Universidade Federal de Itajubá Programa de Pós–Graduação em Matemática

CICLOS LIMITES EM SISTEMAS LINEARES POR PARTES COM DUAS ZONAS NO PLANO

Luiz Fernando Gonçalves

Itajubá, fevereiro de 2016

UNIVERSIDADE FEDERAL DE ITAJUBÁ Programa de Pós-Graduação em Matemática

CICLOS LIMITES EM SISTEMAS LINEARES POR PARTES COM DUAS ZONAS NO PLANO

Luiz Fernando Gonçalves

Orientador: Prof. Dr. Luis Fernando de Osório Mello

Dissertação submetida ao Programa de Pós–Graduação em Matemática como parte dos requisitos para obtenção do Título de Mestre em Ciências em Matemática

Área de Concentração: Equações Diferenciais

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da CAPES

Itajubá – MG fevereiro de 2016 UNIVERSIDADE FEDERAL DE ITAJUBÁ Programa de Pós-Graduação em Matemática

CICLOS LIMITES EM SISTEMAS LINEARES POR PARTES COM DUAS ZONAS NO PLANO

Luiz Fernando Gonçalves

Dissertação aprovada por banca examinadora em 16 de fevereiro de 2016, conferindo ao autor o título de Mestre em Ciências em Matemática.

Banca Examinadora:

Prof. Luis Fernando de Osório Mello (Orientador)Prof. Fabio Scalco Dias (Co-orientador)Prof. Tiago de CarvalhoProf. Lucas Ruiz dos Santos.

Itajubá – MG fevereiro de 2016

Aos meus amados pais José e Ilma; Aos meus grandes amigos; Aos meus mestres; Dedico.

Agradecimentos

A Universidade Federal de Itajubá (UNIFEI), em especial ao Instituto de Matemática e Computação (IMC), pela oportunidade e realização deste trabalho.

Aos professores do IMC, pela amizade, ensinamentos e conselhos que foram muito importantes para minha formação.

A meu orientador, Luis Fernando de Osório Mello, pelo grande exemplo profissional, competência, dedicação e arte de ensinar.

A meus colegas do Mestrado em Matemática da UNIFEI.

A minha amada mãe que sempre me apoiou e encorajou nesta caminhada.

A meu amado pai, pelo exemplo de vida, força, incentivo e dedicação.

Aos meus grandes amigos e familiares pelo carinho e apoio.

Enfim, a todos que contribuíram, direta ou indiretamente, meus sinceros agradecimentos.

"Um homem que teme a batalha não conquista vitórias." George R. R. Martin

Resumo

O objetivo desta dissertação é abordar aspectos qualitativos da teoria dos Sistemas Diferenciais Suaves por Partes, também conhecidos como Sistemas Descontínuos. Primeiramente apresentamos os objetos fundamentais e propriedades gerais desta teoria, assim como uma versão da Aplicação de Poincaré para sistemas suaves por partes. Em seguida, apresentamos o Método da Regularização de campos vetoriais suaves por partes com o propósito de investigar a regularização de poli-trajetórias fechadas elementares. Posteriormente, partimos ao estudo de ciclos limites em campos vetoriais suaves por partes lineares.

Palavras-chave: Sistema Suave por Partes, Regularização, Ciclo limite.

Abstract

The aim of this work is to discuss qualitative features of the theory of Piecewise Differential Systems, also known as discontinuous systems. First we present the main objects and general properties of this theory, and a version of the Poincaré map for piecewise differential systems. Thereafter we present the Regularization Method in order to investigate the regularization of elementary closed poly-trajectories. Lastly, we started the study of limit cycles in piecewise linear differential systems.

Keywords: Piecewise differential systems, Regularization Method, limit cycle.

Sumário

Ag	grade	ecimentos	ii
Re	esum	0	iv
Abstract			v
Índice		vi	
Lis	sta d	e Figuras	viii
Lista de Tabelas			x
Introdução		1	
1	Fun	damentos da Teoria Qualitativa	3
	1.1	Resultados Clássicos	3
2	\mathbf{Intr}	odução aos Sistemas Suaves por Partes	13
	2.1	Sistemas suaves por partes	13
	2.2	Aplicação de Poincaré	26
3	\mathbf{Reg}	ularização de campos vetoriais suaves por partes	32
	3.1	O método da regularização	32
	3.2	Regularização de poli-trajetórias fechadas elementares	42

4	Cic	los limites em campos vetoriais lineares por partes no plano	65
	4.1	Resultados preliminares	66
	4.2	Ciclos Limites	79
Conclusões		99	
Bibliografia			100

vii

Lista de Figuras

1.1	Aplicação de Poincaré	9
2.1	Arco de costura	15
2.2	Arco de escape	15
2.3	Arco de deslize	15
2.4	Campo de Filippov	17
2.5	Sela de Filippov	19
2.6	Sela de Filippov.	19
2.7	Nó de Filippov	20
2.8	Nó de Filippov	20
2.9	Exemplo de poli-trajetória	21
2.10	Exemplo de poli-trajetória fechada do tipo I	22
2.11	Exemplo de poli-trajetória fechada do tipo II.	22
2.12	Exemplo de poli-trajetória fechada do tipo III	22
2.13	Retrato de fase do campo Z_1 dado em (2.6)	24
2.14	Retrato de fase do campo Z_2 dado em (2.7)	24
2.15	Retrato de fase do campo Z_3 dado em (2.8)	25
2.16	Retrato de fase do campo Z_4 dado em (2.9). \ldots \ldots \ldots	25
2.17	Divisão de uma poli-trajetória fechada γ	31
3 1	Gráfico de uma função de transição	33
3.2	Faixa de regularização	34
0.2		01
3.3	Kegularização de um ponto Σ -regular	36

3.4	Regularização de uma Σ -dobra	38
3.5	Interseção entre φ_{ε} e g	40
3.6	Regularização de um ponto singular hiperbólico do campo de Filippov	42
3.7	Poli-trajetória γ .	44
3.8	Seção transversal Σ_0	45
3.9	Anel B contendo γ	45
3.10	Órbita periódica γ_{ε}	48
3.11	Órbita Periódica $\gamma = \Sigma$	51
3.12	Poli-trajetória do tipo III	58
3.13	Anel contendo γ	59
3.14	Órbita de Z_{ε} entre as seções transversais	61
3.15	Gráfico da função $\psi.$	61
4.1	Involução ψ	69
4.2	Função Δ	72
4.3	Ciclo limite estável	76
4.4	Ciclo limite instável.	76
4.5	Órbita periódica γ	77
4.6	Solução γ e seus pontos de intersecção com a reta de separação $\Sigma.$	81
4.7	Retrato de fase de X^+ no caso (i)	83
4.8	Retrato de fase de X^+ no caso (ii)	84
4.9	Retrato de fase de X^+ no caso (iii)	85
4.10	Retrato de fase de X^+ no caso (iv)	87
4.11	Retrato de fase de X^+ no caso (v)	88
4.12	Teorema de Rolle para curvas integrais	90
4.13	Curvas C_f e C_F com dois pontos de interseção em S	92
4.14	Curvas C_f , C_F e C_{f_2}	94

Lista de Tabelas

4.1	Tabela com expressões de f_1 , $\lambda \in \delta$	95
4.2	Tabela com expressões para $f_1, f_2, \lambda \in \delta$	96
4.3	Expressões para f_1 , $\lambda \in \delta$	97

Introdução

As Equações Diferenciais Ordinárias são a linguagem preferida dos matemáticos para investigar fenômenos da natureza. Todavia, sabemos que muitas delas não admitem soluções explícitas e isso motivou grandes matemáticos a buscar diferentes alternativas.

Consequentemente, a forma como as Equações Diferenciais Ordinárias eram estudadas mudou drasticamente no final do século XIX. Tal fato se deve a Henri Poincaré após a publicação de seu trabalho *Mémoire sur les courbes définies par une équation différentielle* em que Poincaré introduz uma técnica inovadora para o estudo das EDO's que foi a base do que hoje chamamos de Teoria Qualitativa das Equações Diferenciais Ordinárias.

Esta teoria nos dá importantes e significativos resultados e ferramentas para o estudo do comportamento das órbitas da equação diferencial e a análise de seu retrato de fase, sem conhecer as soluções explícitas da mesma, através de aspectos geométricos, topológicos, analíticos, dentre outros.

Atualmente, diversos modelos utilizados em problemas relacionados à engenharia, como teoria de controle e circuitos elétricos, e biologia são sistemas diferenciais não diferenciáveis em sua totalidade, mas em diferentes partes. Tais sistemas consistem de diferentes campos vetoriais definidos em regiões distintas separados por uma curva de descontinuidade e são conhecidos como sistemas suaves por partes ou sistemas descontínuos.

Estudos pioneiros iniciados por Andronov [1] e Filippov [5] conduziram a uma fundamentação teórica para este tipo de problema e desenvolveram certas convenções para a transição das órbitas entre as diferentes regiões, visando definir os objetos básicos da Teoria Qualitativa das Equações Diferenciais e investigação de sua dinâmica. Esta dissertação se baseia no estudo de campos vetoriais suaves por partes no plano com duas zonas e está organizada da seguinte maneira.

No Capítulo 1 recordamos alguns teoremas fundamentais da Teoria Qualitativa das Equações Diferenciais Ordinárias. Em seguida, no Capítulo 2, partimos à definição de um campo vetorial suave por partes e de seus objetos fundamentais. O Método da Regularização de campos vetoriais descontínuos, introduzido em [16] por Sotomayor e Teixeira, é apresentado no Capítulo 3. Tal método consiste na aproximação de um campo vetorial suave por partes por uma família a um parâmetro de campos vetoriais suaves, donde podemos aplicar a teoria clássica e tentar obter informações sobre o campo descontínuo. No Capítulo 4, partimos ao estudo da unicidade de ciclos limites em campos vetoriais suaves por partes lineares, sob certas restrições na curva de descontinuidade.

Capítulo 1

Fundamentos da Teoria Qualitativa

Neste capítulo apresentaremos alguns conceitos básicos e resultados clássicos da Teoria Qualitativa das Equações Diferenciais que serão de grande importância no decorrer deste trabalho. Este capítulo é baseado em [18].

1.1 Resultados Clássicos

Um campo vetorial de classe C^r , $r \ge 1$, definido em um aberto $U \in \mathbb{R}^n$ é uma aplicação de classe C^r , $F : U \longrightarrow \mathbb{R}^n$ a qual podemos associar uma equação diferencial

$$x' = F(x).$$

Definição 1.1.1. Um ponto $x_0 \in \mathbb{R}^n$ é dito ponto singular do campo F se $F(x_0) = 0$. Se $F(x_0) \neq 0$ então dizemos que x_0 é ponto regular de F.

As soluções desta equação diferencial são funções diferenciáveis $\varphi: I \in \mathbb{R} \longrightarrow U$ que satisfazem

$$\frac{d}{dt}\varphi(t) = F(\varphi(t)),$$

para todo $t \in I$.

Essas soluções, dada uma condição inicial, são chamadas de trajetórias, curvas integrais ou órbitas do campo F, ou equivalentemente da equação diferencial. A partir do campo F podemos estudar importantes aspectos qualitativos sobre o retrato de fase deste sistema, sem necessariamente encontrar a solução explícita da equação diferencial.

Definição 1.1.2. Uma aplicação $f : \Omega \subset \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ é dita Lipschitziana em Ω com relação a segunda variável, se existe uma constante K > 0 tal que

$$|f(t,x) - f(t,y)| \le K|x - y|,$$

para todo $(t, x), (t, y) \in \Omega$.

Teorema 1.1.1 (Existência e Unicidade de Picard). Seja $f : \Omega \subset \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ contínua e Lipschitziana com relação à segunda variável em $\Omega = I_a \times B_b$ com $I_a = \{t : |t - t_0| \le a\}$ $e B_b = \{x : |x - x_0| \le b\}$. Se $|f| \le M$ em Ω , existe uma única solução de

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

definida em I_{α} , com $\alpha = \min\{a, b/M\}$.

Demonstração: A demonstração pode ser encontrada em [18].

Definição 1.1.3. Uma solução $\varphi : I \longrightarrow \mathbb{R}^n$ de x' = f(t, x) é dita solução máxima se não admite nenhuma extensão que também seja uma solução, ou seja, dada qualquer outra solução $\psi : J \longrightarrow \mathbb{R}^n$ tal que $I \subset J$ e $\varphi = \psi|_I$ então I = J.

Dado um sistema de n equações diferenciais

$$\begin{cases} x'_{1} = a_{11}(t)x_{1} + \dots + a_{1n}(t)x_{n} + b_{1}(t) \\ \vdots & \vdots \\ x'_{n} = a_{n1}(t)x_{1} + \dots + a_{nn}(t)x_{n} + b_{n}(t) \end{cases}$$
(1.1)

com a_{ij} e b_i , i, j = 1, ..., n funções contínuas a valores reais ou complexos definidas em um intervalo I, podemos relacioná-lo a uma equação vetorial

$$X' = A(t)X + B(t), \tag{1.2}$$

em que $X = (x_1, \ldots, x_n)$, $A(t) = (a_{ij}(t))$ é a matriz de ordem n cujos elementos são a_{ij} e $B(t) = (b_i(t))$ é o vetor coluna cujos elementos são $b_i(t)$, da seguinte forma: Uma família $\{\varphi_1, \ldots, \varphi_n\}$ é solução de (1.1) se, e somente se, $\varphi = (\varphi_1, \ldots, \varphi_n)$ é solução de (1.2). **Definição 1.1.4.** Uma matriz $\phi(t)$ de ordem n é dita ser uma matriz fundamental de

$$X' = A(t)X\tag{1.3}$$

se suas colunas formam uma base do espaço de soluções de (1.3).

Proposição 1.1.1 (Fórmula de Liouville). Seja $\phi(t)$ uma matriz fundamental de (1.3). Então, para todo $t \in I$ e $t_0 \in I$ fixado,

$$\det \phi(t) = \det(\phi(t_0))exp\left(\int_{t_0}^t tr(A(s))ds\right)$$
(1.4)

em que tr(A) é o traço da matriz A.

Demonstração: A demonstração pode ser encontrada em [18].

Definição 1.1.5. Uma aplicação $\varphi : \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ de classe C^1 é dita um fluxo se:

(i) $\varphi(0,x) = x;$

(*ii*)
$$\varphi(t+s,x) = \varphi(t,\varphi(s,x))$$
,

para todo $x \in \mathbb{R}^n$ e $t, s \in \mathbb{R}$.

O próximo teorema nos garante que as soluções de uma equação diferencial possuem a mesma classe de diferenciabilidade do campo vetorial que a define.

Teorema 1.1.2. Seja Δ aberto de \mathbb{R}^n . Considere $F : \Delta \longrightarrow \mathbb{R}^n$ um campo vetorial de classe C^r , $r \geq 1$ e a equação diferencial

$$X' = F(X). \tag{1.5}$$

Então,

- (i) Para cada $x \in \Delta$ existe um intervalo aberto I_x onde está definida a única solução máxima φ_x de (1.5) tal que $\varphi_x(0) = x$.
- (ii) Se $y = \varphi_x(s)$ com $s \in I_x$, então $I_y = \{r s : r \in I_x\}, \varphi_y(0) = y e \varphi_y(t) = \varphi_x(t + s),$ para todo $t \in I_y$.

(iii) O conjunto $D = \{(t, x) : x \in \Delta, t \in I_x\}$ é aberto em $\mathbb{R} \times \mathbb{R}^n$ e a aplicação $\varphi(t, x) = \varphi_x(t)$ é de classe C^r . Além disso,

$$D_1 D_2 \varphi(t, x) = DF(\varphi(t, x)) D_2 \varphi(t, x),$$

para todo $(t, x) \in D$.

Demonstração: A demonstração pode ser encontrada em [18].

Definição 1.1.6. A aplicação

$$\varphi: \quad D \longrightarrow \Delta$$

$$(t,x) \longmapsto \varphi(t,x) = \varphi_x(t)$$

é chamada fluxo gerado ou fluxo local.

Definição 1.1.7. Uma órbita $\gamma_p = \{\varphi(t, p) : t \in I_p\}$, não reduzida a um ponto, é dita fechada ou periódica se para todo $x \in \gamma_p$ existe $t_0 > 0$ tal que

$$\varphi(t,x) = \varphi(t+t_0,x).$$

Note que, para equações diferenciais definidas através de campos vetoriais diferenciáveis, temos unicidade de soluções. Neste caso, dadas duas órbitas γ_p e γ_q , então elas coincidem ou são disjuntas. De fato, se $q \in \gamma_p$ então pela propriedade de grupo podemos escrever $q = \varphi(t_0, p)$ e logo $\varphi(t, q) = \varphi(t, \varphi(t_0, p)) = \varphi(t + t_0, p)$ e assim $\gamma_p = \gamma_q$.

Definição 1.1.8. Considere $\Delta_1 \ e \ \Delta_2$ abertos de \mathbb{R}^n e os campos vetoriais $F_1 : \Delta_1 \longrightarrow \mathbb{R}^n$ e $F_2 : \Delta_2 \longrightarrow \mathbb{R}^n$ associados respectivamente às equações diferenciais $X' = F_1(X)$ e $X' = F_2(X)$. Sejam $\varphi_1 : D_1 \longrightarrow \mathbb{R}^n \ e \ \varphi_2 : D_2 \longrightarrow \mathbb{R}^n$ os fluxos gerados pelos campos F_1 e F_2 , respectivamente. Dizemos que F_1 é topologicamente conjugado a F_2 quando existe um homeomorfismo $h : \Delta_1 \longrightarrow \Delta_2$ tal que

$$h(\varphi_1(t,x)) = \varphi_2(t,h(x)),$$

para todo $(t, x) \in D_1$.

Podemos observar que a conjugação topológica, além de preservar os conjuntos invariantes do retrato de fase, também mantém a periodicidade das órbitas periódicas. **Proposição 1.1.2.** Considere os campos vetoriais $F_1 : \Delta_1 \longrightarrow \mathbb{R}^n \ e \ F_2 : \Delta_2 \longrightarrow \mathbb{R}^n \ de$ classe C^r e seja $h : \Delta_1 \longrightarrow \Delta_2$ um difeomorfismo de classe C^r . Então h é uma conjugação entre F_1 e F_2 se, e somente se,

$$Dh(p)F_1(p) = F_2(h(p)),$$

para todo $p \in \Delta_1$.

Demonstração: A demonstração pode ser encontrada em [18].

Partiremos agora para a definição de seção transversal e para o teorema do fluxo tubular que nos garante que podemos olhar as órbitas de uma equação diferencial, definida através de um campo vetorial diferenciável, localmente como um campo constante na vizinhança de um ponto regular.

Definição 1.1.9. Sejam $\Delta \subset \mathbb{R}^n$ aberto, $F : \Delta \longrightarrow \mathbb{R}^n$ um campo vetorial de classe C^r , $r \geq 1$, e o aberto $A \subset \mathbb{R}^{n-1}$. Uma aplicação $f : A \longrightarrow \Delta$ de classe C^r é chamada de seção transversal local de F, quando, para todo $a \in A$, $Df(a) \cdot \mathbb{R}^{n-1}$ e F(f(a)) geram o espaço \mathbb{R}^n .

Seja $\Sigma = f(A)$ munido da topologia induzida por Δ . Se $f : A \longrightarrow \Sigma$ for um homeomorfismo, dizemos que Σ é uma seção transversal de F.

Teorema 1.1.3 (Teorema do Fluxo Tubular). Seja p um ponto regular do campo vetorial $F : \Delta \longrightarrow \mathbb{R}^n$ de classe C^r e considere $f : A \longrightarrow \Sigma$ uma seção transversal local de F com f(0) = p. Então existe uma vizinhança V de p em Δ e um difeomorfismo

$$h: V \longrightarrow (-\varepsilon, \varepsilon) \times B$$

de classe C^r , com $\varepsilon > 0$ e B uma bola aberta em \mathbb{R}^{n-1} centrada na origem, tal que

- (i) $h(\Sigma \cap V) = \{0\} \times B;$
- (ii) $h \notin uma \ C^r$ -conjugação entre $F|_V$ e o campo constante $Y : (-\varepsilon, \varepsilon) \times B \longrightarrow \mathbb{R}^n$ dado por $Y \equiv (1, 0, 0, \dots, 0) \in \mathbb{R}^n$.

Demonstração: A demonstração pode ser encontrada em [18].

O teorema do fluxo tubular nos garante um bom conhecimento da dinâmica de um campo vetorial na vizinhança de um ponto regular. Já para vizinhanças de pontos singulares, ou pontos de equilíbrio, temos uma grande variedade de conjugações.

Definição 1.1.10. Dizemos que um ponto de equilíbrio p de um campo vetorial

$$F : \Delta \subset \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
$$x = (x_1, \dots, x_n) \longmapsto F(x) = (F_1(x), \dots, F_n(x))$$

de classe C^r , $r \ge 1$, é hiperbólico se todos os autovalores da matriz de linearização

$$DF(p) = \begin{bmatrix} \frac{\partial F_1(p)}{\partial x_1} & \cdots & \frac{\partial F_1(p)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_n(p)}{\partial x_1} & \cdots & \frac{\partial F_n(p)}{\partial x_n} \end{bmatrix}$$

possuem partes reais diferentes de zero.

Veremos agora o teorema de Hartman–Grobman que garante que a dinâmica na vizinhança de um ponto singular hiperbólico é topologicamente conjugada à do sistema linearizado naquele ponto.

Teorema 1.1.4 (Teorema de Hartman–Grobman). Sejam $F : \Delta \subset \mathbb{R}^n \longrightarrow \mathbb{R}^n$ um campo vetorial de classe C^r , $r \ge 1$, e p um ponto singular hiperbólico. Então, existem vizinhanças W de p em Δ e V da origem do \mathbb{R}^n tais que o campo $F|_W$ é topologicamente conjugado a $DF(p)|_V$.

Demonstração: A demonstração pode ser encontrada em [17].

Partiremos agora para a definição da transformação de Poincaré, ou transformação de primeiro retorno, num campo vetorial diferenciável, a qual será muito útil neste trabalho. Esta aplicação descreve o comportamento de um campo vetorial numa vizinhança de uma órbita fechada.

Considere um campo vetorial $F : \Delta \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ de classe C^r , $r \ge 1$, e uma órbita periódica γ de período τ_0 . Seja Σ uma seção transversal de F em $p \in \gamma$. A continuidade do fluxo φ de F garante que para todo ponto q suficientemente próximo de p, a trajetória $\varphi_q(t)$ permanece próxima de γ , para t pertencente a um intervalo compacto. Então, tomando $\Sigma_0 \subset \Sigma$ suficientemente pequeno, podemos definir

$$\pi : \Sigma_0 \subset \Sigma \longrightarrow \Sigma$$
$$x \longmapsto \pi(x)$$

em que $\pi(x)$ é a primeira interseção de $\varphi_x(t)$ com Σ para t > 0. Note que $p \in \Sigma_0$ e $\pi(p) = p$.

Figura 1.1: Aplicação de Poincaré.

Proposição 1.1.3. Seja φ um fluxo de classe C^r , $r \ge 1$. Então a transformação de Poincaré $\pi : \Sigma_0 \longrightarrow \pi(\Sigma_0)$ é um difeomorfismo de classe C^r .

Demonstração: A demonstração pode ser encontrada em [17].

Definição 1.1.11. Dizemos que uma órbita fechada γ é estável quando

$$\lim_{t \to \infty} d(\varphi(t, q), \gamma) = 0,$$

 $para \ todo \ q \ numa \ vizinhança \ de \ \gamma, \ com \ d(\varphi(t,q),\gamma) = \inf\{|\varphi(t,q) - r| : r \in \gamma\}.$

Definição 1.1.12. Considere um campo vetorial $F : \Delta \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ de classe C^r , $r \geq 1$, e uma órbita periódica γ . Se γ é uma órbita periódica isolada, isto é, existe uma vizinhança V de γ tal que γ é a única órbita periódica, dizemos que γ é um ciclo limite.

Proposição 1.1.4. Considere um campo vetorial $F : \Delta \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ de classe C^r , $r \ge 1$, e um ciclo limite γ . Então temos somente os seguintes tipos de ciclos limites: (i) Estável, isto é, quando

$$\lim_{t \to \infty} d(\varphi(t, q), \gamma) = 0,$$

para todo q numa vizinhança V de γ ;

(ii) Instável, quando

$$\lim_{t \to -\infty} d(\varphi(t, q), \gamma) = 0,$$

para todo $q \in V$;

(iii) Semi-estável, quando

$$\lim_{t \to \infty} d(\varphi(t, q), \gamma) = 0$$

para todo $q \in V \cap \operatorname{Ext} \gamma$ e

$$\lim_{t \to -\infty} d(\varphi(t, q), \gamma) = 0,$$

para todo $q \in V \cap \operatorname{Int} \gamma$; ou vice-versa.

Demonstração: A demonstração pode ser encontrada em [18].

Podemos observar que os ciclos limites representam os pontos fixos isolados da aplicação de Poincaré π .

O próximo teorema estabelece uma expressão para a derivada da aplicação de Poincaré e condições para que uma órbita periódica γ seja um ciclo limite hiperbólico, ou seja, quando $\pi'(p) \neq 1$, para algum $p \in \gamma$.

Teorema 1.1.5. Considere um campo vetorial $F = (F_1, F_2) : \Delta \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ de classe C^1 e uma órbita periódica γ de F de período t_0 . Sejam Σ uma seção transversal em $p \in \gamma$ e $\pi : \Sigma_0 \longrightarrow \Sigma$ a aplicação de Poincaré. Então a derivada da aplicação de Poincaré é dada por

$$\pi'(p) = \exp\left(\int_0^{t_0} \operatorname{div} F(\gamma(t)) dt\right),\tag{1.6}$$

em que $\operatorname{div} F(x) = D_1 F_1(x) + D_2 F_2(x).$

Em particular, se $\int_0^{t_0} \operatorname{div} F(\gamma(t)) dt < 0$ então γ é estável e se $\int_0^{t_0} \operatorname{div} F(\gamma(t)) dt > 0$ temos que γ é instável. **Demonstração:** A demonstração pode ser encontrada em [18].

Partiremos agora à definição dos conjuntos limites das órbitas de um campo vetorial a fim de estudar o comportamento assintótico das órbitas de campos vetoriais no plano.

Definição 1.1.13. Sejam $\Delta \subset \mathbb{R}^n$ um aberto $e \ F : \Delta \longrightarrow \mathbb{R}^n$ um campo vetorial de classe C^r , $r \geq 1$. Considere $\varphi(t, p)$ a órbita de F passando pelo ponto p definida em seu intervalo máximo $I_p = (I_-(p), I_+(p))$. Se $I_+(p) = \infty$ define-se o conjunto

$$\omega(p) = \{ q \in \Delta : \exists \{t_n\} \ com \ t_n \to \infty \ e \ \varphi(t_n) \to q, \ quando \ n \to \infty \}.$$

Analogamente, se $I_{-}(p) = -\infty$ podemos definir

$$\alpha(p) = \{q \in \Delta : \exists \{t_n\} \ com \ t_n \to -\infty \ e \ \varphi(t_n) \to q, \ quando \ n \to \infty \}$$

Os conjuntos $\omega(p) e \alpha(p)$ são chamados, respectivamente, de conjunto ω -limite e conjunto α -limite de p.

Teorema 1.1.6. Sejam $\Delta \subset \mathbb{R}^n$ um aberto $e \ F : \Delta \longrightarrow \mathbb{R}^n$ um campo vetorial de classe C^r , $r \geq 1$. Considere a semiórbita positiva $\gamma^+(p) = \{\varphi(t,p) : t \geq 0\}$ do campo F pelo ponto p. Se $\gamma^+(p)$ está contida num subconjunto compacto $K \subset \Delta$, então:

- (a) $\omega(p) \neq \emptyset;$
- (b) $\omega(p)$ é compacto;
- (c) $\omega(p)$ é invariante por F, isto é, se $q \in \omega(p)$ então a curva integral de F por q está contida em $\omega(p)$;
- (d) $\omega(p)$ é conexo.

Demonstração: A demonstração pode ser encontrada em [18].

Teorema 1.1.7 (Teorema de Poincaré-Bendixson). Sejam $\Delta \subset \mathbb{R}^2$ um conjunto aberto e $F : \Delta \longrightarrow \mathbb{R}^2$ um campo vetorial de classe C^r , $r \ge 1$. Seja $\varphi(t, p)$ uma órbita de Fdefinida para todo $t \ge 0$ e suponha que a semiórbita positiva $\gamma^+(p)$ esteja contida num subconjunto compacto $K \subset \Delta$. Ainda, suponha que o campo F possui um número finito de singularidades em $\omega(p)$. Então tem-se as seguintes possibilidades:

- (a) Se $\omega(p)$ contém somente pontos regulares, então $\omega(p)$ é uma órbita periódica;
- (b) Se $\omega(p)$ contém pontos regulares e singulares, então $\omega(p)$ consiste de um conjunto de órbitas, cada uma das quais tende a um desses pontos singulares quando $t \to \pm \infty$.
- (c) Se $\omega(p)$ não contém pontos regulares, então $\omega(p)$ é um ponto singular.

Demonstração: A demonstração pode ser encontrada em [18].

Capítulo 2

Introdução aos Sistemas Suaves por Partes

Neste capítulo apresentaremos as noções básicas dos sistemas suaves por partes e dos campos vetoriais descontínuos. Partiremos inicialmente a definição dos objetos fundamentais da teoria clássica, como trajetórias e singularidades, tendo como ponto de partida a teoria clássica das equações diferenciais e as convenções de Filippov.

2.1 Sistemas suaves por partes

Uma família de sistemas diferenciais que tem chamado a atenção atualmente são os sistemas diferenciais suaves por partes. Em particular, podemos definir um sistema suave por partes no plano com duas zonas, o qual será o principal objeto de estudo deste trabalho.

Considere X e Y campos vetoriais suaves, isto é, de classe C^r , $r \ge 1$, definidos em um aberto conexo $M \subset \mathbb{R}^2$ contendo a origem e seja $f : M \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ uma função suave tal que 0 é valor regular. Suponha que o conjunto $\Sigma = f^{-1}(0) \cap M$ é conexo e divide M em duas componentes conexas dadas por

$$\begin{split} \Sigma^+ &= \{(x,y) \in M : f(x,y) > 0\};\\ \Sigma^- &= \{(x,y) \in M : f(x,y) < 0\}. \end{split}$$

Definição 2.1.1. Dados X e Y campos vetoriais suaves definidos em $M \subset \mathbb{R}^2$ e dada $f: M \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ como acima, define-se um campo vetorial suave por partes Z como

$$Z(x,y) = \begin{cases} X(x,y), & f(x,y) \ge 0; \\ Y(x,y), & f(x,y) \le 0. \end{cases}$$
(2.1)

Denotaremos Z = (X, Y) a fim de esclarecer as componentes do campo vetorial e por $\Omega^r(M, f)$ o conjunto dos campos vetoriais suaves por partes com duas zonas no plano definidos em M com o auxílio da função f. Note que não há problema em considerar as regiões Σ^+ e Σ^- com fronteira comum Σ , no qual Z pode ser considerado bi-valuado. O conjunto $\Sigma = \{(x, y) \in M : f(x, y) = 0\}$ é chamado curva de separação ou curva de descontinuidade.

A fim de estabelecer uma definição para as trajetórias de um sistema suave por partes no plano com duas zonas e estudar sua dinâmica, precisamos de um critério para a transição de órbitas entre Σ^+ e Σ^- através da curva de separação Σ .

Nas regiões Σ^+ e Σ^- a trajetória local de um ponto p é dada pela trajetória usual dos campos vetoriais suaves X ou Y. Assim, resta estender a definição de trajetória para pontos em Σ . Para isso, precisaremos das convenções de Filippov.

Dado um ponto $p \in \mathbb{R}^2$ e um campo vetorial suave

$$\begin{array}{rccc} X: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & & (x,y) & \longmapsto & X(x,y) = (X_1(x,y), X_2(x,y)) \end{array}$$

denotaremos por

$$Xf(p) = \langle X(p), \nabla f(p) \rangle = X_1(p)\frac{\partial f(p)}{\partial x} + X_2(p)\frac{\partial f(p)}{\partial y}$$
(2.2)

a derivada direcional de f ao longo do campo vetorial X, também conhecida como derivada de Lie. Analogamente,

$$X^{2}f(p) = \langle X(p), \nabla Xf(p) \rangle = X_{1}(p)\frac{\partial Xf(p)}{\partial x} + X_{2}(p)\frac{\partial Xf(p)}{\partial y}.$$
 (2.3)

Definição 2.1.2. Seja $Z = (X, Y) \in \Omega^r(M, f)$. Então,

a) Um conjunto $\Sigma^C \subset \Sigma$ é dito ser de costura se, para todo $p \in \Sigma^C$, tivermos

$$Xf(p)Yf(p) > 0.$$

Veja Figura 2.1.

Figura 2.1: Arco de costura.

b) Um conjunto $\Sigma^E \subset \Sigma$ é dito ser de escape se, para todo $p \in \Sigma^E$, tivermos Xf(p) > 0e Yf(p) < 0. Veja Figura 2.2.

Figura 2.2: Arco de escape.

c) Um conjunto $\Sigma^D \subset \Sigma$ é dito ser de deslize se, para todo $p \in \Sigma^D$, tivermos Xf(p) < 0e Yf(p) > 0. Veja figura 2.3.

Figura 2.3: Arco de deslize.

Note que os arcos de costura, escape e deslize definem abertos em Σ . Essa definição exclui os pontos $p \in \Sigma$ tais que Xf(p) = 0 ou Yf(p) = 0. Tais pontos são chamados pontos de tangência. Note que se Xf(p) = 0 e $X(p) \neq 0$ então a trajetória que passa por p é tangente a Σ . Além disso, exclui os pontos de Σ que são singularidades de Xou de Y. Tais pontos ocorrem nas fronteiras $\partial \Sigma^C$, $\partial \Sigma^E$ e $\partial \Sigma^D$ dos arcos Σ^C , Σ^E e Σ^D , respectivamente.

Definição 2.1.3. Seja $Z = (X, Y) \in \Omega^r(M, f)$. O campo vetorial suave X possui uma dobra ou tangência quadrática com Σ em $p \in \Sigma$ se Xf(p) = 0 e $X^2f(p) \neq 0$. Dizemos que p é uma dobra:

- a) invisível de Z se Xf(p) = 0 e $X^2f(p) < 0$. Definimos analogamente uma dobra invisível de Z que seja tangência quadrática de Y com Σ .
- b) visível de Z se Xf(p) = 0 e $X^2f(p) > 0$. Definimos analogamente uma dobra visível de Z que seja tangência quadrática de Y com Σ .

Um ponto $p \in \Sigma$ é dito uma Σ -dobra de Z se for ponto de tangência quadrática apenas do campo X, ou apenas do campo Y, com Σ .

Definição 2.1.4. Um campo vetorial suave X possui uma tangência cúbica com Σ em $p \in \Sigma$ se $Xf(p) = X^2f(p) = 0$ e $X^3f(p) \neq 0$.

Definição 2.1.5. Seja $Z = (X, Y) \in \Omega^r(M, f)$. Dizemos que uma singularidade p de Xé real se $p \in \Sigma^+$. Dizemos que uma singularidade p de X é virtual se $p \in \Sigma^-$.

Para definirmos as trajetórias passando por um ponto de costura, como os campos X e Y apontam na mesma direção, é suficiente justapor as trajetórias de X e Y por aquele ponto. Já nos arcos de deslize e escape precisamos definir um campo vetorial auxiliar conhecido como campo de Filippov ou campo deslizante.

Considere o campo vetorial F_Z em que cada ponto $p \in \Sigma^E \cup \Sigma^D$ é dado por uma combinação linear convexa de X(p) e Y(p) de modo que $F_Z(p)$ seja tangente a Σ , ou seja, $F_Z(p)$ é o único vetor tangente a Σ no cone gerado por X(p) e Y(p). Veja Figura 2.4.

Figura 2.4: Campo de Filippov.

Deste modo,

$$F_Z(p) = (1 - \alpha(p))X(p) + \alpha(p)Y(p)$$

em que

$$\alpha(p) = \frac{Xf(p)}{Xf(p) - Yf(p)}$$

Logo temos que ${\cal F}_Z$ é dado por

$$F_Z(p) = \frac{Yf(p)X(p) - Xf(p)Y(p)}{Yf(p) - Xf(p)}.$$
(2.4)

Para verificar que F_Z é tangente a Σ basta mostrar que $F_Z(p)$ é ortogonal a $\nabla f(p)$. De fato,

$$\langle F_Z(p), \nabla f(p) \rangle = \left\langle (1 - \alpha(p))X(p) + \alpha(p)Y(p), \left(\frac{\partial f(p)}{\partial x}, \frac{\partial f(p)}{\partial y}\right) \right\rangle$$

$$= \left\langle \left((1 - \alpha(p))(X_1(p), X_2(p)) + \alpha(p)(Y_1(p), Y_2, (p)) \right), \left(\frac{\partial f(p)}{\partial x}, \frac{\partial f(p)}{\partial y}\right) \right\rangle$$

$$= Xf(p) - \alpha(p)Xf(p) + \alpha(p)Yf(p)$$

$$= \frac{Xf(p)(Xf(p) - Yf(p)) - Xf(p)Xf(p) + Xf(p)Yf(p)}{Xf(p) - Yf(p)}$$

$$= 0.$$

Podemos escrever o campo de Filippov de outra forma. Localmente, numa vizinhança de $p \in \Sigma^E \cup \Sigma^D$, podemos considerar coordenadas locais de forma que $\Sigma = \{y = 0\},$ p = (0,0) e f(x,y) = y. Assim, considerando X(x,y) = (a(x,y), b(x,y)) e Y(x,y) = (c(x, y), d(x, y)), temos que o campo de Filippov é dado por

$$F_Z(p) = \left(\frac{a(p)d(p) - b(p)c(p)}{d(p) - b(p)}, 0\right).$$
(2.5)

De fato, suponha, sem perda de generalidade, que $p \in \Sigma^E$. Considere a reta r que passa por $(a(p), b(p)) \in (c(p), d(p))$, isto é,

$$r: y = \frac{d(p) - b(p)}{c(p) - a(p)} (x - a(p)) + b(p).$$

Como a curva de separação coincide localmente com o eixo x temos que $F_Z(p) = (x_0, 0)$ com $(x_0, 0) \in r$. Logo, basta encontrar o ponto de interseção entre r e o eixo x. Assim,

$$y = \frac{d(p) - b(p)}{c(p) - a(p)}(x - a(p)) + b(p) = 0$$

implica que

$$x = \frac{a(p)d(p) - b(p)c(p)}{d(p) - b(p)}.$$

Definição 2.1.6. Um ponto $p \in \Sigma^E \cup \Sigma^D$ é ponto singular do campo de Filippov F_Z se $F_Z(p) = 0$, ou seja, a(p)d(p) - b(p)c(p) = 0.

Os pontos singulares do campo de Filippov são chamados de pseudo-equilíbrios. Note que

$$a(p)d(p) - b(p)c(p) = \begin{vmatrix} a(p) & b(p) \\ c(p) & d(p) \end{vmatrix} = \det(X,Y)(p).$$

Definição 2.1.7. Seja $Z = (X, Y) \in \Omega^r(M, f)$ e F_Z o campo de Filippov gerado por Z. Seja $p \in \Sigma^E \cup \Sigma^D$ um ponto singular de F_Z , isto é, $F_Z(p) = 0$. O ponto p é dito ser um ponto singular hiperbólico se $F'_Z \neq 0$, ou seja, $d(\det(X, Y)|_{\Sigma})(p) \neq 0$.

Definição 2.1.8. Seja $Z = (X, Y) \in \Omega^r(M, f)$ e F_Z o campo de Filippov gerado por Z. Seja p um ponto singular hiperbólico de F_Z . Então,

- a) p é uma sela de Filippov se:
 - i) $p \in \Sigma^D$ e é uma singularidade repulsora de F_Z , isto é, $F'_Z > 0$. Veja Figura 2.5.

Figura 2.5: Sela de Filippov.

ii) $p \in \Sigma^E$ e é uma singularidade atratora de F_Z , isto é, $F'_Z < 0$. Veja Figura 2.6.

Figura 2.6: Sela de Filippov.

- b) p é um nó de Filippov se:
 - i) $p \in \Sigma^D$ e é uma singularidade atratora de F_Z , isto é, $F'_Z < 0$. Veja Figura 2.7.

Figura 2.7: Nó de Filippov.

ii) $p \in \Sigma^E$ e é uma singularidade repulsora de F_Z , isto é, $F'_Z > 0$. Veja Figura 2.8.

Figura 2.8: Nó de Filippov.

Definição 2.1.9. Um ponto $p \notin dito \Sigma$ -regular de Z se:

- p é ponto de costura;
- $p \in \Sigma^E \cup \Sigma^D$ não é ponto singular do campo de Filippov, isto é, $F_Z(p) \neq 0$.

Definição 2.1.10. Um ponto p é dito ser uma Σ -singularidade elementar de Z se:

- $p \notin uma \Sigma$ -dobra de Z;
- p é ponto singular hiperbólico de F_Z .

Agora podemos apresentar a definição de trajetória de um campo vetorial suave por partes com duas zonas no plano. **Definição 2.1.11.** Seja γ uma curva em \mathbb{R}^2 composta por arcos regulares de trajetórias de X em Σ^+ , e/ou Y em Σ^- , e/ou trajetórias de F_Z em Σ . Nessas condições, dizemos que γ é uma poli-trajetória de Z se:

- i) γ contém arcos de trajetória de pelo menos dois entre os campos X, Y e F_Z , ou é formado por um arco de F_Z ;
- ii) A transição de arcos de trajetória de X para arcos de trajetória de Y é feita através de pontos de costura;
- iii) A transição de arcos de trajetória de X, ou de Y, para arcos de trajetória de F_Z
 é feita através de tangências ou pontos regulares do arco de escape, ou do arco
 deslizante, respeitando-se o sentido dos arcos de trajetória.

Note que não temos unicidade de soluções, pois os arcos de trajetória do campo de Filippov podem pertencer a infinitas poli-trajetórias. A Figura 2.9 apresenta um exemplo de poli-trajetória.

Figura 2.9: Exemplo de poli-trajetória.

Partiremos agora a caracterização das órbitas fechadas de um sistema suave por partes com duas zonas no plano.

Definição 2.1.12. Seja γ uma poli-trajetória fechada de $Z = (X, Y) \in \Omega^r(M, f)$. Dizemos que: a) γ é uma poli-trajetória fechada do tipo I se γ encontra Σ somente em pontos de costura. Veja Figura 2.10.

Figura 2.10: Exemplo de poli-trajetória fechada do tipo I.

b) γ é uma poli-trajetória fechada do tipo II se $\gamma = \Sigma$. Veja Figura 2.11.

Figura 2.11: Exemplo de poli-trajetória fechada do tipo II.

c) γ é uma poli-trajetória fechada do tipo III se γ contém pelo menos uma Σ-dobra de Z. Veja Figura 2.12.

Figura 2.12: Exemplo de poli-trajetória fechada do tipo III.

Daremos agora alguns exemplos para ilustrar as definições acima.

Exemplo 2.1.1. Considere o sistema associado ao campo vetorial $Z_1 = (X_1, Y_1) \in \Omega^r(\mathbb{R}^2, f)$ dado por

$$Z_1(x,y) = \begin{cases} X_1(x,y) = (1,x^2), & y \ge 0; \\ Y_1(x,y) = (1,1), & y \le 0. \end{cases}$$
(2.6)

Considere o ponto p = (0, 0). Podemos observar que:

- a) $\Sigma = \{(x, y) \in \mathbb{R}^2 : y = 0\};$
- b) p não é singularidade de X_1 ou Y_1 ;
- c) p é ponto de tangência cúbica de X_1 com Σ . Com efeito, temos que

$$X_1 f(x, y) = \langle X_1(x, y), \nabla f(x, y) \rangle = \langle (1, x^2), (0, 1) \rangle = x^2$$

e logo $X_1 f(p) = 0$. Além disso,

$$X_1^2 f(x, y) = \langle X_1(x, y), \nabla X_1 f(x, y) \rangle = \langle (1, x^2), (2x, 0) \rangle = 2x$$

e assim $X_1^2 f(p) = 0$. Também,

$$X_1^3 f(x,y) = \langle X_1(x,y), \nabla X_1^2 f(x,y) \rangle = \langle (1,x^2), (2,0) \rangle = 2$$

e portanto $X_1^3 f(p) \neq 0$.

d) $p \notin o \text{ único ponto de tangência em } \Sigma \ e \ todo \ ponto \ (x, 0) \in \Sigma \ com \ x \neq 0 \ \ell \ ponto \ de$ $costura, ou seja, <math>p \in \partial \Sigma^C$.

Na Figura 2.13 apresentamos o retrato de fase do sistema associado ao campo Z_1 e a órbita $\varphi(t, p)$ passando pelo ponto p.

Figura 2.13: Retrato de fase do campo Z_1 dado em (2.6).

Note que em alguns casos é possível falar em tempo passado e tempo futuro devido a unicidade de soluções. Mas em geral, isso não é possível.

Exemplo 2.1.2. Considere o sistema associado ao campo vetorial $Z_2 = (X_2, Y_2)$ dado por

$$Z_2(x,y) = \begin{cases} X_2(x,y) = (1,2x), & y \ge 0; \\ Y_2(x,y) = (-2,-7x), & y \le 0. \end{cases}$$
(2.7)

Considere o ponto p = (0,0). Podemos observar que p não é singularidade de X_2 ou Y_2 , mas p é ponto de tangência quadrática de Σ com X_2 e com Y_2 . Veja Figura 2.14.

Figura 2.14: Retrato de fase do campo Z_2 dado em (2.7).

Note que, neste caso, $\Sigma^E = \{(x, y) \in \mathbb{R}^2 : y = 0 \in x > 0\} \in \Sigma^D = \{(x, y) \in \mathbb{R}^2 : y = 0 \in x < 0\}$. Assim, para tais pontos, podemos calcular explicitamente o campo de Filippov associado a Z_2 , o qual é dado por

$$F_{Z_2}(q) = \left(\frac{1}{3}, 0\right).$$

Exemplo 2.1.3. Considere o sistema associado ao campo vetorial $Z_3 = (X_3, Y_3)$ dado por

$$Z_3(x,y) = \begin{cases} X_3(x,y) = (1,-2x), & y \ge 0; \\ Y_3(x,y) = (-1,-x+x^2), & y \le 0. \end{cases}$$
(2.8)

Considere os pontos p = (0,0) e q = (1,0). Podemos observar que p e q não são singularidades de X_3 ou Y_3 , mas temos que p é ponto de tangência quadrática com X_3 e Y_3 , e que q é ponto de tangência quadrática com Y_3 . Veja Figura 2.15.

Figura 2.15: Retrato de fase do campo Z_3 dado em (2.8).

Podemos observar que, neste caso,

$$\Sigma^{D} = \{ (x, y) \in \mathbb{R}^{2} : y = 0 \ e \ x > 1 \}$$
$$\Sigma^{C} = \{ (x, y) \in \mathbb{R}^{2} : y = 0, x < 1 \ e \ x \neq p \}.$$

Note que $\varphi(t,p) = \{p\}$ e que não temos unicidade de soluções em q.

Exemplo 2.1.4. Considere o sistema associado ao campo vetorial $Z_4 = (X_4, Y_4)$ dado por

$$Z_4(x,y) = \begin{cases} X_4(x,y) = (1,x), & y \ge 0; \\ Y_4(x,y) = (-1,x), & y \le 0. \end{cases}$$
(2.9)

Considere o ponto p = (0,0). Podemos observar que p não é singularidade de X_4 ou Y_4 , mas p é ponto de tangência quadrática com X_4 e com Y_4 . Veja Figura 2.16.

Figura 2.16: Retrato de fase do campo Z_4 dado em (2.9).

Podemos observar que, neste caso, não é possível falar em tempo passado ou tempo futuro para a órbita do ponto p, pois não há unicidade de soluções.

2.2 Aplicação de Poincaré

Caminharemos agora na direção da definição da Aplicação de Poincaré ou aplicação de primeiro retorno em um sistema suave por partes com duas zonas no plano.

Dados dois vetores $u, v \in \mathbb{R}^n$, denotaremos por

$$(u|v) = \begin{pmatrix} u_1 & v_1 \\ \vdots & \vdots \\ u_n & v_n \end{pmatrix}$$

a matriz cujas colunas são os vetores $u \in v$.

Teorema 2.2.1. Sejam X um campo vetorial de classe C^1 em \mathbb{R}^2 , $p_0 \in \mathbb{R}^2$ e $\varphi(t, p_0)$ a órbita de X tal que $\varphi(0, p_0) = p_0$. Suponha um ponto $p_1 \in \mathbb{R}^2$ e $t_0 \in \mathbb{R}$ tais que $p_1 = \varphi(t_0, p_0)$. Sejam Σ_0 e Σ_1 seções transversais de X passando pelos pontos p_0 e p_1 respectivamente. Se $\sigma_0 : I_0 \longrightarrow \mathbb{R}^2$ e $\sigma_1 : I_1 \longrightarrow \mathbb{R}^2$ são respectivamente as parametrizações $de \Sigma_0$ e Σ_1 com $\sigma_0(s_0) = p_0$ e $\sigma_1(s_1) = p_1$, então existe uma vizinhança U de p_0 e duas funções diferenciáveis $\tau : U \longrightarrow \mathbb{R}$ e $\rho : U \longrightarrow I_1$ tais que $\tau(p_0) = t_0$, $\rho(p_0) = s_1$ e

$$\varphi(\tau(p), p) = \sigma_1(\rho(p)),$$

para todo $p \in U$.

Demonstração: Defina $f : D \times I_1 \subset \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ dada por $f(t, p, s) = \varphi(t, p) - \sigma_1(s)$. Como X é de classe C^1 então, pelo teorema da dependência contínua, φ é de classe C^1 . Ainda, como Σ_1 é uma seção transversal então f é uma função diferenciável. Note que

$$f(p_0, t_0, s_1) = \varphi(t_0, p_0) - \sigma_1(s_1) = p_1 - p_1 = 0;$$

$$\frac{\partial}{\partial t} f(p_0, t_0, s_1) = \frac{\partial}{\partial t} \varphi(t_0, p_0) = X(\varphi(t_0, p_0)) = X(p_1);$$

$$\frac{\partial}{\partial s} f(p_0, t_0, s_1) = -\sigma_1'(s_1).$$

Ainda, temos que a matriz

$$D_{(t,s)}f(p_0,t_0,s_1) = \left(\frac{\partial}{\partial t}f(p_0,t_0,s_1) \left| \frac{\partial}{\partial s}f(p_0,t_0,s_1) \right. \right)$$

é não singular, ou seja, det $D_{(t,s)}f(p_0, t_0, s_1) \neq 0$, pois Σ_1 é uma seção transversal de X. Logo, pelo teorema da função implícita, existem uma vizinhança U de p_0 e funções diferenciáveis $\tau : U \longrightarrow \mathbb{R}$ e $\rho : U \longrightarrow I_1$ tais que $\tau(p_0) = t_0$, $\rho(p_0) = s_1$ e

$$f(p,\tau(p),\rho(p)) = 0,$$

para todo $p \in U$. Portanto,

$$\varphi(\tau(p), p) = \sigma_1(\rho(p)),$$

para todo $p \in U$.

Note que o fluxo de X leva pontos próximos de p_0 em pontos da seção transversal Σ_1 . Assim, nas condições acima, podemos definir

$$\pi: \ \Sigma_0 \cap U \longrightarrow \Sigma_1$$

$$p \longmapsto \pi(p) = \varphi(\tau(p), p) = \sigma_1(\rho(p))$$
(2.10)

a aplicação de transição do campo de vetores X entre as seções transversais $\Sigma_0 \in \Sigma_1$.

Definiremos também a função

$$\tilde{\tau}: \ \Sigma_0 \cap U \longrightarrow \mathbb{R}
p \longmapsto \tilde{\tau}(p) = \tau(p)$$
(2.11)

a qual exprime o tempo necessário para que um ponto de Σ_0 chegue a Σ_1 através do fluxo de X pela primeira vez. Note que ambas as aplicações são diferenciáveis devido ao fato de todas as funções envolvidas o serem.

A fim de obter a derivada da aplicação de transição, considere $W_0 \subset I_0 \in W_1 \subset I_1$ vizinhanças dos pontos $s_0 \in s_1$ respectivamente. Então podemos definir

$$\Pi: W_0 \subset I_0 \longrightarrow W_1 \subset I_1$$

$$s \longmapsto \Pi(s) = \sigma_1^{-1}(\pi(\sigma_0(s))) = \rho(\sigma_0(s)).$$
(2.12)

Logo, podemos estabelecer o seguinte diagrama

$$\begin{array}{cccc} \Sigma_0 \cap U & \stackrel{\pi}{\longrightarrow} & \Sigma_1 \\ \sigma_0 \uparrow & & \sigma_1 \uparrow \\ W_0 \subset I_0 & \stackrel{\Pi}{\longrightarrow} & W_1 \subset I_1 \end{array}$$

Como Π é diferenciável, temos que

$$\Pi'(s) = \frac{d}{ds}\Pi(s) = \nabla\rho(\sigma_0(s))\sigma'_0(s).$$
(2.13)

Analogamente, podemos definir a aplicação diferenciável

$$T: W_0 \longrightarrow \mathbb{R}$$

$$s \longmapsto T(s) = \tilde{\tau}(\sigma_0(s))$$
(2.14)

e logo

$$T'(s) = \frac{d}{ds}T(s) = \nabla \tilde{\tau}(\sigma_0(s))\sigma'_0(s).$$
(2.15)

Defina as matrizes

$$M_{\Sigma_0} = \left(X(p_0) \middle| - \sigma'_0(s_0) \right),$$
$$M_{\Sigma_0} = \left(X(p_0) \middle| - \sigma'_0(s_0) \right),$$

$$M_{\Sigma_1} = \left(X(p_1) \middle| - \sigma_1'(s_1) \right).$$

Lema 2.2.1. Nas condições do Teorema 2.2.1, se

$$A = \begin{pmatrix} 1 & T'(s_0) \\ 0 & \Pi'(s_0) \end{pmatrix}$$

então $M_{\Sigma_1}A = D_p \varphi(t_0, p_0) M_{\Sigma_0}.$

Demonstração: Pelo Teorema 2.2.1 e por (2.11) temos que

$$\varphi(\tilde{\tau}(p), p) = \sigma_1(\rho(p)), \qquad (2.16)$$

para todo $p \in U$. Derivando (2.16) com respeito a p, pela regra da cadeia, temos

$$\frac{\partial}{\partial t}\varphi(\tilde{\tau}(p), p)\nabla\tilde{\tau}(p) + D_p\varphi(\tilde{\tau}(p), p) = \sigma'_1(\rho(p))\nabla\rho(p).$$

Assim, como

$$\frac{\partial}{\partial t}\varphi(\tilde{\tau}(p),p) = X(\varphi(\tilde{\tau}(p),p)),$$

tomando $p=p_0$ temos que

$$X(\varphi(\tilde{\tau}(p_0), p_0))\nabla\tilde{\tau}(p_0) + D_p\varphi(\tilde{\tau}(p_0), p_0) = \sigma_1'(\rho(p_0))\nabla\rho(p_0),$$

$$X(p_1)\nabla\tilde{\tau}(p_0) + D_p\varphi(t_0, p_0) = \sigma'_1(\rho(p_0))\nabla\rho(p_0), \qquad (2.17)$$

já que $\tilde{\tau}(p_0) = t_0$ e $\varphi(t_0, p_0) = p_1$. Multiplicando ambos os lados de (2.17) por $\sigma'_0(s_0)$ temos que

$$X(p_1)\nabla\tilde{\tau}(p_0)\sigma'_0(s_0) + D_p\varphi(t_0, p_0)\sigma'_0(s_0) = \sigma'_1(\rho(p_0))\nabla\rho(p_0)\sigma'_0(s_0).$$

De (2.13) e (2.15) vem que

$$X(p_1)T'(s_0) + D_p\varphi(t_0, p_0)\sigma'_0(s_0) = \sigma'_1(s_1)\Pi'(s_0).$$

Logo, temos que

$$M_{\Sigma_{1}}A = \left(X(p_{1})\Big| - \sigma_{1}'(s_{1})\right) \begin{pmatrix} 1 & T'(s_{0}) \\ 0 & \Pi'(s_{0}) \end{pmatrix}$$
$$= \left(X(p_{1})\Big| X(p_{1})T'(s_{0}) - \sigma_{1}'(s_{1})\Pi'(s_{0})\right)$$
$$= \left(X(p_{1})\Big| - D_{p}\varphi(t_{0}, p_{0})\sigma_{0}'(s_{0})\right).$$

Utilizando a igualdade

$$X(p_1) = D_p \varphi(t_0, p_0) X(p_0),$$

segue que

$$M_{\Sigma_1}A = \left(D_p \varphi(t_0, p_0) X(p_0) \middle| - D_p \varphi(t_0, p_0) \sigma'_0(s_0) \right)$$
$$= D_p \varphi(t_0, p_0) \left(X(p_0) \middle| - \sigma'_0(s_0) \right)$$
$$= D_p \varphi(t_0, p_0) M_{\Sigma_0}$$

como queríamos demonstrar.

Teorema 2.2.2. Sejam X um campo vetorial de classe C^1 em \mathbb{R}^2 , $p_0 \in \mathbb{R}^2$ e $\varphi(t, p_0)$ a órbita de X tal que $\varphi(0, p_0) = p_0$. Suponha um ponto $p_1 \in \mathbb{R}^2$ e $t_0 \in \mathbb{R}$ tais que $p_1 = \varphi(t_0, p_0)$. Sejam Σ_0 e Σ_1 seções transversais de X passando pelos pontos p_0 e p_1 respectivamente. Se $\sigma_0 : I_0 \longrightarrow \mathbb{R}^2$ e $\sigma_1 : I_1 \longrightarrow \mathbb{R}^2$ são respectivamente as parametrizações de Σ_0 e Σ_1 com $\sigma_0(s_0) = p_0$ e $\sigma_1(s_1) = p_1$, então a derivada da aplicação de transição $\pi : \Sigma_0 \longrightarrow \Sigma_1$, no ponto p_0 , definida pelo fluxo de X, é dada por

$$\pi'(p_0) = \frac{\det\left(X(p_0) \middle| \sigma'_0(s_0)\right)}{\det\left(X(p_1) \middle| \sigma'_1(s_1)\right)} \exp\left(\int_0^{t_0} \operatorname{div} X(\varphi(t, p_0)) dt\right).$$
(2.18)

Demonstração: Pelo Lema 2.2.1 temos que

$$\left(X(p_1)\bigg| - \sigma_1'(s_1)\right) \begin{pmatrix} 1 & T'(s_0) \\ 0 & \Pi'(s_0) \end{pmatrix} = D_p \varphi(t_0, p_0) \left(X(p_0)\bigg| - \sigma_0'(s_0)\right).$$

Calculando o determinante em ambos os lados dessa igualdade, temos

$$\det\left(X(p_1)\bigg|-\sigma_1'(s_1)\right)\Pi'(s_0) = \det(D_p\varphi(t_0,p_0))\det\left(X(p_0)\bigg|-\sigma_0'(s_0)\right).$$

Note que $D_p \varphi(t, p_0)$ é uma matriz fundamental do sistema

$$\begin{cases} X' = DX(\varphi(t, p_0))X\\ D_p\varphi(0, p_0) = Id. \end{cases}$$

Logo, pela Fórmula de Liouville,

$$\det(D_p\varphi(t_0, p_0)) = \exp\left(\int_0^{t_0} \operatorname{tr}(DX(\varphi(t, p_0)))dt\right)$$
$$= \exp\left(\int_0^{t_0} \operatorname{div} X(\varphi(t, p_0))dt\right).$$

Ainda, como Σ_1 é uma seção transversal, a matriz M_{Σ_1} é não singular. Portanto,

$$\pi'(p_0) = \Pi'(s_0) = \frac{\det\left(X(p_0) \middle| - \sigma'_0(s_0)\right)}{\det\left(X(p_1) \middle| - \sigma'_1(s_1)\right)} \exp\left(\int_0^{t_0} \operatorname{div} X(\varphi(t, p_0)) dt\right)$$
$$= \frac{\det\left(X(p_0) \middle| \sigma'_0(s_0)\right)}{\det\left(X(p_1) \middle| \sigma'_1(s_1)\right)} \exp\left(\int_0^{t_0} \operatorname{div} X(\varphi(t, p_0)) dt\right).$$

como queríamos demonstrar.

Seja γ uma poli-trajetória fechada do tipo I de $Z=(X,Y)\in \Omega^r(M,f)$ tal que

$$\gamma = \gamma_0 \cup \gamma_1 \cup \cdots \cup \gamma_n$$

com γ_{2j} sendo arcos de trajetórias de X em Σ^+ e γ_{2j+1} sendo arcos de trajetórias de Y em Σ^- , para $j = 0, 1, \dots, (n-1)/2$. Para cada $j = 0, 1, \dots, n$ seja $\gamma_j \cap \Sigma = \{p_j, p_{j+1}\}$ com $p_0 = p_{n+1}$. Assim, podemos definir uma coleção de aplicações de transição em p_j

$$\pi_j: (\Sigma, p_j) \longrightarrow (\Sigma, p_{j+1})$$

tal que a aplicação de primeiro retorno associada a órbita γ é dada por

$$\pi = \pi_n \circ \pi_{n-1} \circ \cdots \circ \pi_0$$

 $\operatorname{com} \pi(p_0) = p_0$. Veja Figura 2.17.

Figura 2.17: Divisão de uma poli-trajetória fechada γ .

Capítulo 3

Regularização de campos vetoriais suaves por partes

Neste capítulo iremos apresentar o método da regularização de campos vetoriais suaves por partes, o qual foi introduzido por Sotomayor e Teixeira em [16]. Este método consiste na aproximação de um campo vetorial suave por partes por uma família de campos vetoriais suaves, à qual pode-se aplicar a teoria clássica.

3.1 O método da regularização

O método da regularização consiste na aproximação de sistemas suaves por partes associados a campos vetoriais suaves por partes da forma

$$Z(x,y) = \begin{cases} X(x,y), & f(x,y) \ge 0; \\ Y(x,y), & f(x,y) \le 0, \end{cases}$$
(3.1)

por uma família a um parâmetro de sistemas suaves, definida com o auxílio de uma função de transição.

Definição 3.1.1. Uma função de classe $C^{\infty} \varphi : \mathbb{R} \longrightarrow \mathbb{R}$ é dita ser uma função de

transição se

$$\varphi(t) = \begin{cases} 0, & t \in (-\infty, -1], \\ 1, & t \in [1, \infty), \\ \varphi'(t) > 0, & t \in (-1, 1). \end{cases}$$
(3.2)

A Figura 3.1 nos mostra o comportamento de uma função de transição.

Figura 3.1: Gráfico de uma função de transição.

Definição 3.1.2. Seja $Z = (X, Y) \in \Omega^r(M, f)$ e $\varepsilon > 0$. Uma φ_{ε} -regularização de Z é a família a um parâmetro de campos vetoriais suaves Z_{ε} dada por

$$Z_{\varepsilon}(q) = (1 - \varphi_{\varepsilon}(f(q))) Y(q) + \varphi_{\varepsilon}(f(q)) X(q)$$
(3.3)

em que $\varphi_{\varepsilon}(t) = \varphi(\frac{t}{\varepsilon})$ e φ é uma função de transição.

A região contendo Σ onde o campo Z_{ε} é uma média dos campos X e Y, ou seja, o conjunto $\Sigma \times (-\varepsilon, \varepsilon)$, é chamado faixa de regularização. Veja Figura 3.2.

Para cada $\varepsilon > 0$ fixado, o campo vetorial Z_{ε} é chamado campo vetorial regularizado.

Figura 3.2: Faixa de regularização

Exemplo 3.1.1. Considere a função f(x, y) = y e o sistema em \mathbb{R}^2 dado por

$$\begin{cases} x' = 1\\ y' = 2 + \operatorname{sgn}(y). \end{cases}$$
(3.4)

Logo, temos que o sistema (3.4) é dado por

$$(x',y') = \begin{cases} X(x,y) = (1,3), & y > 0, \\ Y(x,y) = (1,1), & y < 0. \end{cases}$$
(3.5)

Graficamente temos que $\Sigma = \{y = 0\}$ é uma região de costura. Seja φ uma função de transição. Então, temos que

$$Z_{\varepsilon}(x,y) = (1 - \varphi_{\varepsilon}(f(x,y)))Y(x,y) + \varphi_{\varepsilon}(f(x,y))X(x,y)$$

$$= (1 - \varphi_{\varepsilon}(y))(1,1) + \varphi_{\varepsilon}(y)(1,3)$$

$$= \left(1 - \varphi\left(\frac{y}{\varepsilon}\right)\right)(1,1) + \varphi\left(\frac{y}{\varepsilon}\right)(1,3)$$

$$= \left(1,1 + 2\varphi\left(\frac{y}{\varepsilon}\right)\right)$$

é uma φ_{ε} -regularização de Z = (X, Y).

Proposição 3.1.1. Seja p um ponto Σ -regular de $Z = (X, Y) \in \Omega^r(M, f)$. Então, dada uma função de transição, existem uma vizinhança V de p em M e $\varepsilon_0 > 0$ tais que, para $0 < \varepsilon < \varepsilon_0$, o campo vetorial regularizado Z_{ε} não possui singularidades em V.

Demonstração: Seja p um ponto Σ -regular de $Z = (X, Y) \in \Omega^r(M, f)$. Então temos que p é ponto de costura ou ponto de deslize ou escape que não é uma singularidade do campo de Filippov F_Z .

Considere coordenadas locais de modo que $p = (0,0), f(x,y) = y, \Sigma = \{y = 0\}, X(x,y) = (a(x,y), b(x,y))$ e Y(x,y) = (c(x,y), d(x,y)). Logo, podemos considerar o campo de

Filippov como sendo

$$F_Z(p) = \left(\frac{a(p)d(p) - b(p)c(p)}{d(p) - b(p)}, 0\right)$$

Seja p um ponto de costura. Então temos que Xf(p)Yf(p) > 0, isto é,

$$Xf(p)Yf(p) = (a(p)f_x(p) + b(p)f_y(p))(c(p)f_x(p) + d(p)f_y(p)) = b(p)d(p) > 0.$$

Suponha sem perda de generalidade que b(p) > 0 e d(p) > 0. Como b e d são funções contínuas, podemos tomar $\varepsilon_0 > 0$ de modo que as funções b e d não mudem de sinal para $|x| \le \varepsilon_0$ e $|y| \le \varepsilon_0$. Assim, podemos definir uma vizinhança V de p dada por

$$V = \{(x, y) \in M : b(x, y) > 0 \in d(x, y) > 0\}.$$

Note que o campo regularizado é dado por

$$\begin{aligned} Z_{\varepsilon}(q) &= (1 - \varphi_{\varepsilon}(f(q))) Y(q) + \varphi_{\varepsilon}(f(q)) X(q) \\ &= ((1 - \varphi_{\varepsilon}(y))c(x, y), (1 - \varphi_{\varepsilon}(y))d(x, y)) + (\varphi_{\varepsilon}(y)a(x, y), \varphi_{\varepsilon}(y)b(x, y)) \\ &= \left((1 - \varphi_{\varepsilon}(y))c(x, y) + \varphi_{\varepsilon}(y)a(x, y), (1 - \varphi_{\varepsilon}(y))d(x, y) + \varphi_{\varepsilon}(y)b(x, y) \right). \end{aligned}$$

Assim, temos que, para $0 < \varepsilon < \varepsilon_0$, a segunda coordenada do campo regularizado Z_{ε} é estritamente positiva em V e portanto não existem singularidades do campo regularizado Z_{ε} em V.

Por outro lado, suponha que $p \in \Sigma^E \cup \Sigma^D$ com $F_Z(p) \neq 0$. Logo, temos que

$$Xf(p)Yf(p) = b(p)d(p) < 0$$

e também

$$0 \neq F_Z(p) = \det[X, Y](p) = a(p)d(p) - b(p)c(p).$$

Suponha, sem perda de generalidade, que p é ponto de escape, ou seja, b(p) > 0 e d(p) < 0. Como b e d são funções contínuas podemos tomar $\varepsilon_0 > 0$ de modo que as funções b e dnão mudem de sinal para $|x| \le \varepsilon_0 e |y| \le \varepsilon_0$. Assim, podemos definir uma vizinhança Vde p dada por

$$V = \{(x, y) \in M : a(x, y)d(x, y) - b(x, y)c(x, y) \neq 0\}.$$

Note que um ponto (x, y) é singularidade do campo regularizado Z_{ε} se $Z_{\varepsilon}(x, y) = (0, 0)$, isto é, se

$$(1 - \varphi_{\varepsilon}(y))c(x, y) = -\varphi_{\varepsilon}(y)a(x, y)$$

е

$$(1 - \varphi_{\varepsilon}(y))d(x, y) = -\varphi_{\varepsilon}(y)b(x, y)$$

e logo

$$\frac{d(x,y)}{d(x,y) - b(x,y)} = \varphi_{\varepsilon}(y) = \frac{c(x,y)}{c(x,y) - a(x,y)}$$

o que implica

$$a(x,y)d(x,y) - b(x,y)c(x,y) = 0.$$

Portanto, para $0 < \varepsilon < \varepsilon_0$, todo $(x, y) \in V$ não satisfaz a igualdade acima e assim o campo regularizado Z_{ε} não possui singularidades em V. Veja Figura 3.3.

Figura 3.3: Regularização de um ponto Σ -regular.

Corolário 3.1.1. Seja $Z = (X, Y) \in \Omega^r(M, f)$ e $K \subset \Sigma$ um conjunto compacto de pontos Σ -regulares. Então, dada uma função de transição, existem uma vizinhança V de K em M e $\varepsilon_0 > 0$ tais que, para $0 < \varepsilon < \varepsilon_0$, o campo vetorial regularizado Z_{ε} não possui singularidades em V.

A proposição a seguir garante que não surgem pontos singulares na regularização em torno de uma Σ -dobra.

Proposição 3.1.2. Seja $p \in \Sigma$ uma Σ -dobra de $Z = (X, Y) \in \Omega^r(M, f)$. Então, dada uma função de transição, existem uma vizinhança V de p em M e $\varepsilon_0 > 0$ tais que, para $0 < \varepsilon < \varepsilon_0$, o campo vetorial regularizado Z_{ε} não possui singularidades em V. **Demonstração:** Podemos considerar coordenadas locais de modo que p = (0, 0), a função que define o campo dada por f(x, y) = y e ainda $\Sigma = \{y = 0\}, X(x, y) = (a(x, y), b(x, y))$ e Y(x, y) = (c(x, y), d(x, y)). Suponha, sem perda de generalidade, que Xf(p) = 0 e ainda $X^2f(p) > 0$ e Yf(p) > 0. Os outros casos são análogos.

Temos que:

- (i) $Xf(p) = \langle X(p), \nabla f(p) \rangle = b(p) = 0;$
- (ii) $X^2 f(p) = \langle X(p), \nabla X f(p) \rangle = a(p)b_x(p) + b(p)b_y(p) = a(p)b_x(p) > 0$, o que implica em $a(p) \neq 0$;

(iii)
$$Yf(p) = \langle Y(p), \nabla f(p) \rangle = d(p) > 0.$$

Temos ainda que uma singularidade (x, y) do campo regularizado Z_{ε} satisfaz

$$\frac{d(x,y)}{d(x,y) - b(x,y)} = \varphi_{\varepsilon}(y) = \frac{c(x,y)}{c(x,y) - a(x,y)}$$

o que implica

$$a(x,y)d(x,y) - b(x,y)c(x,y) = \det[X,Y](p) = 0.$$

Note que em p temos

$$\det[X, Y](p) = a(p)d(p) - b(p)c(p) = a(p)d(p) \neq 0.$$

Assim, como $a \in d$ são funções contínuas podemos tomar $\varepsilon_0 > 0$ de modo que det $[X, Y](x, y) \neq 0$ para $|x| \leq \varepsilon_0 \in |y| \leq \varepsilon_0$. Assim, podemos definir uma vizinhança V de p dada por

$$V = \{ (x, y) \in M : |x| \le \varepsilon_0 \in |y| \le \varepsilon_0 \}.$$

Portanto, para $0 < \varepsilon < \varepsilon_0$, o campo regularizado Z_{ε} não possui singularidades em V. Veja figura 3.4.

Figura 3.4: Regularização de uma Σ -dobra.

Teorema 3.1.1. Seja $Z = (X, Y) \in \Omega^r(M, f)$ e p um ponto singular hiperbólico de F_Z . Então, dada uma função de transição, existem uma vizinhança V de p em M e $\varepsilon_0 > 0$ tais que, para $0 < \varepsilon < \varepsilon_0$, o campo vetorial regularizado Z_{ε} possui uma única singularidade p_{ε} em V, a qual é hiperbólica e do tipo sela ou nó, conforme p o for para F_Z .

Demonstração: Seja p um ponto singular hiperbólico de F_Z e suponha $p \in \Sigma^D$. O outro caso é análogo. Considere coordenadas locais de modo que p = (0,0), f(x,y) = y, $\Sigma = \{y = 0\}, X(x,y) = (a(x,y), b(x,y))$ e Y(x,y) = (c(x,y), d(x,y)). Assim, podemos considerar, localmente, o campo de Filippov como sendo

$$F_Z(p) = \left(\frac{a(p)d(p) - b(p)c(p)}{d(p) - b(p)}, 0\right).$$

Temos que:

(i) Xf(p) = b(p) < 0 e Yf(p) = d(p) > 0;

- (ii) $F_Z(p) = 0$, isto é, det[X, Y](p) = a(p)d(p) b(p)c(p) = 0;
- (iii) $F'_Z(p) \neq 0$, isto é,

$$d(\det(X,Y)|_{\Sigma})(p) = \frac{\partial}{\partial x} (\det(X,Y)|_{\Sigma})(p)$$

= $a_x(p)d(p) + a(p)d_x(p) - b_x(p)c(p) - b(p)c_x(p) \neq 0.$

O campo regularizado Z_{ε} tem a forma

$$Z_{\varepsilon}(x,y) = \bigg((1 - \varphi_{\varepsilon}(y))c(x,y) + \varphi_{\varepsilon}(y)a(x,y), (1 - \varphi_{\varepsilon}(y))d(x,y) + \varphi_{\varepsilon}(y)b(x,y) \bigg).$$

Vimos que um ponto (x, y) é singularidade do campo regularizado Z_{ε} se satisfaz

$$\frac{d(x,y)}{d(x,y) - b(x,y)} = \varphi_{\varepsilon}(y) = \frac{c(x,y)}{c(x,y) - a(x,y)}$$
(3.6)

o que implica

$$a(x,y)d(x,y) - b(x,y)c(x,y) = 0.$$

Assim, se (x, y) é singularidade do campo regularizado Z_{ε} então det[X, Y](x, y) = 0. Como det[X, Y](p) = 0 e $\frac{\partial}{\partial x} (\det(X, Y)|_{\Sigma})(p) \neq 0$, pelo teorema da função implícita, existe uma vizinhança $U_1 \times U_2 \subset \mathbb{R}^2$ de p e uma função diferenciável $\alpha : U_2 \longrightarrow U_1$ tal que $x = \alpha(y)$ e

$$\det[X,Y](\alpha(y),y) = a(\alpha(y),y)d(\alpha(y),y) - b(\alpha(y),y)c(\alpha(y),y) = 0.$$

Então, nos pontos da curva $(\alpha(y), y)$ vale que

$$\frac{d(x,y)}{d(x,y) - b(x,y)} = \frac{c(x,y)}{c(x,y) - a(x,y)}$$

Vamos mostrar que existe apenas um ponto p_{ε} nesta curva que satisfaz (3.6), ou seja, que cruza o gráfico de φ_{ε} .

Como b(p) < 0 e d(p) > 0 e b e d são funções contínuas podemos tomar $\varepsilon_0 > 0$ de modo que b e d não mudem de sinal para $|x| \le \varepsilon_0$ e $|y| \le \varepsilon_0$ e tal que $U_2 \subset [-\varepsilon_0, \varepsilon_0]$. Assim, podemos definir uma vizinhança V de p dada por

$$V = \{ (x, y) \in M : |x| \le \varepsilon_0 \in |y| \le \varepsilon_0 \}.$$

Note que para $(x, y) \in V$ temos que

$$\frac{d(x,y)}{d(x,y) - b(x,y)} \in (0,1).$$

Defina $g: \mathbb{R} \longrightarrow \mathbb{R}$ dada por

$$g(y) = \frac{d(\alpha(y), y)}{d(\alpha(y), y) - b(\alpha(y), y)}$$

Sejam

$$k = \frac{d(p)}{d(p) - b(p)}$$

e $m = \min\{k, 1 - k\}$. Como $k \in (0, 1)$, dado $(x, y) \in V$ podemos diminuir ε_0 de modo que

$$\frac{d(x,y)}{d(x,y) - b(x,y)} \in \left(k - \frac{m}{2}, k + \frac{m}{2}\right).$$

Assim, como $\varphi_{\varepsilon}(-\varepsilon_0) = 0$ e $\varphi_{\varepsilon}(\varepsilon_0) = 1$ e as funções φ_{ε} e g são contínuas, então temos que existe pelo menos um ponto de cruzamento entre os dois gráficos.

Figura 3.5: Interseção entre $\varphi_{\varepsilon} \in g$.

Como $\varphi_{\varepsilon_0}(y)$ é uma função crescente no intervalo $[-\varepsilon_0, \varepsilon_0]$, se o ponto de cruzamento não for único basta diminuir o valor de ε_0 até que o cruzamento só ocorra uma vez. O mesmo é válido para $0 < \varepsilon < \varepsilon_0$. Seja y_{ε} o único ponto de cruzamento dos gráficos para $0 < \varepsilon < \varepsilon_0$. Então temos que $p_{\varepsilon} = (\alpha(y_{\varepsilon}), y_{\varepsilon})$ é a única singularidade de Z_{ε} em V.

Resta mostrar que p_{ε} é uma singularidade hiperbólica, e é uma sela se p o for para F_Z , ou um nó se p o for para F_Z .

A matriz jacobiana de Z_{ε} calculada em p_{ε} é dada por

$$DZ_{\varepsilon}(p_{\varepsilon}) = \begin{bmatrix} \frac{\partial Z_{\varepsilon}^{1}(p_{\varepsilon})}{\partial x} & \frac{\partial Z_{\varepsilon}^{1}(p_{\varepsilon})}{\partial y} \\ \frac{\partial Z_{\varepsilon}^{2}(p_{\varepsilon})}{\partial x} & \frac{\partial Z_{\varepsilon}^{2}(p_{\varepsilon})}{\partial y} \end{bmatrix}$$
$$= \begin{bmatrix} (1 - \varphi_{\varepsilon})c_{x} + \varphi_{\varepsilon}a_{x} & \varphi_{\varepsilon}'a - \varphi_{\varepsilon}'c + (1 - \varphi_{\varepsilon})c_{y} + \varphi_{\varepsilon}a_{y} \\ (1 - \varphi_{\varepsilon})d_{x} + \varphi_{\varepsilon}b_{x} & \varphi_{\varepsilon}'b - \varphi_{\varepsilon}'d + (1 - \varphi_{\varepsilon})d_{y} + \varphi_{\varepsilon}b_{y} \end{bmatrix}.$$

Logo, temos que o polinômio característico é dado por

$$P(\lambda) = \lambda^2 - \operatorname{tr}(DZ_{\varepsilon})\lambda + \det(DZ_{\varepsilon})$$

e os autovalores de DZ_{ε} são

$$\lambda_{1,2} = \frac{-(-\operatorname{tr}(DZ_{\varepsilon})) \pm \sqrt{(\operatorname{tr}(DZ_{\varepsilon}))^2 - 4 \det(DZ_{\varepsilon})}}{2}$$

Seja $\Delta = (\operatorname{tr}(DZ_{\varepsilon}))^2 - 4 \operatorname{det}(DZ_{\varepsilon})$ e $B = -\operatorname{tr}(DZ_{\varepsilon})$ e suponha $\Delta \ge 0$. Para que uma singularidade com autovalores dados por

$$\lambda_{1,2} = \frac{-B \pm \sqrt{\Delta}}{2}$$

seja uma singularidade hiperbólica do tipo sela deve-se ter

$$\left\{\begin{array}{ll} -B + \sqrt{\Delta} > 0 \quad \Rightarrow \quad \sqrt{\Delta} > B \\ -B - \sqrt{\Delta} < 0 \quad \Rightarrow \quad \sqrt{\Delta} > -B \end{array}\right\} \Rightarrow \sqrt{\Delta} > |B| \Rightarrow \Delta > B^2.$$

Por outro lado, uma singularidade hiperbólica será um nó quando

$$(-B + \sqrt{\Delta})(-B - \sqrt{\Delta}) > 0 \Rightarrow B^2 - \Delta > 0 \Rightarrow 0 \le \Delta < B^2.$$

Mas, note que

$$\Delta - B^2 = -4 \det(DZ_{\varepsilon}). \tag{3.7}$$

Assim, basta analisarmos o sinal do determinante do jacobiano do campo regularizado Z_{ε} em p_{ε} . Manipulando algebricamente a expressão do determinante obtemos

$$det(DZ_{\varepsilon})(p_{\varepsilon}) = \varphi_{\varepsilon}'(bc_x - ad_x - da_x + cb_x) + L$$

$$= -\varphi_{\varepsilon}'(y_{\varepsilon})(a_xd + ad_x - b_xc - bc_x) + L(p_{\varepsilon})$$

$$= -\varphi_{\varepsilon}'(y_{\varepsilon})d(det(X,Y)|_{\Sigma}(p_{\varepsilon})) + L(p_{\varepsilon}),$$

onde

$$L(p_{\varepsilon}) = [c_x d_y - c_y d_x] + \varphi_{\varepsilon} [-2c_x d_y + 2c_y d_x + b_y c_x + a_x d_y - a_y d_x - b_x c_y] + \varphi_{\varepsilon}^2 [c_x d_y - c_y d_x - b_y c_x - a_x d_y + a_y d_x + b_x c_y].$$

Note que, como todas as funções envolvidas são contínuas, a função L é limitada. Além disso, como

$$\varphi_{\varepsilon}(t) = \begin{cases} 0, & t \leq -\varepsilon, \\ h(t), & -\varepsilon < t < \varepsilon, \\ 1, & t \geq \varepsilon, \end{cases}$$

onde h(t) é uma função crescente em $(-\varepsilon, \varepsilon)$, podemos notar que a função de transição tende à função de Heaviside ou função escada. Logo, podemos concluir que

$$\lim_{\varepsilon \to 0} \varphi_{\varepsilon}'(p_{\varepsilon}) = \infty.$$

Portanto, podemos tomar ε suficientemente pequeno de modo que

$$\varphi_{\varepsilon}'(y_{\varepsilon})d(\det(X,Y)|_{\Sigma}(p_{\varepsilon})) > L(p_{\varepsilon})$$

e como

$$\varphi_{\varepsilon}'(y_{\varepsilon}) > 0$$

temos que o sinal do determinante do jacobiano do campo regularizado Z_{ε} depende do sinal de

$$d(\det(X,Y)|_{\Sigma}(p_{\varepsilon})).$$

Assim, o sinal de det $(DZ_{\varepsilon})(p_{\varepsilon})$ é o mesmo de $-d(\det(X,Y)|_{\Sigma}(p_{\varepsilon}))$. Logo, por (3.7), temos que p_{ε} é uma sela hiperbólica de Z_{ε} se p o for para F_Z , ou será um nó de Z_{ε} se p o for para F_Z .

A Figura 3.6 nos mostra a regularização de um ponto singular hiperbólico do campo de Filippov.

Figura 3.6: Regularização de um ponto singular hiperbólico do campo de Filippov.

3.2 Regularização de poli-trajetórias fechadas elementares

Trataremos agora da regularização de poli-trajetórias fechadas elementares. Os próximos três teoremas nos garantem que uma poli-trajetória fechada elementar induz uma órbita periódica no campo regularizado.

Definição 3.2.1. Seja γ uma poli-trajetória fechada. Diz-se que γ é elementar se:

- i) γ é do tipo I e $\pi'(p) \neq 1$ para algum $p \in \gamma$;
- ii) γ é do tipo II;
- iii) γ é do tipo III e todos os arcos de trajetória de F_Z são de deslize, ou todos os arcos de trajetória de F_Z são de escape.

A ideia da demonstração dos próximos teoremas consiste em construir um anel em torno de γ tal que as poli-trajetórias de Z estejam somente entrando ou saindo deste anel. Assim, este anel irá implicar na existência de um anel semelhante em Z_{ε} para ε suficientemente pequeno e pelo Teorema de Poincaré-Bendixson podemos provar a existência de uma órbita periódica em Z_{ε} . Por último, o fato de γ ser uma poli-trajetória fechada elementar implicará na unicidade e hiperbolicidade de γ_{ε} .

Teorema 3.2.1. Seja γ uma poli-trajetória fechada elementar do tipo I do campo vetorial $Z = (X, Y) \in \Omega^r(M, f)$. Então, dada uma função de transição, existem uma vizinhança V de γ em M e $\varepsilon_0 > 0$ tais que, para $0 < \varepsilon < \varepsilon_0$, o campo vetorial regularizado Z_{ε} possui uma única órbita periódica γ_{ε} em V, a qual é hiperbólica.

Demonstração: Suponha, sem perda de generalidade, que γ possui apenas duas componentes $\gamma_0 \in \gamma_1$. Veja Figura 3.7.

Sejam $\{p_0, p_1\} = \Sigma \cap \gamma$ e considere Σ_0 e Σ_1 as seções transversais ortogonais a γ_0 em p_0 e p_1 , respectivamente. Também, sejam Σ_2 e Σ_3 as seções ortogonais a γ_1 em p_1 e p_0 respectivamente. Veja Figura 3.7.

Figura 3.7: Poli-trajetória γ .

Considere as aplicações de transição $\pi_0 : \Sigma_0 \longrightarrow \Sigma_1 \in \pi_1 : \Sigma_2 \longrightarrow \Sigma_3$ definidas pelos fluxos de X e de Y. Então a aplicação de Poincaré associada a $\gamma \in p_0$ é dada por

$$\pi = \pi_1 \circ \pi_0.$$

Considere os ângulos θ_0 , θ_1 , $\theta_2 \in \theta_3$ formados entre $\Sigma \in \Sigma_0$, Σ_1 , $\Sigma_2 \in \Sigma_3$ respectivamente. Então, pelo Teorema 2.2.2, temos que a derivada da aplicação de Poincaré $\pi \text{ em } p_0$ é dada por

$$\pi'(p_0) = (\pi_1(\pi_0(p_0)))'$$

$$= \pi'_1(\pi_0(p_0))\pi'_0(p_0)$$

$$= \pi'_1(p_1)\pi'_0(p_0) \qquad (3.8)$$

$$= \frac{b(p_0)}{d(p_0)}\exp\left(\int_{t_1}^{t_2} \operatorname{div} Y(\gamma_1(t))dt\right)\frac{d(p_1)}{b(p_1)}\exp\left(\int_{t_0}^{t_1} \operatorname{div} X(\gamma_0(t))dt\right).$$

onde as parametrizações de $\Sigma_0,\,\Sigma_1,\,\Sigma_2$
e Σ_3 são dadas, respectivamente, por

$$\sigma_0(s) = p_0 + s \frac{b}{a^2 + b^2}(-b, a),$$

$$\sigma_1(s) = p_1 + s \frac{-b}{a^2 + b^2}(-b, a),$$

$$\sigma_2(s) = p_1 + s \frac{-d}{c^2 + d^2}(-d, c)$$

$$\sigma_3(s) = p_0 + s \frac{d}{c^2 + d^2} (-d, c).$$

Como γ é elementar, suponha $\pi'(p_0) < 1$. Considere $s_0, s_1 \in \Sigma_0$ tais que $s_0 < 0 < s_1$. Como $\pi'(p_0) < 1$, então temos que $s_0 < \pi(s_0) < 0$ e $0 < \pi(s_1) < s_1$. Veja Figura 3.8.

Figura 3.8: Seção transversal Σ_0 .

Considere o anel *B* contendo γ tal que *B* é formado pelas poli-trajetórias de *Z* por s_0 entre $\Sigma_0 \in \pi(\Sigma_0)$, por s_1 entre $\Sigma_0 \in \pi(\Sigma_0)$ e pelos segmentos $\overline{s_0\pi(s_0)} \in \overline{s_1\pi(s_1)}$ contidos em Σ_0 . Veja Figura 3.9.

Figura 3.9: Anel B contendo γ .

Pela construção e continuidade dos fluxos em X e Y temos que as poli-trajetórias de Z através dos segmentos $\overline{s_0\pi(s_0)}$ e $\overline{s_1\pi(s_1)}$ entram em B. Considere o sistema de coordenadas X(x,y) = (a(x,y), b(x,y)), Y(x,y) = (c(x,y), d(x,y)) e f(x,y) = y. Então, o campo regularizado Z_{ε} é dado por

$$Z_{\varepsilon}(x,y) = \left((1 - \varphi_{\varepsilon}(y))c(x,y) + \varphi_{\varepsilon}(y)a(x,y), (1 - \varphi_{\varepsilon}(y))d(x,y) + \varphi_{\varepsilon}(y)b(x,y) \right)$$
$$= (Z_{\varepsilon}^{1}(x,y), Z_{\varepsilon}^{2}(x,y)).$$

Considere a aplicação de transição $\pi_{\varepsilon} : \Sigma_0 \longrightarrow \Sigma_0$ do campo suave regularizado Z_{ε} . Então, pela continuidade das funções envolvidas, podemos tomar $\varepsilon_0 > 0$ suficientemente pequeno de modo que $\pi_{\varepsilon}(s_0) > s_0$ e $\pi_{\varepsilon}(s_1) < s_1$, para todo $0 < \varepsilon < \varepsilon_0$.

Assim, podemos considerar o anel B_{ε} formado pelas órbitas de Z_{ε} por s_0 entre $\Sigma_0 \in \pi_{\varepsilon}(\Sigma_0)$, por s_1 entre $\Sigma_0 \in \pi_{\varepsilon}(\Sigma_0)$ e pelos segmentos $\overline{s_0\pi_{\varepsilon}(s_0)} \in \overline{s_1\pi_{\varepsilon}(s_1)}$ contidos em Σ_0 . Logo, pela construção B_{ε} não contém pontos singulares e como Z_{ε} é suave, temos que as órbitas de Z_{ε} entram em B_{ε} . Então, pelo Teorema de Poincaré-Bendixson, existe uma órbita periódica γ_{ε} em B_{ε} .

Resta mostrar que γ_{ε} é hiperbólica. Temos que a derivada da aplicação de Poincaré π_{ε} em γ_{ε} é dada por

$$\pi'_{\varepsilon}(p_{\varepsilon}) = \exp\left(\int_{t_{o\varepsilon}}^{t_{1\varepsilon}} \operatorname{div} Z_{\varepsilon}(\gamma_{\varepsilon}(t)) dt\right)$$

Mostremos que

$$\lim_{\varepsilon \to 0} \pi'_{\varepsilon}(p_{\varepsilon}) = \pi'(p_0).$$

Com efeito, considere $\gamma_{\varepsilon}(t) = (x_{\varepsilon}(t), y_{\varepsilon}(t))$. Então,

$$Z_{\varepsilon}(\gamma_{\varepsilon}(t)) = Z_{\varepsilon}(x_{\varepsilon}(t), y_{\varepsilon}(t))$$

= $\left((1 - \varphi_{\varepsilon}(y_{\varepsilon}(t)))c(x_{\varepsilon}(t), y_{\varepsilon}(t)) + \varphi_{\varepsilon}(y_{\varepsilon}(t))a(x_{\varepsilon}(t), y_{\varepsilon}(t)), (1 - \varphi_{\varepsilon}(y_{\varepsilon}(t)))d(x_{\varepsilon}(t), y_{\varepsilon}(t)) + \varphi_{\varepsilon}(y_{\varepsilon}(t))b(x_{\varepsilon}(t), y_{\varepsilon}(t)) \right).$

Assim, temos que

$$\begin{aligned} \pi_{\varepsilon}'(p_{\varepsilon}) &= \exp\left(\int_{t_{o\varepsilon}}^{t_{1\varepsilon}} \operatorname{div} Z_{\varepsilon}(\gamma_{\varepsilon}(t)) dt\right) \\ &= \exp\left(\int_{t_{o\varepsilon}}^{t_{1\varepsilon}} \left[\frac{\partial Z_{\varepsilon}^{1}}{\partial x} + \frac{\partial Z_{\varepsilon}^{2}}{\partial y}\right](\gamma_{\varepsilon}(t)) dt\right) \\ &= \exp\left[\int_{t_{o\varepsilon}}^{t_{1\varepsilon}} \left((1 - \varphi_{\varepsilon})c_{x} + \varphi_{\varepsilon}a_{x} + d_{y} - (\varphi_{\varepsilon}'d + \varphi_{\varepsilon}d_{y}) + (\varphi_{\varepsilon}'b + \varphi_{\varepsilon}b_{y})\right)(\gamma_{\varepsilon}(t)) dt\right] \\ &= \exp\left[\int_{t_{o\varepsilon}}^{t_{1\varepsilon}} \left((1 - \varphi_{\varepsilon})(c_{x} + d_{y}) + \varphi_{\varepsilon}(a_{x} + b_{y}) + \frac{1}{\varepsilon}\varphi'\left(\frac{y}{\varepsilon}\right)(b - d)\right)(\gamma_{\varepsilon}(t)) dt\right] \\ &= \exp\left[\int_{t_{o\varepsilon}}^{t_{1\varepsilon}} \left((1 - \varphi_{\varepsilon})(\operatorname{div} Y) + \varphi_{\varepsilon}(\operatorname{div} X) + \frac{1}{\varepsilon}\varphi'\left(\frac{y}{\varepsilon}\right)(b - d)\right)(\gamma_{\varepsilon}(t)) dt\right]. \end{aligned}$$

Note que teremos esta expressão completa de $\pi'_{\varepsilon}(p_{\varepsilon})$ somente no trecho em que γ_{ε} pertence a faixa de regularização, pois fora da faixa o campo regularizado Z_{ε} coincide com o campo vetorial suave por partes Z. Assim, podemos decompor a expressão acima na soma das derivadas de $\pi_{\varepsilon}(p_{\varepsilon})$ nos arcos definidos pela faixa de regularização. Considere $[t_{o\varepsilon}, t'_{\varepsilon}]$ o tempo para a órbita $\gamma_{\varepsilon}(t)$ ir de Σ_0 até sair da faixa de regularização; $[t'_{\varepsilon}, t''_{\varepsilon}]$ o tempo para $\gamma_{\varepsilon}(t)$ permanecer no campo X fora da faixa de regularização; $[t''_{\varepsilon}, t'''_{\varepsilon}]$ o tempo para $\gamma_{\varepsilon}(t)$ atravessar novamente a faixa de regularização; $[t'''_{\varepsilon}, t'''_{\varepsilon}]$ o tempo para $\gamma_{\varepsilon}(t)$ permanecer no campo Y fora da faixa de regularização e $[t'''_{\varepsilon''}, t_{\varepsilon''}]$ o tempo para $\gamma_{\varepsilon}(t)$ entrar na faixa de regularização e cruzar Σ_0 . Veja Figura 3.10.

Figura 3.10: Órbita periódica $\gamma_{\varepsilon}.$

Assim, temos que

Mas, note que,

$$\lim_{\varepsilon \to 0} \exp\left[\int_{t_{o\varepsilon}}^{t'_{\varepsilon}} \left((1-\varphi_{\varepsilon}) \mathrm{div}Y\right)(\gamma_{\varepsilon}(t))dt + \int_{t_{o\varepsilon}}^{t'_{\varepsilon}} (\varphi_{\varepsilon} \mathrm{div}X)(\gamma_{\varepsilon}(t))dt\right] = 1.$$

De fato, todas as funções acima são contínuas e contidas num compacto, logo limitadas. Assim, quando ε tende a zero, temos que os intervalos de integração estão tendendo a um ponto e, portanto, as integrais tendem a zero. Do mesmo modo, temos

$$\lim_{\varepsilon \to 0} \exp\left[\int_{t_{\varepsilon}'''}^{t_{1\varepsilon}} \left((1-\varphi_{\varepsilon})\operatorname{div}Y\right)(\gamma_{\varepsilon}(t))dt + \int_{t_{\varepsilon}'''}^{t_{1\varepsilon}} (\varphi_{\varepsilon}\operatorname{div}X)(\gamma_{\varepsilon}(t))dt\right] = 1;$$
$$\lim_{\varepsilon \to 0} \exp\left[\int_{t_{\varepsilon}''}^{t_{\varepsilon}''} \left((1-\varphi_{\varepsilon})\operatorname{div}Y\right)(\gamma_{\varepsilon}(t))dt + \int_{t_{\varepsilon}''}^{t_{\varepsilon}'''} (\varphi_{\varepsilon}\operatorname{div}X)(\gamma_{\varepsilon}(t))dt\right] = 1.$$

Ainda, temos que

$$\lim_{\varepsilon \to 0} \exp\left[\int_{t_{\varepsilon}'}^{t_{\varepsilon}''} \operatorname{div} X(\gamma_{\varepsilon}(t)) dt\right] = \exp\left(\int_{t_0}^{t_1} \operatorname{div} X(\gamma_0(t)) dt\right);$$
$$\lim_{\varepsilon \to 0} \exp\left[\int_{t_{\varepsilon}''}^{t_{\varepsilon}'''} \operatorname{div} Y(\gamma_{\varepsilon}(t)) dt\right] = \exp\left(\int_{t_1}^{t_2} \operatorname{div} Y(\gamma_1(t)) dt\right).$$

Logo, para concluir que

$$\lim_{\varepsilon \to 0} \pi'_{\varepsilon}(p_{\varepsilon}) = \pi'(p_0),$$

resta mostrar que

$$\lim_{\varepsilon \to 0} \exp\left[\int_{t_{o\varepsilon}}^{t'_{\varepsilon}} \left(\frac{1}{\varepsilon}\varphi'\left(\frac{y}{\varepsilon}\right)(b-d)\right)(\gamma_{\varepsilon}(t))dt\right] \\ \cdot \exp\left[\int_{t''_{\varepsilon}}^{t'''} \left(\frac{1}{\varepsilon}\varphi'\left(\frac{y}{\varepsilon}\right)(b-d)\right)(\gamma_{\varepsilon}(t))dt\right] \\ \cdot \exp\left[\int_{t'''_{\varepsilon}}^{t_{1\varepsilon}} \left(\frac{1}{\varepsilon}\varphi'\left(\frac{y}{\varepsilon}\right)(b-d)\right)(\gamma_{\varepsilon}(t))dt\right] \\ = \frac{d(p_{1})b(p_{0})}{d(p_{0})b(p_{1})}.$$

Como Z_{ε} está associado a uma equação diferencial, podemos escrever

$$\frac{dy}{dt} = Z_{\varepsilon}^2 = (1 - \varphi_{\varepsilon}(y))d(x, y) + \varphi_{\varepsilon}(y)b(x, y)$$

e logo

$$\frac{dt}{dy} = \frac{1}{(1 - \varphi_{\varepsilon}(y))d(x, y) + \varphi_{\varepsilon}(y)b(x, y)}$$

Assim, fazendo a mudança de variáveis nas integrais e como $t_{o\varepsilon} = t_{1\varepsilon}$, obtemos

$$\begin{split} \exp \left[\int_{t_{o\varepsilon}}^{t'_{\varepsilon}} \left(\frac{1}{\varepsilon} \varphi'\left(\frac{y}{\varepsilon}\right) (b-d) \right) (\gamma_{\varepsilon}(t)) dt + \int_{t''_{\varepsilon}}^{t''_{\varepsilon}''} \left(\frac{1}{\varepsilon} \varphi'\left(\frac{y}{\varepsilon}\right) (b-d) \right) (\gamma_{\varepsilon}(t)) dt \\ + \int_{t''_{\varepsilon}'''}^{t_{1\varepsilon}} \left(\frac{1}{\varepsilon} \varphi'\left(\frac{y}{\varepsilon}\right) (b-d) \right) (\gamma_{\varepsilon}(t)) dt \right] \\ = \exp \left[\int_{t''_{\varepsilon}'''}^{\varepsilon} \left(\frac{1}{\varepsilon} \varphi'\left(\frac{y}{\varepsilon}\right) (b-d) \right) (\gamma_{\varepsilon}(t)) dt + \int_{t''_{\varepsilon}}^{t''_{\varepsilon}''} \left(\frac{1}{\varepsilon} \varphi'\left(\frac{y}{\varepsilon}\right) (b-d) \right) (\gamma_{\varepsilon}(t)) dt \right] \\ = \exp \left[\int_{-\varepsilon}^{\varepsilon} \frac{1}{\varepsilon} \varphi'\left(\frac{y}{\varepsilon}\right) (b-d) (\gamma_{\varepsilon}(t)) dt + \int_{\varepsilon}^{-\varepsilon} \frac{1}{\varepsilon} \varphi'\left(\frac{y}{\varepsilon}\right) (b-d) (\gamma_{\varepsilon}(t)) dt \right] \\ = \exp \left[\ln((1-\varphi_{\varepsilon}(y))d + \varphi_{\varepsilon}(y)b) dy + \int_{\varepsilon}^{-\varepsilon} \frac{1}{\varepsilon} \varphi'\left(\frac{y}{\varepsilon}\right) (b-d) (1-\varphi_{\varepsilon}(y)b) dy \right] \\ = \exp \left[\ln((1-\varphi_{\varepsilon}(\varepsilon))d(p_{0}) + \varphi_{\varepsilon}(\varepsilon)b(p_{0})) - \ln((1-\varphi_{\varepsilon}(-\varepsilon))d(p_{0}) + \varphi_{\varepsilon}(-\varepsilon)b(p_{0})) \right] \\ = \exp \left[\ln((1-\varphi_{\varepsilon}(-\varepsilon))d(p_{1}) + \varphi_{\varepsilon}(-\varepsilon)b(p_{1})) - \ln((1-\varphi_{\varepsilon}(\varepsilon))d(p_{1}) + \varphi_{\varepsilon}(\varepsilon)b(p_{1})) \right] \\ = \exp \left[\ln(b(p_{0})) - \ln(d(p_{0})) + \ln(d(p_{1})) - \ln(b(p_{1})) \right] \\ = \frac{d(p_{1})b(p_{0})}{d(p_{0})b(p_{1})}. \end{split}$$

Portanto, temos que

$$\lim_{\varepsilon \to 0} \pi'_{\varepsilon}(p_{\varepsilon}) = \pi'(p_0).$$

Desse modo, como $\pi'(p_0) < 1$, tomando $\varepsilon_0 > 0$ suficientemente pequeno, temos que a órbita periódica γ_{ε} é hiperbólica atratora para o campo regularizado Z_{ε} , para todo $0 < \varepsilon < \varepsilon_0$. De modo análogo, se supusermos $\pi'(p_0) > 1$, existirá $\varepsilon_0 > 0$ tal que $\pi'_{\varepsilon}(p_{\varepsilon}) > 1$ para todo $0 < \varepsilon < \varepsilon_0$ e assim, γ_{ε} é hiperbólica repulsora para o campo regularizado Z_{ε} .

Teorema 3.2.2. Seja γ uma poli-trajetória fechada elementar do tipo II do campo $Z = (X, Y) \in \Omega^r(M, f)$. Então, dada uma função de transição, existem uma vizinhança V de γ em M e $\varepsilon_0 > 0$ tais que, para $0 < \varepsilon < \varepsilon_0$, o campo vetorial regularizado Z_{ε} possui uma única órbita periódica γ_{ε} em V, a qual é hiperbólica.

Demonstração: Note que dado uma poli-trajetória fechada do tipo II, temos que ela contém somente arcos de deslize ou somente arcos de escape, pois, caso contrário, teríamos uma tangência, o que implica que a poli-trajetória seria do tipo III.

Suponha, sem perda de generalidade, que Σ é composta somente de arcos de deslize. Consideremos coordenadas polares (θ, ρ) em torno de Σ em M de modo que

$$\Sigma = \{ \rho = 0 : 0 \le \theta \le 2\pi \}.$$

Deste modo, temos também $f(\theta, \rho) = \rho$ e o campo vetorial Z tem componentes dadas por $X(\theta, \rho) = (a(\theta, \rho), b(\theta, \rho))$ e $Y(\theta, \rho) = (c(\theta, \rho), d(\theta, \rho))$. Como Σ é composta de arcos de deslize temos que $Xf(\theta, 0) = b(\theta, 0) < 0$ e $Yf(\theta, 0) = d(\theta, 0) > 0$. Como b e d são funções contínuas, podemos tomar $\varepsilon_0 > 0$ de modo que $b(\theta, \rho) < 0$ e $d(\theta, \rho) > 0$ para $|\rho| \le \varepsilon_0$. Assim, podemos definir $V = \{(\theta, \rho) : |\rho| \le \varepsilon_0\}$. Veja Figura 3.11.

Figura 3.11: Órbita Periódica $\gamma = \Sigma$

Considere o campo regularizado Z_{ε} dado por

$$Z_{\varepsilon}(\theta,\rho) = \left((1-\varphi_{\varepsilon}(\rho))c(\theta,\rho) + \varphi_{\varepsilon}(\rho)a(\theta,\rho), (1-\varphi_{\varepsilon}(\rho))d(\theta,\rho) + \varphi_{\varepsilon}(\rho)b(\theta,\rho) \right)$$
$$= \left(Z_{\varepsilon}^{1}(\theta,\rho), Z_{\varepsilon}^{2}(\theta,\rho) \right).$$

Assim, para todo $0 < \varepsilon < \varepsilon_0$, as órbitas do campo regularizado Z_{ε} entram em V. Além disso, V não possui singularidades, pois estamos em uma vizinhança de pontos Σ -regulares. Logo, pelo Teorema de Poincaré-Bendixson, existe pelo menos uma órbita periódica γ_{ε} em V. Portanto existe $\varepsilon_0 > 0$ tal que se $0 < \varepsilon < \varepsilon_0$ então o campo regularizado Z_{ε} possui uma órbita periódica $\gamma_{\varepsilon} = \{\theta, \rho_{\varepsilon}(\theta) : 0 \le \theta \le 2\pi\}$ em V.

Mostremos agora que γ_{ε} é hiperbólica e atratora, portanto, única. Dado $p \in \gamma_{\varepsilon}$ e uma seção transversal Σ_0 , considere a aplicação de Poincaré ou primeiro retorno $\pi : \Sigma_0 \longrightarrow \Sigma_0$. Assim, temos que derivada da aplicação de Poincaré é dada por

$$\pi'(p) = \exp\bigg(\int_0^{t_{\varepsilon}} \operatorname{div} Z_{\varepsilon}(\gamma_{\varepsilon}(\theta)) d\theta\bigg),$$

em que div $Z_{\varepsilon} = (Z_{\varepsilon}^1)_{\theta} + (Z_{\varepsilon}^2)_{\rho}$. Provemos que $0 < \pi'(p) < 1$. Com efeito, note que

$$\operatorname{div} Z_{\varepsilon} = (1 - \varphi_{\varepsilon})c_{\theta} + \varphi_{\varepsilon}a_{\theta} + d_{\rho} - (\varphi_{\varepsilon}'d + \varphi_{\varepsilon}d_{\rho}) + (\varphi_{\varepsilon}'b + \varphi_{\varepsilon}b_{\rho})$$
$$= -\varphi_{\varepsilon}'(d - b) + \varphi_{\varepsilon}(a_{\theta} + b_{\rho}) + (1 - \varphi_{\varepsilon})(c_{\theta} + d_{\rho})$$
$$= -\varphi_{\varepsilon}'(d - b) + L,$$

em que $L = \varphi_{\varepsilon} \operatorname{div} X + (1 - \varphi_{\varepsilon}) \operatorname{div} Y$ é uma função limitada em V. Como (b - d) > 0 em γ_{ε} , resta mostrar que

$$\lim_{\varepsilon \to 0} \varphi_{\varepsilon}'(\rho_{\varepsilon}(\theta)) = +\infty, \qquad \qquad \theta \in [0, 2\pi].$$

Considere inicialmente um campo suave por partes simplificado W = (X, Y) com

$$\begin{cases} X(\theta, \rho) = (1, b_0); \\ Y(\theta, \rho) = (0, 1), \end{cases}$$

e $b_0 < 0$ constante. Logo, o campo regularizado W_{ε} é dado por

$$W_{\varepsilon}(\theta,\rho) = \left(\varphi_{\varepsilon}(\rho), 1 - \varphi_{\varepsilon}(\rho) + \varphi_{\varepsilon}(\rho)b_{0}\right)$$

Considere a mudança de coordenadas $\rho^* = \rho/\varepsilon$ e $\theta^* = \theta/\varepsilon$. Assim, como

$$\varphi_{\varepsilon}(\rho) = \varphi_{\varepsilon}(\rho^* \varepsilon) = \varphi(\rho^*),$$

temos que

$$W_{\varepsilon}(\theta^*, \rho^*) = \left(\varphi(\rho^*), 1 - \varphi(\rho^*) + \varphi(\rho^*)b_0\right)$$

Como o campo vetorial acima está relacionado a uma equação diferencial, temos que

$$\frac{d\rho^*}{d\theta^*} = \frac{1 - \varphi(\rho^*) + \varphi(\rho^*)b_0}{\varphi(\rho^*)}.$$
(3.9)

Igualando (3.9) a zero, obtemos uma solução periódica do campo W_{ε} , visto que o campo não depende de θ^* . Assim, esta solução periódica é dada implicitamente por

$$\varphi(\rho_0^*) = \frac{1}{1 - b_0}$$

Como $b_0 < 0$, temos que

$$0 < \varphi(\rho_0^*) = \frac{1}{1 - b_0} < 1.$$

Logo, como a função de transição é crescente em (0, 1), φ é invertível e a solução periódica única é dada por

$$\rho_0^* = \varphi^{-1} \left(\frac{1}{1 - b_0} \right)$$

Note que, para $\varepsilon>0,\,\rho_0=\varepsilon\rho_0^*$ e assim

$$\varphi'_{\varepsilon}(\rho_0) = \varphi'\left(\frac{\rho_0}{\varepsilon}\right) = \frac{1}{\varepsilon}\varphi'(\rho_0^*).$$

Logo, conforme ε decresce, $\varphi'_{\varepsilon}(\rho_0)$ aumenta, pois $\varphi'(\rho_0^*)$ é constante, visto que ρ_0^* não depende de ε . Deste modo, podemos tomar ε suficientemente pequeno de modo a ter a derivada tão grande quanto preciso. Portanto, $\gamma_{\varepsilon} = \{(\theta, \rho_0 = \varepsilon \rho_0^*)\}$ é uma primeira aproximação da solução periódica procurada.

Mostremos agora que podemos tomar $\delta > 0$ de modo que a solução do caso geral em que os campos são dados por $X(\theta, \rho) = (a(\theta, \rho), b(\theta, \rho))$ e $Y(\theta, \rho) = (0, 1)$ está no intervalo $\varepsilon(\rho_0^* \pm \delta)$. Assim, diminuindo-se ε o quanto for necessário para que a derivada seja grande em $\varepsilon(\rho_0^* \pm \delta)$, teremos uma órbita periódica hiperbólica.

Como os pontos da poli-trajetória $\gamma = \Sigma$ são pontos Σ -regulares temos que det $[X, Y](p) \neq 0$ para todo $p \in \Sigma$, isto é,

$$\det[X, Y](p) = \begin{vmatrix} a(p) & b(p) \\ 0 & 1 \end{vmatrix} = a(p) \neq 0$$

Suponha, sem perda de generalidade, que a(p) > 0 e considere o campo regularizado $Z_{\varepsilon}(\theta, \rho)$ o qual é dado por

$$Z_{\varepsilon}(\theta,\rho) = \left(\varphi_{\varepsilon}(\rho)a(\theta,\rho), 1-\varphi_{\varepsilon}(\rho)+\varphi_{\varepsilon}(\rho)b(\theta,\rho)\right)$$
$$= \left(Z_{\varepsilon}^{1}(\theta,\rho), Z_{\varepsilon}^{2}(\theta,\rho)\right).$$

Se mostrarmos que Z_{ε}^2 é negativo em $(\theta, \varepsilon(\rho_0^* + \delta))$ e é positivo em $(\theta, \varepsilon(\rho_0^* - \delta))$ temos que as órbitas do campo regularizado entram no anel $(\theta, \rho = \varepsilon(\rho_0^* \pm \delta))$ e, pelo Teorema de Poincaré-Bendixson, a órbita periódica estará neste anel.

Temos que

$$Z_{\varepsilon}^{2}(\theta,\varepsilon(\rho_{0}^{*}\pm\delta)) = 1 - \varphi_{\varepsilon}(\varepsilon(\rho_{0}^{*}\pm\delta)) + \varphi_{\varepsilon}(\varepsilon(\rho_{0}^{*}\pm\delta))b(\theta,\varepsilon(\rho_{0}^{*}\pm\delta))$$
$$= 1 - \varphi((\rho_{0}^{*}\pm\delta)) + \varphi((\rho_{0}^{*}\pm\delta))b(\theta,\varepsilon(\rho_{0}^{*}\pm\delta)).$$

Expandindo b
e φ em séries, temos que, pelo teorema de Taylor,

$$\varphi((\rho_0^* \pm \delta)) = \varphi(\rho_0^*) \pm \delta\varphi'(\rho_0^*) + \frac{\delta^2}{2}\varphi''(\rho_0^*) + r_3(\delta),$$

em que

$$r_3(\delta) = \frac{(\pm\delta)^3}{6} \varphi'''(\rho_0^* \pm m\delta)$$

 $com \ 0 < m < 1. E$,

$$b(\theta, \rho) = b_0 + b_1(\theta)\rho + b_2(\theta, \rho)\rho^2.$$

Logo, temos que

$$\begin{split} Z_{\varepsilon}^{2}(\theta,\varepsilon(\rho_{0}^{*}+\delta)) &= 1-\varphi(\rho_{0}^{*}+\delta)+\varphi(\rho_{0}^{*}+\delta)b(\theta,\varepsilon(\rho_{0}^{*}+\delta))\\ &= 1-\left[\varphi(\rho_{0}^{*})+\delta\varphi'(\rho_{0}^{*})+\frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*})+r_{3}(\delta)\right]+\\ &+ \left[\varphi(\rho_{0}^{*})+\delta\varphi'(\rho_{0}^{*})+\frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*})+r_{3}(\delta)\right]\cdot\\ &\cdot \left[b_{0}+b_{1}(\theta)\varepsilon(\rho_{0}^{*}+\delta)+b_{2}(\theta,\varepsilon(\rho_{0}^{*}+\delta))\varepsilon^{2}(\rho_{0}^{*}+\delta)^{2}\right]\\ &= 1-\left[\frac{1}{1-b_{0}}+\delta\varphi'(\rho_{0}^{*})+\frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*})+r_{3}(\delta)\right]+\\ &+ \left[\frac{1}{1-b_{0}}+\delta\varphi'(\rho_{0}^{*})+\frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*})+r_{3}(\delta)\right]\cdot\\ &\cdot \left[b_{0}+\varepsilon(\rho_{0}^{*}+\delta)[b_{1}(\theta)+b_{2}(\theta,\varepsilon(\rho_{0}^{*}+\delta))\varepsilon(\rho_{0}^{*}+\delta)]\right]. \end{split}$$

Fixando $\delta > 0$ e tomando ε suficientemente pequeno, temos que o fator

$$\varepsilon(\rho_0^* + \delta)[b_1(\theta) + b_2(\theta, \varepsilon(\rho_0^* + \delta))\varepsilon(\rho_0^* + \delta)]$$

é irrelevante e logo

$$Z_{\varepsilon}^{2}(\theta, \varepsilon(\rho_{0}^{*}+\delta)) = 1 - \left[\frac{1}{1-b_{0}} + \delta\varphi'(\rho_{0}^{*}) + \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*}) + r_{3}(\delta)\right] + \left[\frac{1}{1-b_{0}} + \delta\varphi'(\rho_{0}^{*}) + \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*}) + r_{3}(\delta)\right] \cdot b_{0}$$
$$= 1 - \left[\frac{1}{1-b_{0}} + \delta\varphi'(\rho_{0}^{*}) + \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*}) + r_{3}(\delta)\right] (1-b_{0}).$$

Mas, note que

$$\left[\frac{1}{1-b_0} + \delta\varphi'(\rho_0^*) + \frac{\delta^2}{2}\varphi''(\rho_0^*) + r_3(\delta)\right](1-b_0)$$

é igual a

$$1 + \left[\delta\varphi'(\rho_0^*) + \frac{\delta^2}{2}\varphi''(\rho_0^*) + r_3(\delta)\right](1 - b_0),$$

donde temos que

$$1 + \left[\delta\varphi'(\rho_0^*) + \frac{\delta^2}{2}\varphi''(\rho_0^*) + r_3(\delta)\right](1 - b_0) > 1.$$

Deste modo, segue que

$$Z_{\varepsilon}^{2}(\theta,\varepsilon(\rho_{0}^{*}+\delta))<0.$$

Por outro lado,

$$\begin{split} Z_{z}^{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta)) &= 1 - \varphi(\rho_{0}^{*}-\delta) + \varphi(\rho_{0}^{*}-\delta)b(\theta,\varepsilon(\rho_{0}^{*}-\delta)) \\ &= 1 - \left[\varphi(\rho_{0}^{*}) - \delta\varphi'(\rho_{0}^{*}) + \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*}) + r_{3}(\delta)\right] + \\ &+ \left[\varphi(\rho_{0}^{*}) - \delta\varphi'(\rho_{0}^{*}) + \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*}) + r_{3}(\delta)\right] \cdot \\ &\cdot \left[b_{0} + \varepsilon(\rho_{0}^{*}-\delta)[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)]\right] \\ &= 1 - \left[\frac{1}{1-b_{0}} - \delta\varphi'(\rho_{0}^{*}) + \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*}) + r_{3}(\delta)\right] \cdot \\ &\cdot \left[(1-b_{0}) - \varepsilon(\rho_{0}^{*}-\delta)[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)]\right] \\ &= 1 - \left[\frac{1-b_{0}}{1-b_{0}} - \frac{\varepsilon(\rho_{0}^{*}-\delta)[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)]}{1-b_{0}} - \\ &- \delta\varphi'(\rho_{0}^{*})(1-b_{0}) + \delta\varphi'(\rho_{0}^{*})\varepsilon(\rho_{0}^{*}-\delta) + \\ &\cdot \left[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)\right] + \\ &+ \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*})(1-b_{0}) - \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*})\varepsilon(\rho_{0}^{*}-\delta) + \\ &\cdot \left[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)\right]\right] \\ &= 1 - \frac{1-b_{0}}{1-b_{0}} + \frac{\varepsilon(\rho_{0}^{*}-\delta)[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)]}{1-b_{0}} + \\ &+ \delta\varphi'(\rho_{0}^{*})(1-b_{0}) - \delta\varphi'(\rho_{0}^{*})\varepsilon(\rho_{0}^{*}-\delta) + \\ &\cdot \left[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))b_{1}(\rho_{0}^{*}-\delta) + \\ &\cdot \left[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)\right] - \\ &- \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*})(1-b_{0}) + \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*})\varepsilon(\rho_{0}^{*}-\delta) + \\ &\cdot \left[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)\right] - \\ &- \delta\varphi'(\rho_{0}^{*})(\rho_{0}^{*}-\delta)[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)]] \\ &= \varepsilon\left[\frac{(\rho_{0}^{*}-\delta)[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)]}{1-b_{0}} - \\ &- \delta\varphi'(\rho_{0}^{*})(\rho_{0}^{*}-\delta)[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)]] + \\ &+ \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*})(\rho_{0}^{*}-\delta)[b_{1}(\theta) + b_{2}(\theta,\varepsilon(\rho_{0}^{*}-\delta))\varepsilon(\rho_{0}^{*}-\delta)]] + \\ &+ \frac{\delta^{2}}{2}\varphi''(\rho_{0}^{*})(\rho_{0}^{*$$

Como $\delta^2 < \delta < 1$, podemos tomar δ suficientemente pequeno de modo que

$$(1-b_0)\left(\delta\varphi'(\rho_0^*) - \frac{\delta^2}{2}\varphi''(\rho_0^*)\right) > 0$$

Assim, fixado δ , podemos diminuir o valor de ε de modo que

$$Z_{\varepsilon}^{2}(\theta, \varepsilon(\rho_{0}^{*} - \delta)) > 0.$$

Deste modo, podemos tomar $\delta > 0$ e $\varepsilon_0 > 0$ de modo que, para $0 < \varepsilon < \varepsilon_0$, tenhamos $Z_{\varepsilon}^2(\theta, \varepsilon(\rho_0^* + \delta)) < 0, Z_{\varepsilon}^2(\theta, \varepsilon(\rho_0^* - \delta)) > 0$, e a derivada $\varphi_{\varepsilon}'(\rho_0)$ seja grande o suficiente para que a órbita periódica seja hiperbólica.

Teorema 3.2.3. Seja γ uma poli-trajetória fechada elementar do tipo III do campo $Z = (X, Y) \in \Omega^r(M, f)$. Então, dada uma função de transição, existem uma vizinhança V de γ em M e $\varepsilon_0 > 0$ tais que, para $0 < \varepsilon < \varepsilon_0$, o campo vetorial regularizado Z_{ε} possui uma única órbita periódica γ_{ε} em V, a qual é hiperbólica.

Demonstração: Seja γ uma poli-trajetória fechada elementar do tipo III de Z, isto é, γ contém pelo menos uma Σ -dobra e todos os arcos do campo de Filippov são de deslize ou todos são de escape.

Suponhamos, sem perda de generalidade, que γ contém um único arco de trajetória de Xe um único arco de trajetória de F_Z , o qual é de deslize. Novamente, consideraremos as coordenadas locais do campo de Filippov.

Considere ainda Σ_i , i = 1, ..., 4, seções transversais à poli-trajetória γ dispostas como na Figura 3.12.

Figura 3.12: Poli-trajetória do tipo III.

Dessa forma, as órbitas de X que passam por Σ_3 entram no arco de deslize após passar por Σ_4 e depois cruzam Σ_1 . Considere também que as órbitas próximas de γ que atravessam Σ_1 entram no arco de deslize.

Considere $p_3 \in \Sigma_3 \cap \gamma$ e uma orientação em Σ_3 tal que podemos tomar $q_0, q_1 \in \Sigma_3$ suficientemente próximos de p_3 de modo que $q_0 < p_3 < q_1$ e as órbitas de X por q_0 e q_1 cruzem Σ_4 . Dessa forma, a órbita por q_0 entrará no arco deslizante após cruzar a seção transversal Σ_4 e a órbita por q_1 cruzará a seção transversal Σ_1 e em seguida também entrará no arco deslizante.

Sejam $q_3 = (m_3, n_3)$ o ponto da órbita do campo X por q_1 que intercepta a seção transversal Σ_2 e $q_4 = (m_4, n_4)$ o ponto da órbita por q_1 que cruza a seção transversal Σ_1 . Ainda, considere $n_5 < 0$ de modo que as órbitas de Y por (x, y) com $n_5 < y < 0$ entram no arco de deslize.

Assim, podemos considerar o anel B com o seguinte bordo:

(a) Bordo interno:

- (i) Órbita de X por q_1 entre Σ_2 e Σ_3 , entre Σ_3 e Σ_4 e entre Σ_4 e Σ_1 ;
- (ii) Segmento de reta em Σ_1 entre $y = n_4$ e $y = n_3$;
- (iii) Segmento de reta entre Σ_1 e Σ_2 dado por $y = n_6$, com $n_6 = \min\{n_4, n_3\}$.

- (b) Bordo externo:
- (i) Órbita de X por q_0 entre $\Sigma_3 \in \Sigma_4$, entre $\Sigma_4 \in \Sigma$, e entre $\Sigma_3 \in \Sigma$;
- (ii) Órbita de X por q_0 entre Σ e Σ_1 e entre Σ e Σ_2 ;
- (iii) Segmento de reta contido em Σ_1 e segmento de reta contido em Σ_2 entre y = 0 e $y = n_5$;
- (iv) Segmento da reta $y = n_5$ entre $\Sigma_1 \in \Sigma_2$.

Veja Figura 3.13.

Figura 3.13: Anel contendo γ .

À vista disso, tomando $\varepsilon_0 > 0$ de modo que $\varepsilon_0 < n_6$, $-\varepsilon_0 > n_5$ e tal que as seções transversais Σ_3 e Σ_4 estejam fora da faixa de regularização, temos que as órbitas do campo Z estão entrando em B.

Desse modo, para $0 < \varepsilon < \varepsilon_0$, as órbitas do campo regularizado Z_{ε} estão entrando em *B*. Por construção, o anel *B* não possui singularidades e portanto, pelo Teorema de Poincaré–Bendixson, Z_{ε} possui uma órbita periódica γ_{ε} em *B*.

Provemos agora que toda órbita periódica γ_{ε} de Z_{ε} em B é hiperbólica atratora e, portanto, única. Observe que as seções transversais de γ desempenham o mesmo papel para γ_{ε} .
Considere a aplicação de Poincaré π_{ε} da órbita periódica γ_{ε} definida na seção transversal Σ_1 . Temos que

$$\pi_{\varepsilon} = \pi_{4\varepsilon} \circ \pi_{3\varepsilon} \circ \pi_{2\varepsilon} \circ \pi_{1\varepsilon}$$

onde $\pi_{i\varepsilon}$ está definida entre $\Sigma_i \in \Sigma_{i+1} \mod \Sigma_5 = \Sigma_1$. Ainda, sejam $p_i = (x_i, y_i) \in \Sigma_i \cap \gamma_{\varepsilon}$, $i = 1, \ldots, 4$, os pontos de intersecção entre γ_{ε} e as seções transversais e considere os ângulos θ_i formados entre as seções transversais Σ_i e a órbita γ_{ε} .

A seguir iremos calcular a derivada da aplicação de transição em cada trecho definido pelas seções transversais.

1. Entre $\Sigma_1 \in \Sigma_2$.

Como primeira aproximação, considere os campos vetoriais $X \in Y$ dados por

$$X(x, y) = (-1, -1),$$

 $Y(x, y) = (-1, 1).$

Logo, o campo regularizado fica

$$Z_{\varepsilon} = (Z_{\varepsilon}^{1}, Z_{\varepsilon}^{2})$$

= $((1 - \varphi_{\varepsilon})(-1) + (-1)\varphi_{\varepsilon}, (1 - \varphi_{\varepsilon})(+1) + (-1)\varphi_{\varepsilon})$
= $(-1, 1 - 2\varphi_{\varepsilon}).$

Como este campo esta relacionado a uma equação diferencial podemos escrever

$$\frac{dy}{dx} = \frac{1 - 2\varphi_{\varepsilon}}{-1}$$

e logo

$$\frac{dy}{1 - 2\varphi_{\varepsilon}(y)} = \frac{dx}{-1}$$

Integrando, obtemos que

$$\int_{y_1}^{y_2} \frac{1}{1 - 2\varphi_{\varepsilon}(y)} dy = \int_{x_1}^{x_2} -dx = x_1 - x_2, \qquad (3.10)$$

onde os valores de x_1 e x_2 correspondem as abscissas das seções transversais Σ_1 e Σ_2 , respectivamente.

Dessa forma, dado o valor de y_1 podemos obter o valor de y_2 tal que a órbita do campo regularizado Z_{ε} que passa por $(x_1, y_1) \in \Sigma_1$ cruza Σ_2 em (x_2, y_2) . Veja Figura 3.14.

Figura 3.14: Órbita de Z_{ε} entre as seções transversais.

Considere a função

$$\psi(y) = \frac{1}{1 - 2\varphi_{\varepsilon}(y)}$$

Note que, considerando $\varphi(0) = 1/2$ a fim de que a assíntota seja o eixo vertical, o gráfico de ψ é dado pela Figura 3.15. Caso $\varphi^{-1}(1/2) \neq 0$ a assíntota vertical será a reta $y = \varphi^{-1}(1/2)$ que estará próxima do eixo vertical.

Figura 3.15: Gráfico da função ψ .

Desse modo, fixando os valores de ε e y_1 , o valor de y_2 é tal que a área hachurada da Figura 3.15 vale (x_1-x_2) . Portanto, quanto menor for o valor de ε , y_2 estará mais próximo

da origem. Considere

$$\Psi(y_1) := \int_{y_1}^{y_2} \frac{1}{1 - 2\varphi_{\varepsilon}(y)} dy = x_1 - x_2 = H(y_2) - H(y_1).$$

Derivando Ψ com respeito a $y_1,$ obtemos

$$\frac{\partial \Psi(y_1)}{\partial y_1} = H'(y_2)\frac{dy_2}{dy_1} - H'(y_1)$$
$$= \frac{1}{1 - 2\varphi_{\varepsilon}(y_2)}\frac{dy_2}{dy_1} - \frac{1}{1 - 2\varphi_{\varepsilon}(y_1)}$$
$$= 0.$$

Assim,

$$\frac{dy_2}{dy_1} = \frac{1 - 2\varphi_{\varepsilon}(y_2)}{1 - 2\varphi_{\varepsilon}(y_1)}$$

e obtemos

$$0 < \frac{dy_2}{dy_1} = \frac{1 - 2\varphi_{\varepsilon}(y_2)}{1 - 2\varphi_{\varepsilon}(y_1)} << 1.$$

Deste modo, decorre que

$$\lim_{\varepsilon \to 0} y_2 = \varphi^{-1} \left(\frac{1}{2}\right). \tag{3.11}$$

Por outro lado, do campo regularizado $Z_{\varepsilon},$ temos que

$$\frac{dt}{dy} = \frac{1}{1 - 2\varphi_{\varepsilon}}.$$

Portanto, a derivada da aplicação de transição $\pi_{1\varepsilon}$ da órbita γ_{ε} entre Σ_1 e Σ_2 é dada por

$$\begin{aligned} \pi_{1\varepsilon}'(p_1) &= \frac{\cos(\theta_1)|Z_{\varepsilon}(p_1)|}{\cos(\theta_2)|Z_{\varepsilon}(p_2)|} \exp\left(\int_{t_1}^{t_2} \operatorname{div}(Z_{\varepsilon}(\gamma_{\varepsilon}(t)))dt\right) \\ &= \frac{\cos(\theta_1)|Z_{\varepsilon}(p_1)|}{\cos(\theta_2)|Z_{\varepsilon}(p_2)|} \exp\left(\int_{t_1}^{t_2} -2\varphi_{\varepsilon}'(\gamma_{\varepsilon}(t))dt\right) \\ &= \frac{\cos(\theta_1)|Z_{\varepsilon}(p_1)|}{\cos(\theta_2)|Z_{\varepsilon}(p_2)|} \exp\left(\int_{y_1}^{y_2} \frac{-2\varphi_{\varepsilon}'(y)}{1-2\varphi_{\varepsilon}(y)}dy\right) \\ &= \frac{\cos(\theta_1)|Z_{\varepsilon}(p_1)|}{\cos(\theta_2)|Z_{\varepsilon}(p_2)|} \exp\left(\ln|1-2\varphi_{\varepsilon}(y_2)|-\ln|1-2\varphi_{\varepsilon}(y_1)|\right) \\ &= \frac{\cos(\theta_1)|Z_{\varepsilon}(p_1)|}{\cos(\theta_2)|Z_{\varepsilon}(p_2)|} \frac{|1-2\varphi_{\varepsilon}(y_2)|}{|1-2\varphi_{\varepsilon}(y_1)|}. \end{aligned}$$
(3.12)

2. Entre $\Sigma_2 \in \Sigma_3$.

Para o cálculo de $\pi_{2\varepsilon}',$ consideremos coordenadas locais tais que

$$X(x, y) = (-1, -x),$$

 $Y(x, y) = (-1, 1).$

Dessa forma, o ponto de dobra é p = (0, 0).

Logo, o campo regularizado fica

$$Z_{\varepsilon} = (Z_{\varepsilon}^{1}, Z_{\varepsilon}^{2})$$

= $((1 - \varphi_{\varepsilon})(-1) - \varphi_{\varepsilon}, (1 - \varphi_{\varepsilon})(+1) + (-x)\varphi_{\varepsilon})$
= $(-1, 1 - \varphi_{\varepsilon} - x\varphi_{\varepsilon})$
= $(-1, 1 + (-1 - x)\varphi_{\varepsilon}).$

Como o campo regularizado Z_{ε} está relacionado a uma equação diferencial, podemos escrever

$$\frac{dy}{dt} = 1 - \varphi_{\varepsilon} - x\varphi_{\varepsilon}.$$

Dessa forma, a derivada da aplicação de transição $\pi_{2\varepsilon}$ da órbita γ_{ε} entre Σ_2 e Σ_3 é dada por

$$\begin{aligned} \pi_{2\varepsilon}'(p_2) &= \frac{\cos(\theta_2)|Z_{\varepsilon}(p_2)|}{\cos(\theta_3)|Z_{\varepsilon}(p_3)|} \exp\left(\int_{t_2}^{t_3} \operatorname{div}(Z_{\varepsilon}(\gamma_{\varepsilon}(t)))dt\right) \\ &= \frac{\cos(\theta_2)|Z_{\varepsilon}(p_2)|}{\cos(\theta_3)|Z_{\varepsilon}(p_3)|} \exp\left(\int_{t_2}^{t_3} (-1-x)\varphi_{\varepsilon}'(\gamma_{\varepsilon}(t))dt\right) \\ &= \frac{\cos(\theta_2)|Z_{\varepsilon}(p_2)|}{\cos(\theta_3)|Z_{\varepsilon}(p_3)|} \exp\left(\int_{y_2}^{y_3} \frac{(-1-x)\varphi_{\varepsilon}'(y)}{1+(-1-x)\varphi_{\varepsilon}(y)}dy\right) \\ &= \frac{\cos(\theta_2)|Z_{\varepsilon}(p_2)|}{\cos(\theta_3)|Z_{\varepsilon}(p_3)|} \exp\left(\ln|1-\varphi_{\varepsilon}(y_3)(1+x_3)|-\ln|1-\varphi_{\varepsilon}(y_2)(1+x_2)|\right) \\ &= \frac{\cos(\theta_2)|Z_{\varepsilon}(p_2)|}{\cos(\theta_3)|Z_{\varepsilon}(p_3)|} \frac{|1-\varphi_{\varepsilon}(y_3)(1+x_3)|}{|1-\varphi_{\varepsilon}(y_2)(1+x_2)|}. \end{aligned}$$

$$(3.13)$$

3. Entre Σ_3 e Σ_4 .

Neste trecho, podemos observar que, para $0 < \varepsilon < \varepsilon_0$, a órbita de γ_{ε} está fora da faixa de regularização e possui pontos apenas do campo vetorial X. Mesmo que a semi-órbita de X neste trecho possa variar com ε , a derivada da aplicação de transição pode ser

considerada limitada pelo máximo valor que atinge. Deste modo, temos que

$$\pi_{3\varepsilon}'(p_3) = \frac{\cos(\theta_3)|Z_{\varepsilon}(p_3)|}{\cos(\theta_4)|Z_{\varepsilon}(p_4)|}K,$$
(3.14)

onde $K \in \mathbb{R}$ é constante.

4. Entre $\Sigma_4 \in \Sigma_1$.

Neste caso podemos considerar as mesmas coordenadas locais utilizadas entre Σ_1 e Σ_2 , ou seja,

$$X(x, y) = (-1, -1),$$

 $Y(x, y) = (-1, 1).$

Assim, obtemos

$$\pi_{4\varepsilon}'(p_4) = \frac{\cos(\theta_4)|Z_{\varepsilon}(p_4)|}{\cos(\theta_1)|Z_{\varepsilon}(p_1)|} \frac{|1 - 2\varphi_{\varepsilon}(y_1)|}{|1 - 2\varphi_{\varepsilon}(y_4)|}.$$
(3.15)

Portanto, compondo as derivadas de cada trecho obtidas em (3.12), (3.13), (3.14) e (3.15), temos que a derivada da aplicação de Poincaré π_{ε} da órbita γ_{ε} em Σ_1 é dada por

$$\begin{aligned} \pi_{\varepsilon}'(p_1) &= \pi_{4\varepsilon}'(p_4)\pi_{3\varepsilon}'(p_3)\pi_{2\varepsilon}'(p_2)\pi_{1\varepsilon}'(p_1) \\ &= \frac{|1-\varphi_{\varepsilon}(y_3)(1+x_3)|}{|1-\varphi_{\varepsilon}(y_2)(1+x_2)|}\frac{|1-2\varphi_{\varepsilon}(y_2)|}{|1-2\varphi_{\varepsilon}(y_4)|}K. \end{aligned}$$

Como $\varphi_{\varepsilon}(y_3) = \varphi_{\varepsilon}(y_4) = 1$, segue que

$$\pi'_{\varepsilon}(p_1) = \frac{|x_3||1 - 2\varphi_{\varepsilon}(y_2)|K}{|1 - \varphi_{\varepsilon}(y_2)(1 + x_2)|}$$

Como, por (3.11),

$$\lim_{\varepsilon \to 0} y_2 = \varphi^{-1} \left(\frac{1}{2}\right)$$

e como $x_2 < 0$ nas coordenadas utilizadas, podemos diminuir ε_0 , se necessário, de modo que $\pi'_{\varepsilon}(p_1) < 1$ para $0 < \varepsilon < \varepsilon_0$. Portanto, γ_{ε} é uma órbita periódica atratora do campo regularizado Z_{ε} .

Tais cálculos foram feitos utilizando coordenadas simplificadas como aproximação do campo Z, porém a conclusão pode ser estendida para o caso geral, visto que o aspecto determinante dado por (3.11) permite o controle da derivada da aplicação de Poincaré.

Capítulo 4

Ciclos limites em campos vetoriais lineares por partes no plano

Neste capítulo iremos tratar da unicidade de ciclos limites para sistemas lineares por partes com duas zonas no plano, em que Σ é uma reta formada por arcos de costura e com uma única Σ -singularidade monodrômica, o qual foi introduzido por Medrado e Torregrosa em [15].

Tal assunto vem sendo tratado no passado recente por vários pesquisadores. Lum e Chua conjecturaram em [13] que sistemas lineares por partes contínuos com duas zonas tem no máximo um ciclo limite, o qual foi provado em [7] por Freire, Ponce, Rodrigo e Torres.

Foi mostrado também que a hipótese da curva de separação conter somente arcos de costura é fundamental neste sentido. Em [10] é apresentado um exemplo de sistema linear por partes com arco de deslize com mais de um ciclo limite.

4.1 Resultados preliminares

Considere o campo vetorial por partes com duas zonas no plano $\mathcal{X} = (X^+, X^-)$ dado por

$$\mathcal{X}(q) = \begin{cases} X^+(q), & h(q) \ge 0; \\ X^-(q), & h(q) \le 0. \end{cases}$$
(4.1)

Definição 4.1.1. Um ponto p é dito ser uma Σ -singularidade de \mathcal{X} se $p \in \Sigma$ é um ponto de tangência ou uma singularidade de X^+ ou X^- .

Definição 4.1.2. Dizemos que p é uma Σ -singularidade monodrômica de \mathcal{X} se p é uma Σ -singularidade de \mathcal{X} e existe uma vizinhança U de p tal que as órbitas de \mathcal{X} permanecem em U para tempo positivo ou negativo.

Neste capítulo iremos considerar um campo vetorial por partes $\mathcal{X} = (X^+, X^-)$ em que X^+ e X^- são campos vetoriais lineares planares e a função $h : \mathbb{R}^2 \longrightarrow \mathbb{R}$ é linear com 0 sendo um valor regular. Observe que o fato de h ser linear nos garante que a curva de separação Σ é uma reta.

Note que, nas condições acima, após rotações e translações se necessário, podemos escrever o campo vetorial (4.1) como

$$\mathcal{X}(x,y) = \begin{cases} (a^+x + b^+y + c^+, d^+x + e^+y + f^+), & y \ge 0; \\ (a^-x + b^-y + c^-, d^-x + e^-y + f^-), & y \le 0, \end{cases}$$
(4.2)

em que h(x, y) = y.

O próximo resultado nos fornece uma forma canônica para o sistema (4.2) em que Σ é formada por pontos de costura com uma única Σ -singularidade p. Iremos denotar por Σ -CF as singularidades de X^+ ou X^- em Σ que são do tipo foco ou centro.

Proposição 4.1.1. Seja \mathcal{X} um campo vetorial linear por partes definido por (4.2) sem arcos de deslize em Σ e com uma única Σ -singularidade p. Se p é uma Σ -singularidade monodrômica, então p é a única Σ -singularidade e depois de uma mudança de coordenadas, p pode ser transladado para a origem e o campo vetorial \mathcal{X} pode ser escrito como

$$\mathcal{X}(x,y) = \begin{cases} (\mu_0^+ + \mu_1^+ x + \mu_2^+ y, x), & y \ge 0; \\ (\mu_0^- + \mu_1^- x + \mu_2^- y, x), & y \le 0, \end{cases}$$
(4.3)

e ainda satisfazendo uma das seguintes condições:

- (i) $\mu_0^+ < 0, \ \mu_0^- > 0$ (dobra invisível/dobra invisível),
- (ii) $\mu_0^+ = 0, \ \mu_2^+ < -(\frac{\mu_1^+}{2})^2 \ e \ \mu_0^- > 0 \ (\Sigma CF/dobra \ invisível),$

(*iii*)
$$\mu_0^+ = \mu_0^- = 0, \ \mu_2^+ < -(\frac{\mu_1^+}{2})^2 \ e \ \mu_2^- < -(\frac{\mu_1^-}{2})^2 \ (\Sigma - CF/\Sigma - CF).$$

Demonstração: Considere o campo vetorial (4.2) sem arcos de deslize em Σ e com uma única Σ -singularidade monodrômica p. Como todos os arcos são de costura temos, para todo $q = (x, y) \in \Sigma = \{y = 0\}$ que

$$\begin{aligned} X^{+}h(q)X^{-}h(q) &= (d^{+}x + f^{+})(d^{-}x + f^{-}) \\ &= d^{+}d^{-}x^{2} + x(f^{-}d^{+} + f^{+}d^{-}) + f^{+}f^{-} \\ &\geq 0. \end{aligned}$$

Analisando esta equação do segundo grau podemos concluir que existe um único ponto p tal que $X^+h(p)X^-h(p) = 0$. Sem perda de generalidade podemos transladar p para a origem. Desta forma, obtemos que $f^+ = f^- = 0$ e $d^+d^- \neq 0$.

Considere a mudança gêmea de variáveis dada por

$$(u,v) = \begin{cases} \varphi^{+}(x,y) = \left(x + \left(\frac{e^{+}}{d^{+}}\right)y, \left(\frac{1}{d^{+}}\right)y\right) \text{ em } \Sigma^{+}; \\ \varphi^{-}(x,y) = \left(x + \left(\frac{e^{-}}{d^{-}}\right)y, \left(\frac{1}{d^{-}}\right)y\right) \text{ em } \Sigma^{-}, \end{cases}$$
(4.4)

a qual pode ser escrita matricialmente como

$$\varphi^{\pm}(x,y) = \begin{pmatrix} 1 & \frac{e^{\pm}}{d^{\pm}} \\ 0 & \frac{1}{d^{\pm}} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Tomando campo vetorial (4.2) em forma matricial obtemos

$$X^{\pm}(x,y) = \begin{pmatrix} a^{\pm} & b^{\pm} \\ d^{\pm} & e^{\pm} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} c^{\pm} \\ f^{\pm} \end{pmatrix} := A^{\pm}X + B^{\pm}.$$

Desta forma, fazendo a mudança de variáveis obtemos que

$$\begin{split} \varphi^{\pm} A^{\pm} (\varphi^{\pm})^{-1} \begin{pmatrix} x \\ y \end{pmatrix} + \varphi^{\pm} B^{\pm} &= \begin{pmatrix} a^{\pm} + e^{\pm} & d^{\pm} b^{\pm} - a^{\pm} e^{\pm} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} c^{\pm} + \frac{e^{\pm} f^{\pm}}{d^{\pm}} \\ \frac{f^{\pm}}{d^{\pm}} \end{pmatrix} \\ &= \begin{pmatrix} \operatorname{tr}(A^{\pm}) & -\operatorname{det}(A^{\pm}) \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} c^{\pm} \\ 0 \end{pmatrix} \\ &:= \begin{pmatrix} \mu_{1}^{\pm} & \mu_{2}^{\pm} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \mu_{0}^{\pm} \\ 0 \end{pmatrix} \end{split}$$

e, portanto, podemos escrever o campo vetorial (4.2) como (4.3).

Como os campos vetoriais X^+ e X^- são lineares e como a origem é uma Σ -singularidade monodrômica temos que a origem é uma singularidade de X^{\pm} do tipo foco ou centro ou ainda uma tangência invisível para X^{\pm} .

Suponha que a origem seja um centro para X^+ . Então os autovalores de A são complexos conjugados com parte real nula, isto é, são da forma $0 \pm i\beta$. Desse modo, temos que $\mu_1^+ = \operatorname{tr}(A) = 0$ e det $(A) = -\mu_2^+ = \beta^2$. Portanto, $\mu_2^+ < -(\frac{\mu_1^+}{2})^2$.

No entanto, se a origem for um foco, então temos que os autovalores de A são da forma $\alpha \pm i\beta$, com $\alpha \neq 0$. Assim, temos que $\mu_1^+ = \operatorname{tr}(A) = 2\alpha$ e det $(A) = -\mu_2^+ = \alpha^2 + \beta^2$ e novamente obtemos $\mu_2^+ < -(\frac{\mu_1^+}{2})^2$.

Em contrapartida, quando a origem é uma dobra invisível obtemos

$$X^+h(p) = X^+h(0,0) = 0.$$

Ainda,

$$(X^{+})^{2}h(p) = (X^{+})^{2}h(0,0) = \langle X^{+}(p), \nabla X^{+}h(p) \rangle = \mu_{0}^{+}.$$

Analogamente, tomando a origem como singularidade de X^- , obtemos que $\mu_2^- < -(\frac{\mu_1^-}{2})^2$ caso a origem seja um centro ou um foco e $(X^-)^2 h(p) = \mu_0^-$ caso a origem seja uma dobra invisível.

Desse modo, a menos da escolha do vetor normal, isto é, de uma reparametrização do tempo se necessário, obtemos os sinais de μ_0^{\pm} e concluímos a demonstração.

Observe que nas hipóteses da Proposição 4.1.1 as únicas possibilidades para as singularidades de X^{\pm} são selas reais, focos virtuais ou nós, visto que, caso contrário, teríamos dobras visíveis ou regiões de escape.

As próximas definições visam relembrar os conceitos de reversibilidade que serão úteis a seguir.

Definição 4.1.3. Seja $\psi : U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^n$ um difeomorfismo de classe C^{∞} . Dizemos que ψ é uma involução se $\psi^2 = I_d$.

Denotemos por $Fix(\psi)$ o conjunto dos pontos fixos de uma involução ψ .

Definição 4.1.4. Seja F um campo vetorial em \mathbb{R}^{2n} e $\psi : \mathbb{R}^{2n} \longrightarrow \mathbb{R}^{2n}$ uma involução com dim $(Fix(\psi)) = n$. Dizemos que F é ψ -reversível se

$$D\psi(x)F(x) = -F(\psi(x)),$$

para todo $x \in \mathbb{R}^{2n}$.

Por exemplo, considere a involução $\psi(x, y) = (x, -y)$. Note que $\psi^2 = I_d$ e além disso Fix $(\psi) = \{y = 0\}$. Seja $\varphi(x_0)$ a órbita passando por um ponto x_0 em um intervalo de tempo finito. Veja Figura 4.1.

Figura 4.1: Involução ψ .

A propriedade fundamental de um campo vetorial ψ -reversível é que a órbita por $\psi(x_0)$ é a órbita por x_0 , refletida por ψ simetricamente ao conjunto dos pontos fixos de ψ e percorrida no sentido contrário.

Lema 4.1.1. Seja $\mathcal{X} = (X^+, X^-)$ o campo vetorial (4.3) com uma Σ -singularidade monodrômica. Se $\mu_1^+ \neq 0$, $\mu_1^- \neq 0$ e $\mu_0^+ \neq 0$ ou $\mu_0^- \neq 0$ então, não é restritivo assumir $\mu_1^+ = 1$, $\mu_1^- = -1$ e $\mu_0^- = 1$.

Demonstração: Por hipótese, temos que $\mu_1^+ \neq 0$, $\mu_1^- \neq 0$ e podemos considerar $\mu_0^- \neq 0$. Para o campo vetorial X^+ considere a mudança de variáveis $(X, Y, \tau) \longmapsto (x, \mu_1^+ y, \mu_1^+ t)$. Logo, temos que

$$\dot{X} = \frac{dX}{d\tau} = \frac{dx}{d\tau} = \frac{dx}{dt} \frac{dt}{d\tau} = \frac{1}{\mu_1^+} \left(\mu_0^+ + \mu_1^+ x + \mu_2^+ y\right) = \mu_{0,n}^+ + X + \mu_{2,n}^+ Y;$$

$$\dot{Y} = \frac{dY}{d\tau} = \mu_1^+ \frac{dy}{d\tau} = \mu_1^+ \frac{dy}{d\tau} \frac{dt}{d\tau} = \mu_1^+ x \frac{1}{\mu_1^+} = X.$$

Para o campo vetorial X^- considere a mudança de variáveis

$$(X, Y, \tau) \longmapsto \left(-\frac{\mu_1^-}{\mu_0^-} x, \frac{(\mu_1^-)^2}{\mu_0^-} y, -\mu_1^- t \right).$$

Logo, temos que

$$\begin{split} \dot{X} &= \frac{dX}{d\tau} = \frac{-\mu_1^-}{\mu_0^-} \frac{dx}{dt} \frac{dt}{d\tau} = \frac{-\mu_1^-}{\mu_0^-} \frac{(-1)}{\mu_1^-} \left(\mu_0^- + \mu_1^- x + \mu_2^- y\right) = 1 - X + \mu_{2,n}^- Y; \\ \dot{Y} &= \frac{dY}{d\tau} = \frac{(\mu_1^-)^2}{\mu_0^-} \frac{dy}{dt} \frac{dt}{d\tau} = \frac{(\mu_1^-)^2}{\mu_0^-} \frac{(-1)}{\mu_1^-} x = -\frac{\mu_1^-}{\mu_0^-} x = X, \end{split}$$

como queríamos demonstrar.

As singularidades em Σ^{\pm} podem ser facilmente caracterizadas pelo traço e determinante já que o campo vetorial (4.3) é linear. Desse modo, o único ponto que resta ser classificado é a Σ -singularidade p = (0, 0). O próximo resultado estabelece condições para determinar a estabilidade da origem quando $\mu_0^{\pm} \neq 0$.

Proposição 4.1.2. Considere o campo vetorial (4.3) com $\mu_0^{\pm} \neq 0$ e a origem uma Σ -singularidade monodrômica. Então, a origem é uma tangência e:

- (i) é assintoticamente estável se $\mu_0^+\mu_0^-(\mu_1^-\mu_0^+ \mu_1^+\mu_0^-) < 0$ ou $\mu_1^-\mu_0^+ \mu_1^+\mu_0^- = 0$ e $\mu_0^+\mu_1^+\left[\mu_2^-(\mu_0^+)^2 \mu_2^+(\mu_0^-)^2\right] < 0;$
- (ii) é assintoticamente instável se $\mu_0^+ \mu_0^- (\mu_1^- \mu_0^+ \mu_1^+ \mu_0^-) > 0$ ou $\mu_1^- \mu_0^+ \mu_1^+ \mu_0^- = 0$ e $\mu_0^+ \mu_1^+ \left[\mu_2^- (\mu_0^+)^2 \mu_2^+ (\mu_0^-)^2 \right] > 0;$

(iii) é um centro se, e somente se, $\mu_1^-\mu_0^+ - \mu_1^+\mu_0^- = \mu_1^+ \left[\mu_2^-(\mu_0^+)^2 - \mu_2^+(\mu_0^-)^2\right] = 0.$

Demonstração: A demonstração decorre da computação das constantes de Lyapunov através da aplicação de Poincaré numa vizinhança da origem, a qual está bem definida visto que a origem é uma Σ -singularidade monodrômica.

Observe que como $\mu_0^{\pm} \neq 0$, então a origem não é uma singularidade dos campos X^+ ou X^- e como

$$\mathcal{X}(0,0) = \begin{cases} (\mu_0^+,0);\\ (\mu_0^-,0), \end{cases}$$

então a origem é uma tangência do campo vetorial \mathcal{X} .

Dada uma condição inicial $p = (x_0, 0) \in \Sigma$ podemos, através do fluxo do campo X^+ , considerar a aplicação de transição $\pi^+ : \Sigma \to \Sigma$ de modo que

$$\pi^+(p) = X^+(\tau^+(x_0), 0)$$

é o primeiro ponto de interseção da órbita por $(x_0, 0)$ com Σ , em que τ^+ é o menor tempo positivo tal que isso ocorre.

Ainda, podemos, através do fluxo de X^- , considerar a aplicação de transição $\pi^- : \Sigma \to \Sigma$ de modo que existe um menor tempo positivo τ^- tal que

$$\pi^{-}(p) = X^{-}(-\tau^{-}(x_0), 0)$$

é o ponto de interseção da órbita do campo X^- por $(x_0, 0)$ com Σ . Veja Figura 4.2. Desse modo, podemos definir

$$\Delta(x) = \pi^-(x) - \pi^+(x).$$

Figura 4.2: Função Δ .

Assim, temos que se $\Delta(p) > 0$, então $\pi^-(p) > \pi^+(p)$ e assim a origem é assintoticamente instável. Da mesma maneira, se $\Delta(p) < 0$, então $\pi^-(p) < \pi^+(p)$ e assim a origem é assintoticamente estável.

Através do campo vetorial (4.3) e supondo $\mu_0^{\pm} \neq 0$, expandindo π^+ e π^- em séries de Taylor, obtemos

$$\pi^{\pm}(x_{0},0) = \sum_{k=1}^{\infty} a_{k}^{\pm} x_{0}^{k}$$

$$= -x_{0} + \frac{2\mu_{1}^{\pm}}{3\mu_{0}^{\pm}} x_{0}^{2} - \frac{4(\mu_{1}^{\pm})^{2}}{9(\mu_{0}^{\pm})^{2}} x_{0}^{3} + \frac{2\left(22(\mu_{1}^{\pm})^{2} + 9\mu_{2}^{\pm}\right)\mu_{1}^{\pm}}{135(\mu_{0}^{\pm})^{3}} x_{0}^{4}$$

$$- \frac{4(\mu_{1}^{\pm})^{2} \left(26(\mu_{1}^{\pm})^{2} + 27\mu_{2}^{\pm}\right)}{405(\mu_{0}^{\pm})^{4}} x_{0}^{5} + \cdots$$

Deste modo, podemos escrever

$$\Delta(x_0) = \sum_{k=1}^{\infty} (a_k^- - a_k^+) x_0^k = \sum_{k=1}^{\infty} V_k x_0^k,$$

e adquirimos

$$V_{1} = 0,$$

$$V_{2} = \frac{2}{3} \frac{\mu_{1}^{-} \mu_{0}^{+} - \mu_{1}^{+} \mu_{0}^{-}}{\mu_{0}^{-} \mu_{0}^{+}},$$

$$V_{3} = \frac{4}{9} \frac{-(\mu_{0}^{+})^{2} (\mu_{1}^{-})^{2} + (\mu_{0}^{-})^{2} (\mu_{1}^{+})^{2}}{(\mu_{0}^{-})^{2} (\mu_{0}^{+})^{2}},$$
(4.5)

$$V_4 = \frac{44(\mu_1^-)^3(\mu_0^+)^3 + 18\mu_1^-\mu_2^-(\mu_0^+)^3 - 44(\mu_1^+)^3(\mu_0^-)^3 - 18\mu_1^+\mu_2^+(\mu_0^-)^3}{135(\mu_0^-)^3(\mu_0^+)^3}$$

Dessa forma, se $\mu_0^+\mu_0^-(\mu_1^-\mu_0^+-\mu_1^+\mu_0^-) < 0$, então $V_2 < 0$ e, portanto, $\Delta(x_0) < 0$ o que implica a origem assintoticamente estável. Analogamente, se $\mu_0^+\mu_0^-(\mu_1^-\mu_0^+-\mu_1^+\mu_0^-) > 0$, então $V_2 > 0$ e, portanto, $\Delta(x_0) > 0$ o que implica a origem assintoticamente instável. Por outro lado, se $V_2 = 0$, então $V_3 = 0$ e nesse caso vem que

$$V_4 = \frac{2}{15} \frac{\mu_1^+}{(\mu_0^-)^2 (\mu_0^+)^3} \left[\mu_2^- (\mu_0^+)^2 - \mu_2^+ (\mu_0^-)^2 \right].$$

Por conseguinte, se $\mu_0^+ \mu_1^+ \left[\mu_2^- (\mu_0^+)^2 - \mu_2^+ (\mu_0^-)^2 \right] < 0$, então $V_4 < 0$ e, portanto, $\Delta(x_0) < 0$ o que implica a origem assintoticamente estável. Analogamente, quando

$$\mu_0^+ \mu_1^+ \left[\mu_2^- (\mu_0^+)^2 - \mu_2^+ (\mu_0^-)^2 \right] > 0,$$

então $V_4 > 0$ e, portanto, $\Delta(x_0) > 0$ o que implica a origem ser assintoticamente instável. Resta mostrar que, quando V_2 e V_4 se anulam simultaneamente, temos um centro na origem. Suponha $V_2 = 0$ e $V_4 = 0$. Logo, como $\mu_0^{\pm} \neq 0$, temos que

$$\mu_1^- \mu_0^+ - \mu_1^+ \mu_0^- = 0; (4.6)$$

$$\mu_1^+ \left[\mu_2^- (\mu_0^+)^2 - \mu_2^+ (\mu_0^-)^2 \right] = 0.$$
(4.7)

Primeiramente, considere o caso em que $\mu_1^+ = 0$. Assim, como $\mu_0^{\pm} \neq 0$, de (4.6) segue que $\mu_1^- = 0$. Nesse caso,

$$\mathcal{X}(x,y) = \begin{cases} X^+(x,y) = (\mu_0^+ + \mu_2^+ y, x), & y \ge 0; \\ X^-(x,y) = (\mu_0^- + \mu_2^- y, x), & y \le 0, \end{cases}$$

Observe que div $X^+(x,y) = 0$ para todo $(x,y) \in \mathbb{R}^2$, em particular, para $y \ge 0$, e div $X^-(x,y) = 0$ para todo $(x,y) \in \mathbb{R}^2$, em particular, para $y \le 0$. Portanto, os campos vetoriais X^+ e X^- são Hamiltonianos, isto é, existem

$$\begin{array}{rcccc} H^{\pm}: & \Sigma \cup \Sigma^{\pm} & \longrightarrow & \mathbb{R} \\ & & (x,y) & \longmapsto & H^{\pm}(x,y) = -\frac{x^2}{2} + \mu_0^{\pm}y + \mu_2^{\pm}\frac{y^2}{2} \end{array}$$

tais que

$$\begin{cases} x' = \mu_0^{\pm} + \mu_2^{\pm} y = \frac{\partial H}{\partial y}; \\ y' = x = -\frac{\partial H}{\partial x}. \end{cases}$$

Assim, dada uma condição inicial $(x_0, 0) \in \Sigma$, como

$$H^+(x_0, 0) = \frac{x_0^2}{2} = H^+(-x_0, 0)$$

temos que a órbita por $(x_0, 0)$ intercepta Σ em $(-x_0, 0)$. Dessa forma, visto que

$$H^{-}(-x_0,0) = H^{-}(x_0,0) = \frac{x_0^2}{2},$$

temos que a órbita por $(x_0, 0)$ em X^+ está no mesmo nível da órbita por $(-x_0, 0)$ em $X^$ e, portanto, temos um centro na origem.

Por fim, considere o caso em que $\mu_1^+ \neq 0$. Mostremos que, quando V_2 e V_4 se anulam simultaneamente, temos um centro reversível pela involução $\psi(x, y) = (x, -y)$, ou seja, queremos mostrar que

$$D\varphi(x,y)X^{\pm}(x,y) = -X^{\mp}(\varphi(x,y)).$$

Temos que

$$D\varphi(x,y)X^{+}(x,y) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \mu_{0}^{+} + \mu_{1}^{+}x + \mu_{2}^{+}y \\ x \end{pmatrix} = \begin{pmatrix} \mu_{0}^{+} + \mu_{1}^{+}x + \mu_{2}^{+}y \\ -x \end{pmatrix}$$

е

$$-X^{-}(\varphi(x,y)) = -X^{-}(x,-y) = -\begin{pmatrix} \mu_{0}^{-} + \mu_{1}^{-}x - \mu_{2}^{-}y \\ x \end{pmatrix} = \begin{pmatrix} -\mu_{0}^{-} - \mu_{1}^{-}x + \mu_{2}^{-}y \\ -x \end{pmatrix}.$$

Desse modo, temos que \mathcal{X} é reversível se, e somente se, $\mu_0^+ = -\mu_0^-$, $\mu_1^+ = -\mu_1^-$ e $\mu_2^+ = \mu_2^-$. Como $\mu_1^+ \neq 0$ e $\mu_0^\pm \neq 0$, de (4.6), segue que $\mu_1^- \neq 0$. Ainda, de (4.7), segue que

$$\mu_2^- (\mu_0^+)^2 - \mu_2^+ (\mu_0^-)^2 = 0.$$
(4.8)

Como $\mu_1^+ \neq 0$, $\mu_1^- \neq 0$ e $\mu_0^- \neq 0$, pelo Lema 4.1.1, não é restritivo assumir $\mu_1^+ = 1$, $\mu_1^- = -1$ e $\mu_0^- = 1$. Assim, de (4.6), temos que $\mu_0^+ = -1$. Logo, de (4.8), segue que

 $\mu_2^+ = \mu_2^-$. Portanto, como $\mu_0^+ = -\mu_0^-$, $\mu_1^+ = -\mu_1^-$ e $\mu_2^+ = \mu_2^-$, segue que o campo vetorial \mathcal{X} tem um centro na origem.

Como consequência das expansões em série de Taylor das aplicações de transição obtidas na demonstração da Proposição 4.1.2, podemos garantir a existência de um ciclo limite.

Corolário 4.1.1. Quando $\mu_0^{\pm} \neq 0$, a ordem máxima de um foco fraco do campo de vetores (4.3) é um. Além disso,

(i) se $\mu_0^+ \mu_1^+ \left[\mu_2^- (\mu_0^+)^2 - \mu_2^+ (\mu_0^-)^2 \right] < 0$, então existe $\varepsilon > 0$ suficientemente pequeno tal que, para

$$\mu_1^- = \frac{\mu_1^+ \mu_0^-}{\mu_0^+} + \varepsilon,$$

um ciclo limite estável bifurca da origem por uma bifurcação de Hopf.

(ii) se $\mu_0^+ \mu_1^+ \left[\mu_2^- (\mu_0^+)^2 - \mu_2^+ (\mu_0^-)^2 \right] > 0$, então existe $\varepsilon > 0$ suficientemente pequeno tal que, para

$$\mu_1^- = \frac{\mu_1^+ \mu_0^-}{\mu_0^+} - \varepsilon,$$

um ciclo limite instável bifurca da origem por uma bifurcação de Hopf.

Demonstração: Pela Proposição 4.1.2, utilizando (4.5), existem valores de parâmetros tais que $\mu_0^{\pm} \neq 0$, $V_2 = 0$ e $V_4 \neq 0$. Portanto, o campo vetorial (4.3) tem um foco fraco de ordem fixada.

Quando $V_4 < 0$, isto é, se $\mu_0^+ \mu_1^+ \left[\mu_2^- (\mu_0^+)^2 - \mu_2^+ (\mu_0^-)^2 \right] < 0$, então podemos tomar $\varepsilon > 0$ suficientemente pequeno de modo que, fazendo

$$\mu_1^- = \frac{\mu_1^+ \mu_0^-}{\mu_0^+} + \varepsilon,$$

temos que V_2 se torna positivo de forma que surge um anel em que as órbitas estão entrando neste anel, e pelo Teorema de Poincaré Bendixson (versão para sistemas suaves por partes segundo [4]), bifurca um ciclo limite estável. Veja Figura 4.3.

Figura 4.3: Ciclo limite estável.

Do mesmo modo, quando $V_4 > 0$, isto é, se $\mu_0^+ \mu_1^+ \left[\mu_2^- (\mu_0^+)^2 - \mu_2^+ (\mu_0^-)^2 \right] > 0$, então podemos tomar $\varepsilon < 0$ suficientemente pequeno de modo que, fazendo

$$\mu_1^- = \frac{\mu_1^+ \mu_0^-}{\mu_0^+} - \varepsilon,$$

temos que V_2 se torna negativo de forma que surge um anel em que as órbitas estão saindo do anel, e pelo Teorema de Poincaré Bendixson, bifurca um ciclo limite instável. Veja Figura 4.4.

Figura 4.4: Ciclo limite instável.

O próximo teorema nos garante uma versão do Teorema 2.2.2 para sistemas por partes, em que podemos escrever o fator de correção da derivada da aplicação de Poincaré em termos das derivadas de Lie. Teorema 4.1.1. Considere o campo vetorial suave por partes no plano

$$\mathcal{X}(x,y) = \begin{cases} X^+(x,y) = (f^+(x,y), g^+(x,y)), & h(x,y) \ge 0; \\ X^-(x,y) = (f^-(x,y), g^-(x,y)), & h(x,y) \le 0. \end{cases}$$
(4.9)

Sejam γ^{\pm} duas soluções de X^{\pm} de modo que $\gamma = \gamma^{+} \cup \gamma^{-}$ é uma órbita periódica de \mathcal{X} que atravessa a curva de separação Σ transversalmente em p^{\pm} . Então a derivada da aplicação de Poincaré em $p = p^{+}$ é dada por

$$\pi'(p) = \frac{X^+ h(p^+)}{X^- h(p^-)} \frac{X^- h(p^-)}{X^+ h(p^-)} \exp\left(\int_{\gamma} \operatorname{div} \mathcal{X} dt\right)$$
(4.10)

 $em \ que \ \operatorname{div} \mathcal{X} = \operatorname{div} X^{\pm} \ em \ \Sigma^{\pm}.$

Demonstração: Sejam Σ_0 , $\Sigma_1 \subset \Sigma$ seções transversais a γ em p^+ e p^- , respectivamente. Considere π^{\pm} as aplicações de transição associadas a γ^+ e γ^- , respectivamente. Logo, temos que a aplicação de Poincaré associada a γ é dada por $\pi = \pi^- \circ \pi^+$. Assim, a derivada da aplicação de Poincaré em p é dada por $\pi'(p) = (\pi^-)'(p^-) \cdot (\pi^+)'(p)$, com $p = p^+$ e $p^- = \pi^+(p)$. Veja Figura 4.5.

Figura 4.5: Órbita periódica γ .

Considere uma parametrização de Σ dada por $(\alpha(s), \beta(s))$ em que $s \in I \subset \mathbb{R}$ e $p = (\alpha(0), \beta(0))$. Observe que $h(\alpha(s), \beta(s)) = 0$. Ainda, podemos escrever

$$(\alpha'(s), \beta'(s)) = \lambda(-h_y, h_x)$$

em que λ é uma constante que depende da parametrização. Pelo Teorema 2.2.2 vem que

$$(\pi^{+})'(p^{+}) = \frac{\begin{vmatrix} f^{+}(p^{+}) & g^{+}(p^{+}) \\ -h_{y}(p^{+}) & h_{x}(p^{+}) \end{vmatrix}}{\begin{vmatrix} f^{+}(p^{-}) & g^{+}(p^{-}) \\ -h_{y}(p^{-}) & h_{x}(p^{-}) \end{vmatrix}} \exp\left(\int_{\gamma^{+}} \operatorname{div} X^{+}\right)$$

е

$$(\pi^{-})'(p^{-}) = \frac{\begin{vmatrix} f^{-}(p^{-}) & g^{-}(p^{-}) \\ -h_{y}(p^{-}) & h_{x}(p^{-}) \end{vmatrix}}{\begin{vmatrix} f^{-}(p^{+}) & g^{-}(p^{+}) \\ -h_{y}(p^{+}) & h_{x}(p^{+}) \end{vmatrix}} \exp\left(\int_{\gamma^{-}} \operatorname{div} X^{-}\right).$$

Mas, observe que

$$\begin{vmatrix} f^{\pm}(p^{\pm}) & g^{\pm}(p^{\pm}) \\ -h_{y}(p^{\pm}) & h_{x}(p^{\pm}) \end{vmatrix} = f^{\pm}(p^{\pm})h_{x}(p^{\pm}) + g^{\pm}(p^{\pm})h_{y}(p^{\pm}) \\ = \langle \left(f^{\pm}(p^{\pm}), g^{\pm}(p^{\pm})\right), \left(h_{x}(p^{\pm}), h_{y}(p^{\pm})\right) \rangle \\ = \langle X^{\pm}(p^{\pm}), \nabla h(p^{\pm}) \rangle \\ = X^{\pm}h(p^{\pm}) \end{cases}$$

е

$$\begin{vmatrix} f^{\pm}(p^{\mp}) & g^{\pm}(p^{\mp}) \\ -h_y(p^{\mp}) & h_x(p^{\mp}) \end{vmatrix} = f^{\pm}(p^{\mp})h_x(p^{\mp}) + g^{\pm}(p^{\mp})h_y(p^{\mp}) \\ = \langle \left(f^{\pm}(p^{\mp}), g^{\pm}(p^{\mp})\right), \left(h_x(p^{\mp}), h_y(p^{\mp})\right) \rangle \\ = \langle X^{\pm}(p^{\mp}), \nabla h(p^{\mp}) \rangle \\ = X^{\pm}h(p^{\mp}). \end{cases}$$

Portanto, temos

$$\begin{aligned} \pi'(p) &= (\pi^{-})'(p^{-}) \cdot (\pi^{+})'(p^{+}) \\ &= \frac{X^{-}h(p^{-})}{X^{-}h(p^{+})} \frac{X^{+}h(p^{+})}{X^{+}h(p^{-})} \exp\left(\int_{\gamma^{+}} \operatorname{div} X^{+} dt\right) \exp\left(\int_{\gamma^{-}} \operatorname{div} X^{-} dt\right) \\ &= \frac{X^{-}h(p^{-})}{X^{-}h(p^{+})} \frac{X^{+}h(p^{+})}{X^{+}h(p^{-})} \exp\left(\int_{\gamma} \operatorname{div} \mathcal{X}\right), \end{aligned}$$

como queríamos demonstrar.

Corolário 4.1.2. Considere o campo vetorial por partes no plano

$$\mathcal{X}(x,y) = \begin{cases} X^+(x,y) = (f^+(x,y), g^+(x,y)), & h(x,y) \ge 0; \\ X^-(x,y) = (f^-(x,y), g^-(x,y)), & h(x,y) \le 0. \end{cases}$$
(4.11)

Sejam γ^{\pm} duas soluções de X^{\pm} de modo que $\gamma = \gamma^{+} \cup \gamma^{-}$ é uma órbita periódica que atravessa a curva de separação Σ transversalmente em p^{\pm} .

(i) Se h(x, y) = y então

$$\pi'(p^+) = \frac{g^+(p^+)}{g^-(p^+)} \frac{g^-(p^-)}{g^+(p^-)} \exp\left(\int_{\gamma} \operatorname{div} \mathcal{X}\right);$$

(ii) Se \mathcal{X} é contínuo na segunda variável, isto é, $g^+(x,y) = g^-(x,y)$, então

$$\pi'(p^+) = \exp\left(\int_{\gamma} \operatorname{div} \mathcal{X}\right).$$

Podemos observar que o corolário acima se aplica no campo (4.3).

Proposição 4.1.3. Todo ciclo limite do campo de vetores (4.3) tem a origem em seu interior.

Demonstração: A linearidade dos campos vetoriais que definem o campo vetorial (4.3) exclui a possibilidade de existência de ciclos limites que não cruzam a reta de separação Σ . Deste modo, as condições para os parâmetros em (4.3) asseguram que os ciclos limites circundam a origem. De fato, dado um ciclo limite γ , caso a origem $0 \in \Sigma \cap \gamma$ então contradizemos a monodromia. Caso a origem esteja fora da região limitada por γ , pelo Teorema de Poincaré-Bendixson, teríamos a existência de uma nova Σ -singularidade, o que contradiz a unicidade da mesma.

4.2 Ciclos Limites

A próxima proposição nos dá condições necessárias para a existência de ciclos limites para o campo vetorial (4.3), ou seja, para o campo vetorial

$$\mathcal{X}(x,y) = \begin{cases} (\mu_0^+ + \mu_1^+ x + \mu_2^+ y, x), & y \ge 0; \\ (\mu_0^- + \mu_1^- x + \mu_2^- y, x), & y \le 0. \end{cases}$$

Proposição 4.2.1. Sejam γ um ciclo limite do campo de vetores (4.3) e τ^{\pm} os respectivos tempos de voo em Σ^{\pm} .

- (i) Se $\mu_1^+ \tau^+ + \mu_1^- \tau^- < 0$, então γ é hiperbólica e estável;
- (ii) Se $\mu_1^+\tau^+ + \mu_1^-\tau^- > 0$, então γ é hiperbólica e instável;
- (iii) Se $\mu_1^+\mu_1^- \ge 0$ ou $\mu_0^\pm = 0$, então não existem ciclos limites.

Portanto, condições necessárias para a existência de ciclos limites para o campo de vetores (4.3) são $\mu_1^+\mu_1^- < 0 \ e \ \mu_0^+ \neq 0 \ ou \ \mu_0^- \neq 0.$

Demonstração: De fato, como \mathcal{X} é contínuo na segunda coordenada, pelo Corolário 4.1.2 temos que

$$\pi'(p) = \exp\left(\int_{\gamma} \operatorname{div} \mathcal{X}\right)$$
$$= \exp\left(\int_{\gamma^{+}} \operatorname{div} X^{+}\right) \cdot \exp\left(\int_{\gamma^{-}} \operatorname{div} X^{-}\right)$$
$$= \exp\left(\int_{0}^{\tau^{+}} \mu_{1}^{+} ds\right) \cdot \exp\left(\int_{0}^{\tau^{-}} \mu_{1}^{-} ds\right)$$
$$= \exp\left(\mu_{1}^{+} \tau^{+} + \mu_{1}^{-} \tau^{-}\right).$$

Portanto, temos que se $\mu_1^+ \tau^+ + \mu_1^- \tau^- < 0$ o ciclo limite γ é estável. Por outro lado, se $\mu_1^+ \tau^+ + \mu_1^- \tau^- > 0$, então o ciclo limite γ é instável.

Em contrapartida, quando $\mu_0^{\pm} = 0$ temos que o campo vetorial (4.3) é homogêneo. Desse modo, a existência de uma órbita periódica implica na existência de um contínuo de órbitas periódicas e, portanto, não existem ciclos limites. Também, observe que se $\mu_1^+\mu_1^- \ge 0$, então a divergência do campo vetorial (4.3) tem sinal constante e desse modo, pelo Critério de Bendixson não existem órbitas periódicas.

O resultado a seguir irá simplificar o espaço dos parâmetros onde os ciclos limites podem existir.

Proposição 4.2.2. Seja $\mathcal{X} = (X^+, X^-)$ o campo vetorial (4.3) com uma Σ -singularidade monodrômica. Se \mathcal{X} tem um ciclo limite γ , então não é restritivo assumir $\mu_1^+ = 1$, $\mu_1^- = -1$ e $\mu_0^- = 1$.

Demonstração: Como \mathcal{X} tem um ciclo limite, pela Proposição 4.2.1 temos que $\mu_1^+ \mu_1^- < 0$ e podemos considerar $\mu_0^- \neq 0$. Portanto, pelo Lema 4.1.1, segue o resultado.

Dado um ponto $(x_0, 0) \in \Sigma$, seja $(x_1, 0) \in \Sigma$ o primeiro ponto tal que a solução γ do campo vetorial com condição inicial em $(x_0, 0)$ intercepta Σ . Veja Figura 4.6.

Figura 4.6: Solução γ e seus pontos de intersecção com a reta de separação Σ .

O Lema 4.2.1 irá fornecer uma expressão para a aplicação de transição no semiplano superior $\{y \ge 0\}$ determinado pelos diferentes tipos de retratos de fase, isto é, irá fornecer relações da solução γ envolvendo os parâmetros do campo vetorial, a condição inicial $(x_0, 0)$ e o ponto $(x_1, 0)$. Assim, permite obter pontos de intersecção da aplicação de transição em Σ^+ com a reta de separação Σ , dependendo da matriz que define o campo vetorial linear. Como iremos considerar inicialmente o campo vetorial \mathcal{X} em Σ^+ , iremos omitir os sobreescritos +.

Considere $\mu_0 < 0$ e sejam $s = \sqrt{1 + 4\mu_2}$, $\tilde{s} = \sqrt{-1 - 4\mu_2}$ e $\alpha = (s - 1)/(s + 1)$. Caso (*i*): Considere o problema de valor de fronteira (PVF)

$$\begin{cases} x' = \mu_0 + x + \mu_2 y, \\ y' = x, \\ (x(0), y(0)) = (x_0, 0), \\ (x(\tau), y(\tau)) = (x_1, 0), \end{cases}$$
(4.12)

em que $\mu_2 > 0$. A solução deste PVF é dada por

$$x(t) = \frac{1}{2s} \left[e^{\left(\frac{t}{2}(1+s)\right)} (2\mu_0 + x_0(1+s)) + e^{\left(\frac{t}{2}(1-s)\right)} (-2\mu_0 + x_0(-1+s)) \right];$$

$$y(t) = \frac{1}{2s\mu_2} \left[-2s\mu_0 + e^{\left(\frac{t}{2}(1+s)\right)} (2x_0\mu_2 + \mu_0(-1+s)) + e^{\left(\frac{t}{2}(1-s)\right)} (-2x_0\mu_2 + \mu_0(1+s)) \right],$$

em que $x(\tau) = x_1$ e $y(\tau) = 0$. Utilizando essas condições de fronteira podemos escrever

$$\exp\left(\frac{1+s}{2}\tau\right) = \frac{2\mu_0 + x_1(1+s)}{2\mu_0 + x_0(1+s)} =: \frac{1}{z};$$
$$\exp\left(\frac{1-s}{2}\tau\right) = \frac{2\mu_0 + x_1(1-s)}{2\mu_0 + x_0(1-s)} =: w.$$

Logo, temos que

$$z^{\alpha} = \left[\frac{1}{\exp\left(\frac{1+s}{2}\tau\right)}\right]^{\frac{s-1}{s+1}} = \left[\frac{1}{\exp\left(\frac{-(1-s)}{2}\tau\right)}\right] = w.$$

Observe que o ponto $(0, -\mu_0/\mu_2)$ é uma singularidade do tipo sela, visto que o determinante da linearização é dado por

$$\det \begin{pmatrix} 1 & \mu_2 \\ 1 & 0 \end{pmatrix} = -\mu_2 < 0.$$

Observe que o polinômio característico associado à linearização é dado por

$$P(\lambda) = \lambda^2 - \lambda - \mu_2 = 0 \Longrightarrow \lambda_{1,2} = \frac{1 \pm s}{2}.$$

Assim, a variação de $s = \sqrt{1 + 4\mu_2}$ determina a variação dos autovalores $\lambda_{1,2}$ e, dessa forma, varia os diferentes retratos de fase que o campo vetorial pode apresentar. Os autovetores associados aos autovalores são dados por

$$v_1 = \left(\frac{-2\mu_2}{1-s}, 1\right)$$
 e $v_2 = \left(\frac{-2\mu_2}{1+s}, 1\right),$

e as retas invariantes são dadas por

$$r_1: y = \left(\frac{1-s}{-2\mu_2}\right) x - \frac{\mu_0}{\mu_2}$$
 e $r_2: y = \left(\frac{1+s}{-2\mu_2}\right) x - \frac{\mu_0}{\mu_2}.$

Portanto, as interseções das retas invariantes com $\Sigma = \{y = 0\}$ são os pontos $(\tilde{x_0}, 0)$ e $(\tilde{x_1}, 0)$ em que $\tilde{x}_0 = -2\mu_0/(1+s) > 0$ e $\tilde{x}_1 = -2\mu_0/(1-s) < 0$. Veja Figura 4.7.

Figura 4.7: Retrato de fase de X^+ no caso (i).

Desse modo, temos que $\tilde{x}_1 < x_1 < 0 < x_0 < \tilde{x}_0$ e ainda, como $2\mu_0 + (1+s)x_1 < 0$, segue que

$$\begin{aligned} x_1 < x_0 &\implies (1+s)x_1 < (1+s)x_0 \\ &\implies 2\mu_0 + (1+s)x_1 < 2\mu_0 + (1+s)x_0 \\ &\implies 1 = \frac{2\mu_0 + (1+s)x_1}{2\mu_0 + (1+s)x_1} > \frac{2\mu_0 + (1+s)x_0}{2\mu_0 + (1+s)x_1} = z \end{aligned}$$

e como $x_0 < \tilde{x}_0 = -2\mu_0/(1+s)$, então $2\mu_0 + x_0(1+s) < 0$ e logo z > 0. Portanto, 0 < z < 1. De modo análogo, pode-se concluir que 0 < w < 1. Caso (*ii*): Considere o problema de valor de fronteira

$$\begin{cases} x' = \mu_0 + x, \\ y' = x, \\ (x(0), y(0)) = (x_0, 0), \\ (x(\tau), y(\tau)) = (x_1, 0), \end{cases}$$
(4.13)

A solução deste PVF é dada por

$$x(t) = -\mu_0 + e^t (x_0 + \mu_0);$$

$$y(t) = x_0 (-1 + e^t) + \mu_0 (-1 + e^t - t)$$

em que $x(\tau) = x_1$ e $y(\tau) = 0$. Utilizando essas condições de fronteira podemos escrever

$$\exp(-\tau) = \frac{\mu_0 + x_0}{\mu_0 + x_1} =: z;$$

e também

$$-\tau = \frac{x_0 - x_1}{\mu_0} =: w$$

Assim, segue que $w = \log(z)$. Note que, neste caso, o sistema não possui pontos singulares. Porém, $x = -\mu_0 = \tilde{x}_0$ é uma reta invariante. Veja Figura 4.8.

Figura 4.8: Retrato de fase de X^+ no caso (ii).

Dessa forma, temos que $x_1 < 0 < x_0 < \tilde{x}_0$ e logo $z \in (0, 1)$ visto que

$$\begin{cases} x_0 < \tilde{x}_0 = -\mu_0 \implies x_0 + \mu_0 < 0\\ \mu_0 + x_1 < 0 \end{cases} \implies z > 0$$

e que $x_1 < x_0 \Longrightarrow \mu_0 + x_1 < \mu_0 + x_0 \Longrightarrow z < 1$. Além disso, como $\tau > 0, \tau \in \mathbb{R}$ então $-\tau = w \in (-\infty, 0).$

Caso (iii): Considere o problema de valor de fronteira

$$\begin{cases} x' = \mu_0 + x + \mu_2 y, \\ y' = x, \\ (x(0), y(0)) = (x_0, 0), \\ (x(\tau), y(\tau)) = (x_1, 0), \end{cases}$$
(4.14)

em que $-1/4 < \mu_2 < 0.$ A solução deste PVF é dada por

$$x(t) = \frac{1}{2s} \left[e^{\left(\frac{t}{2}(1+s)\right)} (2\mu_0 + x_0(1+s)) + e^{\left(\frac{t}{2}(1-s)\right)} (-2\mu_0 + x_0(-1+s)) \right];$$

$$y(t) = \frac{1}{2s\mu_2} \left[-2s\mu_0 + e^{\left(\frac{t}{2}(1+s)\right)} (2x_0\mu_2 + \mu_0(-1+s)) + e^{\left(\frac{t}{2}(1-s)\right)} (-2x_0\mu_2 + \mu_0(1+s)) \right],$$

em que $x(\tau) = x_1$ e $y(\tau) = 0$. Utilizando essas condições de fronteira podemos escrever

$$\exp\left(\frac{1+s}{2}\tau\right) = \frac{2\mu_0 + x_1(1+s)}{2\mu_0 + x_0(1+s)} =: \frac{1}{z};$$
$$\exp\left(\frac{1-s}{2}\tau\right) = \frac{2\mu_0 + x_1(1-s)}{2\mu_0 + x_0(1-s)} =: w.$$

Assim, $w = z^{\alpha}$ e ainda $(0, -\mu_0/\mu_2) \in \Sigma^-$ é uma singularidade do tipo nó repulsor, visto que o determinante da linearização é dado por

$$\det \begin{pmatrix} 1 & \mu_2 \\ 1 & 0 \end{pmatrix} = -\mu_2 > 0$$

e o traço da linearização é positivo. Veja Figura 4.9.

Figura 4.9: Retrato de fase de X^+ no caso (iii).

Dessa forma, os autovetores associados aos autovalores são dados por

$$v_1 = \left(\frac{-2\mu_2}{1-s}, 1\right)$$
 e $v_2 = \left(\frac{-2\mu_2}{1+s}, 1\right),$

e as retas invariantes são dadas por

$$r_1: y = \left(\frac{1-s}{-2\mu_2}\right)x - \frac{\mu_0}{\mu_2}$$
 e $r_2: y = \left(\frac{1+s}{-2\mu_2}\right)x - \frac{\mu_0}{\mu_2}$

Portanto, as interseções das retas invariantes com $\Sigma = \{y = 0\}$ são os pontos $(\tilde{x_0}, 0)$ e $(\tilde{x_1}, 0)$ em que $\tilde{x_0} = -2\mu_0/(1+s) > 0$ e $\tilde{x_1} = -2\mu_0/(1-s) > \tilde{x_0} > 0$. Além disso, temos que z > 0, pois, como $x_0 < \tilde{x_0} = -2\mu_0/(1+s)$, então $2\mu_0 + x_0(1+s) < 0$ e visto que $2\mu_0 + x_1(1+s) < 0$. Ainda, z < 1 visto que $x_1 < x_0$ e, logo, $\mu_0 + x_1(1+s) < 2\mu_0 + x_0(1+s)$ e também w > 1 pois $x_1 < x_0$ e, logo, $\mu_0 + x_1(1-s) < 2\mu_0 + x_0(1-s)$.

Caso (iv): Considere o problema de valor de fronteira

$$x' = \mu_0 + x - \frac{1}{4}y,$$

$$y' = x,$$

$$(x(0), y(0)) = (x_0, 0),$$

$$(x(\tau), y(\tau)) = (x_1, 0),$$

(4.15)

A solução deste PVF é dada por

$$x(t) = \frac{e^{\left(\frac{t}{2}\right)}}{2} \left(x_0(2+t) + 2t\mu_0\right);$$

$$y(t) = 4\mu_0 + e^{\left(\frac{t}{2}\right)} \left(-4\mu_0 + t(x_0 + 2\mu_0)\right),$$

em que $x(\tau) = x_1$ e $y(\tau) = 0$. Utilizando essas condições de fronteira podemos escrever

$$\exp\left(\frac{\tau}{2}\right) = \frac{2\mu_0 + x_1}{2\mu_0 + x_0} =: \frac{1}{z};$$
$$\frac{-\tau}{2} = \frac{2\mu_0(x_0 - x_1)}{4\mu_0^2 + 2\mu_0(x_0 + x_1) + x_0x_1} =: w.$$

Assim, segue que $\log(z) = w$ e $w \in (-\infty, 0)$ pois $w = -\tau/2 \text{ com } \tau > 0, \tau \in \mathbb{R}$. Ainda, z > 0 visto que $2\mu_0 + x_0 < 0$, pois, $x_0 < \tilde{x}_0 = -2\mu_0$ e visto que $2\mu_0 + x_1 < 0$. Também, z < 1 visto que $2\mu_0 + x_1 < 2\mu_0 + x_0$, pois, $x_1 < x_0$.

Podemos notar que, neste caso, temos que o ponto $(0, -\mu_0/\mu_2) = (0, 4\mu_0)$ é um nó degenerado visto que os autovalores são repetidos e dados por $\lambda_{1,2} = (1 \pm s)/2 = 1/2$. O autovetor associado ao autovalor é dado por $v = (-2\mu_2, 1) = (1/2, 1)$ e, logo, temos que

$$r: y = \frac{1}{-2\mu_2}x + 4\mu_0 = 2x + 4\mu_0$$

é a reta invariante do sistema. Veja Figura 4.10.

Figura 4.10: Retrato de fase de X^+ no caso (iv).

Logo, o ponto de interseção de r com Σ é o ponto $(\tilde{x}_0, 0)$ em que $\tilde{x}_0 = -2\mu_0 > 0$. Assim, $x_1 < x_0 < \tilde{x}_0$.

Caso (v): Considere o problema de valor de fronteira

$$\begin{cases} x' = \mu_0 + x + \mu_2 y, \\ y' = x, \\ (x(0), y(0)) = (x_0, 0), \\ (x(\tau), y(\tau)) = (x_1, 0), \end{cases}$$
(4.16)

em que $\mu_2 < -1/4$. A solução deste PVF é dada por

$$x(t) = \frac{\exp\left(\frac{t}{2}\right)}{\tilde{s}} \left[x_0 \tilde{s} \cos\left(\frac{t\tilde{s}}{2}\right) + (x_0 + 2\mu_0) \operatorname{sen}\left(\frac{t\tilde{s}}{2}\right) \right];$$
$$y(t) = \frac{-\mu_0 \tilde{s} + \exp\left(\frac{t}{2}\right) \mu_0 \tilde{s} \cos\left(\frac{t\tilde{s}}{2}\right) - \exp\left(\frac{t}{2}\right) (\mu_0 - 2x_0\mu_2) \operatorname{sen}\left(\frac{t\tilde{s}}{2}\right)}{\tilde{s}\mu_2},$$

em que $x(\tau) = x_1$ e $y(\tau) = 0$. Utilizando essas condições de fronteira podemos escrever

$$\exp(\tau) = \frac{x_1^2 \tilde{s}^2 + (x_1 + 2\mu_0)^2}{x_0^2 \tilde{s}^2 + (x_0 + 2\mu_0)^2} := z;$$
$$\arctan(w) = \frac{\tilde{s}\tau}{2},$$

em que

$$w = \frac{2\mu_0 \tilde{s}(x_1 - x_0)}{2\mu_0 (x_1 + x_0 + 2\mu_0) + x_1 x_0 (1 + \tilde{s}^2)},$$

quando $2\mu_0(x_1 + x_0 + 2\mu_0) + x_1x_0(1 + \tilde{s})^2 \neq 0$. Observe que $1 + 4\mu_2 < 0$ e, logo, os autovalores $\lambda_{1,2} = (1 \pm s)/2$ são complexos conjugados com partes reais positivas. Logo, $(0, -\mu_0/\mu_2)$ é um foco repulsor. Veja Figura 4.11.

Figura 4.11: Retrato de fase de X^+ no caso (v).

Como $(\tilde{s}\tau)/2 > 0$, então $\arctan(w) > 0$ e, logo, $w \in (0,\infty)$. Além disso, obtemos que $z \in [1, \exp(2\pi/\tilde{s}))$ e

$$\arctan(w) = \log(z)^{\tilde{s}/2} - (\operatorname{sgn}(w) - 1)\pi/2.$$

Neste caso, se $\mu_0 = 0$, temos que a origem é um foco e o tempo de voo é constante $\tau = 2\pi/\tilde{s}$.

Os casos anteriores demonstram o Lema 4.2.1 a seguir.

Lema 4.2.1. Sejam $\mu_0 \ e \ \mu_2$ números reais arbitrários e fixados. Para $\mu_0 < 0$, considere $x_1 < 0 < x_0$ tais que existe um menor número real positivo τ tal que o problema de valor de fronteira

$$\begin{cases} (x', y') = (\mu_0 + x + \mu_2 y, x), \\ (x(0), y(0)) = (x_0, 0), \\ (x(\tau), y(\tau)) = (x_1, 0), \end{cases}$$
(4.17)

tenha uma única solução. Denote $s = \sqrt{1 + 4\mu_2}$, $\tilde{s} = \sqrt{-1 - 4\mu_2}$ e $\alpha = (s - 1)/(s + 1)$. Então valem as seguintes afirmações:

(i) Quando $\mu_2 > 0$ então s > 1 e $\alpha \in (0,1)$. Ainda, considerando

$$z = \frac{2\mu_0 + x_0(1+s)}{2\mu_0 + x_1(1+s)} \qquad e \qquad w = \frac{2\mu_0 + x_1(1-s)}{2\mu_0 + x_0(1-s)}$$
(4.18)

obtemos a relação $w = z^{\alpha}$, em que $z, w \in (0, 1)$.

(ii) Para $\mu_2 = 0$ considerando

$$z = \frac{\mu_0 + x_0}{\mu_0 + x_1} \qquad e \qquad w = \frac{x_0 - x_1}{\mu_0} \tag{4.19}$$

obtemos que $\alpha = 0$ e $w = \log z$, em que $z \in (0, 1)$ e $w \in (-\infty, 0)$.

(iii) Quando $-\frac{1}{4} < \mu_2 < 0$ então $\alpha \in (-1, 0)$. Considerando

$$z = \frac{2\mu_0 + x_0(1+s)}{2\mu_0 + x_1(1+s)} \qquad e \qquad w = \frac{2\mu_0 + x_1(1-s)}{2\mu_0 + x_0(1-s)}$$
(4.20)

obtemos a relação $w = z^{\alpha}$ em que $z \in (0,1)$ e $w \in (1,\infty)$.

(iv) Quando $\mu_2 = -\frac{1}{4}$ então $\alpha = -1$ e considerando

$$z = \frac{2\mu_0 + x_0}{2\mu_0 + x_1} \qquad e \qquad w = \frac{2\mu_0(x_0 - x_1)}{(2\mu_0 + x_0)(2\mu_0 + x_1)}$$
(4.21)

obtemos que $w = \log z \ em \ que \ z \in (0,1) \ e \ w \in (-\infty,0).$

(v) Para $\mu_2 < -\frac{1}{4} e \mu_0 < 0$ quando $2\mu_0(x_1 + x_0 + 2\mu_0) + x_1x_0(1 + \tilde{s}^2) \neq 0$ considere

$$z = \frac{x_1^2 \tilde{s}^2 + (x_1 + 2\mu_0)^2}{x_0^2 \tilde{s}^2 + (x_0 + 2\mu_0)^2} \quad e \quad w = \frac{2\mu_0 \tilde{s}(x_1 - x_0)}{2\mu_0 (x_1 + x_0 + 2\mu_0) + x_1 x_0 (1 + \tilde{s}^2)}.$$
 (4.22)

Então, temos que

$$\arctan(w) = \log z^{\frac{\tilde{s}}{2}} - (sgn(w) - 1)\frac{\pi}{2}$$

em que $z \in \left[1, \exp(\frac{2\pi}{\tilde{s}})\right)$ e $w \in (0, \infty)$.

Além disso, se $\mu_2 < -\frac{1}{4}$ e $\mu_0 = 0$ obtemos que $z = \frac{\tilde{s}^2 x_1^2}{x_0^2}$ e $w \in \mathbb{R}$.

O resultado a seguir fornece uma mudança de variáveis para o campo de vetores associado a aplicação de transição $w = \varphi(z)$, que relaciona os pontos x_0 e x_1 do Lema 4.2.1.

Proposição 4.2.3. Seja ξ um número real. Então valem as seguintes afirmações:

- (i) A mudança de variáveis (u, v) = (z, z^{-ξ}w) conjuga (z', w') = (z, ξw) definido em z > 0 com (u', v') = (u, 0) definido em u > 0. Além disso, a curva w z^ξ = 0 é aplicada na reta v 1 = 0;
- (ii) A mudança de variáveis (u, v) = (z, log(z) w) conjuga (z', w') = (z, 1) definido em z > 0 com (u', v') = (u, 0) definido em u > 0. Além disso, a curva w log(z) = 0 é aplicada na reta v = 0;

(iii) A mudança de variáveis dada por $(u, v) = (z, \xi \log(z) - \arctan(w))$ conjuga o sistema $(z', w') = (z, \xi(1+w^2))$ definido em z > 0 com (u', v') = (u, 0) definido em u > 0. Além disso, a curva $w - \tan(\log(z^{\xi})) = 0$ é aplicada na reta v = 0.

O próximo resultado fornece uma extensão do teorema de Rolle para curvas que interceptam uma órbita de um campo vetorial no plano e que será de grande utilidade a seguir.

Teorema 4.2.1. Seja F um campo vetorial planar de classe C^1 sem singularidades em uma região aberta $\Omega \subset \mathbb{R}^2$. Se uma curva $\zeta \subset \Omega$ de classe C^1 intercepta uma curva integral de F em dois pontos então, entre esses dois pontos, existe um ponto de tangência entre ζ e F. Veja Figura 4.12.

Demonstração: A demonstração deste resultado pode ser encontrada em [8].

Figura 4.12: Teorema de Rolle para curvas integrais.

As próximas proposições tem a finalidade de provar a unicidade de ciclos limites para o campo vetorial (4.3) percorrendo os diferentes retratos de fase que o campo vetorial pode apresentar.

Proposição 4.2.4. O campo de vetores (4.3) com $\mu_2^+ > 0$, $\mu_1^+ = 1$, $\mu_1^- = -1$ e $\mu_0^- = 1$, ou seja,

$$\mathcal{X}(x,y) = \begin{cases} (\mu_0^+ + x + \mu_2^+ y, x), & y \ge 0;\\ (1 - x + \mu_2^- y, x), & y \le 0, \end{cases}$$
(4.23)

tem no máximo um ciclo limite quando $\mu_0^+ < 0$ e não possui ciclos limites quando $\mu_0^+ = 0$.

Demonstração: Considere $\mu_2^+ > 0$. Pelo Lema 4.2.1 vimos que a singularidade de X^+ é do tipo sela. Portanto, quando $\mu_0^+ = 0$, o campo vetorial em Σ^+ tem duas retas invariantes passando pela origem, a qual é singularidade. Portanto, não existem ciclos limites.

Considere agora $\mu_0^+ < 0$. Utilizando a notação do Lema 4.2.1 os diferentes casos a serem estudados serão classificados como (S, S), (S, DI), (S, N), (S, ND), (S, F), que correspondem aos diferentes retratos de fase (sela, dobra invisível, nó, nó degenerado e foco) do campo vetorial $\mathcal{X} = (X^+, X^-)$.

Considere o caso sela-sela, ou seja, (S, S). Logo, temos que $\mu_2^- > 0$. Utilizando o PVF (4.17) e o Lema 4.2.1, para y > 0, fazendo o inverso da mudança de variáveis (4.18) obtemos

$$x_{0} = 2\mu_{0}^{+} \frac{-1 + s^{+} - 2s^{+}z + (1 + s^{+})zw}{(1 - (s^{+})^{2})(1 - zw)};$$

$$x_{1} = 2\mu_{0}^{+} \frac{-1 - s^{+} + 2s^{+}w + (1 - s^{+})zw}{(1 - (s^{+})^{2})(1 - zw)},$$
(4.24)

com $s^+ = \sqrt{1 + 4\mu_2^+}$. Observe que (4.24) está bem definida, visto que $s^+ > 1$ e $z, w \in$ (0, 1). Pelo Lema 4.2.1(*i*), podemos escrever a solução que vai de $(x_0, 0)$ até $(x_1, 0)$ através do fluxo de X^+ como $w = z^{\alpha}$, em que $\alpha = (s^+ - 1)/(s^+ + 1) \in (0, 1)$. Portanto, podemos definir em $S = (0, 1) \times (0, 1)$ a função

$$f: S \longrightarrow \mathbb{R}$$
$$(z,w) \longmapsto f(z,w) = w - z^{\alpha}$$

e a curva $C_f = \{f(z, w) = 0\}$ associada a aplicação de transição em Σ^+ .

Para o campo vetorial $X^- \text{ em } \Sigma^-$, fazendo a mudança de variáveis $(x, y, t) \mapsto (x, -y, -t)$, podemos utilizar novamente o Lema 4.2.1 com $\mu_0 := -\mu_0^- = -1$ e $\mu_2 := \mu_2^-$. Assim, podemos escrever a solução que vai de $(x_1, 0)$ para $(x_0, 0)$ através do fluxo de X^- como $W = Z^\beta$ em que

$$Z = \frac{2 + x_0(-1 - s^-)}{2 + x_1(-1 - s^-)};$$

$$W = \frac{2 + x_1(s^- - 1)}{2 + x_0(s^- - 1)},$$
(4.25)

com $s^- = \sqrt{1 + 4\mu_2^-}$ e $\beta = (s^- - 1)/(s^- + 1)$. Note que existem números z_β e w_β tais que a aplicação de transição inferior, isto é, em Σ^- , pode ser escrita como a curva $C_F = \{F(z, w) = 0\}$ em que

$$F(z,w) = W(z,w) - Z(z,w)^{\beta}$$

está bem definida no quadrado aberto $\tilde{S} = (z_{\beta}, 1) \times (w_{\beta}, 1).$

Observe que, sob as hipóteses da Proposição, de (4.24) e (4.25) os ciclos limites de (4.23) correspondem às interseções das curvas $C_f \in C_F$. Por (4.18), (4.24) e (4.25) quando $z \to 1^-$ temos que $w \to 1^-$, $x_0 \to 0^-$ e $x_1 \to 0^+$. Consequentemente, $Z \to 1$ e $W \to 1$. Portanto (1, 1) é um ponto de interseção das curvas $C_f \in C_F$. Mostremos, por contradição, que existe no máximo um ponto de interseção entre as curvas $C_f \in C_F$ no aberto $S \cap \tilde{S}$. Primeiramente, provaremos o resultado quando existem dois pontos de interseção transversais e posteriormente, quando existirem dois pontos de tangências.

Suponha que existem dois pontos de interseção transversais $\iota_1 \in \iota_2$ entre as curvas $C_f \in C_F \text{ em } S \cap \tilde{S}$. Pela Proposição 4.2.3 e Teorema 4.2.1 existem dois pontos de tangência ι_3 e ι_4 em S tais que são soluções do sistema

$$\begin{cases} F(z,w) = 0; \\ G(z,w) = 0, \end{cases}$$
(4.26)

em que

$$G(z,w) = \left(\nabla F(z,w) \cdot (z,\alpha w)\right)\Big|_{\{F(z,w)=0\}}$$
(4.27)

Em particular, $\iota_3 \in \iota_4$ estão nos arcos de C_F definidos por $\iota_1 \in \iota_2$, $\epsilon \iota_2 \in (1, 1)$, respectivamente. Veja Figura 4.13.

Figura 4.13: Curvas $C_f \in C_F$ com dois pontos de interseção em S.

Observe que a função G, dada em (4.27), pode ser escrita como

$$G(z,w) = \left(\frac{\partial W}{\partial z} - \beta \frac{W}{Z} \frac{\partial Z}{\partial z}\right) z + \left(\frac{\partial W}{\partial w} - \beta \frac{W}{Z} \frac{\partial Z}{\partial w}\right) \alpha w.$$

Seja $\delta = (1 - \beta - \mu_0^+ \beta + \mu_0^+ \alpha \beta)(-1 + \beta - \mu_0^+ + \mu_0^+ \alpha)$ um número real. Se $\delta = 0$ então G(z, w) = 0 e assim o campo vetorial (4.3) tem um centro na origem. Caso contrário, obtemos $G(z, w) = f_1(z, w) f_2(z, w)$ em que

$$f_1(z,w) = \alpha^2 (\beta + 1)(\alpha + 1)\beta \delta \frac{x_0 x_1 \widehat{x}_0^2}{Z \widehat{Z}^2 \widehat{W}^2};$$

$$f_2(z,w) = (1-z)^2 w + \lambda z (1-w)^2,$$
(4.28)

com $\lambda = (-\alpha + \alpha\beta + \mu_0^+ - \mu_0^+\alpha)(-\alpha + \alpha\beta - \mu_0^+\beta + \mu_0^+\alpha\beta)\alpha^{-2}\delta^{-1}$ e com $\hat{x}_0, \hat{Z} \in \widehat{W}$ representando os denominadores de $x_0, Z \in W$, respectivamente, nessas novas coordenadas. Tais expressões são dadas explicitamente por:

$$\widehat{x}_{0} = \alpha(-1+wz);$$

$$\widehat{Z} = (-1+wz)\alpha(-1+\beta) + (-1+\alpha)(1+w(-1+(-1+z)\alpha))\mu_{0}^{+};$$

$$\widehat{W} = (-1+wz)\alpha(-1+\beta) + (-1+\alpha)(z(-1+w-\alpha)+\alpha)\beta\mu_{0}^{+}.$$

Como tais denominadores estão bem definidos, visto (4.25) e os intervalos de definição de x_0 e x_1 dados pelo Lema 4.2.1, então temos que as funções f_1 e f_2 estão bem definidas em $S \cap \tilde{S}$. Além disso, note que f_2 é uma função polinomial e portanto está bem definida em todo o plano.

Dessa forma, como a função f_1 não se anula em $S \cap \tilde{S}$ temos que as soluções do sistema (4.26) coincidem com as soluções do sistema

$$\begin{cases} F(z,w) = 0; \\ f_2(z,w) = 0, \end{cases}$$
(4.29)

Deste modo, os pontos (0,0), ι_3 , ι_4 e (1,1) estão na curva $C_{f_2} = \{f_2(z,w) = 0\}$. Veja Figura 4.14.

Figura 4.14: Curvas C_f , $C_F \in C_{f_2}$.

Isto implica que existe $\iota_5 \in C_f \cap C_{f_2}$. Utilizando novamente o Teorema 4.2.1 existem dois pontos de tangência ι_6 e ι_7 em C_{f_2} tais que são soluções do sistema

$$\begin{cases} f_2(z,w) = 0; \\ f_3(z,w) = 0, \end{cases}$$
(4.30)

em que

$$f_3(z,w) = \left(\nabla f_2(z,w) \cdot (z,\alpha w)\right) \Big|_{\{f_2(z,w)=0\}} \\ = \lambda(2\alpha+1)zw^2 + (\alpha+2)z^2w - 2(\lambda+1)(\alpha+1)zw + \lambda z + \alpha w.$$

Dessa forma, a solução do sistema (4.30) pode ser vista como a interseção das curvas algébricas $C_{f_2} \in C_{f_3} = \{f_3(z, w) = 0\}$, as quais estão bem definidas S. Ou seja, temos que as soluções do sistema (4.26) são equivalentes as soluções do sistema (4.30). Temos que o sistema (4.30) é equivalente ao sistema

$$\begin{cases} w^2 + \frac{2(2 + (\alpha^2 + 1)\lambda)}{\lambda(\alpha^2 - 1)}w + 1 = 0; \\ z + \alpha\lambda w + \frac{(\alpha - 1)(\alpha\lambda - 1)}{\alpha + 1} = 0, \end{cases}$$

o qual possui no máximo uma solução em S e, portanto, contradiz a existência de dois pontos de interseção em $\{C_f \cap C_F\}$.

Quando os pontos de interseção $\iota_1 \in \iota_2$ de $C_F \in C_f$ são tangentes e possuem multiplicidade ímpar a prova feita para o caso transversal também é válida. Se existem dois diferentes pontos de interseção tangentes, com $z \in (0, 1)$, e multiplicidade par, os correspondentes pontos ι_1 , ι_2 , ι_3 e ι_5 coincidem e, consequentemente, o ponto de tangência ι_5 pertence as curvas C_F , C_f e C_{f_2} , o que contradiz o fato que as curvas C_{f_2} e C_{f_3} tenham não mais que um ponto de interseção em S. Assim, o caso (S, S) está provado.

A prova da unicidade de ciclos limites para os casos restantes segue de maneira análoga ao caso (S, S). A curva C_F será definida pela correspondente equação (4.25) de acordo com os casos do Lema 4.2.1. Consequentemente, o domínio \tilde{S} varia. As expressões para f_1 , $\lambda \in \delta$ também variam para os casos (S, DI), (S, ND), (S, F) e são dados na Tabela 4.1.

	$f_1(z,w)$	λ	δ
DI	$(\alpha+1)\alpha^2\delta\frac{x_0x_1\widehat{x}_0^2}{Z\widehat{Z}^2\widehat{W}^2}$	$\frac{\mu_0^+(\alpha-1)+\alpha}{\alpha\delta}$	$\mu_0^+(\alpha-1)-1$
ND	$(\alpha+1)\alpha^2\delta^2 \frac{x_0x_1\widehat{x}_0^2}{\widehat{W}^2}$	$\frac{(\mu_0^+(\alpha-1)+2\alpha)^2}{\alpha^2\delta^2}$	$\mu_0^+(\alpha-1)-2$
F	$-(\alpha+1)\alpha^2\delta(\tilde{s}^2+1)\tilde{s}\frac{x_0x_1\hat{x}_0^2}{\widehat{W}^2}$	$\frac{4(1-\alpha^2)(\mu_0^++1)-\delta}{\alpha^2\delta}$	$(\mu_0^+(\alpha - 1) - 2)^2$
			$+\tilde{s}(\alpha-1)^2(\mu_0^+)^2$

Tabela 4.1: Tabela com expressões de f_1 , $\lambda \in \delta$.

Em todos os casos, os denominadores não se anulam, visto os intervalos de definição dados pelo Lema 4.2.1.

Proposição 4.2.5. O campo de vetores (4.3) com $\mu_1^+ = 1$, $\mu_1^- = -1$, $\mu_0^- = 1$ e com $-\frac{1}{4} < \mu_2^+ < 0$ tem no máximo um ciclo limite quando $\mu_0^+ < 0$ e não possui ciclos limites quando $\mu_0^+ = 0$.

Demonstração: A prova é equivalente à prova da Proposição 4.2.4, visto que as expressões para $x_0 \in x_1$ dadas pelo Lema 4.2.1 nos casos (*i*) \in (*iii*) são exatamente as mesmas. Neste caso, a região S é dada por $S = (0, 1) \times (1, \infty)$.

Proposição 4.2.6. O campo de vetores (4.3) com $\mu_1^+ = 1$, $\mu_1^- = -1$, $\mu_0^- = 1$ e $\mu_2^+ = 0$ tem no máximo um ciclo limite quando $\mu_0^+ < 0$ e não possui ciclos limites quando $\mu_0^+ = 0$.

Demonstração: Pelo Lema 4.2.1, quando $\mu_0^+ = 0$, o campo vetorial em Σ^+ tem uma reta invariante passando pela origem. Portanto, não existem ciclos limites.
Considere agora $\mu_0^+ < 0$. Utilizando a notação do Lema 4.2.1 os diferentes casos a serem estudados são (DI, DI), (DI, ND), (DI, F), visto que os casos (DI, S) e (DI, N) são equivalentes aos casos (S, DI) e (N, DI), respectivamente, os quais já foram estudados nas Proposições 4.2.4 e 4.2.5.

As novas expressões para as curvas C_f e C_F são fornecidas novamente pelo Lema 4.2.1. Neste caso, temos que $S = (0, 1) \times (-\infty, 0)$. De acordo com a Proposição 4.2.3 e com o Teorema 4.2.1, o análogo do sistema (4.26) se escreve como

$$\begin{cases} F(z,w) = 0; \\ G(z,w) = 0, \end{cases}$$
(4.31)

em que

$$G(z,w) = \nabla F(z,w) \cdot (z,1). \tag{4.32}$$

Novamente, podemos escrever $G(z, w) = f_1(z, w)f_2(z, w)$ em que $f_1 \neq 0$ e as expressões para $f_1, f_2, \lambda \in \delta$ são dadas na Tabela 4.2.

	$f_1(z,w)$	$f_2(z,w)$	λ	δ
DI	$-(\mu_0^++1)\frac{x_0x_1\hat{x}_0^2}{Z\hat{Z}^2}$	1		
ND	$\delta^2 rac{x_0 x_1 \widehat{x}_0^2}{\widehat{W}^2}$	$(z-1)^2 + \lambda z w^2$	$-\tfrac{(\mu_0^+)^2}{\delta^2}$	$\mu_0^+ + 2$
F	$-\delta \tilde{s}(\tilde{s}^2+1)\frac{x_0x_1\hat{x}_0^2}{\widehat{W}^2}$	$(z-1)^2 + \lambda z w^2$	$-\frac{(\mu_{0}^{+})^{2}(\tilde{s}^{2}+1)}{\delta}$	$(\mu_0^+)^2 \tilde{s}^2 + (\mu_0^+ + 2)^2$

Tabela 4.2: Tabela com expressões para f_1 , f_2 , $\lambda \in \delta$.

Deste modo, a prova de que (4.31) tem uma única solução para $z \in (0, 1)$ segue de modo análogo ao feito na Proposição 4.2.4 para a equivalente equação (4.30), em que

$$f_3(z,w) = \left(\nabla f_2(z,w) \cdot (z,1)\right)\Big|_{\{f_2(z,w)=0\}}$$

e as curvas C_{f_2} e C_{f_3} estão bem definidas S. Como a região S é não compacta, podemos considerar o problema no disco de Poincaré.

Proposição 4.2.7. O campo de vetores (4.3) com $\mu_1^+ = 1$, $\mu_1^- = -1$, $\mu_0^- = 1$ e $\mu_2^+ = -\frac{1}{4}$ tem no máximo um ciclo limite quando $\mu_0^+ < 0$ e não possui ciclos limites quando $\mu_0^+ = 0$.

Demonstração: Pelo Lema 4.2.1, quando $\mu_0^+ = 0$, o campo vetorial em Σ^+ tem uma reta invariante passando pela origem. Portanto, não existem ciclos limites.

Considere agora $\mu_0^+ < 0$. Utilizando a notação do Lema 4.2.1 os diferentes casos a serem estudados são (ND, ND), (ND, F), visto que os casos (ND, S), (ND, DI) e (ND, N)são equivalentes aos casos (S, ND), (DI, ND) e (N, ND) respectivamente, os quais já foram estudados nas Proposições 4.2.4, 4.2.5 e 4.2.6.

O Lema 4.2.1 fornece as novas expressões para as curvas $C_f \in C_F$. Neste caso, temos que $S = (0, 1) \times (-\infty, 0)$. De acordo com a Proposição 4.2.3 e com o Teorema 4.2.1, o análogo do sistema (4.26) se escreve como

$$\begin{cases}
F(z,w) = 0; \\
G(z,w) = 0,
\end{cases} (4.33)$$

em que

$$G(z,w) = \nabla F(z,w) \cdot (z,1). \tag{4.34}$$

Novamente, podemos escrever $G(z, w) = f_1(z, w) f_2(z, w)$ em que $f_1 \neq 0$ e, neste caso,

$$f_2(z, w) = (z+1)w + \lambda(z-1).$$

As expressões para f_1 , $\lambda \in \delta$ são dadas na Tabela 4.3.

	$f_1(z,w)$	λ	δ
ND	$-\delta^2 rac{z(1-z)x_0x_1\widehat{x}_0^2}{4\widehat{W}^2}$	$-rac{2\mu_0^+}{\delta}$	$\mu_0^+ + 1$
F	$\delta \tilde{s}(\tilde{s}^2+1)\frac{z(1-z)x_0x_1\hat{x}_0^2}{4\widehat{W}^2}$	$-\frac{2\mu_0^+(\mu_0^+(\tilde{s}^2+1)+1)}{\delta}$	$(\mu_0^+)^2 \tilde{s}^2 + (\mu_0^+ + 1)^2$

Tabela 4.3: Expressões para f_1 , $\lambda \in \delta$.

Deste modo, a prova de que (4.33) tem uma única solução, para $z \in (0, 1)$, segue de modo análogo ao feito na Proposição 4.2.4 para a equivalente equação (4.30), em que

$$f_3(z,w) = (\nabla f_2(z,w) \cdot (z,1)) \Big|_{\{f_2(z,w)=0\}}.$$

e as curvas C_{f_2} e C_{f_3} estão bem definidas S.

Proposição 4.2.8. O campo de vetores (4.3) com $\mu_1^+ = 1$, $\mu_1^- = -1$, $\mu_0^- = 1$, $\mu_2^+ < -\frac{1}{4}$ e $\mu_0^+ \le 0$ tem no máximo um ciclo limite.

Demonstração: Os casos (F, S), (F, DI), (F, N) e (F, ND) foram estudados nas Proposições 4.2.4, 4.2.5, 4.2.6 e 4.2.7. O único caso restante é o caso foco-foco, isto é, (F, F), o qual já foi estudado em [11] para $\mu_0^+ < 0$ e em [6] para $\mu_0^+ = 0$.

O ponto chave das demonstrações das Proposições anteriores é que as expressões para $z \in w$ como função de $x_0 \in x_1$, dadas pelo Lema 4.2.1, são birracionais para todos os casos, exceto quando o ponto singular é do tipo foco, isto é, o caso (v) do Lema 4.2.1. Por esse motivo, a abordagem feita nos outros casos não funciona no caso (F, F).

A partir das proposições anteriores, podemos concluir o resultado seguinte, que trata da unicidade de ciclos limites em campos vetoriais lineares com uma Σ -singularidade monodrômica.

Teorema 4.2.2. O campo vetorial (4.3) com uma Σ -singularidade monodrômica não possui ciclos limites quando $\mu_1^+\mu_1^- \ge 0$ e tem no máximo um ciclo limite quando $\mu_1^+\mu_1^- < 0$. Além disso, existem uma escolha de parâmetros para a qual o ciclo limite existe.

Demonstração: A primeira afirmação segue das condições necessárias à existência de ciclos limites obtidas na Proposição 4.2.1. A escolha de parâmetros segue do Corolário 4.1.1 e a unicidade, das Proposições 4.2.4, 4.2.5, 4.2.6, 4.2.7 e 4.2.8. ■

As Proposições 4.2.4, 4.2.5, 4.2.6, 4.2.7 e 4.2.8 ainda carecem de algum esclarecimento com respeito a interseção dos domínios de definição das curvas C_f e C_F .

Conclusões

Neste trabalho estudamos os campos vetoriais descontínuos, isto é, os campos vetoriais suaves por partes. Em particular, baseamos nosso estudo em campos vetoriais suaves por partes planares com duas zonas. O início deste trabalho foi dedicado a dar uma definição do que vem a ser tais campos, suas órbitas e alguns exemplos.

Posteriormente partimos a definição de um objeto que foi indispensável neste trabalho, a aplicação de transição e aplicação de Poincaré, tanto num contexto de campos vetoriais suaves quanto no contexto dos campos vetoriais descontínuos.

Seguidamente, apresentamos um método bastante útil, o método da regularização, que permite relacionar campos vetoriais suaves com campos vetoriais descontínuos e estudar suas propriedades e dinâmicas.

Finalmente, apresentamos um tema que vem sendo muito abordado atualmente e é objeto de interesse de diversos pesquisadores, o estudo sobre unicidade de ciclos limites, especialmente em campos vetoriais descontínuos. Mostramos que, sob certas hipóteses, temos unicidade de ciclos limites em campos vetoriais descontínuos lineares.

Como sugestão de trabalhos futuros existem diversos tópicos ainda em aberto sobre o estudo de tais sistemas. Podemos pensar na unicidade de ciclos limites para campos vetoriais lineares mais gerais ou outras classes.

Quanto ao método da regularização podemos pensar sobre o surgimento de singularidades na regularização um campo vetorial descontínuo com dobras invisíveis em ambos os lados da curva de separação.

Referências Bibliográficas

- A. A. Andronov, C. E. Chaikin, *Theory of Oscillators*, Princeton University Press, Princeton, 1949.
- [2] D. C. Braga, L. F. Mello, Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane, Nonlinear Dynam., 73 (2013), 1283-1288.
- [3] D. C. Braga, L. F. Mello, More than three limit cycles in discontinuous piecewise linear differential systems with two zones in the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 1450056 (10 pages).
- [4] C. A. Buzzi, T. Carvalho, R. D. Euzébio, On Poincaré-Bendixson Theorem and non-trivial minimal sets in planar nonsmooth vector fields, disponível em http://arxiv.org/pdf/1307.6825v1.pdf, 2015, Preprint.
- [5] A. F. Filippov, Differential Equations with Discontinuous Right Hand Sides, Kluwer, 1988.
- [6] E. Freire, E. Ponce, F. Torres, Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst., 11(2012), 181-211.
- [7] E. Freire, E. Ponce, F. Rodrigo, F. Torres, Bifurcation sets of continuous piecewise linear systems with two zones, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28(1998), 2073-2097.
- [8] A. Khovanskii, Cycles of dynamical systems on the plane and the Rolle's theorem, Siberian Mathematical Journal, 25(1984), 502-506.

- [9] J. Llibre, E. Ponce, X. Zhang, Existence of piecewise linear differential systems with exactly n limit cycles for all $n \in \mathbb{N}$, Nonlin. Anal., 54 (2003), 977-994.
- [10] J. Llibre, E. Ponce, Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, 19 (2012), 325-335.
- [11] J. Llibre, E. Ponce, F. Torres, On the existence and uniqueness of limit cycles in Liénard differential equations allowing discontinuities. Nonlinearity, 25(2008), 2121-2142.
- [12] J. Llibre, A. E. Teruel, Introduction to the Qualitative Theory of Differential Systems: Planar, Symmetric and Continuous Piecewise Linear Systems, Birkhäuser, 2014.
- [13] R. Lum, L. O. Chua, Global properties of continuous piecewise-linear vector fields.
 Part I: Simplest case in ℝ², 1990. Memorandum UCB/ERL M90/22, University of California at Berkeley.
- [14] A. L. F. Machado, Estabilidade Estrutural e Bifurcações de Campos Vetoriais Descontínuos, Tese, IME-USP, 2000.
- [15] J. C. Medrado, J. Torregrosa, Uniqueness of limit cycles for sewing planar piecewise linear systems, J. Math. Anal. Appl., 431(2015), 529-544.
- [16] J. Sotomayor, M.A. Teixeira, Regularization of Discontinuous Vector Fields, International Conference on Differential Equation, Lisboa, 1995.
- [17] J. Sotomayor, Lições de Equações Diferenciais Ordinárias, Projeto Euclides, 1979.
- [18] J. Sotomayor, Equações Diferenciais Ordinárias, Textos Universitários do IME–USP, Livraria da Física, São Paulo, 2011.
- [19] J. Sotomayor, A. L. F. Machado, Structurally stable discontinuous vector fields in the plane, Qualitative Theory of Dynamical Sistems, volume (2002), 227-250.