 | 856,4195 | 860,3239 | 1,308139 | 1,426893 | 23,25879 | 16,76017 | 11,8197  |
| 51 | 858,4728 | 843,5992 | 1,336072 | 1,429179 | 25,9419  | 11,14746 | 18,89575 |
| 52 | 855,4827 | 853,8981 | 1,408575 | 1,366824 | 24,72154 | 26,8769  | 17,83868 |
| 53 | 865,952  | 848,3428 | 1,336315 | 1,321231 | 17,66395 | 31,70636 | 11,59628 |
| 54 | 859,6381 | 847,8064 | 1,2906   | 1,55615  | 22,72989 | 31,06921 | 10,10225 |
| 55 | 866,5185 | 841,7984 | 1,304958 | 1,425458 | 21,87862 | 24,94767 | 27,37424 |
| 56 | 859,5793 | 844,4489 | 1,344522 | 1,362077 | 10,86148 | 18,18796 | 13,48023 |
| 57 | 867,1792 | 841,8332 | 1,313877 | 1,412507 | 46,93699 | 22,42292 | 11,21142 |
| 58 | 861,7366 | 840,7167 | 1,630987 | 1,425555 | 23,30915 | 40,6677  | 20,71415 |
| 59 | 862,249  | 839,7843 | 1,417275 | 1,45734  | 11,01579 | 24,88282 | 22,21229 |
| 60 | 860,0527 | 847,9534 | 1,374117 | 1,420769 | 38,73654 | 10,54699 | 16,05709 |
| 61 | 863,4455 | 840,3451 | 1,451816 | 1,61945  | 22,73725 | 10,26199 | 33,10603 |
| 62 | 858,978  | 842,3516 | 1,465855 | 1,468818 | 16,26636 | 27,75117 | 20,53821 |
| 63 | 869,7693 | 839,7038 | 1,235341 | 1,489595 | 24,79799 | 10,08299 | 18,2448  |
| 64 | 867,1119 | 842,7659 | 1,365369 | 1,54217  | 11,26588 | 39,07071 | 11,8284  |
| 65 | 865,7104 | 839,6946 | 1,498202 | 1,350074 | 31,288   | 20,22641 | 17,15641 |
| 66 | 869,933  | 843,9106 | 1,318867 | 1,554281 | 36,48075 | 19,27167 | 10,73654 |
| 67 | 862,1772 | 840,4796 | 1,402788 | 1,633441 | 27,00875 | 29,46472 | 11,28374 |
| 68 | 865,4158 | 850,6343 | 1,292277 | 1,437243 | 10,12211 | 15,49769 | 13,76603 |
| 69 | 856,3943 | 859,8472 | 1,410503 | 1,48836  | 30,1416  | 11,04931 | 15,22671 |
| 70 | 863,9722 | 847,2463 | 1,330693 | 1,430718 | 36,89245 | 12,67781 | 10,32264 |
| 71 | 861,1299 | 838,987  | 1,315323 | 1,611572 | 34,98305 | 28,27127 | 10,7951  |

Fonte: O autor.
## ANEXO V

| HORAS (DIA)     | HORAS (PREVISÃO) | RNF1                     | RNF2                     | BOMBA1                 | BOMBA2                 | VALVULA1                | VALVULA2                | VALVULA3                |
|-----------------|------------------|--------------------------|--------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|
| 48              | 0                | 860,3159000              | 849,6526000              | 1,4484069              | 1,3795185              | 11,6288150              | 20,7532020              | 15,8320010              |
| 49              | 1                | 858,4449000              | 845,2157000              | 1,4199507              | 1,3624790              | 26,4192800              | 43,9470100              | 23,3085960              |
| 50              | 2                | 858,4449000              | 845,2157000              | 1,4199507              | 1,3624790              | 26,4192800              | 43,9470100              | 23,3085960              |
| 51              | 3                | 861,1918300              | 845,7859500              | 1,4051445              | 1,3506962              | 23,3054600              | 28,7923150              | 12,9200960              |
| 52              | 4                | 861,2076000              | 842,7606000              | 1,3185050              | 1,4276250              | 30,1111180              | 27,7273300              | 13,2094170              |
| 53              | 5                | 861,2864000              | 841,6160000              | 1,3907807              | 1,4021864              | 33,7329980              | 14,8411100              | 21,4067210              |
| 54              | 6                | 861,3493700              | 842,4248000              | 1,4356377              | 1,3857363              | 29,2959520              | 18,2288820              | 15,1161230              |
| 55              | 7                | 861,4281600              | 843,4358500              | 1,5147562              | 1,4677639              | 19,9938010              | 10,5725565              | 12,4484020              |
| 56              | 8                | 861,5070000              | 844,4468400              | 1,5778892              | 1,3345678              | 41,8260000              | 19,1790450              | 23,7706010              |
| 57              | 9                | 861,6803000              | 846,6711400              | 1,4117174              | 1,3118562              | 45,1138080              | 19,9595490              | 16,0135630              |
| 58              | 10               | 861,8299600              | 848,5921600              | 1,5265999              | 1,3528842              | 12,0805040              | 22,7083300              | 19,0182250              |
| 59              | 11               | 862,3106700              | 846,0091600              | 1,4292513              | 1,4519386              | 13,1047680              | 39,3243370              | 25,4126430              |
| 60              | 12               | 862,4446000              | 857,8460700              | 1,6059995              | 1,5339749              | 17,0121860              | 12,7604810              | 12,6141310              |
| 61              | 13               | 862,1372000              | 844,4728000              | 1,5182820              | 1,3734791              | 18,3867660              | 11,7680890              | 14,5747790              |
| 62              | 14               | 861,7433000              | 847,4798600              | 1,3303032              | 1,4194862              | 18,6131630              | 20,2526320              | 12,8272380              |
| 63              | 15               | 861,3337000              | 842,2226600              | 1,4072387              | 1,4320836              | 28,7820050              | 15,5933220              | 24,5390320              |
| 64              | 16               | 861,2628000              | 841,3126000              | 1,3785789              | 1,4144626              | 36,9958100              | 21,6367170              | 21,0790330              |
| 65              | 17               | 861,7984600              | 848,1875600              | 1,4772612              | 1,5860353              | 22,0696350              | 10,4718480              | 19,3914000              |
| 66              | 18               | 862,3894000              | 857,3592500              | 1,6101110              | 1,5614337              | 15,4148770              | 11,1039220              | 10,7539200              |
| <mark>67</mark> | <mark>19</mark>  | <mark>877,7953000</mark> | <mark>851,6704000</mark> | <mark>1,5752159</mark> | <mark>1,3878129</mark> | <mark>16,4345130</mark> | <mark>27,7554320</mark> | <mark>16,8994030</mark> |
| 68              | 20               | 862,1293300              | 844,5796500              | 1,5188267              | 1,3888258              | 18,3328840              | 11,7702700              | 14,6394430              |
| 69              | 21               | 861,7196700              | 847,1767000              | 1,3564308              | 1,3826878              | 24,2158580              | 42,2807120              | 33,6645930              |
| 70              | 22               | 861,3021000              | 841,8182400              | 1,4171374              | 1,4622408              | 30,5192950              | 13,3732510              | 29,7373750              |
| 71              | 23               | 861,1918300              | 845,7859500              | 1,4051445              | 1,3506962              | 23,3054600              | 28,7923150              | 12,9200960              |

Tabela 5 - Parâmetros previstos para as últimas 24 horas da rede T2.

Fonte: O autor.