UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Tito Ronald Ocariz Krauer

UMA METODOLOGIA DE ANÁLISE DE SISTEMAS DE POTÊNCIA APLICANDO O CONTINUADO QV E PV NO AMBIENTE DE PLANEJAMENTO DE SISTEMAS ELÉTRICOS

Dissertação submetida ao programa de Pós-Graduação em Engenharia Elétrica como parte dos requisitos para a obtenção do Título de Mestre em Ciências em Engenharia Elétrica.

Área de concentração: Sistemas Elétricos de Potência

Orientador: Antonio Carlos Zambroni de Souza

Dezembro de 2007

Itajubá - MG

Ficha catalográfica elaborada pela Biblioteca Mauá – Bibliotecária Margareth Ribeiro- CRB_6/1700

015m	Ocariz Krauer, Tito Ronald Uma metodologia de análise de sistemas de potência aplican_ do o Continuado PV e QV no ambiente de planejamento de siste_ mas elétricos / Tito Ronald Ocariz Krauer Itajubá (MG) : [s.n.], 2007. 110 p. : il.
	Orientador: Prof. Dr. Antonio Carlos Zambroni de Souza. Dissertação (Mestrado) – Universidade Federal de Itajubá.
	 Estabilidade de tensão. 2. Vetor tangente. 3. Margem de carga reativa. I. Souza, Antonio Carlos Zambroni de, orient. II. Universidade Federal de Itajubá. III. Título.
	CDU 621.3.016.35(043)

A minha amada esposa Rosanna, e meus adorados filhos Paloma e Ronald

"Deus está em tudo e devemos buscá-lo onde Ele está mais próximo... dentro de nós."

AGRADECIMENTOS

- ✤ A Deus, meu protetor, por tudo.
- A minha esposa Rosanna, pelo carinho, compreensão e paciência nos momentos mais difíceis.
- Ao professor Dr. Antônio Carlos Zambroni de Souza, pela orientação e incentivo constante, e pela fé dele de que sempre, "Tudo Vai Dar Certo".
- Ao meu co-orientador, Dr. Fritz Walter Mohn, pela ajuda e paciência com que tirava as minhas dúvidas.
- ✤ A ANDE, pela ajuda financeira e confiança na minha pessoa.
- Aos meus colegas da ANDE, pelo apoio constante em tudo o que significou a culminação deste trabalho.
- Aos meus pais Luis e Blanca por ter me dado a oportunidade de poder estar aqui.
- A TODOS que estiveram ao meu lado durante mais esta etapa da minha vida, muito obrigado, vocês foram fundamentais.

Resumo

Este trabalho apresenta uma metodologia para a priorização de futuras obras de planejamento sob o ponto de vista da estabilidade de tensão, sejam elas de transmissão, transformação e/ou compensação reativa. A metodologia é baseada na observação do comportamento das curvas PV e QV das barras do sistema elétrico em estudo.

O desempenho do sistema elétrico de potência de interesse é analisado para o carregamento do caso base (1 pu), assim como para um carregamento perto do ponto de colapso, determinando o impacto das obras no sistema pela variação que as mesmas produzem nas margens de estabilidade de tensão do sistema.

A região crítica ou as barras críticas do sistema foram identificadas através da maior componente do vetor tangente (VT).

Os sistemas elétricos de potência selecionados para a realização das simulações foram três. Dois correspondentes a casos acadêmicos (14 barras e 30 barras do IEEE), e um correspondente a um caso real (Sistema elétrico de potência do Paraguai – Subsistema I - ANDE, de aproximadamente 225 barras e quatro níveis de tensão).

Para cada sistema selecionado, foi determinada a margem de carga ativa do sistema (MC) obtida da curva PV e a margem de carga reativa das barras (MCR) a partir das curvas QV.

Para poder obter informações relacionadas às curvas PV e QV (MC, MCR, índices, gráficos, etc.), foi desenvolvido um programa computacional. Ele permite traçar as curvas para uma barra específica, ou para todas as barras do sistema elétrico.

Algumas características interessantes foram observadas, tanto nas simulações dos sistemas acadêmicos, quanto nas simulações do sistema real selecionado.

Foram feitas duas análises com relação ao comportamento da curva QV:

1. Comportamento das curvas QV em todas as barras do sistema para vários pontos da curva PV, considerando o caso base que inclui todas as obras planejadas e as que serão priorizadas.

2. Comportamento das curvas QV em todas as barras do sistema para os mesmos pontos da curva PV anterior, mas com o contingenciamento de uma obra por vez.

iv

Desta forma, a priorização das obras foi definida a partir da comparação destas duas situações.

Para os casos acadêmicos as simulações foram processadas para todas as barras do sistema, enquanto que para o caso real as simulações foram processadas por classe de tensão.

As conclusões obtidas são apresentadas e discutidas no trabalho.

Abstract

This work presents a methodology for prioritization, from a voltage stability point of view, of future reinforcements detected in the system planning, whether transmission, transformation and/or reactive compensation projects. The methodology is based on the evaluation of the behavior of PV and QV curves of the buses of the electric system under study.

The performance of the power system of interest is analyzed for a base case loading (1 pu), as well as a loading corresponding to an operating point close to the bifurcation or instabilibility of the system, evaluating the impact of the reinforcement projects by the variation they produce in the system voltage stability margins.

The critical region or buses of the system were identified by the higher norm of the components of the tangent (TV).

Three power systems were used to performe the simulations. Two cases correspond to academic system (IEEE 14 and 30 bus systems respectively), and a third one corresponding to a real case (Paraguayan power system, ANDE Subsystem I, comprised of approximately 225 buses and four voltage levels).

For each system selected, the active power margin is determined from the system PV curve (AM), as well as the reactive margin of the system buses based on QV curves (RM).

A computer program has been develop in order to obtain information related to the PV and QV curves (AM, RM, indices, plots, charts, etc.). It allows to draw the curves for a specific bus, or for all the buses of the electrical system.

Some interesting features were observed, both in the simulations of the academic systems, and in the simulations of the real system selected.

Two analyzes were made regarding the behavior of the QV curves:

- Performance of the QV curves in all buses of the system for various points of the PV curve, considering the base case that includes all the planned reinforcements that must be prioritized.
- Performance of the QV curves in all buses of the system for the same points of the PV curve, above described, but with the contingency of a selected reinforcement at a time.

In this way, the priorization of the reinforcement projects is defined based on comparison of these two situations.

For the academic cases, the simulations have been processed for all the system buses, while for the real system case; the simulations were processed by voltage level classes.

The conclusions obtained are presented and discussed within the work.

SUMÁRIO

CAPIT	CAPÍTULO 11		
ESTAI	ESTABILIDADE DE TENSÃO: ASPECTOS GERAIS		
1.1	INTRODUÇÃO	1	
1.2	ESTABILIDADE DE TENSÃO	2	
1.2.1	Instabilidade de tensão	3	
1.2.2	Estabilidade a pequenos sinais	3	
1.2.3	Estabilidade transitória	4	
1.2.4	Estabilidade de freqüência	4	
1.2.5	Colapso de tensão	5	
1.3	RELAÇÃO ENTRE ESTABILIDADE DE TENSÃO E ESTABILIDADE		
	ANGULAR	5	
1.4	ANÁLISE CONCEITUAL DA ESTABILIDADE DE TENSÃO	6	
1.5	CARACTERIZAÇÃO DO FENÔMENO	7	
1.6	FATORES DE INFLUÊNCIA NA ESTABILIDADE DE TENSÃO	7	
1.6.1	Geradores	8	
1.6.2	Sistema de Transmissão	8	
1.6.3	Cargas	9	
1.6.4	Transformadores	10	
1.6.5	Dispositivos de Compensação de Potência Reativa	10	
1.7	ANÁLISE ESTÁTICA	11	
1.8	OBJETIVO DO TRABALHO	12	
1.9	INCONVENIENTES APRESENTADOS APÓS A REALIZAÇÃO DE		
	PLANEJAMENTOS NAS EMPRESAS DO SETOR ELÉTRICO	13	
1.10 S	ISTEMAS ESCOLHIDOS PARA A REALIZAÇÃO DAS SIMULAÇÕES	14	
1.11 0	ΡΩΑΝΙΖΑΩÃΟ DO ΤΡΑΒΑΙ ΗΟ	15	
CAPÍT	ULO 2	17	
CAPÍT MÉTO	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE	17	
CAPÍT MÉTO	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO	17	
CAPÍT MÉTO 2.1	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO	17 17 17	
CAPÍT MÉTO 2.1 2.2	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA	17 17 17 17	
CAPÍT MÉTO 2.1 2.2 2.3	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS	17 17 17 17 17 17	
CAPÍT MÉTO 2.1 2.2 2.3 2.4	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA	17 17 17 17 17 19 23	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR	17 17 17 17 17 19 23	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES	17 17 17 17 17 19 23 25	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO	17 17 17 17 17 19 23 25 29	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO Previsor	17 17 17 17 17 17 17 17 17 17 17 17 	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO Previsor Corretor	17 17 17 17 19 23 25 29 30 32	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO Previsor Corretor Síntese do método da continuação	17 17 17 17 17 19 25 29 30 32 33	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.7	ULO 2. DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO. FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO Previsor Corretor Síntese do método da continuação MÉTODO DO VETOR TANGENTE	17 17 17 17 17 19 23 25 29 30 32 33 34	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.7 2.8	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO Previsor Corretor Síntese do método da continuação MÉTODO DIRETO.	17 17 17 17 17 19 25 25 29 30 32 34 34 35	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.7 2.8 2.9	ULO 2. DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO. FLUXO DE POTÊNCIA. COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA. MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO Previsor Corretor Síntese do método da continuação. MÉTODO DIRETO TÉCNICA DA FUNÇÃO ENERGIA	17 17 17 17 17 19 23 25 29 30 32 32 35 35	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.7 2.8 2.9 2.10	INDARAÇÃO DO TRADALITO. IULO 2. DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO. FLUXO DE POTÊNCIA. COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA. MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO Previsor Corretor Síntese do método da continuação MÉTODO DO VETOR TANGENTE MÉTODO DIRETO. TÉCNICA DA FUNÇÃO ENERGIA TABELA RESUMO DAS TÉCNICAS APRESENTADAS	17 17 17 17 19 23 25 29 30 32 31 35 35 36	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.7 2.8 2.9 2.10 2.11	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO Previsor Corretor Síntese do método da continuação MÉTODO DO VETOR TANGENTE MÉTODO DIRETO TÉCNICA DA FUNÇÃO ENERGIA TABELA RESUMO DAS TÉCNICAS APRESENTADAS ANÁLISE DA CURVA QV EM ESTABILIDADE DE TENSÃO	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.7 2.8 2.9 2.10 2.11 2.12	ULO 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.7 2.8 2.9 2.10 2.11 2.12 CAPÍT	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO Previsor Corretor Síntese do método da continuação MÉTODO DO VETOR TANGENTE MÉTODO DIRETO TÉCNICA DA FUNÇÃO ENERGIA TABELA RESUMO DAS TÉCNICAS APRESENTADAS ANÁLISE DA CURVA QV EM ESTABILIDADE DE TENSÃO CONCLUSÕES	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.7 2.8 2.9 2.10 2.11 2.12 CAPÍT ALTEI	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO Previsor Corretor Síntese do método da continuação MÉTODO DO VETOR TANGENTE MÉTODO DIRETO TÉCNICA DA FUNÇÃO ENERGIA TABELA RESUMO DAS TÉCNICAS APRESENTADAS ANÁLISE DA CURVA QV EM ESTABILIDADE DE TENSÃO CONCLUSÕES ULO 3 RNATIVA PARA A UTILIZAÇÃO DA CURVA QV	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.7 2.8 2.9 2.10 2.11 2.12 CAPÍT ALTEI 3.1	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO INTRODUÇÃO FLUXO DE POTÊNCIA COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES MÉTODO DA CONTINUAÇÃO Previsor Corretor Síntese do método da continuação MÉTODO DO VETOR TANGENTE MÉTODO DIRETO TÉCNICA DA FUNÇÃO ENERGIA TABELA RESUMO DAS TÉCNICAS APRESENTADAS ANÁLISE DA CURVA QV EM ESTABILIDADE DE TENSÃO CONCLUSÕES ULO 3 RNATIVA PARA A UTILIZAÇÃO DA CURVA QV INTRODUÇÃO	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
CAPÍT MÉTO 2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.7 2.8 2.9 2.10 2.11 2.12 CAPÍT ALTEI 3.1 3.2	ULO 2 DOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO DA MARGEM DE INTRODUÇÃO	17 17 17 17 17 17 17 19 23 25 29 30 32 33 34 35 35 35 35 36 37 39 -41 -41 -41	

3.4	OBTENÇÃO DA CURVA QV	
3.5	MÉTODO CONTINUADO QV	45
3.6	CRITÉRIOS DE PARADA	47
3.7	METODOLOGIA ADOTADA PARA A REALIZAÇÃO DESTE TRABALHO	49
3.8	ANÁLISE DO COMPORTAMENTO DAS CURVAS QV PARA OS SISTEMAS	
	ACADÊMICOS (IEEE) E PARA UM SISTEMA REAL (SIN DO PARAGUAI),	
	CONSIDERANDO UM HORIZONTE DE CURTO PRAZO (5 ANOS).	50
3.9	ANÁLISE DAS EXCEÇÕES (CONTINGENCIAMENTO) CONSIDERADAS	51
CAPÍ	ГULO 4	52
RESU	LTADOS DAS SIMULAÇÕES REALIZADAS	52
4.1	INTRODUÇÃO	52
4.2	SISTEMAS ESCOLHIDOS PARA A REALIZAÇÃO DAS SIMULAÇÕES	52
4.3	COMPORTAMENTO DA CURVA QV COM EXPANSÕES DO SISTEMA PERTO	
	DAS MAIORES E MENORES MCR – SISTEMAS ACADÊMICOS	.53
4.4	APRESENTAÇÃO DO SISTEMA REAL A SER UTILIZADO	
	(SIN DO PARAGUAI)	.66
4.4.1	CONFIGURAÇÃO TOPOLÓGICA DO SISTEMA ANDE	.67
4.4.2	CARACTERÍSTICAS DO SISTEMA ANDE (SUBSISTEMA 1)	.68
4.5	ANÁLISES E RESULTADOS DO SISTEMA REAL ESTUDADO (SIN DO	
	PARAGUAI)	.70
4.5.1	PRIORIZAÇÕES DE OBRAS ANALISANDO A MCR E MC	
	DO SIN PARA O ANO 2007	.70
4.5.2	PRIORIZAÇÕES DE OBRAS ANALISANDO A MCR E MC	
	DO SIN PARA O ANO 2008	.76
4.5.3	PRIORIZAÇÕES DE OBRAS ANALISANDO A MCR E MC	
	DO SIN PARA O ANO 2010	.81
CAPÍ	ГULО 5	.85
CONC	CLUSÕES E PERSPECTIVAS FUTURAS	.85
5.1	CONCLUSÕES FINAIS DO TRABALHO	.85
5.2	PROLONGAMENTO DESTE TRABALHO	.87
REFE	RÊNCIAS BIBLIOGRÁFICAS	.88
ANEX	XO I	94
ANEX	XO II	.98

	LISTA DE TABELAS:	Pág.
Tabela 2.1	Vantagens e desvantagens das ferramentas estáticas	37
Tabela 4.1	MCR para os casos montados perto da barra de maior MCR no sistema IEEE 14 barras	55
Tabela 4.2	MCR para os casos montados perto da barra crítica no sistema IEEE 14 barras	56
Tabela 4.3	Classificação das barras pela MCR para o sistema IEEE 14 barras	58
Tabela 4.4	MCR's perto da barra de maior MCR para os casos montados e VT associados IEEE 30 Barras	62
Tabela 4.5	MCR perto da barra crítica do IEEE 30 barras	63
Tabela 4.6	MCR e classificação do VT para o caso base ano 2007 do SIN 220 kV	71
Tabela 4.7	MCR's do subsistema metropolitano 66 kV e classificação do VT para o caso base ano 2007	72
Tabela 4.8	Somatório das MCR's para expansões perto da barra de menor e maior MCR do ano 2007	74
Tabela 4.9	Somatório das MCR's para o caso base e contingenciamentos selecionados para o ano 2007	75
Tabela 4.10	MCR's e classificação do VT para o caso base do sistema metropolitano 66 kV do ano 2008	78
Tabela 4.11	Somatório das MCR's para expansões perto da barra de menor e maior MCR do ano 2008	78
Tabela 4.12	Somatório das MCR's e MC para o caso base e contingenciamentos selecionados para o ano 2008	80
Tabela 4.13	Somatório das MCR's e MC para o caso base e contingenciamentos selecionados para o ano 2010	84
	LISTA DE FIGURAS:	
Figura 1.1	Classificação de estabilidade de sistemas de potência	3
Figura 1.2	Sistema de duas barras	6
Figura 1.3	Curva PV	7
Figura 2.1	Sistema de duas barras	19
Figura 2.2	Três carregamentos para o sistema de duas barras	20
Figura 2.3	Sistema de duas barras mostrando a tensão vs potência para três fatores de potência	22
Figura 2.4	Diagrama de bifurcação sela-nó	24
Figura 2.5	Método continuado	30
Figura 2.6	Processo do método da continuação	33
Figura 2.7	Curva característica de relação QV	38
Figura 2.8	Relação da curva PV e das curvas QV	39
Figura 3.1	Curvas QV	45
Figura 3.2	Curvas QV e IQ	48
Figura 4.1	Diagrama unifilar do sistema 14 barras IEEE	53

	CONTINUAÇÃO LISTA DE FIGURAS:	Pág.
Figura 4.2	Expansões perto das barras de maior e menor MCR no sistema 14 barras IEEE	54
Figura 4.3	Valores de MCR e classificação pelo VT para expansões perto da barra de maior MCR sistema IEEE 14 barras	55
Figura 4.4	MCR e classificação pelo VT para expansões perto da barra critica (1° vizinhança) sistema IEEE 14 barras	56
Figura 4.5	Valores de MCR para expansões perto da barra critica - 2°Vizinhança sistema IEEE 14 barras	57
Figura 4.6	Curvas QV do sistema IEEE 14 barras no caso base	57
Figura 4.7	Curvas QV do sistema IEEE 14 barras para vários pontos de carregamento	58
Figura 4.8	Curvas PV para sistema IEEE 14 barras no caso base	59
Figura 4.9	Diagrama unifilar do sistema 30 barras IEEE	60
Figura 4.10	Diagrama unifilar do sistema 30 barras IEEE com as expansões consideradas	61
Figura 4.11	MCR para expansões do sistema (1° viz.) perto da maior MCR do caso base sistema IEEE 30 barras	63
Figura 4.12	MCR para expansões (1° e 2° vizinhança) perto da barra critica do sistema IEEE 30 barras	64
Figura 4.13	MCR para vários pontos da curva PV do sistema IEEE 30 barras e componentes de vetores tangentes para alguns casos perto do seu ponto de colapso	65
Figura 4.14	Curvas PV para algumas barras do sistema IEEE 30 perto das barras de maior e menor MCR (Caso Base).	65
Figura 4.15	Mapa eletrogeográfico representando o sistema elétrico do Paraguai	66
Figura 4.16	Percentagens de carga por subsistema	67
Figura 4.17	Mapa eletrogeográfico representando os subsistemas elétricos do Paraguai	68
Figura 4.18	Diagrama Unifilar do sistema real estudado (Sistema ANDE)	69
Figura 4.19	MCR do SIN para níveis de transmissão em 220 kV do ano 2007	70
Figura 4.20	MCR do SIN para níveis de subtransmissão em 66 kV ano 2007	71
Figura 4.21	MCR do subsistema metropolitano para alguns pontos da curva PV em 66 kV ano 2007	72
Figura 4.22	Curvas PV de algumas barras do sistema metropolitano do ano 2007 em 66 kV	73
Figura 4.23	Ampliações perto da menor MCR no nível de tensão de 66 kV ano 2007	73
Figura 4.24	Ampliações perto da maior MCR no nível de tensão de 66 kV ano 2007	73
Figura 4.25	MCR para o caso base e contingenciamentos no nível de tensão 66 kV ano 2007	75

CONTINUAÇÃO LISTA DE FIGURAS:		Pág.
Figura 4.26	MCR para o caso base e contingenciamentos no nível de tensão 220 kV ano 2007	75
Figura 4.27	MCR para o caso base e para alguns pontos da curva PV e VT associados no nível de tensão 220 kV ano 2008	77
Figura 4.28	MCR para o caso base e para alguns pontos da curva PV e VT associados no nível de tensão 66 kV ano 2008	77
Figura 4.29	Diferenças nas MCR para ampliações do sistema perto da barra de maior e menor MCR ano 2008	79
Figura 4.30	Curvas PV para algumas barras do sistema metropolitano do ano 2008 e tensão de 66 kV	79
Figura 4.31	MCR 2008 do sistema metropolitano, casos bases e contingenciamentos em 220 kV	80
Figura 4.32	Comparações e diferenças nas MCR entre os anos 2008, 2009 e 2010	82
Figura 4.33	Curvas PV para as principais barras do sistema metropolitano 220 kV ano 2010	82
Figura 4.34	Curvas PV para as principais barras do sistema metropolitano 66 kV ano 2010	83
Figura 4.35	Curvas QV para vários pontos de carregamento no sistema do SIN 220 kV ano 2010	83
Figura 4.36	MCR e VT associado ao caso base e a cada contingenciamento escolhido ano 2010	84

CAPÍTULO 1

ESTABILIDADE DE TENSÃO: ASPECTOS GERAIS

1.1 INTRODUÇÃO

Nas últimas duas décadas, o problema da estabilidade de tensão em sistemas de potência tem se tornado um tema de grande interesse para pesquisadores e engenheiros de planejamento e de operação de empresas de energia elétrica.

Os estudos sobre estabilidade de tensão evoluíram muito nos últimos anos, tanto na parte conceitual como na parte de introdução de novas técnicas para abordagem do problema.

O fenômeno de estabilidade de tensão tem que ser avaliado teoricamente dentro das análises de equilíbrio dinâmico, com uma modelagem matemática completa do sistema elétrico de potência em estudo. No entanto, devido à complexidade e à dimensão de um sistema elétrico de potência, o estudo de estabilidade é dividido em diversas categorias. E quando se menciona estabilidade de um sistema de potência, prontamente pensa-se numa modelagem que envolve um sistema de equações diferenciais. Não obstante, existem certas situações em que simplificar o modelo (de maneira que as análises se restrinjam às equações clássicas de fluxo de potência) traz informações importantes a um baixo custo computacional, tendo em vista o elevado tempo de processamento computacional gasto nas análises dinâmicas. Geralmente, as informações obtidas nas análises estáticas são diferentes das obtidas nas análises dinâmicas, logo, elas são complementares, e a aplicação de cada uma depende do objetivo do estudo.

Em estudos de colapso de tensão, diversas técnicas no modelo estático de sistema (fluxo de carga) têm sido propostas com o objetivo de reduzir o tempo computacional requerido, sem perda de precisão na resposta.

Na medida em que os sistemas de potência têm operado sob condições de elevado carregamento, situação cada vez mais freqüente, e ficando susceptíveis às reduções na tensão, a capacidade de mantê-los estáveis sob o ponto de vista de tensão, tem causado grande preocupação.

Nesta situação, se ações de controle eficazes para aumentar o suprimento de potência reativa, e consequentemente os níveis de tensão, não forem levadas em consideração, o contínuo crescimento da carga induzirá o sistema à instabilidade e até ao colapso de tensão.

Neste sentido, esta dissertação tem como interesse central, direcionar através de priorizações de obras de planejamento, a um melhor fornecimento da potência reativa, de tal forma a aumentar a margem de carga do sistema como um todo, e levando com isso a uma otimização na ampliação da margem de carga reativa das barras associadas principalmente à região onde a expansão será realizada.

Nas seções a seguir, importantes definições e classificações sobre estabilidade serão descritas com o objetivo de subsidiar o estudo que será desenvolvido nesta dissertação.

1.2 ESTABILIDADE DE TENSÃO

A estabilidade de um sistema de potência é a habilidade deste sistema, para uma determinada condição de operação inicial, recuperar um estado de equilíbrio operacional depois de sofrer uma perturbação, de maneira que a maioria das variáveis deste sistema elétrico fique praticamente igual à condição anterior do distúrbio [1, 2].

Estabilidade de sistema de potência é essencialmente um problema global. Porém, as várias formas de instabilidade possíveis em um sistema de potência não podem ser entendidas de maneira correta, e efetivamente analisadas, devido à alta dimensão e complexidade dos problemas de estabilidade. Logo, a classificação ajuda a fazer suposições, simplificando análises de tipos específicos de problemas, através de representações e técnicas analíticas apropriadas [1, 2, 3].

A Figura 1.1 mostra a classificação de estudo de estabilidade em sistema de potência considerando a natureza, o tamanho e o tempo de análise da perturbação. Também estão indicadas quais são as ordens de grandeza dos tempos geralmente considerados nos estudos [1]. Diante das diversas formas de manifestação da instabilidade, dos inúmeros eventos que podem ocorrer após um distúrbio (atuação de controladores, da proteção, etc.) e da não linearidade das equações que representam um sistema elétrico de potência, o estudo de estabilidade não é uma tarefa simples, exigindo cada vez mais uma abrangência teórica satisfatória, aliada com a heurística dos especialistas em sistemas

elétricos de potência. A seguir serão apresentadas algumas definições importantes relacionadas com o conceito de estabilidade:

Figura 1.1 - Classificação de estabilidade de sistema de potência

1.2.1 Instabilidade de tensão

É a ausência de estabilidade de tensão e resulta em um progressivo declínio ou aumento da tensão. A instabilidade de tensão poderá levar um sistema ao colapso de tensão se as tensões pós-distúrbio em todo o sistema ou parte do mesmo tornarem-se instáveis ou atingirem valores de equilíbrio em níveis abaixo dos limites aceitáveis [4].

As freqüentes ocorrências envolvendo problemas de estabilidade de tensão fizeram com que o tema ganhasse destaque nos principais países industrializados nos últimos anos. Nas referências [3,5] são citadas várias ocorrências ao redor do mundo.

1.2.2 Estabilidade a pequenos sinais

É a habilidade do sistema de potência em manter o sincronismo sob pequenos distúrbios. Os distúrbios são considerados suficientemente pequenos, o que permite a linearização do sistema de equações para a análise. Uma pequena perturbação pode conter, por exemplo, variações leves de carga e geração. A análise a pequenos sinais usando técnicas lineares depende do ponto de operação do sistema e traz informações valiosas a respeito da característica dinâmica do sistema de potência neste ponto.

A técnica de análise modal da matriz de estado do sistema é apropriada para o estudo deste tipo de estabilidade [7, 12].

1.2.3 Estabilidade transitória

É caracterizada por uma grande perturbação. A resposta de sistema resultante envolve grandes excursões do rotor do gerador e é influenciada pela relação não linear de potência-ângulo. O intervalo de tempo de interesse dos estudos neste tipo de fenômeno varia de 3 a 5 segundos após a perturbação. Dependendo da complexidade do sistema este tempo pode ser estendido para algo entre 10 a 20 segundos [1].

A análise de uma grande perturbação no sistema depende do comportamento dinâmico do mesmo, exigindo uma avaliação no tempo do comportamento dos elementos deste sistema, tais como atuação dos reguladores de velocidade, tensão e outros. Um exemplo deste tipo de evento seria a saída de uma linha do sistema tronco após um curto-circuito.

1.2.4 Estabilidade de freqüência

Estabilidade de freqüência é a habilidade do sistema de potência manter a freqüência dentro de uma faixa nominal, seguindo-se a uma severa oscilação no sistema, que pode ou não particioná-lo em subsistemas [1]. Esta habilidade é dependente da capacidade do sistema em restaurar o balanço geração e carga, com mínima perda de carga.

Geralmente, os problemas de estabilidade de freqüência são associados às inadequadas respostas de equipamentos, fraca coordenação de controles e equipamentos de proteção, ou reserva de geração insuficiente.

Os efeitos da atuação dos controles automáticos de geração (CAG), saturação de transformadores e comportamento da carga fora das condições nominais são importantes nesta análise.

A técnica de simulação não-linear no domínio do tempo, com modelagens mais aprimoradas para as dinâmicas associadas às severas excursões de parâmetros e intervalos de tempo estendidos, é indicada para esta análise [15, 16].

1.2.5 Colapso de tensão

É um termo utilizado para tratar a instabilidade de sistemas elétricos quando são observadas quedas bruscas nos módulos das tensões das barras. É o processo através do qual a instabilidade de tensão leva o sistema a uma queda de tensão em uma parte significativa do sistema ou até mesmo em um blecaute [1, 5].

Os problemas de colapso de tensão estão associados a sistemas elétricos que operam em condições estressantes, como por exemplo: linhas de transmissão com carregamentos elevados, fontes locais de potência reativa insuficientes e transmissão de potência através de grandes distâncias.

O colapso de tensão é um fenômeno local que se espalha pela vizinhança [3, 13]. O intervalo de tempo entre o distúrbio inicial e o colapso de tensão pode variar de uma fração de segundo até dezenas de minutos [6].

Observe a distinção entre instabilidade e colapso de tensão. O fenômeno de colapso de tensão está ligado à seqüência de eventos que acompanham a instabilidade de tensão. A instabilidade de tensão pode, ao contrário do colapso de tensão, provocar elevação de tensão [1, 2, 18].

1.3 RELAÇÃO ENTRE ESTABILIDADE DE TENSÃO E ESTABILIDADE ANGULAR

Estabilidade de tensão e estabilidade angular são questões inter-relacionadas. Estabilidade de tensão transitória está sempre relacionada com a estabilidade angular transitória, enquanto que estabilidade de tensão de longo termo é menos associada à estabilidade angular. É difícil separar os mecanismos. No entanto, existem muitos casos em que uma forma de instabilidade predomina. A referência [5] mostra duas situações extremas:

a) Um gerador síncrono conectado por linhas de transmissão a um grande sistema (problema máquina - barra infinita), o que caracteriza um problema unicamente de estabilidade angular.

b) Um gerador síncrono ou um grande sistema conectado por linhas de transmissão a uma barra de carga, o que caracteriza um problema unicamente de estabilidade de tensão.

Estabilidade de tensão refere-se à áreas de carga e a características da carga, enquanto que a estabilidade angular está relacionada com a integração de remotas usinas com um grande sistema através de longas linhas de transmissão. Por estas razões, estabilidade de tensão é basicamente "estabilidade de carga", enquanto que estabilidade angular é basicamente "estabilidade de gerador".

1.4 ANÁLISE CONCEITUAL DA ESTABILIDADE DE TENSÃO

Para ilustrar como a instabilidade de tensão se processa em um sistema de potência, será utilizado um sistema de duas barras, composto de um gerador alimentando uma carga através de uma linha de transmissão, como apresentado na Figura 1.2.

Figura 1.2: Sistema de duas barras

A característica da carga, que é do tipo potência constante, está representada juntamente com a curva PV do sistema, como mostrado na Figura 1.3. A interseção da reta K, que representa a característica da carga, com a curva PV, são os pontos de operação do sistema, correspondendo a dois valores distintos de tensão ($V_A \ e \ V_B$). O ponto de operação na parte superior da curva é estável (ponto A), pois um aumento de carga provoca a redução da tensão. O ponto na parte inferior da curva é instável (ponto B), pois um aumento de carga eleva a tensão. Nesta região instável a corrente é elevada enquanto que a tensão é bastante reduzida. À medida que a carga aumenta os dois pontos de operação vão se aproximando até se tornarem um único ponto, localizado na extremidade da curva PV. Este ponto é o limite de carregamento do sistema, ou ponto de colapso de tensão, também chamado de ponto de bifurcação. Neste caso específico a condição de transversalidade analisada é a de sela-nó. [5, 9, 10, 14, 17].

Figura 1.3: Curva PV

1.5 CARACTERIZAÇÃO DO FENÔMENO

Problemas de estabilidade de tensão normalmente ocorrem em sistemas muito carregados. Embora muitas sejam as causas que podem levar um sistema ao colapso de tensão, a questão fundamental é a inerente fragilidade deste sistema de potência [8].

O evento inicial que leva um sistema de potência ao colapso pode ser um aumento da carga, uma linha de transmissão muito carregada ou uma grande perturbação como uma perda de um gerador. O aspecto principal do problema é a incapacidade do sistema de atender sua demanda de potência reativa [4].

O colapso de tensão geralmente se manifesta como um lento declínio da tensão. É o resultado de um processo envolvendo interações de muitos dispositivos e controles, dependendo muito das características e condições do sistema. Alguns fatores que contribuem para o problema em questão serão apresentados em seguida.

1.6 FATORES DE INFLUÊNCIA NA ESTABILIDADE DE TENSÃO

Os principais fatores que contribuem para o colapso de tensão são os seguintes: os limites de fornecimento de potência reativa dos geradores, as grandes distâncias entre a geração e a carga, as características do sistema de transmissão, as características das cargas, as características dos dispositivos de compensação de potência reativa e a ação dos dispositivos de controle de tensão, como os LTC (Load Tape Changing) de

transformadores. A seguir serão examinadas as características destes equipamentos e como eles influenciam na estabilidade de tensão [1,8].

1.6.1 Geradores

Uma das maneiras mais eficazes de se ter um bom controle de tensão num sistema de potência é através dos reguladores de tensão dos geradores. Sob condições normais as tensões terminais dos geradores são mantidas constantes. No entanto, quando um sistema de potência opera sob condições de elevado carregamento, o fornecimento de potência reativa pelos geradores pode exceder os limites de corrente de campo e de armadura. Neste caso, as tensões terminais não podem mais ser mantidas constantes, contribuindo então para um quadro de colapso de tensão. Em estudos de fluxo de potência os geradores podem ser representados com suas tensões terminais controladas, isto é, nas barras dos geradores são fixadas os limites inferiores e superiores de geração de potencia reativa, simulando desta forma o efeito de limitação da potência reativa pelos reguladores de tensão.

1.6.2 Sistema de Transmissão

Um aspecto fundamental de um sistema de transmissão é o seu balanço de potência reativa. Uma linha de transmissão tanto produz como consome potência reativa, e esta potência reativa líquida deve ser absorvida ou fornecida pelo sistema em cada terminal da linha. A capacitância "shunt" da linha produz potência reativa proporcional ao quadrado da tensão ($Q = V^2B$). Como a tensão deve se manter em torno de ± 5% da tensão nominal, a produção de potência reativa é relativamente constante. A indutância série da linha de transmissão consome potência reativa proporcional ao quadrado da corrente ($Q = I^2X$). Como a corrente varia de acordo com o carregamento da linha, o consumo de potência reativa é variável. Portanto, a potência reativa líquida de uma linha de transmissão varia com seu ciclo de carga, sendo que o período de carga pesada é o mais crítico com respeito à estabilidade de tensão. Isso porque o consumo de potência reativa poderá ser elevado, provocando quedas de tensão e perdas elétricas [6,11].

Outra questão importante é que uma linha de transmissão longa e muito carregada não consegue transmitir potência reativa (pela natureza da função dela), mesmo com gradientes de tensão elevados, o que é crítico sob o aspecto de estabilidade de tensão, pois não se tem uma boa compensação de potência reativa no ponto de carga.

1.6.3 Cargas

A operação estável de um sistema de potência depende da capacidade de seus geradores de suprir sua carga elétrica. Consequentemente, as características das cargas têm uma importância muito grande na estabilidade de tensão do sistema.

A modelagem das cargas é complicada porque uma barra de carga típica é composta por diferentes tipos de dispositivos, tais como lâmpadas fluorescentes e incandescentes, refrigeradores, compressores, motores, fornos, etc. A composição exata da carga é difícil de estimar. Além disto, a composição da carga depende também de outros fatores como dia, hora, condições climáticas e condições econômicas da região. Portanto, ao se representar a carga em estudos de sistema, tem-se que proceder em várias simplificações. Os modelos de carga são classificados em dois tipos: modelo estático e modelo dinâmico.

O modelo estático de carga expressa a característica da carga de uma barra para um determinado instante de tempo, como uma função algébrica da magnitude da tensão nesta barra, naquele instante. O componente de potência ativa P e o componente de potência reativa Q são considerados separadamente. Este modelo é usado para representar componentes essencialmente estáticos da carga, por exemplo, cargas de aquecimento e iluminação, e como uma aproximação para componentes dinâmicos da carga, como cargas acionadas por motores. Um modelo estático que tem sido largamente utilizado é o modelo polinomial, no qual a parcela ativa e reativa da carga é expressa através das seguintes equações algébricas:

$$P = P_0 \left[p_1 \left(\frac{V}{V_0} \right)^2 + p_2 \left(\frac{V}{V_0} \right) + p_3 \right]$$

$$Q = Q_0 \left[q_1 \left(\frac{V}{V_0} \right)^2 + q_2 \left(\frac{V}{V_0} \right) + q_3 \right]$$
(1.1)

V é a magnitude da tensão na barra e o subscrito "o" identifica os valores das respectivas variáveis na condição inicial de operação.

Os parâmetros deste modelo são os coeficientes p_1 , p_2 , p_3 e q_1 , q_2 , q_3 , que definem a proporção de cada componente. Este modelo é comumente chamado de modelo ZIP, pois ele é composto por componentes de impedância constante (*Z*), corrente constante (*I*) e potência constante (*P*).

Cargas industriais, que são predominantemente do tipo potência constante, são mais críticas do ponto de vista de estabilidade de tensão, pois suas potências não variam significativamente com a tensão. Por outro lado, cargas residenciais, que são predominantemente do tipo impedância constante, são mais favoráveis do ponto de vista de estabilidade de tensão, pois suas potências sofrem redução sob situações de queda de tensão. No entanto, em lugares onde a utilização de condicionadores de ar é intensa, o tipo da carga residencial pode ser alterado.

O modelo dinâmico de carga expressa a característica da carga de uma barra em um determinado instante de tempo, como função da magnitude da tensão nesta barra em um instante passado de tempo e, usualmente, incluindo o instante presente. Cargas constituídas essencialmente por motores, onde a resposta a um distúrbio não ocorre instantaneamente, mas sim com determinada constante de tempo, podem requerer este modelo, cuja representação requer o uso de equações diferenciais.

1.6.4 Transformadores

A impedância de um transformador tem a mesma influência em um colapso de tensão que a impedância de uma linha de transmissão. Porém, um fator de muita importância no desenvolvimento de um colapso de tensão é a comutação automática de tapes (LTC).

Os LTC's são usados para manter as tensões constantes nas barras de carga. Após algum evento que provoque uma queda de tensão, as cargas residenciais diminuem com a tensão, o que torna o sistema menos carregado e impede que a tensão continue a cair. No entanto, após alguns minutos os LTC's irão restaurar a tensão, e consequentemente as cargas para os níveis de pré-distúrbio, o que anulará este efeito estabilizador, provocando uma nova queda de tensão no sistema. Portanto, a ação dos LTC's pode levar o sistema a uma progressiva queda na tensão, o que é típico de um colapso de tensão [4].

1.6.5 Dispositivos de Compensação de Potência Reativa

Compensação de potência reativa é a maneira mais usual de se melhorar a capacidade de transmissão de potência e a estabilidade de tensão de um sistema, pois fornece um suporte local de potência reativa. Como exemplos de dispositivos de compensação de potência reativa têm-se: capacitores shunt, capacitores série, compensadores estáticos e compensadores síncronos.

Capacitores shunt podem ser utilizados, até certo ponto, para aumentar o limite de estabilidade de tensão, corrigindo o fator de potência no terminal receptor. Podem também ser muito úteis na medida em que eles permitem que os geradores próximos operem com um fator de potência quase unitário. Isto aumenta a reserva de potência reativa ajudando a prevenir, em muitos casos, o colapso de tensão. No entanto, os capacitores shunt fornecem potência reativa proporcional ao quadrado da tensão, o que significa que em condições de operação com tensões reduzidas o suporte de potência reativa diminui, agravando o problema.

Os compensadores estáticos de reativos (CER), propiciam uma regulação de tensão precisa e chaveamentos de bancos de capacitores sem restrições e livres de transitórios. A tensão é regulada de acordo com a inclinação de sua característica Q-V.

Esta inclinação está relacionada com o ganho em regime permanente e é geralmente de 1 a 5% da faixa de controle. Quando atinge seu limite capacitivo, o CER torna-se um banco de capacitores shunt.

Os capacitores série têm sido tradicionalmente associados a linhas de transmissão longas e à melhoria da estabilidade transitória. Atualmente são também utilizados em linhas mais curtas para melhorar a estabilidade de tensão. A compensação série reduz a reatância indutiva e o ângulo da linha de transmissão. A geração de potência reativa (I²Xc) compensa o consumo de potência reativa (I²X) da linha de transmissão.

Os compensadores síncronos (CS) proporcionam um aumento no fornecimento de potência reativa quando de uma queda de tensão no sistema. A subseqüente diminuição da tensão interna ou fluxo (reação de armadura) é compensada pelo controle da excitação. Os CS podem suportar uma sobrecarga por dezenas de segundos. Um sistema com compensação síncrona tem tensões críticas menores no ponto de máxima potência. Os CS aumentam a potência de curto-circuito de um sistema, tornando-o mais forte.

1.7 ANÁLISE ESTÁTICA

A análise estática da estabilidade de tensão de um sistema de potência requer o exame dos seguintes aspectos [8]:

• Diagnóstico do ponto de operação do sistema. Isto implica em determinar, inicialmente, se o ponto de operação é estável sob o ponto de vista de tensão;

- Determinação da área/barra crítica do sistema de potência, visto que o problema é reconhecido como um problema local;
- Margem de carga entre o ponto de operação conhecido e o ponto de colapso de tensão. Isto implica no conhecimento de um método que identifique este ponto de colapso de tensão.

1.8 OBJETIVO DO TRABALHO

O objetivo deste trabalho consiste na elaboração de uma metodologia de análise estática de sistemas elétricos de potência aplicando o método da continuação para traçado das curvas PV e QV no ambiente de planejamento, considerando horizontes de curto prazo (cinco anos) e médio prazo (dez anos).

A motivação principal para a elaboração da proposta é o estudo do comportamento das curvas QV das barras de um determinado sistema elétrico, analisando o desempenho delas nos diferentes pontos de interesse, tais como, o caso base, o ponto de colapso, e após a introdução de alguma obra de expansão no sistema.

Em cada sistema elétrico de potência selecionado para a realização das simulações, será determinada a margem de carga ativa do sistema (MC - curva PV) e a margem de carga reativa das barras de interesse (MCR - curva QV).

Desta forma, a metodologia proposta neste trabalho baseia-se na análise das referidas margens de carga ativa (MC) e margem de carga reativa (MCR), permitindo a priorização de obras de planejamento a partir das referidas margens de carga.

O vetor tangente é adotado como critério para a identificação das áreas críticas do sistema em estudo.

Ao considerar que as piores contingências são aquelas associadas às barras com maior margem de carga reativa MCR [19], este trabalho utiliza como ferramenta principal o levantamento da curva QV, pois a mesma oferece uma visualização razoável do desempenho do sistema elétrico durante eventos que poderão comprometer a estabilidade deste, mostrando ainda as possíveis localizações das reservas de potência reativa que atuariam como ações de controle, evitando que o sistema se direcione ao colapso.

Algumas vantagens interessantes do método da curva QV são utilizadas para dimensionar ações de controle de despacho de potência reativa, algumas delas são as seguintes:

- A convergência dos casos normalmente não representa problema.
- A automatização utilizando uma rotina de programação faz com que o método se torne eficiente, pois para pequenas variações na escala de tensão a convergência leva algumas iterações apenas.
- A necessidade de compensação reativa na barra analisada é dada de imediato pelo valor de potência reativa gerado pelo síncrono, isto é, observando a margem de carga reativa da curva QV, o montante de compensação necessária para a barra em observação é obtido visualmente da curva..
- A inclinação da curva indica o quanto a barra em análise é sensível às alterações de tensão.
- As curvas QV traçadas para diversas barras podem ser sobrepostas em um mesmo gráfico. No ponto mínimo de cada curva as fontes de potência reativa estão operando próximas ao limite de geração. Sendo assim, neste ponto tem-se toda a reserva de potência reativa disponível no ponto crítico. O valor da potência reativa no ponto mínimo da curva representa tudo o que o sistema, naquele ponto, pode oferecer para manter a estabilidade de tensão.

1.9 INCONVENIENTES APRESENTADOS APÓS A REALIZAÇÃO DE PLANEJAMENTOS NAS EMPRESAS DO SETOR ELÉTRICO

Antes de partir para a exposição dos resultados obtidos das simulações, será apresentada a seguir a forma em que a maioria das empresas do setor elétrico apresenta os seus estudos de expansões futuras.

Os estudos (geralmente de regime permanente) começam partindo de um ano base. Através de um determinado mercado projetado pela empresa (Cargas por Barras futuras), são montados casos de fluxo de potência para os diferentes anos ou horizontes a considerar (curto e médio prazo). Através dos resultados destes estudos são geradas futuras obras de planejamento, de forma a garantir o suprimento das cargas previstas pelo mercado escolhido. Estas futuras obras são listadas para cada ano de estudo e para os anos seguintes as mesmas são consideradas já em operação.

Um problema típico das empresas do setor elétrico, e que foi um ponto importante para a motivação deste trabalho, é que as mencionadas obras planejadas geralmente não entram no período ou no tempo planejado (geralmente por problemas financeiros), de forma que

as entradas das obras para um determinado ano sofrem atrasos, às vezes por tempos bastante demorados, chegando algumas vezes inclusive a desaparecer determinada obra prevista ou estudada anteriormente pela dinâmica do crescimento do sistema.

A idéia deste trabalho é propor para cada ano de estudo ou de planejamento, uma priorização de obras, dentro de um cenário já planejado, utilizando para isso as margens de carga reativa (MCR) e margens de carga (MC) geradas por uma determinada obra no ano de estudo considerado. Com isto, poderia dar início às obras de transmissão, ou mesmo de distribuição, com aquelas que levassem o sistema a um maior aumento na sua MC, garantindo desta maneira algumas vantagens interessantes para o sistema, tais como:

- ✓ Afastamento do sistema do ponto de colapso.
- ✓ Aumento, algumas vezes importante de sua margem de carga.
- Adiantamento no tempo, de uma maior diminuição das perdas do sistema de potência (vantagem econômica).
- ✓ Aumentos significativos nas suas margens de potência reativa.
- ✓ Alocações estratégicas de fontes de potência reativa.

1.10 SISTEMAS ESCOLHIDOS PARA A REALIZAÇÃO DAS SIMULAÇÕES

Foram escolhidos três sistemas testes para a realização das simulações. Dois correspondentes a casos acadêmicos e outro a um caso real. Os mesmos foram os seguintes: sistema IEEE 14 barras, sistema IEEE 30 barras, e o corresponde ao caso real é o Sistema Elétrico de Potência do Paraguai, de 225 barras e quatro níveis de tensão.

• Sistema 14 Barras – Sistema acadêmico IEEE:

- o Barra swing (referência angular do sistema): Barra 01
- Barras PV (com controle de tensão): existem 4 barras PV representadas: Barra 02, Barra 03, Barra 06 e Barra 08.
- Não estão representados transformadores com comutação automática de tensão sob carga (LTC).
- Possui um capacitor shunt instalado na Barra 9, e não possui reatores shunt.

• Sistema 30 Barras – Sistema acadêmico IEEE:

- o Barra swing (referência angular do sistema): Glen Lyn 132 kV (Barra 1).
- Barras PV (com controle de tensão): existem 5 Barras PV representadas: Claytor 123 kV (Barra 2), Fieldale 132 kV (Barra 5), Reusers 132 kV (Barra 8), Roanoke 11 kV (Barra 11) e Hancock 11 kV (Barra 13).
- Não foram representados transformadores com comutação automática de tensão sob carga (LTC).
- Existem dois capacitores shunt instalados nas Barras 24 e 10. Não existem reatores instalados no sistema.
- Sistema 225 Barras, Sistema Real Sistema da ANDE Paraguai (Administración Nacional de Electricidad) – suprimento ao principal Subsistema do Paraguai (Subsistema I):
 - Barra swing (referência angular do sistema): Itaipu 18 kV, Barra 700.
 - Barras PV (com controle de tensão): existem duas barras com controle de tensão representadas, Barras 302 e 411.
 - Transformadores com comutação automática de tensão (LTC): existem 79 transformadores representados.
 - 1 reator shunt e 33 capacitores shunt.

1.11 ORGANIZAÇÃO DO TRABALHO

Com as observações e análises do comportamento das curvas QV, pretende-se determinar através da margem MCR, obras de planejamento que maximizem o carregamento do sistema (Curva PV).

- Primeiramente serão analisados os conceitos e características básicas da curva QV, para que se possa entender o seu significado físico.
- Posteriormente será feita uma análise conjunta das curvas QV e PV nas vizinhanças da área ou barra crítica, e nas vizinhanças da área ou barra com maior margem MCR. A barra crítica será calculada pelo método do vetor tangente.

Será também observado o comportamento da curva QV nas vizinhanças do local onde ocorrerá uma expansão do sistema (linha de transmissão nova, transformador de potência novo, bancos de capacitores novos) e o seu impacto na área ou região de inserção, assim como no sistema como um todo.

Sendo assim, os capítulos da dissertação são os seguintes:

- Capítulo 1 São apresentadas algumas definições importantes relacionadas à estabilidade de tensão.
- Capítulo 2 São apresentadas as metodologias consagradas na literatura no tratamento de colapso de tensão.
- Capítulo 3 Proposta de utilização da curva QV, e análise do seu comportamento em conjunto com a curva PV. Proposta de análise e posterior priorização de obras de planejamento, visualizando principalmente as curvas referentes à Margem de Carga Reativa (MCR) de cada uma das barras dos subsistemas ou áreas associadas às obras de expansão.
- Capítulo 4 Apresentação dos resultados através de dois sistemas elétricos acadêmicos (IEEE) e de um sistema real (Sistema Elétrico de Potência do Paraguai).

Capítulo 5 - Conclusões gerais e novas propostas.

CAPÍTULO 2

MÉTODOS DE ANÁLISE ESTÁTICA PARA DETERMINAÇÃO DA MARGEM DE CARGA E DO PONTO DE COLAPSO DE TENSÃO

2.1 INTRODUÇÃO

A análise de estabilidade de tensão de um sistema de potência envolve, para um dado ponto de operação, a determinação da sua margem de carga, isto é, o montante de carga necessário para levá-lo ao ponto de colapso. Esta quantidade de carga fornece um índice de segurança do sistema, tendo em vista que a "distância" até o ponto de bifurcação é conhecida. A teoria da bifurcação é uma ferramenta muito útil para a identificação deste ponto [5, 14, 20, 21]. Alguns tipos de bifurcação podem ser encontrados em sistemas de potência, dependendo do modelo de sistema utilizado.

Este capítulo abordará as bifurcações que podem ser identificadas utilizando-se o modelo de fluxo de carga e algumas técnicas de análise estática para identificação do ponto de colapso.

No final do capítulo será apresentada uma análise da curva QV e qual das técnicas apresentadas anteriormente foi a escolhida para desenvolver este trabalho, assim como os motivos desta opção.

2.2 FLUXO DE POTÊNCIA

O cálculo do fluxo de carga em uma rede de energia elétrica consiste na determinação do estado da rede, da distribuição de fluxos e de outras grandezas de interesse. A modelagem do sistema é estática, sendo a rede representada por um conjunto de equações algébricas. Esse tipo de representação é utilizado em casos onde as variações temporais das grandezas são suficientemente lentas, suprimindo assim os efeitos transitórios [22].

Os principais objetivos aliados ao fluxo de potência podem ser mencionados:

- O planejamento e projeto de novos sistemas;
- Reforço no sistema de transmissão;
- Planejamento da operação;
- Análise da estabilidade através das equações estáticas.

O objetivo é a determinação das variáveis de estado (tensão e ângulo) de todas as barras do sistema, permitindo verificar outras variáveis de interesse, tais como:

- Níveis de tensão em cada barra, já que estes não podem violar uma faixa aceitável em torno do valor nominal, 5%.
- Gerações de potências ativas e reativas em todas as máquinas, que não devem exceder os limites físicos destes elementos.
- Fluxos de potências ativas e reativas em todas as linhas de transmissão, que também são limitados pelas características nominais das linhas.

As equações básicas do fluxo de carga foram deduzidas pela aplicação das leis de Kirchhoff, resultando:

$$P_k = V_k \cdot \sum_{m \in k} V_m \cdot (G_{km} \cos \theta_{km} + B_{km} \sin \theta_{km})$$
(2.1)

$$Q_k = V_k \cdot \sum_{m \in k} V_m \cdot (G_{km} \operatorname{sen} \theta_{km} - B_{km} \cos \theta_{km})$$
(2.2)

Para k = 1, 2, ..., NB; sendo NB o número de barras. Os métodos computacionais para o cálculo do fluxo de carga geralmente são compostos de duas etapas:

- Algoritmo básico, resolução por métodos iterativos de um sistema de equações algébricas, equações 2.1 e 2.2.
- Outra parte do processo de resolução do problema considera a atuação de dispositivos de controle e a representação dos limites de geração de potência, e restrições de operação do sistema.

O cálculo de fluxo de carga em sistemas de potência, como dito acima, pode incorporar diversos controles e limites, de forma a se obter como resultado uma proximidade satisfatória da realidade. Estes limites têm especial influência no estudo de colapso de tensão, que também é abordado neste trabalho. Por esta razão, os estudos de fluxo de carga apresentados neste trabalho incorporam os limites de geração de potência reativa das unidades geradoras.

O cálculo de fluxo de carga em sistemas de transmissão (cujas linhas de transmissão apresentam alta relação X/R) é realizado, em geral, utilizando o Método de Newton, que será detalhado no Anexo I.

2.3 COLAPSO DE TENSÃO EM UM SISTEMA DE DUAS BARRAS

Para mostrar o problema de estabilidade de tensão será analisado um sistema de duas barras. Tal procedimento apresenta a situação de uma maneira bastante didática, facilitando o entendimento do fenômeno físico que pode ocorrer em um sistema de potência [5].

Seja o sistema composto por um gerador com capacidade infinita de geração com uma linha de transmissão sem limite térmico, conectando o gerador com uma carga P + j Q, conforme a Figura 2.1.

Figura 2.1: Sistema de duas barras.

As equações do fluxo de potência são representadas pelas equações de carga abaixo [5]:

$$P_{2} = -V_{2} \frac{V_{1}}{Z} \cos(\delta_{2} - \delta_{1} + \beta) + \frac{V_{2}^{2}}{Z} \cos(\beta)$$

$$Q_{2} = -V_{2} \frac{V_{1}}{Z} \sin(\delta_{2} - \delta_{1} + \beta) + \frac{V_{2}^{2}}{Z} \sin(\beta)$$
(2.3)

Com estas equações, pode ser gerado um gráfico cujas variáveis seriam a potência da carga em função de alguns valores de V₂ e δ_2 . A Figura 2.2 mostra a situação.

Figura 2.2: Três carregamentos para o sistema de duas barras.

O crescimento do carregamento está de acordo com o crescimento dos índices, ou seja:

$$P_1 < P_2 < P_3 e Q_1 < Q_2 < Q_3$$

As interseções definem os pontos de equilíbrio. Dependendo do carregamento, o sistema de equações pode apresentar as seguintes soluções:

- a) O sistema tem duas soluções: interseção de P_1 e Q_1 , pontos w_1 ' e w_1 ''.
- b) O sistema tem uma solução: P₂ e Q₂ se tangenciam no ponto w₂.
- c) O sistema não tem soluções: P3 e Q3 não se cruzam e não se tangenciam.

Informações úteis podem ser retiradas a partir destas curvas. Em primeiro lugar, percebese que existe um limite de carregamento que pode ser drenado pela rede, mesmo que a linha não tenha limite térmico. Este fato já era esperado e está de acordo com o teorema da máxima transferência de potência. Logo, o limite térmico pode ser encarado como um dos limites de carregamento do sistema.

Portanto, a carga (P, Q) onde existe apenas uma solução representa a máxima carga possível de ser atendida pelo sistema (ponto w_2) para um dado fator de potência. O fato das curvas de P constante e Q constante tocarem-se em um só ponto significa que os vetores gradiente ∇P e ∇Q estão alinhados nesse ponto, e então a seguinte relação pode ser escrita:

$$\nabla \mathbf{P} = \alpha \, \nabla \mathbf{Q} \tag{2.4}$$

ou

$$\nabla \mathbf{P} - \alpha \, \nabla \mathbf{Q} = 0 \tag{2.5}$$

Onde α é um escalar.

Definindo as variações incrementais de P e Q como:

$$\Delta P = \frac{\partial P}{\partial \theta} \Delta \theta + \frac{\partial P}{\partial V} \Delta V$$

$$\Delta Q = \frac{\partial Q}{\partial \theta} \Delta \theta + \frac{\partial Q}{\partial V} \Delta V$$
(2.6)

Então, os vetores gradiente de P e Q são:

$$\nabla P = \begin{bmatrix} \frac{\partial P}{\partial \theta} \\ \frac{\partial P}{\partial V} \end{bmatrix}$$
(2.7)
$$\nabla Q = \begin{bmatrix} \frac{\partial Q}{\partial \theta} \\ \frac{\partial Q}{\partial V} \end{bmatrix}$$

A partir da Equação (2.5) tem-se:

$$\frac{\partial \mathbf{P}}{\partial \theta} - \alpha \frac{\partial \mathbf{Q}}{\partial \theta} = 0$$

$$\frac{\partial \mathbf{P}}{\partial \mathbf{V}} - \alpha \frac{\partial \mathbf{Q}}{\partial \mathbf{V}} = 0$$
(2.8)

Como o Jacobiano do fluxo de potência é dado por:

$$J = \begin{bmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial V} \end{bmatrix}$$
(2.9)

Então, a solução da Equação (2.8) requer que o determinante do Jacobiano do fluxo de potência seja igual a zero, isto é:

$$\frac{\partial P}{\partial \theta} \frac{\partial Q}{\partial V} - \frac{\partial P}{\partial V} \frac{\partial Q}{\partial \theta} = 0$$
(2.10)

Portanto, isso significa que no ponto de máxima carga o Jacobiano torna-se singular.

Dessa forma, o fato da matriz Jacobiana J ser singular, significa que o seu determinante é nulo e pelo menos um dos seus autovalores será nulo. Assim sendo, no limite de estabilidade de tensão pelo menos um dos autovalores do Jacobiano do fluxo de potência é zero.

A Figura 2.3 mostra a curva PV para a barra de carga do sistema de duas barras, que consiste no módulo da tensão da barra de carga em função do carregamento, para três fatores de potência:

Figura 2.3: Sistema de duas barras mostrando a tensão vs potência para três fp

Na Figura 2.3 nota-se que até o carregamento máximo (ponto crítico), para cada fator de potência há dois valores de tensão, exceto no ponto crítico onde apenas um valor de tensão ocorre. Este ponto corresponde ao limite de carregamento.

Outro fato relevante é que quando o fator de potência se torna capacitivo pode-se carregar mais o sistema. No entanto, o ponto crítico pode ocorrer em níveis de tensão normais de operação.
A distância de um determinado ponto de operação de qualquer uma destas curvas até o ponto crítico é denominada margem de carga. Assim, novamente observando a Figura 2.3 nota-se que a margem de carga MC1 (cor vermelha) atinge certo valor de crescimento menor que MC2 (cor verde) e MC3 (cor azul) respectivamente.

A margem de carga é uma informação muito importante, pois, sabendo-se que o sistema perde a estabilidade a partir do ponto crítico, e conhecendo-se a margem de carga, serão adotadas medidas de controle para evitar o ponto de colapso ou amenizar o corte de carga.

A curva PV, sob certas condições, pode representar um tipo de bifurcação bastante estudada em estabilidade de sistemas elétricos. Na próxima seção serão esclarecidas as características deste tipo de bifurcação, chamada sela-nó, a única possível de ser detectada em análise estática, ou seja, considerando apenas as equações algébricas de fluxo de potência.

2.4 BIFURCAÇÕES EM SISTEMAS DE POTÊNCIA

A teoria da bifurcação descreve os modos como um sistema se torna instável [5]. O estudo do comportamento da solução de um sistema de equações não lineares pode ser obtido através da teoria da bifurcação. As análises de bifurcação requerem que o modelo do sistema seja especificado na forma de equações que contenham variáveis de estado e parâmetros. Um diagrama de bifurcação mostra a mudança de uma solução em conseqüência de variações dos parâmetros do sistema. Em sistemas de potência tem-se, como exemplo, o comportamento da tensão de uma barra em função da variação da carga. De todos os tipos de bifurcação, as bifurcações sela-nó e de Hopf são as mais comuns em estudos de estabilidade de tensão. Estas bifurcações podem ser detectadas em um sistema de potência, desde que um modelo dinâmico seja empregado. No entanto, caso o modelo estático de fluxo de carga seja utilizado, apenas a bifurcação sela-nó poderá ser detectada.

A bifurcação sela-nó é caracterizada pela existência de um autovalor real nulo, isto é, a matriz Jacobiana torna-se singular. Este tipo de bifurcação pode ser descrito pela equação (2.11):

$$\dot{x} = \lambda - x^2 \tag{2.11}$$

Na equação (2.11) acima, λ é o parâmetro que leva o sistema de um ponto de equilíbrio a outro. Os pontos de equilíbrio da equação acima definem uma parábola, desde que $\lambda \ge 0$. Para $\lambda > 0$ existem duas soluções, quais sejam: $+\sqrt{\lambda}$, que é o ponto de equilíbrio estável, e $-\sqrt{\lambda}$, que é o ponto de equilíbrio instável. Para $\lambda = 0$, existe apenas uma solução, que é o ponto de bifurcação. Para $\lambda < 0$ não existe solução. A matriz Jacobiana do sistema é obtida, como segue:

$$J = -2x \tag{2.12}$$

A análise da matriz Jacobiana identifica a estabilidade do sistema. Portanto, tem-se que, para x < 0 o autovalor é positivo, logo, o sistema é instável. Para x > 0 o autovalor é negativo, logo, o sistema é estável. As seguintes características da bifurcação sela-nó são identificadas: duas soluções tornam-se única no ponto de bifurcação, um autovalor nulo é identificado e após o ponto de bifurcação não existe solução.

Outra característica importante da bifurcação sela-nó é que, caso o elemento da matriz Jacobiana associado à maior entrada do autovetor à direita seja removido, a nova matriz Jacobiana não é mais singular. Este é um aspecto importante para o método da continuação, que será abordado mais adiante.

Figura 2.4: Diagrama de bifurcação sela-nó.

A Figura 2.4 mostra o diagrama de bifurcação, que apresenta o comportamento da variável de estado x em função do parâmetro de bifurcação λ . A linha cheia representa o ramo estável e a linha pontilhada representa o ramo instável. No ponto de bifurcação (0,0), o autovalor do sistema é nulo.

Além das características identificadas acima, a bifurcação selá-nó obedece ainda às seguintes condições de transversalidades [5]:

- Condição 1

Seja $f_x(x_0, \lambda_0)$, que possui um autovalor nulo com autovetor à direita v e à esquerda w, tal que:

$$D_{x}f|_{0}^{T}w = D_{x}f|_{0}v = 0$$
(2.13)

- Condição 2

$$w^{T} \frac{\partial f}{\partial \lambda} \Big|_{0} \neq 0$$
 (2.14)

- Condição 3

$$w^{T} \left[D_{x}^{2} f \right]_{0} v v \neq 0$$

$$(2.15)$$

Onde:

w representa o autovetor à esquerda da matriz jacobiana

v representa o autovetor à direita associado ao autovalor nulo.

 λ representa o parâmetro da carga.

 D_x derivadas do diagrama de bifurcação com relação às variáveis de estado.

A bifurcação de Hopf é caracterizada pela existência de um par de autovalores complexos com parte real nula da matriz Jacobiana dinâmica [5]. Neste caso, o comportamento dinâmico do sistema muda, passa do equilíbrio para uma condição oscilatória. Portanto, este tipo de bifurcação não pode ser identificado através do modelo estático do fluxo de carga. É possível encontrar este tipo de bifurcação em sistemas de potência, desde que seja utilizado um modelo dinâmico.

2.5 MÉTODO DA DECOMPOSIÇÃO DA MATRIZ JACOBIANA POR AUTOVALORES E VALORES SINGULARES

Este método consiste em, para um dado ponto de operação, escolher uma direção de crescimento de carga até que o ponto de colapso seja alcançado. À medida que se aumenta o carregamento do sistema, o menor autovalor diminui até se tornar nulo,

quando o ponto de colapso é identificado. Este fato faz com que a monitoração do menor autovalor seja importante.

Para cada ponto de operação obtido, calcula-se o menor autovalor e os autovetores associados da matriz Jacobiana reduzida J_{QV} do fluxo de carga, matriz esta que retém as relações Q - V do sistema, pois o foco do problema está nas características da potência reativa e tensão.

Como no ponto de colapso a matriz Jacobiana do fluxo de potência é singular, pode-se utilizar esta característica para analisar a estabilidade de um determinado sistema elétrico. A decomposição da matriz Jacobiana em autovalores ou valores singulares permite o acompanhamento do comportamento destes índices, pois, à medida que o sistema vai aproximando-se do ponto de colapso um autovalor (e um valor singular) aproxima-se de zero. A análise da instabilidade de tensão através desses índices são propostas em [23, 24, 25, 26, 27].

Partindo das relações:

$$JW = \Lambda W \tag{2.16}$$

$$J^{T}V = \Lambda V \tag{2.17}$$

W : Matriz de autovetores à direita

V : Matriz de autovetores à esquerda

 $\Lambda\,$: Matriz diagonal cujos elementos são autovalores de J

Mas:

$$J = W\Lambda W^{-1} \tag{2.18}$$

$$J^T = V\Lambda V^{-1} \tag{2.19}$$

Lembrando que Λ é matriz diagonal. E desta última expressão:

$$J = (V^{-1})^T \Lambda^T V^T$$
 (2.20)

Comparando com a expressão (2.18):

$$\Lambda^T = \Lambda \tag{2.21}$$

$$W = (V^{-1})^T$$
 ou $W^T = V^{-1}$ (2.22)

Então a matriz Jacobiana pode ser decomposta em:

$$J=W\Lambda V^{T}$$
(2.23)

E considerando as equações de fluxo de potência linearizadas:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = J \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix}$$
(2.24)

Assumindo que os autovalores da matriz J estejam dispostos na forma: $\lambda_1 > \lambda_2 > ... > \lambda_n$ e que λ_n seja zero, J singular. Então:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} W \Lambda V^T \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix}$$
(2.25)

Ou

$$\begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix} = \begin{bmatrix} W \Lambda^{-1} V^T \end{bmatrix} \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}$$
(2.26)

Por que:

$$\left[W\Lambda V^{T}\right]^{-1} = \left[V^{T^{-1}}\Lambda^{-1}W^{-1}\right] = \left[W\Lambda^{-1}V^{T}\right]$$
(2.27)

Assumindo que próximo ao ponto de colapso a última coluna de V (associada ao menor autovalor) seja $\left[\frac{\Delta P}{\Delta Q}\right]$ dada por tem-se:

$$y_n = w_n \lambda_n y_n^T \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix}$$
(2.28)

Ou

$$\begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix} = (w_n \lambda_n y_n^T)^{-1} y_n = w_n \lambda_n^{-1} (y_n^T y_n)$$
(2.29)

Como $y.y^{T} = 1$, pois são ortonormais, logo:

$$\begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix} = w_n \lambda_n^{-1} \tag{2.30}$$

Na equação (2.30) pode-se determinar o ponto crítico, bastando para isso, determinar o ponto de operação cuja matriz Jacobiana apresenta um autovalor bem próximo de zero. Além desta informação esta equação revela outras propriedades. Quando o sistema estiver próximo ao ponto de colapso, as referências [5, 25] interpretam que:

- O autovetor à direita relativo ao mínimo autovalor indica as barras sensíveis às variações de tensão e ângulo.
- O autovetor à esquerda relativo ao mínimo autovalor indica as barras sensíveis às variações de injeção de potências ativa e reativa.

Desta maneira, os maiores elementos de w_n irão indicar as barras onde a tensão irá cair mais pronunciadamente quando o sistema estiver próximo ao ponto de colapso [5].

Este procedimento é uma maneira bastante difundida para determinar as barras mais críticas do sistema elétrico. Entretanto, mais adiante será abordada uma técnica de classificação mais vantajosa que é o vetor tangente.

De maneira semelhante, pode-se desenvolver para a decomposição da matriz Jacobiana em valores singulares, chegando em:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \sum_{i=1}^{n} \sigma_{i}^{-1} r_{i} s_{i}^{T} \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix}$$
(2.31)

Onde:

- r1 : Vetor singular à direita relativo ao i-ésimo valor singular.
- s1 : Vetor singular à esquerda relativo ao i-ésimo valor singular.
- σ 1 : i-ésimo valor singular.

Portanto, a análise consiste em analisar o autovetor (vetor singular) de interesse associado ao menor autovalor (valor singular), para cada ponto de operação, em uma determinada direção de crescimento de carga, até chegar próximo ao ponto de colapso.

No entanto, na referência [17] mostrou-se que estes índices sofrem variações bruscas perto do ponto crítico. Isto significa que a barra crítica só será conhecida quando o sistema estiver praticamente na bifurcação sela-nó, dificultando ações de controle.

2.6 MÉTODO DA CONTINUAÇÃO

O método da continuação consiste em traçar a curva PV de uma ou várias barras do sistema. Levantada a curva PV, obtêm-se as informações necessárias para a análise de estabilidade de tensão: margem de carga (MC) e o ponto de colapso.

A partir de um determinado ponto de operação conhecido x_0 , através de sucessivos incrementos de carga traça-se a curva PV, que em termos específicos, equivale ao diagrama de bifurcação. Para levantar esta curva utilizando um fluxo de carga convencional, sérios problemas de convergência seriam encontrados, pois, como já mencionado, no ponto de colapso a matriz Jacobiana é singular, e próximo a este ponto a matriz é mal condicionada.

Em [28] é detalhado o método da continuação e sua aplicação em sistemas não-lineares genéricos. Vários autores já utilizaram diferentes implementações do método para traçar curvas PV [21, 29, 30, 31].

O método da continuação é capaz de traçar toda a curva PV, inclusive a parte de baixo da curva, porque utiliza técnicas que evitam a singularidade da matriz Jacobiana. Para tanto, o método é dividido em três fases:

- > Previsor
- Corretor
- Parametrização

Considerando as variáveis de estado \mathbf{x} de um fluxo de potência e o parâmetro λ que leva o sistema de um ponto de equilíbrio a outro, a equação que representa o sistema de equações do fluxo de potência dadas estas modificações é:

$$\mathbf{f}(\mathbf{x},\lambda) = 0 \tag{2.32}$$

Portanto, até chegar próximo ao ponto de sela-nó são necessários dois passos:

- a) Previsor: Dada uma direção de crescimento de carga ($\Delta\lambda$) acham-se os novos incrementos das variáveis de estado (Δx).
- b) Corretor: Corrijam-se os valores das variáveis de estado, obtidas em a, resolvendo $f(x, \lambda) = 0$, garantindo o novo ponto de equilíbrio.

Quando o sistema elétrico estiver no ponto de bifurcação o conjunto de equações pode não convergir. Então, para obter uma solução é necessário fazer a parametrização, que é a utilização de outra incógnita como parâmetro de solução, removendo a singularidade da matriz Jacobiana. A parametrização só é necessária no ponto de bifurcação, quando o método for determinar a parte inferior, a partir deste ponto, retorna-se aos procedimentos anteriores, ou seja, cálculo dos passos previsor e corretor sem parametrização. Na prática a parametrização pode não ser necessária, basta desconsiderar o ponto não convergido e continuar o processo decrescendo o carregamento. Desta maneira também é traçado a parte inferior da curva PV sem comprometer a margem de carga.

2.6.1 Previsor

Dado que o sistema esteja num ponto da curva PV, ponto x_0 na Figura 2.5 a seguir:

Figura 2.5: Método continuado.

Para obter x_1 ' o previsor pode utilizar uma extrapolação polinomial ou utilizar a tangente à curva no ponto x_0 . O previsor tipo polinomial de ordem 1 necessita das duas últimas soluções para indicar a estimativa da subseqüente.

Previsor de ordem superior necessita de um número maior de soluções no ponto que se quer calcular [32].

Um previsor do tipo tangente necessita do cálculo da tangente no ponto precedente ao que se quer calcular.

O previsor adotado com sucesso no método da continuação é o previsor pelo vetor tangente, detalhado a seguir.

Novamente assumindo as equações do fluxo de potência:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix}$$
(2.33)

O incremento de carga é dado por:

$$P = P_0(1 + \Delta\lambda)$$

(2.34)

$$Q = Q_0(1 + \Delta \lambda)$$

Portanto:

$$\Delta P = P - P_o = P_o \Delta \lambda$$

$$\Delta Q = Q - Q_o = Q_o \Delta \lambda$$
(2.35)

Po = Carga ativa inicialmente ligada à barra.

Qo = Carga reativa inicialmente ligada à barra.

Substituindo na Equação (2.33) e desenvolvendo:

$$\begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix} = \begin{bmatrix} J \end{bmatrix}^{-1} \begin{bmatrix} P_o \\ Q_o \end{bmatrix} \Delta \lambda$$
(2.36)

O vetor tangente $\Delta V / \Delta \lambda$ é finalmente obtido:

$$\begin{bmatrix} \frac{\Delta\theta}{\Delta\lambda} \\ \frac{\Delta V}{\Delta\lambda} \end{bmatrix} = \begin{bmatrix} J \end{bmatrix}^{-1} \begin{bmatrix} P_o \\ Q_o \end{bmatrix}$$
(2.37)

O vetor tangente é diretamente obtido pelo produto da inversa da matriz Jacobiana do fluxo de carga pelo vetor carga inicial de cada barra de carga.

Chamando $\frac{\Delta \chi_1}{\Delta \lambda_1} = t_1$, pode-se regular o tamanho do passo através de:

$$\Delta \lambda_{\rm l} = \frac{k}{\|t_{\rm l}\|} \tag{2.38}$$

Onde k é uma constante e $\|t_1\|$ é a norma de t₁. Desta forma, as variáveis de estado são obtidas:

$$\Delta x_1 = k \frac{t_1}{\|t_1\|} \tag{2.39}$$

Portanto, quanto mais inclinada for a curva, menor o tamanho do passo. A velocidade do processo depende de k na seguinte forma:

$$k \begin{cases} =1 \Rightarrow normal \\ >1 \Rightarrow acelerado \\ <1 \Rightarrow lento \end{cases}$$

2.6.2 Corretor

Observando a figura 2.5, o passo previsor leva o processo de x_0 até x_1 '. Então, o objetivo do passo corretor é estabelecer uma solução para o sistema a partir do ponto x_1 '. Esta solução procurada é um ponto próximo a x_1 ' mas que esteja na curva PV, na figura seria o ponto x_1 .

O método a ser utilizado no passo corretor é o Newton-Raphson. Para garantir que não haja problemas de convergência na determinação de x_1 , uma nova equação é acrescentada às equações de fluxo de potência.

$$f(x, \lambda) = 0$$

$$\rho(x, \lambda) = 0$$
(2.40)

A segunda equação acima é uma equação extra e pode ser obtida através da interseção perpendicular entre os vetores previsor e corretor, obtendo:

$$\rho(x,\lambda) = \begin{bmatrix} \Delta x_1 \\ \Delta \lambda_1 \end{bmatrix}^T \begin{bmatrix} x - x_1 - \Delta x_1 \\ \lambda - \lambda_1 - \Delta \lambda_1 \end{bmatrix} = 0$$
(2.41)

$$\rho(x, \lambda) = \Delta x_1 (x - x_1 - \Delta x_1) + \lambda_1 (\lambda - \Delta \lambda_1 - \lambda_1) = 0$$
(2.42)

Iniciando o processo em $(x_1 + \Delta x_1, \lambda_1 + \Delta \lambda_1)$ esta solução converge para (x_2, λ_2) .

A desvantagem deste método consiste no alto esforço computacional exigido para sistemas de potência de grande porte.

Outra maneira bastante prática é fazer o passo corretor utilizando um fluxo de potência, com as condições iniciais do ponto x_0 . Para tanto, o passo previsor não pode ser muito longo, senão pode-se passar do ponto ideal para fazer a parametrização. Neste trabalho o método da continuação sempre fará o passo corretor desta maneira.

2.6.3 Síntese do método da continuação

A Figura 2.6 ilustra o significado dos passos previsor e corretor, cuja descrição matemática foi realizada. Considerando-se um determinado ponto de operação (x^i, λ^i) conhecido, pode-se estimar no passo previsor um novo ponto $(x^i + \Delta x^i, \lambda^i + \Delta \lambda^i)$. Entretanto esse ponto não é solução de f $(x, \lambda) = 0$, a qual será determinada no passo corretor e corresponderá ao ponto (x^{i+1}, λ^{i+1}) :

Figura 2.6: Processo do método da continuação.

O resultado de repetidas execuções dos passos previsor e corretor é um conjunto de pontos que formam o diagrama de bifurcação, onde a margem de carga será dada pela parcela de carregamento que, ao ser adicionada à carga inicial, fará com que o sistema atinja o ponto crítico ("nariz" da curva P-V).

A robustez e os resultados precisos fornecidos pelo método da continuação fazem com que essa técnica seja usada em diversas referências [21, 35, 36].

2.7 MÉTODO DO VETOR TANGENTE

Na seção anterior foi mostrada a utilização do vetor tangente para determinar o passo previsor no método da continuação. Também foi demonstrado como explicitar o vetor tangente, equação (2.37). Nesta seção serão mostradas outras técnicas, utilizando o vetor tangente para determinar o ponto de bifurcação tipo sela-nó e a margem de carga.

Sabe-se que o vetor tangente converge para o autovetor à direita associado ao autovalor nulo [33]. Portanto, a sensibilidade do vetor tangente está também associada às variações de tensão e ângulo. E pela mesma razão (convergência do vetor tangente com autovetor à direita) pode-se concluir que a maior componente em módulo do vetor tangente indica a variável mais sensível no ponto de bifurcação. Além do mais, sabe-se que no ponto de colapso variações infinitesimais na carga produzem grandes variações de tensão e ângulo. Logo, neste ponto, os elementos do vetor tangente são muito grandes e o inverso de cada um tende para zero.

Diante dessas características do vetor tangente, as referências [46, 47] apresentam uma nova metodologia, com um significativo ganho de custo computacional em relação ao método da continuação. O ponto de sela-nó é determinado por extrapolação, admitindo que o inverso da maior componente do vetor tangente tem um comportamento quadrático. A justificativa deste comportamento quadrático é apresentada em [48].

Outra facilidade da utilização do vetor tangente é o fato da maior componente deste vetor indicar a barra mais sensível, isto é, uma pequena variação de carregamento provoca grandes variações de tensões e ângulos, caracterizando a barra mais susceptível ao colapso de tensão em um determinado ponto de operação. A referência [49] mostra que a barra crítica no ponto de colapso é identificada com certa antecedência com relação ao ponto de sela-nó, comparado com algumas metodologias apresentadas na literatura (menor autovalor, menor valor singular, determinante reduzido).

Um aspecto bastante interessante desta metodologia é a sua aplicação em sistemas de potência considerando os limites de geração de potência reativa das barras PV. E isto é fundamental, porque é uma característica dos sistemas reais. Como mostrado em [5], essa consideração altera não só o cálculo do ponto crítico como também a classificação das barras mais sensíveis.

2.8 MÉTODO DIRETO

O método direto encontra o ponto de bifurcação (x_0, λ_0) sem, no entanto, traçar o diagrama de bifurcação. Desde que o ponto de colapso não pode ser identificado utilizando-se um programa de fluxo de carga convencional, devido à singularidade da matriz Jacobiana, o método direto consiste em achar iterativamente o ponto de colapso através do método de Newton-Raphson modificado [12,37]. A modificação para permitir a solução consiste no acréscimo, ao conjunto de equações do fluxo de carga, de equações que caracterizam o ponto de bifurcação. Portanto, o método direto pode ser equacionado da seguinte forma:

$$f(x,\lambda) = 0 \tag{2.43}$$

$$D_x f(x,\lambda) v = 0 \tag{2.44}$$

$$\|v\| \neq 0 \tag{2.45}$$

A primeira equação (2.43) representa o diagrama de bifurcação, a segunda equação (2.44) representa a imposição de singularidade e a terceira (2.45) garante que o autovetor obtido na equação (2.44) seja não nulo, isto é, a solução seja não trivial. Portanto, o sistema de equações tem dimensão 2n + 1.

O método direto identifica corretamente o ponto de colapso, porém requer uma boa estimativa inicial para obter convergência, isto é, necessita do conhecimento de um ponto de operação próximo a (χ_0, λ_0) A estimativa inicial para v pode ser obtida pelo vetor tangente associado ao primeiro ponto de operação. Podem ocorrer também problemas quando os limites de geração de potência reativa são considerados, uma vez que a estrutura da matriz Jacobiana se modifica de acordo com o carregamento do sistema.

2.9 TÉCNICA DA FUNÇÃO ENERGIA

Os métodos de função energia foram inicialmente empregados em sistemas de potência em análises de estabilidade transitória [38, 39, 40, 41]. Esses métodos são baseados nos teoremas de Lyapunov e consistem em avaliar a energia total (cinética e potencial) de um

sistema de potência durante um distúrbio. Em estudos de estabilidade transitória, existe o interesse de se determinar o tempo crítico de abertura de disjuntores para eliminação do distúrbio, de modo que o sistema se mantenha estável. Para isso, é necessário que a energia máxima que o sistema pode vir a ter durante o tempo da falta deve ser igual a um nível de energia associado a uma condição pós-falta. Esta metodologia determina o tempo crítico de abertura para o qual o sistema se mantém estável.

A utilização do método de função energia para a análise de estabilidade de tensão é mais recente e também pode produzir resultados interessantes [42, 43, 44, 45]. Neste caso, apenas a energia potencial do sistema é necessária, dispensando a inclusão do amortecimento e dos modelos complexos dos geradores. Conceitualmente, a aplicação da função energia em análises de estabilidade de tensão baseia-se na medida de diferença de energia entre a solução estável e a solução instável. De acordo com resultados apresentados em [42, 43, 44, 45], essa diferença de energia é um bom indicativo da distância do sistema para o colapso de tensão. À medida que aumenta o carregamento do sistema, a distância entre as soluções estável e instável se reduz e a energia do sistema decresce de forma quase linear. No ponto de colapso, as soluções estáveis e instáveis tornam-se uma só e a energia do sistema tende a zero. Este comportamento quase linear da energia possibilita, de qualquer ponto de operação, uma boa estimativa da distância até o ponto de colapso e, consequentemente, a obtenção de informações a respeito da margem de carga do sistema.

2.10 TABELA RESUMO DAS TÉCNICAS APRESENTADAS

A tabela 2.1 a seguir apresenta as principais vantagens e desvantagens das ferramentas estáticas contidas neste capítulo:

Método	Vantagens	Desvantagens		
Autovalor e valor singular	Detecta o ponto de colapso.	Mudança brusca de comportamento. Não determina a barra crítica com antecedência.		
Método da continuação	Precisão na resposta – Diagrama de bifurcação traçado	Alto tempo computacional		
Vetor tangente	Extrapolação possível e identificação da barra crítica com antecedência. Baixo custo computacional.	Comportamento não previsível		
Método direto	Determina o ponto crítico diretamente.	Convergência depende dos valores iniciais e tende a falhar quando os limites de geração reativa são considerados.		
Técnica da função de energia	Comportamento linear para alguns sistemas.	Limitação de modelos de carga. Solução instável.		

Tabela 2.1 - Vantagens e desvantagens da ferramenta estática

2.11 ANÁLISE DA CURVA QV EM ESTABILIDADE DE TENSÃO

A estabilidade de tensão depende de como a variação de Q e P afeta as tensões nas barras de carga. A influência das características da potência reativa de alguns equipamentos no lado receptor do sistema (carga ou equipamentos de compensação) é mais visível na relação QV. Esta relação mostra a sensibilidade da tensão na barra com a absorção ou geração da energia reativa [1].

A Figura 2.7 mostra a fronteira de estabilidade de tensão no ponto onde a variação da potência reativa com relação à tensão se torna zero, isto é, a derivada dQ/dV é zero. Este ponto também define a potência reativa mínima requerida para manter o ponto de operação estável [1].

Figura 2.7: Curva característica da relação QV.

Um acréscimo da potência reativa Q resulta também num aumento da tensão durante as condições normais de operação. Desta forma, se o ponto de operação estiver do lado direito da curva QV (cor verde na figura 2.7), o sistema é dito estável e os casos processados convergentes. Por outro lado, pontos de operação que se encontram na parte esquerda da curva (cor vermelha na figura 2.7) conduzem o sistema à instabilidade, o que leva os casos de fluxo de potência a uma difícil convergência e às vezes inclusive à não convergência.

A Margem de Carga Reativa de uma determinada barra é definida como a distância do ponto mínimo de sua curva QV ao eixo das abscissas (eixo das tensões), Q_{min} na figura 2.7. Uma característica importante da Margem de Carga Reativa é que a medida que se aproxima do ponto de colapso todas as barras do sistema apresentam uma diminuição em sua Margem de Carga Reativa, tal como mostrada na Figura 2.8 a seguir:

Figura 2.8: Relação da curva PV e das curvas QV.

Desta forma, como pode ser observada na Figura 2.8, à medida que os pontos p_1 , p_2 e p_3 tendem ao colapso, as margens de carga reativa vão diminuindo até se tornarem nulas. Inclusive para algumas barras do tipo PV (cor azul na Figura 2.8), estas margens se tornam positivas, mostrando que para esses níveis de carregamento do sistema, ela (a barra) esta suprindo essa quantidade de potência reativa para manter os níveis de tensões especificados nos casos de fluxo de potência e a possibilidade de convergência do mesmo.

2.12 CONCLUSÕES

Neste capítulo foi apresentado o problema da instabilidade de tensão. A abordagem teórica utilizando um sistema com duas barras ajuda a entender o fenômeno com bastante propriedade.

Quanto às ferramentas de análise estática, apesar de todas serem fundamentadas matematicamente, demonstram eficiências variadas, e são apropriadas para estudos

específicos, como toda ferramenta de estudo de estabilidade, inclusive as de análises dinâmicas.

Poucos métodos apresentam resultados satisfatórios quando os limites de geração reativa das barras PV são considerados: continuação, vetor tangente e direto.

O método da continuação foi a técnica utilizada no programa desenvolvido na referência [50], e utilizado neste trabalho.

Um ponto ressaltante observado da curva PV é que a mesma oferece dados sobre o sistema elétrico de forma complementar, como por exemplo: máximo carregamento do sistema elétrico (ponto de colapso), barras mais críticas segundo sensibilidade de variações de tensão e ângulo, áreas com escassos recursos ou suporte de potência reativa.

Por outro lado, estudos com a curva QV oferecem informações particularmente importantes da barra, seja com relação à estabilidade do sistema, bem como a quantificação do seu suporte reativo através da margem de carga reativa. Desta forma as duas metodologias complementam conhecimentos sobre colapso de tensão, levando com isto a motivação deste trabalho: ampliar as investigações sobre a função da curva QV em sistemas elétricos sujeitos a elevados carregamentos e analisar futuras obras de planejamento tomando em consideração as mencionadas curvas.

Por último, outra grande vantagem das técnicas estáticas não é apenas a determinação da margem de carga, mas também a identificação dos elementos críticos e indicação das ações necessárias com a finalidade de melhorar o desempenho do sistema elétrico como um todo.

CAPÍTULO 3

ALTERNATIVA PARA A UTILIZAÇÃO DA CURVA QV

3.1 INTRODUÇÃO

Este trabalho tem como objetivo principal definir a priorização de obras de planejamento através da análise do comportamento da curva QV das barras de um determinado Sistema Elétrico de Potência associadas às futuras obras de expansão, previstas no planejamento de empresas do setor elétrico.

Pretende-se desta forma, verificar com a utilização da referida curva, se os efeitos relacionados à escolha de uma determinada obra de transmissão, maximizam o aporte na margem de carga reativa do sistema. A maximização da margem de carga reativa (MCR) pela inclusão de uma determinada obra de expansão fará também com que a margem de carga (MC) do próprio sistema elétrico fique acrescentada.

Desta forma, com a metodologia a ser apresentada e com os testes e as simulações realizados, verifica-se que a implementação deste trabalho, apresenta resultados alentadores.

3.2 CONSIDERAÇÕES E VANTAGENS DA CURVA QV

Informações obtidas da WSCC (The Western Systems Coordinating Council), cujos membros integram regiões do Oeste da América do Norte (Canadá, México e Estados Unidos), indicam que a referida companhia tem utilizado a técnica da curva QV para tratar as ocorrências relacionadas ao colapso de tensão no sistema elétrico americano [52]. Neste sistema as linhas de transmissão operam em temperaturas bem mais elevadas se comparadas com as linhas em território brasileiro. As linhas de transmissão de energia no Brasil geralmente operam em temperaturas de 50°, 60°, 75°C ou no máximo 90°C; enquanto que as linhas nos EUA chegam a 150°C, em condições normais de operação. Por causa disto, os americanos investem maciçamente em equipamentos que monitoram a

corrente, a tensão, a velocidade do vento e a temperatura nas linhas de transmissão. Investem também em programas de manutenção preventiva, controlando as condições das juntas e emendas dos cabos condutores através da observação de radiografias e análise dos pontos quentes com aparelhos termovisores [53]. Um sistema nestas condições operativas é mais susceptível à ocorrência de eventos que culminem em colapso de tensão, uma vez que as linhas de transmissão operam com capacidades térmicas mais elevadas.

O método da curva QV oferece uma visualização possível do desempenho do sistema elétrico durante ocorrências que podem comprometer a estabilidade do sistema, podendo mostrar ainda as possíveis localizações das reservas de potência reativa como ações de controle, evitando desta maneira que o sistema se direcione ao colapso. Atualmente, alguns programas de fluxo de potência já trazem o cálculo da curva QV introduzido no seu algoritmo, o ANAREDE e o POWERWORD são exemplos.

O método da CURVA QV é utilizado para dimensionar ações de controle de despacho de potência reativa e oferece as seguintes vantagens [53]:

- A deficiência de potência reativa na barra analisada é dada de imediato pelo valor de potência reativa gerado pelo compensador, isto é, no gráfico da curva QV isto é observado facilmente.
- A inclinação da curva indica o quanto a barra em análise é sensível às alterações de tensão.
- As curvas QV traçadas para diversas barras podem ser sobrepostas em um mesmo gráfico. No ponto mínimo de cada curva as fontes de potência reativa estão operando próximas ao limite de geração. Dessa maneira visualiza-se a importância de cada barra na estabilidade do sistema elétrico.

Logo, a utilizando de uma rotina de programação faz com que o método se torne eficiente, pois para pequenas variações na escala de tensão, a convergência leva algumas iterações apenas.

3.3 ANÁLISE DA CURVA QV

A análise da curva QV proporciona uma ferramenta muito interessante com relação à verificação da proximidade de um eventual ponto de colapso de tensão.

Se existirem insuficientes ou ineficientes dispositivos de controle de tensão para uma determinada área de elevada transmissão de energia elétrica, as conseqüências poderiam finalizar num *blackout*. Logo, por outro lado, mesmo possuindo suficientes dispositivos de controle de tensão que suportem determinadas contingências, é recomendável mesmo assim, possuir ou manter uma quantidade de margem de carga reativa para eventuais variações nas condições do sistema, tais como:

- A maior parte dos componentes de um sistema (como por exemplo, segmentos de capacitores em série) é normalmente assumida estar conectada, mas poderia algumas vezes não estar habilitada.
- O fluxo de potência numa linha de transmissão altamente carregada poderia ser maior do que o esperado (erro de medição ou de mercado).
- A carga no sistema para um determinado dia poderia sofrer mudanças não esperadas (prognóstico do tempo, elevadíssimas ou baixíssimas temperaturas registradas).

Desta forma, considerando os efeitos destes tipos de variações e outras, é importante enfocar a nossa atenção para a determinação da margem de carga reativa requerida para as barras de um determinado sistema de potência.

3.4 OBTENÇÃO DA CURVA QV

Os passos para o procedimento da obtenção da curva QV, e desta maneira obter também a margem de carga reativa de uma dada barra, são indicados a seguir:

1) Ajustar o sistema num caso de fluxo de potência às condições de operação de interesse.

2) Identificar a barra crítica do sistema para esta condição. Esta barra geralmente está entre as que possuem as menores margens de carga reativa. Esta barra crítica poderá mudar para outras topologias do sistema.

3) Introduzir na barra onde se quer traçar a curva QV um gerador síncrono fictício com os seus limites abertos, ou simplesmente transformá-la em barra do tipo PV.

4) Variar a tensão de saída no gerador síncrono em pequenos passos (usualmente 0.01 pu ou menos).

5) Resolver o caso de fluxo de potência.

6) Guardar a tensão da barra monitorada (V) e a potência reativa fornecida pelo compensador síncrono fictício(Q).

7) Repetir os passos 4 a 6 até que pontos suficientes tenham sido obtidos.

8) Traçar com os pontos obtidos a curva QV e verificar a margem de carga reativa obtida.

Analisando a curva QV mostrada na Figura 3.1, nota-se que o mínimo ponto obtido (onde dQ/dV = 0) na curva, é um ponto crítico, isto é , todos os pontos da curva do lado esquerdo são assumidos ser instáveis, e os pontos do lado direito estáveis. Isso porque, do lado direito da curva, um aumento na geração de potência reativa se traduz em um aumento no nível de tensão, enquanto que o contrário se observa no lado esquerdo.

Se o mínimo ponto da curva QV se encontra acima do eixo horizontal (V), o sistema se encontra com déficit de potência reativa e um incremento (compensação) adicional de potência reativa é requerido para prevenir o colapso de tensão. Este incremento adicional deve ser adequado de tal forma a ter certeza que o novo ponto de operação seja confiável e seguro, do ponto de vista da tensão.

Por outro lado, se o ponto mínimo da curva QV se encontra por baixo do eixo horizontal (V), existe margem da carga reativa e outro incremento de potência reativa poderá ser alocado, desde que se deseje aumentar a referida margem.

Instabilidade e colapso de tensão são influenciados pelas características dinâmicas das cargas e equipamentos de controle da tensão. O colapso de tensão parte das barras mais sensíveis (grandes variações de tensão e ângulo para pequenas variações da carga) do sistema e se espalha para as outras barras sensíveis. Desta maneira, a importância do uso das técnicas de análise usando as curvas QV se acentuam para as barras mais sensíveis ou críticas de um determinado sistema de potência [52].

Figura 3.1: Curva QV

3.5 MÉTODO CONTINUADO QV

O termo "Continuado QV" é uma maneira abreviada de descrever: "Método da Continuação para Calcular a Curva QV".

O método utiliza técnicas matemáticas que racionalizam as etapas, de forma a melhorar o desempenho dos cálculos computacionais. É muito semelhante ao Método da Continuação para cálculo da curva PV, difundido na literatura.

O continuado QV avança de maneira controlada, com passos variados de tensão, acelerando ou diminuindo a velocidade de processamento conforme a sensibilidade do Jacobiano, até atingir o ponto de mínimo.

Uma ideia interessante mostrada na referencia [9], é que a curva QV é obtida das soluções das equações algébricas do sistema de potência com a metodologia CRIC ("Constrained Reactive Implicit Coupling"). Isso permite a incorporação de ganhos significativos de tempo computacional, haja vista que no levantamento de uma curva QV, sucessivos pontos de equilíbrio são determinados, e o problema torna-se severo quando o objeto de análise é um conjunto significativo de barras do sistema elétrico.

A metodologia CRIC foi desenvolvida por J.L. Carpentier [54], cujo princípio é baseado em duas idéias:

- Durante o ciclo de potência reativa as injeções de potência ativa são mantidas constantes.
- Durante o ciclo de potência reativa, manter as injeções de potência ativa constantes é equivalente a manter constantes os fluxos de potência ativa nos ramos.

Com essas duas idéias, é possível montar um método desacoplado com relação aos cálculos dos ângulos e amplitudes das tensões. Entretanto, é possível resgatar a influência das matrizes desprezadas, M e N, quando da formação do Jacobiano CRIC no cálculo da amplitude das tensões nas barras [50].

A seguir é explicada de maneira abreviada a proposta do continuado QV, que pode ser aplicado adotando qualquer metodologia de convergência das equações de fluxo de potência.

Basicamente o método consiste em, a partir de um ponto de equilíbrio, determinar o tamanho do passo da tensão e corrigir as tensões das outras barras para facilitar o processo de convergência.

Tamanho do Passo

O tamanho do passo da tensão é dado por:

$$\lambda = \frac{k}{\|V_Q\|} \tag{3.1}$$

Onde:

➢ k é constante que acelera ou diminui o tamanho do passo.

 $ightarrow \|V_Q\|$ é a norma euclidiana do vetor V_Q

Por sua vez, V_Q seria dado por:

$$V_{Q} = J^{-1}Q_{1} \tag{3.2}$$

Onde:

J é o Jacobiano do fluxo de carga, considerando a barra que está sendo traçada a curva QV como do tipo PQ. Essa alteração é para determinar o índice de parada, que será explicado mais à frente. Ql é um vetor esparso formado com zeros em todas as posições, exceto na posição correspondente à carga reativa da barra considerada, que assume um valor unitário, ou seja:

$$Q_{1} = \begin{bmatrix} 0\\0\\1\\.\\0 \end{bmatrix}$$
(3.3)

Correções das tensões nas barras

Por sua vez, as correções das tensões nas barras PQ são dadas por:

$$\Delta V = k * \frac{V_Q}{\|V_Q\|} \tag{3.4}$$

Ressalta-se que, no processo iterativo de convergência, a barra em que está sendo traçada a curva QV é considerada como PV. Entretanto, para se calcular o passo e as correções das tensões, a mesma é considerada como PQ. A razão para este procedimento é que desta forma o índice de parada (I_Q) torna-se nulo no ponto de inflexão da curva QV [9]. O esforço computacional neste caso não é considerável, e esta transformação é feita após a convergência do conjunto de equações de fluxo de potência.

Observe que nesta metodologia o tamanho do passo da tensão onde a curva QV está sendo traçada é variável e sensível ao Jacobiano. Desta forma, quando o ponto de equilíbrio estiver distante do ponto de mínimo da curva QV os passos serão maiores, e menores quando estiver próximo ao ponto de inflexão.

3.6 CRITÉRIOS DE PARADA

Na metodologia do Continuado QV são adotados dois critérios de parada, lembrando que a adoção de critérios de parada parte da suposição que se deseja traçar apenas a parte estável da curva QV. Estes critérios são:

 Monitorar a potência reativa gerada (Q_G), calculada para a curva QV. Quando o seu módulo diminuir, penetrando dentro de certa região (muito próxima do mínimo), significa que o ponto de mínimo foi obtido. 2. Monitorar o índice I_Q. Este índice tende a zero no ponto de mínimo da curva QV [9]. IQ é um indicador que aponta com precisão a proximidade do mínimo da curva QV, servindo como um critério de interrupção do cálculo dos pontos da curva. Isso é interessante, porque na proposta de continuado da curva QV, os passos são menores à medida que a referida curva se aproxima do ponto de mínimo. Outra vantagem reside no fato de avaliar a situação quando houver divergência das equações de fluxo de potência. Em outras palavras, as equações de fluxo de potência divergem, e o critério "1" nunca será alcançado, mas ao analisar o índice I_Q do último ponto convergido, conclui-se que este pode ser considerado como de inflexão.

O índice I_Q é dado por:

$$I_{\mathcal{Q}} = V_{\mathcal{Q}}^{\ t} J V_{\mathcal{Q}} \tag{3.5}$$

A Figura 3.2 mostra o comportamento da curva QV e do índice I_Q . Ressalta-se que I_Q é nulo no ponto de mínimo da curva QV. Como I_Q tende a zero, se o processamento for interrompido conforme um valor pré-estabelecido, por exemplo, I_Q menor do que 0.01, não haverá perdas significativas no cálculo da potência reativa gerada. Entretanto, fluxos de potência não deverão ser processados numa região onde a probabilidade de instabilidade numérica é grande. Logo, evitar este processamento é um benefício computacional bastante interessante.

Figura $3.2 - Curvas QV e I_Q$

3.7 METODOLOGIA ADOTADA PARA A REALIZAÇÃO DESTE TRABALHO

Para permitir estudar todas as barras de cada sistema, independentemente do número de barras, uma rotina computacional foi desenvolvida para calcular a margem de carga reativa (MCR) de todas elas automaticamente [50]. Este procedimento permite classificar as barras de uma rede elétrica de acordo com o tamanho da MCR, facilitando desta forma as conclusões a respeito do assunto, uma vez que o analista tem uma visão global do que está acontecendo no sistema em análise.

Esta rotina computacional desenvolvida, também permite calcular a margem de carga reativa de todas as barras para todos os pontos operativos da curva PV. É interessante notar que o programa possibilita ao analista visualizar o comportamento do sistema numa direção de crescimento da carga. A possibilidade de calcular a MCR das barras durante a curva PV é recomendada em fase final de estudos operativos ou de planejamento. O cálculo da curva QV é um procedimento auxiliar de análise, isto é, ela é um complemento ao cálculo da curva PV, oferecendo ao analista orientações claras com relação às ações de controle a serem consideradas, ou estabelecer quais as obras que mais contribuirão para aumentar o suporte de potência reativa do sistema elétrico (objetivo deste trabalho).-

Então, nas simulações será observado o comportamento da curva QV para vários pontos operativos, numa trajetória em que o ponto inicial é o caso base, e o ponto final é o ponto de colapso do sistema. Após identificar as peculiaridades do comportamento da curva QV rumo ao ponto de colapso, partindo da barra crítica, contingenciamentos (*não entrada de determinada obra já planejada por falta de recursos financeiros*) são simulados, obtendo-se as curvas QV com e sem a presença da obra de reforço planejada. Isto permite estabelecer um critério de comparação na identificação de qual obra será mais interessante ser levada em consideração (priorizada), do ponto de vista da obtenção de um maior ganho de sua margem de carga reativa e conseqüentemente a própria margem de carga do sistema (MC).

Logo, com estes critérios indicados, a seguir é detalhada a forma com que os resultados das simulações realizadas serão apresentados.

É dado um tratamento diferenciado nas simulações para os sistemas acadêmicos com relação às simulações para o sistema real. Isto se deve ao fato de que muitas vezes as condições entre eles são diferenciadas. Para os sistemas acadêmicos não se têm grandes

variações nas impedâncias das linhas de transmissão, e estes são bem menores. Para estes casos a análise é feita considerando o sistema como um todo.

Para o sistema real as diferenças de impedância são bem comuns, pois no caso selecionado para as simulações, têm-se circuitos em vários níveis de tensão: 500 kV, 220 kV, 66 kV, e 23 kV. Desta forma, a análise é feita separando-se as barras e circuitos por classe de tensão. O programa utilizado nas simulações oferece a opção de listar os resultados por classes de tensão.

3.8 ANÁLISE DO COMPORTAMENTO DAS CURVAS QV PARA OS SISTEMAS ACADÊMICOS (IEEE) E PARA UM SISTEMA REAL (SIN DO PARAGUAI), CONSIDERANDO UM HORIZONTE DE CURTO PRAZO (5 ANOS).

Para aplicar a metodologia da curva QV nos casos de testes em sistema elétricos acadêmicos, foi desenvolvido o seguinte roteiro para apresentação dos resultados:

- Para cada sistema acadêmico é identificada a barra crítica (geralmente a de menor MCR) e a barra de maior MCR pelo método da maior componente do vetor tangente. Logo, identificadas estas barras, expansões no sistema (por exemplo, adição de outras linhas de transmissão) são realizadas, perto da maior e menor MCR, considerando a primeira e segunda vizinhança respectivamente.
- 2. A margem de carga reativa (MCR) e margem de carga (MC) são obtidas para todas as barras do sistema no caso base, e para as respectivas expansões levadas em consideração (1° e 2° vizinhanças). Os resultados são colocados num gráfico e numa tabela em forma crescente de MCR.
- No gráfico também é mostrado o valor do maior componente do vetor tangente, para cada uma das barras do sistema.
- Novamente, são calculadas as MCR para todas as barras do sistema para vários pontos da curva PV até o ponto de colapso. Também os resultados são plotados para um melhor entendimento.

Com relação ao caso teste, correlativo ao sistema real (sistema de transmissão e subtransmissão da Administração Nacional de Eletricidade – ANDE), o seguinte plano foi desenvolvido para a correspondente apresentação dos resultados, obtidas das simulações para cada ano do horizonte analisado (Curto prazo). Para o horizonte de curto prazo foram analisados os cinco anos (2007-2011), mas somente três anos serão apresentados (2007, 2008 e 2010), de forma a não se tornar repetitivo.

Logo, os passos realizados foram os seguintes:

- São identificadas as barras críticas por classe de tensão e pelo método da maior componente do vetor tangente, anotando-se o valor da margem de carga do sistema (MC) e o valor da margem de carga reativa (MCR) das barras.
- 2. A margem de carga reativa (MCR) é calculada para todas as barras de 220 kV e para as barras de 66 kV apenas na região do Subsistema Metropolitano (principal subsistema dentro do país). O resultado é apresentado num gráfico que irá relacionar as barras do sistema em ordem crescente com a MCR de cada barra.
- No gráfico também é mostrado o valor da maior componente do vetor tangente para cada um dos grupos de barras selecionados, 220 kV e 66 kV.
- 4. Novamente é simulada a MCR para o grupo de barras de 220 kV e para o grupo de barras de 66 kV em vários pontos operativos até o ponto de colapso. A barra crítica é verificada em cada ponto operativo.

3.9 ANÁLISE DAS EXCEÇÕES (CONTINGENCIAMENTO) CONSIDERADAS

Para analisar os casos de contingenciamento e considerando um determinado elenco de obras de transmissão planejadas pela empresa elétrica, assim foram realizadas as seguintes tarefas:

- Simular contingenciamentos nas vizinhanças da barra crítica para o caso base (1° e/ou 2° vizinhança) e traçar num mesmo gráfico as MCR'S para o caso base (inclui todas as obras planejadas) e para os contingenciamentos, comparando logo os resultados.
- Simular contingenciamentos nas vizinhanças (1° e/ou 2° vizinhança) das barras com maior MCR's no caso base. Traçar num mesmo gráfico as MCR's para o caso base e logo após o contingenciamento. Comparar os resultados.
- 3. Definir a priorização de obras pela metodologia proposta, isto é, pela obra que implica na maior margem de carga reativa (MCR) e margem de carga (MC).

CAPÍTULO 4

RESULTADOS DAS SIMULAÇÕES REALIZADAS

4.1 INTRODUÇÃO

Este capítulo apresenta os resultados obtidos pela metodologia apresentada no Capítulo 3, de tal forma a convalidá-la. Para tanto, foram escolhidos três sistemas elétricos de potência. Dois deles são casos acadêmicos disponíveis na literatura (IEEE), e o terceiro é um caso real. Um ponto importante nos casos analisados foi a consideração dos limites de geração de potência reativa, de maneira que as respostas obtidas são presumidas como mais realistas.

As barras críticas do sistema serão indicadas durante o traçado da curva QV com o auxílio do vetor tangente. Serão obtidas as curvas QV para o caso base e para as alterações da topologia do sistema elétrico (ampliações ou contingenciamentos). Com base nestas informações, surgirá a nova proposta relacionada ao critério para a recomendação da melhor alternativa na priorização de obras de planejamento.

4.2 SISTEMAS ESCOLHIDOS PARA A REALIZAÇÃO DAS SIMULAÇÕES

Foram selecionados para a simulação os seguintes sistemas:

- Sistema 14 Barras IEEE
- Sistema 30 Barras IEEE
- Caso Real: Sistema 225 Barras Sistema Interconectado Nacional Subsistema I (ANDE – Paraguai)

O último caso é um sistema real, o qual correspondente ao principal Sistema Elétrico de Potência do Paraguai (Subsistema I).

4.3 COMPORTAMENTO DA CURVA QV COM EXPANSÕES DO SISTEMA PERTO DAS MAIORES E MENORES MCR – SISTEMAS ACADÊMICOS

O sistema selecionado inicialmente para a realização das simulações corresponde ao sistema de 14 barras do IEEE, escolhido primeiramente pelo seu pequeno porte. Conforme os passos indicados na metodologia da curva QV, serão calculados inicialmente as MCR das barras do sistema. Logo a seguir, serão realizadas expansões perto das barras de maior e menor MCR, na primeira e segunda vizinhança. Por primeira vizinhança, entende-se as barras ligadas à barra de interesse, e por segunda vizinhança corresponde às barras ligadas às barras da primeira vizinhança.

A Figura 4.1 a seguir representa o diagrama unifilar do sistema de 14 Barras do IEEE.

Figura 4.1 – Diagrama unifilar do sistema 14 barras IEEE.

Para apresentar os resultados, adotou-se a seguinte convenção: cada obra de expansão foi relacionada com o sistema potência. A identificação dos casos terá quatro ou cinco dígitos, os dois primeiros dígitos correspondem ao número de barras do IEEE em análise, o terceiro dígito corresponde à letra "B" de barra, e os últimos dois dígitos correspondem

à enumeração própria dos casos. Por exemplo, 14B8 significa caso número oito do sistema de 14 barras.

A Figura 4.2 é semelhante à Figura 4.1, as diferenças são as ampliações realizadas perto das barras de maior e menor MCR. A barra crítica calculada pelo programa utilizado em [50] é a Barra 14. As Barras de maior e menor MCR são as de número 2 e 8, respectivamente.

Sendo assim, pode-se notar na Figura 4.2 que as ampliações de cor verde correspondem às expansões realizadas perto da barra de maior MCR, e as de cor azul são as realizadas próximas da barra crítica. Estas expansões foram realizadas perto da primeira e segunda vizinhança.

Os resultados apresentados na Tabela 4.1 e na Figura 4.3, mostram que o caso 14B1, correspondente à duplicação da linha de transmissão entre as barras 1 e 5, é o que apresentou a maior margem de carga (MC) para o sistema, embora o caso 14B3 (correspondente à duplicação do circuito 1 e 2), apresente a maior MCR para a barra 2.

Parran		MCR (Mvar)						
Dallas	14B (Base)	14B1	14B2	1483	14B4	14B5		
2	-459,1	-548,0	-469,5	-912,3	-464,9	-480,7		
3	-135,7	-154,1	-142,5	-160,5	-138,4	-201,0		
4	-242,0	-316,8	-291,0	-290,5	-263,2	-259,3		
5	-264,7	-391,2	-299,0	-315,2	-310,1	-279,4		
6	-78,7	-92,8	-85,3	-84,8	-84,7	-81,5		
7	-116,7	-132,5	-126,9	-125,2	-122,6	-120,7		Barra crítica VT
8	-59,7	-65,4	-63,7	-62,4	-62,0	-61,4		Menor MCR
9	-99,0	-112,2	-107,2	-105,6	-104,1	-102,3		Maior MCR
10	-84,3	-94,1	-90,2	-88,8	-88,2	-86,8		
11	-78,4	-86,9	-83,1	-82,0	-82,0	-80,5		
12	-64,8	-70,7	-67,8	-67,0	-67,5	-66,2		
13	-76,8	-85,3	-81,1	-80,2	-80,5	-78,8		
14	-63,3	-69,2	-66,8	-65,7	-65,8	-64,9		
∑ MCR —→	-1823,1	-2219,0	-1973,9	-2440,1	-1934,0	-1963,1		
MC (pu) 🔶	1,82	2,05	1,94	1,95	1,89	1,94		
AMC (MW) ->		58,4	30,3	33,3	18,4	30,3		
Carga Base = 259 MW								

Tabela 4.1 - MCR para os casos montados perto da barra de maior MCR no sistema IEEE 14 barras

Figura 4.3 – Valores de MCR e classificação pelo VT para expansões perto da barra de maior MCR Sistema IEEE 14 barras.

De igual maneira, as expansões perto da barra crítica (primeira e segunda vizinhanças) apresentam os seguintes resultados:

		Primeira Vizinhança Segunda Vizinhança						
Barras	14B (Base)	1486	1487	14B8	1489	14B10	14B11	14B12
2	-459,1	-459,6	-459,9	-459,1	-460,6	-459,1	-461,4	-461,5
3	-135,7	-135,8	-135,7	-135,7	-135,9	-135,7	-136,8	-136,8
4	-242,0	-242,7	-242,6	-242,0	-243,4	-242,0	-244,0	-245,1
5	-264,7	-264,9	-266,0	-264,8	-266,0	-264,9	-266,8	-269,4
6	-78,7	-79,6	-80,9	-78,7	-79,3	-79,6	-80,1	-83,2
7	-116,7	-118,0	-117,1	-116,8	-117,7	-116,9	-118,2	-127,1
8	-59,7	-60,1	-59,8	-59,7	-60,0	-59,7	-60,7	-63,2
9	-99,0	-100,7	-99,6	-99,1	-100,1	-99,3	-100,5	-116,2
10	-84,3	-84,9	-84,5	-84,3	-84,9	-91,1	-85,7	-94,5
11	-78,4	-78,5	-78,7	-78,4	-78,7	-81,0	-79,7	-83,5
12	-64,8	-65,7	-66,3	-69,7	-66,4	-65,1	-65,9	-66,6
13	-76,8	-79,1	-80,1	-77,9	-86,4	-77,2	-78,2	-80,0
14	-63,3	-69,9	-75,8	-63,5	-65,5	-63,3	-64,8	-67,7
∑ MCR →	-1823,1	-1839,6	-1847,1	-1829,6	-1844,8	-1834,9	-1842,9	-1894,8
MC (pu) 🔶	1,82	1,83	1,84	1,82	1,84	1,82	1,88	1,84
AMC (MW) ->		2,1	4,3	0,1	5,4	0,2	15,0	5,0
	Carga Base = 259 MW							

Tabela 4.2 - MCR para os caso	s montados perto	da barra cr	rítica no s	istema	IEEE 14
barras					

Figura 4.4 – MCR e classificação pelo VT para expansões perto da barra critica (1° vizinhança) sistema IEEE 14 barras.

Figura 4.5 – Valores de MCR para expansões perto da barra critica - 2°vizinhança sistema IEEE 14 barras.

As curvas QV traçadas para cada uma das barras no caso base do sistema 14 barras do IEEE apresentam-se conforme a Figura 4.6

Figura 4.6- Curvas QV do sistema IEEE 14 barras no caso base.

A Tabela 4.3 a seguir mostra para o caso base a classificação das barras conforme a sua MCR:

N° da Barra	Mvar		
2	-459,06		
5	-264,73		
4	-241,97		
3	-135,67		
7	-116,74		Barra critica VT
9	-98,98		Menor MCR
10	-84,27		Maior MCR
6	-78,7		
11	-78,41		
13	-76,84		
12	-64,77		
14	-63,27		
8	-59,68		

Tabela 4.3 - Classificação das barras pela MCR para o sistema IEEE 14 barras

A margem de carga (MC) do sistema IEEE 14 barras é de 1,82 pu. Do caso base até esta MC, foram traçadas várias curvas QV para alguns pontos de carregamento do sistema (curva PV), conforme mostra a Figura 4.7

Figura 4.7 - Curvas QV do sistema IEEE 14 barras para vários pontos de carregamento.

Nota-se que para aumentos sucessivos no carregamento do sistema, a MCR vai tendendo para zero, isto é, o suporte de potência reativa das barras vai se esgotando. Observa-se ainda que nas Barras 2, 3, 6 e 8, as suas MCR's respectivas são positivas. Logo, as mesmas foram fixadas (nos casos de fluxo de potência) como barras do tipo PV, e são
elas que para esses pontos de carregamento (perto do colapso) sustentam o sistema, no que se refere a suporte de potência reativa.

Aqui é ressaltada a importância dos estudos de fluxo de potência para o dimensionamento das barras do tipo PV (especialmente para equipamentos do tipo compensadores estáticos ou síncronos), pois para situações de elevados carregamento do sistema (sistemas estressados), a função destes componentes torna-se—fundamental para o controle da tensão (injeção de potência reativa).

As curvas PV de cada uma das barras do sistema IEEE 14 barras é mostrada a seguir:

Figura 4.8 - Curvas PV para sistema IEEE 14 barras no caso base.

A seguir será analisado o sistema IEEE 30 barras.

Os mesmos passos de análise efetuados para o sistema IEEE 14 barras serão repetidos no sistema de 30 barras, conforme a metodologia sugerida.

A Figura 4.9 a seguir mostra a topologia deste sistema.

Figura 4.9 – Diagrama unifilar do sistema 30 barras IEEE.

Pelo critério da maior componente do vetor tangente a barra crítica deste sistema corresponde à Barra 30. A barra com maior e menor margem de carga reativa para todos os casos preparados (expansões realizadas) correspondem sempre às Barras 2 e 26, respectivamente. A Margem de Carga (MC) deste sistema mostrou ser de 1,51 pu de carregamento.

A Figura 4.10 mostra o sistema representado na Figura 4.9 com as ampliações realizadas perto da maior e menor MCR.

Figura 4.10 – Diagrama unifilar do sistema 30 barras IEEE com as expansões consideradas.

Na Tabela 4.4 é apresentada a classificação do vetor tangente para todos os casos montados (Caso Base, primeira e segunda vizinhanças). Também pode-se observar as respectivas margens de cargas reativas obtidas. O caso 30B3 (Expansão do circuito 1-2) mostrou ser a expansão para a qual o sistema proporciona a maior margem de carga (MC) levando o sistema a uma ampliação da margem de carga (AMC) de 0,14 pu, ou seja, de 1,51 pu para 1,65 pu de carregamento (41.8 MW a mais do caso base). Para este caso em particular, a Barra 2 resulta ser também a de maior MCR.

Clas	ssificação da:	s barr	as pel	o VT peri	to da r	naior I	MCR	Barrae		MCR (Mvar)					
Barra	30B (Baco)	1'	° vizint	nança	2° 1	vizinha	inça	Durrus	30B (Base)	30B1	30B2	30B3	30B4	30B5	30B6
Dalla	30D (Dasc)	30B1	30B2	30B3	30B4	30B5	30B6	2	-392,67	-407,0	-398,8	-847,7	-408,2	-402,2	-402,9
30	1	1	1	1	1	1	1	3	-237,2	-266,7	-271,1	-283,2	-243,9	-239,9	-241,7
29	2	3	2	2	2	3	2	4	-224,7	-262,4	-267,2	-284,4	-237,4	-228,5	-231,1
26	3	2	3	3	3	2	3	5	-113,2	-120,9	-116,8	-142,4	-116,2	-116,6	-114,9
25	4	4	4	4	4	5	4	6	-201,3	-249,4	-223,6	-256,8	-210,3	-214,9	-209,4
24	5	5	5	5	5	4	6	7	-154,1	-171,0	-162,1	-184,7	-158,4	-160,3	-157,0
19	6	7	8	8	7	6	10	8	-126,3	-156,5	-140,6	-159,3	-132,1	-135,4	-131,0
23	7	6	7	7	8	7	7	9	-112,5	-125,8	-120,3	-126,8	-115,5	-115,2	-119,3
27	8	8	6	6	6	8	5	10	-98,7	-110,2	-106,0	-111,2	-101,4	-100,6	-107,4
18	9	9	10	9	9	9	12	11	-55,6	-60,2	-58,4	-60,2	-56,7	-56,6	-57,6
20	10	10	9	10	10	10	11	12	-102,6	-112,1	-110,4	-114,3	-105,4	-103,5	-135,2
22	11	11	11	11	11	11	8	13	-59,3	-64,3	-63,6	-65,0	-60,8	-59,7	-75,8
21	12	12	12	12	12	12	9	14	-68,0	-72,7	-71,9	-73,4	-69,4	-68,5	-80,6
15	13	13	13	13	13	13	15	15	-82,9	-90,1	-88,4	-91,3	-84,9	-83,7	-99,3
17	14	14	14	14	14	14	13	16	-78,2	-84,7	-83,1	-85,4	-80,0	-78,9	-89,8
10	15	15	15	15	15	16	14	17	-84,1	-92,2	-89,4	-93,0	-86,0	-85,2	-92,0
14	16	16	16	16	16	15	17	18	-64,6	-69,5	-68,2	-69,8	-65,9	-65,2	-71,8
16	17	17	17	17	17	17	16	19	-64,4	-69,3	-67,9	-69,6	-65,7	-65,1	-70,2
12	18	18	18	18	18	18	19	20	-67,7	-73,2	-71,5	-73,5	-69,1	-68,5	-73,5
9	19	19	19	19	19	19	18	21	-84,0	-92,8	-89,6	-93,5	-86,1	-85,5	-90,4
13	20	20	20	20	20	20	21	22	-83,8	-92,6	-89,4	-93,3	-86,0	-85,3	-90,4
11	21	21	21	21	21	21	20	23	-64,7	-69,7	-68,4	-70,1	-66,1	-65,4	-72,0
28	22	22	22	22	22	22	22	24	-69,2	-75,4	-73,3	-75,8	-70,7	-70,2	-74,2
8	23	24	23	23	23	23	23	25	-54,7	-58,9	-57,3	-58,9	-55,7	-55,6	-56,5
6	24	25	25	24	24	24	25	26	-28,44	-29,9	-29,4	-29,7	-28,8	-28,8	-28,9
7	25	23	24	25	25	25	24	27	-58,4	-63,1	-61,1	-62,9	-59,5	-59,5	-59,6
5	26	26	26	27	26	27	26	28	-150,5	-176,2	-162,8	-178,4	-155,3	-157,9	-155,1
4	27	27	27	26	27	26	27	29	-33,2	-35,1	-34,3	-34,8	-33,7	-33,7	-33,6
3	28	28	28	28	28	28	28	30	-29,86	-31,5	-30,8	-31,2	-30,3	-30,3	-30,2
2	29	29	29	29	29	29	29	∑ MCR —►	-3044,7	-3383,4	-3275,5	-3920,6	-3139,3	-3120,5	-3251,4
								MC (pu)>	1.51	1.59	1.55	1.65	1.53	1.53	1.53

Tabela 4.4 - MCR's perto da barra de maior MCR para os casos montados e VT associados IEEE 30 Barras

Pode-se observar que para cada uma das obras de expansão consideradas, a classificação do vetor tangente de todas as barras do sistema, no caso base para cada expansão, sofreu algumas variações, mas tornando-se irrelevantes no que respeita à classificação base.

24,5

13,7 **41,8**

Carga Base = 285 MW

6,7

5,5

5,5

AMC (MW) ->

A seguir serão apresentadas as respectivas figuras obtidas da Tabela 4.4. Na Figura 4.11 observa-se as MCR's para expansões perto da barra de maior MCR do caso base e de dois casos que resultaram com as maiores MCR no somatório geral de todas as barras. A maior componente do vetor tangente (cor vermelha), só foi mostrada para o caso base (30B) para 1 pu de carregamento, pois para os casos com as expansões analisadas, as mesmas não sofreram variações significativas.

Barra critica VT Menor MCR Maior MCR

Figura 4.11 – MCR para expansões do sistema (1° vizinhança.) perto da maior MCR do caso base sistema IEEE 30 barras.

A seguir, serão apresentadas as análises realizadas perto da barra crítica (Barra 30).

Barrae	MCR (Mvar)										
Barras	30B (Base)	30B7	30B8	30B9	30B10	30B11					
2	-392,67	-394,71	-393,2	-393,7	-392,93	-397,06					
3	-237,2	-238,1	-237,5	-237,7	-237,5	-239,7					
4	-224,7	-226,0	-225,0	-225,3	-225,0	-228,2					
5	-113,2	-113,4	-113,2	-113,3	-113,2	-113,7					
6	-201,3	-202,7	-201,6	-202,0	-201,4	-204,4					
7	-154,1	-154,5	-154,2	-154,3	-154,1	-155,0					
8	-126,3	-127,1	-126,5	-126,7	-126,4	-127,9					
9	-112,5	-112,9	-112,6	-112,7	-113,0	-114,4					
10	-98,7	-99,0	-98,8	-98,9	-99,4	-100,9					
11	-55,6	-55,7	-55,6	-55,6	-55,7	-56,1					
12	-102,6	-102,8	-102,6	-102,7	-103,1	-104,2					
13	-59,3	-59,4	-59,3	-59,4	-59,5	-60,1					
14	-68,0	-68,1	-68,1	-68,1	-68,3	-68,8					
15	-82,9	-83,1	-83,0	-83,0	-83,4	-84,5					
16	-78,2	-78,3	-78,2	-78,3	-78,5	-79,2					
17	-84,1	-84,3	-84,2	-84,2	-84,4	-85,5					
18	-64,6	-64,7	-64,6	-64,7	-64,9	-65,5					
19	-64,4	-64,5	-64,4	-64,4	-64,7	-65,2					
20	-67,7	-67,8	-67,7	-67,7	-68,0	-68,6					
21	-84,0	-84,2	-84,0	-84,1	-84,7	-86,1					
22	-83,8	-84,1	-83,9	-84,0	-84,6	-86,1					
23	-64,7	-64,9	-64,8	-64,8	-65,4	-66,5					
24	-69,2	-69,4	-69,2	-69,3	-70,5	-72,9					
25	-54,7	-55,1	-54,8	-54,9	-58,0	-65,1					
26	-28,4	-28,5	-28,5	-28,5	-29,5	-31,3					
27	-58,4	-59,5	-58,6	-59,0	-60,1	-81,4					
28	-150,5	-151,7	-150,8	-151,1	-150,7	-152,1					
29	-33,2	-35,7	-34,0	-41,1	-33,8	-40,3					
30	-29,9	-37,5	-32,0	-32,1	-30,4	-35,7					
∑MCR →	-3044,7	-3067,9	-3050,7	-3061,2	-3060,9	-3136,4					
MC (pu) 🔶	1,51	1,51	1,51	1,51	1,51	1,53					
AMC (MW) ->		2,2	0,5	1,1	0,3	6,2					
		Carga Base	e = 285 M	w							

Tabela 4.5 - MCR perto da barra crítica do IEEE 30 barras

Como pode ser observado na Tabela 4.5 anterior, expansão perto da barra crítica (geralmente as de menor MCR), não conduz o sistema a aumentos significativos na sua margem de carga (MC). De todas as ampliações simuladas para este sistema, tanto para a

primeira como para a segunda vizinhança, o caso 30B11 (ampliação através da colocação de outro transformador abaixador 132/33 kV – entre as Barras 27 - 28) foi a ampliação que apresentou a maior MCR, levando o sistema de 1,51 pu de carregamento (caso base) para 1,53 pu (6,2 MW a mais).

Na Figura 4.12 pode-se observar que as variações perto da barra crítica (1° e 2° vizinhança) são mínimas, no que respeita as MCR's.

Figura 4.12 – MCR para expansões (1°e 2° vizinhança) perto da barra critica do sistema IEEE 30 barras.

Uma característica interessante observada para este tipo expansão (perto da barra crítica) é que somente a área (barras perto da crítica) associada à expansão experimenta um pequeno aumento de suas MCR's. A seguir traçou-se várias curvas QV para alguns pontos de carregamento do sistema IEEE 30 barras (pontos sobre a curva PV). Também foram plotadas a classificação dos vetores tangentes para o caso base e para os casos 30B1 e 30B3 perto de seus pontos de colapso. Notou-se que no ponto de colapso a barra crítica continuou sendo a barra 30. A Figura 4.13 mostra as referidas curvas:

Figura 4.13 – MCR para vários pontos da curva PV do sistema IEEE 30 barras e componentes de vetores tangentes para alguns casos perto do seu ponto de colapso.

De igual forma, as curvas PV de algumas barras do sistema IEEE 30, podem ser observadas na Figura 4.14

Figura 4.14 – Curvas PV para algumas barras do sistema IEEE 30 perto das barras de maior e menor MCR. (Caso Base)

4.4 APRESENTAÇÃO DO SISTEMA REAL A SER UTILIZADO (SIN DO PARAGUAI)

Este item refere-se à apresentação do sistema elétrico de potência a ser utilizado para continuar com a metodologia e a proposta deste trabalho.

O mapa eletrogeográfico do Paraguai pode ser visualizado na Figura 4.15

Figura 4.15 – Mapa eletrogeográfico representando o sistema elétrico do Paraguai.

4.4.1 CONFIGURAÇÃO TOPOLÓGICA DO SISTEMA ANDE

Uma característica importante do Sistema Interconectado Nacional (SIN) do Paraguai, o qual é operado e administrado pela estatal ANDE (Administração Nacional de Eletricidade), é que este sistema opera em dois subsistemas separados. As barras ou pontos de separações são as integradas pelas Subestações de Acaray (Barra 401) e Guarambare (Barra 404). Estes dois subsistemas elétricos são formados pelas seguintes regiões ou áreas do país:

 Subsistema 1 (SS1): Formados pelos subsistemas Central, Norte, Oeste, parte do Subsistema Leste e a maior parte do subsistema Metropolitano, abastecidos pelas centrais hidroelétricas de Itaipú (7000 MW – 50 Hz) e Acaray (200 MW – 50 Hz), e operando em paralelo com o sistema elétrico brasileiro.

• Subsistema 2 (SS2): Formados pelos Subsistema Sul e parte dos subsistemas Leste e Metropolitano, abastecidos pelas centrais hidroelétricas de Yacyretá e Acaray, e operando em paralelo com o SADI (Sistema Argentino de Interconexão).

Dentro dos subsistemas que formam o Subsistema 1 (um), o Subsistema Metropolitano representa o principal subsistema, por possuir aproximadamente 60 % da carga do país.

Desta forma, por se encontrar o Subsistema Metropolitano dentro do Subsistema 1 e por ser este o principal subsistema da ANDE, do ponto de vista da importância para o país, o mesmo foi escolhido para a realização dos estudos de estabilidade de tensão na proposta deste trabalho. A seguir, na Figura 4.16 são mostradas as percentagens de carga por subsistema que formam o SIN do Paraguai:

Figura 4.16 – Percentagens de carga por subsistema.

Também na Figura 4.17 é mostrada a composição desses subsistemas dentro do mapa eletrogeográfico do país.

4.4.2 CARACTERÍSTICAS DO SISTEMA ANDE (SUBSISTEMA 1)

As principais características (componentes) do sistema real a ser estudado resumem-se nos seguintes pontos:

- Quantidade de barras do sistema: 225.
- Barra swing (referência angular do sistema): Itaipu 18 kV, barra de geração 700.
- Barras PV (com controle de tensão): existem duas barras com controle de tensão representadas, barras 302 (66 kV) e 411 (220 kV), Compensadores Estáticos (CER).
- Transformadores com comutação automática de tensão (LTC): existem 79 transformadores representados.
- Quatro reatores shunt (em 220 kV) e 33 capacitores shunt (em 23 kV).

A Figura 4.18 mostra o diagrama unifilar do sistema real adotado para as simulações:

Figura 4.18 – Diagrama Unifilar do sistema real estudado (Sistema ANDE).

4.5 ANÁLISES E RESULTADOS DO SISTEMA REAL ESTUDADO (SIN DO PARAGUAI)

Serão apresentados os resultados obtidos para um período de análise de cinco anos, período de curto prazo (2007–2011).

Como exposto anteriormente, os resultados que serão mostrados a seguir, baseiam-se na utilização de um elenco de obras planejadas por uma determinada companhia elétrica (neste caso a ANDE). As obras a serem adotadas para a realização do contingenciamento estarão muito relacionadas aos resultados das margens obtidas nas simulações, e ao sentimento e a experiência do engenheiro de planejamento.

4.5.1 PRIORIZAÇÕES DE OBRAS ANALISANDO A MCR E MC DO SIN PARA O ANO 2007

Para este ano de estudo a classificação do vetor tangente (Barras críticas) e as margens de carga reativa (MCR) das barras do sistema de transmissão em 220 kV do SIN para o caso base (inclui todas as obras planejadas) foram os seguintes:

Figura 4.19 – MCR do SIN para níveis de transmissão em 220 kV do ano 2007.

N° Вагга	Nome da SE	Mvar	Classif. VT
484	IRY B1	-131,51	38
496	CDO TA	-87,63	36
4487	SPA B2	-66,41	20
497	CZU TA	-55,11	34
468	HOR B1	-55,07	22
408	PBO B1	-54,31	3
1814	CBV B1	-54,21	21
467	SRO TA	-52,98	24
471	PJC B1	-52,54	18
485	CYO A	-52,11	27
421	LUQ TA	-51,55	4
402	COV B1	-50,27	29
424	PCA AB	-49,62	2
2418	VIC TA	-47,37	16
403	SLO B1	-47,17	12
434	ESA TA	-47,07	25
493	CAP TA	-45,72	17
404	GUA B2	-44,43	19
410	SAN TA	-44,33	15
466	SES TA	-44,17	26
413	PSA B1	-43,69	5
425	PIR B1	-43,12	23
405	LAM B1	-42,25	10
469	VM1 B1	-31,21	13
1469	VM2 B1	-31,19	14
479	LPA B1	-16,81	1
	Barra Crítica		

Tabela 4.6 - MCR e classificação do VT para o caso base ano 2007 do SIN 220 kV

Pela Figura 4.19 ou Tabela 4.6 percebe-se que a barra crítica do sistema no nível de 220 kV é a que corresponde à Barra 479 (SE Loma Plata). Esta subestação encontra-se muito distante dos centros de geração, e localizando-se em um ponto radial do sistema. Logo, a sua classificação como barra crítica nesse nível de transmissão é um resultado previsível. Neste trabalho, o enfoque para a barra crítica, será direcionado para os sistemas malhados, devido a que nos sistemas do tipo radiais somente soluções locais (linhas novas, compensação reativa local ou mesmo corte de carga) são possíveis.

A seguir será apresentada na Figura 4.20 e na Tabela 4.7, a classificação das barras do sistema metropolitano para o nível de tensão de 66 kV pelo vetor tangente, e as suas respectivas margens de carga reativa.

Figura 4.20 – MCR do SIN para níveis de subtransmissão em 66 kV ano 2007.

Tabela 4.7 - MCR's do subsistema metropolitano 66 kV e classificação do VT para o caso base ano 2007

N° Barra	Nome da SE	Mvar	Classif. VT
324	PCA B1	-48,3	36
308	SMI B1	-48,1	35
311	CEN B1	-46,2	25
1308	nBS F1	-45,0	34
344	LIM B1	-44,1	45
1306	nPS F1	-43,7	32
306	PBO B1	-43,5	28
2311	GDI B1	-42,9	23
335	PAR B1	-42,8	13
301	SLO B1	-42,7	41
1313	nCP F1	-42,3	24
303	BPA B1	-41,4	29
1326	nBC F1	-41,1	31
313	PSA B1	-41,1	26
320	TBO B1	-39,8	16
345	ACE B1	-38,6	44
307	VCU B1	-38,3	27
326	BCP B1	-37,7	30
346	VHA B1	-37,7	43
1311	nGR F1	-37,4	21
2309	VAU B1	-37,0	33
2308	REP B1	-36,8	20
325	PIR B1	-36,7	22
2307	HIP B1	-36,2	17
1416	nLT F1	-35,9	18
1303	BPA FIC	-35,2	37
316	LAM B1	-34,2	19
3331	ITG B2	-33,2	10
333	CAE BP	-30,8	5
337	QUI B1	-25,5	6
338	CAU B1	-18,8	4
	Barra Critica		
	> MCR		

A seguir serão mostradas na Figura 4.21 as MCR para alguns pontos da curva PV relacionados ao caso base do ano 2007. Também são mostradas as classificações das barras pelo vetor tangente, conforme é aplicado um carregamento do sistema. Logo na Figura 4.22, algumas curvas PV serão traçadas para barras próximas às barras de maior e menor MCR do sistema (Metropolitano 66 kV).

Figura 4.21 – MCR do subsistema metropolitano para alguns pontos da curva PV em 66 kV ano 2007.

Figura 4.22 – Curvas PV de algumas barras do sistema metropolitano do ano 2007 em 66 kV.

Em seguida, de forma tal a prosseguir com a metodologia proposta para este trabalho serão feitas expansões perto das barras de maior e menor MCR. É importante enfatizar que estas expansões não correspondem às obras de planejamento correspondentes ao ano em questão.

As Figuras 4.23 e 4.24 a seguir mostram duas ampliações, uma perto da menor MCR que corresponde à Barra 338 e outra perto da maior MCR que corresponde à Barra 324.

Figura 4.23 – Ampliações perto da menor MCR no nível de tensão de 66 kV ano 2007.

Figura 4.24 – Ampliações perto da maior MCR no nível de tensão de 66 kV ano 2007.

Na Tabela 4.8 a seguir mostram-se o ganho em Mvar na somatória geral das MCR das barras do sistema metropolitano em 66 kV para barras próximas às barras de maior e menor MCR. Percebe-se, como nos casos acadêmicos, que a resposta é idêntica, isto é, ampliações perto da barra ou perto das barras com menores margens de carga reativa, implicam num menor ganho no somatório geral das MCR's.

Tabela 4.8 - Somatório das MCR's para expansões perto da barra de menor e maior MCR do ano 2007

Diferenças e aumentos na MCR (Mvar)										
∑ no Caso Base	∑ na Ampl. Perto da > MCR (Barra 324)	∑ na Ampl. Perto da < MCR (Barra 338)								
-1174,5	-1217,0	-1181,4								
Aumento na MCR	-42,5	-6,9								

Desta forma, passando para parte da análise das exceções ou alterações da topologia (contingenciamentos), dando continuidade a idéia deste trabalho, a seguir serão escolhidas três obras planejadas pela ANDE correspondente ao ano 2007 (Planejamento Real da ANDE – Curto Prazo – Período 2007-2011), e conforme os resultados obtidos das simulações, com relação as suas MCR e MC, surgirão as priorizações a serem consideradas.

As obras escolhidas para a realização dos contingenciamentos são as seguintes:

- SE Limpio Troca de um transformador 66/23 kV de 20 MVA por outro de 220/23 kV de 41,5 MVA.
- SE Hipódromo SE nova a ser construída dois transformadores de 66/23 kV de 30 MVA e Compensação Reativa em 23 kV (Bancos de Capacitores) de 12 Mvar.
- SE La Victoria SE nova a ser construída Transformador de 220/23 kV de 41,5 MVA e Compensação Reativa em 23 kV (Bancos de Capacitores) de 6 Mvar.

Os resultados obtidos com as simulações realizadas (contingenciamento), fazendo a análise somente para o sistema metropolitano, e considerando os níveis de tensão de 66 kV e 220 kV, apresentaram os seguintes resultados, ilustrados a seguir na Tabela 4.9 e Figuras 4.25 e 4.26 respectivamente:

Tabela 4.9 - Somatório das MCR's para o caso base e contingenciamentos selecionados para o ano 2007)

Nívoio do topoão	S (MCD) Sistema Pasa MVAr	Σ	(MCR) Mv	аг	MC (pu)				
NIVEIS DE CENSOU	/ (MCR) - SISCEITIA DASE - MVAI	Cont.1	Cont.2	Cont.3	Caso Base	Cont.1	Cont.2	Cont.3	
220 kV	-585,4	-427,4	-311,3	-472,9	1 0251	1.0202	4 0453	1,0204	
66 kV	-1202,8	-1036,9	-845,0	-1151,2	1,0251	1,0202	1,0155		

Figura 4.25 – MCR para o caso base e contingenciamentos no nível de tensão 66 kV ano 2007.

Figura 4.26 – MCR para o caso base e contingenciamentos no nível de tensão 220 kV ano 2007.

Logo, com estes resultados obtidos, poderia-se priorizar a obra relacionada ao contingenciamento número 2, pois ela provoca no sistema uma redução no somatório geral das MCR's para os níveis de tensão de 220 e 66 kV: de -585,4 Mvar a -311,3 Mvar e de -1202,8 Mvar a -845 Mvar, respectivamente, e a uma redução na Margem de Carga do sistema (MC) de 1,0251 pu para 1,0153 pu.

Por outro lado, para os contingenciamentos 1 e 3, as prioridades de entrada delas são as mesmas do ponto de vista da MC. Pela MCR's obtidas poderia-se priorizar a obra relacionada ao contingenciamento numero 1.

4.5.2 PRIORIZAÇÕES DE OBRAS ANALISANDO A MCR E MC DO SIN PARA O ANO 2008

Para este ano, muitas obras de reforço importantes aparecem na listagem sugerida pelo planejamento. Um ponto importante para este ano, refere-se a que algumas obras não se encontram no sistema metropolitano, mas as mesmas terão uma influência importante nas margens estudadas, por se tratar de reforços no principal sistema de transmissão (linhas de transmissão novas).

Sendo assim, as obras selecionadas para a realização dos contingenciamentos são as seguintes:

- LT de 220 kV nova Linha de transmissão de 220 kV nova, entre as Subestações de Acaray (Geração) e Coronel Oviedo (Barras 401 – 402) 189 km.
- SE Eusébio Ayala SE nova a ser construída Transformador de 220/66 kV de 60 MVA e outro transformador de 66/23 kV de 30 MVA. Além da construção de uma LT nova de 66 kV entre as Subestações de Eusébio Ayala e Caacupe, de 25 km (Barras 334 – 333).
- SE Luque Montagem de outro transformador de 220/23 kV de 41,5 MVA, a operar em paralelo com o atual, das mesmas características.

A classificação do vetor tangente (Barras críticas) e as margens de carga reativa (MCR) das barras do sistema de transmissão em 220 kV do SIN para o caso base (inclui todas as obras planejadas), carregamento do sistema a 1.02 pu e 1.035 pu, foram os seguintes:

Figura 4.27 – MCR para o caso base e para alguns pontos da curva PV e VT associados no nível de tensão 220 kV ano 2008.

Percebe-se de novo para este ano, que a mesma barra crítica do ano 2007 (Barra 479) continua sendo a primeira classificada como a mais sensível para pequenas variações da carga. Como explicado anteriormente, isto ocorre pela exagerada distância entre o centro de geração e a barra para um nível de tensão de 220 kV (aproximadamente 820 km).

A Margem de Carga do sistema foi de 1.0465 pu. A seguir, serão examinadas as MCR nas barras do sistema metropolitano, no nível de 66 kV.

Figura 4.28 – MCR para o caso base e para alguns pontos da curva PV e VT associados no nível de tensão 66 kV ano 2008

Continuando com a metodologia, a seguir serão feitas expansões através de duplicações de linhas de transmissão perto da barra de maior e menor MCR, obtidas de forma tal a

observar o seu comportamento: Na Tabela 4.10 pode-se observar as MCR e classificação das barras pelo vetor tangente para o sistema metropolitano no caso base, nível de 66 kV

Вагга	Nome	MCR (Mvar)	Вагга	Nome	Classif. VT		
334	ESA B1	-108,2	338	CAU	16		
301	SLO B1	-100,8	337	QUI	19		
1303	BPA FIC	-92,0	2309	VAU	21		
324	PCA B1	-91,8	303	BPA	22		
311	CEN B1	-90,9	1303	BPA	23		
1306	nPS F1	-90,0	301	SLO	24		
2309	VAU B1	-89,3	307	VCU	25		
306	PBO B1	-89,1	306	PBO	26		
2311	GDI B1	-89,0	326	BCP	27		
1313	nCP F1	-88,5	1326	nBC	28		
1326	nBC F1	-88,5	320	TBO	29		
313	PSA B1	-87,4	1308	nBS	30		Barra critica VT
1308	nBS F1	-87,0	1306	nPS	31		Menor MCR
1311	nGR F1	-86,3	308	SMI	32		Maior MCR
2308	REP B1	-86,1	324	PCA	34		
303	BPA B1	-86,0	311	CEN	35		
316	LAM B1	-85,8	2307	HIP	36		
308	SMI B1	-85,6	2308	REP	37		
307	VCU B1	-85,6	1311	nGR	38		
1416	nLT F1	-85,5	1313	nCP	39		
326	BCP B1	-84,8	2311	GDI	40		
3331	ITG B2	-82,5	1416	nLT	41		
2307	HIP B1	-82,3	316	LAM	43		
320	TBO B1	-81,5	313	PSA	44		
325	PIR B1	-76,3	346	VHA	45		
333	CAE BP	-63,6	345	ACE	46		
344	LIM B1	-54,1	344	LIM	48		
335	PAR B1	-51,5	335	PAR	50		
345	ACE B1	-45,1	3331	ITG	52		
346	VHA B1	-43,2	333	CAE	55		
337	QUI B1	-20,9	325	PIR	56		
338	CAU B1	-16,6	334	ESA	59		

Tabela 4.10 - MCR's e classificação do VT para o caso base do sistema metropolitano 66 kV do ano 2008

Pode-se ver na Tabela 4.10 que a barra com menor margem corresponde à Barra 338 e com maior margem a 334. A barra crítica para esta área corresponde à Barra 338, que coincide com a barra de menor margem de carga reativa.

A Tabela 4.11 e Figura 4.29 mostram as diferenças existentes com o caso base ao fazer as ampliações anteriormente descritas:

Tabela 4.11 - Somatório das MCR's para expansões perto da barra de menor e maior MCR do ano 2008

	Diferenças e aumentos na MCR (Mvar)										
∑ no Caso Base	∑ na Ampl. Perto da > MCR (Barra 324)	∑ na Ampl. Perto da < MCR (Barra 338)									
-2495,6	-2565,2	-2499,4									
Aumento na MCR	-69,6	-3,8									

Conforme observado na Tabela 4.11, pode-se verificar de novo, o mesmo tipo de resposta, quando comparados com os casos acadêmicos, isto é, ampliações perto da barra com maior MCR levam o sistema a um maior aumento nas margens de carga reativa do sistema.

As curvas PV para algumas barras de 66 kV do sistema metropolitano são mostradas na Figura 4.30 a seguir:

Figura 4.30 – Curvas PV para algumas barras do sistema metropolitano do ano 2008 e tensão de 66 kV.

Para concluir a análise deste ano, serão mostradas a seguir, as referidas curvas de MCR da barras, níveis de 220 kV do Sistema Metropolitano. Para isso, serão aplicados os contingenciamentos selecionados anteriormente, e pelas Margens de Cargas Reativas obtidas, serão realizadas as priorizações das obras:

Figura 4.31 – MCR 2008 do sistema metropolitano, casos bases e contingenciamentos em 220 kV.

Tabela 4.12 - Somatório das MCR's e MC para o caso base e contingenciamentos

selecionados para o ano 2008

Casos	Contingenciemento das Obras Ano 2008 1 pu de carregamento =			1341,1	MVV	
Casos	Contingenciamento das obras	∑ das MCR	MC	Dif. na MCR (Mvar)	1341,1 Dif. na MC (pu) 0,0463 0,0189 0,0006	AMC (MVV)
Normal Caso (Base)	Todas as obras incluidas	-1212,4	1,04659			
Cont 1	LT ACY - K30 - COV	-20,9	1,00030	-1191,5	0,0463	62,1
Cont 2	SE ESA (TR 220/66 kV - 60 MVA) e (TR 66/23 kV - 30 MVA) e LT 66 kV (Barras 334 - 333)	-666,4	1,02773	-546	0,0189	25,3
Cont 3	Novo Trafo Luque (Barra 421) 220/23 kV de 41,5 MVA em // com outro ja existente	-1186,8	1,04600	-25,6	0,0006	0,8

As priorizações sugeridas para este ano, tomando em consideração as obras escolhidas e os resultados obtidos, claramente apontam a construção da LT de 220 kV ACY- K30 - COV. A seguinte obra a ser priorizada se relaciona à contingência dois, Subestação de Eusébio Ayala. Com relação às ampliações de transformadores em paralelo com outras existentes, quando se trata de um transformador abaixador onde no lado de baixa tensão só existe uma carga, nota-se que a mesma não contribui significativamente no aumento das margens MCR e MC.

Ressalta-se na expressão anterior com relação ao transformador abaixador, *onde no lado de baixa tensão só existe uma carga*, pois se existirem casos como foi visto no caso acadêmico IEEE 14 barras, onde o transformador do lado de baixa tensão tiver continuidade com uma LT, o mesmo leva a uma contribuição maior no que respeita às margens estudadas.

4.5.3 PRIORIZAÇÕES DE OBRAS ANALISANDO A MCR E MC DO SIN PARA O ANO 2010

Neste último ano de análise, com a utilização da metodologia proposta neste trabalho, poderá ser observado como as influências de uma obra de grande porte afetam consideravelmente as margens de carga reativa (MCR) de todas as barras de um determinado sistema de potência. Logo, a sua margem de carga (MC), também sofre incrementos importantes.

De fato, para o sistema ANDE em particular, a futura inserção deste tipo obra, (LT 500 kV) no principal sistema de transmissão, resultará além de um aumento considerável das margens estudadas MCR e MC, também numa apreciável diminuição de perdas por transmissão.

Sendo assim, as obras selecionadas para a realização dos contingenciamentos são as seguintes:

- LT de 500 kV nova Linha de transmissão de 500 kV nova, entre as Subestações de Margem Direita (Itaipu) e a SE Limpio (Barras 802 – 809) 313 km.
- LT de 220 kV nova Linha de transmissão de 220 kV nova, entre as Subestações de Limpio e a SE San Lorenzo (Barras 409 – 403) 24 km.
- SE Loma Plata Aumento na capacidade de transformação Outro transformador (a ser colocado em paralelo) de 220/66/23 kV e 30/20/25 MVA. Obs.: este transformador do lado de 66 kV tem saída para uma linha de transmissão.

De maneira a perceber a influência da entrada da nova LT 500 kV, na Figura 4.32 são mostradas as margens de carga reativas para dois anos consecutivos anteriores ao ano 2010. Nota-se que o alcance da obra é bastante significativo do ponto de vista do aumento de MCR. Observa-se que a partir da Barra 466, as MCR's praticamente não sofrem mudanças. Isto se deve a que, da Barra 485 parte uma linha radial cobrindo todas as demais barras com esta característica (Subsistema Norte e Oeste), razão pela qual as barras críticas em todos os níveis de tensão (220 kV – 66 kV – 23 kV) encontram-se neste Subsistema.

Figura 4.32 – Comparações e diferenças nas MCR entre os anos 2008, 2009 e 2010.

As curvas PV para algumas barras do SIN no nível de 220 kV do sistema metropolitano, podem ser observadas nas Figuras 4.33 a seguir. A barra crítica pelo VT corresponde à Barra 413:

Figura 4.33 – Curvas PV para as principais barras do sistema metropolitano 220 kV ano 2010.

A barra crítica do subsistema metropolitano para o nível de tensão de 66 kV corresponde à Barra 338 (Cor vermelha inferior). A margem de carga (MC) do sistema para este ano é de 1.0903 pu.

A Figura 4.34 mostra algumas curvas PV para as principais barras do Sistema Metropolitano.

Figura 4.34 – Curvas PV para as principais barras do sistema metropolitano 66 kV ano 2010.

Na figura 4.35 a seguir serão mostradas algumas curvas QV para alguns pontos da curva PV.

Figura 4.35 – Curvas QV para vários pontos de carregamento no sistema do SIN 220 kV ano 2010.

As curvas QV e classificação dos vetores tangentes para cada um dos contingenciamentos escolhidos são mostradas na Figura 4.36.

Desta maneira conforme as obras escolhidas, e com as referidas margens obtidas das simulações, a seguir, com os resultados expostos na tabela 4.13 serão realizadas as priorizações das obras de planejamento, pela metodologia proposta.

Tabela 4.13 - Somatório das MCR's e MC para o caso base e contingenciamentos

selecionados para o ano 2010

Casos Obra S		Sumatorio das MCR	MC	Dif. na MCR	Dif. na MC	AMC (MW)					
Normal Caso (Base)	Todas as obras incluidas	-7354,7	1,09035		0,0903	132,4					
Cont.1	LT 500 kV MD - Limpio (313 km)	-3921,7	1,05901	-3433	0,0313	45,9					
Cont.2	LT 220 kV entre SE SLO e LIM (24 km) - Sistema metropolitano	-6547,6	1,08523	-807,1	0,0051	7,5					
Cont.3	SE Loma Plata: Outro Transf. de 220/66/23 - 30/20/25 MVA	-7322,6	1,07642	-32,1	0,0139	20,4					
	Carga 1 pu do sistema (Caso Base) — 1465,9 MW										

As priorizações indicam o contingenciamento 1 como a principal obra a ser priorizada. (Resultados mais que contundentes).

A seguir, o contingenciamento 2, tornou-se a seguinte obra a ser priorizada pelos resultados das margens de carga reativa obtidas, principal objetivo deste trabalho, aumento das MCR's.

Observa-se no entanto que, a obra número 3, provoca no sistema um maior aumento na sua margem de carga (MC).

CAPÍTULO 5

CONCLUSÕES E PERSPECTIVAS FUTURAS

5.1 CONCLUSÕES FINAIS DO TRABALHO

Por causa da crescente demanda de energia elétrica nos cenários atuais e futuros dos mercados energéticos regionais, e da crescente tendência de operar os sistemas elétricos perto de suas capacidades máximas, motivada principalmente pelas constantes demoras na realização de obras de expansão, surge a necessidade de estudar metodologias de análise de sistemas elétricos de potência como a que se propõe neste trabalho.

A finalidade desta dissertação consiste em utilizar técnicas estáticas de análise de estabilidade de tensão relacionadas principalmente com o estudo das curvas QV. A idéia principal do trabalho se baseia em definir priorizações de obras de planejamento de sistemas elétricos utilizando as referidas curvas QV.

Em conjunto com a determinação da margem de carga reativa (MCR) obtida com o método da curva QV também é calculada a margem de carga do sistema (MC). Para esta finalidade foi desenvolvida uma rotina computacional [50] para calcular as margens de potência reativa de todas as barras do sistema e a margem de carga ativa, isto é, o programa calcula as margens reativas (curva QV) de todas as barras para diversos pontos de equilíbrio da parte estável da curva PV.

Análises da curva QV e PV foram estudadas de forma simultânea e verificou-se que conforme aumenta-se a carga do sistema (avança na curva PV), as margens de carga reativa de todas as barras tendem ao esgotamento. Logo, após ter analisado o sistema com as simulações realizadas principalmente perto da menor e maior MCR, surgiram as seguintes conclusões com relação à idéia de priorizações de obras de planejamento:

As expansões realizadas perto da barra crítica ou perto das barras com menor margem de carga reativa (MCR), na grande maioria dos casos simulados não contribuem muito no aumento da margem de carga do sistema (MC).

- Por outro lado as expansões relacionadas com as barras de maior margem de carga reativa (MCR) aumentam consideravelmente a margem de carga (MC) do sistema.
- O principal tipo de expansão dos sistemas que mais influência recebe nas margens de carga estudadas (MCR e MC) são as relacionadas às expansões de linhas de transmissão, principalmente às de tensões superiores.
- As expansões de tipo transformador de potência somente acareiam influências importantes com relação às margens estudadas quando se trata de transformadores do tipo redutor, onde do lado de mais baixa tensão existe uma saída de linha de transmissão. Isto foi verificado tanto nos casos acadêmicos como no caso real.
- Obras relacionadas a compensações de carga (23 kV) através de bancos de capacitores, dependendo da configuração do sistema, não possuem muita influência na MC do sistema. Esta não é uma regra geral.

As duas primeiras conclusões logicamente não são regras gerais. Apenas confirmam que as melhores soluções de expansão são aquelas a partir de pontos eletricamente fortes do sistema. Pode acontecer, por exemplo, de um ponto forte surgir no sistema elétrico sem nunca ter existido antes, como é o caso do início de operação de uma nova planta de geração.

De posse destas ressalvas importantes, pode-se concluir que as observações obtidas levam como resultado interessante de que a identificação das barras com as maiores margens de carga reativa devem ser consideradas como barras candidatas para as quais as expansões de sistemas de potência devem ser direcionadas. Pois através delas o sistema de potência como um todo, tende aumentar sua margem de carga (MC).

Desta forma, a utilização da curva QV se torna fundamental na metodologia proposta, pois através dela percebe-se de forma imediata quais são as barras que tendem mais rapidamente ao esgotamento de sua potência reativa. Logo, é identificada a área problemática do sistema que geralmente arrasta-o em direção de um eventual colapso de tensão. Por outro lado, associados às MCR encontram-se as MC, também utilizadas para balizar a escolha de uma determinada obra de expansão. Estas referidas margens indicam o quão importante é a presença de uma determinada obra, com relação às conseqüências e o rumo da direção de crescimento do sistema.

Logo, os resultados expostos neste trabalho deixam como um novo aporte para a área de planejamento, pois a referida metodologia está habilitada para ser utilizada como uma ferramenta adicional nos estudos da expansão do sistema elétrico, pois, além das técnicas tradicionais (sobrecarga de transformadores, sobrecarga de linhas de transmissão, perfil de níveis de tensão, pontos de operação dos compensadores estáticos ou síncronos, margens de estabilidade através da curva PV), a utilização das margens de carga reativa (MCR) também aportam informações importantes para a escolha adequada de uma futura obra de expansão.

5.2 PROLONGAMENTO DESTE TRABALHO

Como propostas para a continuação deste trabalho, a seguir são apresentadas algumas idéias a respeito:

- Através das expansões escolhidas pelo critério proposto, fazer uma analise financeira dos projetos ou expansões obtidas, conforme as margens de carga obtidas.
- Propor quantidades/alocações otimizadas de compensações reativas nas barras de um determinado sistema de potência, conforme as curvas QV (MCR) adquiridas pelo programa utilizado [50].
- Fazer análise mais detalhada da expansão de sistemas utilizando, por exemplo, o VT perto do colapso de tensão para determinadas obras selecionadas pela metodologia proposta.

REFERÊNCIAS BIBLIOGRÁFICAS

- IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, "Definition and Classification of Power System Stability", IEEE Transactions on Power Systems, Vol. 19, No. 3, Aug. 2004, pp. 1387-1401.
- [2] KUNDUR, P., MORISON, G. K., "A Review of Definitions and Classification of Stability Problems in Today's Power Systems", IEEE PES Meeting, New York, Feb., 1997.
- [3] KUNDUR, P., Power System Stability and Control. Palo Alto: McGraw-Hill, 1994.
- [4] TAYLOR, C. W. et al. Modelling of voltage collapse including dynamic phenomena. CIGRE Task Force 38-02-10. 1992.
- [5] SOUZA A. C. Z.: PhD thesis, "New Techniques to Efficiently Determine Proximity to Static Voltage Collapse", August 1995.
- [6] TAYLOR, C. W., Power System Voltage Stability. Palo Alto: McGraw-Hill, 1994.
- [7] KUNDUR, P., ROGERS, G. J., WONG, D. Y., WANG, L., LAUBY, M. G., "A Compreensive Computer Program Package for Small Signal Stability Analysis of Power Systems", IEEE Transactions on Power Systems, vol.5, n.4, pp. 1076-1083, 1990.
- [8] ZAMBRONI DE SOUZA, A. C., Estabilidade de tensão: novas ferramentas de análise. Universidade Federal de Engenharia de Itajubá, 1998. (Apostila do Instituto de Engenharia Elétrica).
- [9] PRADA, R. B., ZAMBRONI DE SOUZA, A. C., VIEIRA FILHO, X. et al, Phenomena characterization based on reactive control effects and system critical areas identification. Proceedings of III Symposium of Specialists in Electric Operational and Expansion Planning. Belo Horizonte, 1992.

- [10] GOMES, P., SANTOS, M. G., PRADA, R., Introdução dos estudos sobre estabilidade de tensão no planejamento da operação elétrica. Anais do XII Seminário Nacional de Produção e Transmissão de Energia Elétrica. Recife, 1993.
- [11] VASCONCELOS, LUIZ FREDERICO B., Aplicação do método do vetor tangente na análise de estabilidade de tensão do sistema Chesf. Dissertação de Mestrado. Universidade Federal de Engenharia de Itajubá, 1999.
- [12] MARTINS, N., "Efficient Eigenvalue and Frequency Response Methods Applied to Power System Small-Signal Stability Studies", IEEE Transactions on Power Systems, vol. PWRS-1, pp. 217-225, 1986.
- [13] SOUZA A. C. Z., BRITO, N. H. M. N., "Ações de Controle para Prevenção de Colapso de Tensão: Efeitos e Restrições". Anais do XI Congresso Brasileiro de Automática. São Paulo, 1996.
- [14] CAÑIZARES, C. A., On bifurcation, voltage collapse and load modeling. IEEE/PES 94 SM 512-4 PWRS, San Francisco, CA. July 1994.
- [15] STRUBBE, M., BIHAIN, A., DEUSE, J, BAADER, J. C., "STAG A New Unified Software Program for the Study of the Dynamic Behavior of Electrical Power Systems", IEEE Transactions on Power Systems, vol.4, n.1, 1989.
- [16] EPRI Report EL-6627, Long-Term Dynamics Simulation: Modeling Requirements, Final Report of Project 2473-22, prepared by Ontario Hydro, 1989.
- [17] CAÑIZARES, C. A., ZAMBRONI DE SOUZA, A. C., QUINTANA, V. H., Comparison of performance indices for detection of proximity to voltage collapse. IEEE/PES Summer Meeting - Paper 95, SM 583-5 PWRS, Portland, July 1995.
- [18] TAYLOR, C. W., "Maybe I Can't Define Stability, but I Know It When I See It", IEEE/PES – panel on Stability Terms and Definitions, New York, 1997.

- [19] PAIVA, Isabella de Freitas Borges de "Comportamento da Curva QV nas barras da região Critica de um Sistema Elétrico, 2007" Dissertação de Mestrado, UNIFEI.
- [20] CAÑIZARES, C. A., ALVARADO, F. L., DEMARCO, C. L., DOBSON, I., LONG, W. F., Point of collapse methods applied do ac/dc power systems. IEEE Transactions on Power Systems, vol.7, nº 2, pp. 673-683, May 1992.
- [21] CAÑIZARES, C. A., ALVARADO, F. L., Point of collapse and continuation methods for large ac/dc systems. IEEE Transactions on Power Systems, vol. 8, n° 1, pp.1-8, Feb. 1993.
- [22] MONTICELLI, ALCIR JOSÉ, "Fluxo de Carga em Redes de Energia Elétrica," Editora Edgard Biucher Ltda, 1983.
- [23] GAO, B., MORISON, G. K., KUNDUR, P., "Voltage Stability Evaluation Using Modal Analysis". IEEE Transactions on Power Systems, v.7, n.4, p.1529-1542, nov. 1992.
- [24] MARANNINO, P., BRESESTI, P., DELFANTI, M., GRANELLI, G. P., MONTAGNA, M., "Voltage Collapse Proximity Indicators for Very Short Term Security Assessment", Proc. Bulk Power System Voltage Phenomena III-Voltage Stability and Security, ECC Inc., Switzerland, August 1994.
- [25] LÖFF, P. A., SMED, T., ANDERSON, G., HILL, D. J., "Fast Calculation of a Voltage Stability Index", IEEE Transactions on Power Systems, vol.7, n.1, pp. 54-64, February 1992.
- [26] BARQUIN, J., GÓMEZ, T., PAGOLA, F. L., "Estimating the Loading Limit Margin Taking into Account Voltage Collapse Areas", IEEE/PES Winter Meeting - Paper 95 WM 183-4 PWRS, 1990.
- [27] H. J. C. PINTO, N. MARTINS, X. V. FILHO, A. BIANCO, P. GOMES, M. G. SANTOS, "Modal Analysis for Voltage Stability: Application at Base Case and Point of Collapse", Proceedings of Bulk Power System Voltage Phenomena III Voltage Stability, Security and Control, Davos, Switzerland, August 1994.

- [28] SEYDEL, R., From Equilibrium to Chaos Practical Bifurcation and Stability Analysis. Elsevier, New York, 1988.
- [29] IBA, K., SUZIKI, H., EGAWA, M., WATANABE, T. "Calculation of Critical Loading Condition with Nose Curve Using Homotopy Continuation Method".
 IEEE Transactions on Power Sistem, Vol. 6, No. 2, May 1991, pp. 584-593.
- [30] AJJARAPU, V., CHRISTY, C., "The continuation Power Flow: A Tool for Steady State Voltage Stability Analysis", IEEE Transactions on Power Sistem, Vol. 7, No. 1, February 1992, pp. 416-423.
- [31] CHIANG, H. D.,SHAH, K. S., BALU, N. CPFLOW: A Practical Toll for Tracing Power System Steady-State Stationary Behavior Due to Load and Generaton Variatons. IEEE Transactions on Power Sistem, Vol. 10, No. 2, May 1995, pp. 623-634.
- [32] LOBATO, M. V. C., "Estabilidade de Tensão em Sistemas de Energia Elétrica: Estudo do Fenômeno e de Métodos para Análise Estática", Dissertação de Mestrado, UFMG, Minas Gerais, 1998.
- [33] A. CANIZARES, "Voltage Collapse and Trasient Energy Function Analyses of AC/DC Systems", PhD thesis, University of Wisconsin-Madison, 1991.
- [34] SCOTT W. HADLEY, BRIAN L. MARK AND ANTHONY VANNELLI, " Efficient Eigenvector Approach for Finding Netlist Partition", IEEE Transaction on CAD/ICAS, vol.11, no. 7, July 1992, pp. 885-892.
- [35] AJJARAPU, V., "Identification of Steady State Voltage Stability in Power Systems," Proc. of International Conference on High Technology in the Power Industry, pp. 244-247, March 1988.
- [36] ALVARADO, F. L., JUNG, T. H., "Direct Detection of Voltage Collapse Conditions," Proc. Bulk Power System Voltage Phenomena - Voltage Stability and Security, EL-6183, EPRI, pp. 5.23-5.38, January 1989.
- [37] FAUR, Z. T., CAÑIZARES, C. A., "Effects of FACTS Devices on Systems Loadability", North American Power Symposium, June 1995.

- [38] HILL, D. J., "Nonlinear Dynamic Load Models with Recovery for Voltage Stability Studies", IEEE Transactions on Power Systems, Vol. 8, No. 1, February 1993, pp. 166-176.
- [39] PINTO, D. P., "Representação das Cargas nos Estudos de Estabilidade",Dissertação de Mestrado, COPPE/UFRJ, Rio de Janeiro, 1988.
- [40] OHIMA, T. et alli, "Voltage Dependence of Composite Loads in Power Systems", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-104, No. 11, November 1985, pp. 3064-3073.
- [41] GCOI Grupo Coordenador para Operação Interligada, "Análise das perturbações dos dias 24 e 25/04/97 no sistema interligado S/SE/CO", Relatório SCO/SCEL-01/97, 1997.
- [42] JARDIM, J. L. A., SILVA NETO, C. A., SOUZA, A. C. Z., ALVES da SILVA, A. P., FALCÃO, D. M., BORGES, C. L. T., TARANTO, G. N., "A New On-Line Dynamic Security Assessment System", VI Simposium of Specialists in Electric Operational and Expansion Planning, Salvador, 1998.
- [43] SOUZA A. C. Z, A. P. ALVES DA SILVA, JORGE L. A. JARDIM, C. A. SILVA NETO, G. L. TORRES, CLAUDIO FERREIRA, L. C. ARAUJO FERREIRA, A New Contingency Analysis Approach For Voltage Collapse Assessment, International Journal of Electrical Power & Energy Systems, Volume 25, Issue 10, December 2003, Pages 781-785
- [44] VAN CUTSEM, T., VOURNAS, C. D., "Voltage Stability Analysis in Transient and Mid-Term Time Scales", IEEE Transactions on Power Systems, vol. 11, n.1, pp. 146-154, February 1992.
- [45] WEEDY, B. M., Sistemas Elétricos de Potência, São Paulo: Editora da Universidade de São Paulo, 1973.
- [46] SOUZA A. C. Z, "Determinação da Barra Crítica e do Ponto de Colapso pelo Vetor Tangente", XI CBA, São Paulo, Setembro de 1996, vol. 3, pags 1393-1398.
- [47] SOUZA A. C. Z, C. A. CAÑIZARES AND V. H. QUINTANA, "Critical Bus and Point of Collapse Determination Using Tangent Vectors", 28th North

American Power Symposium, Cambridge, USA, November 10-12 1996, pp. 329-333.

- [48] SOUZA A. C. Z., "Discussions on Some Voltage Collapse Indices", Electric Power Systems Research, vol.53, No.1, January 2000, pp. 53-58.
- [49] SOUZA A. C. Z., C. A. CAÑIZARES AND V. H. QUINTANA, "New Techniques to Speed up Voltage Collapse Computations Using Tangent Vectors ", IEEE/PES Summer meeting, paper PE-219 – PWRS-0-11-1996, Berlin, July 1997.
- [50] MOHN FRITZ WALTER, "Uso de Modelos Desacoplados em Estudos de Estabilidade de Tensão", Itajubá, junho de 2005.
- [51] B. H. CHOWDHURY AND C. W. TAYLOR, Voltage Stability Analysis: V –Q
 Power Flow Simulation Versus Dynamic Simulation, IEEE Transactions on
 Power Systems, v.15, n.4, november 1993.
- [52] IEEE SPECIAL TUTORIAL COURSE, VOLTAGE STABILITY July 1998 Summer Meeting – San Diego CA
- [53] MARANNINO, P., BRESESTI, P., DELFANTI, M., GRANELLI, G. P., MONTAGNA, M., "Voltage Collapse Proximity Indicators for Very Short Term Security Assessment", Proc. Bulk Power System Voltage Phenomena III-Voltage Stability and Security, ECC Inc., Switzerland, August 1994.
- [54] J. L. CARPENTIER, "CRIC, A New Active Reactive Decoupling Process in Load Flows, Optimal Power Flows and System Control", Proc. IFAC Symposium on Power Systems and Power Plant Control, pp. 65-70. Aug. 1986.

O MÉTODO DE NEWTON-RAPHSON

O método de Newton-Raphson, também conhecido como Método das Tangentes, consiste em resolver numericamente um sistema de equações não lineares. A grande vantagem deste método em relação aos outros é a rápida convergência. No entanto, a estimativa inicial é de grande importância.

Considere uma função unidimensional expressa pela equação (A.1), deseja-se determinar o(s) valor(es) que anulam a função:

$$g(x) = 0 \tag{AI.1}$$

em que g(x) e x são escalares. O objetivo é calcular os valores de x para os quais a função se anula. Em termos geométricos, como mostra a Figura A.1, a solução da equação (A.1) corresponde ao ponto em que a curva corta o eixo x.

Figura AI.1 - Método de Newton-Raphson

A Figura A.1 fornece informações importantes. Os pontos x_o , $x_1 \in g(x_o)$ são os vértices de um triângulo retângulo. Pode-se, portanto, a partir de x_o , obter x_1 como descrito a seguir.

O método consiste em linearizar o problema originalmente não linear em cada ponto da curva, até que o ponto em que a solução g(x)=0 seja encontrada. Portanto, dois passos são fundamentais no processo:

- Escolha do ponto inicial.

- Linearização da curva em cada ponto.

Em relação a este último ponto, a Figura A.1 fornece informações importantes. Note que os pontos x_o , x_1 e g(x_o) são os vértices de um triângulo retângulo. Pode-se, portanto, a partir de x_o , obter x_1 da seguinte forma:

$$tg(\theta) = g(x_0)/(x_0 - x_1)$$
(AI.2)

$$x_1 = x_0 - tg(\theta)^{-1}g(x_0) \tag{AI.3}$$

onde $tg(\theta)$ representa a tangente do ângulo θ , como mostrado na figura, AI.1. Assim, pode-se checar se $g(x_1)$ é igual a zero, o que tornaria x_1 a solução do problema, encerrando o processo iterativo. Caso contrário, o processo deve-se repetir até que a solução seja encontrada. Portanto, para o caso unidimensional, o entendimento do método de Newton é bastante simples, e é inteiramente resumido na Figura A.1. Esta simplicidade não é comprometida quando o sistema a ser tratado tem dimensões maiores (e é sempre o caso dos sistemas elétricos de potência). Neste caso, é importante explicitar a linearização a partir de uma formulação matemática através da expansão obtida por série de Taylor:

$$g(x_0 + \Delta x) = g(x_0) + g'(x_0)^* \Delta x + \tau$$
 (AI.4)

Na expressão acima, g(xo) representa o valor da função no ponto $x_0 e g'(x_0)$ representa a derivada no mesmo ponto. Finalmente, Δx representa uma variação de x ao redor de x_0 , enquanto τ representa os termos de ordem mais alta (desprezados). Para o caso unidimensional, $g'(x_0)$ representa a reta tangente à curva em cada ponto.

Na expressão acima, todos os termos são conhecidos, com exceção de Δx , determinado como:

$$\Delta x = g^{-1} \left(g(x_o + \Delta x) - g(x_o) \right) \tag{AI.5}$$

 $E x_1 é$ obtido através de;

$$x_I = x_o + \Delta x \tag{AI.6}$$

Portanto, o processo acima representa exatamente a metodologia empregada anteriormente com o auxílio do triângulo retângulo, Figura AI.1. Assim, o procedimento do método de Newton-Raphson pode ser resumido como segue:

- i) Verificar se a função $g(x_0)$ se anula para o ponto x_0 . Este ponto é aleatoriamente escolhido para dar partida no processo.
- ii) Caso g(x0) não seja igual a zero, linearize g(x) através da resolução da Série de Taylor, mostrada na equação (AI.4).
- iii) Calcule x e atualize o valor de x.
- iv) Para o novo valor de x, calcule g(x). Se for igual a zero, o processo convergiu. Caso contrário, volte ao passo ii e repita todo os itens seguintes.

Para sistemas maiores, a equação (AI.7) apresenta a linearização das equações, já desprezando os termos de ordem mais alta.

$$g_i(x_0 + \Delta x) = g_i(x_0) + \frac{\partial g_i}{\partial x_1} \Delta x_1 + \frac{\partial g_i}{\partial x_2} \Delta x_2 + \dots + \frac{\partial g_i}{\partial x_n} \Delta x_n$$
(AI.7)

SISTEMA IEEE 14 BARRAS

TITU								
Sis	tema 14 Ba:	rras	s - IEEE - Ca	aso B	ase			
DBAR								
1	2 BARRA	01	1060 0.	102.	16.49-	-99999	999.	11060
2	1dbarra	02	1045-1.3	166.	-1.83	-40.	50.	21.7 12.7 11074
3	1EBARRA	03	1010-9.4	0.	24.06	0.	40.	94.2 19. 11055
4	EBARRA	04	1024-7.5					47.8 -3.9 11059
5	FBARRA	05	1029-6.3					7.6 1.6 11081
б	1FBARRA	06	1050-12.	0.	30.8	-6.	24.	11.2 7.5 11081
7	DBARRA	07	1050-11.					11081
8	1dbarra	08	1090-11.	0.	24.6	-б.	24.	11081
9	EBARRA	09	1041-12.					29.5 16.6 19. 11081
10	EBARRA	10	1035-13.					9. 5.8 11081
11	FBARRA	11	1039-12.					3.5 1.8 11081
12	BARRA	12	1035-13.					6.1 1.6 11081
13	DBARRA	13	1031-13.					13.5 5.8 11081
14	EBARRA	14	1018-14.					14.9 5. 11081
9999								
DLIN								
1	2 1		1.938 5.917					
1	5 1		5.40322.304					
2	3 1		4.69919.797					
2	4 1		5.81117.632					
2	5 1		5.69517.388					
3	4 1		6.70117.103					
4	5 1		1.335 4.211					
4	7 1		20.912		1.			
4	91		55.618		1.			
5	6 1		25.202		1.			
б	11 1		9.498 19.89					
6	12 1	-	12.291 25.58					
6	13 1		6.61513.027					
7	8 1		17.615					
7	91		11.001					
9	10 1		3.181 8.45					
9	14 1	-	12.71127.038					
10	11 1		8.20519.207					
12	13 1	2	22.09219.988					
13	14 1	-	17.09334.802					
9999								
DGBT								
0	1.							
D	138.							
Е	230.							
F	345.							
99								
DBQV								
9999								
FIM								

SISTEMA IEEE 30 BARRAS

TITU

	SISTEMA I	de 30 barras	- Caso	Base	- Normal				
DBAR									
1	2AGlen Lyn	132A1060 0.2	262.6-16.6	0.	0.				11060
2	1AClaytor	132A1043-5.5	40.51.66	-40.	50.	22.	13.		11043
3	AKumis	132A1020 -8.				2.	1.		11020
4	AHancock	132A1011-9.7				8.	2.		11012
5	1AFieldale	132A1010-14.	0.37.09	-40.	40.	94.	19.		11010
6	ARoanoke	132A1010-11.							11010
7	ABlaine	132A1002-13.				23.	11.		11002
8	1AReusens	132A1010-12.	0.38.28	-10.	40.	30.	30.		11010
9	BRoanoke	1 0B1050-15	0100120		101		50.		11000
10	CRoanoke	3301044-16				6	2	19	11100
11	1 DRoanoko	1101092 - 15	0 16 55	-6	24	0.	4.	±).	11002
10	Diangage	11D1002-15.	0.10.55	-0.	24.	1 1	0		11052
12	1 DILANA WAR	33CIU50-I5.	0 11 00	~	24	±±•	ο.		11071
14	IDHancock	11D10/1-15.	0.11.62	-6.	24.	~	0		110/1
14	CBus 14	33C1040-16.				6.	2.		11042
15	CBus 15	33C1036-16.				8.	3.		11038
16	CBus 16	33C1043-16.				4.	2.		11045
17	CBus 17	33C1038-16.				9.	6.		11040
18	CBus 18	33C1026-17.				3.	1.		11028
19	CBus 19	33C1024-17.				10.	3.		11026
20	CBus 20	33C1028-17.				2.	1.		11030
21	CBus 21	33C1031-17.				18.	11.		11033
22	CBus 22	33C1032-17.							11033
23	CBus 23	33C1025-17.				3.	2.		11027
2.4	CBus 24	33C1019-17.				9	7.	4.	11020
25	CBus 25	33C1016-17				2.	· •		11016
26	CBug 26	33C 998 - 17				4	2		11000
20	CCloverdl	-32C1022-16				1.	2.		11022
27	Aclowerdle	= 3301022 - 10.							11006
20	ACIOVEIUI	2201000-12.				2	1		11000
29	CBUS 29	33C1002-17.				۷. 11	⊥. 2		1 002
30	CBus 30	330 990-18.				⊥⊥.	2.		I 992
9999									
DLIN									
1	2 1	1.92 5.75	5.28 1.						
1	3 1	4.52 18.52	4.08 1.						
2	4 1	5.7 17.37	3.68 1.						
2	5 1	4.72 19.83	4.18 1.						
2	6 1	5.81 17.63	3.74 1.						
3	4 1	1.32 3.79	.84 1.						
4	6 1	1.19 4.14	.9 1.						
4	12 1	25.6	.932						
5	7 1	4.6 11.6	2.04 1.						
б	7 1	2.67 8.2	1.7 1.						
6	8 1	1.2 4.2	.9 1.						
6	9 1	20.8	978						
6	10 1	20.0 55 6	.970						
6	20 1	1 60 5 00	1 2 1						
0	20 I	1.09 5.99	1.3 $1.$						
8	28 I 10 1	6.36 ZU.	4.28 I.						
9		11.	1.						
9		20.8	1.						
10	17 1	3.24 8.45	1.						
10	20 1	9.36 20.9	1.						
10	21 1	3.48 7.49	1.						
10	22 1	7.27 14.99	1.						
12	13 1	14.	1.						
12	14 1	12.31 25.59	1.						
12	15 1	6.62 13.04	1.						
12	16 1	9.45 19.87	1						
14	15 1	22 1 19 97	±• 1						
15	18 1	10 73 21 85	±• 1						
15	10 I 22 1		⊥• 1						
CΤ	L CD	10. 20.2	1.						
1.0	1 🗂 1	0 04 10 02	-						
10	\perp / \perp	8.24 19.23	⊥.						

18 19	19 1 20 1	6.39 12.92 3.4 6.8	1. 1.
21 22 23 24 25 25 27 27 28 29 9999 DGBT A 132. B 1. C 33. D 11. 99 DMTB 2 3 4 5 6 26 27 28 29 30 9999 FTM	22 1 24 1 25 1 26 1 27 1 29 1 30 1 27 1 30 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1. 1. 1. 1. 1. 1. .968 1.
FIM			

SISTEMA REAL (SIN DO PARAGUAI 225 BARRAS)

TITU									
SIN DO	PARAGUAI	- ANO 20	010 -	CASC) BASE				
DBAR									
201	HSLO AB	23H1022-32.				67.	38.5	12.	61022
203	HBPAABC	23H1022-37.				60.	4⊥.	24.	61024
206	HPBO AB	23H1022-34.				89.8	44.8	24. 10	61020 61021
208	HSMIABC	Z3H102Z-3/. 22H1022 24				54.8	21.1	10. 10	61021
210	HCEN AR	23H1022-34.				26 6	15 3	10. 12	61022
213	HDSAARC	23H1021-30. 23H1022-36				51 1	25.3	24 3	61021
216	HLAM AR	23H1022-36				98 5	58 2	21.5	61005
220	HTBO AB	23H1022-38.				39.5	32.6	19.2	61020
221	HLUO A	23H1022-30.				43.2	21.6	6.	61022
222	HCOL 23	KV H1020-34.				4.8	2.8		61022
224	HPCA A	23H1022-34.				58.	41.4	24.	61004
225	HPIR A	23H1022-33.				4.2	2.6		61022
226	HBCP AB	23H1024-33.				.9	.6		61024
231	HITG AB	23H1022-36.				33.2	17.1	12.	61019
233	HCAE AB	23H1022-36.				27.1	21.	12.	61021
234	HESA A	23H1020-32.				11.6	9.		61000
235	HPAR A	23H1022-36.				14.8	8.8	6.	61020
237	HQUI A	23H1022-34.				8.3	4.7	3.	61020
238	HCAU AB	23H1022-36.				5.3	2.9	2.4	61020
239	HGUA AB	23H1022-35.				32.1	25.9	9.	61021
241	HVIA AB	23H1022-35.				20.5	12.5	6.	61025
244	HLIM AB	23H1022-28.				20.5	16.9	6.	61001
240	HVHA AB	Z3H1022-32.				10.2 E 0	5.3 1 2	3.	E 000
204		0B1000-30.				2.0	1 /		5 990
265	HVMZ A HSFS A	23H1000-30. 23H1022-29				2.2	11 5		41021
267	HSRO A	23H1022-25.				16 8	93	З	41021
268	HHOR A	23H1022-38				8 2	5 2	5.	51020
269	HYBY A	23H1018-39.				3.2	1.6		5 970
270	HCBV A	23H 931-39.				1.8	.8		5 959
271	HPJC AB	23H1022-41.				19.4	10.5	10.6	51007
272	HCON A	23H1022-41.				13.2	9.1	6.	51019
273	HCOV AB	23H1019-27.				29.7	18.3	8.4	41019
274	HFIL A	23H1022-44.				9.2	5.5		81020
275	HVIL A	23H1018-34.				13.8	6.1		41018
276	HCZA A	23H1022-38.				9.7	5.6	3.	41017
277	HVIL B	23H1022-36.				20.8	9.2	7.	41018
279	HLPA A	23H1022-43.				10.3	6.9	-	81020
281	HACYABC	23H1018-19.				29.1	20.	6.	21021
282	HSJB A	23H1022-31.				1.5	5.4		31022 41021
285 206	HCIO A	23H1U21-27. 22H1020 /2				1 /	2.3		41021 01020
200	HWES Y	2301020-43.				30 5	.0 13	6	21020
200	HIRY A	23H1022-18				15 4	43. 63	0.	21021
291	HCAT A	23H1020-27.				17.4	8.8	6.	21021
292	HCUR AB	23H1020-24.				12.2	8.5	3.	21020
293	HCAP A	23H1022-32.				33.7	13.6	6.	61022
295	HHER A	23H1037-21.				17.7	12.	6.	21037
296	HCDO A	23H1022-22.				21.7	11.2	6.	21019
297	HCZU A	23H1018-25.				25.9	12.8	6.	41018
298	HK15 A	23H1023-20.				17.	9.1	3.	21023
299	HSPN A	23H1022-36.				4.2	2.3		41020
301	ISLO B1	66I1040-31.							61041
302	1ISLO RE	66I1061-31.	0.55.22	-80. 15	50.				61085
303	IBPA B1	6611021-33.							61019
306	IPBO B1	66I1030-32.				1 - 4			61025
307	IVCU BI	6611029-32.				15.4	1.4		01025
3U8 211	IOMI BI	0011020-33. 6671025 22							OLULL
3⊥⊥ 313	TDSA R1	66T1022-33.							61005
515		0011022 JJ.							27000

316	ILAM	В1	66I1027-33.						61019
320	TTBO	в1	66T1024-33.						61018
200	TCOT	םם	66T 072-23						61022
222	ICOL		001 973 - 33.						01022
324	IPCA	ΒT	6611028-33.						6 999
325	IPIR	В1	66I1050-31.						6 998
326	IBCP	В1	66I1023-33.						61014
333	TCAE	RP	66T1004-32						6 987
222	TOAD		6611001 52.						6 907
334	IESA	RT	6611020-29.						6 998
335	IPAR	B1	66I1027-32.						6 979
337	IQUI	В1	66I 997-32.						6 964
338	TCAU	B1	66T 989-33.						6 956
330	TCIIA	р1	66T1048-32						61049
241	IGUA	DT	6611040-32.						01040
341	TVIA	ВЪ	6611031-33.						61040
343	IGHN	В1	66I1040-32.			.7	.2		61032
344	ILIM	В1	66I1024-28.						61017
345	TACE	в1	66T1009-29.			8.7	4.2		61006
216	TYUA	D1	66T1007 20			0.7	1.2		61004
240	IVHA		6671007-29.						01004
365	TAM2	ΒT	6611000-36.						51000
367	ISRO	В1	66I1040-34.						41032
368	IHOR	В1	66I1029-36.						51053
369	TYBY	в1	66T1001-37						51021
270	TODV	р1	66T 002 20						E 0.22
370	ICBV		001 993-30.						5 925
37⊥	TPJC	ΒT	661 985-38.						5 860
372	ICON	В1	66I 986-38.						51023
374	IFIL	В1	66I 956-42.						81031
375	τντι.	RP	66T1020-31						4 992
276			66T 070 22						1 071
570	ICZA	BT	001 978-33.						4 9/4
379	ILPA	ΒL	661 981-41.						81038
382	IACY	В3	66I 976-16.						21071
386	IMES	В1	66I 949-43.						81029
388	тк30	RD	66T1020-19						2 994
200	TTDV		CCT1010 10						
390	LIRI	BI	6611018-18.						21025
391	TCA.L	ΒT	6611000-23.						2 907
392	ICUR	В1	66I1000-21.						2 965
394	IWMA	в1	6611019-19.			4.4	2.6		2 996
395	тнгр	RD	66T 976-17						21040
200			CCT1000 10						21010
398	IKIS	IA	6611002-18.						21000
399	ISPN	B1	66I1018-34.						41023
401	KACY	в2	220K1098-14.						21095
402	KCOV	в1	220K1041-22.						41011
403	KGLO	R1	220K 991-27						6 978
103	KOIIA	рт DТ	2200 991 27						
404	KGUA	ВZ	22UK 983-28.						0 9/5
405	KLAM	В1	220K 973-29.						6 965
408	KPBO	В1	220K 979-27.						6 984
409	KLIM	в1	220K1001-25.						6 985
410	KGDN	ΨЪ	220K 977-29						6 968
111			11 001000 00	0 00 03 150	250				61000
±⊥⊥		て出	11.001020-25.	0.90.03-150.	200.				OTOOO
413	KPSA	В1	220K 975-29.						01000
421	KLUQ	ΤA	220K 994-26.						6 981
424	KPCA	AB	220K 976-27.						6 987
425	KDIB	в 1	220K 990-27						6 981
420		DT 	22010 990 27.						0 001
430	KYNE	ΠA	220K 983-28.						6 9/4
434	KESA	ΤA	220K1024-25.						41000
461	IQUI	ΤA	220I 995-29.						61023
466	KSES	ΤА	220K1016-25.						41014
467	KGBU	ΨΔ	220K 992-30						41012
160	ILDILO	-A	2201 222 30					20	E 000
408	KHOR	ЪТ	22UK 90U-33.					-20.	5 999
469	KVM1	В1	220K 967-35.						51021
471	KPJC	В1	220K 988-34.						51000
475	KVTI.	B1	220K1031-23						41011
470	עם זא	д1	220K 051-20						8 000
100	KUFA VOTE	ᆔᆇ	2200 751 - 30						21000
482	KSUB	тA	22UKIUUU-29.						31023
483	KMD	В1	220K1100-13.						21097
484	KIRY	В1	220K1077-17.						21061
485	KCYO	A	220K1034-23						41016
488	××30	д1	220K1089-15						21007
100	TUCO O		220010000 - 10						2102/ 01000
オブリ	V PDO	DТ	ZZUKIU/J-IO.						

493 KCAP TA 2208 195-27. 6 980 496 KCZU TA 220811052-20. 1026 505 PEO FI 1030-32. 61025 513 PSA FI 1027-33. 61003 5279 LAM FI 1027-33. 61003 557 SKO FI 1040-34. 41032 573 LFA FI 980-41. 81038 574 LFA FI 982-41. 81038 578 LWA FI 1020-36. 51021 700 KWA B1 2200100-36. 51021 701 KWA B1 20001018-7.5 1996 801 NND B1 50001018-7.6 1996 803 NPOZ B1 50001018-7.6 151021 1030 EMPA FIC 61022-33. 61012 1313 Ince F1 661022-33. 61012 1313 Ince F1 661022-33. 61012 1313 Ince F1 661022-33. 61012 1311 Ince F1 661022-33.	491 492	KCAT B1 KCUR B1	220K1072-19. 220K1073-19.			21020 21020
496 KCDO TR 220x1065-19. 14026 507 LAM FI 1027-33. 61019 513 PSA FI 1028-33. 61030 524 PCA FI 1028-33. 61030 527 SEA FI 1028-33. 61030 524 PCA FI 1028-33. 61030 578 LFA F2 980-41. 81038 594 IXY F1 1018-18. 21025 700 220rU000 160200. 6548.171736003600. 11020 700 220rU000 1601020. 6548.171736003600. 1020 700 220rU000 1601020. 1026 1996 801 NMCD B1 500N1018-7.5 1996 1996 801 NMCD B2 500N1018-7.6 1996 1996 804 NPOZ B1 500N1018-7.6 1996 803 NLPU B2 500N1018-7.6 1996 804 NPOZ B1 500N1018-7.6 1996 804 NPOZ B1	493	KCAP TA	220K 995-27.			6 980
497 KCZU TA 220x1052-20. 61025 505 PBO F1 1030-32. 61025 513 PSA F1 1023-33. 61000 524 PCA P1 1028-33. 61000 527 LFA F2 980-41. 81038 578 LFA F2 980-41. 81038 579 LFA F1 1018-18. 21025 588 VW2 F1 220x1000-36. 51021 700 KPM F1 1018-18. 51021 700 KPM F1 1020. 6548.171736003600. 1030 710 KPM F1 1036-5. 10974 801 NND B2 50001017-7.6 1986 801 NND B2 50001018-7.6 1986 803 NFOZ B2 50001018-7.6 1918 804 ILM B1 50001017-0.	496	KCDO TA	220K1066-19.			21046
505 PHO F1 1027-32. 61025 509 LAM F1 1027-33. 61003 513 PSA F1 1028-33. 61003 524 PCA F1 1028-33. 61003 578 LFA F2 980-41. 81038 599 LFA F1 982-41. 81038 594 LFY F1 1018-18. 21025 598 VM2 F1 220K1000-36. 1020 700 ZCPUIGC 1601020 .6548.171736003600. 11020 700 XCPUIGC 1601020 .6548.171736003600. 1020 700 ZCPUIGC 1601020 .6548.171736003600. 1020 700 ZCPUIGC 1601020 .6568.171736003600. 1020 801 NND B1 500N1018-7.5 .000.2310. 1995 802 NND B1 500N1018-7.6 .002 .002 804 NPOZ B2 500N1018-7.6 .002 .002 804 NPOZ B1 500N1018-7.6 .0011 .002 306 INFS F1 6611024-33. .61014 <td>497</td> <td>KCZU TA</td> <td>220K1052-20.</td> <td></td> <td></td> <td>41026</td>	497	KCZU TA	220K1052-20.			41026
509 LAM F1 1027-33. 61009 513 PSA F1 1028-33. 61003 567 SRO F1 1040-34. 41032 578 LPA F2 980-41. 81038 579 LPA F1 982-41. 81038 579 LPA F1 982-41. 81038 579 LPA F1 20270100-36. 51021 700 RYM F1 1081-8. 51021 701 KPM B1 20001018-7.5 1996 801 NND B2 50001018-7.6 1998 803 NNOZ B2 50001018-7.6 1996 803 NNOZ B3 50001018-7.6 1998 803 NNOZ B3 50001018-7.6 1998 803 NNOZ B3 50001018-7.6 1998 803 IND B2 50001018-7.6 1998 803 IND B3 50001018-7.6 1995 803 IND B4 50010108-7.6 1919 1311 ING P1 6611024-33. 61014 133 IND P1 6611024-33. 61014	505	PBO F1	1030-32.			61025
513 PSA F1 1028-33. 61003 524 PCA F1 1040-34. 61033 576 LPA F2 980-41. 81038 579 LPA F2 980-41. 81038 579 LPA F2 980-41. 81038 578 LPA F1 982-41. 81038 579 LPA F1 982-41. 81038 570 200100 16020.0.6548.171736003600. 11030 700 2001010 160102.0.6548.171736003600. 11030 801 NND B1 5001013-7.6 1998 802 NND B2 5001013-8.4 1538.1 803 NF02 B2 5001013-8.4 1538.1 804 NF02 B2 5001013-7.6 11938 805 NLP B2 5001010-7.6 61024 130 TEPS F1 651022-33. 61012 131 Indf F1 651024-33. 61012 133 TEP F1 651024-33. 61012 133 TEP F1 651024-33. 61012 133 TEP F1 651024-33.	509	LAM F1	1027-33.			61019
524 PCA F1 1028-33. 61003 567 SFO F1 1040-34. 41032 578 LPA F2 980-41. 81038 579 LPA F1 1018-18. 21033 578 LPA F1 200.70. 51021 700 2GFUIOG 1861020 0.6548.171736003600. 11020 7100 2GFUIOG 1861020 0.6548.171736003600. 11020 730 KFMA B1 220K 982-28. 36. 5. 10 998 800 NIPU B1 50001018-7.5 1 996 1996 801 NMD B1 50001018-7.8 1 598 1538.1 995 805 NIPU B2 50001018-7.6 1 598 61012 306 INFS F1 6611024-33. 61011 311 InGR F1 6611024-33. 61011 3131 InCP F1 6611024-33. 61000 326 InAF F1 6611024-33. 61000 3133 InCP F1 6611024-33. 61000	513	PSA F1	1023-33.			61000
577 SRO F1 1040-34. 41033 579 LPA F2 980-41. 81038 579 LPA F1 982-41. 81038 579 LPA F1 2025 580 W42 F1 220K100-36. 51021 700 26TPUIDG 1661020 0.6548.171736003600. 11020 700 26TPUIDG 1861020 0.6548.171736003600. 11030 700 26TPUIDG 1801020 0.6548.171736003600. 11030 801 NND B1 50001018-7.5 1.996 1.996 802 NRD B2 50001018-7.6 1.998 1.998 803 NFOZ B1 50010017-20. 6102 803 NFOZ B1 50001017-36. 61019 1303 IFPA F1 6611024-33. 61019 1306 InBS F1 6611024-33. 61012 1311 InGF F1 6611024-33. 61000 1323 InC F1 6611024-33. 61000 1400 KLAM_PSA XERK 975-29. 61000 61000 1405 KLAM_PSA XERK 975-29. 61000 </td <td>524</td> <td>PCA F1</td> <td>1028-33.</td> <td></td> <td></td> <td>61003</td>	524	PCA F1	1028-33.			61003
578 LPA P1 980-41. 81038 579 LPA P1 982-41. 81038 584 URV P1 1018-18. 21025 598 W42 P1 220K 982-28. 36. 5. 1020 700 2GIPUIOG 18G1020 0.6548.171736003600. 11020 730 KPAA B1 220K 982-28. 36. 5. 10974 800 NTPU B1 500N1015-8.5 1998 1996 804 NPOZ B1 500N1015-8.4 1538.1 1996 809 NLTM B1 500N1018-7.8 61012 61024 3106 IPS F1 6611024-33. 61014 3106 IPS F1 6611024-33. 61011 3111 InGR F1 6611024-33. 61001 3264 ING F1 6611024-33. 61000 </td <td>567</td> <td>SRO F1</td> <td>1040-34.</td> <td></td> <td></td> <td>41032</td>	567	SRO F1	1040-34.			41032
579 IPA FI 982-41. 81038 594 IRY FI 1018-18. 21025 700 2GIPULOG 1861020 0.6548.171736003600. 11020 700 CRAM BI 22005 922-28. 36. 5. 10 974 800 NRD BI 500N1018-7.5 1 996 1 996 1 996 803 NROZ BI 500N1015-8.4 1538.1 995 1 996 803 NROZ BI 500N1015-8.4 1538.1 995 1 998 803 NROZ BI 500N1017-7.6 1 986 6102 303 IRPA FIC 6611024-33. 61019 313 InCP FI 6611024-33. 61012 313 InCP FI 6611024-33. 61014 313 InCF FI 6611024-33. 61010 3143 InGI FI 6611024-33. 61010 313 InCF FI 6611024-33. 61010 314 KLM FSA SUBIK 975-29. 61000 61000 1400 KLM FSA SUBIK 975-29	578	LPA F2	980-41.			81038
594 TRY FT 1018-18. 21025 598 YW2 F1 20K1000-36. 51021 700 2GIPUI0G 18G1020 0.6548.171736003600. 11020 700 KFMA B1 220K 92-28. 36. 5. 10 998 800 NFUB B1 500N1017-7.8 1996 1996 801 NMD B1 500N1015-8.5 5000.2310. 1 996 803 NFOZ B1 500N1015-8.4 1538.1 1 996 809 NLPU B2 500N1018-7.6 61026 1303 1306 IRPS F1 6611027-33. 61012 1311 InGR F1 6611024-33. 61012 1313 InC F1 6611024-33. 61000 1323 InPS F1 6611024-33. 61000 1333 InPS F1 6611024-33. 61000 1343 InBC F1 6611024-33. 61000 1400 KLAM_FSA SUBLK 975-29. 61000 1400 KLAM_FSA SUBLK 975-29. 61000	579	LPA F1	982-41.			81038
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	594	IRY F1	1018-18.			21025
TOO 221PTI GC 1821220 0.6548.171736003600. 11020 730 KPMA BL 200 982-28. 36.5.10974 800 NIPU BL 500N1018-7.5 1998 801 NMD BL 500N1018-7.8 1996 803 NF0Z BL 500N1015-8.4 1996 809 NLT BL 500N1018-7.6 1538.1995 805 NIPU B2 500N1018-7.6 61026 1306 InPS FL 6611023-33. 61014 1306 InPS FL 6611024-33. 61011 1311 InGR FL 6611024-33. 61012 1311 InGR FL 6611024-33. 61000 1400 KLAM_PEA ARR1k 976-29. 61000 1400 KLAM_PEA ARR1k 976-29. 61000 1405 KLAM_PEA ARR2k 975-29. 61000 1406 InLT FL 6611022-35. -20.51221 1444 LMD FL 220k 967-35. -20.51221 1444 LMD FL 220k 967-35. -20.51221 1444 <td>598</td> <td>VM2 F1</td> <td>220K1000-36.</td> <td></td> <td></td> <td>51021</td>	598	VM2 F1	220K1000-36.			51021
730 KPMA B1 220K 982-28 36. 5. 10 974 800 NMD B1 500N1018-7.5 1998 801 NMD B1 500N1017-7.8 1996 802 NMD B2 500N1018-7.6 1996 803 NFOZ B1 500N1015-8.4 1538. 1 995 804 NFOZ B2 500N1017-7.6 1538. 1 995 805 NIPU B2 500N1017-7.6 1538. 1 995 803 IPPS F1 6611026-33. 61014 1306 IPPS F1 6611024-33. 61011 1311 InCF F1 6611024-33. 61014 1326 InEC F1 6611024-33. 61000 1400 KLAM_PSA ARENK 976-29. 61000 1405 KLAM_PSA ARENK 975-29. 61000 1406 KLAM_PSA SUB2K 975-29. 61000 1406 KLAM_PSA SUB2K 975-29. 61000 1406 KLAM_PSA SUB2K 975-29. 61000 1406 KLAM_PSA ARENK 976-29. 61000 1404 KUQ FIC 20K 996-34. -20. 51021 1408 KLAM_PSA ARENK 976-29. 61000 1	700	2GTPU10G	18G1020 0.	6548.171736003600.		11020
800 NIFU B1 500N1018-7.5 1 998 801 NMD B1 500N1018-7.8 1 996 802 NMD B2 500N1018-7.8 1 996 803 NFOZ B1 500N1018-7.8 1 996 804 NFOZ B2 500N1018-7.6 1 538.1 1 996 805 NIPU B2 500N1018-7.6 1 538.1 1 995 805 NIPU B2 500N1018-7.6 1 538.1 1 995 806 NILM B1 500N1012-33. 61014 1306 INPS F1 6611024-33. 61014 1313 INGF F1 6611024-33. 61010 1343 INGF F1 661024-33. 61000 1400 KLAM_PSA AER1K 976-29. 61000 1400 KLAM_PSA SUB2K 975-29. 61000 1405 KLAM_PSA SUB2K 975-29. 61000 1416 INTF F1 6611022-33. 61019 1421 KLOQ FIC 200K 967-35. -20.51021 1444 LMD F1 241.5L 957-12. 1 928	730	KPMA B1	220K 982-28.		36. 5.	10 974
801 NMD B1 500M1017-7.6 1996 802 NMD B2 500M1018-7.8 1996 803 NF02 B1 500M1015-8.5 5000.2310. 1996 804 NF02 B2 500M1015-8.4 1538. 1995 805 NFUE B2 500M1017-7.6 1538. 1998 809 NLIM B1 500M1017-7.6 1538. 1998 803 IPEP FI 6611026-33. 61011 1306 InPE F1 6611024-33. 61011 1313 InCF F1 6611024-33. 61011 1334 InGI F1 6611024-33. 61011 1343 InGI F1 6611024-33. 61011 1343 InGI F1 6611024-33. 61000 1400 KLAM_PSA SUBK 975-29. 61000 1405 KLAM_PSA SUBK 975-29. 61000 1406 ILLT F1 6611027-33. 61010 1421 KLOQ FIC 20K 989-34. 51000 2007 HHP A <	800	NIPU B1	500N1018-7.5			1 998
B02 NND B2 500N1015-7.8 1995 803 NFOZ B1 500N1015-8.5 5000.2310. 1995 804 NFOZ B2 500N1015-8.4 1538.1 1995 805 NIPU B2 500N1015-8.4 1538.1 1995 805 NIPU B2 500N1017-20. 61012 1306 INPS F1 6611024-33. 61011 1313 INCF F1 6611024-33. 61012 1343 INGF F1 6611024-33. 61014 1343 INGF F1 6611024-33. 61000 1400 KLAM_PSA ARERK 976-29. 61000 1400 KLAM_PSA ARERK 975-29. 61000 1405 KLAM_PSA SUB2K 975-29. 61000 1406 KLAM_PSA SUB2K 975-29. 61000 1416 ILTF F1 6611022-33. 61019 1421 KLUQ FTC 220K 996-26. -20.51021 61020 1449 KW2 B1 220K 989-34. 51000 2207 H	801	NMD B1	500N1017-7.8	}		1 996
B03 NF02 B1 500N1015-8:5 5000.2310. 1995 804 NF02 B2 500N1015-8:5 1538. 1995 805 NIPU B2 500N1015-8:5 1538. 1995 805 NIPU B2 500N1018-7:6 1538. 1995 803 IEPA FIC 6611026-33. 61014 1306 InPS F1 6611024-33. 61011 1311 InGC F1 6611024-33. 61014 1326 InBC F1 6611024-33. 61014 1337 InGC F1 6611040-32. 61032 1340 KLAM_PSA AERIK 976-29. 61000 1405 KLAM_PSA SUBIK 975-29. 61000 1406 KLAM_PSA XBUZK 975-29. 61000 1416 InLTF F1 6611027-33. 61010 1416 KLAM_PSA XBUZK 975-29. 61000 1416 KLAM_PSA XBUZK 975-29. 61000 1416 KLAM_PSA XBUZK 975-29. 61000 2014 KGW B1 220K 989-34. 51000 2201 <td>802</td> <td>NMD B2</td> <td>500N1018-7.8</td> <td></td> <td></td> <td>1 996</td>	802	NMD B2	500N1018-7.8			1 996
804 NF02 B2 500N1015-8.4 1538. 1 995 805 NIPU B2 500N1015-8.4 1 998 809 NLIM B1 500N107-20. 61026 1303 IEPA FIC 6611025-33. 61014 1306 InPS F1 6611024-33. 61011 1313 InCP F1 6611024-33. 61012 1314 InGR F1 6611024-33. 61014 1343 InGI F1 6611024-33. 61001 1343 InGI F1 6611024-33. 61000 1400 KLAM_FSA AERIK 976-29. 61000 1405 KLAM_FSA AERIK 975-29. 61000 1406 KLAM_FSA AERIK 975-29. 61000 1416 InLT F1 6611027-33. 61019 1440 KLUQ FIC 200K 987-25. -20.51021 1484 KCBV B1 220K 987-32. -20.51021 1484 KLM FSA 23H1022-35. 17. 9.9 12.61022 2007 HIF A 23H1022-35. 17. 9.9 12.61022 2114	803	NFOZ B1	500N1015-8.5		5000.2310.	1 995
805 NTPU B2 500N101B-7.6 1992 809 NLIM B1 500N1007-20. 61026 3103 IEPA FIC 6611026-33. 61011 3136 INPS F1 6611026-33. 61011 3137 INPS F1 6611024-33. 61011 3131 InGF F1 6611024-33. 61011 3133 InCP F1 6611024-33. 61014 3136 InBC F1 6611024-33. 61014 3131 InCF F1 6611024-33. 61001 1404 MAN FIC 2208 976-29. 61000 1405 KLAM_PSA SUBLK 975-29. 61000 1406 KLAM_PSA SUBLK 975-29. 61000 1416 InLT F1 6611027-33. 61011 1464 LMD F1 241.5L 957-12. 1928 1464 KCEV B1 220K 987-35. -20.51021 1484 KCEV B1 220K 987-34. 51000 2207 HHIP A 23H1002-25. 17.9.9 12. 12.61022 2208 HR	804	NFOZ B2	500N1015-8.4		0000120201	1538. 1 995
809 NLTM BI 500N1007-20. 61026 1303 TBPA PIC 6611023-33. 61014 1306 TAPS FI 6611025-33. 61014 1308 TAPS FI 6611025-33. 61011 1313 TAPS FI 6611024-33. 61011 1313 IAGE FI 6611024-33. 61006 1343 IAGI FI 6611024-33. 61001 1343 IAGI FI 6611024-33. 61000 1400 KLAM_PSA AER1K 976-29. 61000 1400 KLAM_PSA AER1K 975-29. 61000 1407 KLAM_PSA SUB2K 975-29. 61000 1408 KLAM_PSA SUB2K 975-29. 61001 1421 KLUQ FIC 220K 967-35. -20. 51021 1422 KUQ2 B1 220K 967-35. -20. 51021 1434 HOF FI 241.5E 957-12. 1928 1444 KCEV B1 220K 989-34. -20. 51021 2207 HHIP A 23H1022-35. 17. 9.9 12. 61022 2104 MAU A 23H1020-35. 19. 9.5 12. 61002 2211	805	NIPU B2	500N1018-7.6			1 998
1303 IBPA FIC 6611023-33. 61019 1306 InPS F1 6611026-33. 61012 1311 InBS F1 6611024-33. 61011 1313 InCP F1 6611024-33. 61014 1313 InCP F1 6611024-33. 61014 1343 InGI F1 6611040-32. 61004 1396 InHA F1 66199-17. 21040 1400 KLAM_PSA SUBLX 975-29. 61000 1405 KLAM_PSA SUBLX 975-29. 61000 1406 KLAM_PSA SUBLX 975-29. 61000 1416 InLT F1 6611027-33. 61019 1421 KLUQ FIC 220K 996-26. 6 981 14469 KVM2 B1 220K 967-35. -20. 51021 1448 LMD F1 241.5L 957-12. 1928 1814 KCBV B1 220K 989-34. 51000 2207 HHIP A 23H1022-36. 26.4 17.3 12. 61022 2208 HEP P A 23H1022-35. 19. 9.5 12. 61020 2209 HVAU A 23H1000-35. 19. 9.5 12. 61020 2301 HHIP A 23H1020-25. 4.4 2.2 21020 2301 HIP A 23	809	NI,TM B1	500N1007-20.			61026
1306 INPS F1 66I1025-33. 61014 1308 INPS F1 66I1025-33. 61011 1311 INGR F1 66I1024-33. 61011 1313 INCP F1 66I1024-33. 61011 1326 INPS F1 66I1024-33. 61014 1343 INGI F1 66I1040-32. 61032 1396 INHA F1 66I 989-17. 21040 1400 KLAM FSA AFRIK 976-29. 61000 1405 KLAM PSA SUBLK 975-29. 61000 1406 KLAM PSA SUBLK 975-29. 61000 1407 KLAM PSA SUBLK 975-29. 61000 1416 InLT F1 6611027-33. 61019 1421 KUQ FIC 220K 986-26. 6 981 981 1424 KUW FIC 220K 986-35. -20.51021 1 928 1444 KCEV B1 220K 986-35. -20.51021 1 928 1444 KCEV B1 220K 987-35. -20.51021 1 928 1421 KUQ FIC 220K 986-36. 26.4 17.3 12.61022 2002 2007 HIP A 23H1022-35. 1.9.9.5 12.61022 2202	1303	IBPA FIC	6611023-33.			61019
1308INBS F1 $6611025-33.$ 61012 1311InGR F1 $6611024-33.$ 61014 1313InCP F1 $6611024-33.$ 61014 1343InGI F1 $6611024-33.$ 61014 1343InGI F1 $6611024-33.$ 61014 1343InGI F1 $6611024-33.$ 61012 1396InHA F1 $661 989-17.$ 21040 1400KLAM_PSA AERIK 975-29. 61000 1405KLAM_PSA AERIK 975-29. 61000 1406KLAM_PSA SUBIK 975-29. 61000 1416InLT F1 $6611027-33.$ 6981 1469KUM2 B1 $220K 967-35.$ $-20. 51021$ 1484LMD F1 241.5L 957-12.1 9281489KUW2 B1 $220K 989-34.$ 51000 2207HHEP A $23H1022-36.$ $26.4 17.3 12. 61022$ 2208HREP A $23H1022-35.$ $19. 9.5 12. 61002$ 2211HGDI A $23H1020-25.$ $4.4 2.2$ 2203HWAU A $23H1020-25.$ $4.4 2.2$ 2307IHEP B1 $6611024-33.$ 61000 2311IGDI B1 $6611024-33.$ 61000 2308IREP B1 $6611024-33.$ 61000 2311IGDI B1 $6611024-33.$ 61024 2331ITC B2 $60124-33.$ 61000 2311IGDI B1 $6611024-33.$ 61000 2311IGDI B1 $6611024-33.$ $61024-33.$ 246 $505 1$ $.291 8.743$ 6072 2333ITC B2 $661028-22.$ 6102	1306	InPS F1	6611026-33.			61014
1311INGR F1 $6611024-33.$ 61011 1313INCP F1 $6611024-33.$ 61014 1326INEC F1 $6611024-33.$ 61014 1343INGI F1 $6611989-17.$ 21040 1343INGI F1 $661989-17.$ 21040 1400KLAM_FIC 220K 976-29. 61000 1405KLAM_FSA AERIK 975-29. 61000 1406KLAM_FSA AERX 975-29. 61000 1407KLAM_FSA SUBIK 975-29. 61000 1416INTF F1 $6611027-33.$ 61019 1421KLUQ FIC 220K 996-26. 981 1469KVW2 B1220K 967-35. $-20.$ 510211484LMD F1 241. 5L 957-12. 1928 1814KCEV B1220K 989-34. 51000 2207HHIP A23H1022-35. $17.$ 9.9 12. 610222209HVAU A23H1022-35. $19.$ 9.5 12. 610222209HVAU A23H1000-32. 26.9 16.3 6. 610002307HHEP A23H1002-25. 4.4 2.22111HGDI A23H1002-25. 4.4 2.22020HVAU B16611024-33.610102301INFE B16611024-33.610002301INFE B16611024-33.610002311IIGE B16611024-33.61020206505 1.291 8.7431.60206505 1.291 8.7431.60213513 225.1.40214524 1.666 8.5221.215598 1.7032	1308	InBS F1	66T1025-33.			61012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1311	Ingr F1	66T1024-33.			61011
1326InBC FI6611024-33.610141343InGI FI6611040-32.610321396InHA FI661 989-17.210401400KLAM_FIC220k 976-29.610001405KLAM_PSA ABENK 975-29.610001406KLAM_PSA SUBLX 975-29.610001407KLAM_PSA ABE2K 975-29.610001416InLT F16611027-33.610191421KLUQ FIC220K 986-26.6 9811469KVM2 B1220K 986-34.510002207HHIP A23H1022-3520. 510211928144KCEV B1220K 989-34.510002207HHIP A23H1022-35.17. 9.9 12. 610222208HREP A23H1022-35.19. 9.5 12. 610022211HODI A23H100-32.26.9 16.3 6. 610022307IHIP A16611024-33.610002308IREP B16611024-33.610002309IVAU B16611024-33.610002311IGDI B16611024-33.610002331ITG B26611024-33.610002331ITG B26611024-33.610124487ISPA B222011001-29.610239999 25 1.40216509 1.262 7.8351.602171513 125.1.40218KVIC TA20104-351.60213513 225.1.40214509 1.262 7.8351.60	1313	InCP F1	66T1024-33			61006
1343 IngT F1 6611040-32. 61032 1396 InHA F1 661 989-17. 21040 1400 KLAM_FC 2208 976-29. 61000 1405 KLAM_PSA AER1K 976-29. 61000 1406 KLAM_PSA SUBLK 975-29. 61000 1407 KLAM_PSA AER2K 975-29. 61000 1408 KLAM_PSA SUB2K 975-29. 61000 1416 InLT F1 6611027-33. 61019 1421 KLUQ FIC 220K 996-26. 6 981 1469 KVW2 B1 220K 997-35. -20. 14814 KCEV B1 220K 989-34. 51000 2207 HHIP A 23H1022-35. 17. 9.9 12. 61022 2208 HREP A 23H1022-35. 19. 9.5 12. 61002 2211 HGDI A 23H1000-32. 26.9 16.3 6. 61000 2211 HGDI A 23H1000-32. 26.9 16.3 6. 61002 2307 IHIP B1 6611024-33. 61010 61010 61012 61012 61012 230	1326	INBC F1	66T1024-33			61014
1396InHA F1 $661 989-17.$ 21040 1400KLAM_FIC $2008 976-29.$ 61000 1405KLAM_PSA AERL8 975-29. 61000 1406KLAM_PSA SUB1K 975-29. 61000 1407KLAM_PSA AERL2K 975-29. 61000 1416InLT F1 $6611027-33.$ 61019 1421KLUQ FIC $200K 967-35.$ $-20.$ 1469KVM2 B1 $220K 967-35.$ $-20.$ 1469KVM2 B1 $220K 989-34.$ 51000 2207HHIP A $23H1022-35.$ $17. 9. 9. 12.$ 208HREP A $23H1022-37.$ $36.7 25.5 12.$ 209HVAU A $23H1022-37.$ $26.9 16.3 6.$ 2111HGDI A $23H1000-32.$ $26.9 16.3 6.$ 2121HGDI A $23H1000-32.$ $26.9 16.3 6.$ 2130HIP B1 $6611024-33.$ 61000 2301IKEP B1 $6611024-33.$ 61000 2311IGDI B1 $6611024-33.$ 61000 2311IGDI B1 $6611024-33.$ 61000 2311IGDI B1 $6611024-33.$ 61000 2311IGDI B1 $6611024-33.$ 61023 9999DLIN 206 $505 1$ $.291 8.743$ $1.$ 206 $505 1$ $.291 8.743$ $1.$ $60 72$ 213 $513 2$ $25.$ $1.$ $40 48$ 213 $513 2$ $25.$ $1.$ $40 48$ 214 $524 2$ $.166 8.522$ $1.$ 224 $524 2$ $.166 8.522$ $1.$ 224	1343	Ingt F1	66T1040-32.			61032
1400 KLAM_FIC 220K 976-29. 61000 1405 KLAM_PSA AERIK 975-29. 61000 1406 KLAM_PSA AERIK 975-29. 61000 1407 KLAM_PSA AER2K 975-29. 61000 1416 InLT F1 6611027-33. 61019 1411 KLUQ FIC 220K 987-32. 6981 1421 KLUQ FIC 220K 987-35. -20. 51021 1484 LMD F1 241.51.957-12. 1 928 1814 KCBV B1 220K 989-34. 51000 2207 HHIP A 23H1022-35. 17. 9. 9 12. 61022 2208 HREP A 23H1022-37. 36.7 25.5 12. 61022 2209 HVAU A 23H1000-32. 26.9 16.3 6. 61002 2211 HGDI A 23H1000-32. 26.9 16.3 6. 61002 2211 HGDI A 23H1000-33. 61001 2308 IREP B1 6611024-33. 61011 2309 IVAU B1 6611024-33. 61000 2311 IGDI B1 6611024-33. 61001 2309 IVAU B1 6611024-33. 61000 331	1396	InHA F1	66T 989-17.			21040
1405 KLAM_PSA AERIK 976-29. 61000 1406 KLAM_PSA SUBIK 975-29. 61000 1407 KLAM_PSA SUBIK 975-29. 61000 1416 InLT F1 6611027-33. 61010 1416 InLT F1 6611027-33. 61010 1421 KLUQ FIC 220K 967-35. -20.51021 1484 LMD F1 241.5L 957-12. 1928 1814 KCBV B1 220K 989-34. 51000 2207 HHIP A 23H1022-35. 17. 9.9 12. 61022 2208 HREP A 23H1022-35. 19. 9.5 12. 61002 2211 HGDI A 23H1000-35. 19. 9. 5 12. 61002 2211 HGDI A 23H1000-32. 26.9 16.3 6. 61000 2307 HHIP B1 6611024-33. 61010 2308 IREP B1 6611024-33. 61000 2309 IVAU B1 66611024-33. 61000 2311 IGA B1 661 982-24. 2 907 2418 KVIC TA 220K 988-27. 61023 3999 DLIN 206 505 1 .291 8.743 1. 60 72 213 513 1 25. 1. 40 48 213 214 S14 2	1400	KLAM FIC	220K 976-29			61000
1406 KLAM_PSA SUBLK 975-29. 61000 1407 KLAM_PSA SUBLK 975-29. 61000 1408 KLAM_PSA SUB2K 975-29. 61000 1416 ILLT F1 6611027-33. 61019 1421 KLUQ FTC 220K 996-26. 6 981 1469 KVWZ B1 220K 967-35. -20. 51021 1484 LMD F1 241.5L 957-12. 1 928 1814 KCEV B1 220K 989-34. 51000 2207 HHTP A 23H1022-35. 17. 9.9 12. 61022 2208 HREP A 23H1002-35. 19. 9.5 12. 61002 2211 HGDI A 23H1000-35. 19. 9.5 12. 61000 2201 HSCA A 23H1000-32. 26.9 16.3 6. 61000 2301 HHTP B1 6611024-33. 61000 2301 HHTP B1 6611024-33. 61000 2311 IGDI B1 6611024-33. 61000 2311 IGDI B1 6611024-33. 61000 2311 IGDI B1 6611024-33. 61000 2331 ITGB 2 6611024-33. 61000 2331 ITGB 2 6610	1405	KLAM PSA	AER1K 976-29			61000
1407 KLAM_PSA ABR2K 975-29. 61000 1408 KLAM_PSA SUB2K 975-29. 61000 1416 InLT F1 6611027-33. 61019 1421 KLUQ FIC 220K 996-26. 6 981 1469 KWW 2B1 220K 967-35. -20. 51021 1484 LMD F1 241.5L 957-12. 1 928 1814 KCEV B1 220K 989-34. 51000 2207 HHIP A 23H1022-36. 26.4 17.3 12. 61022 2208 HREP A 23H1022-37. 36.7 25.5 12. 61022 2211 HGDI A 23H1000-35. 19. 9.5 12. 61000 2212 2218 HVIC A 23H1020-25. 26.9 16.3 6. 61000 2307 IHIP B1 6611024-33. 61000 61000 2308 IREP B1 6611024-33. 61000 61000 2301 ISGA B1 661 982-24. 2 907 61020 2331 IGGA B1 661 982-24. 2 907 61023 2418 KVIC TA 220K 988-32. 61010 61024 3331 ITGE 2 611024-33. 61020	1406	KLAM PSA	SUB1K 975-29			61000
1408 KLAM_PSA SUB2K 975-29. 61000 1416 ILLT F1 6611027-33. 60101 1421 KLUQ FIC 220K 996-26. 6981 1469 KWM2 B1 220K 967-35. -20. 51021 1484 LMD F1 241.5L 957-12. 1 928 1814 KCBV B1 220K 989-34. 51000 2207 HHIP A 23H1022-36. 26.4 17.3 12. 61022 2208 HREP A 23H1022-35. 17. 9.9 12. 61022 2211 HGDI A 23H1000-35. 19. 9.5 12. 61002 2211 HGDI A 23H1000-32. 26.9 16.3 6. 61002 2211 HGDI A 23H1000-32. 26.9 16.3 6. 61002 2308 IREP B1 66I1024-33. 61001 2309 IVAU B1 66I1024-33. 61001 2309 IVAU B1 66I1024-33. 61000 2311 IGDI B1 66I1024-33. 61000 2331 ITG B2 66I1028-32. 61012 24487 ISPA B2 22011001-29. 61023 9999 DLIN 206 505 1 .291 8.743 60 72 213 513 1 25. 1. 40 48 60 72 213 513 2 25. 1. 40 48 61023	1407	KLAM DSA	AER2K 975-29			61000
1416 InIT FI 6611027-33. 61019 1421 KLUQ FIC 220K 996-26. 6 981 1469 KVM2 B1 220K 967-35. -20. 51021 1484 LMD FI 241.51 957-12. 1 928 1814 KCEV B1 220K 989-34. 51000 2207 HHIP A 23H1022-35. 17. 9.9 12. 61022 2208 HREP A 23H1022-37. 36.7 25.5 12. 61002 22109 HVAU A 23H1000-35. 19. 9.5 12. 61000 2211 HGDI A 23H1000-35. 19. 9.5 12. 61000 2218 HVIC A 23H1020-25. 4.4 2.2 21020 2307 IHIP B1 6611024-33. 61000 2311 IGDI B1 6611024-33. 61020 2331 IJTG B2 6611028-32. 61023 999 0 0 61023 999 0 0 61023 999 0 0 7. 61023 115	1408	KLAM PSA	SUB2K 975-29			61000
1421 KLUQ FIC 220K 996-26. 6 981 1469 KVM2 B1 220K 996-35. -20. 51021 1484 LMD F1 241.5L 957-12. 1 928 1484 KCBV B1 220K 989-34. 51000 2207 HHIP A 23H1022-36. 26.4 17.3 12. 61022 2208 HREP A 23H1022-35. 17. 9.9 12. 61022 2209 HVAU A 23H1022-37. 36.7 25.5 12. 61022 2211 HGDI A 23H1000-35. 19. 9.5 12. 61000 2218 HVIC A 23H1000-32. 26.9 16.3 6. 61000 2307 IHIP B1 6611024-33. 61001 2308 IREP B1 6611024-33. 61001 2309 IVAU B1 6611024-33. 61000 2311 IGDI B1 6611024-33. 61000 2331 ITG B2 6611028-32. 61023 2448 KVIC TA 220K 988-27. 61023 206 505 1 .291 8.743 1. 60 72 213 513 1 .25. 1. 40 48 213 513	1416	TnLT F1	66T1027-33			61019
1469KVM2 B1220K 967-35. -20.51021 1484LMD F1 241.5L 957-12.1 9281814KCBV B1220K 969-34.510002207HHIP A23H1022-36.26.4 17.3 12. 610222208HREP A23H1022-37.36.7 25.5 12. 610222209HVAU A23H1000-35.19. 9.5 12. 610022218HVIC A23H1000-32.26.9 16.3 6. 610002218HVIC A23H1000-25.4.4 2.22307IHIP B166I1024-33.610002308IREP B166I1024-33.610002309IVAU B166I1024-33.610002301ISGA B166I 982-24.2 9072418KVIC TA220K 988-27.610023311IITG B266I1028-32.610124487ISPA B2220I1001-29.610239999DLIN206505 1.291 8.7431.206505 2.291 8.7431.60 72213513 125.1.40 48213513 225.1.40 48216509 1.262 7.8351.60 72216509 2.262 7.8351.60 72216509 2.262 7.8351.60 72216509 2.262 7.8351.60 72216509 2.262 7.8351.60 72216509 2.262 7.8351.60 72224524 1.166 8.5221.20 25	1421	KLUO FIC	220K 996-26			6 981
1484 LMD F1 241.5L 957-12. 1 928 1814 KCBV B1 220K 989-34. 51000 2207 HHIP A 23H1022-35. 26.4 17.3 12. 61022 2208 HREP A 23H1022-35. 17. 9.9 12. 61022 2209 HVAU A 23H1000-35. 19. 9.5 12. 61000 2211 HGDI A 23H1000-32. 26.9 16.3 6. 61000 2291 HSGA A 23H1020-25. 4.4 2.2 21020 2307 IHIP B1 6611024-33. 61000 61001 2308 IREP B1 6611024-33. 61001 61000 2301 ISGA B1 661 982-24. 2 907 2418 2311 IGDI B 6611028-32. 61000 61002 2391 ISGA B1 661 982-24. 2 907 61023 2399 DLIN 6072 21001-29. 61023 206 505 1 .291 8.743 1. 60 72 213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 213 513 2 267 7.835 <td>1469</td> <td>KVM2 B1</td> <td>220K 967-35.</td> <td></td> <td></td> <td>-20, 51021</td>	1469	KVM2 B1	220K 967-35.			-20, 51021
1814 KCEV BI 2207 989-34. 51000 2207 HHIP A 23H1022-36. 26.4 17.3 12. 61022 2208 HREP A 23H1022-37. 36.7 25.5 12. 61022 2209 HVAU A 23H1002-35. 17. 9.9 12. 61022 2201 HGDI A 23H1000-35. 19. 9.5 12. 61000 2211 HGDI A 23H1020-25. 26.9 16.3 6. 61000 2291 HSGA A 23H1020-25. 4.4 2.2 21020 2307 IHIP B1 6611024-33. 61001 61000 2309 IVAU B1 6611024-33. 61001 2907 2418 KVIC TA 220K 988-27. 61000 2331 IGGA B1 661 922-24. 2 907 2418 KVIC TA 220K 988-27. 61000 3331 IITG B2 6611028-32. 61023 9999 DLIN 206 505 1 .291 8.743 1. 60 72 213 513 1 25. 1. 40 48 48 213 513 2 25. 1. 40 48 216 509 1 .26	1484	IMD F1	241.5T 957-12.			1 928
2207HHTP HHTP A23H1022-36. 26.4 17.3 $12.$ 61022 2208HREP A23H1022-37. 36.7 25.5 $12.$ 61022 2209HVAU A23H1000-35. $19.$ 9.5 $12.$ 61022 2211HGDI A23H1000-35. $19.$ 9.5 $12.$ 61002 2218HVIC A23H1020-25. 26.9 16.3 $6.$ 61000 2307IHIP B1 $6611024-33.$ 61000 4.4 2.2 21020 2307IHIP B1 $6611024-33.$ 61000 61000 2308IREP B1 $6611024-33.$ 61000 2311IGDI B1 $6611024-33.$ 61000 2311IGDI B1 $6611024-33.$ 61000 2331IITG B2 $6611028-32.$ 61000 2331IITG B2 $6611028-32.$ 61023 9999 999 999 999 999 DLIN 206 505 2 291 8.743 $1.$ 206 505 2 291 8.743 $1.$ 60 72 213 513 $25.$ $1.$ 40 48 213 513 $25.$ $1.$ 40 48 213 513 $25.$ $1.$ 40 48 214 509 2.622 7.835 $1.$ 60 224 524 1.66 8.522 $1.$ 20 25 244 524 $2.70324.05$	1814	KCBV B1	220K 989-34.			51000
2206HREP A 23H1022-35.17. 9.912. 610222209HVAU A 23H1002-35.36.7 25.5 12. 610222211HGDI A 23H1000-35.19. 9.5 12. 610022218HVIC A 23H1000-32.26.9 16.3 6. 610002291HSGA A 23H1020-25.26.9 16.3 6. 610002307IHIP B1 6611024-33.610002308IREP B1 6611024-33.610002309IVAU B1 6611024-33.610002311IGDI B1 6611024-33.610002311IGDI B1 6611024-33.610002311IGDI B1 6611024-33.610002311IGDI B1 6611024-33.610002331IITG B2 6611028-32.610003331IITG B2 6611028-32.610124487ISPA B2 2001101-29.610239999999 0 DLIN206 205505 1 205 2213513 1 20525.1.206505 2 201 201101-29.60 201 201213513 2 2051.40 48213513 2 20525.1.216509 1 262 7.83560 72216509 2 262 7.8351.60 72224524 1 24 1 266 8.5221.224524 2 24 1.668.522 2.1.224524 2 24 1.661.20 25	2207	HHTP A	23H1022-36		26.4 17.3	12, 61022
2200HVAUA $23H1022-37.$ $36.7 25.5 12.61022$ 2211HGDIA $23H1000-35.$ 19.9.5 12.610002218HVICA $23H1020-25.$ 26.9 16.3 6.610002291HSGAA $23H1020-25.$ 4.4 2.2 21020 2307IHIPB1 $66I1024-33.$ 610002308IREPB1 $66I1024-33.$ 610002311IGDIB1 $66I1024-33.$ 610002311IGDIB1 $66I1024-33.$ 610002311IGDIB1 $66I1024-33.$ 610002311IGDIB1 $66I1024-33.$ 610002331IITGB2 $20I1001-29.$ 907 2418KVIC TA220K 988-27.610123331IITGB220I1001-29.9999DLIN6072206 $505 1$.291 8.7431.206 $505 1$.291 8.7431.206 $505 2$.291 8.7431.206 $505 2$.291 8.7431.206 $505 1$.291 8.7431.206 $505 1$.291 8.7431.213 $513 2$ 25.1.214 $513 2$ 25.1.216 $509 2$.262 7.8351.216 $509 2$.262 7.8351.216 $509 2$.262 7.8351.224524 1.166 8.5221.224524 2.166 8.5221.225598 1.	2208	HREP A	23H1022-35		17 9 9	12 61022
2211HGDI A23H1000-35.19.9.512.610002218HVIC A23H1000-32.26.916.36.610002291HSGA A23H1020-25.4.42.2210202307IHIP B166I1024-33.610002308IREP B166I1024-33.610012309IVAU B166I1024-33.610002311IGDI B166I1024-33.610002391ISGA B166I 982-24.2 9072418KVIC TA220K 988-27.610003331IITG B266I1028-32.610124487ISPA B2220I1001-29.610239999DLIN206505 1.291 8.7431.60206505 2.291 8.7431.4048213513 125.1.4048216509 1.262 7.8351.6072216509 2.262 7.8351.6072216509 2.262 7.8351.6072216509 2.262 7.8351.2022224524 1.166 8.5221.20224524 2.166 8.5221.20224524 2.166 8.5221.2025598 1.70324.0531.1518267567 11.8522.551.20	2209	HVAU A	23H1022-37.		36.7 25.5	12. 61022
2218HVICA $23H1000-32.$ $26.9 \ 16.3$ $6.6 \ 1000$ 2291HSGAA $23H1020-25.$ $4.4 \ 2.2$ 21020 2307IHIPB1 $66I1024-33.$ 61000 2308IREPB1 $66I1020-33.$ 61000 2311IGDIB1 $66I1024-33.$ 61000 2391ISGAB1 $66I \ 982-24.$ $2 \ 907$ 2318KVIC TA220K \ 988-27. 61000 3331IITGB2 $66I1028-32.$ 61000 3331IITGB2 $66I1028-32.$ 61023 9999DLIN 0072 0072 0072 206 $505 1$.291 \ 8.743 $1.$ $60 \ 72$ 206 $505 2$.291 \ 8.743 $1.$ $60 \ 72$ 206 $505 2$.291 \ 8.743 $1.$ $60 \ 72$ 206 $505 2$.291 \ 8.743 $1.$ $60 \ 72$ 213 $513 2$ $25.$ $1.$ $40 \ 48$ 213 $513 2$ $25.$ $1.$ $40 \ 48$ 216 $509 1$.262 \ 7.835 $1.$ $60 \ 72$ 216 $509 2$.262 \ 7.835 $1.$ $60 \ 72$ 216 $509 2$.262 \ 7.835 $1.$ $60 \ 72$ 216 $509 2$.262 \ 7.835 $1.$ $20 \ 25$ 224 $524 2$.166 \ 8.522 $1.$ $20 \ 25$	2211	HGDT A	23H1000-35.		19. 9.5	12. 61000
2291HSGA A 23H1020-25. 4.4 2.2 21020 2307IHIP B1 $6611024-33.$ 61000 2308IREP B1 $6611024-33.$ 61000 2309IVAU B1 $6611024-33.$ 61000 2311IGDI B1 $6611024-33.$ 61000 2391ISGA B1 661 982-24. 2 9072418KVIC TA220K 988-27. 61000 331IITG B2 $6611028-32.$ 61002 4487 ISPA B2220I1001-29. 61023 9999DLIN 206 505 1 $.291$ 8.743 $1.$ 206 505 2 $.291$ 8.743 $1.$ 60 72 213 513 1 $25.$ $1.$ 40 48 213 513 2 $25.$ $1.$ 40 48 216 509 1 $.262$ 7.835 $1.$ 60 72 216 509 2 $.262$ 7.835 $1.$ 60 72 216 509 2 $.262$ 7.835 $1.$ 60 72 214 524 1 $.166$ 8.522 $1.$ 224 524 2 $.166$ 8.522 $1.$ 224 524 2 $.166$ 8.522 $1.$ 224 524 2 $.166$ 8.522 $1.$ 224 524 2 $.166$ 8.522 $1.$ 267 567 1 1.852 23.54 $1.$ 20 25	2218	HVIC A	23H1000-32.		26.9 16.3	6. 61000
2307 IHIP B1 6611024-33. 61000 2308 IREP B1 6611024-33. 61000 2309 IVAU B1 6611024-33. 61000 2311 IGDI B1 6611024-33. 61000 2391 ISGA B1 661 982-24. 2 907 2418 KVIC TA 220K 988-27. 61000 3331 IITG B2 6611028-32. 61002 4487 ISPA B2 22011001-29. 61023 9999 DLIN 206 505 1 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 60 72 61023 9999 DLIN 205 1. 40 48 48 213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 213 513 2 25. 1. 40 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 214 524 1 .166 8.522 1. 224 <td>2291</td> <td>HSGA A</td> <td>23H1020-25.</td> <td></td> <td>4.4 2.2</td> <td>21020</td>	2291	HSGA A	23H1020-25.		4.4 2.2	21020
2308 IREP B1 66I1024-33. 61001 2309 IVAU B1 66I1020-33. 61000 2311 IGDI B1 66I1024-33. 61000 2391 ISGA B1 66I 982-24. 2 907 2418 KVIC TA 220K 988-27. 61000 3331 IITG B2 66I1028-32. 61002 4487 ISPA B2 220I1001-29. 61023 9999 0 0 0 0 206 505 1 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 40 48 213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 213 513 2 25. 1. 60 72 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 2 .166 8.522 1. 20 25 265 598 1 .	2307	THTP B1	66T1024-33.			61000
2309 IVAU B1 66I1020-33. 61000 2311 IGDI B1 66I1024-33. 61000 2391 ISGA B1 66I 982-24. 2 907 2418 KVIC TA 220K 988-27. 61000 3331 IITG B2 66I1028-32. 61012 4487 ISPA B2 220I1001-29. 61023 9999 DLIN 60 72 206 505 1 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 60 72 213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 22 24 24 24 266<	2308	TREP B1	66T1024-33			61011
2311 IGDI B1 6611024-33. 61000 2391 ISGA B1 661 982-24. 2 907 2418 KVIC TA 220K 988-27. 61000 3331 IITG B2 6611028-32. 61012 4487 ISPA B2 22011001-29. 61023 9999 0 0 DLIN 206 505 1 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 60 72 0 213 513 1 25. 1. 40 48 48 213 513 2 25. 1. 40 48 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 224 524 2 .166 8.522 1. 20 25 25 265 598 1 .70324.053 1. 20 25	2309	TVAU B1	66T1020-33.			61000
2391 ISGA B1 661 982-24. 2 907 2418 KVIC TA 220K 988-27. 61000 3331 IITG B2 6611028-32. 61012 4487 ISPA B2 22011001-29. 61023 9999 DLIN 60 72 61023 206 505 1 .291 8.743 1. 60 72 213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 20 25 224 524 2 .166 8.522 1. 20 25 265 598 1 .70324.053 1. 15 18 267 567 1 1.852 23.54 1. 20 25	2311	TGDT B1	66T1024-33.			61000
2418 KVIC TA 220K 988-27. 61000 3331 IITG B2 66I1028-32. 61012 4487 ISPA B2 220I1001-29. 61023 9999 DLIN 60 72 206 505 1 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 60 72 213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 20 25 224 524 2 .166 8.522 1. 20 25 265 598 1 .70324.053 1. 20 25	2391	ISGA B1	66T 982-24			2 907
3331 IITG B2 66I1028-32. 61012 4487 ISPA B2 220I1001-29. 61023 9999 DLIN 60 72 206 505 1 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 60 72 213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 20 25 224 524 2 .166 8.522 1. 20 25 265 598 1 .70324.053 1. 20 25	2418	KVIC TA	220K 988-27			61000
4487 ISPA B2 22011001-29. 61023 9999 DLIN 60 72 206 505 1 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 60 72 213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 24 24 24 24 24 166 8.522 1. 265 598 1 .70324.053 1. 15 18 20 25	3331	TTTG B2	66T1028-32			61012
9999 DLIN 206 505 1 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 60 72 213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 20 25 224 524 2 .166 8.522 1. 20 25 265 598 1 .70324.053 1. 15 18 267 567 1 1.852 23.54 1. 20 25	4487	TSPA B2	220T1001-29			61023
DLIN 206 505 1 .291 8.743 1. 60 72 206 505 2 .291 8.743 1. 60 72 213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 224 224 524 2 .166 8.522 1. 265 265 598 1 .70324.053 1. 15 18 267 567 1 1.852 23.54 1. 20 25	9999	-0-11 02	22011001 2 / .			01020
206 $505 1$ $.291 8.743$ $1.$ $60 72$ 206 $505 2$ $.291 8.743$ $1.$ $60 72$ 213 $513 1$ $25.$ $1.$ $40 48$ 213 $513 2$ $25.$ $1.$ $40 48$ 213 $513 2$ $25.$ $1.$ $40 48$ 216 $509 1$ $.262 7.835$ $1.$ $60 72$ 216 $509 2$ $.262 7.835$ $1.$ $60 72$ 224 $524 1$ $.166 8.522$ $1.$ 224 224 $524 2$ $.166 8.522$ $1.$ 265 $598 1$ $.70324.053$ $1.$ $15 18$ 267 $567 1$ $1.852 23.54$ $1.$ $20 25$	DI'IN					
206 505 1 .291 8.743 1. 60 72 213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 224 224 524 2 .166 8.522 1. 20 265 598 1 .70324.053 1. 15 18 267 567 1 1.852 23.54 1. 20 25	206	505 1	291 8 742	1	60	72
213 513 1 25. 1. 40 48 213 513 2 25. 1. 40 48 213 513 2 25. 1. 40 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 1. 20 224 524 2 .166 8.522 1. 15 18 265 598 1 .70324.053 1. 20 25	206	505 2	.291 8 743	±• 1	60 60	72
213 513 2 25. 1. 40 48 216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1.	212	512 1	・ユノエ 0・/ヨラ クト	⊥• 1	40	48
216 509 1 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 224 224 524 2 .166 8.522 1. 15 18 265 598 1 .70324.053 1. 15 18 267 567 1 1.852 23.54 1. 20 25	213	513 2	2J. 25	±• 1	40	48
216 509 2 .262 7.835 1. 60 72 224 524 1 .166 8.522 1. 224 24 224 24 24 24 24 2.166 8.522 1. 15 18 265 598 1 .70324.053 1. 15 18 267 567 1 1.852 23.54 1. 20 25	216	509 1	.262 7 835	±• 1	60 60	72
224 524 166 8.522 1. 224 524 166 8.522 1. 225 598 1.70324.053 1. 15 18 267 567 1.852 23.54 1. 20 25	216	509 2	.262 7 835	±• 1	60 60	72
224 524 2 .166 8.522 1. 265 598 1 .70324.053 1. 15 18 267 567 1 1.852 23.54 1. 20 25	224	524 1	.166 8 522	±• 1	00	, 4
265 598 1 .70324.053 1. 15 18 267 567 1 1.852 23.54 1. 20 25	224	524 2	.166 8 522	±• 1		
267 567 1 1.852 23.54 1. 20 25	265	598 1	.70324 053	1.	15	18
	267	567 1	1.852 23.54	1.	20	25

279	578	1		1.97256.273		1.				15	18
279	579	1		1.97256.273		1.05				15	18
301	303	1		3.1247.0755	.12					72	80
301	320	1		3.143 7.117	.12					72	80
301	1303	1		3 014 6 826	116					72	80
301	2221	1		0 41110 023	282					40	50
202	201	1	m	J. HIIIJ. JZJ	.202					150	150
302	201	1	Т			0000	022		202	150	2010
303	203	T		1./142.599		.9665	.833	1.1	-203	30	3616
303	203	2		1.67343.168		.9665	.833	1.1	-203	30	3616
303	203	3		1.65642.334		.9665	.833	1.1	-203	30	3616
303	306	1	Т	3.01 6.818	.115					72	80
303	1326	1	Т	1.231 2.142	.035					50	60
306	307	1		.354 .616	.01					50	60
306	505	1		227 - 587		1				60	72
306	505	2		227 - 587		1				60	72
300	1206	1		-227307	066	1.				50 E 0	60
306	1306	1		2.344.0/30	.066		000			50	00
308	208	Τ		1.7142.599		.9832	.833	1.1	-208	30	3616
308	208	2		1.67343.168		.9832	.833	1.1	-208	30	3616
308	208	3		1.65642.334		.9832	.833	1.1	-208	30	3616
308	311	1		.739 1.723	.932					60	60
308	324	1		.167 .644	.499					100	120
308	1306	1	Т	.397 .9253	.501					60	72
308	1308	1		234 5445	295					60	72
311	211	1		1 57842 587	. 275	مممم	833	1 1	-211	30	3616
211	211	2		1 556 12.307			.055	1 1	211	20	2616
311		4	_	1.556 43.3	0 5 0	.99999	.833	1.1	-211	30	3010
311	324	T	.Т.	.285 1.101	.853					100	120
311	2311	1		.402 .937	.507					60	72
313	513	1		625		1.				80	96
313	513	2		625		1.				80	96
313	1313	1	Т	.8071.7576	.03					72	80
313	2311	1		.355 1.368	1.06					100	120
316	509	1		262 - 402		1				60	72
316	509	2		262 - 402		1				60	72
216	1/16	1		127 52	11	±•				100	120
216	2207	1		.137 $.33$	• -					100	120
316	2307	1		.952 2.219	1.2					TUU	120
316	2308	T		2.534 5./18	.097					60	12
320	220	1		1.71142.667		.9665	.833	1.1	-220	30	3616
320	220	2		1.67242.667		.9665	.833	1.1	-220	30	3616
320	1416	1		1.3052.9549	.05					72	80
322	222	1		2.80740.764		.95	.85	1.1	-222	20	2415
324	524	1		.203494		1.					
324	524	2		.203494		1.					
325	225	1		5 58472 999		1	85	1 1	-225	12	1415
326	226	1		105 57		9906	.05	1 1	-226		816
226	220	2		105.57		0006	.05	1 1	220	, 7	016
320	1220	1	-		000	.9900	.05	T • T	-220	г ́	610
326	1326	1	.Т.	.// 1.33	.022	0.5	0.5			50	60
333	233	T		2.45851.942		.95	.85	1.1	-233	20	2415
333	233	2		2.44651.675		.95	.85	1.1	-233	20	2415
333	334	1		10.98 24.87	.421					72	80
334	234	1		1.7142.599		.9665	.833	1.1	-234	30	3616
335	235	1		1.7142.599		.9832	.833	1.1	-235	30	3616
335	325	1	т	6.16713.056	.185					40	50
337	222	1	-	6 57887 754	. 100	9667	85	1 1	-237	10	1215
227	237	2		6 57007 751		0667	.05	1 1	207	10	1015
227	237	1		0.37007.734	CAD	.9007	.05	T • T	-257	10	TZT2
337	344	1	_	24.05843.853	.04/					40	50
33/	335	T	.Т.	19.82441.966	.594					40	50
337	338	1		12.29326.023	.368					40	50
338	238	1		6.3 94.19		.9667	.85	1.1	-238	10	1215
339	239	1		1.7142.599		.9832	.833	1.1	-239	30	3616
339	239	2		1.67343.168		.9832	.833	1.1	-239	30	3616
339	341	1		5.776 9.088	.182					40	50
339	1343	1	т	3.5916.4943	.097					40	50
341	241	1	-	2 66741 565	,	1	85	1 1	-241	20	2415
341	2 I I 2/1	・ う		2.00711.000		±• 1	.05 QE	⊥•⊥ 1 1	_0/1	20 2∩	2415
2/2	ムユエ 1 2 4 2	∠ 1	m	J. I / JII . JJJ	0.0	т.	.05	т•т	-747	20 10	24T) 24T)
242	±343	Ŧ	Т	./22 1.305	.02					40	00
211	245	7			1 0 0					10	ΓO
344	345	1		4.746 8.582	.128					40	50

346	246	1	2.55 42.67		.975	.85	1.1	-246	30	3616
365	598	1	.666756		1.				20	24
367	399	1	26.59548.479	.713					40	50
367	567	1	.83646		1.				20	25
368	268	1	2.5543.626		.9833	.85	1.1	-268	20	2415
368	369	1	28.79952.496	.772					40	50
368	372	1	21.65239.468	.58					40	50
368	468	1 T	.86217.345	-	1.076				60	72
369	269	1	5.60973.323		.9667	.85	1.1	-269	12	1415
369	370	1	19.43635.429	.521					40	50
370	270	1	10.16135.02		1.05				5	6
371	271	1	2.45 41.75		.9667	.85	1.1	-271	20	2415
371	271	2	2.45 41.75		.9667	.85	1.1	-271	20	2415
371	370	1 T	31.11356.715	.834					40	50
372	272	1	2.55944.427		.95	.85	1.1	-272	20	2415
374	274	1	1.57842.587		.922	.833	1.1	-274	30	3615
374	386	1	25.94946.971	.683					40	50
375	275	1	2.49 41.65		.975	.85	1.1	-275	30	3616
375	277	1	2.49 41.65		.975	.85	1.1	-277	30	3616
375	376	1	24.05845.444	.622					40	50
376	276	1	6.59 98.54		.9333	.85	1.1	-276	10	1215
379	374	1 T	11.3120.472	.298	_				40	50
379	578	1	1.037-2.629		1.				20	24
379	579	1	1.037-2.629		1.				20	24
382	398	1	3.19711.518	.193					72	80
386	286	1	10.126134.62		.9167	.85	1.1	-286	5	615
388	288	1	2.80740.764		.9833	.85	1.1	-288	20	2415
388	288	2	2.80740.764		.9833	.85	1.1	-288	20	2415
388	394	1	.871.5787	.023					40	50
390	391	ID 1 -	44.266 80.69	1.187					40	50
390	392	TD	44.30980.769	1.188	0665			0.0.1	40	50
391	291	1	1.7142.599	PC 21	.9665	.833	1.1	-291	30	3616
391	2391	1	15.2229.252	.7631	0.5	0.5			50	60
392	292	1	2.77840.931		.95	.85	1.1	-292	20	2415
395	295	1	2.80740.764	1002	.9167	.85	1.1	-295	25	3015
395	1396	1	4.3312/.5391	.1223	0665	0 2 2		000	40	50
398	298	Ţ	1./142.599		.9665	.833	1.1	-298	30	3616
398	298	4	1.6/343.168	100	.9665	.833	1.1	-298	30	3616
398	394	1	6.86312.454	.183	0667	0.5	1 1	200	40	50 1015
399	299	⊥ 1	0.3 92.49	-	.9667	.85		-299	10 11	1215 E016
401 401	201	⊥ 1	.93133.000	-	1 1	.9	$1 \cdot 1$	-201	41	5010 7016
401 401	20∠ 202	⊥ 2	.55525.025		1 1	.9	$1 \cdot 1$	-302	60	7210
401 401	202 402	∠ 1	.33343.043	25 016	1.1	.9	1.1	-302	220	220
401	402	⊥ 2	2 017 15 72	25.910					200	230 220
401	402	۲ 1	21E 1 000	5 767					230	230 660
401	400 100	⊥ 2	215 1.000	5.707					550	660
401	200	2 1	02122 000	5.707	0975	٥	1 1	_ 272	JJU /11	5016
402	273	⊥ 1	2 065 9 511	1/ 022	. 9075	. 9	±•±	-275	22Q	228
402	404	⊥ 1	1 652 6 8001	$11 \ 210$					220	230 220
402	121	⊥ 1	1 07/5 / /28	27 206					220	220
402	475	1	0062 2 /171	57.290					165	230
402	195	1	.0003 3.417.	6 112					165	210
402	201	⊥ 1	1 04233 389	0.115	925	a	1 1	-201	41	5016
403	201	⊥ 2	1 00520 706		925	. 9	1 1	-201	±⊥ //1	5016
403	301	ъ 1 т	22413 367		963	. 9	±•±	-201	120	144
403	301	тт 2 т	22413.307 2213.317		963				120	144
403	421	2 I 1	24651 0165	1 668	. 205				165	210
403	493	⊥ 1 т	208 845	1 335					238	238
403	1421	1	24651 0165	1 668					165	210
404	720	- 1	6422 264	1.000	Q	G	1 1	-220	- 60 - 60	7016
404	220	2	6422 264		. ,	. , 9	1 1	-330	60 60	7216
404	410	1	185 1 207	2 183	•	• •	- • -		195	210
404	425	 1 т	.413 1 702	2.805					165	210
404	430	1	.1614 .6667	1.097					165	210
404	461	1	1.167 6 817	11.48					250	300
404	482	1	2.2513.134	22.11					250	300

404	2418	1		.26411.09071.7942					165	210
405	404	1		.277 1.945 3.275	0	0	1 1	216	195 120	210 14416
405	509	⊥ 2		24715 430	.9	.9	1 1	-216	120	14416
405	1407	1		076 532 896	. ,	.)	±•±	210	250	300
408	42.4	1		.106 .6169 1.047					165	210
408	424	2		.106 .6169 1.047					165	210
408	505	1		.23214.423	.925	.9	1.1	-206	120	14416
408	505	2		.23214.423	.925	.9	1.1	-206	120	14416
409	244	1		.93133.088	.95	.9	1.1	-244	41	5016
409	344	1		1.5836.178	.95				38	46
409	408	1		.424 2.284 3.876					165	210
409	408	2		.424 2.284 3.876					165	210
409	421	1	Т	.24651.0165 1.667					165	210
409	485	1		2.283 9.42915.428					165	210
409	485	2		2.283 9.42915.428					165	210
409	1421	1	Т	.24651.0165 1.667					165	210
410	210	1		.93133.088	.925	.9	1.1	-210	41	5016
410	210	∠ 1		.93133.088	.925	.9	1.1	-210	41 105	5016 210
410 411	1400	1	m	.092 .648 1.092					195	210
4⊥⊥ /12	409 512	⊥ 1	T	2. 15	075	٥	1 1	_212	450 120	200 1//20
413	513	⊥ 2		15	.975	.9	1.1	-213	120	14432
413	1406	1		005 033 3 64	.975	. 9	1.1	-213	250	300
413	1408	1		005 033 3 64					250	300
421	221	1		1.04233.389	. 95	. 9	1.1	-221	41	5016
421	221	2		1.04233.389	.95	.9	1.1	-221	41	5016
424	524	1		.21315.545	.9	.9	1.1	-224	120	14416
424	524	2		.21315.545	.9	.9	1.1	-224	120	14416
425	325	1		.78922.986	.9	.9	1.1	-325	60	7216
434	334	1		.78922.986	.975	.9	1.1	-334	60	7216
434	493	1		1.1075 4.495 7.106					238	238
461	337	1		1.5836.178	1.				38	46
461	4487	1		1.822 10.64 17.91					250	300
466	266	1		.93133.088	.95	.9	1.1	-266	41	5016
466	467	1		1.969 8.18312.767					165	210
466	485	1	_	.9643.9492 6.259					165	210
467	468	1	Т	1.542 6.408 9.998	005	0		0.6 1	165	210
467	1460	1	m		.925	.9	1.1	-267	35	4216
408	1409 1014	⊥ 1	T	3.48414.705 23.					165	210 210
400	264	⊥ 1		2.02078.303913.342	9667	85	1 1	-264	201	210
469	264	2		2.50 17.10	9667	.05	1 1	-264	20	2415
469	1469	1		1009 4275 667		.05	±•±	201	165	210
471	371	1		1,41935,685	1.				38	48
475	375	1		1.56835.445	.9516	.9	1.05	-375	60	7232
479	578	1		1.2262.332	.925	.9251	.125	-279	30	3616
479	579	1		1.2262.332	.925	.9251	.125	-279	30	3616
482	282	1		2.84 49.17	.95	.9	1.1	-282	20	2416
483	401	1		.031 .299 .643					733	733
483	401	2		.031 .299 .643					733	733
483	484	1		1.425 5.885 9.63					260	260
483	485	1		4.23617.49328.623					260	260
483	1484	1		.16324	1.152	.9881	207	483	375	45016
484	485	1		2.81111.60818.993					260	260
484	490	1		1.454 5.956 9.441					165	210
484	594	1		.905123.604	1.05	.814	1.05	-290	30	3616
484 405	594	2		.905123.604	1.05	.814	1.05	-290	30	3616
405 405	285 205	1		/.ZY148.82	. 70/5	.9	⊥.⊥ 1 1	-285	10	1010
400 482	∠85 200	∠ 1		/.49140.02 55302 600	5/0ע. 1	.9	⊥.⊥ 1 1	-205 _200	τU ΤU	⊥⊿⊥0 701 <i>6</i>
100	200 400	⊥ 1		2 2112 AA101 021	±.	. 9	т•т	-200	220	228
488	496	⊥ 1		1 414 5 829 9 602					300	360
488	497	1		2.298 9.47115 603					300	360
490	491	1		.935 3.829 6.069					165	210
490	492	1		.935 3.829 6.069					165	210
491	391	1		1.56835.445	1.05	.9	1.1	-391	60	7216

492	392	1		1.56835.445		1.05	.9	1.1	-39	2 60	7216
493	293	1		1.04233.389	•	9375	.9	1.1	-29	3 41	5016
496	296	1		1.04233.389	1	.025	.9	1.1	-29	6 41	5016
496	402	1		1.792 7.387	12.17		•			300	360
497	297	1		.93133.088		.013	.9	1.1	-29	7 41	5016
497	402	1		.909 3./45	6.1/	1				300	360
594	290	1		1.2329-5.839		1.				15	10
594 E04	290	∠ 1		1.2329-5.839		⊥. 1				20	18
594	200	1 2		1.2042 - 4.07 1 2642 - 4.67		⊥. 1				20	24
730	430	2 1	т	1009 4167	685	1.				165	210
800	700	1	т	2035	.005	024				8250	9900
800	801	1		0013 0227	2 216	.021				2078	2078
800	804	1	т	.0069 .1199	12.28					2078	2078
800	804	2	т	.0067 .1166	11.93					2078	2078
800	805	1		.001						7425	8910
801	802	1		.001						2078	2078
802	809	1	Т	.327 3.5963	331.71					1639	1819
802	1484	1		.78278		1.05				375	450
803	804	1		.001		1.					
804	801	1	Т	.0058 .1001	10.4					2078:	2078
804	801	2	Т	.0057 .0982	10.21					2078	2078
805	802	1		.0013 .023	2.239	-				2078	2078
809	409	Ţ		2.6667		1.				375	450
809	409	4		2.6667	F 2 4	⊥.				3/5	450
1303 1200	2309	1	m	.423 .986	.534					TOO	120
1211	7308 1370	⊥ 1	T	.0991.2103	.02 107					100	120
1313	2300	1	т	162 6246	.107					100	120
1396	382	1	т	3 05285 3127	076					40	50
1400	1405	1		.076 .532	.896					250	300
1405	1406	1		.02 .137	.231					250	300
1407	1408	1		.021 .15	.252					250	300
1469	479	1	Т	4.36217.8682	28.323					195	195
1469	598	1		.983 34.12		9625	.9	1.1	-26	5 30	3616
1814	471	1		1.3034 5.5248	3.6057					165	210
2307	2207	1		1.67343.168		9832	.833	1.1	-220	7 30	3616
2307	2207	2		1.67343.168	•	9832	.833	1.1	-220	7 30	3616
2308	2208	1		1.67343.168	•	9999	.833	1.1	-220	8 30	3616
2308	2208	2		1.67343.168		9999	.833	1.1	-220	8 30	3616
2308	2307	1		./02 1.//0	.901					100	120
2309	202	⊥ 1		1 672/2 169	.507	9665	022	1 1	-220	0 30 T00	2616
2309	2209	1 2		1 67343 168	•	9665	.033	1 1	-220	9 30	3616
2311	1311	1		.535 1.248	.675	2005	.055	±•±	220	5 50 60	72
2311	2211	1		1.67343.168	.073	.033	.833	1.1	-221	1 30	3616
2311	2211	2		1.67343.168	1	.033	.833	1.1	-221	1 30	3616
2391	2291	1		2.5543.275		.95	.85	1.1	-229	1 20	2415
2418	403	1		.1009 .4167	.6854					165	210
2418	2218	1		.93133.088		.95	.9	1.1	-221	8 41	5016
3331	231	1		1.7142.599		9832	.833	1.1	-23	1 30	3616
3331	231	2		1.67343.168		9832	.833	1.1	-23	1 30	3616
3331	325	1		6.16813.057	.185					40	50
3331	333	1		7.93816.805	.238					40	50
3331	1343	1		4.625 8.363	.125					40	50
448/	482	Τ		.4692./434	4.618					250	300
9999											
DARE 1	ſ	h		**** OTOTI	דורד האיק	τΕΟτ	17 V A	OV **:	* * * *		
⊥ 2	(().)		11G1G " ********	אוייב אוייב פדפידים א	י סט ד מאם די	ים ד A רדי איד:	*****	* * * *		
3	ſ).		* * * * * * * * * * *	STSTE *	MA ST	JR **	*****	* * * *		
4	().		* * * * * * * * * * *	* SISTE	MA CF	INTRAT	****	* * * *		
5	().		* * * * * * * * * * *	* SISTE	MA NO	DRTE *	* * * * *	* * * *		
б	().		* * * * * * * * * * *	* SISTE	MA ME	TROPO	LITAN	C **		
8	().		* * * * * * * * * * *	* SISTE	MA OF	ESTE *	* * * * *	* * * *		
10	().		***** VEN	FA A TR	ASNE	7 ****	* * * * *	* * * *		
9999											

DGBT H 23. I 66. K 220. N 500. 99 FIM