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Resumo
O objetivo da seguinte dissertação é apresentar a conexão existente no comportamento
do regime infravermelho em ambas as teorias de calibre e gravidade. O primeiro elemento
desta análise é o estudo dos os teoremas soft , originalmente desenvolvidos por Weinberg
[1][2]. Em um sentido geral, os processos de espalhamento são governados por meio de
restrições que controlam a forma como as partículas soft são produzidas. O segundo ele-
mento são as simetrias espaço-temporais assintóticas desenvolvidas por Bondi, van der
Burg, Metzner e Sachs [3] [4] dos espaço-tempos assintoticamente planos. Eles fornecem
o surgimento de cargas conservadas associadas ao comportamento dos campos através
nos infinitos nulos. Terceiro, mas não menos importante, a existência de efeitos de me-
mória, como os estudados por Christodolou [5][6] e Thorne [7] no limite infravermelho.
Novamente, em termos simples, eles se referem ao surgimento de perturbações no tecido
do espaço-tempo devido à sua propagação, levando a deslocamentos de campo. Nós ex-
ploramos a conexão em termos da aplicação de transformadas de Fourier e identidades
de Ward. Por simplicidade, vamos-nos focar no caso da Eletrodinâmica Quântica e da
Gravidade Quântica.

Palavras-chaves: Espaço-tempo assintoticamente plano. Identidade de Ward. Teorema
"Soft".



Abstract
The objective of the following dissertation is to present the existent connection in the
infrared regime behavior of both gauge theories and gravity. The first element in this pic-
ture analysis is the study of soft theorems, originally developed by Weinberg [1][2]. In a
general sense, scattering processes are governed through constraints that control the way
soft particles are produced. The second one shall be the asymptotic spacetime symme-
tries developed by Bondi, van der Burg, Metzner and Sachs [3] [4] of asymptotically flat
spacetimes. They lead to the appearance of conserved charges associated to the behavior
of the fields at null infinities. The third but not least, the existence of memory effects,
like the ones studied by Christodolou [5][6] and Thorne [7] in the infrared limit. Again,
in simple terms, they refer to the surgence of perturbations in the fabric of spacetime
due to its propagation, leading to field shifts. We explore the connection in terms of the
application of Fourier transforms and Ward identities. For simplicity we focus on the case
of Quantum Electrodynamics and Quantum Gravity.

Key-words: Asymptotically flat spacetime. Ward identity. Soft theorem.
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1 Introduction

The asymptotic symmetries of spacetime where originally studied as symmetries
of the bulk when considering the propagation of gravitational waves and their behavior
towards infinity. In the seminal works by Bondi et. al. [3] and Sachs [4], the authors
deduced the existence of a group of isometries correspondent to the case of asymptotically
flat spacetimes.

The existence of the soft limit of S-matrix preceded the derivation of asymptotic
symmetries. We understand the soft limit as scattering processes in quantum field theory
(QFT ) where there is production of soft particles, whose energy E satisfies the condition
𝐸 −→ 0. Then we talk about infrared phenomena due to the production of these particles.
The so called soft theorems of scattering amplitudes factorized into an amplitude with
soft factor. Original developments were made by Bloch and Nordseick [8], Low [9], Yennie
et. al. [10] and Weinberg [2]. The case of memory effects on the other hand referred to
the appearance of a finite variation in the average value of some quantity after a certain
process occurs. This was originally studied by Zeldovich [11], Christodolou [5], Wiseman
[12] and Thorne [7] in the context of propagation of gravitational waves.

The existence of a connection between all these infrared phenomena was intro-
duced in the literature by different authors. On the side of soft theorems and asymptotic
symmetries by Barnich [13], Kapec et. al [14][15], Campiglia and Laddha [16], Seraj [17]
and Gabai [18], and in the case of memory effect and those symmetries, originally intro-
duced by Strominger & Zhiboedov [19]. Based on different approaches, all of them claim
the possible interpretation of the symmetry group of asymptotically flat spacetime as
the sources of conserved quantities which lead to the existence of the so-called soft theo-
rems for scattering amplitudes. Similarly an interpretation is made for the memory effect,
where a vacuum transition in those types of spacetimes are generated by the application
of certain transformations which are elements of its symmetry group.

As mentioned in the title, the study of infrared phenomena on gauge and gravity
theories is the main focus of our dissertation. In particular, the issue of infrared diver-
gences on field theory is a common subject developed on standard texts on the field,
such as Weinberg [20] or Schwartz [21] recently. Generally speaking, infrared divergences
appear on field theory when questions arise about the calculation of cross sections for
different scattering processes, like 𝑒+𝑒− −→ 𝜇+𝜇−. The question which arises, is how this
process differs from a similar one involving the production of soft particles, either on the
initial or final state, or from virtual particles. This leads to a proper treatment involving
regularization procedures beyond the scope of the present work. However, it gives us some
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motivation on the subject on how does infrared divergence of scattering processes can be
dealt properly through the understanding of soft particle production due to symmetry
considerations. Besides that, opens the possibility of analysis of particle jet production
and its interpretation.

This dissertation is organized as follows: on Chapter 2 we aim to describe the case
of the infrared triangle for the case of electromagnetism. Both the classical and quantum
mechanical cases of asymptotic symmetries are discussed and its link to conservation laws
through the interpretation of Ward identities on null infinities as the so-call Soft Photon
Theorem. Chapter 3 discusses a similar analysis, this time applied to Quantum Gravity.
In the context of this dissertation, Quantum Gravity refers to a Quantum Field theory
describing the physics of relativistic particles and quantum mechanical nature with spin 2,
which interact with any system with certain amount of mass and energy. These particles
of spin 2 can be portrait as the excitations of the gravitational field at quantum scales.
Being our study focused on the infrared spectrum, problems as the non-renormalizability
of the gravitational field described by the metric are set aside. On the other hand, through
the introduction of the Bondi-van der Burg-Metzner-Sachs symmetries (BMS) we derive
the set of spacetime isometries known as BMS group, and then link its existence to the
known Soft Graviton Theorem. On third place, Chapter 4 looks into the definition of
the memory effect and its interpretation as vacuum transition on an asymptotically flat
spacetime. Finally, conclusions about the link between the soft theorems, asymptotic
symmetries and memory effect are presented, as a picture of the current state of research
derived from these developments.



9

2 Infrared divergences for electromagnetism

Analysis of infrared divergences for electromagnetism can be started through the
study of the Lienard-Wiechert potentials [22]. The main objective of this section is to
show that these solutions are discontinuous at the boundary of the Minkowski spacetime.

2.1 Classical divergences-Lienard Wiechert potential
Given the position x′(𝜏) of a particle with charge 𝑒, we want to compute the field

potential generated due to its movement. Let us start from the wave equation for the
potential

2𝐴𝛼 = −4𝜋𝐽𝛼, (2.1)

where the potential 𝐴𝛼 and 4-current 𝐽𝛼, are given as

𝐴𝛼(𝑥) =
∫︁
𝑑4𝑥′𝐷+(𝑥− 𝑥′)𝐽𝛼(𝑥′), (2.2)

𝐽𝛼(𝑥) = 𝑒2
∫︁
𝑑𝜏𝑢𝛼𝛿4(𝑥− 𝑥′). (2.3)

Here, the retarded Green function 𝐷+(𝑥− 𝑥′) is defined as

𝐷+(𝑥− 𝑥′) = 1
4𝜋|x − x′|

Θ(𝑡− 𝜏)𝛿(𝑡− 𝜏 − |x − x′|), (2.4)

where |x(𝑡) − x′(𝜏)| is the the relative position to the source of the field, and

𝑡− 𝜏 = |x − x′|. (2.5)

Replacing both expressions in the wave equation leads to

𝐴𝛼(𝑥) = 𝑒2

2𝜋

∫︁
𝑑𝜏Θ(𝑦0(𝜏))𝛿(𝑦𝛽𝑦𝛽(𝜏))𝑢𝛼, (2.6)

where 𝑦𝛼(𝜏) = 𝑥𝛼 − 𝑥′𝛼, 𝑢𝛼 = 𝛾(1,𝛽), with 𝛾 = (1 − 𝛽2)−1/2. Then, by deriving the
4-potential, we get

𝜕𝛼𝐴𝛽 = 𝑒2

2𝜋
[︁ ∫︁

𝑑𝜏𝛿(𝑦0)𝜕𝛼(𝑥0 − 𝑥′0)𝛿(𝑦𝜇𝑦
𝜇)𝑢𝛽 +

∫︁
𝑑𝜏Θ(𝑦0)𝜕𝛼𝛿(𝑦𝜇𝑦

𝜇)𝑢𝛽

]︁
, (2.7)

where the first integral is evaluated in crossing light trajectories, so it cancels out. Then
the above expression is reduced to

𝜕𝛼𝐴𝛽 = 𝑒2

2𝜋

∫︁
𝑑𝜏Θ(𝑦0)𝜕𝛼𝛿(𝑦𝜇𝑦

𝜇)𝑢𝛽. (2.8)
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Consider both Dirac delta and derivative identities,

𝜕𝛼𝛿(𝑓) = 𝜕𝑓

𝜕𝑥𝛼

𝑑𝜏

𝑑𝑓

𝑑

𝑑𝜏
𝛿(𝑓), (2.9)

𝜕𝛼𝑓 = 𝜕𝛼(𝑦𝜇𝑦
𝜇) = 2(𝑥𝛼 − 𝑥′

𝛼), (2.10)
𝑑𝑓 = −2(𝑥𝜇 − 𝑥′𝜇)𝑢𝜇(𝜏)𝑑𝜏, (2.11)

where 𝑓 = 𝑦𝜇𝑦
𝜇. Now, by substituting in (2.8), one gets

𝜕𝛼𝐴𝛽 = 𝑒2

4𝜋|𝑦𝜈𝑢𝜈 |
𝑑

𝑑𝜏

[︂
𝑥𝛼 − 𝑥′

𝛼

|𝑥𝜇 − 𝑥′𝜇|𝑢𝜇

]︂
𝑢𝛽

⃒⃒⃒⃒
𝜏
. (2.12)

The Faraday tensor 𝐹𝛼𝛽 = 𝜕𝛼𝐴𝛽 − 𝜕𝛽𝐴𝛼, will be given by:

𝐹𝛼𝛽 = 𝑒2

4𝜋|𝑦𝜈𝑢𝜈 |
𝑑

𝑑𝜏

[︂
𝑦𝛼𝑢𝛽 − 𝑦𝛽𝑢𝛼

𝑦𝜇𝑢𝜇

]︂⃒⃒⃒⃒
𝜏
. (2.13)

For the special case of constant 𝑢𝛼,

𝐹𝛼𝛽 = −𝑒2

4𝜋|𝑦𝜈𝑢𝜈 |3
[︁
𝑦𝛼𝑢𝛽 − 𝑦𝛽𝑢𝛼

]︁
. (2.14)

Now, considering 𝑛 moving sources with charges 𝑄𝑘 and the 4-velocities 𝑢𝛼
𝑘 , we obtain

the radial component for electric field

𝐹𝑟𝑡(𝑟, 𝑡) = 𝑒2

4𝜋

𝑛∑︁
𝑘=1

𝑄𝑘𝛾𝑘(𝑟 − 𝑡𝑥̂ · 𝛽𝑘)
|𝛾2

𝑘(𝑡− 𝑟𝑥̂ · 𝛽𝑘)2 − 𝑡2 + 𝑟2|3/2 , (2.15)

where 𝑟2 = x ·x and x = 𝑟𝑥̂. Expression (2.15) is discontinuous at 𝑟 −→ ∞, requiring the
necessity of analyzing it towards the conformal infinities of Minkowski spacetime, whose
causal structure is developed in its correspondent Penrose diagram, which is presented on
Appendix A, where is established that ℐ+ and ℐ− are the future and past null infinities
and 𝑖0 is the spacelike infinity. In fact, the expression (2.15) can be rewritten in terms of
retarded coordinates 𝑢 = 𝑡− 𝑟, as

𝐹𝑟𝑡 = 𝐹𝑟𝑢 = 𝑒2

4𝜋

𝑛∑︁
𝑘=1

𝑄𝑘𝛾𝑘(𝑟 − (𝑢+ 𝑟)𝑥̂ · 𝛽𝑘)
|𝛾2

𝑘(𝑢+ 𝑟 − 𝑟𝑥̂ · 𝛽𝑘)2 − (𝑢+ 𝑟)2 + 𝑟2|3/2 . (2.16)

Taking 𝑢 fixed, and 𝑟 → ∞ (𝑟 >> 𝑢), we have

𝐹𝑟𝑡

⃒⃒⃒
ℐ+

= 𝐹𝑟𝑢

⃒⃒⃒
ℐ+

= 𝑒2

4𝜋𝑟2

𝑛∑︁
𝑘=1

𝑄𝑘

𝛾2
𝑘(1 − 𝑥̂ · 𝛽𝑘)2 . (2.17)

Similarly, for the advanced coordinates 𝑣 = 𝑡+ 𝑟, we obtain

𝐹𝑟𝑡 = 𝐹𝑟𝑣 = 𝑒2

4𝜋

𝑛∑︁
𝑘=1

𝑄𝑘𝛾𝑘(𝑟 − (𝑣 − 𝑟)𝑥̂ · 𝛽𝑘)
|𝛾2

𝑘(𝑣 − 𝑟 − 𝑟𝑥̂ · 𝛽𝑘)2 − (𝑣 − 𝑟)2 + 𝑟2|3/2 , (2.18)

𝐹𝑟𝑡

⃒⃒⃒
ℐ−

= 𝐹𝑟𝑣

⃒⃒⃒
ℐ−

= 𝑒2

4𝜋𝑟2

𝑛∑︁
𝑘=1

𝑄𝑘

𝛾2
𝑘(1 + 𝑥̂ · 𝛽𝑘)2 . (2.19)
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For obtaining the 𝐹𝑟𝑡 value at ℐ+
− , we take the limit at 𝑢 → −∞. Similar analysis is

applied for evaluating 𝐹𝑟𝑡 at ℐ−
+ , this time at 𝑣 → ∞. The field tensor exhibits a singular

behavior at 𝑖0, since 𝐹𝑟𝑢

⃒⃒⃒
ℐ+

̸= 𝐹𝑟𝑣

⃒⃒⃒
ℐ−

. From the asymptotic expressions (2.17) and (2.19),
we can see that the leading contribution of the Taylor expansion for the field tensor will
be 𝐹 (2)

𝑟𝑡 , i.e. the 1
𝑟2 order term. However, it is possible to identify an antipodal matching

condition when 𝑥̂ → −𝑥̂, as follows

lim
𝑟→∞

𝑟2𝐹𝑟𝑢

⃒⃒⃒
ℐ+

−
(𝑥̂) = lim

𝑟→∞
𝑟2𝐹𝑟𝑣

⃒⃒⃒
ℐ−

+
(−𝑥̂). (2.20)

Therefore, the leading term in the radial electric field for a collection of n particles at
any point ℐ+

− will be equal to the value of the field at the antipodal point on ℐ−
+ . As

a consequence of equation (2.20), we are going to deduce that the infrared behavior
of electromagnetic radiation at infinity leads to the identification of a set of conserved
quantities which come to existence because of the residual large gauge symmetry of the
system. In particular we are interested in the zero energy limit, the so called soft modes.
From here, we will use a combination of both retarded or advanced coordinates together
with the complex stereographic coordinates for the angular sector.

Let us start from the Minkowski line element expressed in spherical coordinates

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin 𝜃2𝑑𝜑2). (2.21)

Then replacing 𝑢 = 𝑡− 𝑟, leads to

𝑑𝑠2 = −𝑑𝑢2 − 2𝑑𝑢𝑑𝑟 + 𝑟2(𝑑𝜃2 + sin 𝜃2𝑑𝜑2). (2.22)

Note that for 𝑢 fixed, this element reduces to the 𝑆2 unit sphere line element. Here we
can introduce stereographic coordinates expressed as 𝑋 = cot 𝜃

2 cos𝜑 and 𝑌 = cot 𝜃
2 sin𝜑.

However, for our purposes will be useful to express it as complex coordinates, 𝑧 = 𝑋+ 𝑖𝑌 .
Then, the line element becomes equivalent to

𝑑𝑠2 = −𝑑𝑢2 − 2𝑑𝑢𝑑𝑟 + 2𝑟2𝛾𝑧𝑧𝑑𝑧𝑑𝑧, (2.23)

where

𝛾𝑧𝑧 = 2
(1 + 𝑧𝑧)2 . (2.24)

Analogously, this procedure can be applied for 𝑣 = 𝑡 + 𝑟, with 𝑋 = − cot 𝜃
2 cos𝜑 and

𝑌 = − cot 𝜃
2 sin𝜑, leading to

𝑑𝑠2 = −𝑑𝑣2 + 2𝑑𝑣𝑑𝑟 + 2𝑟2𝛾𝑧𝑧𝑑𝑧𝑑𝑧. (2.25)

Note that the point 𝑧 mapped with the retarded coordinates at (2.23), is related to
its antipodal point on the sphere mapped with the advanced coordinates (2.25) by the
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transformation 𝑧 → −1/𝑧. This refers to the fact that the {𝑧, 𝑧} for the retarded Bondi
coordinates defined as

𝑥1 + 𝑖𝑥2 = 2𝑟𝑧
1 + 𝑧𝑧

, (2.26)

𝑥3 = 𝑟
1 − 𝑧𝑧

1 + 𝑧𝑧
, (2.27)

are mapped to the {𝑧, 𝑧} pair for the advanced Bondi coordinates defined as

𝑥1 + 𝑖𝑥2 = − 2𝑟𝑧
1 + 𝑧𝑧

, (2.28)

𝑥3 = −𝑟1 − 𝑧𝑧

1 + 𝑧𝑧
, (2.29)

through the application of the transformation referred to. In terms of these coordinates,
we can rewrite the matching condition in the following way:

𝐹 (2)
𝑢𝑟 (𝑧, 𝑧)

⃒⃒⃒⃒
ℐ+

−

= 𝐹 (2)
𝑣𝑟 (𝑧, 𝑧)

⃒⃒⃒⃒
ℐ−

+

. (2.30)

The above result will imply the existence of an infinite number of conserved charges for the
electromagnetic theory in Minkowski spacetime. This can be implemented by considering
an arbitrary function 𝜖(𝑧, 𝑧) which satisfies the following boundary condition

𝜖(𝑧, 𝑧)
⃒⃒⃒⃒
ℐ+

−

= 𝜖(𝑧, 𝑧)
⃒⃒⃒⃒
ℐ−

+

. (2.31)

Depending on the explicit analytic expression for 𝜖(𝑧, 𝑧), this will lead to a different set of
symmetries and subsequently, conservation laws. From Noether’s theorem, see Appendix
B, the conserved current (B.10)is determined by

𝑓𝜇 =
[︂

− 1
4
𝜕(𝐹𝛼𝛽𝐹

𝛼𝛽)
𝜕(𝜕𝜇𝐴𝜈) + 𝑗𝜎

𝜕𝐴𝜎

𝜕(𝜕𝜇𝐴𝜈)

]︂
𝛿𝐴𝜈

= −1
4(4𝐹𝜇𝜈)𝛿𝐴𝜈

= −𝐹𝜇𝜈𝛿𝐴
𝜈 . (2.32)

Given the local gauge transformation

𝐴′
𝑧 = 𝐴𝑧 + 𝜕𝑧𝜖(𝑧, 𝑧) (2.33)

Then, the conserved charge (B.11) at ℐ±, being this space a 3-dimensional spacetime,
leads to volumetric integral for the charge

𝑄+
𝜖 = −

∫︁
𝑑2𝑧𝛾𝑧𝑧𝐹0𝜈𝛿𝐴

𝜈

= −
∫︁
𝑑2𝑧𝛾𝑧𝑧𝐹𝑢𝑧𝛿𝐴

𝑧

= −
∫︁
𝑑2𝑧𝛾𝑧𝑧𝐹𝑢𝑧𝜕

𝑧𝜖

=
∫︁

ℐ+
𝑑𝑢𝑑2𝑧

[︂
𝜕𝑢(𝜕𝑧𝐴𝑧 + 𝜕𝑧𝐴𝑧) + 𝛾𝑧𝑧𝑗𝑢

]︂
(2.34)
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Now, by introducing the retarded radial gauge fixing [23]

𝒜𝑟 = 0, (2.35)
𝒜𝑢

⃒⃒⃒
ℐ+

= 0, (2.36)

the field tensor components become

ℱ𝑧𝑧 = 𝜕𝑧𝒜𝑧 − 𝜕𝑧𝒜𝑧, (2.37)
ℱ𝑢𝑧 = 𝜕𝑢𝒜𝑧 − 𝜕𝑧𝒜𝑢, (2.38)
ℱ𝑟𝑧 = 𝜕𝑟𝒜𝑧 − 𝜕𝑧𝒜𝑟, (2.39)
ℱ𝑢𝑟 = 𝜕𝑢𝒜𝑟 − 𝜕𝑟𝒜𝑢, (2.40)

where we consider the following expansion of the potentials

𝒜𝑧(𝑢, 𝑟, 𝑧, 𝑧) =
∞∑︀

𝑛=0

𝐴
(𝑛)
𝑧 (𝑢,𝑧,𝑧)

𝑟𝑛 , (2.41)

𝒜𝑢(𝑢, 𝑟, 𝑧, 𝑧) = 𝐴𝑢(𝑢,𝑧,𝑧)
𝑟

+
∞∑︀

𝑛=1

𝐴
(𝑛)
𝑢 (𝑢,𝑧,𝑧)

𝑟𝑛+1 . (2.42)

From Maxwell’s equations we know that

𝜕𝑟ℱ𝑟𝑢 + 𝜕𝑧ℱ𝑧𝑢 + 𝜕𝑧ℱ𝑧𝑢 = 𝑒2𝑗𝑢. (2.43)

Preserving just the leading order terms of (2.43), it reduces to

𝜕𝑢𝐹 (2)
𝑢𝑟 +𝐷𝑧𝐹 (0)

𝑢𝑧 +𝐷𝑧𝐹
(0)
𝑢𝑧 = 𝑒2𝑗(2)

𝑢 , (2.44)

where the covariant derivative 𝐷𝑧 is with respect to the sphere 𝑆2, leading to

𝑄+
𝜖 = 1

𝑒2

∫︁
ℐ+
𝑑𝑢𝑑2𝑧𝜖

[︁
𝜕𝑢(𝜕𝑧𝐴

(0)
𝑧 + 𝜕𝑧𝐴

(0)
𝑧 ) + 𝑒2𝛾𝑧𝑧𝑗𝑢

]︁
. (2.45)

Different kinds of gauge symmetries lead to different conservation laws. For instance 𝜖 = 1
leads to the total initial electric charge

𝑄+
1 =

∫︁
ℐ+
𝑑𝑢𝑑2𝑧𝛾𝑧𝑧𝑗

(2)
𝑢 . (2.46)

Other type of conservation law, shall be the total conservation of outgoing electric charge
at fixed angle (𝑤, 𝑤̄), from the generator 𝜖 = 𝛿2(𝑧 − 𝑤), where (𝑤, 𝑤̄) is a fixed angle on
the 𝑆2 sphere. The conservation charge is given by

𝑄+
𝑤𝑤̄ = 1

𝑒2

∫︁ ∞

−∞
𝑑𝑢

[︁
𝜕𝑢(𝜕𝑤𝐴𝑤̄ + 𝜕𝑤̄𝐴𝑤) + 𝑒2𝛾𝑤𝑤̄𝑗𝑢

]︁
. (2.47)

Now we define the conserved charges and conservation law at null infinities ℐ+ as

𝑄+
𝜖 = 1

𝑒2

∫︁
ℐ+

−

𝑑2𝑧𝑑𝑟𝛾𝑧𝑧𝑗𝑢,

= 1
𝑒2

∫︁
ℐ+

−

𝑑2𝑧𝑑𝑟𝛾𝑧𝑧𝜕
𝑟𝐹𝑟𝑢,

= 1
𝑒2

∫︁
ℐ+

−

𝑑2𝑧𝛾𝑧𝑧𝜖𝐹
(2)
𝑟𝑢 , (2.48)
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and at ℐ−, as

𝑄−
𝜖 = 1

𝑒2

∫︁
ℐ+

−

𝑑2𝑧𝑑𝑟𝛾𝑧𝑧𝑗𝑣,

= 1
𝑒2

∫︁
ℐ+

−

𝑑2𝑧𝑑𝑟𝛾𝑧𝑧𝜕
𝑟𝐹𝑟𝑣,

= 1
𝑒2

∫︁
ℐ−

+

𝑑2𝑧𝛾𝑧𝑧𝜖𝐹
(2)
𝑟𝑣 , (2.49)

where the antipodal matching condition leads to

𝑄+
𝜖 = 𝑄−

𝜖 , (2.50)

being 𝛾𝑧𝑧 the metric of the 𝑆2 sphere living on every point at ℐ± and where the 𝐹 (2)
𝑟𝑢 come

from the asymptotic expansion towards infinity made for the potentials (2.41).

Our understanding of the asymptotic symmetries in-built on the electrodynamics
at null infinity is subject to right interpretation of these new set of gauge transformations.
As explained by Strominger [23], the concept is rooted on the idea of asymptotic symmetry
group (ASG). A symmetry group can be understood as a set of transformations which leave
invariant a lagrangian, composed both of trivial transformations and non-trivial ones.
Then the ASG corresponds to the subset of transformations which act non-trivially on the
system. Examples are for instance the BMS group [3] for the case of gravitational radiation,
or the two copies of Virasoro algebra SL(2,R) used to describe the asymptotic symmetry
of an AdS3 spacetime, originally developed by Brown & Henneaux [24]. Then, for the
case of QED, this asymptotic symmetry corresponds to the large gauge transformations
presented previously, which generate phase transitions on particle states at fixed angle on
the null boundary.

The large gauge symmetry of the system comes from the factorization of the
charges in two contributions, called soft and hard terms, being the latter the one with
non-zero energy. For instance charge at future null infinity is given by

𝑄+
𝜖 = 𝑄+

𝑆 +𝑄+
𝐻 , (2.51)

𝑄+
𝑆 = − 1

𝑒2

∫︁
ℐ+
𝑑𝑢𝑑2𝑧(𝜕𝑧𝜖𝐹

(0)
𝑢𝑧 + 𝜕𝑧𝜖𝐹

(0)
𝑢𝑧 ), (2.52)

𝑄+
𝐻 =

∫︁
ℐ+
𝑑𝑢𝑑2𝑧𝜖𝛾𝑧𝑧𝑗

(2)
𝑢 . (2.53)

From this ansatz we can deduce the commutators algebra for the large gauge symmetries.
We follow the protocol introduced by Frolov[25] and Ashtekar[26], were the quantization
relations at any conformal hypersurface Σ in Minkowski spacetime is defined as

[Φℐ+(𝑢, 𝑧, 𝑧),Φℐ+(𝑢′, 𝑧′, 𝑧′)] = 𝑖

2𝜕𝑢𝛿(𝑢− 𝑢′)𝛿2(𝑧 − 𝑧′), (2.54)

[Φℐ−(𝑣, 𝑧, 𝑧),Φℐ−(𝑣′, 𝑧′, 𝑧′)] = 𝑖

2𝜕𝑢𝛿(𝑣 − 𝑣′)𝛿2(𝑧 − 𝑧′), (2.55)
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where ℐ+ and ℐ− are the hypersurfaces Σ where the commutation relations are evaluated.
Considering Φ → 𝐹𝜇𝜈 , then

[𝐹𝑢𝑧(𝑢, 𝑧, 𝑧), 𝐹𝑢𝑤(𝑢′, 𝑤, 𝑤̄)] = 𝑖

2𝜕𝑢𝛿(𝑢− 𝑢′)𝛿2(𝑧 − 𝑤). (2.56)

Integrating with respect to 𝑢 and fixing integration constants to 0, this leads to

[𝐴𝑧(𝑢, 𝑧, 𝑧), 𝐴𝑤(𝑢,𝑤, 𝑤̄)] = 𝑖

4Θ(𝑢− 𝑢′)𝛿2(𝑧 − 𝑤), (2.57)

[︁
𝑄+

𝜖 , 𝐴
(0)
𝑧 (𝑢, 𝑧, 𝑧)

]︁
= 𝑖𝜕𝑧𝜖(𝑧, 𝑧), (2.58)[︁

𝑄−
𝜖 , 𝐴

(0)
𝑧 (𝑣, 𝑧, 𝑧)

]︁
= 𝑖𝜕𝑧𝜖(𝑧, 𝑧). (2.59)

From these results, we can see that the infinite number of symmetries generated by the
conserved charges 𝑄+

𝜖 in a canonical formalism are just gauge transformations with pa-
rameter 𝜖 [23].

2.2 Quantum divergences-Ward identities for QED
Our presentation of the Ward identities in Quantum Field Theory and its inter-

pretation as conserved quantities from symmetries of quantum mechanical systems are
based on the references [21] and [27]. The generating functional for QED is defined as
follows:

𝑍[𝑗, 𝜂, 𝜂] =
∫︁

[𝐷𝜓][𝐷𝜓][𝐷𝐴] exp
(︁
𝑖

∫︁
𝑑4𝑥(ℒ − 1

2𝜆(𝜕 · 𝐴)2 + 𝜂𝜓 + 𝜓𝜂 + 𝑗𝜇𝐴𝜇)
)︁
, (2.60)

being the lagrangian density

ℒ = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝜓(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓 − 𝑒𝜓𝛾𝜇𝜓𝐴𝜇. (2.61)

where 𝑗𝜇 = 𝑒𝜓𝛾𝜇𝜓 is the charged current, {𝜓, 𝜓} are the fermionic fields, 𝛾𝜇 the gamma
matrix and {𝜂, 𝜂} Grasmann fields. Under a local gauge transformation the fermion fields
transform as:

𝜓 −→ 𝜓′(𝑥) = exp(𝑖𝑒𝛼(𝑥))𝜓(𝑥), (2.62)
𝜓 −→ 𝜓′(𝑥) = exp(−𝑖𝑒𝛼(𝑥))𝜓(𝑥). (2.63)

Considering the infinitesimal transformation we obtain

ℒ′ = ℒ − 𝑒(𝜕𝜇𝛼(𝑥))𝜓𝛾𝜇𝜓(𝑥). (2.64)

Now let us apply the gauge transformation for a generic correlation function. We introduce
the concept of time-ordering for a field product. Mathematically speaking it is defined as

𝑇 (𝜑(𝑥)𝜑(𝑦)) = Θ(𝑥0 − 𝑦0)𝜑(𝑥)𝜑(𝑦) + Θ(𝑦0 − 𝑥0)𝜑(𝑥)𝜑(𝑦). (2.65)
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where Θ(𝑧) is the Heaviside function. Its purpose would as stated, to order relatively
the action of the operators depending on their time location. Then, we can evaluate the
vacuum expectation value of the action of two fields as

⟨𝑇 (𝜓′(𝑥1)𝜓′(𝑥2))⟩

= 1
𝑍[0]

∫︁
[𝐷𝜓][𝐷𝜓][𝐷𝐴]𝜓′(𝑥1)𝜓′(𝑥2) exp(𝑖

∫︁
𝑑4𝑥(ℒ′ − 1

2𝜆(𝜕 · 𝐴)2))

= 1
𝑍[0]

∫︁
[𝐷𝜓][𝐷𝜓][𝐷𝐴]𝜓(𝑥1)𝜓(𝑥2)(1 + 𝑖𝑒𝛼(𝑥1))(1 − 𝑖𝑒𝛼(𝑥2))

exp(𝑖
∫︁
𝑑4𝑥(ℒ − 1

2𝜆(𝜕 · 𝐴)2 − 𝑒(𝜕𝜇𝛼)𝜓𝛾𝜇𝜓)), (2.66)

Introducing first order expansion in 𝛼(𝑥):

= 1
𝑍[0]

∫︁
[𝐷𝜓][𝐷𝜓][𝐷𝐴]𝜓(𝑥1)𝜓(𝑥2)

(︁
1 + 𝑖𝑒𝛼(𝑥1) − 𝑖𝑒𝛼(𝑥2) −

∫︁
𝑑4𝑥𝑖𝑒(𝜕𝜇𝛼)𝑗𝜇

)︁
× exp

(︁
𝑖

∫︁
𝑑4𝑥(ℒ − 1

2𝜆(𝜕 · 𝐴)2)
)︁
, (2.67)

leads to:

= 1
𝑍[0]

∫︁
[𝐷𝜓][𝐷𝜓][𝐷𝐴]𝜓(𝑥1)𝜓(𝑥2) exp(𝑖

∫︁
𝑑4𝑥(ℒ − 1

2𝜆(𝜕 · 𝐴)2))+

1
𝑍[0]

∫︁
𝑑4𝑥𝛼(𝑥)

∫︁
[𝐷𝜓][𝐷𝜓][𝐷𝐴]𝜓(𝑥1)𝜓(𝑥2)(𝑖𝑒𝛿(𝑥− 𝑥1) − 𝑖𝑒𝛿(𝑥− 𝑥2) + 𝑖𝑒𝜕𝜇𝑗

𝜇)

exp
(︁
𝑖

∫︁
𝑑4𝑥(ℒ − 1

2𝜆(𝜕 · 𝐴)2)
)︁
. (2.68)

Considering the invariance of the correlation function under gauge transformations we
obtain

0 = 𝑖𝑒𝛿(𝑥−𝑥1)⟨𝑇 (𝜓(𝑥1)𝜓(𝑥2))⟩−𝑖𝑒𝛿(𝑥−𝑥2)⟨𝑇 (𝜓(𝑥1)𝜓(𝑥2))⟩+𝑖𝑒𝜕𝜇⟨𝑇 (𝑗𝜇(𝑥)𝜓(𝑥1)𝜓(𝑥2))⟩.
(2.69)

Finally, we obtain the Schwinger-Dyson equation for QED at leading order [21],

𝑖𝜕𝜇⟨𝑇 (𝑗𝜇(𝑥)𝜓(𝑥1)𝜓(𝑥2))⟩ = −𝑖𝑒𝛿(𝑥− 𝑥1)⟨𝑇 (𝜓(𝑥1)𝜓(𝑥2))⟩ + 𝑖𝑒𝛿(𝑥− 𝑥2)⟨𝑇 (𝜓(𝑥1)𝜓(𝑥2))⟩.
(2.70)

This result can be interpreted as the generalization of the conservation law 𝜕𝜇𝐽
𝜇 = 0. By

defining the Fourier transform of the 4 current correlation function as

𝑀𝜇(𝑝, 𝑞1, 𝑞2) =
∫︁
𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
𝑖𝑝𝑥𝑒𝑖𝑞1𝑥1𝑒−𝑖𝑞2𝑥2⟨𝑗𝜇(𝑥)𝜓(𝑥1)𝜓(𝑥2)⟩, (2.71)

and

𝑀0(𝑞1, 𝑞2) =
∫︁
𝑑4𝑥1𝑑

4𝑥2𝑒
𝑖𝑞1𝑥1𝑒−𝑖𝑞2𝑥2⟨𝜓(𝑥1)𝜓(𝑥2)⟩, (2.72)

𝑀0(𝑞1 + 𝑝, 𝑞2) =
∫︁
𝑑4𝑥𝑑4𝑥1𝑑

4𝑥2𝑒
𝑖𝑝𝑥𝑒𝑖𝑞1𝑥1𝑒−𝑖𝑞2𝑥2𝛿4(𝑥− 𝑥1)⟨𝜓(𝑥1)𝜓(𝑥2)⟩, (2.73)
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we obtain finally the Ward-Takahashi identity as

𝑖𝑝𝜇𝑀
𝜇(𝑝, 𝑞1, 𝑞2) = 𝑀0(𝑞1 + 𝑝, 𝑞2) −𝑀0(𝑞1, 𝑞2 − 𝑝). (2.74)

To express this result in proper coordinates, we wil identify the scattering amplitude due
to charge conservation as ⟨𝑇 (𝑗𝜇(𝑥)𝜓(𝑥1)𝜓(𝑥2))⟩ → ⟨(𝒬+

𝜖 𝒮 − 𝒮𝒬−
𝜖 )⟩. If we identify the

action of the asymptotic conserved charge

𝒬−
𝜖 |𝑖𝑛⟩ = −2

∫︁
𝑑2𝑧𝜕𝑧𝜖𝜕𝑧𝑁

−(𝑧, 𝑧)|𝑖𝑛⟩ +
𝑚∑︁

𝑘=1
𝒬𝑖𝑛

𝑘 𝜖(𝑧𝑖𝑛
𝑘 , 𝑧

𝑖𝑛
𝑘 )|𝑖𝑛⟩, (2.75)

⟨𝑜𝑢𝑡|𝒬+
𝜖 = 2

∫︁
𝑑2𝑧𝜕𝑧𝜖𝜕𝑧⟨𝑜𝑢𝑡|𝑁(𝑧, 𝑧) +

𝑛∑︁
𝑘=1

𝒬𝑜𝑢𝑡
𝑘 𝜖(𝑧𝑖𝑛

𝑘 , 𝑧
𝑖𝑛
𝑘 )⟨𝑜𝑢𝑡|, (2.76)

where 𝑁± and 𝑁𝑧 are defined for the electromagnetic field as
∞∫︁

−∞

𝑑𝑢𝐹 (0)
𝑢𝑧 ≡ 𝑁𝑧 = 𝑒2𝜕𝑧𝑁, (2.77)

and 𝑁± is 𝑁 evaluated at ℐ±, then, the correlation function becomes

⟨(𝒬+
𝜖 𝒮 − 𝒮𝒬−

𝜖 )⟩ = 2
∫︁
𝑑2𝑧 𝜕𝑧𝜖 𝜕𝑧⟨𝑜𝑢𝑡|𝑁(𝑧, 𝑧)𝒮 + 2𝒮

∫︁
𝑑2𝑧𝜕𝑧𝜖 𝜕𝑧𝑁

−(𝑧, 𝑧)|𝑖𝑛⟩

+⟨𝑜𝑢𝑡|
𝑛∑︁

𝑘=1
𝒬𝑜𝑢𝑡

𝑘 𝜖(𝑧𝑖𝑛
𝑘 , 𝑧

𝑖𝑛
𝑘 )𝒮 − 𝒮

𝑚∑︁
𝑘=1

𝒬𝑖𝑛
𝑘 𝜖(𝑧𝑖𝑛

𝑘 , 𝑧
𝑖𝑛
𝑘 )|𝑖𝑛⟩. (2.78)

Due to integration by parts, we see that∫︁
𝑑2𝑧 𝜕𝑧𝜖 𝜕𝑧𝑁

−(𝑧, 𝑧) =
∫︁
𝑑𝑧 𝜕𝑧𝑁

−
∫︁
𝑑𝑧 𝜕𝑧𝜖

=
∫︁
𝑑𝑧 𝜕𝑧𝜖

⃒⃒⃒⃒ℐ+

ℐ−
𝑁− −

∫︁
𝑑2𝑧 𝜕𝑧𝜕𝑧𝜖𝑁

−

= −
∫︁
𝑑2𝑧 𝜕𝑧𝜕𝑧𝜖𝑁

−. (2.79)

As a consequence our Ward identity is expressed as

2
∫︁
𝑑2𝑧𝜕𝑧𝜕𝑧⟨𝑜𝑢𝑡|(𝜕𝑧𝑁𝒮 − 𝒮𝜕𝑧𝑁

−)|𝑖𝑛⟩ =
[︂ 𝑚∑︁

𝑘=1

𝑄𝑖𝑛
𝑘

𝑧 − 𝑧𝑖𝑛
𝑘

−
𝑛∑︁

𝑘=1

𝑄𝑜𝑢𝑡
𝑘

𝑧 − 𝑧𝑜𝑢𝑡
𝑘

]︂
⟨𝑜𝑢𝑡|𝒮|𝑖𝑛⟩. (2.80)

The identification with the photon soft theorem requires an expansion on plane wave
modes. Starting from the potential we have

𝐴𝜇(𝑥) = 𝑒
∑︁
𝛼=±

∫︁ 𝑑3𝑞

(2𝜋)3
1

2𝜔

[︂
𝜖*𝛼

𝜇 (𝑞)𝑎𝑜𝑢𝑡
𝛼 (𝑞)𝑒𝑖𝑞𝑥 + 𝜖𝛼

𝜇(𝑞)𝑎𝑜𝑢𝑡
𝛼 (𝑞)†𝑒−𝑖𝑞𝑥

]︂
. (2.81)

Given 𝑢 = 𝑡− 𝑟, 𝑞 = 𝑞𝑞, 𝑥̄ = 𝑟𝑥̂ and 𝑞2 = 0 → 𝜔𝑞 = 𝑞, the expansion becomes

𝐴𝜇(𝑥) = 𝑒
∑︁
𝛼=±

∫︁ 𝑑3𝑞

(2𝜋)3
1

2𝜔

[︂
𝜖*𝛼

𝜇 (𝑞)𝑎𝑜𝑢𝑡
𝛼 (𝑞)𝑒−𝑖𝜔𝑞𝑢−𝑖𝜔𝑞𝑟(1−𝑞𝑥̂) + 𝜖𝛼

𝜇(𝑞)𝑎𝑜𝑢𝑡
𝛼 (𝑞)†𝑒𝑖𝜔𝑞𝑢+𝑖𝜔𝑞𝑟(1−𝑞𝑟)

]︂

= 𝑒

8𝜋2

∑︁
𝛼=±

∫︁ ∞

0
𝑑𝜔𝑞 𝜔𝑞

∫︁ 𝜋

0
sin 𝜃

[︂
𝜖*𝛼

𝜇 (𝑞)𝑎𝑜𝑢𝑡
𝛼 (𝑞)𝑒−𝑖𝜔𝑞𝑢−𝑖𝜔𝑞𝑟(1−cos 𝜃)

+𝜖𝛼
𝜇(𝑞)𝑎𝑜𝑢𝑡

𝛼 (𝑞)†𝑒𝑖𝜔𝑞𝑢+𝑖𝜔𝑞𝑟(1−cos 𝜃)
]︂
, (2.82)
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where the integral in spherical coordinates is given by∫︁
𝑑3𝑞 =

∫︁ ∞

0
𝑑𝜔𝑞

∫︁ 𝜋

0
𝑑𝜃

∫︁ 2𝜋

0
𝑑𝜑𝜔2

𝑞 sin 𝜃. (2.83)

Given the saddle point at 𝜃 = 0, we use the Taylor expansion at leading order

𝐴𝜇(𝑥) = 𝑒

8𝜋2

∑︁
𝛼=±

∫︁ ∞

0
𝑑𝜔𝑞𝜔𝑞𝜖

*𝛼
𝜇 (𝑞)𝑎𝑜𝑢𝑡

𝛼 (𝑞)𝑒−𝑖𝜔𝑞𝑢
∫︁ 𝜋

0
𝑑𝜃𝜃𝑒−𝑖𝜔𝑞𝑟 𝜃2

2

+
∫︁ ∞

0
𝑑𝜔𝑞𝜔𝑞𝜖

𝛼
𝜇(𝑞)𝑎𝑜𝑢𝑡

𝛼
†(𝑞)𝑒𝑖𝜔𝑞𝑢

∫︁ 𝜋

0
𝑑𝜃𝜃𝑒𝑖𝜔𝑞𝑟 𝜃2

2

= − 𝑖𝑒

8𝜋2

∑︁
𝛼=±

∫︁ ∞

0

𝑑𝜔𝑞

𝜔𝑞

[︂
𝜖*𝛼

𝜇 (𝑞)𝑎𝑜𝑢𝑡
𝛼 (𝑞)𝑒−𝑖𝜔𝑞𝑢 − 𝜖𝛼

𝜇(𝑞)𝑎𝑜𝑢𝑡
𝛼

†(𝑞)𝑒𝑖𝜔𝑞𝑢
]︂
. (2.84)

This leads to the calculation of the 𝐴𝑧 = 𝜕𝑧𝑥
𝜇𝐴𝜇, then

𝐴𝑧(𝑥) = − 𝑖𝑒

8𝜋2

∑︁
𝛼=±

∫︁ ∞

0

𝑑𝜔𝑞

𝜔𝑞

[︂
𝜕𝑧𝑥

𝜇𝜖*𝛼
𝜇 (𝑞)𝑎𝑜𝑢𝑡

𝛼 (𝑞)𝑒−𝑖𝜔𝑞𝑢 − 𝜕𝑧𝑥
𝜇𝜖𝛼

𝜇(𝑞)𝑎𝑜𝑢𝑡
𝛼

†(𝑞)𝑒𝑖𝜔𝑞𝑢
]︂

.(2.85)

Considering the identity 𝜕𝑧𝑥
𝜇𝜖*𝛼

𝜇 (𝑞) =
√

2
1+𝑧𝑧

, we obtain

𝐴𝑧(𝑥) = −𝑖
8𝜋2

√
2𝑒

1 + 𝑧𝑧

∑︁
𝛼=±

∫︁ ∞

0

𝑑𝜔𝑞

𝜔𝑞

[︂
𝑎𝑜𝑢𝑡

𝛼 (𝑞)𝑒−𝑖𝜔𝑞𝑢 − 𝑎𝑜𝑢𝑡
𝛼

†(𝑞)𝑒𝑖𝜔𝑞𝑢
]︂

+ 𝒪(𝑟−1). (2.86)

For the large 𝑟 approximation, we recover the leading order

𝐴(0)
𝑧 (𝑥) = −𝑖

8𝜋2

√
2𝑒

1 + 𝑧𝑧

∑︁
𝛼=±

∫︁ ∞

0

𝑑𝜔𝑞

𝜔𝑞

[︂
𝑎𝑜𝑢𝑡

𝛼 (𝑞)𝑒−𝑖𝜔𝑞𝑢 − 𝑎𝑜𝑢𝑡
𝛼

†(𝑞)𝑒𝑖𝜔𝑞𝑢
]︂
. (2.87)

We are finally able to connect our results with the Ward-Takahashi identity due to the
identity

𝑒2𝜕𝑧𝑁 = lim
𝜔→0

∫︁ ∞

−∞
𝑑𝑢(𝑒𝑖𝜔𝑢 + 𝑒−𝑖𝜔𝑢). (2.88)

For both 𝜕𝑧𝑁 and 𝜕𝑧𝑁
−:

𝜕𝑧𝑁 = − 1
8𝜋𝑒

√
2

1 + 𝑧𝑧
lim

𝜔→0+
[𝜔𝑎𝑜𝑢𝑡

+ (𝜔𝑥̂) + 𝜔𝑎𝑜𝑢𝑡
− (𝜔𝑥̂)†], (2.89)

𝜕𝑧𝑁
− = − 1

8𝜋𝑒

√
2

1 + 𝑧𝑧
lim

𝜔→0+
[𝜔𝑎𝑖𝑛

+ (𝜔𝑥̂) + 𝜔𝑎𝑖𝑛
− (𝜔𝑥̂)†]. (2.90)

Then, our Ward identity becomes

lim
𝜔→0

[𝜔⟨𝑜𝑢𝑡|(𝑎𝑜𝑢𝑡
+ (𝜔𝑥̂)𝒮−𝒮𝑎𝑖𝑛

− (𝜔𝑥̂)†|𝑖𝑛⟩] =
√

2𝑒(1+𝑧𝑧)
[︂ 𝑚∑︁

𝑘=1

𝑄𝑖𝑛
𝑘

𝑧 − 𝑧𝑖𝑛
𝑘

−
𝑛∑︁

𝑘=1

𝑄𝑜𝑢𝑡
𝑘

𝑧 − 𝑧𝑜𝑢𝑡
𝑘

]︂
⟨𝑜𝑢𝑡|𝒮|𝑖𝑛⟩.

(2.91)

2.3 Soft theorem for photons
The upcoming discussion is based on the arguments of Weinberg shown in [1], [2],

and [20]. We start by stating the photon soft theorem

⟨𝑎̂𝑜𝑢𝑡
+ (𝑞)𝑆⟩ = 𝑒

[︁ 𝑚∑︁
𝑘=1

𝑄𝑜𝑢𝑡
𝑘 𝑝𝑜𝑢𝑡

𝑘 · 𝜖+

𝑝𝑜𝑢𝑡
𝑘 · 𝑞

−
𝑛∑︁

𝑘=1

𝑄𝑖𝑛
𝑘 𝑝

𝑖𝑛
𝑘 · 𝜖+

𝑝𝑖𝑛
𝑘 · 𝑞

]︁
⟨𝑆⟩. (2.92)
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The modification of the S matrix is subject to the appearance of soft photons in both
in and out states. Its coupling is introduced according to Feynman diagrams by a vertex
and propagator factors. First, the vertex is given by

ℒ𝑖𝑛𝑡 = −𝐴𝜇𝑗𝜇, (2.93)
𝑉 ≡ 𝑖𝑒𝜖𝜇2𝑄𝑝𝜇, (2.94)

and the propagator:
𝑆𝐹 (𝑝, 𝑞) = −𝑖

(𝑝+ 𝑞)2 +𝑚2 = −𝑖
2𝑝 · 𝑞

. (2.95)

As a consequence
𝑉 𝑆𝐹 = (𝑖𝑒𝜖𝜇2𝑄𝑝𝜇)[ −𝑖

2𝑝 · 𝑞
] = 𝑒𝑄𝜖 · 𝑝

𝑝 · 𝑞
. (2.96)

The soft photons can be produced in both in and out states undistinguisably, leading to
the so called Soft Factor,

𝑚∑︁
𝑘=1

𝑒𝑄𝑜𝑢𝑡
𝑘 𝑝𝑜𝑢𝑡

𝑘 · 𝜖
𝑝𝑜𝑢𝑡

𝑘 · 𝑞
−

𝑛∑︁
𝑘=1

𝑒𝑄𝑖𝑛
𝑘 𝑝

𝑖𝑛
𝑘 · 𝜖

𝑝𝑖𝑛
𝑘 · 𝑞

. (2.97)

Having obtained this result, we analyze the Lorentz invariance and associated global
charge conservation for this system. Due to ortogonality of polarization and momentum
vectors, we have that:

𝜖𝜇𝑞𝜇 = 0, (2.98)

and then
𝜖𝜇′ = 𝜖𝜇 + 𝑞𝜇. (2.99)

Then, we consider the following transformations:

𝑞𝜇 = 𝜔

1 + 𝑧𝑧
(1 + 𝑧𝑧, 𝑧 + 𝑧,−𝑖(𝑧 − 𝑧), 1 − 𝑧𝑧), (2.100)

𝜖+𝜇 = 1√
2

(𝑧, 1,−𝑖,−𝑧), (2.101)

𝜖−𝜇 = 1√
2

(𝑧, 1, 𝑖, 𝑧), (2.102)

(𝑝′
𝑘

𝑖𝑛)𝜇 = 𝐸𝑖𝑛
𝑘

(︁
1, 𝑧

𝑖𝑛
𝑘 + 𝑧𝑖𝑛

𝑘

1 + 𝑧𝑖𝑛
𝑘 𝑧

𝑖𝑛
𝑘

,
−𝑖(𝑧𝑖𝑛

𝑘 − 𝑧𝑖𝑛
𝑘 )

1 + 𝑧𝑖𝑛
𝑘 𝑧

𝑖𝑛
𝑘

,
1 − 𝑧𝑖𝑛

𝑘 𝑧
𝑖𝑛
𝑘

1 + 𝑧𝑖𝑛
𝑘 𝑧

𝑖𝑛
𝑘

)︁
. (2.103)

By using the above expression, we finally find the Ward identity in the following form,

lim
𝜔→0

[𝜔⟨(𝑎̂𝑜𝑢𝑡
+ 𝑆 − 𝑆𝑎̂𝑖𝑛†

− )⟩] =
√

2𝑒(1 + 𝑧𝑧)
[︂ ∑︁

𝑘

𝑄𝑜𝑢𝑡

𝑧 − 𝑧𝑜𝑢𝑡
𝑘

− 𝑄𝑖𝑛
𝑘

𝑧 − 𝑧𝑖𝑛
𝑘

]︂
⟨𝑆⟩. (2.104)

Finally we obtain that the Ward identity obtained previously can be reexpressed in terms
of a connection with the soft photon theorem in the Bondi coordinates introduced in the
present chapter.
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3 Infrared Divergences for Gravity

3.1 Spacetime symmetries
To build up spacetime symmetry, we start by considering spacetime isotropy. Math-

ematically this condition is equivalent to the invariance of the infinitesimal interval under
Lorentz transformations

𝑑𝑠′2 = 𝑑𝑠2. (3.1)

By considering the Minkowski metric 𝑔𝜇𝜈 = (−1, 1, 1, 1), we have

𝑑𝑠′2 = 𝑔′
𝜇𝜈𝑑𝑥

′𝜇𝑑𝑥′𝜈

= 𝑔𝛼𝛽(Λ𝛼
𝜇𝑑𝑥

𝜇)(Λ𝛽
𝜈𝑑𝑥

𝜈)
= (𝑔𝛼𝛽Λ𝛼

𝜇Λ𝛽
𝜈 )(𝑑𝑥𝜇𝑑𝑥𝜈)

= 𝑑𝑠2. (3.2)

The previous result, leads to the following condition:

𝑔𝜇𝜈 = 𝑔𝛼𝛽Λ𝛼
𝜇Λ𝛽

𝜈 = (Λ𝑇 )𝛼
𝜇𝑔𝛼𝛽Λ𝛽

𝜈 −→ 𝑔 = Λ𝑇𝑔Λ, (3.3)

where Λ ∈ 𝑆𝑂(1, 3) is an element of the Lorentz group satisfying the condition (3.3), i.e.
a 4-dimensional matrix with 6 independent elements.

Spacetime symmetries are associated to the geometry of spacetime. Lorentz in-
variance, for example, is characteristic of flat spacetimes, while diffeomorphism invariance
corresponds to generalized curved spacetimes. Now, in our present context, we are exam-
ining the case of asymptotically flat spacetimes. The natural question that arises is what
would be the symmetry group associated to that geometry. As first developed by Bondi,
van der Burg, Metzner and Sachs [3], these set of isometries would be denominated the
BMS group. An additional comment on the symmetry structure behind both flat and
asymptotically flat spacetimes. From the group theory perspective, Lorentz group can be
considered a subgroup of BMS. Beyond, both supertranslations and superrotations can
be interpreted as extensions of translations and boosts on the celestial sphere, 𝑆2 at null
infinities ℐ± .

3.2 BMS group
The key idea behind the development of the Bondi, van der Burg, Metzner & Sachs

(BMS) group of transformations [3] is the study of isometries for the case of asymptotically
flat spacetimes. According to Wald [28], this can be accomplished by defining it as an
isolated system, with an appropriate boundary representing points at infinity.
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3.2.1 Minkowski spacetime and conformal infinity

In spherical coordinates, the line element is given by

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin 𝜃2𝑑𝜑2). (3.4)

With the objective in mind of studying gravitational radiation, whose propagation speed
is the speed of light, we consider the application of null advanced 𝑣, and retarded 𝑢

coordinates such as:

𝑣 = 𝑡+ 𝑟, (3.5)
𝑢 = 𝑡− 𝑟, (3.6)

leading to:

𝑑𝑠2 = −𝑑𝑢𝑑𝑣 + 1
4(𝑣 − 𝑢)2(𝑑𝜃2 + sin 𝜃2𝑑𝜑2). (3.7)

Now we manipulate the infinity through conformal transformations. First, for example,
study the case of outgoing radiation at 𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑣 = ∞. To introduce the
compactification of this point, we make one further transformation as 𝑉 = 1/𝑣. Then:

𝑑𝑠2 = 1
𝑉 2𝑑𝑢𝑑𝑉 + 1

4( 1
𝑉

− 𝑢)2(𝑑𝜃2 + sin 𝜃2𝑑𝜑2). (3.8)

As a second step, we need to deal with the singularity at 𝑉 = 0. To skip it, we introduce
the factorization of the so called conformal factor Ω, as follows

𝑔𝜇𝜈 = Ω2𝑔𝜇𝜈 , (3.9)

Ω2 = 4
(1 + 𝑣2)(1 + 𝑢2) , (3.10)

which can be accomplished through the conformal transformation

𝑇 = arctan 𝑣 + arctan 𝑢, (3.11)
𝑅 = arctan 𝑣 − arctan 𝑢. (3.12)

In the end, the equivalent non-physical metric is given by

𝑑𝑠2 = −𝑑𝑇 2 + 𝑑𝑅2 + sin𝑅2(𝑑𝜃2 + sin 𝜃2𝑑𝜑2). (3.13)

Now, we can say that there exists a conformal isometry of Minkowski spacetime con-
strained to the region [28]

−𝜋 < 𝑇 +𝑅 < 𝜋, (3.14)
−𝜋 < 𝑇 −𝑅 < 𝜋. (3.15)
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In terms of the new variables, the conformal infinities of Minkowski spacetime are

• 𝑖− → past timelike infinity 𝑅 = 0, 𝑇 = −𝜋

• 𝑖+ → future timelike infinity 𝑅 = 0, 𝑇 = 𝜋

• ℐ− → past timelike infinity 𝑅 ∈ (0, 𝜋), 𝑇 = −𝜋 +𝑅

• ℐ+ → future timelike infinity 𝑅 ∈ (0, 𝜋), 𝑇 = 𝜋 −𝑅

• 𝑖0 → spatial infinity 𝑅 = 𝜋, 𝑇 = 0

All these locations gives a proper prescription for the describing the asymptotically flat
infinity structure.

3.2.2 Construction of asymptotic flatness at curved spacetimes

With the previous results in mind, our objective becomes to define asymptotic
flatness on curved spacetimes. The key role is subject to the introduction of conformal
infinity on this arena as well. On our former concept, this included past and future timelike
infinity 𝑖± on it, but not anymore. Besides, it would be necessary to introduce smoothness
and differentiability at spatial infinity 𝑖0 without excluding physically relevant systems
from our setup like isolated bodies at early and late times, that is at 𝑖±.

Then an asymptotically flat spacetime set on a manifold 𝑀 and with a metric 𝑔𝜇𝜈

is defined by Ashtekar & Hansen [29] by the following conditions

• ∃(𝑀̃, 𝑔𝜇𝜈), infinitely differentiable where (𝑀, 𝑔𝜇𝜈) can be mapped.

• Shall exist a conformal isometry 𝜓 : 𝑀 → 𝜓(𝑀) ⊂ 𝑀̃ with conformal factor Ω

with the subsequent conditions:

1. The metric 𝑔𝜇𝜈 shall be continuous at 𝑖0, with directional limits well defined on it.

2. The conformal factor Ω shall be continuous and two times differentiable at 𝑖0 on 𝑀̃ .

3. Well defined non-physical metric both in the null ℐ± and spacelike 𝑖0 infinities.

4. Both the metric 𝑔𝜇𝜈 and its non-physical equivalent 𝑔𝜇𝜈 can only be related through
an infinite stretching.

As it is known, Lorentz invariance in flat spacetimes can be pictured as dynamical equa-
tions to be invariant under that set of transformations [30]. If we extend this to the case
of small gravitational effects from General Relativity, the natural question will be: what
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kind of symmetries are in place under these conditions?. In other words, given physical
systems embedded in an asymptotically flat spacetime, what kind of symmetries shall they
obey? With that problem in mind, further developed in [4], the problem can be addressed
equivalently as what are the boundary conditions that field equations subject to extremely
small gravitational fields to have a uniform an smooth behavior at 𝑟 → ∞. Mathemati-
cally speaking, is found that a field Φ with behavior Φ = 𝑂(𝑟−𝑁) as it approaches 𝑟 → ∞,
is called "uniform" and "radially smooth" if

𝜕Φ
𝜕𝑢

= 𝑂(𝑟−𝑁−1), (3.16)
𝜕Φ
𝜕𝑟

= 𝑂(𝑟−𝑁), (3.17)
𝜕Φ
𝜕𝜃

= 𝑂(𝑟−𝑁), (3.18)
𝜕Φ
𝜕𝜑

= 𝑂(𝑟−𝑁). (3.19)

If these conditions are violated, the radiative modes of the field Φ are claimed to be
carrying infinite amount of energy, giving rise to an infinite mass term for the field.
A remarkable feature of this construction, is that it is completely independent from a
particular gravitational field profile. In other words, one is able to separate the kinematics
of spacetime from the dynamics of the gravitational field at spatial infinity [4]. Keep in
mind that, all this construction is perfectly compatible to the conditions introduced in
[26] previously.

Our aim is to find compatibility with the principles introduced by Sachs, as well
as with the consideration of having an asymptotically Lorentz covariant spacetime. We
start from a general Lorentzian metric, expressed in Bondi coordinates [3],

𝑑𝑠2 = −𝑑𝑢2 −2𝑑𝑢𝑑𝑟+2𝑟2𝛾𝑧𝑧𝑑𝑧𝑑𝑧+2𝑚𝐵

𝑟
𝑑𝑢2 +𝑟𝐶𝑧𝑧𝑑𝑧

2 +𝑟𝐶𝑧𝑧𝑑𝑧
2 +𝑈𝑧𝑑𝑢𝑑𝑧+𝑈𝑧𝑑𝑢𝑑𝑧+ · · · ,

(3.20)
where the functions 𝑚𝐵, 𝐶𝑧𝑧, 𝐶𝑧𝑧, 𝑈𝑧, 𝑈𝑧 shall be also uniform and smooth at 𝑟 → ∞, so
we can recover Minkowski metric in the flat limit,

𝑑𝑠2 = −𝑑𝑢2 − 2𝑑𝑢𝑑𝑟 + 2𝑟2𝛾𝑧𝑧𝑑𝑧𝑑𝑧. (3.21)

The idea behind of expressing Minkowski in retarded/advanced coordinates is to recover
the BMS symmetry group as a product of the rigid translations and a six-parametric
group isomorphic to the homogeneous orthochronous (improper) Lorentz group, that is
the conformal group for the 𝑆2 sphere.

Asymptotic Flatness criteria is induced through the falloff conditions of the Weyl
tensor computed from (3.20). Being defined as:

𝐶𝜇𝜈𝜌𝜎 = 𝑅𝜇𝜈𝜌𝜎 + 1
2(𝑔𝜈𝜌𝑅𝜎𝜇 + 𝑔𝜇𝜎𝑅𝜌𝜈 − 𝑔𝜈𝜎𝑅𝜌𝜇 − 𝑔𝜇𝜌𝑅𝜎𝜈) + 1

6𝑅(𝑔𝜇𝜌𝑔𝜎𝜈 − 𝑔𝜇𝜎𝑔𝜌𝜈), (3.22)
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where 𝑅𝜇𝜈𝜌𝜎 is the Riemann curvature tensor, 𝑅𝜎𝜇 the Ricci tensor and 𝑅 the Ricci
scalar. It encodes the curvature in free space, and governs the propagation of gravitational
waves. Then, it is the appropriate observable for measuring the effects of curvature for
the asymptotically flat spacetime. From the calculation of the Weyl tensor associated to
the metric (3.20), we extract the following components

𝐶𝑟𝑧𝑟𝑧 = − 𝐶𝑧𝑧𝐶
2
𝑧𝑧𝛾𝑧𝑧

2(𝐶𝑧𝑧𝐶𝑧𝑧 − 𝑟2𝛾2
𝑧𝑧)2 (3.23)

𝐶𝑟𝑢𝑟𝑧 = 1
8(𝑟𝐶𝑧𝑧𝐶𝑧𝑧 − 𝑟3𝛾2

𝑧𝑧)2

{︂
𝐶2

𝑧𝑧[𝐶2
𝑧𝑧𝑈𝑧 + 𝑟𝐶𝑧𝑧 + 𝑟𝐶𝑧𝑧(𝑈𝑧𝛾𝑧𝑧 + 2𝑟𝐷𝑧𝛾𝑧𝑧)

−𝑟2𝛾𝑧𝑧𝐷𝑧𝐶𝑧𝑧] + 𝑟3𝛾2
𝑧𝑧[2𝑟𝛾𝑧𝑧(𝑈𝑧𝛾𝑧𝑧 −𝐷𝑧𝐶𝑧𝑧) − 𝐶𝑧𝑧𝐷𝑧𝐶𝑧𝑧]

+𝑟2𝐶𝑧𝑧𝛾𝑧𝑧[𝐶𝑧𝑧(−2𝑈𝑧𝛾𝑧𝑧 + 2𝑟𝐷𝑧𝛾𝑧𝑧 +𝐷𝑧𝐶𝑧𝑧) − 𝑟𝛾𝑧𝑧𝐷𝑧𝐶𝑧𝑧]
}︂

(3.24)

Its behavior towards 𝑟 → ∞ is the one which defines the condition of asymptotic flatness.
Specifically, the criteria is that

𝐶𝑟𝑧𝑟𝑧 ∼ 𝒪(𝑟−3), (3.25)
𝐶𝑟𝑢𝑟𝑧, 𝐶𝑟𝑢𝑟𝑧 ∼ 𝒪(𝑟−3). (3.26)

By the introduction of Taylor expansion on both expressions at (3.23), we recover

𝐶𝑟𝑧𝑟𝑧 ∼ −𝐶𝑧𝑧𝐶2
𝑧𝑧

2𝑟3 + 𝒪(𝑟−5) (3.27)

𝐶𝑟𝑢𝑟𝑧 ∼ 1
4𝑟2 (𝑈𝑧 −𝐷𝑧𝐶𝑧𝑧) + 1

8𝑟3 {2𝐶𝑧𝑧𝐶𝑧𝑧𝐷
𝑧𝛾𝑧𝑧 − 𝐶𝑧𝑧𝐷𝑧𝐶

𝑧𝑧 − 𝐶𝑧𝑧𝐷𝑧𝐶
𝑧𝑧}

+𝒪(𝑟−4). (3.28)

The first constraint is satisfied, given 𝐶𝑟𝑧𝑟𝑧 ∼ 𝒪(𝑟−3) and beyond. About the second
constraint, the first non-zero contribution comes at 𝒪(𝑟−2), with

1
4𝑟2 (𝑈𝑧 −𝐷𝑧𝐶𝑧𝑧) = 0. (3.29)

where 𝐶𝑧𝑧 is the initial conditions tensor. So to make vanish this term, we consider

𝑈𝑧 = 𝐷𝑧𝐶𝑧𝑧. (3.30)

With all that in mind, there is a third constraint due to the interpretation of the radial co-
ordinate 𝑟 as luminosity distance as defined by Sachs in [4][30]. Mathematically speaking,
we get that

𝜕𝑟 det
[︂
𝑔𝑧𝑧

𝑟2

]︂
= 0. (3.31)

Given that 𝑔𝑧𝑧 = 𝑟2𝛾𝑧𝑧 + 𝑟𝐶𝑧𝑧 + 𝒪(𝑟−1), this condition generates as consequence that the
𝐶𝑧𝑧 is traceless

𝐶𝑧
𝑧 = 0. (3.32)
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As result of the falloff conditions, the line element for this kind of spacetimes is given as

𝑑𝑠2 = −𝑑𝑢2 − 2𝑑𝑢𝑑𝑟 + 2𝑟2𝛾𝑧𝑧𝑑𝑧𝑑𝑧 + 2𝑚
𝐵

𝑟
𝑑𝑢2 + 𝑟𝐶𝑧𝑧𝑑𝑧

2 + 𝑟𝐶𝑧𝑧𝑑𝑧
2 +

+𝐷𝑧𝐶𝑧𝑧𝑑𝑢𝑑𝑧 +𝐷𝑧𝐶𝑧𝑧𝑑𝑢𝑑𝑧 + 1
𝑟

[︂4
3(𝑁𝑧 + 𝑢𝜕𝑧𝑚𝐵) − 1

4𝜕𝑧(𝐶𝑧𝑧𝐶
𝑧𝑧)

]︂
𝑑𝑢𝑑𝑧 . . . ,(3.33)

where 𝑚𝐵 is the Bondi mass and 𝑁𝑧 = 𝜕𝑧𝐶, being 𝐶 the fully contracted expresion of 𝐶𝑧𝑧.
𝑁𝑧 is called the angular momentum aspect of the metric, due to its connection through
integration to the angular momentum. Originally, this was deduced by Bondi et. al in
[3, 30].

3.3 BMS algebra
The symmetry group associated to these geometrical conditions shall preserve

both local and global boundary conditions at the null infinity [26], defined in the previ-
ous section. These are equivalent to the conservation of the fall-off conditions for the 4D
Lorentzian spacetime (3.20). For the Killing equations to be solved for this general case,
we are able to determine the elements of the BMS algebra. Even though our computa-
tions are expressed in the {𝑢, 𝑟, 𝐴,𝐵} coordinates, this is also valid for {𝑢, 𝑟, 𝑧, 𝑧} via the
identification {𝐴,𝐵} −→ {𝑧, 𝑧}. Then, we have

𝑈 = 1 − 2𝑚𝐵

𝑟
+ 𝒪(𝑟−2), (3.34)

𝛽 = 𝒪(𝑟−2), (3.35)

𝑈𝐴 = 1
𝑟2𝐷

𝐴𝐶𝐵𝐴 + 𝒪(𝑟−3), (3.36)

𝑔𝐴𝐵 = 𝑟2𝛾𝐴𝐵 + 𝑟𝐶𝐴𝐵 + 𝒪(1). (3.37)

By expanding (3.20), we obtain the following metric elements

𝑔𝑢𝑢 = −𝑈 + 1
4𝑔𝑧𝑧𝑈

𝑧𝑈 𝑧, (3.38)

𝑔𝑢𝑟 = −𝑒2𝛽, (3.39)

𝑔𝑢𝐴 = 1
2𝐷

𝐵𝐶𝐵𝐴 + 𝒪(𝑟−1), (3.40)
𝑔𝑟𝑟 = 𝑔𝑟𝐴 = 0, (3.41)
𝑔𝐴𝐵 = 𝑟2𝛾𝐴𝐵 + 𝑟𝐶𝐴𝐵 + 𝒪(1). (3.42)

Our objective is to determine the set of transformations which leave the metric invariant
up to the fall-off conditions imposed. To determine this, we perform the calculation of the
Killing vectors for the system

ℒ𝜉𝑔𝜇𝜈 = 𝜉𝜌𝜕𝜌𝑔𝜇𝜈 + 𝑔𝜇𝜌𝜕𝜈𝜉
𝜌 + 𝑔𝜈𝜌𝜕𝜇𝜉

𝜌. (3.43)

We analyze each element as follows

ℒ𝜉𝑔𝑟𝑟 = 2𝑔𝑢𝑟𝜕𝑟𝜉
𝑢 = 0 −→ 𝜕𝑟𝜉

𝑢 = 0 −→ 𝜉𝑢 = 𝜉𝑢(𝑢, 𝑥𝐴). (3.44)
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Then

ℒ𝜉𝑔𝑢𝑟 = 𝜕𝑢𝜉
𝑢𝑔𝑢𝑟 + 𝒪(𝑟−1) = 0 −→ 𝜉𝑢 = 𝜉𝑢(𝑥𝐴) = 𝑓(𝑥𝐴). (3.45)

So far, from the previous constraints and fall-off conditions the Killing vector 𝜉 shall have
the following decomposition

𝜉 = 𝑓𝜕𝑢 +
∞∑︁

𝑛=0

𝜉𝑟(𝑛)

𝑟𝑛
𝜕𝑟 +

∞∑︁
𝑛=1

𝜉𝐴(𝑛)

𝑟𝑛
𝜕𝐴. (3.46)

Now our Killing equation for 𝑔𝑢𝑢, 𝑔𝑟𝐴 and 𝑔𝐴𝐵 become

ℒ𝜉𝑔𝑢𝑢 = 𝑓𝜕𝑢𝑔𝑢𝑢 + 𝜉𝑟𝜕𝑟𝑔𝑢𝑢 + 𝜉𝐴𝜕𝐴𝑔𝑢𝑢 + 2𝜕𝑢𝜉
𝑟𝑔𝑟𝑢 + 2𝜕𝑢𝜉

𝐴𝑔𝐴𝑢

= −2𝜕𝑢𝜉
𝑟(0) + −2𝜕𝑢𝜉

𝑟(1) + 2𝑓𝜕𝑢𝑚𝐵 + 𝜕𝑢𝜉
𝐴(1)𝐷𝐵𝐶𝐵𝐴

𝑟
+ 𝒪(𝑟−2), (3.47)

ℒ𝜉𝑔𝑟𝐴 = 𝜕𝑟𝜉
𝐶𝑔𝐶𝐴 + 𝑔𝑢𝑟𝜕𝐴𝑓

= −𝛾𝐴𝐵(𝜉𝐵(1) +𝐷𝐵𝑓) − 2𝛾𝐴𝐵𝜉
𝐵(2) + 𝐶𝐴𝐵𝜉

𝐵(1)

𝑟
+ 𝒪(𝑟−2), (3.48)

ℒ𝜉𝑔𝐴𝐵 = 𝑓𝜕𝑢𝑔𝐴𝐵 + 𝜉𝑟𝜕𝑟𝑔𝐴𝐵 + 𝜉𝐶𝜕𝐶𝑔𝐴𝐵 + 𝑔𝑢𝐵𝜕𝐴𝑓 + 𝜕𝐴𝜉
𝐶𝑔𝐶𝐵 + 𝑔𝑢𝐴𝜕𝐵𝑓 + 𝜕𝐵𝜉

𝐶𝑔𝐶𝐴

= 𝑟
[︂
𝑓𝜕𝑢𝐶𝐴𝐵 + 2𝛾𝐴𝐵𝜉

𝑟(0) +𝐷𝐴𝜉
(1)
𝐵 +𝐷𝐵𝜉

(1)
𝐴

]︂
+ 𝑓𝜕𝑢ℎ

(0)
𝐴𝐵 + 𝐶𝐴𝐵𝜉

𝑟(0)

+2𝛾𝐴𝐵𝜉
𝑟(1) + 1

2𝐷
𝐶𝐶𝐶𝐴𝐷𝐵𝑓 + 1

2𝐷
𝐶𝐶𝐶𝐵𝐷𝐴𝑓 + 𝜉𝐶(1)𝐷𝐶𝐶𝐴𝐵 +𝐷𝐴𝜉

(2)
𝐵

+𝐶𝐵𝐶𝐷𝐴𝜉
𝐶(1) +𝐷𝐵𝜉

𝐶(2)
𝐴 + 𝐶𝐴𝐶𝐷𝐵𝜉

𝐶(1) + 𝒪(𝑟−1). (3.49)

Now to cancel out the terms violating the fall-off conditions in (3.48), we obtain for the
angular components of the 𝜉:

𝜉𝐴(1) = −𝐷𝐴𝑓, (3.50)

𝜉𝐵(2) = 1
2𝐶

𝐵𝐶𝐷𝐶𝑓. (3.51)

Similarly for its radial components, both the Killing equations

𝑓𝜕𝑢𝐶𝐴𝐵 + 2𝛾𝐴𝐵𝜉
𝑟(0) +𝐷𝐴𝜉

(1)
𝐵 +𝐷𝐵𝜉

(1)
𝐴 = 0 −→ 𝜉𝑟(0) = 1

2𝐷𝐴𝐷
𝐴𝑓, (3.52)

and luminosity distance condition

det
[︂
𝑔𝐴𝐵

𝑟2

]︂
= det

[︂
𝛾𝐴𝐵 + 𝐶𝐴𝐵

𝑟
+ 𝒪(𝑟−2)

]︂
= det 𝛾 exp 𝑡𝑟

[︂
log

(︂
𝛿𝐵

𝐴 + 1
𝑟
𝐶𝐵

𝐴 + 1
𝑟2ℎ

(0)𝐵
𝐴 + 𝒪(𝑟−3)

)︂]︂
= det 𝛾

[︂
1 + 1

𝑟
𝐶𝐴

𝐴 + 1
𝑟2 (ℎ(0)𝐴

𝐴 − 1
2𝐶

𝐵
𝐴𝐶

𝐴
𝐵 + 1

2𝐶
𝐴
𝐴𝐶

𝐵
𝐵 ) + 𝒪(𝑟−3)

]︂
. (3.53)

Given that 𝐶𝐴
𝐴 = 0 due to Weyl tensor properties, the only non-trivial term to be cancelled

is

ℎ
(0)𝐴
𝐴 − 1

2𝐶
𝐵
𝐴𝐶

𝐴
𝐵 = 0 −→ ℎ

(0)𝐴
𝐴 = 1

2𝐶
𝐵
𝐴𝐶

𝐴
𝐵 . (3.54)
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Then its variation is given by

𝛿ℎ
(0)𝐴
𝐴 = 𝐶𝐴𝐵𝛿𝐶

𝐴𝐵

= 𝑓𝜕𝑢ℎ
(0)𝐴
𝐴 + 4𝜉𝑟(1) + 2𝐷𝐴𝑓𝐷𝐵𝐶

𝐴𝐵 − 𝐶𝐴𝐵𝐷𝐴𝐷𝐵𝑓

= 𝑓

2𝜕𝑢(𝐶𝐴𝐵𝐶𝐴𝐵) − 2𝐶𝐴𝐵𝐷𝐴𝐷𝐵𝑓

= 0, (3.55)

and then,
𝜉𝑟(1) = −1

2𝐷𝐴𝑓𝐷𝐵𝐶
𝐴𝐵𝐷𝐴𝐷𝐵𝑓. (3.56)

This result leads us to obtain the Killing vector associated to the preservation of asymp-
totically flat spacetimes, as

𝜉(𝑓) = 𝑓𝜕𝑢 +
[︂

− 𝐷𝐴𝑓

𝑟
+

1
2𝐶

𝐴𝐵𝐷𝐵𝑓

𝑟2 + 𝒪(𝑟−3)
]︂
𝜕𝐴

+
[︂1
2𝐷

2𝑓 +
−1

2𝐷𝐴𝑓𝐷𝐵𝐶
𝐴𝐵 − 1

4𝐶
𝐴𝐵𝐷𝐴𝐷𝐵𝑓

𝑟
+ 𝒪(𝑟−2)

]︂
𝜕𝑟. (3.57)

Being 𝑓 = 𝑓(𝑥𝐴) the parameter for our group of transformations, then its Lie algebra is
built up from the Lie brackets of (3.57). Defined as:

[𝑉,𝑊 ] = [𝑉 𝜇𝜕𝜇,𝑊
𝜈𝜕𝜈 ]

= [𝑉 𝜈 𝜕𝑊
𝜇

𝜕𝑥𝜈
−𝑊 𝜈 𝜕𝑉

𝜇

𝜕𝑥𝜈
]𝜕𝜇. (3.58)

Then our respective brackets will be obtained from the expansion

[𝜉(𝑓1), 𝜉(𝑓2)] = [𝜉𝑢(𝑓1)𝜕𝑢𝜉
𝜇(𝑓2) − 𝜉𝑢(𝑓2)𝜕𝑢𝜉

𝜇(𝑓1)]
+[𝜉𝑟(𝑓1)𝜕𝑟𝜉

𝜇(𝑓2) − 𝜉𝑟(𝑓2)𝜕𝑟𝜉
𝜇(𝑓1)]

+[𝜉𝐴(𝑓1)𝜕𝐴𝜉
𝜇(𝑓2) − 𝜉𝐴(𝑓2)𝜕𝐴𝜉

𝜇(𝑓1)]. (3.59)

and as a result, we get that

[𝜉(𝑓1), 𝜉(𝑓2)]𝑢 = 0, (3.60)
[𝜉(𝑓1), 𝜉(𝑓2)]𝑟 = 𝒪(𝑟−1), (3.61)
[𝜉(𝑓1), 𝜉(𝑓2)]𝐴 = 𝒪(𝑟−2). (3.62)

Our symmetry vector 𝜉(𝑓) shall be identified from now on as the Super-translation gen-
erator. To interpret and connect the action of super-translations to charge conservation
and subsequent Ward Identities and Soft theorems, we shall consider the action of (3.57)
on the initial data of the system, encoded in 𝑚𝐵, 𝐶𝐴𝐵, 𝑁𝐴𝐵:

ℒ𝜉(𝑓)𝐶𝐴𝐵 = 𝑓𝜕𝑢𝐶𝐴𝐵 + 𝛾𝐴𝐵𝐷
2𝑓 − 2𝐷𝐴𝐷𝐵𝑓, (3.63)

ℒ𝜉(𝑓)𝑁𝐴𝐵 = 𝑓𝜕𝑢𝑁𝐴𝐵, (3.64)

ℒ𝜉(𝑓)𝑚𝐵 = 𝑓𝜕𝑢𝑚𝐵 + 1
4(𝑁𝐴𝐵𝐷𝐴𝐷𝐵𝑓 + 2𝐷𝐴𝑓𝐷𝐵𝑀𝑁𝐴𝐵). (3.65)
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where the Bondi news tensor is defined as

𝑁𝐴𝐵 = 1
2𝜕𝑢𝐶𝐴𝐵, (3.66)

and particularly in the retarded Bondi coordinates is expressed as

𝑁𝑧𝑧 = 𝜕𝑢𝐶𝑧𝑧. (3.67)

Making explicit identification with the Bondi retarded coordinates (2.23), then

ℒ𝜉(𝑓)𝐶𝐴𝐵 −→ ℒ𝜉(𝑓)𝐶𝑧𝑧 = 𝑓𝜕𝑢𝐶𝑧𝑧 + 𝜕𝑢𝐶𝑧𝑧 + 𝛾𝑧𝑧𝐷
2𝑓 − 2𝐷2

𝑧𝑓, (3.68)

and considering the vanishing of the curvature it is obtained that

𝐶𝑧𝑧 = −2𝐷2
𝑧𝐶. (3.69)

However, under supertranslations that condition is not fullfilled, because under its action

ℒ𝜉𝐶 = 𝑓, (3.70)

generating vacuum degeneracy up to 𝑓 .

Further development of the new concept of supertranslations is required. First,
from a group theory point of view, supertranslations are a generalization of the spacetime
translations in the Poincare group. In Bondi retarded coordinates, they can be pictured as
translations along every null generator of ℐ+. In addition, about the infrared behavior of
gravity theories, these transformations preserve metric gauge choice and fall-off conditions
for asymptotically flat spacetimes. Then, the BMS group is defined separately on null
infinities where we identify both BMS+ and BMS− invariance groups.

At both classical and quantum level, the BMS invariance has dynamical conse-
quences. The former can be analyzed through the lens of Einstein’s field equations. To
have a full BMS invariance, the equations of motion are constrained by continuity condi-
tions at the spatial infinity 𝑖0, consequence of the initial value problem in General Rela-
tivity. In practical terms, it will imply the introduction of the definition of Christodolou
and Klainerman (CK) spaces, as explained by He et. al. [31] and in last instance, the
matching conditions for the bulk fields of the metric

𝐶(𝑧, 𝑧)
⃒⃒⃒⃒
ℐ±

= 𝐶(𝑧, 𝑧)
⃒⃒⃒⃒
ℐ∓
, (3.71)

𝑚𝐵(𝑧, 𝑧)
⃒⃒⃒⃒
ℐ±

= 𝑚𝐵(𝑧, 𝑧)
⃒⃒⃒⃒
ℐ∓
. (3.72)

Expressed in terms of the BMS group parameter 𝑓(𝑧, 𝑧), we get

𝑓(𝑧, 𝑧)
⃒⃒⃒⃒
ℐ±

= 𝑓(𝑧, 𝑧)
⃒⃒⃒⃒
ℐ∓
, (3.73)

the same matching condition introduced for gauge fields.
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For scattering amplitudes, as will be seen in the next section, spontaneous symme-
try breaking of the BMS invariance leads to the appearance of soft gravitons as Goldstone
modes. The preservation of the symmetry becomes a Ward Identity and Soft Graviton
Theorem.

3.4 Quantum Gravity Ward Identity
Scattering amplitudes invariant under BMS is subject to the continuity of Cauchy

initial data from ℐ− to ℐ− through 𝑖0. Spacetimes subject to this type of expansion
are called Christodoulou & Klainerman spaces (CK)[5][6]. In our application context,
we can picture them as described in [32], spacetimes which subject to the evolution any
physical interaction, like black hole mergers or particle scattering, they return to a vacuum
configuration. Having in consideration all interactions are allowed, except those whose
energy surpasses the threshold for the formation of black holes. Having now fixed a gauge
for the metric (Bondi gauge), introduce the fall-off conditions and CK space configuration,
the bulk and boundary fields in the metric become constrained like

𝑁𝑧𝑧(𝑢)
⃒⃒⃒⃒
𝑢→±∞

∼ |𝑢|−3/2, (3.74)

and the Weyl tensor

Ψ0
2(𝑢, 𝑧, 𝑧) = − lim

𝑟→∞
(𝑟𝐶𝑢𝑧𝑟𝑧𝛾

𝑧𝑧) = −𝑚𝐵 + 1
4𝐶

𝑧𝑧𝑁𝑧𝑧 − 1
2𝛾

𝑧𝑧(𝜕𝑧𝑈𝑧 − 𝜕𝑧𝑈𝑧), (3.75)

where 𝑚𝐵 is the Bondi mass, and 𝑎𝑠𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑡𝑜 𝑚𝐵

⃒⃒⃒⃒
ℐ+

+

= 0,

𝑚𝐵

⃒⃒⃒⃒
ℐ+

−

= −𝑀, (3.76)where 𝑀 can be identified as the ADM mass. Besides

[︂
𝜕𝑧𝑈𝑧 − 𝜕𝑧𝑈𝑧

]︂
ℐ+

±

= 0. (3.77)

Now we proceed to discuss the scattering problem in the context of BMS invariance.
Given the continuity conditions for the initial data, we introduce the supertranslation
generator at ℐ+, and its action on the news tensor 𝑁𝑧𝑧:

𝑇+(𝑓) = 1
4𝜋𝐺

∫︁
+
−

𝑑2𝑧𝛾𝑧𝑓𝑚𝐵

= 1
16𝜋𝐺

∫︁
𝑑𝑢𝑑2𝑧𝑓

[︁
𝛾𝑧𝑧𝑇𝑢𝑢 + 1

2𝜕𝑢(𝜕𝑧𝑈𝑧 + 𝜕𝑧𝑈𝑧)
]︁
,

{𝑇+(𝑓), 𝑁𝑧𝑧} = 𝑓𝑢𝑁𝑧𝑧.

(3.78)

The action of 𝑇+(𝑓) as seen in the expansion, is composed of two terms. The first corre-
sponds to the introduction of supertranslation on the radiative modes and the second is
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a boundary term which properly manipulated is equivalent to

1
32𝜋𝐺

∫︁
ℐ+
𝑑𝑢𝑑2𝑧𝑓𝜕𝑢

[︂
𝜕𝑧𝑈𝑧 + 𝜕𝑧𝑈𝑧

]︂
= lim

𝜔→0

1
32𝜋𝐺

∫︁
ℐ+
𝑑𝑢𝑑2𝑧(𝑒𝑖𝜔𝑢 + 𝑒−𝑖𝜔𝑢)

[︂
𝑁 𝑧

𝑧𝐷
2
𝑧𝑓 +𝑁 𝑧

𝑧𝐷
2
𝑧𝑓

]︂
,

(3.79)

the soft graviton term. The latter will be responsible for the spontaneous symmetry break-
ing in the scattering process. As a consequence then

{𝑇+(𝑓), 𝑇+(𝑓 ′)} = 0, (3.80)

and the S-matrix invariance

𝑇+(𝑓)𝒮 − 𝒮𝑇−(𝑓) = 0. (3.81)

Due to this symmetry, the action/coupling of soft graviton current generated by those
fields lead to the so called quantum gravity Ward identity, which associates to this inser-
tion of the well-known soft factor, given as:

⟨𝑧out
1 , · · ·| : 𝑃𝑧𝒮 : |𝑧in

1 , · · · ⟩ = ⟨𝑧out
1 , · · ·|𝒮|𝑧in

1 , · · · ⟩
[︃

𝑚∑︁
𝑘=1

𝐸out
𝑘

𝑧 − 𝑧out
𝑘

−
𝑛∑︁

𝑘=1

𝐸in
𝑘

𝑧 − 𝑧in
𝑘

]︃
, (3.82)

where the soft graviton current defined as:

𝑃𝑧 ≡ 1
2𝐺

(︂∫︁ ∞

−∞
𝑑𝑣𝜕𝑣𝑉𝑧 −

∫︁ ∞

−∞
𝑑𝑢𝜕𝑢𝑈𝑧

)︂
. (3.83)

3.5 Soft graviton theorem
A simplified version of this identity is deduced from an Einstein-scalar gravity

theory. Take in consideration the weak field approximation given by 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜅ℎ𝜇𝜈 , so
the action becomes

𝑆 = −
∫︁
𝑑4𝑥

√
−𝑔 [ℒgrav + ℒs] , (3.84)

where

ℒgrav = − 2
𝜅2𝑅 = −1

2𝜕𝜎ℎ𝜇𝜈𝜕
𝜎ℎ𝜇𝜈 + 1

2𝜕𝜇ℎ𝜕
𝜇ℎ+ 𝜕𝜇ℎ𝜇𝜈𝜕𝜌ℎ

𝜈𝜌 − 𝜕𝜇ℎ
𝜇𝜈𝜕𝜈ℎ+ · · · ,

ℒs = −1
2

√
−𝑔𝑔𝜇𝜈𝜕𝜇𝜑𝜕𝜈𝜑 = −1

2𝜕
𝜇𝜑𝜕𝜇𝜑+ 1

2𝜅ℎ
𝜇𝜈

[︂
𝜕𝜇𝜑𝜕𝜈𝜑− 1

2𝜂𝜇𝜈𝜕
𝜎𝜑𝜕𝜎𝜑

]︂
+ · · · ,

(3.85)

and ℎ = 𝑑𝑒𝑡(ℎ𝜇𝜈). We introduce for this case one soft graviton in the scattering amplitude
with the two topologically inequivalent Feynman diagrams (see Figure 1). In analogy to
the case of the photon, is known that regardless of the nature of the quantum field theory
studied, the Lehmann-Symanzik-Zimmerman (LSZ) reduction formula [21] is applicalbe
and the calculation reduces to the product of the expectation value of the time ordered
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product of fields with the Fourier transform of (2 + 𝑚2)-like factors associated to the
dynamical coupling of the gauge/gravity field with its source, as

⟨𝑝1 . . . 𝑝𝑛|𝑆|𝑝′
1 . . . 𝑝

′
𝑚⟩ =

[︂
𝑖

∫︁
𝑑4𝑥′

1𝑒
−𝑖𝑝′

1𝑥′
1(2′

1 +𝑚2)
]︂
. . .

[︂
𝑖

∫︁
𝑑4𝑥𝑛𝑒

𝑖𝑝𝑛𝑥𝑛(2𝑛 +𝑚2)
]︂

×⟨Ω|𝑇{𝒪′
1(𝑥′

1) . . .𝒪′
𝑚(𝑥′

𝑚)𝒪1(𝑥1) . . .𝒪𝑛(𝑥𝑛)}|Ω⟩. (3.86)

When the fields are treated as free for both the initial and final states, then on the
asymptotic case we find that (2+𝑚2) −→ 0. However those not lead to a zero scattering
amplitude, due to the fact that the time ordering expectation value contains factors
like 1

(2+𝑚2) which cancel the former (2 + 𝑚2). So we see cancelation of infinities due
to zeros. As a result, the LSZ formula cancels all but relevant terms [21], as vertex
and interaction terms. For the case of our interacting scalar field theory, the Fourier
transformed interacting term come from both the vertex interaction of the soft graviton
as well as its propagator, for the case of coupling with external legs of the collision. First
the vertex is given as

−𝑖
(𝑝+ 𝑞)2 − 𝑖𝜖

= −𝑖
2𝑝 · 𝑞

, (3.87)

due to the on-shell condition. Since the interaction term goes proportional to 2𝑝𝜇𝑝𝜈 , we
find the coupling term

√
8𝜋𝐺𝜖

𝜇𝜈𝑝𝜇𝑝𝜈

𝑝 · 𝑞
. (3.88)

As consequence we have that, as developed originally by Weinberg [2][20] and analyzed
by Strominger [23], the amplitude ℳ𝜇𝜈 for an scattering process of 𝑚 incoming and 𝑛
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Figure 1 – Representation of an scattering process for m incoming and n outgoing scalars
particles. The first two diagrams represent the insertion of the soft graviton
on the external particles, while the third one considers this for an internal
particle. Figure extracted from Strominger [23]
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outgoing particle states is determined by

ℳ𝜇𝜈(𝑞, 𝑝′
1, · · · , 𝑝′

𝑚, 𝑝1, · · · , 𝑝𝑛) =
𝑚∑︁

𝑘=1
ℳ(𝑝′

1, · · · , 𝑝′
𝑘 + 𝑞, · · · , 𝑝′

𝑚, 𝑝1, · · · , 𝑝𝑛) −𝑖
(𝑝′

𝑘 + 𝑞)2 − 𝑖𝜖

×
[︂
𝑖𝜅

2
(︁
𝑝′

𝑘𝜇(𝑝′
𝑘 + 𝑞)𝜈 + 𝑝′

𝑘𝜈(𝑝′
𝑘 + 𝑞)𝜇 − 𝜂𝜇𝜈𝑝

′
𝑘 · (𝑝′

𝑘 + 𝑞)
)︁]︂

+
𝑛∑︁

𝑘=1
ℳ(𝑝′

1, · · · , 𝑝′
𝑚, 𝑝1, · · · , 𝑝𝑘 + 𝑞, · · · , 𝑝𝑛) −𝑖

(𝑝𝑘 − 𝑞)2 − 𝑖𝜖

×
[︂
𝑖𝜅

2 (𝑝𝑘𝜇(𝑝𝑘 − 𝑞)𝜈 + 𝑝𝑘𝜈(𝑝𝑘 − 𝑞)𝜇 − 𝜂𝜇𝜈𝑝𝑘 · (𝑝𝑘 − 𝑞))
]︂
.

(3.89)

The soft graviton theorem is the leading term in 𝑞-expansion, which comes from general-
izing (3.88) for the case of m-incoming and n-outgoing particles, such as

ℳ𝜇𝜈(𝑞, 𝑝′
1, · · · , 𝑝′

𝑚, 𝑝1, · · · , 𝑝𝑛) = 𝜅

2

[︃
𝑚∑︁

𝑘=1

𝑝′
𝑘𝜇𝑝

′
𝑘𝜈

𝑝′
𝑘 · 𝑞

−
𝑛∑︁

𝑘=1

𝑝𝑘𝜇𝑝𝑘𝜈

𝑝𝑘 · 𝑞

]︃
ℳ(𝑝′

1, · · · , 𝑝′
𝑚, 𝑝1, · · · , 𝑝𝑛),

(3.90)

where 𝑞 → 0. The contraction of the helicity vector with the scattering amplitude,
enables to obtain the scattering ratio. Through the application of Lorentz invariance
𝑒𝜇(𝑞,±2)ℳ𝛼𝛽

𝜇𝜈 → 𝑒′𝜇(𝑞,±2)ℳ′𝛼𝛽
𝜇𝜈 , leading to

𝑒′𝜇(𝑞,±2)ℳ′𝛼𝛽
𝜇𝜈 = (𝑒𝜇 + 𝑞𝜇)ℳ𝛼𝛽

𝜇𝜈 , (3.91)

where {𝛼, 𝛽} are matrix indices. Implying energy-momentum conservation as
∑︁

𝑛

𝜂𝑛𝑓𝑛𝑝
𝜈
𝑛 =

√︁
8𝜋𝐺𝑁

∑︁
𝑛

𝜂𝑛𝑝
𝜈
𝑛, (3.92)

where 𝑓𝑛 is the coupling constant for this quantum gravity model, Lorentz invariance guar-
antees 𝑝𝜇 conservation if, as mentioned by Weinberg [20]. low energy massless particles of
spin 2 couple in the same way to all forms of energy and momentum. In addition, Wein-
berg’s analysis gives us an important conclusion connecting asymptotically flat spacetime
physics with curved spacetime cases as Einstein’s principle of equivalence is a necessary
consequence of Lorentz invariance as applied to massless particles of spin 2.
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4 Memory Effect and the Infrared Triangle

In the present chapter we discuss the concept of memory effect as an infrared
phenomena in physics. Our objective is to identify its connection with the soft factors
derived from the soft theorems analyzed previously.

4.1 Electromagnetic memory effect
As main references for the electromagnetic memory effect we will consider [33] and

[34]. The electromagnetic memory effect can be understood as the velocity kick received
by a set of radiation detectors, placed to profile the E-M waves propagating on their
surroundings. From a theoretical point of view, this is a result of the waves zero modes
interacting with the in and out states, that will produce a net change Δ𝐴𝑢 on the leading
order terms of the 𝐴𝜇 potential. The net change will be proportional to the soft factor.

Being 𝑟 the regulator, we take a Taylor expansion of the potential for 𝑟 −→ 0 as
follows

𝐴𝜇(𝑢, 𝑧, 𝑧) = lim
𝑟→0

𝐴𝜇(𝑟, 𝑢, 𝑧, 𝑧) = 1
𝑟
𝐴𝑢 + 𝐴𝑧 +𝑂(𝑟) + . . . , (4.1)

Then Maxwell’s equations (2.43)(2.44) for the 𝑂(𝑟−1) term are given by

𝜕𝑢𝐴𝑢 = 𝜕𝑢(𝐷𝑧𝐴𝑧 +𝐷𝑧𝐴𝑧) + 𝑒2𝑗𝑢. (4.2)

The choice of these terms is essential for the IR dynamics of the field after the E-M
radiation has propagated away from the source, corresponds as usual to the constraints
imposed via the asymptotically flat spacetime fall-off conditions presented in (2.41). From
that expansion of the potential, we find at leading order, the terms which shall contribute
to the Faraday tensor will be 𝐹𝑢𝑟 = 𝐹𝑟𝑧 = 𝒪(𝑟−2), 𝐹𝑧𝑧 = 𝒪(1) and 𝐹𝑢𝑧 = −𝐴(1)

𝑧 . As a
consequence, this leads to the correspondent expansion of the Faraday tensor components
like

𝐹𝑢𝑟 = 𝐴𝑢,

𝐹𝑧𝑧 = 𝜕𝑧𝐴𝑧 − 𝜕𝑧𝐴𝑧,

𝐹𝑢𝑧 = 𝜕𝑢𝐴𝑧,

𝐹𝑟𝑧 = −𝐴(1)
𝑧 .

(4.3)

The net variation is measured in the space-time region surrounding the sources, which
encloses ℐ+

− and ℐ−
+ . Given that along 𝑢 and using 𝐹𝑧 = 0 at the boundaries of ℐ+, then

we integrate (4.2)

Δ𝐴𝑢

⃒⃒⃒⃒ℐ+
−

ℐ−
+

= 2𝐷𝑧Δ𝐴𝑧

⃒⃒⃒⃒ℐ+
−

ℐ−
+

+ 𝑒2
∫︁
𝑑𝑢𝑗𝑢. (4.4)
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The electromagnetic radiation generated through this velocity kick can be identified as a
soft factor contribution through the computation of Δ𝐴𝑧 as

Δ𝐴𝑧 = − 𝑒

4𝜋𝜖
*+
𝑧 𝜔𝑆(0)+

𝑝 , (4.5)

where
𝑆(0)±

𝑝 = 𝑒𝑄
𝑝 · 𝜖±

𝑝 · 𝑞
. (4.6)

Some additional comments can be made about electromagnetic memory. First, memory
effect can be seen even in slow motion and weak field scenarios. In those cases, it cor-
responds to the projection of the dipole moment responsible for the velocity kick. From
Newton’s second law

𝑚
𝑑2𝑥̄

𝑑𝑡2
= 𝑞𝐸̄, (4.7)

so then the velocity kick is obtained through integration by the identification

𝐸̄ = 1
𝑟
𝑃

[︂
𝑑2𝑝

𝑑𝑡2

]︂
, (4.8)

𝛿𝑣 = 𝑞

𝑚𝑟
𝑃

[︂
𝑑

𝑑𝑡
𝑝(𝑡 = ∞) − 𝑑

𝑑𝑡
𝑝(𝑡 = −∞)

]︂
, (4.9)

where 𝑃 is the projection of the dipole moment. Second, as will be mentioned in the
upcoming section, memory effects can be understood in terms of two contributions. For
the electromagnetic memory, these two are categorized as the ordinary and null velocity
kicks. The latter is found to be the proportional to the charge radiated to infinity per
unit solid angle. For further information, refer to [34].

4.2 Gravitational memory effect
Our approach to the gravitational memory effect concept is based on the devel-

opments made by Strominger on [19]. As in the previous section, we can picture the
gravitational memory effect as a kick on the gravitational initial data due to the propaga-
tion of radiation through spacetime. As explained by Bieri [34][35], original Christodolou
memory effect [5] can be understood as the force exerted by the propagating gravitational
waves on the motion of the detector, leading to the relative acceleration between its con-
stituents. The integration of this acceleration effect over all time, leads to the residual
velocity of the detector. In principle this shall be forbidden due to the consideration of
the energy conservation law, leading to non-existent radiating modes either on the |in⟩
or |out⟩ states in the scattering process. This leads to the classification of two different
gravitational memory effects, the linear and non-linear, focusing ourselves only on the
former.
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From a formal point of view, everything starts with the classical modes of the
asymptotically flat metric, Bondi mass 𝑚𝐵 and initial data tensor 𝐶𝑧𝑧. They are con-
strained by Einstein’s equations

𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 = 8𝜋𝐺𝑇𝜇𝜈 , (4.10)

through

𝜕𝑢𝑚𝐵 = 1
4

[︁
𝐷2

𝑧𝑁
𝑧𝑧 +𝐷2

𝑧𝑁
𝑧𝑧

]︁
− 𝑇𝑢𝑢, (4.11)

𝑇𝑢𝑢 = 1
4𝑁𝑧𝑧𝑁

𝑧𝑧 + 4𝜋𝐺 lim
𝑟→∞

[𝑟2𝑇𝑀
𝑢𝑢 ], (4.12)

where 𝑁𝑧𝑧 = 𝜕𝑢𝐶𝑧𝑧, and 𝑇𝑢𝑢 corresponds to the full stress-energy tensor, while 𝑇𝑀
𝑢𝑢 con-

tains only the contribution of the matter content in spacetime. The action of supertrans-
lations over the gravitational field degrees of freedom then are given by

ℒ𝑓𝑚𝐵 = 𝑓𝜕𝑢𝑚𝐵,

ℒ𝑓𝐶𝑧𝑧 = 𝑓𝑁𝑧𝑧 − 2𝐷2
𝑧𝑓, (4.13)

whose algebra generators are given by

𝜁𝑓 = 𝑓𝜕𝑢 +𝐷𝑧𝐷𝑧𝑓𝜕𝑟 − 1
𝑟

(𝐷𝑧𝑓𝜕𝑧 +𝐷𝑧𝑓𝜕𝑧). (4.14)

The transformation that our system has been subject to is obtained through the calcula-
tion of the difference between initial and final data after a super translation transformation
is applied. Defining the change as

Δ𝐶𝑧𝑧 ≡ 𝐶𝑧𝑧(𝑢𝑓 ) − 𝐶𝑧𝑧(𝑢𝑖), (4.15)
Δ𝑚𝐵 ≡ 𝑀𝑓 −𝑀𝑖. (4.16)

where 𝑀𝑖 and 𝑀𝑓 are the Bondi mass 𝑚𝐵 measured either on the initial or final state.
Integrating the Einstein equations (4.11) with respect to 𝑢, we obtain:

𝐷2
𝑧Δ𝐶𝑧𝑧 = 2

∫︁ 𝑢𝑓

𝑢𝑖

𝑑𝑢 𝑇𝑢𝑢 + 2Δ𝑚𝐵. (4.17)

Finally, it leads to the net variation

Δ𝐶𝑧𝑧(𝑧, 𝑧) = 2
∫︁
𝑑2𝑧′𝛾𝑧′𝑧′𝐺(𝑧, 𝑧; 𝑧′, 𝑧′)

(︂∫︁ 𝑢𝑓

𝑢𝑖

𝑑𝑢 𝑇𝑢𝑢(𝑧′, 𝑧′) + Δ𝑚𝐵

)︂
. (4.18)

The Green function 𝐺(𝑧, 𝑧; 𝑧′, 𝑧′) encodes [19] the effect of the impulse of radiation carried
over the detectors, and is expressed as

𝐺(𝑧, 𝑧; 𝑧′, 𝑧′) = − 1
𝜋
sin2 Θ

2 log
[︂
sin2 Θ

2

]︂
, with sin2 Θ(𝑧,𝑧′)

2 ≡ |𝑧−𝑧′|2
(1+𝑧𝑧′)(1+𝑧𝑧) . (4.19)
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This effect introduces the continuity conditions of CK space for action of radiative modes
in a black hole merger, for example. The consequence of the effect generated is a non-
trivial vacuum transition, which is result of the application of a supertranslation depicted
above. For completeness, is important to stress that the overall global translation [19],

𝑓𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑐0 + 𝑐1(1 − 𝑧𝑧) + 𝑐2𝑧 + 𝑐3𝑧 + 𝑐3𝑧

1 + 𝑧𝑧
, (4.20)

does not alter the radiative effect just discussed. A gravitational memory effect can be de-
termined as the difference between gravitational wave detector positions before and after
the interaction of gravitational radiation positions determined through their approxima-
tion as inertial observers, subject to motion along geodesics described in terms of geodesic
equation of motion

𝜕2
𝑠𝑋

𝜇
𝑔𝑒𝑜(𝑠) + Γ𝜇

𝜈𝜆𝜕𝑠𝑋
𝜈
𝑔𝑒𝑜(𝑠)𝑋𝜆

𝑔𝑒𝑜(𝑠) = 0, (4.21)

where 𝑋𝜇
𝑔𝑒𝑜(𝑠) is the four vector describing the worldline of the inertial detector evolving

along a geodesic. The distance change between two detectors is determined as we locate
them at initial positions (𝑟0, 𝑧0, 𝑧0),

𝑋𝜇
𝐵𝑀𝑆(𝑠) = (𝑟0, 𝑧0, 𝑧0). (4.22)

The latter can be approximated to be an inertial observer as far as 𝑢 < 𝑟0, then at leading
order

𝑋𝑢,𝑟
𝐵𝑀𝑆(𝑠) = 𝑋𝑢,𝑟

𝑔𝑒𝑜 + 𝒪(𝑟−1
0 ), (4.23)

𝑋𝑧
𝐵𝑀𝑆(𝑠) = 𝑋𝑧

𝑔𝑒𝑜(𝑠) + 𝒪(1/𝑟2
0). (4.24)

Our original distance is given by

𝐿 = 2𝑟0|𝛿𝑧|
1 + 𝑧1𝑧1

. (4.25)

After the radiation pulse

Δ𝐿 = 𝑟0

2𝐿Δ𝐶𝑧𝑧(𝑧1, 𝑧1)𝛿𝑧2 + 𝑐.𝑐., (4.26)

where 𝛿𝑧 ≡ 𝑧1 − 𝑧2. We interpret then 𝛿𝑧 as the distance between detectors, whose
variation is considered up to 1

𝑟0
[19]. Higher order contributions would be relevant for

the consideration of other effects beyond the scope of our current study. Having given an
overview of the effect, is necessary to determine how to measure this experimentally. In
a experimental setup, like the one offered by LIGO observatory, this can be measured as
relative distance change between detectors as well as relative change between clock time
measurements attached to them due to supertranslation transformations.

So far we have connected the BMS symmetry for vacuum with the gravitational
memory effect. However this is not a clear signal for identification with the soft graviton
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theorem. The proper way of developing this map is through the study of "bursts with
memory" (BWM), a particular type of gravitational wave worked out by Braginsky and
Thorne [36].

They define BWM’s as gravitational perturbations characterized by the tranverse-
traceless linearized metric ℎ𝑇 𝑇

𝑖𝑗 , such that they raise up from zero perturbation, then have
a finite time-lapse of oscillation Δ𝑡, and finally settling down to a non-zero perturbation
value for the metric. This non-zero left over corresponds to the memory effect generated
by the radiation propagation. On the other hand, from an astrophysical point of view, the
emission of these signals shall correspond to a system composed by two or more objects
such as star binary systems, black hole mergers, etc.

To perform the derivation of the connection between gravitational memory and soft
graviton theorem, first we define ℎ𝑇 𝑇

𝑖𝑗 , the transverse-trace-less linear gravitational field
perturbation. From [37] we know that transverse-trace-less (TT ) gauge is mathematically
defined as the following set of constraints

ℎ𝜇0 = 0, (4.27)
𝜕𝑗ℎ𝑘𝑗 = 0, (4.28)
ℎ𝑘𝑘 = 0. (4.29)

As consequence, it can be proven that only pure waves can be susceptible to the application
of TT gauge and satisfy Einstein’s equations

2ℎ𝜇𝜈 = −16𝜋𝑇𝜇𝜈 . (4.30)

Under these constraints, the geometrical imprint of burst gravitational waves can be
expressed in momentum space as

Δℎ𝑇 𝑇
𝜇𝜈 (𝑘⃗) = 1

𝑟0

√︃
𝐺

2𝜋

[︂ 𝑛∑︁
𝑗=1

𝑝′
𝑗,𝜇𝑝

′
𝑗,𝜈

𝜔𝑘 · 𝑝′
𝑗

−
𝑚∑︁

𝑗=1

𝑝𝑗,𝜇𝑝𝑗,𝜈

𝜔𝑘 · 𝑝𝑗

]︂𝑇 𝑇

. (4.31)

On the other hand, the soft limit for Δℎ𝑇 𝑇
𝜇𝜈 (𝜔, 𝑘⃗) reached when 𝜔 → 0, so that

Δℎ𝑇 𝑇
𝜇𝜈 (𝑘⃗) = 1

4𝜋𝑖𝑟0
lim
𝜔→0

[︂
− 𝑖𝜔ℎ𝑇 𝑇

𝜇𝜈 (𝜔, 𝑘⃗)
]︂
. (4.32)

From (4.31) we identify the presence of the soft graviton factor, originally introduced from
the scattering process

lim
𝜔→0

𝒜𝑚+𝑛+1(𝜔𝑘, 𝜖𝜇𝜈) =
√

8𝜋𝐺𝑆𝜇𝜈𝜖
𝜇𝜈𝒜𝑚+𝑛, (4.33)

where
𝑆𝜇𝜈 =

𝑚∑︁
𝑗=1

𝑝𝑗,𝜇𝑝𝑗,𝜈

𝜔𝑘 · 𝑝𝑗

−
𝑛∑︁

𝑗=1

𝑝′
𝑗,𝜇𝑝

′
𝑗,𝜈

𝜔𝑘 · 𝑝′
𝑗

, (4.34)
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finally, we get the proper mapping between the two infrared phenomena [19]

lim
𝜔→0

𝜔ℎ𝑇 𝑇
𝜇𝜈 (𝜔, 𝑘)𝜖𝜇𝜈 =

√
8𝜋𝐺𝜖𝜇𝜈 lim

𝜔→0
𝜔𝑆𝜇𝜈(𝜔𝑘). (4.35)

In analogy to the electromagnetic case, we obtain a correspondence between the gravita-
tional memory effect and soft graviton theorem on momentum space.

The possible measurement of memory effect contribution for gravitational waves is
a possibility contemplated by different studies. Two possible candidates for the generation
of such effect are the supermassive black hole mergers and pulsar time arrays if considered
the use of orbital detectors such as LISA. A numerical estimate on its contribution towards
the wave profile is hard to determine, due to the fact that is amplitude is not weaker in
comparison to other contributions, see for example Favata [38] or van Haasteren [39].

4.3 The infrared triangle for gauge fields and gravity
As expressed by Pasterski, Strominger, Mitra [23][33][40] a correspondence exists

between asymptotic symmeries, soft theorems and memory effects, all three phenomena
corresponding to infrared behavior of gauge and gravity theories as presented on this
dissertation. It can be better illustrated in the Figure 2.

Figure 2 – Infrared triangle big picture. On these graph are explicitly shown the pionering
developments on the subject. Extracted from Pasterski’s [41]

Prior to the developments explored and cited along our work, there was no clear
evidence of the existence of identification between infrared phenomena on gauge and
gravity theories. Causal behavior of physical systems in asymptotically flat spacetimes
leads to the requirement of continuity conditions around spacelike infinity, leading to
the identification of gauge symmetries of the system. The latter guarantee the existence
of some sort of spacetime symmetries, the well-known BMS symmetries. In the end,
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these conditions are responsible for constraining the production of zero-energy radiative
modes of either gauge or gravity fields, the soft theorems governing scattering processes.
Meanwhile, the application of symmetry transformations leads to the transition between
vacuums in the correspondent theory, which due to degeneracy, gives rise to the memory
effect. This can be summarized as presented in the following diagram:

Soft
Theorem

Ward
Identity Asymptotic

Symmetry

Vacuum
Transition

Memory
Effect

Fourier
Transform

1

Finally we want to make some comments about further developments of the infrared tri-
angle. The development of this infrared correspondence is grounded on the Ashtekar &
Hansen [29] protocol for asymptotically flat spacetime, which establishes the boundary
conditions to be obeyed by the fields on the null and spacelike infinities. However there
has been the inconvenience of needing to define every relationship for past and future
nulls separate. In order to improve this and lead to a unified picture of asymptotically
flat spacetimes, Krishnan & Pereira [42] redefine this protocol. In addition, all the identi-
fications presented on this dissertation are defined at leading order. To improve this, and
determine its universality at subleading terms, for both gauge fields and gravity, we can
consider the seminal works of Strominger [19], Pasterski [43], Cachazo [44].
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5 Conclusions

The main objective of the present work is to make a pedagogical presentation
of the concept of Infrared Divergences for Gauge and Gravity theories. Being a fron-
tier research topic under constant development, our presentation expects to serve as a
bridge between the basic concepts behind the phenomena under study and the abundant
literature published lately.

Soft theorems [1][2] are built as constraints on scattering amplitudes for the cre-
ation of soft particles either on the |in⟩ or |out⟩ states. Their pole structure is modified
because of the extra interaction terms on the asymptotic states due to these new soft
particles. Then this leads to the appearance of divergences, which end up being cancelled
out due to the contribution of virtual soft modes as well. On the other hand, asymptotic
symmetries set the arena for causally consistent physical processes on asymptotically flat
spacetimes. In particular, it is the continuity as well the analytical identifications between
past and future null infinities that imposes the existence of large gauge symmetries for
field theories, and a set of spacetime isometries, the BMS symmetries, "dressing up" the
Hilbert space states. On third place, the memory effect produces a change on the field
configuration due to the interaction with infrared modes of radiation, generating a non-
trivial vacuum transition which is detected as impulses, relative distance changes, etc.
Miraculously they are all connected by employing different kinds of transformations.

These transformations are responsible for linking the mathematical expressions
describing these phenomena on both the coordinate and momentum spaces. Indeed what
we can claim is that the infrared triangle provide us with a new example of how sym-
metries of gauge and gravitational systems explain around the common framework of
asymptotic symmetries. This ultimately explains the existence of conservation laws and
vacuum characterization on the same energy scale, the infrared scale.

Initial development of the infrared triangle has led to appearance of different re-
search lines. Of particular interest to us are the advent of Celestial Holography program
and the study of the Black Hole Information Paradox. Celestial Holography in particular,
is a new realization of the Holographic Principle proposed by Susskind and others [45]
(see references therein) for the case of asymptotically flat spacetimes on the bulk theory.
Being the Anti de-Sitter/Conformal Field Theory (AdS/CFT) correspondence by Mal-
dacena [46], and then expanded by Witten et. al. [47] [48], this is a new paradigmatic
advance on the description of nature in holographic terms. It aims to describe the dy-
namics of a 2-dimensional CFT by its 4-dimensional gravitational dual at null infinities
ℐ±. Then the programs objective in simple words would be to link a bulk gravitational
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theory on 4-dimensional to an 2-dimensional conformal field theory living on the so called
celestial sphere, which was not the case of Maldacena and Witten’s original proposal. For
a more detailed study, please refer to [49, 50, 51, 52, 53, 54, 55, 56].

Beyond, the infrared triangle development has found fertile soil on its possible
application for solving the Black Hole (BH) information paradox. The problem can be
phrased as follows: given a physical system thrown into a black hole, is its information
completely lost from the entire universe or could be recovered in some way? Considering
both the system falling into the BH, as well as the BH itself our current understanding of
this situation tells us that the total amount of information can be quantified in terms of
the overall entropy of the full system. Due to our knowledge of BH physics, its behavior is
constrained by three conserved quantities known as the "Black hole hair": Mass, Charge
and Angular momentum. In an scenario of BH evaporation, the process is analytically
determined in terms of those parameters. However, considering the event horizon (EH) an
asymptotically flat region, is possible that there could information "trapped" in that region
which would correspond to new hair, corresponding to the conserved quantities associated
to the asymptotic symmetries of the region. This has been extensively discussed in the
literature, as can be seen in [57, 58, 59, 60, 61, 62, 63, 64], but there is no agreement yet
about its role on solving or even describing more efficiently the problem.

Any of the previous research lines would be of interest for future projects, being
both linked to a better description of how gravitational theories can be understood at
small scales.
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A Penrose diagrams

Let us start with the line element We introduce our first change of coordinates,
whose objective is to rotate the lightcone

𝑝 = 𝑡− 𝑟, (A.1)
𝑞 = 𝑡+ 𝑟, (A.2)

Besides 𝑞 − 𝑝 = 2𝑟 → 𝑟 = 𝑞−𝑝
2 with the range 𝑞 − 𝑝 ≥ 0, 𝑟 ≥ 0. Second, we introduce the

compactification by employing hyperbolic functions

𝑢 = tanh 𝑞, (A.3)
𝑣 = tanh 𝑝. (A.4)

And then, the line element becomes:

𝑑𝑠2 = − 𝑑𝑢𝑑𝑣

(1 − 𝑢2)(1 − 𝑣2) . (A.5)

A second rotation

𝑢 = 𝑇 +𝑋, (A.6)
𝑣 = 𝑇 −𝑋, (A.7)

is applied to finally obtain:

𝑑𝑠2 = −𝑑𝑇 2 + 𝑑𝑋2

(1 − (𝑇 +𝑋)2)(1 − (𝑇 −𝑋)2) . (A.8)

Extracting the conformal factor 1
(1−(𝑇 +𝑋)2)(1−(𝑇 −𝑋)2) , we recover a non-physical metric

given by
𝑑𝑠2 = −𝑑𝑇 2 + 𝑑𝑋2. (A.9)

The Penrose diagram, which contains the particle propagating in Minkowski spacetime, is
presented in Figure 3. In terms of the new variables, the conformal infinities of Minkowski
spacetime are

• 𝑖− → past timelike infinity 𝑅 = 0, 𝑇 = −𝜋

• 𝑖+ → future timelike infinity 𝑅 = 0, 𝑇 = 𝜋

• ℐ− → past lightlike infinity 𝑅 ∈ (0, 𝜋), 𝑇 = −𝜋 +𝑅

• ℐ+ → future lightlike infinity 𝑅 ∈ (0, 𝜋), 𝑇 = 𝜋 −𝑅

• 𝑖0 → spatial infinity 𝑅 = 𝜋, 𝑇 = 0
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Figure 3 – Penrose diagram of Minkowski spacetime. Extracted from Strominger, A.
(2018). Lectures on the infrared structure of gravity and gauge theory. Prince-
ton University Press.



44

B Noether’s theorem and Local Gauge Invari-
ance

The association between symmetries and conservation laws in physics is due to
Noether’s theorem. For the case of our present study, is of our interest in particular
Local Gauge invariance. Our aim then will be to present the derivation of the general
expression for Noether’s conserved current and charge. Our main reference will be [65].
Given a general lagrangian density ℒ(𝑥) = ℒ

(︂
𝜑(𝑥), 𝜕𝜑(𝑥)

𝜕𝑥𝜇

)︂
, so then the action is defined

as
𝑆 =

∫︁
𝑑4𝑥ℒ(𝑥). (B.1)

Our interest is to introduce the following coordinate and field variations

𝑥′
𝜇 = 𝑥𝜇 + 𝛿𝑥𝜇, (B.2)
𝜑′(𝑥′) = 𝜑(𝑥) + 𝛿𝜑(𝑥), (B.3)
𝜑′(𝑥) = 𝜑(𝑥) + 𝛿𝜑(𝑥), (B.4)

where the latter is named sometimes as modified field variation. Both regular and modified
field variations happen to be related as

𝛿𝜑(𝑥) = 𝜑′(𝑥) − 𝜑(𝑥)
= 𝜑′(𝑥) − 𝜑′(𝑥′) + 𝜑′(𝑥′) − 𝜑(𝑥)
= (𝜑′(𝑥′) − 𝜑(𝑥)) − (𝜑′(𝑥′) − 𝜑′(𝑥))
= 𝛿𝜑(𝑥) − (𝜑′(𝑥′) − 𝜑′(𝑥))

= 𝛿𝜑(𝑥) −
(︂
𝜑′(𝑥) + 𝜕𝜑′(𝑥)

𝜕𝑥𝜇

𝛿𝑥𝜇 − 𝜑′(𝑥)
)︂

= 𝛿𝜑(𝑥) − 𝜕𝜑′(𝑥)
𝜕𝑥𝜇

𝛿𝑥𝜇

= 𝛿𝜑(𝑥) − 𝜕𝜑(𝑥)
𝜕𝑥𝜇

𝛿𝑥𝜇. (B.5)

Important properties associated to both field variations is their behavior under derivation.
First the modified variation

𝜕

𝜕𝑥𝜇

𝛿𝜑(𝑥) = 𝛿
(︂
𝜕𝜑(𝑥)
𝜕𝑥𝜇

)︂
. (B.6)
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Second, the regular variation

𝜕

𝜕𝑥𝜇

𝛿𝜑(𝑥) = 𝜕

𝜕𝑥𝜇

(︂
𝜑′(𝑥′) − 𝜑(𝑥)

)︂

= 𝜕𝜑′(𝑥′)
𝜕𝑥𝜇

− 𝜕𝜑(𝑥)
𝜕𝑥𝜇

+ 𝜕𝜑′(𝑥′)
𝜕𝑥′

𝜇

− 𝜕𝜑′(𝑥′)
𝜕𝑥′

𝜇

=
(︂
𝜕𝜑′(𝑥′)
𝜕𝑥′

𝜇

− 𝜕𝜑(𝑥)
𝜕𝑥𝜇

)︂
+ 𝜕𝜑′(𝑥′)

𝜕𝑥𝜇

− 𝜕𝜑′(𝑥′)
𝜕𝑥′

𝜇

= 𝛿
(︂
𝜕𝜑(𝑥)
𝜕𝑥𝜇

)︂
+ 𝜕𝜑′(𝑥′)

𝜕𝑥′𝜈
𝜕𝑥′𝜈

𝜕𝑥𝜇

− 𝜕𝜑′(𝑥′)
𝜕𝑥′

𝜇

= 𝛿
(︂
𝜕𝜑(𝑥)
𝜕𝑥𝜇

)︂
+ 𝜕𝜑′(𝑥′)

𝜕𝑥′𝜈

(︂
𝑔𝜈𝜇 + 𝜕𝛿𝑥′𝜈

𝜕𝑥𝜇

)︂
− 𝜕𝜑′(𝑥′)

𝜕𝑥′
𝜇

= 𝛿
(︂
𝜕𝜑(𝑥)
𝜕𝑥𝜇

)︂
+ 𝜕𝜑′(𝑥′)

𝜕𝑥′
𝜇

+ 𝜕𝜑′(𝑥′)
𝜕𝑥′𝜈

𝜕𝛿𝑥′𝜈

𝜕𝑥𝜇

− 𝜕𝜑′(𝑥′)
𝜕𝑥′

𝜇

= 𝛿
(︂
𝜕𝜑(𝑥)
𝜕𝑥𝜇

)︂
+ 𝜕𝜑′(𝑥′)

𝜕𝑥′𝜈
𝜕𝛿𝑥′𝜈

𝜕𝑥𝜇

= 𝛿
(︂
𝜕𝜑(𝑥)
𝜕𝑥𝜇

)︂
+ 𝜕𝜑(𝑥)

𝜕𝑥𝜈

𝜕𝛿𝑥𝜈

𝜕𝑥𝜇

. (B.7)

With all these ingredientes, finally we can address the variation of the action under all
the set of transformations (B.2). The action variation is given by

𝛿𝑆 =
∫︁
𝑑4𝑥′ℒ′(𝑥′) −

∫︁
𝑑4𝑥ℒ(𝑥)

=
∫︁ (︂

1 + 𝜕𝛿𝑥𝜇

𝜕𝑥𝜇

)︂
𝑑4𝑥

(︂
𝛿ℒ(𝑥) + ℒ(𝑥)

)︂
−

∫︁
𝑑4𝑥ℒ(𝑥)

=
∫︁
𝑑4𝑥𝛿ℒ(𝑥) +

∫︁
𝑑4𝑥

𝜕𝛿𝑥𝜇

𝜕𝑥𝜇
ℒ(𝑥) + 𝒪(𝛿2)

=
∫︁
𝑑4𝑥

(︂
𝛿ℒ(𝑥) + 𝜕ℒ(𝑥)

𝜕𝑥𝜇
𝛿𝑥𝜇

)︂
+

∫︁
𝑑4𝑥ℒ(𝑥)𝜕𝛿𝑥

𝜇

𝜕𝑥𝜇

=
∫︁
𝑑4𝑥

[︂
𝛿ℒ(𝑥) + 𝜕

𝜕𝑥𝜇

(︂
ℒ(𝑥)𝛿𝑥𝜇

)︂]︂
=

∫︁
𝑑4𝑥

[︂
𝜕ℒ(𝑥)
𝜕𝜑(𝑥) 𝛿𝜑(𝑥) + 𝜕ℒ(𝑥)

𝜕(𝜕𝜇𝜑)𝛿
(︂
𝜕𝜑(𝑥)
𝜕𝑥𝜇

)︂
+ 𝜕

𝜕𝑥𝜇

(︂
ℒ(𝑥)𝛿𝑥𝜇

)︂]︂

=
∫︁
𝑑4𝑥

[︂
𝜕ℒ(𝑥)
𝜕𝜑(𝑥) 𝛿𝜑(𝑥) + 𝜕ℒ(𝑥)

𝜕(𝜕𝜇𝜑)
𝜕

𝜕𝑥𝜇

(︂
𝛿𝜑(𝑥)

)︂
+ 𝜕

𝜕𝑥𝜇

(︂
ℒ(𝑥)𝛿𝑥𝜇

)︂]︂

=
∫︁
𝑑4𝑥

[︂
𝜕ℒ(𝑥)
𝜕𝜑(𝑥) 𝛿𝜑(𝑥) + 𝜕ℒ(𝑥)

𝜕(𝜕𝜇𝜑)
𝜕

𝜕𝑥𝜇

(︂
𝛿𝜑(𝑥)

)︂
+ 𝜕

𝜕𝑥𝜇

(︂
ℒ(𝑥)𝛿𝑥𝜇

)︂

+ 𝜕

𝜕𝑥𝜇

(︂
𝜕ℒ(𝑥)
𝜕(𝜕𝜇𝜑)

)︂
𝛿𝜑(𝑥) − 𝜕

𝜕𝑥𝜇

(︂
𝜕ℒ(𝑥)
𝜕(𝜕𝜇𝜑)

)︂
𝛿𝜑(𝑥)

]︂

=
∫︁
𝑑4𝑥

[︂
𝜕ℒ(𝑥)
𝜕𝜑(𝑥) − 𝜕

𝜕𝑥𝜇

(︂
𝜕ℒ(𝑥)
𝜕(𝜕𝜇𝜑)

)︂]︂
𝛿𝜑(𝑥)

+
∫︁
𝑑4𝑥

[︂
𝜕ℒ(𝑥)
𝜕(𝜕𝜇𝜑)

𝜕

𝜕𝑥𝜇

(︂
𝛿𝜑(𝑥)

)︂
+ 𝜕

𝜕𝑥𝜇

(︂
𝜕ℒ(𝑥)
𝜕(𝜕𝜇𝜑)

)︂
𝛿𝜑(𝑥) + 𝜕

𝜕𝑥𝜇

(︂
ℒ(𝑥)𝛿𝑥𝜇

)︂]︂

=
∫︁
𝑑4𝑥

[︂
𝜕ℒ(𝑥)
𝜕𝜑(𝑥) − 𝜕

𝜕𝑥𝜇

(︂
𝜕ℒ(𝑥)
𝜕(𝜕𝜇𝜑)

)︂]︂
𝛿𝜑(𝑥) +

∫︁
𝑑4𝑥

𝜕

𝜕𝑥𝜇

[︂
𝜕ℒ(𝑥)
𝜕(𝜕𝜇𝜑)𝛿𝜑(𝑥) + ℒ(𝑥)𝛿𝑥𝜇

]︂
.(B.8)
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Due to Euler-Lagrange eqs., in order to make vanish the variation of the action requires
the second integral to be zero. In consequence, this condition can be addressed as

𝜕𝜇𝑓𝜇 = 0 (B.9)

where we identify as the conserved current 𝑓𝜇, defined as

𝑓𝜇 = 𝜕ℒ(𝑥)
𝜕(𝜕𝜇𝜑)𝛿𝜑(𝑥) + ℒ(𝑥)𝛿𝑥𝜇

= 𝜕ℒ(𝑥)
𝜕(𝜕𝜇𝜑)𝛿𝜑(𝑥) −

[︂
𝜕ℒ(𝑥)
𝜕(𝜕𝜇𝜑)

𝜕𝜑

𝜕𝑥𝜈
− 𝑔𝜇𝜈ℒ(𝑥)

]︂
𝛿𝑥𝜈 . (B.10)

Complementary, the conserved charge associated to it is defined as

𝑄 =
∫︁
𝑑3𝑥𝑓0(𝑥) (B.11)

In particular, we consider the case of local gauge transformations. Those are defined as

𝐴′
𝜇 = 𝐴𝜇 + 𝜕𝜇Λ(𝑥), (B.12)

that applied to electromagnetic field lagrangian density ℒ(𝑥) = −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝑗𝜇𝐴
𝜇, leads

to

ℒ′(𝑥) = −1
4𝐹

′
𝜇𝜈𝐹

′𝜇𝜈 + 𝑗𝜇𝐴
′𝜇

= −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝑗𝜇(𝐴𝜇 + 𝜕𝜇Λ)

= −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝑗𝜇𝐴
𝜇 + 𝑗𝜇𝜕

𝜇Λ

= −1
4𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝑗𝜇𝐴
𝜇 +

[︂
𝜕𝜇(𝑗𝜇Λ) − Λ𝜕𝜇𝑗𝜇)

]︂
= −1

4𝐹𝜇𝜈𝐹
𝜇𝜈 + 𝑗𝜇𝐴

𝜇 + 𝜕𝜇(𝑗𝜇Λ)
= ℒ(𝑥) + 𝜕𝜇(𝑗𝜇Λ), (B.13)

being invariant up to a divergence term, and considering the condition 𝜕𝜇𝑗
𝜇 = 0.
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