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Abstract 

 

Ramos, N. P. (2024), Inverse problems applied to the experimental thermal and hygric analysis 

of engineering materials, PhD Thesis, Postgraduate Program in Mechanical Engineering, 

Mechanical Engineering Institute, Federal University of Itajubá. 

 

Several relevant real-world applications rely on an inverse problem, which involves 

recovering unknown causes from observing their effects. This differs from the corresponding 

direct problem, whose solution involves predicting effects from a complete description of their 

causes. Naturally, inverse problems are more challenging than direct problems because, in 

general, they are ill-posed, i.e., the solution either does not exist, is not unique or it does not 

depend continuously on the input data. To soften this problematic aspect, applied inverse 

modeling requires detailed mathematical-physical modeling and well-designed experiments 

since the desired parameters are estimated by comparing calculated data with experimental 

measurements. 

In this PhD thesis, inverse approach was applied to experimentally investigate three case 

studies: 

• complementary experiments to simultaneously estimate the parameters describing the 

temperature-dependent thermal conductivity and specific heat of 304 austenitic stainless 

steel. Parameter estimation takes advantage of additional information provided by two 

heat-conducting solids with different geometries. It is an alternative approach to 

standard thermal characterization techniques, which are often beyond the reach of many 

laboratories. 



 
 

• one-year on-site measurements to estimate various hygrothermal properties and thus 

calibrate the simulation model of a lightweight multilayer wall. A 2D fully coupled heat 

and moisture transfer model was used to investigate the in-use response of the panel 

junction region, which is critical in terms of airtightness. The results enable an accurate 

assessment of building operating conditions by reducing uncertainties in material input 

data. 

• field data to determine the annual heat conduction flux through a wall assembly in an 

occupied house. Inverse modeling accounted for the physical interactions between 

outdoor environment and indoor occupancy. The methodology and the findings are 

useful to support decision-making on energy performance, as there is a lack of long-

term field monitoring and information on dynamic heat flux related to prefabricated 

occupied dwellings. 

All the above inverse analyzes were based on evaluating the match between data predicted 

by numerical simulations in COMSOL Multiphysics and measurements conveying the physical 

behavior of the component under study. Numerical and experimental data were processed and 

used for inverse estimation purposes in MATLAB environment. After careful analysis of 

sensitivity coefficients, different optimization approaches were used to solve the inverse 

problems. Bayesian statistical inference was applied to determine the estimates and 

corresponding uncertainties of the thermal properties of 304 stainless steel. The Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm, which determines the descent direction by 

preconditioning the gradient with curvature information, was used in the second case study. 

The wall heat flux was estimated using the sequential function specification method (SFSM), 

which expresses temperature as function of heat flux by means of a first-order Taylor series. 

The results show that inverse modeling is a reliable tool for obtaining valuable information 

about the hygrothermal mechanisms and parameters involved in applied engineering problems. 



 
 

Keywords: Inverse analysis, Hygrothermal characterization, Stainless steel, Complementary 

experiments; Multilayer wall assembly, Occupied prefabricated house, In situ performance. 

  



 
 

Resumo 

 

Ramos, N. P. (2024), Problemas inversos aplicados à análise térmica e higrométrica 

experimental de materiais de engenharia, Tese de Doutorado, Programa de Pós-Graduação 

em Engenharia Mecânica, Instituto de Engenharia Mecânica, Universidade Federal de 

Itajubá. 

 

Várias aplicações importantes baseiam-se em um problema inverso, que envolve a 

recuperação de causas desconhecidas a partir da observação de seus efeitos. Já o problema 

direto correspondente envolve a previsão dos efeitos a partir de uma descrição completa de suas 

causas. Naturalmente, os problemas inversos são mais complicados do que os problemas diretos 

porque, em geral, eles são mal-postos, ou seja, a solução não existe, não é única ou não depende 

continuamente dos dados de entrada. Para amenizar esse aspecto problemático, a modelagem 

inversa aplicada requer uma modelagem matemática/física detalhada e experimentos bem 

planejados, já que os parâmetros desejados são estimados pela comparação dos dados 

calculados com as medições experimentais. 

Nesta tese de doutorado, abordagem inversa foi aplicada para investigar 

experimentalmente três estudos de caso: 

• experimentos complementares para estimar simultaneamente os parâmetros que 

descrevem a condutividade térmica e o calor específico dependentes da temperatura do 

aço inoxidável austenítico 304. A estimativa de parâmetros aproveita informações 

adicionais fornecidas por dois corpos condutores de calor com geometrias diferentes. 

Trata-se de uma abordagem alternativa às técnicas de caracterização térmica padrão, 

que geralmente estão fora do alcance de muitos laboratórios. 



 
 

• medições de campo de um ano para estimar várias propriedades higrotérmicas e, assim, 

calibrar o modelo de simulação de uma parede leve multicamadas. Um modelo 2D de 

transferência de calor e umidade foi usado para investigar a resposta em uso da região 

de junção do painel, que é crítica em termos de estanqueidade. Os resultados permitem 

uma avaliação precisa das condições operacionais da edificação, reduzindo as incertezas 

nos dados de entrada do material. 

• dados de campo para determinar o fluxo anual de condução de calor por meio de uma 

parede em uma casa ocupada. A modelagem inversa levou em conta as interações físicas 

entre o ambiente externo e a ocupação interna. Os resultados são úteis para apoiar a 

tomada de decisões sobre o desempenho energético, pois há uma falta de monitoramento 

de campo de longo prazo e de informações sobre o fluxo dinâmico de calor relacionado 

a residências pré-fabricadas ocupadas. 

Todas as análises acima basearam-se na avaliação da correspondência entre dados 

calculados por simulações numéricas no COMSOL Multiphysics e medições que transmitem o 

comportamento físico do componente em estudo. Os dados numéricos e experimentais foram 

processados e usados para fins de estimação inversa em ambiente MATLAB. Após uma análise 

cuidadosa e minuciosa dos coeficientes de sensibilidade, diferentes abordagens de otimização 

foram usadas para resolver os problemas inversos. Inferência bayesiana foi aplicada para 

determinar as estimações e as incertezas correspondentes das propriedades térmicas do aço 

inoxidável 304. O algoritmo Broyden-Fletcher-Goldfarb-Shanno (BFGS), que determina a 

direção de descida pré-condicionando o gradiente com informações de curvatura, foi usado no 

segundo estudo de caso. O fluxo de calor através da parede foi estimado usando o método 

sequencial da função especificada, que expressa a temperatura como função do fluxo de calor 

por meio de uma série de Taylor de primeira ordem. Os resultados mostram que a análise 



 
 

inversa é uma ferramenta confiável para obter informações valiosas sobre os mecanismos e 

parâmetros higrotérmicos envolvidos em problemas de engenharia. 

Palavras-chave: Análise inversa, Caracterização higrotérmica, Aço inoxidável, Experimentos 

complementares; Parede multicamadas, Casa pré-fabricada ocupada, Desempenho in situ. 
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1. Introduction 

 

1.1 Fundamentals of inverse problems 

 

The French mathematician Jacques-Salomon Hadamard studied the nature of 

mathematical models to accurately represent physical phenomena and the defined the concept 

of well-posed and ill-posed problems[1].  

These are the conditions for a problem to be considered well-posed according to 

Hadamard: 

 

• There must exist a solution. 

• The solution must be unique. 

• The solution must depend continuously on the input data or the initial and boundary 

conditions. 

 

A physical problem that does not satisfy all the criteria mentioned above is considered an 

ill-posed problem. All physical interactions between a body with its surroundings can be related 

to cause-and-effect problems [2]. For instance, in a heat transfer model, the causes are the initial 

and boundary conditions, thermal properties, heat generation sources, and geometrical 

characteristics. The effect, in turn, is the time evolution of the temperature distribution 

throughout the studied body. For a direct problem, the causes are known, and the effects are 

unknown and need to be determined. Most engineering studies are conducted in a direct 

(forward) manner, usually focusing on determining the effects. Direct problems are well-posed 

problems and remain stable for small changes in input data. On the other hand, an inverse 
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problem is a problem where the effects are measured and then used to determine one or more 

causes. In other words, inverse problems occur in a backward manner, i.e., they are governed 

in the opposite direction to nature. Since it is impossible to reverse time, the causality of nature 

prevents inverse problem solutions from being experimentally reproduced. This would imply a 

violation of the cause-and-effect relationship [3]. Inverse problems are naturally ill-posed. Most 

often, Hadamard's third criterion is not satisfied for this type of problem, and the second 

criterion is not satisfied sometimes either. 

 

1.2 Parameter estimation versus function estimation 

 

Inverse problems can be categorized into two classes [4]: parameter estimation and 

function estimation. In parameter estimation, a small number of parameters are to be estimated. 

By contrast, the number of unknown elements is generally high for function estimation, since 

a profile is estimated rather than strict values. Parameter estimation is usually concerned with 

the characterization of physical properties, which are not exposed to human influence or 

adjustments. Results of parameter estimations are usually given with confidence intervals and 

are only valid in the range covered by the experiments performed. This is not the case with a 

function estimation, where the estimates are inherent to the problem at hand. Unlike function 

estimations, parameter estimations deal with sought-after quantities that behave differently 

according to measurement variations. This implies that much more caution is required when 

designing and conducting experiments for parameter estimation purposes [4]. It is therefore 

crucial to perform a careful sensitivity analysis to increase estimation accuracy [5]. 

Although solving inverse problems is very useful, their ill-posedness makes the governing 

sensitivity matrices ill-conditioned and sometimes rank deficient. Ill-posedness means that the 
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existence of a unique solution cannot be guaranteed for small changes in the measurements, 

and there may be a long, narrow valley of solutions. Also on this matter, inverse analyzes of 

practical interest are constructed based on physical measurements, and measurements always 

contain errors. The same measurements taken under the same conditions but at different times 

are very likely to be different. Thus, real-world inverse problems are naturally noisy, and the 

results may not correspond fairly to the system being studied due to inaccuracies in data 

collection. To soften the difficulties related to this ill-posed character, a good awareness of 

model imperfections and measurement uncertainties is required [6] . 

 

1.3 Inverse problem solution 

 

Methods for solving inverse problems have been extensively researched and 

discussed [4], [7]. However, none are absolute and universally applicable [8] . This is because 

the correct choice of the optimization technique mainly depends on the kind of the problem at 

hand, with an approach being expected to be efficient for a given problem and work poorly for 

another [9]. In general, optimization techniques for computing inverse solutions can be roughly 

categorized into gradient-based and stochastic (probabilistic) methods. 

The gradient-based approaches are exact mathematical methods and are more frequently 

used. These classical methods have fast convergence speed, high accuracy, and effectiveness 

as advantages. Nevertheless, as they use information about the slope of the objective function 

to define the search direction, calculating surface gradients and sensitivity coefficients is 

mandatory. Computing sensitivity derivatives is laborious when multidimensional, nonlinear, 

multimodal, discontinuous, and transient cases are considered. Gradient methods are not free 

from the “local minima trap” problem, which means to search for a local optimum solution 
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instead of a global optimum one [10]. They can exploit a limited search region around a given 

starting value, but they tend to fail when the starting value is far from the global solution [11] . 

Thus, these methods can be very inefficient to find good solutions when they are employed to 

minimize functions that have flat valleys, as is the case for the one at hand. The valley is easily 

found, but the converge to the global minimum lying inside the valley is difficult or even 

impossible. Along the valley, the function is very insensitive to changes in the desired 

parameters. This means that the bottom surface of the objective function is not strongly convex 

in the optima neighborhoods. Gradient-based methods are stable only if the Hessian matrix is 

positive definite, and they can even diverge if the initial guess is too far from the optimum [12]. 

The term stochastic may refer to random processes that can represent a system which 

evolution over time is described by combing available data (current and past knowledge) and 

predicted successive changes (future knowledge) [9]. Stochastic methods are approximation 

methods that do not depend on gradient fields for optimization. They generate and analyze 

random variables to find sufficiently adequate solutions to optimization problems. Since they 

search in a random way, derivative-free optimization methods have no perfect repeatability and 

can be more computationally efficient compared with gradient-based methods. However, they 

can be time-consuming when handling very simple problems, given the computational costs for 

iteratively achieving convergence [13], [14]. Additionally, stochastic methods are less 

susceptible to the “local minima trap”, obtaining the best solution that can be possibly found 

after a given number of iterations. Such techniques have been successfully used to solve inverse 

problems [15], [16], [17] and are very relevant in assessing engineering problems with 

complicated relationships between design variables [13]. Probabilistic methods can be helpful 

when dealing with ill-posed problems since they provide proper solutions from a population of 

good individuals (optimal points) or from a probability density (mean and standard deviation 

values). 
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1.4 Application of inverse problems 

 

Inverse problems are a robust and effective tool to indirectly estimate quantities appearing 

in the mathematical formulation of physical phenomena [4]. Inverse analyzes are found in 

multi-scale physical processes, and applications range from the identification of constant 

parameters to the tracking spatial- and time-dependent functions [7]. Inverse methodologies are 

also constantly involved in everyday activities, such as medical imaging and dynamic aircraft 

position prediction [7]. A typical example is related to inferring information about the interior 

of a sample subjected to a scanning process from measured data on its surface [18]. 

The background needed to properly apply inverse approach to evaluate real engineering 

problems consists of the following functional milestones [18]: 

 

• Mathematical modeling (inverse problem formulation, including governing equations, 

geometry, sources, coefficients, and initial and boundary conditions). 

• Mathematical analysis (existence, uniqueness, stability). 

• Numerical modeling (physics-based simulations or computational codes). 

• Design of experiments (optimal placement of sensors, duration of measurements, 

configuration of experimental parameters). 

• Experimental analysis (performing experiments to measure data that will serve as 

information for inverse problem solution). 

• Computational analysis (implementation of programing codes to integrate the previous 

analyzes and process the raw data and results). 
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Therefore, different knowledge and tools are required to thoroughly accomplish the above 

tasks, which makes inverse approach highly interdisciplinary. 

 

1.5 Research objectives 

 

Thermal and hygric characterization of materials and structures are critical to obtain 

knowledge of their operational behavior. However, direct measurement or access to standard 

thermal characterization methods are often complicated due to experimental and financial 

issues. In this context, this research work seeks to employ inverse methodologies to the thermal 

and hygric analysis of different engineering materials. Three case studies are experimentally 

investigated in this PhD thesis: 

In chapter 2, two complementary transient experiments are carried put to provide robust 

information to simultaneously estimate the parameters describing the temperature-dependent 

thermal conductivity and specific heat of 304 austenitic stainless steel.  

In chapter 3, one-year on-site measurements are used to estimate various hygrothermal 

properties and thus calibrate the simulation model of a lightweight multilayer wall. 

In chapter 4, the annual dynamic heat conduction flux through a wall assembly is 

estimated from field data measured in an occupied house. 

Chapter 5 presents a general conclusion to this research work, providing an overview on 

the main aspects addressed. 

Finally, an outlook on the activities carried out during the doctorate is presented in the 

Appendix. 
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2. Case Study 1: Complementary Experiments to Estimate 

the Thermal Properties of 304 Austenitic Stainless Steel 

 

2.1 Austenitic stainless steel 

 

The capacity of handling metallic materials has changed human history since Metal Ages. 

With the industrial revolution, the use of metals and their alloys in human activities increased 

rapidly owing to their distinct characteristics [19]. In today's highly energy-dependent society, 

technological progress and innovation depend on using metals, which are widely employed in 

numerous engineering applications. Metals offer quality, efficiency, and safety for human 

activities. They are necessary inputs used in providing essential services and products 

worldwide, like in the transportation, construction, telecommunications, and energy production 

and distribution sectors [19]. 

Stainless steels (SSs) are a very relevant group of metal alloys, since they are used in a 

large variety of applications, varying from everyday use in kitchen utensils and furnishings, to 

very advanced uses in the oil & gas, chemical, and aerospace industries. They are valued for 

their corrosion resistance, durability, strength, and aesthetic appeal. Stainless steels can be 

basically categorized into three groups according to their microstructure: ferritic, austenitic, and 

martensitic. These different metallurgical structures are obtained by modifying steel chemistry. 

To achieve specific properties, SSs contain substantial amounts of alloying elements, mainly 

chromium and nickel, but also molybdenum, silicon, carbon, nitrogen, and manganese [20] . 

There are over 150 grades of stainless steel, each with its particular properties. 300 series 

is a grade of austenitic stainless steel (ASS) and is the most used grade worldwide. 300-series 
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ASSs are used in mandatory heat-resistant structural applications given their properties 

regarding corrosion resistance, mechanical strength, metallurgical stability, fracture toughness, 

and ductility at high temperatures [20]. There are two important types of 300 austenitic stainless 

steels: 304 and 316. 304 ASS is used in about 60% of all applications. As they are austenitic, 

304 ASS and 316 ASS are non-magnetic and have a low carbon content. This makes them 

highly weldable and formable. These two heat-resisting alloys are comparable in terms of 

mechanical properties and differ moderately in chemical composition. Generally, 304 ASS has 

more chromium and less nickel compared with 316 ASS. 316 ASS also incorporates 

approximately 2% molybdenum, which increases strength and chemical corrosion 

resistance [21]. Concerning their thermal behavior, it is known that chemical composition most 

considerably controls the thermal conductivity (k) and specific heat (cp) of alloy steels [22]. 

Alloying elements also impact both thermal properties, which usually decrease with increasing 

the alloying degree [23]. Thus, 304 ASS has moderately higher cp and k in comparison with 

316 ASS [24] . 

 

2.2 Thermal characterization of metallic materials 

 

Materials characterization is essential for evaluating the thermal behavior of a particular 

domain, since the robustness of thermal analyzes depends on how reliable the properties of the 

system being studied are. Reliable thermal property data lead to better results when designing, 

optimizing, and implementing heat transfer processes [12]. Additionally, temperature 

dependence is a key condition for metals because they are widely employed in temperature-

varying applications. Considering thermal properties as constants can mislead to unrealistic 

numerical simulations when predicting materials’ response to changes in the working 
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temperature [25]. Thus, methods for determining accurate temperature-dependent thermal 

properties of metallic materials are fundamental to thermal sciences. 

Thermal properties of conducting materials, like metals, cannot generally be obtained via 

direct measurements. As a result, experiments can be designed and performed for measuring 

temperature and/or heat flux data which are further used in combination with mathematical 

expressions to determine the desired thermal parameter(s) [12]. Standardly, there are three 

different approaches for obtaining the thermal properties of a material. The first one consists of 

steady-state measurements of heat flux and temperature gradients, as in the guarded hot plate 

method [26]. Despite the high accuracy, this group of techniques is very time-consuming and 

can hardly ever be applied to high conducting materials. Also, they require specialized 

equipment and can furnish only thermal conductivity. The calorimetric approach, on the other 

hand, is very well suitable when the target is to obtain cp. Differential scanning calorimetry 

(DSC), for example, has been extensively applied for this purpose. Nevertheless, these methods 

do not furnish thermal conductivity and manage to provide thermal properties only for high-

temperature levels. Moreover, they also require specific and expensive equipment, and 

difficulties arise when dealing with inhomogeneous materials, due to the mandatory small 

sample size [27]. Lastly, the third approach introduces transient techniques, such as the transient 

hot wire method [28] and the laser flash method [29]. For both techniques, thermal conductivity 

and thermal diffusivity can be obtained (not simultaneously) within a much smaller period than 

that needed in steady-state experiments. Anyhow, the experimental assemblies also demand 

considerable financial and time resources for obtaining each thermal property. All these 

classical techniques have already been improved, yet, none of them is unrestricted, which means 

that methods for obtaining thermal properties are usually defined for specific materials and 

temperature ranges [12], [26]. 
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Apart from the classical techniques, several novel methods for thermal characterization 

have been developed for engineering material applications [30]. These techniques should seek 

a trade-off between reliable outcomes and reasonable computational and experimental costs. 

Transient experimental methods for estimating the thermal properties of high-conducting 

materials are scarce. This is because it is difficult and expensive to design and carry out transient 

experiments for thermally characterizing metals, due to contact resistance effects and thermal 

sensitivity deficiencies when dealing with these materials [31]. Additionally, considerable 

efforts and expertise are needed to obtain well-planned and well-conducted experiments for 

thermal characterization. For these reasons, thermal characterization approaches for analyzing 

metallic materials are somewhat limited; there are not many approaches that can be used in 

these materials [32], [33], [34]. Some of these novel methods disregard temperature 

dependence [31], [35]. Several techniques cannot perform simultaneous estimations, assessing 

only one property, or requiring more than one process to achieve others [36]. Also, they 

generally do not consider data from the entire temperature domain. Naturally, techniques that 

seek to simultaneously estimate temperature-dependent thermal properties have also been 

studied and presented. Most evaluate temperature dependence using data regressions within 

small temperature ranges and do not consider data corresponding to the entire temperature 

domain [37], [38]. These approaches require several experiments or numerical simulations 

where the sample is subjected to different initial conditions. Finally, many approaches have not 

been experimentally validated, and have focused on only numerical or analytical analyzes [38], 

[39], [40]. 

Here, a linear variation of k(T) and cp(T) in temperature is assumed and the constant and 

slope defining these functions are estimated. Previous studies, as per Mohebbi et al. [39], [41], 

[42], have shown that it is feasible to determine parameters for a linear form describing the 

temperature dependence of the thermal properties. However, it turns out that these papers cover 
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theoretical background on inverse heat conduction, since they perform analyzes from 

numerically simulated temperature data. In addition to not presenting experimental validation, 

their techniques were applied to a generic solid medium [39] or to insulation materials [41], 

[42] which does not lead to great difficulties concerning rank deficiency and valley bottom 

landscape. 

Thermal conductivity and specific heat of the metallic material used are needed to obtain 

knowledge of the thermal behavior of metal parts present in engineering structures. However, 

access to standard thermal characterization methods is often complicated due to financial issues. 

In this context, this study seeks to present a simple experimental approach for simultaneously 

identifying the linearly temperature-dependent k and cp of 304 austenitic stainless steel. 

Parameter estimation takes advantage of a relevant sensitivity increase, provided by two 

complementary transient experiments. Bayesian inference is used to analyze the accordance 

between experimentally measured and numerically calculated temperatures. Inverse thermal 

analysis is based on two heat-conducting solids with different geometries. In estimation 

problems, one seeks to obtain as much data as possible using as few sensors as possible. So, 

single thermocouple data are collected for each thermal model. The proposed technique 

provides a cost-effective and robust thermal property estimation from tests conducted at room 

temperature. Single-step estimation incorporates data from the whole temperature domain and 

infers a set of four parameters for linear functions representing the temperature dependence of 

k and cp. This means that the linear relationship between thermal property and temperature is 

directly determined, with no need for fitting a regression line. Since the inverse methodology 

provides k and cp at once, two or more different procedures are not required for obtaining both 

thermal properties, unlike most standard tests for measuring the thermal properties of metallic 

materials. The contact resistance effect at the heater-metal interface is evaluated at microscopic 

level and set as a reducing factor in the heat flux load supplied to the samples. 
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2.3 Complementary data 

 

Complementary data are important because they can furnish additional information that 

can help to support or refute a hypothesis. Complementary data can also be used to generate 

new hypotheses or to help understand complex phenomena [43]. It is important to ensure that 

the collected data are as high quality as possible and that they come from a variety of 

sources [43]. The supplementary information provided by complementary experiments can 

improve the robustness of estimation procedures [43]. 

Parameter estimation is the process of using observations to estimate the values of 

parameters for a model. In many scientific disciplines, parameter estimation is an important 

task that allows researchers to make predictions and understand the behavior of a system [4]. 

The quality of the estimates depends on both the quality of the data and the chosen model. In 

parameter estimations, we need as much data as possible to give a solid basis to the optimization 

algorithm to find a solution that can reliably represent the studied physical phenomenon, in an 

acceptable error sense. Complementary data can be used to improve parameter estimation by 

providing more robust information that can help to constrain or identify the values of 

parameters. This is especially relevant when there are few observations or when they are noisy, 

as complementary data can help to reduce uncertainty and improve reliability. Additional 

information from complementary thermal models can enable simultaneous estimations with 

multiple objectives, since they decrease or even avoid rank deficiency [44]. Rank deficiency in 

this context basically means the lack of sufficient information in the available data to estimate 

the desired parameters. As the quantity of parameters to be found raises, data from 

complementary events enhances the robustness of inverse analyzes. 

There are several reasons why complementary experiments contribute to obtaining better 

parameter estimation. First, different experiments may be sensitive to different aspects of the 
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system under study. This can enable for more complete coverage of the parameter space and 

reduce the uncertainty in the estimates. Second, different experiments may have different levels 

of precision. Complementary experiments can help to average out errors and improve the 

overall accuracy of the estimates. Finally, some types of experiments may be more expensive 

or difficult to carry out than others. By using a combination of experiment types, researchers 

can minimize costs while still obtaining reliable results [43]. 

Complementary data have been used in inverse problems of different fields of study. For 

instance, Boyd and Little  [45] analyzed the application of complementary data to limited-angle 

computed tomography. Weichman et al. [46] used complementary information in an inverse 

problem to infer subsurface water distribution from Nuclear Magnetic Resonance (NMR) 

voltage measurements. Led and Gesmar [47] showed the importance of complementary 

experiments to determine chemical exchange rates using magnetization-transfer NMR 

technique. Cao et al. [48]  used complementary data to boost the image quality of low-resolution 

sensors using super-resolution technique. 

Complementary experiments have not been explored much to estimate thermal properties 

and have never been applied to metallic materials. McMasters et al. [44]  studied the increase 

in sensitivity when using complementary one-dimensional heat conduction experiments to 

estimate constant thermal properties. Mehta et al. [49]  inferred the temperature-dependent 

thermal conductivity and volumetric heat capacity of sweet potato puree using sequential 

parameter estimation. Benyathiar et al. [50] studied the optimal design of complementary 

experiments to simultaneously estimate the temperature-dependent thermal properties of sweet 

potato puree. 

The combination of complementary data can reduce the correlation between desired 

parameters, improving the confidence region of estimates [44]. Further, the use of 

complementary experiments can improve the sensitivity coefficients of the parameters of 
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interest [50]. The target is to maximize the information that can be obtained from such 

experiments [44]. This is particularly significant for k, which usually has low sensitivity 

coefficients for transient models. Low sensitivity coefficients lead to significant difficulties 

when using mathematical programming techniques, since sensitivity and information matrices 

must be calculated in these methods. If there are insufficient suitable initial guesses, and large 

and uncorrelated sensitivity coefficients, the inverse solution diverges and fails when using 

classical gradient-based methods. This greatly restricts the search space and is not desirable 

when investigating materials that have not yet been thermally characterized. 

 

2.4 Thermal problem modeling 

 

2.4.1 One-dimensional thermal model 

 

The first thermal model, shown in Figure 1a, considers transient nonlinear one-

dimensional heat conduction over an isotropic plate, where phase change, convection, radiation, 

and heat generation are neglected. Thermal properties are considered to vary linearly with 

temperature, as per: k = A + B × T, and cp = C + D × T; with parameters A, B, C and D being 

simultaneously estimated. The metal plate is uniformly heated on the top surface using a 

constant heat flux load. Thermal insulation condition is maintained on the bottom surface, 

where temperature information is measured from a single sensor. Thus, the thermal problem is 

governed by the heat diffusion equation expressed as follows: 
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𝜕
𝜕𝑥 #𝑘

𝜕𝑇
𝜕𝑥& = 	𝜌𝑐!

𝜕𝑇
𝜕𝑡 , 

0 ≤ x ≤ L, t > 0 (1) 

 

where x is the direction of heat transfer; ρ is the constant density; t is the time; and T is the 

temperature, which is a function of x and t, i.e., T = T(x, t). 

Equation (2) and Equations (3)-(4) describe, respectively, the initial and boundary 

conditions to which the 1D model is subjected. 

 

𝑇(𝑥, 0) = 	𝑇"#, 0 ≤ x ≤ L, t = 0 (2) 

 

−𝑘
𝜕𝑇
𝜕𝑥1$%&

=
𝑇' − 𝑇!
𝑅(

, at x = 0, t > 0 (3) 

 

𝜕𝑇
𝜕𝑥1$%)

= 0, at x = L, t > 0 (4) 

 

where Tin is the initial temperature; Th and Tp are the temperatures of the heater and plate at the 

contact point, respectively; L is the plate thickness; and Rc is the contact resistance, i.e., the 

reciprocal of the contact conductance hc. Rc causes a decrease in the amount of heat conducted 

to the metallic sample, i.e., it represents a reducing factor in the heat flux load (q), supplied by 

the resistive heater. 
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Figure 1. Schematic of the complementary heat conduction models: a) 1D thermal model; b) 

3D thermal model. 

 

The contact conductance existing at the heater-plate interface is due to two factors: i) the 

presence of air, causing interstitial conductance (hinterstitial), which is evaluated using the 

parallel-plate gap gas correlation and basically corresponds to the convection coefficient of the 

interstitial fluid; ii) and the contact spots, responsible for the constriction 

conductance (hconstriction). Radiation effects can be neglected because the experimental setup is 

kept below 400 °C [51]. Convection effects can also be disregarded since the interface gap 

thickness is too small to allow convection current [52]. 
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The Cooper-Mikic-Yovanovich (CMY) correlation is used to calculate hconstriction. CMY 

correlation associates the constriction conductance with microscopical characteristics and 

compression load at the contacting interface, as follows [53]: 

 

ℎ(*#+,-"(,"*# = 1.25𝑘(*#,.(,
𝑠.+!
𝑟.+!

#
𝑝
𝐻(
&
&.01

  (5) 

 

where kcontact is the thermal conductivity harmonic mean of the two materials in contact; Hc is 

the hardness of the softer material; p is the contact pressure; and sasp and rasp are, respectively, 

the average slope and roughness of the contact asperities. 

The interstitial conductance is computed by the correlation shown below: 

 

	ℎ𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑖𝑡𝑖𝑎𝑙 =
𝑘𝑖𝑓

𝛶 + 𝑀𝑔
  (6) 

 

where kif is the thermal conductivity of the interstitial fluid; ϒ is the mean separation thickness 

between the surfaces; and Mg is the gas parameter. 

The contact resistance methodology used here is more completely presented in Ramos et 

al. [31], where the joint conductance at two contacting surfaces is assessed at microscopic level. 
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2.4.2 Three-dimensional thermal model 

 

Consider a three-dimensional transient nonlinear heat conducting body. In the 3D thermal 

model (Figure 1b), the top surface is partially heated with a constant heat flux intensity. The 

isotropic metal plate is thermally insulated on all other surfaces. The thermal properties depend 

only on temperature, following the same linear relationship as the 1D formulation. Again, 

convection, heat generation, phase change, and radiation effects are neglected. Thus, this 3D 

direct problem can be described mathematically by Equation (7). The initial condition is given 

in Equation (8) and the boundary conditions in Equations (9)-(11). Two different thermal 

boundary conditions are applied to the upper surface (S). The boundary condition at the heated 

region (S1) considers the thermal contact between the heater and the metallic plate. The rest of 

the upper surface (S2) has a thermal insulation boundary condition. 

 

𝜕
𝜕𝑥 #𝑘

𝜕𝑇
𝜕𝑥& +

𝜕
𝜕𝑦 #𝑘

𝜕𝑇
𝜕𝑦& +

𝜕
𝜕𝑧 #𝑘

𝜕𝑇
𝜕𝑧& = 	𝜌𝑐!

𝜕𝑇
𝜕𝑡 ,	 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c, t > 0 (7) 

 

𝑇 = 	𝑇"#, 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c, t = 0 (8) 

 

−𝑘
𝜕𝑇
𝜕𝑧1<%&

=
𝑇' − 𝑇=
𝑅(

, at S1, t > 0 (9) 

 

𝜕𝑇
𝜕𝑧1<%&

= 0, at S2, t > 0 (10) 
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𝜕𝑇
𝜕𝑥1$%&

=
𝜕𝑇
𝜕𝑥1$%.

=
𝜕𝑇
𝜕𝑦1>%&

=
𝜕𝑇
𝜕𝑦1>%?

=
𝜕𝑇
𝜕𝑧1<%(

= 0, t > 0 (11) 

 

where T depends on Cartesian coordinates (x, y, z) and time t, i.e., T = T(x, y, z, t); a, b and c 

are the sample linear dimensions; S1 is the region at the top surface where the heat flux is 

imposed, and is limited to (0 ≤ x ≤ lH, 0 ≤ y ≤ lH, z = 0); lH is the square section heater length, 

which is the boundary of the heated region S1; and S2 is the other portion of the top surface, 

which is subjected to thermal insulation. Thermal insulation is applied to all other domain 

boundary surfaces. 

 

2.5 Bayesian inference for inverse solution 

 

For the two heat conduction problems described above, one can formulate direct problems 

in which geometry, thermal properties, and initial and boundary conditions are known. These 

direct problems are solved to determine the transient temperature distribution in the metallic 

samples. On the other hand, it is also possible to deal with an inverse problem for which the 

thermal conductivity and specific heat are taken as unknown. The solution to this inverse 

problem, which seeks to estimate the quantities of interest (k and cp), is feasible using transient 

temperature measurements. In the inverse thermal problem assessment, parameters for the 

thermal properties as linear functions of temperature are unknown quantities. Complementary 

transient temperature histories are measured at discrete time steps and then used to retrieve the 

vector containing the desired parameters P = [A, B, C, D]. Thus. the inverse problem under 

consideration is defined and evaluated as an optimization problem, where the temperature 

distributions of both thermal models are numerically calculated, and then compared to 
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experimentally measured temperatures. The simultaneous inverse estimation of the linearly 

temperature-dependent thermal conductivity and specific heat of 304 ASS is performed 

considering data from the whole temperature domain. 

The Bayesian inference is a stochastic manner of optimization. The Bayesian approach to 

statistics considers the inverse problem solution as a statistical inference based on analyzing the 

posterior probability distribution [54], [55]. The objective is to explore the posterior distribution 

related to the probability of a range of values for the unknown parameters, given temperature 

measurements. This condition makes statistical approaches considerably different from 

traditional deterministic techniques. Deterministic methods obtain single estimates of the 

unknown parameters whereas statistical methods do not generate only single estimates. Rather, 

the framework of Bayesian statistics produces a distribution that is employed to determine 

estimates that have different probabilities. Bayesian inference can assess not only knowledge 

regarding the uncertainties associated with the estimates, but also intrinsic regularization is 

provided to the inverse problem so that it can be turned into a well-posed problem [56]. As 

inserting subjective prior information is a fundamental principle of the Bayes’ theorem, this 

statistical-based method is affected by initial guesses [56]. 

The Bayesian approach employs measurements as a foundation for establishing a 

“Gaussian tent” over these measured data, provided that the results can be well represented by 

a Gaussian distribution. This probabilistic regularization smooths the ill-posedness of the 

inverse problem and attempts to statistically account for unavoidable variations in the 

measurements [56]. In Bayesian estimation, the prime target is to infer the probability 

distribution of unknown quantities from available data (current and previous information), also 

named the posterior probability density function (PPDF). The Bayesian inference is based on 

the Bayes’ theorem, which is stated as follows according to Kaipio and Fox [57]: 
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𝜋!*+,@-"*-(𝑍) = 𝜋(𝑍|𝑌) =
𝜋(𝑌|𝑍)𝜋(𝑍)

𝜋(𝑌)   (12) 

 

where Z denotes the hypothesis (missing parameters, vector or scalar); Y represents the 

observations/ measurements (vector), i.e., the observed data related to the hypothesis; π(Z|Y) is 

the PPDF, i.e., the conditional probability of Z given the observations Y; π(Y|Z) is the likelihood 

function, which is the conditional probability density function of the observations Y considering 

missing the unknown parameters Z; π(Z) is the prior density function (PDF), i.e., a statistical 

representation for the knowledge about the unknown parameters prior to the observations; π(Y) 

is the marginal likelihood, which assesses the model fit and acts as a normalizing constant of 

Bayes’ theorem. Therefore, after having observed Y, Bayes’ formula is employed to obtain the 

distribution of Z conditional on Y, i.e., the posterior probability of the hypothesis considering 

some observations is achieved by multiplying its likelihood and prior probability. 

An outlook on Bayesian inference on estimating thermal parameters is addressed here. 

Generally, the thermal properties of conducting materials cannot be directly measured. As a 

result, one can design experiments to obtain temperature measurements to solve an inverse 

problem to estimate the related and unknown quantities. In this sense, the thermal properties 

can be assumed as random variables and Bayesian inference can be employed to reconstruct 

the probability density functions of P given the transient temperature measurements and thermal 

model. 

Techniques based on Bayesian inference have proved their applicability to this kind of 

inverse problem since the temperature response is known to be a sufficient statistic of k and 

cp [56]. Bayes’ theorem is the mathematical method used to integrate new available data with 

previously obtained information. Markov chain Monte Carlo (MCMC) sampling was used to 

solve the inverse problem and then to evaluate the posterior distribution. MCMC sampling 
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methods are feasible approaches for computing estimates in cases where the quantity of 

unknown parameters is not very large [55]. These methods usually lead to computationally 

demanding solutions, which is a practical disadvantage. The inverse problem is solved by 

sampling candidate values from the PDF and evaluating them through the thermal model that 

generates results that are compared with the measured data through the likelihood function. All 

available knowledge is used to reduce the uncertainty present in a primary assumption related 

to inferential statistics. As new knowledge is achieved, there is a combination of previous and 

current information to devise the base for statistical processes. A candidate value that is 

consistent with the data receives a higher probability than a candidate value that is not. The 

evaluation of the thermal model and the update process from PDF to PPDF occurs 

simultaneously. 

Let Y denote the vector containing the experimentally measured temperatures, as follows: 

 

𝐘A = [𝐘B, 𝐘C, … , 𝐘D]  (13a) 

 

with 

 

𝐘" = I𝑌BE! , 𝑌FE!J	 for i = 1, ... , N (13b) 

 

where N are the number of measurements; and Y1D and Y3D are the components of Y1D and Y3D, 

the vectors of temperature measurements from the 1D and 3D experiments, respectively. 
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The vector P is introduced into Bayes’ theorem as the hypothesis Z, associating the 

inverse problem of interest here with the Bayesian inference. The Bayesian formulation for the 

simultaneous estimation is described in detail next: 

 

𝜋!*+,@-"*-(𝐏) = 𝜋(𝐏|𝐘) =
𝜋(𝐘|𝐏)𝜋(𝐏)

𝜋(𝐘)   (14) 

 

The calculation of the marginal probability density of the measurements π(Y) can usually 

be ignored for a functional application of Bayes’ formula since π(P|Y) must be a proper 

probability distribution. The PPDF can be thus rewritten as the product of π(Y|P) and π(P), as 

follows: 

 

𝜋!*+,@-"*-(𝐏) = 𝜋(𝐏|𝐘) ∝ 𝜋(𝐘|𝐏)𝜋(𝐏)  (15) 

 

The posterior distribution was estimated by the Metropolis-Hastings algorithm (MH-

MCMC), the most popular Markov chain algorithm [55]. The implementation of the 

Metropolis-Hastings algorithm is performed by initially choosing a jumping distribution 

p(P*, Pn-1), which is a probability density employed to obtain a new state P* given the current 

state Pn-1 of the Markov chain. After selecting this proposal distribution, the following steps 

must be repeated until achieving the total number of states G: 

 

1. Take the state n of the Markov chain and draw a sample P* from a jumping distribution 

p(P*, Pn-1); 

2. Solve the direct problem using P*; 
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3. Compute the posterior π(P*|Y); 

4. Compute the acceptance function: 

𝛼 = 𝑚𝑖𝑛 &1,
𝜋(𝐏∗|𝐘)𝑝(𝐏#$%, 𝐏∗)
𝜋(𝐏#$%|𝐘)𝑝(𝐏∗, 𝐏#$%)0 ;  (16) 

5. Generate a random value U which is uniformly distributed on (0,1); 

6. If U ≤ α, define 𝐏n = 𝐏*; otherwise, define 𝐏n = 𝐏n-1; 

7. Set n = n + 1 and return to step 1. 

 

In such a way, the sequence {P1, P2, PG} representing the posterior distribution is 

generated. The inference on this distribution is determined from analyzing the samples Pn. It is 

important to notice that Pn values must only be considered after the chain has reached 

convergence to equilibrium. More theoretical details on MH-MCMC can be found in Kaipio 

and Fox [57]. 

Normal distributions are suitable to statistically characterize thermocouple measurements 

because of the central limit theorem. Measurement errors are usually the result of many other 

errors, and the combination of these errors leads to normality. Therefore, the measurement 

errors are taken as Gaussian random variables, additive and independent of the sought 

parameters P. Thus, the likelihood function can be given as follow according to Wang and 

Zabaras [56]: 

 

𝜋(𝐘|𝐏) =
1

(2𝜋)D/C|𝐖|B/C 𝑒𝑥𝑝 O−
1
2
[𝐘 − 𝐓(𝐏)]A𝐖HB[𝐘 − 𝐓(𝐏)]Q  (17) 
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where T(P) is the numerical solution of the direct problems with a given P at specific sensing 

locations. T is given in function of the components of T1D and T3D, the vectors containing the 

numerical temperatures from the direct 1D and 3D thermal problems, respectively. 

 

𝐓A = [𝐓B, 𝐓C, … , 𝐓D]  (18a) 

 

with 

 

𝐓" = I𝑇BE! , 𝑇FE!J	 for i = 1, ... , N (18b) 

 

W is the covariance matrix of the measurement errors, which, for uncorrelated measurements, 

is given in the following form: 

 

𝐖 = 3
𝜎&!
' ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎&"

'
9  (19) 

 

The uncertainty σY is due to the experimental temperature errors, which are assumed to 

be Gaussian with zero mean and standard deviation of 1 ºC. This assumption is based on the 

procedure used to calibrate the thermocouple [55], which is addressed in the experimental 

section. 

A critical issue in Bayesian statistics is its inherent subjectivity to prior data. Whether 

previous information about P is available, it should be introduced into the PDF. In this context, 
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whether a Gaussian distribution is considered, the prior density function can be expressed as 

follows: 

 

𝜋(𝐏) =
1

(2𝜋)I/C|𝐕|B/C 𝑒𝑥𝑝 O−
1
2
[𝐏 − 𝛍]A𝐕HB[𝐏 − 𝛍]Q  (20) 

 

where M is the number of parameters to be estimated; µ and V are the mean and covariance 

matrices for P, respectively. Matrix V is computed as: 

 

𝐕 =

⎣
⎢
⎢
⎢
⎡𝜎J

C 0 0 0
0 𝜎KC 0 0
0 0 𝜎LC 0
0 0 0 𝜎MC⎦

⎥
⎥
⎥
⎤
  (21) 

 

By contrast, if P is unknown and there is no previous knowledge about it in advance, 

Bayes’ postulate states that π(P) should be a uniform distribution. Uniform prior distributions 

are improper, and sometimes noninformative. Proper posteriors can often be found from 

improper priors. Nevertheless, improper priors can lead to problems when dealing with a 

continuous parameter space. Thus, Jeffreys’ priors, which are constructed to be “minimally 

acceptable” noninformative priors, can be used as reference priors [57]. For a uniform prior 

density function as reference assumption, π(P) ∝ 1 and the PPDF is then summarized as π(Y|P). 

This means that the posterior probability density becomes equal to the likelihood function, i.e., 

π(P|Y) ∝ π(Y|P). 

Finally, by replacing Equations (17) and (20) into Bayes’ theorem, one can obtain this 

general formulation: 
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ln	[𝜋(𝐏|𝐘)] ∝ −
1
2
[(M + D) ln 2π+	ln|𝐖| + ln|𝐕| +𝑆IJN(𝐏)]  (22) 

 

where: 

 

𝑆IJN(𝐏) = [𝐘 − 𝐓(𝐏)]A𝐖HB[𝐘 − 𝐓(𝐏)] + [𝐏 − 𝛍]A𝐕HB[𝐏 − 𝛍]  (23) 

 

It can be noted from Equation (23) that the estimation procedure develops into an 

optimization problem, in which the point estimates for P are achieved at the maximum of the 

posterior probability density (MAP – the maximum a posteriori). Therefore, despite using MH-

MCMC to solve the inverse problem being studied, the estimation procedure could be 

performed by maximizing the posterior distribution, based on minimizing the maximum a 

posteriori objective function SMAP. The first and second terms expressed on the right side of 

Equation (23) denote the trade-off between the likelihood and prior distributions, respectively, 

when estimating parameters by Bayesian inference. As stated earlier, all terms related to the 

prior distribution are set to 1 when a uniform prior model is injected into the estimation 

formulation. For smooth nonlinear but differentiable problems, like the one at hand, the MAP 

estimation problem can be solved using gradient-based optimization. MAP estimates were not 

used here because although they are generally fast and simple to compute, they do not provide 

statistical information about the estimates. For this purpose, MCMC sampling methods are 

usually recommended since they can easily make available information to calculate the 

uncertainty inherent to the posterior distribution. 
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2.6 Sensitivity analysis 

 

An analysis of the sensitivity coefficients before carrying out experiments leads to a better 

experimental design when estimating unknown parameters. It provides guidance on how well-

designed the experimental arrangement is and assesses the influence of each design variable on 

the mathematical model response [49]. Sensitivity analysis can also help to reduce ill-posedness 

and decrease experimental uncertainties. Sensitivity coefficients may seem more significant in 

classical gradient-based methods since they directly influence the topology of the objective 

function to be minimized. They are also necessary when building the sensitivity matrix to 

compute the estimates. However, sensitive information is also essential and needs to be 

analyzed when using stochastic-based methods. This is due to the fact that the sensitivity 

coefficients provide knowledge of the function behavior, guiding search and coverage of 

metaheuristics and impacting the Bayesian posterior distribution equilibrium. Thus, overall, a 

temperature response that is sensitive to the unknown parameter being estimated is always 

physically essential for understanding, formulating, and solving inverse problems [7]. 

Sensitivity coefficients assess the sensitivity of the temperature in relation to a change in 

the thermal parameter analyzed. A small sensitivity magnitude value denotes that large changes 

in the parameter result in small changes in the temperature field [4]. Estimating this parameter 

from temperature measurements is consequently difficult in such a case because the inverse 

problem is ill-conditioned. There is also ill-conditioning if the sensitivity coefficients are 

linearly dependent, or in other words, if one of the sensitivities is some combination of the 

others. Scaled sensitivity coefficients with large magnitudes that are linearly independent 

(uncorrelated) are needed for a reliable and accurate simultaneous parameter estimation [7]. 

The scaled sensitivity coefficient (J), which presents units of temperature, is the first partial 

derivative of the temperature T in relation to the parameter of interest P (i.e., A, B, C and D) 
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multiplied by the parameter itself: JP = P × ∂T ∂P⁄ . For the 1D formulation, comparing 

different sensitivity plots using scaled sensitivity coefficients is more convenient because it 

provides sensitivities on the same basis. Nevertheless, sometimes even with modified 

sensitivity coefficients, it may be difficult to draw conclusions about the optimal conditions to 

evaluate the desired parameters. It is still more difficult when dealing with various parameters 

and several locations since lot of data must be examined graphically. This condition, which is 

the case of the 3D formulation, requires a straightforward criterion to assess the sensitivity. 

The D-optimality concept has been successfully employed as an experimental design 

method to investigate the optimal aspects in heat transfer [58]. This criterion is formulated on 

the maximization of the determinant Δ of the information matrix XTX, which is constructed 

from the sensitivity matrix X and its transpose, as follows: 

 

∆	≡ |𝐗A𝐗|  (24) 

 

𝐗 =
∂𝐓A

∂𝐏  
 (25) 

 

𝐽N = 𝑃
∂𝑇
∂𝑃  (26) 

 

where X = ∂TT/∂P is the sensitivity matrix of T with respect to P. So, the solution of the direct 

problem is needed to evaluate matrix X. The inputs of this matrix are the first partial derivatives 

of the dependent variable T, which is taken for each time and sensor location, in relation to the 

independent variable P, which contains the parameters that are the target of the estimation 

technique proposed here.  
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This computationally efficient criterion provides guidance for experimental designs when 

dealing with high-dimensional problems, which require that a small number of sensors be used 

to accomplish the inverse solution, for practical reasons. Moreover, it is already known that k 

and cp have linearly independent sensitivity coefficients for metallic materials. Thus, the D-

optimality criterion is suitable for use in this study. Therefore, from the preliminary sensitivity 

analysis, one can evaluate which locations in the thermal model can contribute to more sensitive 

temperature measurements, resulting in better conditions for the simultaneous estimation of the 

thermal conductivity and specific heat of the metal slab. The sensitivity computation is carried 

out from the properties at room temperature obtained from Valencia and Quested [24]. While 

temperature dependence conducts to slightly different sensitivity values when carrying out the 

simultaneous estimation, this analysis seeks to furnish prior knowledge regarding the feasibility 

of the procedure. Additionally, Bayesian computation can also be employed to investigate how 

the thermocouple location affects the reliability region of the inverse solution. It is rather 

difficult to analytically analyze the thermocouple location effect on the PPDF. Therefore, this 

alternative method explores and reveals the effect of the sensor location by performing 

numerical simulations with data from different locations and comparing the posterior estimates 

(both point estimates and probability limits) from MCMC samples. This is another option to 

guide optimal experiment design in data-driven inverse heat conduction problems to obtain 

accurate solutions [56]. 

 

2.7 Experimental aspects 

 

The location of temperature sensors is essential to evaluate an inverse thermal problem 

since it is necessary to convey a sufficiently complete information about the transient behavior 
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of the thermal model. Additionally, in data-driven inverse problems, it is important to achieve 

an accurate inverse solution using a minimum number of sensors, from a practical sense. 

For high-conductivity materials, sensitivity coefficients are normally higher near heated 

regions. This means that better sensitivity would be obtained at the surface points under the 

heater. However, it is often not feasible to measure temperature at these locations using 

thermocouples, since the sensor strongly impacts the heater placement, leading to losses in heat 

transfer between the heater and metal. Embedded thermocouple wires need that some filler 

material to be introduced into a milled hole, which causes a discontinuity effect [59]. In this 

context, only the bottom surface can be explored to collect temperature data with wire 

thermocouples in the 1D thermal model [60]. Being the bottom surface the only point that can 

be explored to collect temperature, data from the 1D experiment was measured at x = L. 

Researchers have already shown that this location can transmit information that is sensitive 

enough to carry out the estimation process, given appropriate initial values [31], [60]. 

For the 3D formulation, a D-optimality-based sensitivity analysis was carried out to 

identify the most sensitive zones. Figure 2 shows a representation of the D-optimality criterion 

for all sample surfaces. The best regions for placing sensors are those that have greater values. 

An analysis of Figure 2 reveals that some zones of surfaces I, II, III and VI have D-criterion 

values with the same order of magnitude. However, as already said, when designing 

experiments for data-driven inverse heat conduction problems, it is of practical importance to 

make use of a minimum quantity of sensors to obtain a reliable, accurate inverse solution. Thus, 

taking into consideration the sensitivity analysis and experimental aspects (e.g., insulation 

deficiency), a single thermocouple was placed on the bottom surface (VI, z = c) at position 

(2.00, 2.00, c = 8.90) mm and welded with the aid of a capacitive discharge. Furthermore, from 

a practical aspect, it is worth mentioning that measuring temperature by a thermocouple at the 

heated surface (I, z = 0) is not feasible for metallic materials. 
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Figure 2. D-optimality criterion for all sample surfaces. Unfolded view with the sensor 

location. 

 

Since the location of a single sensor in each experiment is a sensitive issue for the 

estimation procedure, the scaled sensitivity coefficients obtained by combining complementary 

thermal models must be examined. Figure 3 shows the scaled sensitivity coefficients for the 1D 

(J1D) and 3D (J3D) thermal models, and for their combination (J1D+3D). One can note in this 

figure that complementary data increases the sensitivity coefficients of parameters C and D, 

corresponding to cp, over the entire experiment. It is hard to obtain temperature data that is 

sufficiently sensitive to thermal conductivity when studying metals in transient state. This is 

because k has its sensitivity proportional to the imposed heat load, and substantially high heat 
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flux intensities are difficult to achieve experimentally. Due to its lower sensitivity, thermal 

conductivity is usually more affected by measurement errors, i.e., k is more imprecisely 

estimated compared to cp. Thus. more importantly, complementary experiments increase the 

sensitivity coefficients of parameters related to k, i.e., A and B, at the beginning of the 

experiments. Although low sensitivity at initial stages is generally overcome later for well-

designed whole domain estimations, its effects cannot be completely neglected, since regions 

with sensitivity deficiency can bias or even disable the estimation procedure [4]. It is difficult 

to evaluate estimations using temperature data from these regions, since they are very 

susceptible to errors. One can conclude that it is impossible to simultaneously identify all 

sought-after parameters if one only considers temperature measurements during the initial 

moments. One can also observe that combining temperature data provides uncorrelated 

sensitivity coefficients with good magnitudes over time. When estimating two or more 

parameters, one should attempt to achieve the largest value of the determinant of the 

information matrix, i.e., Δ = maxhXTXh. These are, respectively, the optimality criterion Δ for 

the 1D and 3D thermal models, and the combination of the two: 2.378×108, 5.838×109, and 

3.991×1012. One can see that there is a significant increase of 3 orders of magnitude in Δ when 

using complementary data. Even though the determinants of X1DT X1D and X3DT X3D can be null, 

the determinant of the sum X1DT X1D+X3DT X3D is unlikely to be equal to zero. In this sense, the 

minimum hypervolume obtained from Equation (24) is defined by the maximum of the 

determinant of X1DT X1D+X3DT X3D [44]. Since the purpose of sensitivity evaluations is to obtain 

prior knowledge about the inverse procedure feasibility, one can be assured that combining the 

collected measurements will greatly improve sensitivity and enable a suitably accurate inverse 

solution. 
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Figure 3. Scaled sensitivity coefficients of parameters describing the linear functions of k(T) 

and cp(T). 

 

2.8 Heat conduction experiments 

 

Both experimental arrangements are somewhat similar and include: a metal plate with the 

top surface exposed to a constant heat flux, while the side and bottom surfaces were thermally 

insulated; a resistive heater (Omega SRFGA20210, 333.6 Ω); two insulation blocks made up 

of refractory ceramic fiber (k = 0.05 W m-1 K-1 and cp = 865 J kg-1 K-1, at room temperature); a 

T-type thermocouple; a programmable digital DC power supply (IT6953A, least counts 1 mA, 
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1 mV); two digital multimeters (Minipa ET2042C, resolution ± 0.1 Ω, ± 0.01 A); a data 

acquisition system (DAS Keysight 34980A); and a computer. Figure 4 shows a representation 

of the experimental setups used to thermally characterize 304 austenitic stainless steel. 

 

 

Figure 4. Schematic of the experimental arrangement used to simultaneously identify k(T) 

and cp(T). 

 

The test samples were milled and ground to the following dimensions (unit: mm): 49.95 

width (a), 50.05 length (b), and 10.70 thickness (c), for the 1D experiment; and 60.30 width 

(a), 99.80 length (b), and 8.90 thickness (c), for the 3D experiment. These dimensions were 

assessed with a vernier caliper (Mitutoyo 530104BR, resolution ± 0.05 mm). The sample 

weights were taken by a precision balance (Bel S2202H, resolution ± 0.1 g) and divided by the 

volumes, determining the mean density at 8024 kg m-3. The chemical composition of the 

304 ASS specimens, which was determined using an XRF spectrometer (Niton XL3t-800), is 

as follows (in wt.%): 0.07C-18.5Cr-1.7Mn-9.3Ni-0.8Si-0.03P-0.03S-0.2Cu-Fe. 

The specimens were placed in a pocket milled into the bottom insulation block, and 

initially kept at room temperature. They were heated for 300 s, reaching a temperature around 

150 ºC at the thermocouple location. Electric power was conducted to the heater by the digital 
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DC power supply, and both current and voltage were measured by the digital multimeters. Both 

experiments were performed using a heat flux input of 20000 W m-2 maintained constant during 

the entire duration of the tests, until power was switched off. Transient temperature 

measurements were collected at 0.1-sec intervals by the DAS, recorded, and then used as 

information to perform the simultaneous parameter estimation in the desktop computer. The 

thermocouples used (30AWG with resolution of ± 0.1 ºC, and diameter of 0.25 mm) were 

calibrated by comparing their readings with measurements from a PT-100 sensor in a 

thermostatic bath (Marconi MA184, resolution ± 0.01 ºC), and welded on the samples using 

capacitive discharge resistance welding. 

One had to measure several physical quantities related to the experimental setups and 

introduce these into COMSOL Multiphysics to determine the contact resistance, which was 

0.0010 K m2 W -1 for the 1D experiment and 0.0012 K m2 W -1 for the 3D experiment. A digital 

roughness meter (Mitutoyo SJ210, resolution ± 0.01 µm) measured surface roughness at 

0.18 μm for the 1D plate, 0.21 μm for the 3D plate, and 0.83 μm for the resistive heater. Contact 

pressure between the heater and the specimen was assessed by dividing the test setup weight 

by its cross-sectional area. Contact pressure was 1411.7 N m-2 and 1293.3 N m-2 for the 1D and 

3D experiments, respectively. Hardness was determined with a hardness testing machine (Otto 

Wolpert-Werke Testor HT1, resolution of ± 0.5 HB), resulting in 125.5 HB for the 1D sample 

and 128.0 HB for the 3D sample. 

 

2.9  Results and discussion 

 

For any numerical simulation, the computed solution must be independent of the mesh 

size. Mesh independence assessments were performed for both thermal models by solving their 
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direct problems. For the 1D model, mesh geometries with 5, 8, 11, 14, and 17 elements were 

tested. Differences close to 0.003 ºC were noted among the results using meshes with 11 and 

14 elements. In the 3D model, temperature distribution was computed in COMSOL using five 

pre-defined mesh geometries, which were extremely-fine, extra-fine, fine, normal, and coarse. 

These were generated directly by the default meshing options and were adapted to the 

characteristics of the thermal problem. Differences no greater than 0.009 ºC were noted between 

the results obtained with these meshes. Therefore, to obtain an accurate inverse solution at 

reasonable computational costs, when simultaneously identifying the sought thermal properties, 

the 11-element mesh was used to solve the 1D problem, and the “coarse" mesh was used to 

evaluate the 3D problem. 

To assess the Bayesian estimation methodology, the total number of states (G) was set to 

8000, which is enough to avoid the oscillation of the initial samples dealt with by the Markov 

chain with a reasonably fast computational rate. As the MCMC algorithm is not initialized at 

its stationary distribution, there may be some bias caused by its starting points. To compensate 

for this, the conception of burn-in period was introduced to reduce the effect of correlation 

between the initial MCMC samples on estimation results. This implies that some states 

(iterations) at the beginning of the MCMC run are eliminated, with the number of discarded 

states being chosen to be great enough for the MCMC chain to reach its invariant distribution 

by this time. Figure 5 shows the evolution of the natural logarithm of the PPDF ln[π(P|Y)] as a 

function of the number of states of the Markov chain for the MCMC run using uniform prior 

and 8000 states. In this figure, it can be observed that the Markov chain converges reaching 

equilibrium in approximately 4000 states. Since the effect of the MCMC initial condition has 

suitably been dissipated, the first 4000 states of the MH-MCMC were disregarded for the 

statistical computation of the estimates. 
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Figure 5. Evolution of the PPDF versus the number of states of the Markov chain. 

 

To solve the inverse problem here and guarantee convergence of the estimation process, 

a key point is that suitable prior knowledge about the sought-after parameters is needed. 

Generally, normally distributed models and uniformly distributed models are used as prior 

information. Inserting subjective prior information is a fundamental principle of the Bayesian 

framework that introduces bias in the estimation results, since this statistical-based method is 

easily affected by the initial guesses (prior distribution). The uniform distribution with 

probability density of π(A) ~ U(0, 24) W m-1 K-1, π(B) ~ U(0, 0.02) W m-1 K-2, 

π(C) ~ U(0, 700) J kg-1 K-1, and π(D) ~ U(0, 0.2) J kg-1 K-2 was assumed as prior and feasible 

search space. Analyzes were conducted to attempt to enlarge the search limits, but the outcomes 

were severely impacted when using wider search regions. Uniform priors enable accurate 

results with a reasonable computational cost, since some calculations are simplified when this 

kind of prior is used. 

Table 1 shows the results of the simultaneous Bayesian estimation for five sets of 

complementary experiments. This means that measurements were replicated at least five times 
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for each specimen. The standard deviation values denote the probability uncertainty inherent to 

Bayesian statistics. The average of the Bayesian estimates was used to construct linear curves 

describing k and cp versus temperature, as shown in Figures 6 and 7. These thermal property 

correlation equations, Equations (27)-(28), can be applied to temperatures ranging from 20 ºC 

to 150 ºC. Four significant digits were used to specify the parameters of interest, due to the 

number of significant figures of the less accurate quantity experimentally measured, namely the 

roughness measurement. Comparing the linear functions for k(T) and cp(T) obtained in this 

study and literature data, it can be seen that the slopes of the k linear functions are very similar 

for all studies, which is not the case with cp. In this sense, it is worthwhile to mention that 

variations may occur mainly due to differences in the thermal characterization methods used 

and in the chemical composition of the stainless steel investigated in this study and those studied 

elsewhere. For simplicity, since the behaviors are very similar, only the graphical results 

corresponding to the PPDFs of A, B, C, and D for the first experimental set are shown in 

Figure 8. 
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Table 1. Simultaneous estimation of k and cp parameters for 304 austenitic stainless steel. 

Set 

Bayesian estimated values 

A [W m-1 K-1] B [W m-1 K-2] C [J kg-1 K-1] D [J kg-1 K-2] 

Mean SD Mean SD Mean SD Mean SD 

1 13.91 0.30 0.01369 0.00039 493.5 11.7 0.1465 0.0028 

2 13.28 0.27 0.01406 0.00045 489.3 12.8 0.1422 0.0032 

3 14.01 0.35 0.01469 0.00040 494.0 12.4 0.1389 0.0026 

4 14.33 0.31 0.01348 0.00042 490.9 12.0 0.1451 0.0029 

5 13.80 0.29 0.01353 0.00037 489.8 12.5 0.1395 0.0029 

 

 

Figure 6. Temperature-dependent thermal conductivity of 304 austenitic stainless steel. 

Comparison of the lines determined in this study with curves reported in Valencia and 

Quested [24] and Graves et al. [61]. 
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Figure 7. Temperature-dependent specific heat of 304 austenitic stainless steel. Comparison 

of the lines determined in this study with curves reported in Valencia and Quested [24] and 

Graves et al. [61]. 
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𝑐!(𝑇) = 492.0 + 0.1402 × 𝑇	[J	kgHBKHB]  (28) 
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Figure 8. PPDFs of the estimated parameters for the first experimental set. 

 

Ideally, the differences between the measured temperature and the corresponding 

calculated temperature are desirable to be close to zero, but that is impractical. Any object, 

warmer than its surroundings, naturally loses a portion of its thermal energy. Since the ceramic 

fiber insulation has non-null thermal properties, some heat loss is unavoidable, causing some 

variations in the heat flux. This means that the actual heat flux load is time-varying, rather than 

constant. As a result, the mathematical modeling of the physical problem is somewhat 

imperfect. Figure 9 shows a comparison between the measured temperatures of the first set of 

complementary experiments and the corresponding temperatures computed with the estimated 

curves. One can observe that the model-predicted temperature histories and the experimentally 
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measured temperatures match well for both thermal models. The largest residuals for the 1D 

and 3D formulation were 2.36 ºC and 3.03 ºC, in absolute values, respectively. These 

differences are acceptable because they represent approximately 1.8% and 2.5% of the 

maximum temperature variation, in a relative sense. This condition can be regarded as 

acceptable especially because one deals with a low-cost experimental setup in a transient state. 

Thus, unmodeled heat loss and inconsistencies involved in the inverse approach are proved to 

be minimal, indicating the adequacy of the thermal models used. 

 

 

Figure 9. Temperature histories for the 1D and 3D thermal models. Comparison of 

measurements with numerically computed temperatures. 

 

As part of the validation process, the repeatability of the estimation results is evaluated 

by performing the inverse retrieval of the heat flux intensity imposed, based on the estimated 

linear curves. The measured temperature data and lines estimated for the thermal properties are 

employed to retrieve the applied heat flux using Beck’s nonlinear formulation with 10 future 

time steps [4]. Figure 10 shows a comparison between retrieved heat flux histories. An analysis 
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of this figure reveals that the heat fluxes agree well with the experimental heat load of 

20000 W m-2. 

 

 

Figure 10. Comparison between the retrieved heat flux histories. 

 

2.10  Summary 

 

This first case study focused on using complementary experiments to simultaneously 

identify parameters describing the linearly temperature-dependent thermal conductivity and 

specific heat of 304 austenitic stainless steel. Inverse thermal analysis was based on combining 

measurements from two transient experiments conducted at room temperature, where each had 

a single sensor. Sensitivity analysis showed that complementary temperature measurements 

increased the sensitivity coefficients of parameters for cp, and raised those for k at the initial 
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improved estimates. Bayesian inference was used to take advantage of this additional sensitive 

information. Single-step estimation of temperature-dependent parameters was carried out 

considering measurement data corresponding to the entire temperature domain. As this study 

used a statistical optimization approach, probability distributions were obtained for the 

estimates instead of fixed values. Despite showing its well-known behavior of being sensitive 

to the prior information inserted into the statistical estimator, the Bayesian uncertainties had 

relatively small values, indicating the reliability of the results. 

Future research work should focus on applying the proposed technique to different 

metallic materials, subjected to heat treatments. Additionally, as the current experimental setup 

provides reliable k and cp estimates up to 150 ºC, obtaining an experimental setup capable of 

handling higher temperature ranges would be important. 
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3. Case Study 2: One-year On-site Monitoring to Estimate 

Hygrothermal Properties of Wall Materials 

 

3.1 Hygrothermal performance of building envelopes 

 

With increasing concerns related to the environmental footprint of the construction sector, 

improving energy efficiency of buildings is an urgent need in the fight against climate 

change [62]. In this context, prefabrication or off-site construction can be an option to achieve 

more sustainable construction [63]. Modular construction can provide several environmental, 

economic, and social benefits, e.g. [62]: reduced environmental impacts, cost and time savings, 

increased on-site safety, high construction quality and efficiency, etc. In general, prefabrication 

offers a better life cycle performance compared to conventional (i.e., on-site) construction and 

can properly contribute to sustainable construction and extended durability [64]. 

However, there are still challenges when using prefabricated envelope modules [64]. A 

critical aspect is the air and water tightness at the junctions or interfaces between modular wall 

panels [65]. It is challenging to fully seal the joint regions due to their complex geometry [66]. 

In general, noticeable energy losses can directly be associated with air leakages due to poor 

airtightness [67], increasing the energy used for space heating and cooling. As indicated by 

Lozinsky and Touchie [68], air infiltration can represent up to 30 % of annual energy 

consumption for space heating in single-family homes located in a cold climate. A deficient 

airtightness can also cause moisture-related problems due to interstitial condensation (e.g., 

structural damage, mold growth, building materials decay, and compromising the indoor air 

quality), negatively impacting human health, building performance, and sustainability [69]. 



62 

Building envelopes are composed of various porous materials in which heat and moisture 

(HAM) transport occurs, affecting the air quality, thermal comfort, and energy consumption of 

buildings, as well as the lifetime of building materials [70]. Condensation is possible when 

water vapor is cooled below the dew point, and it should be avoided at all costs to assure the 

durability of the assembly. Premature deterioration of building envelopes is also associated with 

pathologies related to moisture transport [66]. It is thus crucial to understand HAM transport in 

building components to reduce energy costs and optimize both the thermal performance and 

sustainability of building envelopes [71]. It is claimed that building energy consumption and 

thermal behavior could be more accurately predicted by accounting for moisture phenomena in 

numerical energy efficiency simulations [70], [72], [73]. HAM processes are physically 

coupled because the vapor saturation is temperature-dependent, and latent heat effects due to 

condensation or evaporation change the temperature field [74]. Moreover, simultaneous HAM 

transport in building materials and envelopes are associated with strongly nonlinear 

mechanisms [74]. Therefore, a coupled analysis of HAM phenomena helps to better investigate 

the hygrothermal performance of building envelopes. 

The hygrothermal performance of buildings and their components has been extensively 

addressed in the literature [70], [72], [73], [75], [76]. Numerous numerical approaches have 

been developed over the years for modeling hygrothermal performance [71]. Nevertheless, it is 

well known that significant differences continue to exist between the actual operative behavior 

of a building envelope and numerical simulation results [70], [72], [77], [78]. For the 

performance of multilayered prefabricated wall panels, Palani and Karatas [79] showed 

recently that there are considerable disparities between experimental and computational results. 

This can be caused by numerous reasons, including potential differences between listed 

properties and on-site effective properties [80], [81]. For instance, compressed mineral wool 

batts inappropriately installed would not have the same thermal conductivity as the one 
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provided by the manufacturer. Moisture accumulation in building materials can also change 

their thermal and hygric properties. However, these variations are commonly omitted by 

material databases, meaning that applications of hygrothermal simulations are often subjected 

to doubts [82]. Although numerical model calibration is often performed using laboratory scale 

samples, building materials are subjected to dynamic and adverse weather conditions when 

placed into service, and their actual behavior can differ from that obtained in controlled 

experiments [70], [83]. Indeed, field research has proven that the hygrothermal performance of 

building assemblies is often worse than laboratory predictions [15]. Wall defects, like cracks 

and delamination, as well as meteorological variations are hard to avoid and predict, so a 

method to estimate the effective hygrothermal in situ properties would therefore be 

convenient [80]. A reliable approach to reduce the gap between simulations and on-site 

performance is to use simulation models calibrated with hygrothermal properties estimated 

from field hygric and thermal measurements [72], [84]. This reduces the uncertainties of the 

input quantities of the model, resulting in realistic numerical simulations that accurately predict 

the final performance of building envelopes. Furthermore, moisture transport should not be 

neglected, as doing so is known to induce errors when predicting the properties of building 

materials [15], [85]. 

As HAM phenomena are decisive in building energy efficiency, several studies have been 

performed to investigate the hygrothermal behavior of wall assemblies. For this purpose, 

temperature and moisture data are generally measured at various positions within the wall 

assembly with different boundary conditions. For instance, Piggot-Navarrete et al. [86] 

investigated wood-framed walls; Alvarado-Alvarado et al. [87] studied green wall assemblies; 

Belloum et al. [88] considered bio-based concrete walls; Colinart et al. [89] and Wu et al. [90] 

analyzed different types of multilayered walls; Sawadogo et al. [91] studied phase change 

material hemp concrete walls; and Zhan et al. [92] investigated steel-framed wall assemblies. 
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The temperature and moisture data measured in these studies might be used in mathematical 

formulations to identify the properties of the building materials that constitute the walls and 

provide calibrated models. In this sense, most researchers evaluated wall properties using 

temperature data in heat transfer models, disregarding moisture transport [15]. This is because 

experimental hygrothermal analyzes are much more challenging than pure thermal studies [70]. 

Even so, some recent studies have performed the calibration of hygrothermal models using field 

measurements of temperature and moisture content. For instance, Sadłowska-Sałęga and 

Radoń [93] investigated a historic wooden church; Gomes et al. [94] conducted studies on 

typical concrete assemblies; Ibrahim et al. [95] studied silica-aerogel-based insulating 

composite walls; Costa-Carrapiço et al. [96] evaluated the hygrothermal behavior of vernacular 

dwellings; Ren et al. [97] studied a solar greenhouse with straw walls; and Sabapathy and 

Gedupudi [98] investigated rice straw envelope assemblies. 

As shown above, much effort has been put in to experimentally analyze hygrothermal 

phenomena in different types of envelopes. However, no previous work has been dedicated to 

estimating several properties of various components of a lightweight wall assembly based on 

long-term field measurements in particular for prefabricated envelopes. The on-site estimation 

of hygrothermal properties of multilayered walls is a topic in building engineering that deserves 

further research [99]. Such characterization is relevant as the properties of two specimens of 

the same building component might differ due to manufacturing, assembly, and installation 

procedures [86]. Moreover, longer experiments under real climatic conditions and human 

occupancy loads result in more accurate properties [100]. There is still a need for information 

about the field hygrothermal behavior of building envelopes to enhance their performance 

assessment [82], [101]. The lack of both field data and accurate monitoring of environmental 

actions and effects is more pronounced on a detached-house scale [84]. Thus, it is critical to 
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employ calibrated material properties to better assess the actual energy interaction of the 

building envelope with its environment and occupants. 

This study seeks to fill the research gap in identifying the effective hygrothermal 

properties of a lightweight prefabricated wall in operation in a cold climate. We address the 

concern raised by Piggot-Navarrete et al. [86] about further field research into the impact of 

prefabricated envelope panel-junctions on the hygrothermal performance of the envelope and 

the energy efficiency of buildings. This is because of the complex hygrothermal response of the 

building envelope near a wall-to-wall junction, which is a critical region in terms of airtightness, 

heat loss, and moisture transport. We are also in line with what was stated by Panico et al. [70] 

and Panico et al. [72] by using long-term field monitoring data to estimate the most influential 

input material properties and consequently obtain a well-calibrated model for realistic and 

accurate hygrothermal simulations. This is because the use of input parameter measurements, 

such as those relating to materials and climate conditions, is in any case the best way to 

significantly reduce uncertainties in numerical assessments [70]. Moreover, according to Costa-

Carrapiço et al. [96] and Panico et al. [70], only very few studies in the literature calibrate 

hygrothermal models using long-term data collection in actual dwellings and data measured 

inside wall components. 

Inverse HAM analysis is used to estimate the effective hygrothermal properties of various 

building materials in a prefabricated lightweight building envelope. The inverse problem 

method is a robust tool in science and engineering, enabling the indirect identification of desired 

unknown quantities from available measurements [102]. Parameter estimation seeks to infer 

related properties or attributes that are responsible for the measured response of a system. 

Although useful, evaluating inverse problems is challenging because these are often ill-posed 

and ill-conditioned due to an information deficit. This implies that inverse solutions are usually 

not unique and are sensitive to perturbations in experimental and prior data [103]. In this study, 
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one-year on-site temperature and RH measurements in an envelope are used to solve inverse 

problems capable of estimating the specific heat (c), thermal conductivity (k), and vapor 

resistance factor (µ-value) of various building materials, as well as the convective heat (h) and 

moisture (hm) transfer coefficients. Performance results obtained with the estimated effective 

properties are shown and compared with results yielded by reference values. The differences 

found highlight the importance of estimating effective material properties to calibrate 

simulation models and thus obtain more accurate insight into the actual hygrothermal behavior 

of wall assemblies. 

 

3.2 One-year on-site monitoring 

 

The residential detached house considered for the field assessment was constructed in 

Quebec City (Canada) in 2021 and was occupied just after its construction. The studied wall 

assembly, whose installation is shown in Figure 11, is located on the ground floor and is North 

oriented. This prefabricated wall has a newly developed joint sealing system, designed by an 

industrial partner (USPTO patent number 11447944) and studied by Julien et al. [104]. The 

wall has six main components (from exterior to interior): weather-barrier membrane, expanded 

polystyrene (EPS) insulation board, mineral wool batts parallel to 2´6 in wooden studs, 

laminated strand lumber (LSL) wooden studs at the junction, oriented strand board (OSB), and 

a polyethylene vapor-barrier. The properties of the LSL studs and OSB panels are considered 

as equal since both materials are made from strand and have similar densities. 

Calibrated TE Connectivity NB-PTCO-011 RTD (Berwyn, PA, USA) temperature 

sensors and Honeywell HIH-4602-C (Golden Valley, MN, USA) RH sensors were used to 

monitor the wall, with respective accuracies of ± 0.45 °C and ± 3.5 %RH. As shown in 
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Figure 12, in which temperature and RH sensors are respectively labeled Y and H, they were 

installed at positions x1 = -A/2 = -0.095 m, x2 = -0.040 m, x3 = 0.070 m, and 

x4 = A/2 = 0.095 m. The sensors were attached to the wall using thermally conductive paste, 

and an insulating material was used to fill the holes to minimize heat losses and moisture 

transport. Great caution was taken when installing the sensors to affect the thermal behavior of 

the wall as little as possible. The sensing locations were selected near the wall-to-wall junction, 

where HAM transfer can be considered two-dimensional. Additionally, it can be difficult to 

achieve fully efficient sealing in this region, resulting in air leakage. The wall-to-wall junction 

is indicated by the red dashed line in Figure 12. 

 

 

Figure 11. Picture taken during the installation of the studied wall. 
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Figure 12. Two-dimensional cross-sectional view of the wall junction showing the different 

components and sensor locations. 

 

The hygrothermal response of the wall assembly was monitored from September 2021 to 

August 2022, and transient measurements were collected at a sampling period of 10 min. 

Measured temperature and RH data are shown in Figure 13. The house became occupied around 

mid-September, when an increase in temperature profiles can be noted. It can be seen that Y1 

and Y2 are noisier due to sudden and severe changes in external climate conditions, with more 

intense HAM mechanisms and loads. These temperatures decrease between the end of 

September and December, and remain low from January to March. Differently, these same 

temperatures increase in spring and almost all summer (i.e., between April and July), reaching 

stable behavior during August. Temperatures Y3 and Y4, in turn, have a stable evolution over 

the year, being rather uniform in late autumn and throughout winter, due to the use of the heating 

system. Similar to Y1, H1 also has an unstable behavior since the sensors at the exterior surface 

are directly subjected to weather seasonality and variation. The RH on the outdoor surface 

Y1
H2H1

Y2 Y3
H4
Y4

0 A/2-A /2

0

-B /2

B/2
Weather barr ier
EP S insulat ion
Miner al wool
OSB

LS L s tuds

Vapor  bar rier

Juncti on

In
te

ri
or

Ex
te

ri
or

x

y



69 

decreases and reaches its minimal values in winter. This is expected as the outdoor air loses its 

ability to hold onto water when the temperature decreases. Measurement Η2 suffers 

considerable variations throughout the year since this location is close to the external surface, 

where weather events have a stronger impact. As expected, the lower temperatures of autumn 

and winter yield higher RH values at this location, as the temperatures approach the dew point. 

Η4 has a much more stable behavior compared to Η2 and is noisier during autumn and winter. 

Measurement Η4 strongly depends on the behavior and activity of the occupants as well as on 

the heating system, due to the closeness of this sensor to the indoor air conditions. Also 

concerning the RH at the indoor surface, it becomes drier from the beginning of the monitoring, 

matching the period when the house was occupied, and the heating system turned on due to 

cold weather. Note that no RH measurement was available at the point where Y3 is located. 

After being collected, data were recorded on a computer. This dataset was later used to perform 

the inverse estimations with COMSOL Multiphysics with LiveLink for MATLAB, as described 

below. 

 

 

Figure 13. Experimental ten-minute measurements of (a) temperature and (b) relative 

humidity. 
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3.3 Simultaneous estimation of specific heat, thermal conductivity, 

and vapor resistance factor 

 

3.3.1 Inverse problem approach for hygrothermal characterization 

 

Inverse methodologies have been used to study engineering problems involving HAM 

phenomena, as well as to calibrate building energy models [15], [77], [99], [100], [102]. In this 

context, temperature and RH measurements can be used for solving inverse problems and then 

estimating related hygrothermal properties. Therefore, the desired properties are taken as 

unknown variables, and an optimization technique is used to retrieve their values, given 

mathematical-physical modeling and field measurements. 

The inverse problem, in which both temperature and relative humidity are influential, is 

based on minimizing the following dimensionless normalized residual sum of squares: 

 

𝐹(𝐏) =
1
𝑁vw𝑤O!

HBI𝑌C! − 𝑇C!(𝐏)J
C +𝑤O!

HBI𝑌F! − 𝑇F!(𝐏)J
C +𝑤P!

HBI𝐻C! − 𝜙C!(𝐏)J
Cz

D

"%B

 (29) 

 

where P = [P1, P2, …, PL] incorporates L unknown properties to be simultaneously estimated, 

T and φ are the numerically calculated temperature and RH data at the measurement points, 

respectively. They are coupled and obtained by numerically solving the direct problem with a 

given P at the sensing locations. wY and wH are weighting coefficients associated with the 

variances of temperature and RH measurements, respectively. N is the number of discrete 

measurements taken during the monitoring period. 
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From Equation (29), it can be seen that the parameter estimation at hand relies on a least 

squares problem that minimizes the sum of the squared differences between model predictions 

and measurements. Convexity is a key property of least squares functions since it enables 

derivative-based algorithms to efficiently converge and find solutions to optimization 

problems [102]. In this study, the Broyden-Fletcher-Goldfarb-Shanno interior-point (BFGS-IP) 

method is used to evaluate the inverse problem and thus estimate P. This nonlinear gradient-

based technique has been efficiently used as a robust tool for solving optimization problems in 

a variety of applications [105]. 

 

3.3.2 Hygrothermal problem with Dirichlet boundary conditions  

 

The target here is to simultaneously estimate the effective hygrothermal properties of 

materials of the on-site monitored wall. For this purpose, an inverse problem based on the 

transient two-dimensional simultaneous HAM transfer within the wall is considered. The wall 

assembly is composed of several layers of different materials. The hygrothermal properties of 

the building materials are taken as unknown, and the contact at the interface of neighboring 

layers is considered perfect. All wall layers are initially subjected to known temperature and 

relative humidity fields. External and internal boundary conditions are prescribed temperature 

and prescribed RH, which are provided by the sensors placed on the wall surfaces (i.e., Y1, H1, 

Y4, H4). Thermal modeling considers energy storage, heat conduction, and latent heat effect due 

to vapor condensation. Hygric modeling considers moisture storage, capillary forces, and water 

vapor diffusion due to differential pressure. Thus, the physical problem involving fully coupled 

HAM transport is governed by the following equations: 
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(31) 

 

subjected to the boundary conditions: 

 

𝑇(𝑥, 𝑦, 𝑡) = 𝑌B(𝑡), ∀	𝑥 = −𝐴/2, ∀	𝑦 ∈ [−𝐵/2, 𝐵/2], for	𝑡 > 0  (32) 

 

𝜙(𝑥, 𝑦, 𝑡) = 𝐻B(𝑡), ∀	𝑥 = −𝐴/2, ∀	𝑦 ∈ [−𝐵/2, 𝐵/2], for	𝑡 > 0  (33) 

 

𝑇(𝑥, 𝑦, 𝑡) = 𝑌R(𝑡), ∀	𝑥 = 𝐴/2, ∀	𝑦 ∈ [−𝐵/2, 𝐵/2], for	𝑡 > 0  (34) 

 

𝜙(𝑥, 𝑦, 𝑡) = 𝐻R(𝑡), ∀	𝑥 = 𝐴/2, ∀	𝑦 ∈ [−𝐵/2, 𝐵/2], for	𝑡 > 0  (35) 
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(39) 

 

with the initial conditions: 

 

𝑇(𝑥, 𝑦, 𝑡) = 𝑇&(𝑥, 𝑦), ∀	𝑥 ∈ [−𝐴/2, 𝐴/2], ∀	𝑦 ∈ [−𝐵/2, 𝐵/2], for	𝑡 = 0  (40) 

 

𝜙(𝑥, 𝑦, 𝑡) = 𝜙&(𝑥, 𝑦), ∀	𝑥 ∈ [−𝐴/2, 𝐴/2], ∀	𝑦 ∈ [−𝐵/2, 𝐵/2],										for	𝑡 = 0  (41) 

 

where t is the time; T is the temperature; ϕ is the relative humidity; ρ is the density; c is the 

specific heat; k is the thermal conductivity; µ is the vapor resistance factor; LV is the latent heat 

of evaporation; δair is the vapor permeability of still air; D is the moisture diffusivity; psat is the 

vapor saturation pressure; w is the water content (moisture storage function); and n is a generic 

unit normal vector. 
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Although calibration is of key importance for accurate building energy modeling, 

nonlinear transient studies of coupled HAM transport using on-site measurements are 

challenging [72], [78], [106]. This is mainly due to the complex nature of these dynamic 

phenomena and the large abrupt variations in weather conditions which severely affect 

measurements [107]. The outdoor RH is especially impacted, showing abrupt changes and 

several peaks close to 100 %, which are detrimental to convergence when calculating the 

hygrothermal response of the wall. To reduce numerical instabilities, the measurements used as 

boundary conditions were subjected to hybrid algebraic-trigonometric polynomial filtering 

before being introduced into COMSOL. Although it introduces some bias into the problem 

modeling, experimental data with smooth transition enable better numerical performance of 

finite-element-based HAM simulations [108] and provide regularization to estimation 

procedures [58]. The initial condition is also a concern in simulation models using 

measurements taken on building walls [15]. On this matter, data measured at t = 0 were used to 

perform a steady-state study and thus obtain well-established temperature and humidity profiles 

throughout the 2D geometry, that were then used as initial conditions of the transient simulation. 

This improves numerical convergence since the wall components are insulating materials with 

significant hygrothermal inertia. 

The problem described above is said to be a direct problem when the hygrothermal 

properties, geometry, and initial and boundary conditions are known. Transient temperature and 

RH fields within the building wall can be obtained by solving the direct problem. COMSOL 

Multiphysics was used to solve the direct problem because this software has in its presets a 

specific module to study coupled HAM transport in building materials. COMSOL uses a 

mathematical formulation based on the European standard CSN EN 15026-2007, which 

introduces a validated simulation model for assessing the hygrothermal performance of building 

materials. 
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As already seen, the solution to an inverse problem is initiated by evaluating the direct 

problem at differing parameters and then comparing the outcomes obtained with experimental 

data. In this context, the independence of results from mesh refinement and time stepping is 

fundamental to ensure the validity of model-predicted data. The influence of spatial and 

temporal discretization was investigated by assessing the variation of direct problem solutions 

when varying the number of mesh elements and time-step tolerance. Mesh and time-step 

independences were said to be reached when ϕ2, the most sensitive variable, showed relative 

deviations below 3 % for every time-step [107]. Simulations were conducted in COMSOL 

Multiphysics using meshes with 8816 triangular elements and a time stepping tolerance of 10-2. 

 

3.3.3 Sensitivity analysis 

 

By examining Eqs. (30) and (31), it can be seen that the hygrothermal properties involved 

in the physical problem are ρ, c, k, µ, and D. It is important to mention that LV and δair are not 

properties of the wall materials; they are related to water vapor and air, respectively. Density 

and specific heat are linearly dependent on each other and thus cannot be estimated together. In 

this case, one must choose between specific heat and volumetric heat capacity (ρc) to be 

targeted in the estimation process. It is instructive to perform a sensitivity analysis to obtain 

information on how temperature and RH at the sensing locations are impacted by changes in 

specific heat, thermal conductivity, vapor resistance factor, and moisture diffusivity. All 

sensitivity-related computations are performed using forward difference approximation to the 

derivatives and considering property values from a validated building materials database. This 

database is available within WUFI 2D simulation program. Table 2 gives reference information 

on the investigated hygrothermal properties. 
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Table 2. Reference information on the investigated hygrothermal properties. 

Material/Component 
Reference hygrothermal properties 

c [J kg-1 K-1] k [W m-1 K-1] µ [-] D [m2 s-1] 

1) Weather-barrier membrane c1 = 2300 k1 = 2.3 µ1 = 300 D1 = 1×10-14 

2) EPS board c2 = 1450 k2 = 0.03 µ2 = 73 D2 = 1×10-9 

3) Mineral wool batt c3 = 850 k3 = 0.055 µ3 = 1.2 D3 = 1×10-14 

4) OSB and LSL studs c4 = 2100 k4 = 0.1 µ4 = 144 D4 = 5×10-12 

5) Vapor-barrier membrane c5 = 2300 k5 = 2.3 µ5 = 20054 D5 = 1×10-12 

 

In this study, sensitivity analysis provides prior knowledge about which unknown 

properties can be estimated from available measured data. Sensitivity coefficients evaluate the 

sensitivity of the dependent variable (temperature and RH) with respect to a change in the 

analyzed hygrothermal property. The scaled sensitivity coefficients are calculated by 

multiplying the analyzed property by the first partial derivative of temperature or RH in relation 

to this property [4]. For example, XT2,k1=	k1×∂T2/∂k1 is the sensitivity coefficient of k1 (the 

thermal conductivity of the weather barrier) for data T2. A small sensitivity implies that large 

changes in the property produce small changes in the temperature/RH measurements. This 

means that the information contained in the measurements is insufficient to estimate the 

property, making the inverse problem ill-conditioned [102], [109]. In general, the accuracy 

associated with the estimation of a parameter decreases as its scaled sensitivity coefficient 

approaches the measurement uncertainty. In this case, inverse analysis cannot properly evaluate 

the effects of such parameter on the measured data. Ill-conditioning is also present when the 

sensitivity coefficients of two properties are correlated (linearly dependent). This leads to the 
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unfeasibility of estimating these properties simultaneously. Thus, to obtain an optimal 

parameter estimation, it is desirable to have uncorrelated scaled sensitivity coefficients with 

large magnitudes for all hygrothermal properties being simultaneously inferred. This minimizes 

the generalized variance of the results, ensures good conditioning of the inverse problem solver, 

and provides realistic and accurate estimates [102], [109]. 

As measurements Y1, Y4, H1, and Η4 are boundary conditions, measurements Y2, Y3, and 

Η2 can be considered to estimate the desired hygrothermal properties. By calculating the 

corresponding numerical data of these sensing locations (i.e., T2, T3, and ϕ2) and investigating 

their sensitivities, one can define which properties can effectively be found from the inverse 

approach, i.e., which properties will constitute P. This vector will be composed of a set of 

properties to be simultaneously estimated using measured temperature and RH as information. 

Sensitivities associated with specific heat, thermal conductivity, vapor resistance factor, and 

moisture diffusivity of all wall components are analyzed. 

Figure 14 shows how the sensitivity coefficients of the parameters of interest (i.e., c, k, 

µ, and D) concerning data T2, T3, and ϕ2 evolve over time. The sensitivity coefficients not shown 

have much lower values than those shown and cannot be estimated. Since wall temperature and 

moisture gradients are mainly due to the outside conditions, it is understandable to observe 

lower sensitivities for T3 compared to T2, whose sensor is closer to the external surface. T2 is 

found to have three sensitivity coefficients of good magnitude: XT2,k2, XT2,k3, and XT2,k4. 

However, their behavior is correlated, which prevents accurate estimation of more than one 

property from this temperature. Likewise, T3 presents the same condition, but for two 

sensitivities: XT3,k2 and XT3,k4. In other words, T2 enables the identification of k2 or k3 or k4, and 

T3 of k2 or k4. In summary, combining temperatures T2 and T3 provides sufficient information 

to estimate two thermal conductivities. A different scenario is obtained when considering RH. 

It can be observed that c4, k2, k3, k4, µ2, µ3, and µ4 have good uncorrelated sensitivities for ϕ2, 
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which greatly enlarges the number of targets of the hygrothermal identification problem. 

Considering moisture transport not only enhances the problem physics and yields a more 

realistic case study, but also increases the capability and robustness of the simultaneous 

parameter estimation. Since a fully coupled hygrothermal analysis is performed, measurements 

Y2, Y3, and Η2 are therefore considered together in Eq. (29), all contributing to simultaneously 

estimating the following properties: c4, k2, k3, k4, µ2, µ3, and µ4. This is because, as shown above, 

the available experimental data were found to have good and linearly independent sensitivity 

coefficients in relation to these properties. It should be mentioned that the estimation is feasible 

even if some sensitivities have correlated behaviors in some periods throughout their evolution. 

This is because difficulties due to low sensitivity and linearly dependent relationship in 

localized regions are generally overcome when whole-domain data are considered [4]. 
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Figure 14. Sensitivity coefficients for: (a) T2, (b) T3, and (c) ϕ2. 

 

3.3.4 Results and discussion 

 

The literature values shown in Table 2 are taken as the initial guesses for the inverse 

hygrothermal identification problem. The search ranges are defined considering that each 

parameter of interest might vary by up to ± 25 % from its reference value. The evolution of the 

objective function when solving the hygrothermal characterization problem is shown in 

Figure 15. Convergence was considered to be achieved when the norm of the solution varied 
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by less than 1 % in subsequent iterations. The objective function has an initial value of 962039.1 

(which is outside the plot limits) and decreases drastically at the first iteration. This indicates 

that there is a large deviation between the actual hygrothermal response of the wall and that 

obtained by numerical simulation based on reference properties. 

 

 

Figure 15. Evolution of the objective function over the number of iterations for the estimation 

of the hygrothermal properties of the wall. 

 

The estimated effective values for the desired hygrothermal properties are given with four 

significant digits in Table 3. The Bonferroni method [4] is used to determine confidence 

intervals for the estimates, at 99 % probability. Expressing the estimated properties within 

bounds provides much more informative results. This is very important because inverse 

problems are ill-posed and carry uncertainties due to errors and approximations during 

experimental and modeling work. For instance, the numerical model approximates the real 

physical system, and the experimental data are obtained from intrusive sensors. With the 

exception of the thermal conductivity of mineral wool insulation, the effective estimates of this 

0 2 4 6 8 10 12 14 16
Iterations (-)

42

44

46

48

50

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

(-)



81 

study are lower than the reference values given by WUFI 2D. This implies that, in general, the 

database values tend to overestimate the real hygrothermal properties of the investigated wall 

materials. 

 

Table 3. Estimated effective hygrothermal properties. 

Material/Component Property Estimated effective value 

2) EPS insulation 
k2 [W m-1 K-1] 0.02765 ± 0.00120 

µ2 [-] 60.57 ± 2.78 

3) mineral wool insulation 
k3 [W m-1 K-1] 0.05723 ± 0.00511 

µ3 [-] 1.159 ± 0.037  

4) OSB panel and LSL studs 

c4 [J kg-1 K-1] 2097 ± 154 

k4 [W m-1 K-1] 0.08017 ± 0.00458  

µ4 [-] 116.4 ± 7.6  

 

3.4 Simultaneous estimation of convective heat and moisture 

transfer coefficients 

 

3.4.1 Hygrothermal problem with Robin boundary conditions 

 

Here, the focus is on determining the convective HAM transfer coefficients between the 

wall and the internal and external environments. With the exception of h and hm, all other 
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properties and parameters as well as the indoor and outdoor environmental conditions are 

assumed to be known. It is worth mentioning that the previously optimized property values 

were used as input data. The same formulation detailed before is used, except for the boundary 

conditions. Now, convective HAM fluxes are considered instead of prescribed temperature and 

RH. This means that Robin boundary conditions are imposed on the inside and outside wall 

surfaces. Equations (42) and (43) shown below replace Eqs. (32) and (33), and Eqs. (44) and 

(45) replace Eqs. (34) and (35). External climate data (Text and ϕext) were obtained from a 

weather station located near the monitored house. Indoor conditions (Tint and ϕint) were taken 

as functions of Text, according to DIN 4108-3. Therefore, the boundary conditions become: 
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where h is the convective heat transfer coefficient; M is the molar mass of water vapor; hm is 

the convective moisture transfer coefficient; and C is the vapor concentration, which is a 

function of T and ϕ. In the problem formulation, the convective moisture transfer coefficient is 

expressed as a function of the convective heat transfer coefficient, as per Lewis's formula [110]: 

 

ℎ= =
ℎ

𝜌."-𝑐."-
  

(46) 

 

Using the new boundary conditions described above and the simultaneous HAM transfer 

governing equations, the coupled temperature and RH fields within the wall assembly can be 

dynamically simulated. 

 

3.4.2 Sensitivity analysis 

 

Since h and hm are correlated, measurements Y2, Y3, and H2 are considered in Eq. (29) to 

estimate h, which is then used to indirectly estimate hm. The sensitivity coefficients are 

calculated using reference information from Xu et al. [110], as follows: hext = 25 W m-2 K-1 and 

hint = 8 W m-2 K-1. Their evolution in time is shown in Figure 16. It can be seen that both 

temperatures are more sensitive to hint, while RH has a higher sensitivity coefficient for hext. 

Since hext and hint have sensitivities with good magnitudes and uncorrelated behaviors for 

different data, both convective heat transfer coefficients can be estimated simultaneously using 

the available measurements. As done before, the reference values for h are taken as initial 

guesses. Broader search limits considering a maximum deviation of ± 50 % are used because 

convective HAM coefficients vary considerably in building wall applications [15]. 
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Figure 16. Sensitivity coefficients of hext and hint for: (a) T2, (b) T3, and (c) ϕ2. 

 

3.4.3 Results and discussion 

 

Figure 17 shows the objective function behavior during the simultaneous estimation of 

hext and hint. It can be seen that the final value of the objective function here is smaller than its 

correspondent value in Section 3.3. The lower error when convergence is achieved is due to the 

use of the previously estimated effective properties and Robin boundary conditions. Both 
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aspects enable the numerical simulation to more closely match the actual hygrothermal response 

of the wall. 

 

 

Figure 17. Evolution of the objective function over the number of iterations for the estimation 

of hint and hext. 

 

Table 4 gives the estimated external and internal convective heat transfer coefficients and 

their confidence limits. The external and internal convective moisture transfer coefficients, 

indirectly identified from hext and hint, are also given in this table. The confidence bounds of 

hmext and hmint were determined by error propagation from hext, hint, ρair, and cair. It can be seen 

that the literature benchmarks underestimate the convective phenomena on the external surface 

of the investigated building, while the convective response of the internal surface is 

overestimated. 
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Table 4. Estimated effective external and internal heat and moisture transfer coefficients. 

Property Estimated effective value 

hext [W m-2 K-1] 30.12 ± 1.54 

hint [W m-2 K-1] 4.262 ± 0.201 

hmext [m s-1] 0.02569 ± 0.00179  

hmint [m s-1] 0.003635 ± 0.000247 

 

Root-mean-square error (RMSE) is a statistical measure that is often used to evaluate the 

deviations between model-predicted values and those observed experimentally. Its purpose is 

to combine the errors in predictions for various data points into a single metric representing the 

overall predictive capability. RMSE is always positive, and, in general, a smaller value is better 

than a higher one. Here, RMSE is used to measure and compare numerical prediction accuracy. 

It is calculated for temperature and RH considering two different datasets: the effective 

hygrothermal properties estimated by inverse problem and the initial properties obtained from 

WUFI 2D and Xu et al. [110]. RMSE is calculated as follows: 

 

𝑅𝑀𝑆𝐸 = �∑ [𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡" − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛"]CD
"%B

𝑁  (47) 

 

When T2, T3, and ϕ2 are calculated using all the estimated effective hygrothermal 

properties (i.e., c4, k2, k3, k4, µ2, µ3, µ4, hext, hint, hmext, and hmint), values of 2.50 ºC, 1.14 ºC, and 

3.92 % are obtained for RMSET2, RMSET3, and RMSEV2. 3.68 ºC, 2.01 ºC, and 6.44 % are the 
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values for these three metrics when reference properties are used to predict T2, T3, and ϕ2. This 

confirms that the hygrothermal model fits the experimental data better when calibrated with the 

properties estimated in this study. Therefore, this work can be considered successful in using 

one-year on-site measurements to solve inverse problems and thus provide more accurate 

hygrothermal input simulation data. 

 

3.5 Impact of model calibration on hygrothermal performance 

assessment 

 

In practice, buildings are naturally subjected to thermal and moisture loads, and the wall 

assembly is the barrier offering thermal and moisture resistance. The hygrothermal behavior of 

walls controls to a good extent the amount of energy required to ensure optimal comfort 

conditions for occupants. Uncontrolled HAM fluxes within building walls can damage thermal 

insulation and cause mold growth, thus making buildings unhealthy and less energy 

efficient [9]. Adequate strategies for managing HAM phenomena can prevent such serious 

problems. Therefore, understanding HAM transport across wall components is paramount for 

building design since it contributes to more sustainable and healthier building enclosures [111]. 

Since the effective hygrothermal properties were estimated, it is possible to evaluate their 

influence on the hygrothermal performance of the wall assembly. For this purpose, the problem 

used in Section 4, which involves Robin boundary conditions, is considered. The problem is 

solved for two datasets of hygrothermal properties: i) the effective estimates determined in this 

study; ii) reference properties from WUFI 2D and Xu et al. [110]. Values given by WUFI  2D 

are used for the properties that are not estimated in the present work. 
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The vapor-barrier membrane is the wall component in direct contact with the indoor 

environment, where hygric and thermal conditions are critical for occupant comfort. Moreover, 

it is the main responsible for controlling moisture flux through the wall assembly. Thus, the 

hygrothermal performance of the wall is investigated by calculating the annual heat (Qw) and 

moisture (Gw) fluxes through the interior surface. Qw and Gw account for normal diffusive and 

convective heat fluxes. 

Figure 18 shows the calculation results for Qw and Gw as a function of time. Different 

hygric and thermal behaviors can be observed over the annual evolution of the HAM fluxes. 

Negative values indicate that the building enclosure loses heat/moisture. Positive values denote 

heat/moisture gain through the wall assembly. The physical behavior of buildings is derived 

from the continuous energy response of their components to outdoor climatic conditions and 

indoor comfort requirements. The heat flux profile is directly associated with the temperature 

gradient within the wall. Thus, since Y4 remains above Y1 almost during the entire monitored 

period, the wall practically only experiences outgoing heat flux. Heat loss is large in autumn 

and winter, and small in spring and summer. Since the investigated wall is in a cold climate 

region, greater heat losses occur in winter due to the cold weather which yields higher 

differences between outdoor and indoor temperatures. Qw is lower when determined with the 

estimated effective properties. Heat fluxes for both configurations differ most significantly 

during winter. This implies that the reference hygrothermal properties can be misleading in 

predicting building energy demand in the most critical period. By integrating Qw with respect 

to time over the year, the total annual thermal energy loss through the wall per unit of area can 

be calculated. A total heat loss of 34.2 kW h m-2 (1.2×108 J m-2) is obtained using the property 

estimates, while reference properties lead to a value of 44.4 kW h m-2 (1.6×108 J m-2). This 

means that the literature benchmarks overestimate the annual thermal losses of the wall by about 

30 %. 
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The moisture flux Gw also varies according to the interaction between external and 

internal environments. Its behavior is dependent on the gradients of partial water vapor pressure 

and RH, which at the same time depend on temperature, so consequently its profile is different 

from that of the heat flux. The behavior of Gw is more heavily influenced by the exterior RH, 

since the studied building envelope is more permeable on the exterior side than on the interior 

one. Permeable external insulation and weather protection work together with an internal vapor 

control membrane to increase the durability of the envelope in relation to the potential for 

interstitial condensation and subsequent moisture-related damage. In this context, an accurate 

numerical prediction of the moisture flux in the wall is crucial for evaluating the inward wetting 

and outward drying processes. This is because, for an energy-efficient building design, the 

resilience and sustainability of envelope assemblies should rely directly on effective passive 

moisture management. For locations with cold climate like Quebec City, summer is the most 

humid season and therefore the most critical period in terms of absorption and storage of water 

in building enclosures. It is precisely during this critical season, when the hot, humid air causes 

a high level of inward moisture transport, that the results of both datasets show more significant 

deviations. The time integral of Gw is also calculated to determine the total mass of moisture 

per unit of wall surface area transported throughout the year. Using the estimated effective 

hygrothermal properties yields a value of -7.86×10-5 kg m-2, while -9.73×10-5 kg m-2 is 

obtained for the literature properties. This implies that the literature benchmarks overestimate 

the annual hygric behavior of the wall by about 24 %. Therefore, both Qw and Gw calculations 

demonstrate the importance of the present work in providing accurate in situ input data to 

calibrate the wall simulation model, thus obtaining more realistic assessments of hygrothermal 

performance and energy efficiency. 
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Figure 18. Heat (a) and moisture (b) fluxes through the interior wall surface. Comparison of 

the results for the effective hygrothermal properties estimated in this study with the results for 

reference parameters. 

 

3.6 Summary 

 

HAM analysis is a critical aspect of building science and engineering as it provides insight 

into energy efficiency, indoor comfort, sustainability, and safety. Hygrothermal 

characterization based on field measurements and subsequent model calibration enable 

simulations to better assess the behavior of building components and systems under actual 

environmental conditions. In this second case study, hygrothermal properties of different 

materials of a prefabricated wall assembly were estimated by inverse problems considering 

fully coupled HAM transfer. One-year on-site temperature and relative humidity data were used 

to estimate specific heat, thermal conductivity, vapor resistance factor, as well as convective 

heat and moisture transfer coefficients. 
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With the exception of the thermal conductivity of mineral wool and the external HAM 

transfer coefficients, all other properties were determined to be lower than literature 

benchmarks. This means that the literature references overestimated the effective values of the 

hygrothermal properties of the studied building envelope. The largest difference between the 

estimates and the reference properties reached almost 50 %. 

The impact of model calibration on the assessment of the wall hygrothermal performance 

was addressed by calculating the heat and moisture fluxes through the interior surface 

throughout the year. These calculations considered two different datasets: one with the effective 

estimates determined in this work, and the other with literature benchmark properties. The 

greatest deviations in the thermal response were found during the cold season, which is the most 

critical period in terms of energy demand. As to the hygric response, the largest differences 

were found during the warm months. The total energy loss and total moisture transport per unit 

of wall surface area were determined by integrating the HAM fluxes throughout the year. 

Literature reference values were shown to overestimate the annual thermal response by about 

30 % and the annual hygric response by about 24 %. All this demonstrates the importance of 

the present characterization approach to obtain a well-calibrated building simulation model 

capable of more accurately predicting the hygrothermal performance of the prefabricated wall 

assembly. 

Future research work should investigate the dependence of the hygrothermal properties 

of the wall on temperature and moisture content. By performing similar studies in different 

assemblies, it would also be possible to improve building property databases to account for in 

situ performance. 
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4. Case Study 3: Estimating the Annual Heat Flux through 

a Prefabricated Wall Assembly from Field Data 

 

4.1 Dynamic thermal analysis of envelope walls 

 

With growing concern about climate change and global warming, much attention has been 

focused on building enclosures, as they are responsible for major energy consumption and 

greenhouse gas emissions [112]. Energy consumption in buildings is used in good part to 

maintain a thermally comfortable indoor environment [112], [113], [114]. According to the 

Canadian Wood Council [115]., about 20% of total energy consumption in temperate regions 

is used for heating, cooling, and lighting in residential buildings. As the energy performance of 

residential housing plays a key role in the sustainability of the building sector [115], [116], 

outdoor-to-indoor heat exchanges need to be carefully analyzed, aiming to reduce 

heating/cooling needs without affecting the quality of life of residents [112]. The envelope is 

critical to protect the built environment from severe external climate conditions [112]. and limit 

heat gains and losses, which in turn directly impact energy demand. As a result, improving 

walls offers great potential for energy savings, as they are responsible for around 50% of the 

total energy gain/loss in a building [90]. In this context, knowledge of the heat flux through the 

internal surfaces of building envelopes is essential to ensure occupant thermal comfort and 

energy efficiency [112], [117]. 

Despite its importance, the thermal performance of building walls is not often 

investigated after construction and during the operational phase [118]. Therefore, although it is 

one of the most accurate ways to evaluate the actual thermal behavior of building 
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components [100], [119],, on-site assessment is rarely performed due to the complexity and 

cost of proper data collection and the difficulty of post-processing field measurements [119], 

[120]. Moreover, some field investigations found that the final thermal performance of building 

envelopes was worse than predicted by laboratory tests [15]. In real-field applications, building 

envelopes are subject to uncontrolled seasonal climate cycles and dynamic internal loads [72]. 

Thus, the hygrothermal conditions experienced during operation can greatly change between 

buildings located in different climate zones [15], [119]. This complicates the extrapolation of 

standard laboratory data for long-term predictions on field thermal performance [121]. 

Additionally, on-site investigations better assess the impact of construction specificities on the 

behavior of building components [78], [121]. For example, hidden defects in the envelope due 

to aging or manufacturing/installation faults (e.g., layer rupture, non-emerging cracks, and 

delamination) can compromise airtightness and impair effective thermal performance [116]. 

The impact of such quality flaws on the ability of building envelopes to meet their in-use energy 

efficiency target is more accurately evaluated by extensive field research [86], [122]. 

The in situ thermal analysis of building envelopes is typically based on steady-state 

thermal resistance (or its reciprocal, thermal transmittance), which is the common basis of most 

building energy codes around the world [112], [123], [124]. Among the most relevant steady-

state techniques are the heat flux meter method, guarded hot plate method, hot box method, 

infrared thermography, natural convection and radiation method, and temperature based 

method [125]. However, the adaptability of these steady-state approaches is limited when 

applied to dynamic indoor environments and extreme weather conditions [123]. Likewise, there 

is a lack of extensive research on employing such methods in field assessments due to their 

tedious and costly nature, which limits the type of wall studied and the testing season [123]. 

Moreover, they are mainly suitable for homogeneous walls with low thermal inertia and have 

difficulty assessing the thermal performance of multilayer composite walls under different 
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climatic and heating/cooling conditions [113], [120], [126]. This is because these techniques 

employ relatively simple calculations that do not accurately capture the transient thermal 

response of envelope walls [125]. As most buildings are subject to highly dynamic thermal 

load [123], it is critical to investigate and understand the unsteady heat transfer behavior of 

inhomogeneous envelope walls to optimize building design [112], [120], [127], [128]. 

Among the most commonly used approaches for evaluating dynamic heat flux in building 

envelopes are the admittance method, the response factor method, the transfer function method, 

and numerical methods for differential equations [127], [129]. For instance, Fang and 

Chen [130] applied the transfer function method and periodic response factor method for 

coincident design weather data generation; Tariku and Hemmati [131] used the response factor 

method to perform a transient heat transfer analysis of multidimensional building envelopes; 

Bishara et al. [128] developed a robust numerical model to investigate and improve the dynamic 

thermal characteristics of a spruce wood wall; Zhou at al. [132] investigated the thermal 

behavior of a Trombe wall with PCM (phase change material) using numerical simulations; 

Zhou at al. [132] established a finite-difference numerical model to analyze the transient heat 

transfer in a heat recovery building envelope; Zhou at al. [132] employed machine learning and 

finite-element approach to predict heat fluxes through thermally anisotropic building 

assemblies; Zhang et al. [133] used the finite difference method to develop a climate-responsive 

design technique for dynamic heat transfer analysis of building envelopes; Martinez et al. [134] 

established a simulation approach for the disaggregation of dynamic and multidimensional heat 

transfer phenomena in envelopes. 

Some recent studies have particularly investigated the annual transient heat flux through 

building walls based on long-term field data. Mazzeo et al. [135] developed a numerical 

calculation technique to determine the temperature and the heat flux fields in envelopes with 

PCM layers. Their thermal behavior evaluation method used characteristic days that were 
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periodically repeated throughout the considered month, and the method was applied to 

buildings located in continental and Mediterranean climates. Thomas et al. [112] presented an 

analytical method to calculate heat flux considering the wall orientation, the materials, and the 

location of the construction. Their approach, which is based on the admittance method and 

equivalent sol-air temperature, was applied to three types of building envelope walls in different 

locations in Argentina. Rathore et al. [136] analyzed peak temperature, thermal amplitude, time 

lag, and decrement factor of small-scale concrete envelopes with and without PCM capsules in 

tropical climates. Vox et al. [137] used energy balances to study heat flux reduction through the 

wall of a building prototype with hollow brick masonry and a green façade in the Mediterranean 

climate. 

Despite the extensive research work by the above-mentioned studies, to the best of the 

authors' knowledge, no previous study has performed an inverse analysis of the annual field 

behavior of the heat flux through the internal surface of a multilayer lightweight wall of an 

occupied prefabricated house in a cold temperate zone. Such a gap is also apparent from the 

reviews of Yang et al. [120], who reviewed developments in theoretical and experimental 

methodologies for the field evaluation of the thermal performance of building structures, and 

Rouchier [138], who provided an overview of inverse tools and techniques applied to building 

physics. In fact, Piggot-Navarrete et al. [86] recently indicated the need to investigate the in situ 

thermal performance and energy efficiency of prefabricated building envelopes due to the 

current lack of data and knowledge on the topic. Despite the ecological and financial advantages 

and the expected growth in the market share of multilayer prefabricated wall assemblies [139], 

Palani and Karatas [140] showed in a recent study that their in-operation thermal performance 

can be uncertain, leading to overdesigning building envelope systems. 

Numerical simulations can calculate the temperature field and heat flux in a building 

component given its geometry, initial temperature, boundary conditions, and thermal 
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properties [129]. Proper and detailed mathematical modeling of the thermal physics of building 

envelopes is critical for the reliability of numerical simulations [120]. Although current 

simulation tools are sophisticated, they are subject to uncertainties, especially those from 

boundary conditions [72]. Indeed, as shown by Panico et al. [70], integrating field data 

collection into these simulations for effective thermal assessment should not be neglected in 

order to obtain realistic simulations in building engineering. Although using in situ 

measurements to impose boundary conditions is the most suitable way to reduce uncertainties 

in building modeling [72], there is a notable absence of field research assessing the impact of 

external climate boundary and internal loads on building thermal thermal performance [70]. 

Moreover, very few studies in the literature currently use long-term monitoring data in real 

dwellings and measurements in wall assemblies to obtain reliable simulation models [96]. 

In this case study, the in-operation thermal performance of a multilayer wall assembly is 

evaluated using an inverse approach, based on numerical modeling and in situ monitoring. The 

envelope wall investigated is part of an occupied prefabricated two-story house in Quebec City 

(Canada). One-year temperature sensor measurements were collected in the assembly and then 

used to solve a heat flux estimation problem. The main contribution of this paper is to show 

how the annual inner heat flux through a prefabricated lightweight wall evolves and how inverse 

analysis can be used for the accurate in situ dynamic assessment of building walls. Unlike most 

standardized methods, the present alternative approach deals only with temperature 

measurements taken under transient conditions, and does not require additional devices such as 

flux meters, heaters, infrared cameras, etc. This makes the proposed inverse methodology very 

practical since actual walls undergo considerable fluctuations in inside and outside conditions 

throughout the seasons, and temperature sensors are one of the most fundamental and widely 

used sensors for monitoring and controlling building enclosures. As evaluating the dynamic 

thermal characteristics of multilayer walls is a relevant ongoing research topic [86], [112], 
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[115], [118], the present inverse approach enables the continuous in situ monitoring of the 

effective thermal performance of building envelopes. Moreover, the results on heat flux are 

useful by providing reliable qualitative and quantitative information to support decision-making 

towards more energy-efficient prefabricated constructions. 

 

4.2 Field thermal monitoring 

 

The object of the present field research is the same prefabricated wall assembly presented 

in Section 3.2. For heat flux estimation, the 190 mm-thick wall was considered a 1D medium, 

consisting of five layers, as per Figure 19: ① high-density polyethylene foil (weather barrier), 

② expanded polystyrene (EPS) board, ③ mineral wool batts parallel to wooden studs, 

④ oriented strand board (OSB) panel, and ⑤ low-density polyethylene foil (vapor barrier). 

Interactions with the exterior cladding and interior thin finish coat were neglected, as these 

items have a minor thermal role; their main function is to serve as protection against water and 

fire, according to the National Energy Code of Canada for Buildings. Moreover, since the air 

layer behind the exterior cladding is ventilated, its temperature and RH levels are practically 

the same as those outside. As shown in Figure 19, thermocouples installed at x0 = 0 mm, 

x1 = 55 mm, x2 = 155 mm , and xL = 190 mm were considered for the inverse estimation of heat 

flux. 
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Figure 19. One-dimensional cross-sectional view depicting the wall layers and measurement 

locations (exterior and interior claddings not shown for clarity). 

 

Figure 20 shows the field temperature data measured. The thermal response of the wall 

was monitored at a 10-min sampling period for one year, from September 2021 to August 2022. 

Long on-site data collection enables the impact of environmental (external) and occupation 

(internal) factors on heat flux to be taken into account during all seasons. A noticeable change 

in temperature profiles can be seen at the beginning of data collection, corresponding to the 

period when the residents moved in (around mid-September). Temperatures Y0 and Y1 are noisy 

due to intense external loads arising from changes in the weather conditions of a seasonal 

temperate climate. These readings remain reasonably cold over data collection, with a drop 

from September to December and low values until March, according to the cold periods (fall 

and winter). In a different way, Y0 and Y1 begin to get warmer from April (early spring) to the 

point where they seem to stabilize between July and August (late summer). Measurements Y2 

and YL have a stable evolution over data collection, remaining much steadier in late fall and 

winter, most likely due to the action of the heating system thermostat. This shows that these 

sensors are highly dependent on indoor conditions and occupant activities. Once measured and 
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recorded, the temperature dataset was then used to carry out the inverse heat flux estimation in 

COMSOL Multiphysics with LiveLink for MATLAB, as described below. 

 

 

Figure 20. Field temperature measurements. 

 

4.3 Direct thermal problem 

 

As shown in Figure 19, the wall assembly under study is considered as a one-dimensional 

multilayer medium subject to transient heat transfer. Initially, all the wall materials are 

uniformly subject to temperature Tin. The thermal contact between adjacent layers is considered 

to be perfect. The exterior wall surface is subject to a specified temperature boundary condition 

based on measurement Y0. The interior surface is considered to be subject to a thermal flux 

boundary condition, i.e., the energy transferred via heat flux at x = L5 is equal to the heat 
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transferred via conduction within the envelope. The transient heat flux through the inner 

surface, which is the target of this inverse analysis, is governed by the dynamic energy 

interactions of the occupants with the outdoor and indoor built environment. This means that 

the thermal energy entering or leaving the interior of the building envelope is considered an 

unknown boundary condition for the purposes of estimating it as a surface heat flux history. 

Thus, the direct thermal problem can be expressed as follows: 

 

𝑘+
𝜕C𝑇+
𝜕𝑥C = 𝐶+

𝜕𝑇+
𝜕𝑡 , 𝐿+HB < 𝑥 < 𝐿+, 𝑠 = 1, 2, 3, 4, 5 

 (48) 

 

with the initial condition: 

 

𝑇+(𝑥, 0) = 𝑇"#, 𝑠 = 1, 2, 3, 4, 5  (49) 

 

subject to the following boundary conditions at x = 0 and at x = L5: 

 

𝑇|$%& = 𝑌&  (50) 

 

−𝑘1
𝜕𝑇1
𝜕𝑥 1$%).

= 𝑞  
(51) 

 

and subjected to perfect thermal contact conditions: 
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−𝑘+
𝜕𝑇+
𝜕𝑥 1$%)/

= −𝑘+WB
𝜕𝑇+WB
𝜕𝑥 1

$%)/
, 𝑠 = 1, 2, 3, 4  

(52) 

 

𝑇+|$%)/ = 𝑇+WB|$%)/ , 𝑠 = 1, 2, 3, 4  (53) 

 

where x is the direction of heat flux [m]; t is the time [s]; T = T(x, t) is the temperature [ºC]; k is 

the thermal conductivity [W m-1 K-1]; C is the volumetric heat capacity [J m-3 K-1]; Ls is the 

layer thickness [m]; h is the convective heat transfer coefficient [W m-2 K-1]; q is the transient 

heat flux entering or leaving the indoor built space [W m-2]; and s is an index to identify the 

wall layers. The material property data of the wall layers were obtained from WUFI, a 

simulation program developed by the Fraunhofer Institute for Building Physics to investigate 

heat and moisture transfer in building components. 

 

4.4 Inverse heat flux estimation 

 

4.4.1 Sequential function specification method 

 

Inverse problems can determine, from a set of measurements, the factors that produced 

them. In engineering applications, inverse analysis identifies unknown parameters using an 

optimization algorithm to minimize the error between measured and calculated/simulated 

data [127]. By using inverse methodology, building engineering researchers have gathered 

experimental data and mined for information on material and component characterization, 
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building energy performance assessment, model predictive control, among others [120], [127], 

[138]. 

In the present inverse analysis, the time-dependent heat flux through the inner surface of 

the studied wall is estimated using the sequential function specification method (SFSM) with 

future times regularization. The SFSM is an effective tool for solving inverse problems and has 

been widely employed in several different applications in thermal sciences [141], [142], [143], 

[144]. Although the traditional SFSM is based on a Neumann-type boundary condition, it can 

also be formulated with other boundary conditions [142], [145]. 

In the SFSM, the heat flux history is discretized and components q1, q2, q3, ..., qn−1 are 

assumed to be known previously in order to estimate q at current time n. This inverse approach 

uses additional temperature information from future times r, i.e., Yn, Yn+1, Yn+2, ..., Yn+r-1, to 

improve the stability of the ill-posed inverse heat conduction problem. This implies that the 

conception of future time assumes that heat flux remains constant over r future time steps. 

Further technical details on the SFSM can be found in Woodbury [4] and Woodbury et al. [145]. 

Applying the SFSM, the solution to the present inverse problem is achieved by 

minimizing the following least-squares objective function: 

 

𝑆(𝑞) =v v I𝑌",X − 𝑇",X(𝑞)J
C

#W-HB

X%#

I

"%B

 
 

(54) 

 

where M is the number of thermocouples; r is the number of future time steps; Y is the 

experimentally measured temperatures; and T is the numerically calculated temperatures at the 

sensing locations obtained by solving the direct problem. The field measurements from the 

thermocouples at x1 and x2 (i.e., Y1 and Y2) are contained in Y and are used to estimate q. This 
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is relevant because using data from more than one sensor provides additional information and 

leads to more accurate estimates [145]. 

Equation (54) can be minimized by differentiating S in relation to q, as follows: 

 

𝜕𝑆
𝜕𝑞X

= 2v v 𝜑",XI𝑌",X − 𝑇",X(𝑞X)J = 0
#W-HB

X%#

I

"%B

 
 

(55) 

 

where φ is the sensitivity coefficient, which is conveniently calculated using a finite difference 

scheme: 

 

𝜑",X =
𝜕𝑇",X(𝑞)
𝜕𝑞X

≈
𝑇"¢𝑞X + 𝛿𝑞X£ 	− 	𝑇"¢𝑞X£

𝛿𝑞X
 

 
(56) 

 

where δq is a small variation in q. Since T is a function of q, temperature can be expressed by 

a first-order Taylor series, as follows: 

 

𝑇",X ≅ 𝑇¥",X + 𝜑",X(𝑞X − 𝑞¦X)  (57) 

 

Substituting Equation (57) into Equation (55) gives: 

 

𝑞X = 𝑞¦X +
∑ ∑ 𝜑",X(𝑌",X − 𝑇¥",X)C#+-HB

X%#
I
"=1

∑ ∑ 𝜑",XC-HB
X%&

I
"=1

 
 

(58) 
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where 𝑇¥  and 𝑞¦ are the temperature and heat flux values at the previous time step and q is the 

heat flux at the current time. Equation (58) is used in a sequential algorithm to estimate all the 

components of the annual heat flux history. The SFSM computational procedure for estimating 

qj can be summarized as follows: 

 

1. Load the field temperature measurements Y; 

2. Load the numerical model built in COMSOL into MATLAB; 

3. Read the coordinates of the sensors located at x1 and x2; 

4. Set the regularization parameter r; 

5. Consider constant heat flux over r future time steps, i.e., 𝑞¦X = 𝑞¦XWB = 𝑞¦XWC = ⋯ =

𝑞¦XW-HB; 

6.  Solve the direct problem to determine the temperature field of the wall assembly at x1 

and x2; 

7. Compute the sensitivity coefficient φ; 

8. Compute the current heat flux component qj. 

9. Repeat the previous steps throughout the domain of measured data. 

 

4.4.2 Regularization parameter 

 

The use of future time steps in the SFSM has a regularizing effect on the heat flux 

estimation to overcome ill-posedness. This regularization technique provides stability to the 

inverse estimation procedure by using additional temperature data from future times. Although 
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it significantly stabilizes the inverse algorithm, the future times regularization unavoidably 

introduces bias into the estimation results. Thus, properly determining the degree of 

regularization is important in order to achieve a trade-off between the stability and bias of the 

estimation [145]. Although it has been addressed in some papers [146], [147], selecting optimal 

regularization is still a challenging issue in applying the SFSM [142]. 

In this study, the discrepancy principle is used to provide guidance to select the value of 

the regularizing parameter r. In this approach, r is selected as small as possible but large enough 

so that the temperature residual RT is consistent with the error in the measured data, i.e., the 

accuracy of the temperature sensors σY [4], [147]. In mathematical terms: 

 

𝑅Y = �∑ ∑ (𝑌",X − 𝑇",X)C#W-HB
X%#

I
"%B

𝑀𝑟 ≈ 𝜎O 
 

(59) 

 

4.4.3 Uncertainty analysis 

 

Solving the inverse problem requires information on all parameters involved in the 

physical model except the heat flux, which is estimated by comparing numerical and measured 

temperature data. Thus, the inverse solution is sensitive to the accuracy of the modeling and 

input parameters [145]. Measured temperature is obtained from intrusive sensors and is subject 

to uncertainties inherent in experiments. In field assessments, experimental conditions are 

usually far from controlled laboratory conditions, which affects data collection. Moreover, 

numerical temperature is subject to uncertainties in the thermal properties introduced into the 

mathematical model, which in turn represents an approximation of the real physical system 

being studied. 
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The accuracy of the inverse heat flux estimation is assessed using an approach based on 

the uncertainty propagation technique by Blackwell and Dowding [148]. In this sensitivity-

based approach, the output uncertainty is calculated by propagating the input uncertainties 

through the numerical model. Thus, the uncertainty of the retrieved heat flux (σq) is estimated 

by the sum of squares of uncorrelated errors associated with the initial temperature (Tin), the 

field temperature measurements (Y), and the thermal properties of the wall materials (k and C), 

as follows: 

 

𝜎Z3 = ¨©
𝜕𝑞X
𝜕𝑇"#

𝜎Y!+ª
C

+v©
𝜕𝑞X
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𝜎[/ª
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+%B

+v©
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+v v ©
𝜕𝑞X
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(60) 

 

The terms on the right-hand side of Equation (60) evaluate how much the heat flux 

(output) changes in relation to changes in Tin, Y, k, and C (inputs). The term related to Y is 

computed according to the technique of filter coefficients by Blackwell and Beck [149]. The 

terms associated with k and C are computed using finite difference approximation. The error in 

Tin becomes insignificant over time [149]. 

 

4.5 Results and discussion 

 

The annual heat flux through the internal wall surface was determined using 6 future time 

steps based on the discrepancy principle described in Section 4.4.2. The resulting estimated 

heat flux (solid line) and its uncertainty (shaded area) are shown in Figure 21. It can be seen 

that q is noisier and has larger errors in colder periods due to abrupt and severe variations in the 
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experimental field temperature data. Negative values of q indicate heat loss, i.e., heat leaving 

the interior environment towards the outside. Positive values indicate heat gain, i.e., heat 

entering indoors. The transient thermal behavior of the building wall is derived from the 

continuous and dynamic energetic response of its layers/materials to external climatic 

conditions and internal comfort requirements. The surface heat flux is directly related to the 

temperature gradient within the wall assembly and indicates if external or internal loads are 

predominant. Thus, as Y0 remains colder than YL for most of the monitored period, the indoor 

space practically only experiences outgoing heat flux, i.e., it loses heat. As the residential house 

is in a region with a temperate cold climate, there are greater heat losses in winter due to the 

very low temperatures outside. Peak heat losses of around 5.5 W m-2 are observed in the 

freezing months of January and February. The heat flux becomes positive in the transition 

period between late spring and early summer. Peak heat gains of around 1.0 W m-2 are observed 

in July and August, the warmest months of summer in Quebec City. The lower magnitude of 

heat gain is due to the greater proximity between the temperatures within the wall and the likely 

opening of doors and windows. 

In terms of building energy assessment, in addition to information about heat flux, it is 

relevant to evaluate the overall thermal performance of the wall during the heating and cooling 

seasons. The total thermal energy leaving or entering the room per unit of area is calculated by 

integrating the q profile shown in Figure 21 with respect to time. For the heating period (i.e., 

from September to March), a value of 17.86 kW h m-2 (6.43×107 J m-2) is found for the total 

heat loss through the internal wall. For the free cooling period (i.e., from April to August), the 

total heat gain through the inner wall surface is calculated at 0.96 kW h m-2 (3.45×106 J m-2). 
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Figure 21. Annual heat flux through the internal wall surface. 

 

The most critical thermal characteristic of a multilayer wall is its overall thermal 

resistance (R-value), which describes its steady-state behavior and can be assessed based on 

heat flux measurements, the outcomes of which can be processed with the average 

method [120], [124]. The average method is a direct calculation to estimate the R-value by 

assuming steady-state heat transfer and neglecting thermal mass [120], as shown in Eq. (61). 

 

𝑅-value =
∑∆𝑇
∑𝑞  

 
(61) 

 

Therefore, this method requires two temperature sensors installed on the surfaces of the 

wall assembly to calculate ∆T and a heat flux meter to measure q on the wall surface with more 

stable conditions [120]. Differently, as a validation exercise, this study evaluates the effective 
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thermal resistance of the investigated assembly using the heat flux estimated in combination 

with the temperature measurements taken at the wall boundaries, i.e., Y0 and YL. 

The duration of the thermal monitoring, over which the sums are carried out for the 

average method, should last at least three days [120].. Very large fluctuations in indoor and 

outdoor conditions during and immediately before data collection can affect the measurement 

length. Changes in the direction of heat transfer violate the steady-state assumption and studies 

in periods when this condition is probable, such as the summer, should be avoided [120]. Field 

data are typically measured during periods with a difference between indoor and outdoor 

temperatures of at least 10 ºC [120].. Thus, the average method is usually only employed in 

cool or cold periods, when the heating equipment is turned on [120]. 

Accurate in situ measurements that match the above requirements can be challenging and 

complicated in locations such as Quebec City, where the case study building is located. This is 

because the city has cold seasons with harsh weather conditions and many periods with snow 

or rain. In this context, the recordings of measurements Y0 and YL were analyzed to determine 

the best 72-hour monitoring period to assess the effective thermal resistance of the assembly 

using the average method. Figure 22 shows the raw data selected to calculate the wall’s R-value. 

These data correspond to three consecutive days in April, in early spring, when the outside 

temperature was somewhat stable but still relatively low. Temperature measurements were 

smoothed using a Savitzky-Golay filter and considered to be in quasi-steadiness . Based on the 

average method, the in situ thermal resistance of the studied wall assembly was determined to 

be 4.96 m2 K W-1. This implies that the multilayer assembly investigated complies with the 

National Building Code of Canada, which establishes a minimum effective thermal resistance 

of 3.08 m2 K W-1 for above-ground opaque assemblies in buildings without a heat-recovery 

ventilator and located in a climate zone designated as 7A (e.g., Quebec City). The effective 

wall’s R-value differs by around 6% from 5.25 m2 K W-1, the theoretical steady-state thermal 
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resistance calculated prior to construction based on material property data provided by 

suppliers. This deviation can be associated with hidden flaws in the envelope structure, minor 

maintenance work, workmanship quality, aging of material properties, inaccuracies in 

temperature measurements, among other factors present in the field. This small difference 

indicates the robustness of the heat flux estimation and shows that the present inverse approach 

is capable of accurately evaluating the effective thermal behavior of building walls under real 

operating conditions. Therefore, this study can be considered successful in providing an 

alternative methodology for the assessment of the dynamic field thermal performance of 

envelope assemblies, thus enabling the quasi-online monitoring of energy efficiency targets. 

 

 

Figure 22. Data used to evaluate the effective in situ thermal resistance of the wall assembly. 

 

It is important to mention that, as most of the methodologies currently available  [120], 

the present approach determines the thermal performance of the assembly based on a single 
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detection region in which all the thermocouples are aligned along the cross-section. Therefore, 

it is primarily suitable for plane envelope walls with opaque layers that are perpendicular to the 

heat flux and do not have considerable thermal bridging and lateral heat transfer. 

 

4.6 Summary 

 

As natural resources have become more precious, the thermal behavior of buildings has 

become essential to maximize energy savings and has been addressed by strict regulations. Due 

to seasonal and daily variations in outdoor and indoor conditions, the dynamic heat flux 

transmitted by conduction through the building envelope is a key issue to support decision-

making in thermal design and thus avoid undesirable heat losses and gains. This third case study 

described an inverse heat transfer analysis to obtain information on the annual transient heat 

flux exchanged by the indoor space of an occupied prefabricated detached house located in a 

temperate cold climate. A lightweight multilayer wall was monitored on site for one year, and 

the field temperature measurements were used in an inverse heat flux estimation procedure 

using the sequential function specification method. The internal wall surface was subject to an 

outward heat flux (i.e., heat loss) for most of the year. The peak heat loss was almost 5.5 W m-2 

in winter and the peak heat gain was around 1.0 W m-2 in summer. In the heating period, a total 

amount of thermal energy due to heat conduction of around 18 kW h m-2 (6.5×107 J m-2) left 

the interior environment. For the free cooling period, there was a total thermal gain of around 

1 kW h m-2 (3.5×106 J m-2). Based on the heat flux estimations, the in situ thermal resistance of 

the wall was determined at 4.96 m2 K W-1, 6% lower than its theoretical value, but still in 

compliance with the Canadian building code. 
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5. General conclusions 

 

This research work consisted of applying inverse analysis to the experimental 

investigation of the thermal and hygric properties and behavior of metallic and building 

materials. The findings and observations presented in this thesis helps to better understand the 

operational response of engineering components. Inverse problem solution allowed the 

simultaneous estimation of the temperature-dependent thermal properties of 304 stainless steel, 

as well as the simultaneous estimation of various hygrothermal properties of a multilayer 

lightweight wall. Additionally, the transient annual heat flux though a prefabricated wall 

assembly of an occupied house was determined. All these investigations were supported by 

numerical simulations carried out in COMSOL Multiphysics and experimentally measured 

data. 

The main conclusions of this study are as follows: 

• complementary transient experiments provided significant increase in the determinant 

of the information matrix, enabling enhanced Bayesian inversion. 

• additional sensitive data allowed the simultaneous estimation of the four parameters 

describing the linearly temperature-dependent thermal conductivity and specific heat of 

304 austenitic stainless steel. 

• hygrothermal characterization based on one-year field measurements and subsequent 

model calibration enabled simulations to better assess the wall working behavior. 

• in most cases, database properties overestimated the effective hygrothermal properties 

of the building envelope monitored. 

• reference properties led to overestimating the annual thermal response of the wall 

assembly by about 30 % and the annual hygric response by about 24 %. 
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• the internal wall surface was subject to an outward heat flux (i.e., heat loss) for most of 

the year.  

• the peak heat loss was almost 5.5 W m-2 in winter and the peak heat gain was around 

1.0 W m-2 in summer.  

• in the heating period, a total amount of thermal energy due to heat conduction of around 

18 kW h m-2 left the interior environment.  

• in the free cooling period, there was a total thermal gain of around 1 kW h m-2. 

• the in effective thermal resistance of the wall was determined at 4.96 m2 K W-1, 6% 

lower than its theoretical value, but still in compliance with the Canadian building code. 

Overall, this study provided theoretical and practical background on thermal and hygric 

characterization using experimental inverse approach. This can be useful for performing similar 

studies to feed materials database for in-depth knowledge of effective behavior of building 

materials and structures. Additionally, the thermal properties of metallic materials can be 

accurately estimated when standard techniques are not available. 

  



114 

6. Appendix 

 

6.1 Publications 

 

• Ramos N P, Antunes M M, and Lima e Silva S M M (2023). A heat flux-corrected 

experimental inverse technique for simultaneously estimating the thermal properties of 

a metallic medium as functions of temperature. Experimental Heat Transfer. DOI 

10.1080/08916152.2023.2189328. 

• Ramos N P, Antunes M M, Silva A A A P, and Lima e Silva S M M (2023). Effects of 

tempering temperature on temperature-dependent thermal properties of 1045 steel. 

Journal of Materials Science 58 1905–1924. DOI 10.1007/s10853-022-08137-0. 

• Ramos N P, Antunes M M, and Lima e Silva S M M (2022). Complementary transient 

thermal models and metaheuristics to simultaneously identify linearly temperature-

dependent thermal properties of austenitic stainless steels. Physica Scripta 97(11) 

115006. DOI: 10.1088/1402-4896/ac99ac. 

• Ramos N P, Antunes M M, Guimarães G, and Lima e Silva S M M (2022). Simultaneous 

Bayesian estimation of the temperature-dependent thermal properties of a metal slab 

using a three-dimensional transient experimental approach. International Journal of 

Thermal Sciences 179 107671. DOI: 10.1016/j.ijthermalsci.2022.107671. 

• Ramos N P, Antunes M M, and Lima e Silva S M M (2021). An experimental and 

straightforward approach to simultaneously estimate temperature-dependent 

thermophysical properties of metallic materials. International Journal of Thermal 

Sciences 166 106960. DOI: 10.1016/j.ijthermalsci.2021.106960. 
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• Ramos N P, Carollo L F S, and Lima e Silva S M M (2020). Contact resistance analysis 

applied to simultaneous estimation of thermal properties of metals. Measurement 

Science and Technology 31(10) 105601. DOI 10.1088/1361-6501/ab8e6a. 

 

6.2 Ongoing papers 

 

• Ramos N P, Antunes M M, Abreu L A P, Faco H, and Lima e Silva S M M. 

Simultaneous estimation of effective temperature-dependent thermal properties of glass 

fiber-reinforced polymer for air‐core reactor insulation via inverse approach. 

• Ramos N P, Buenrostro L D, Lima e Silva S M M, and Gosselin L. Simultaneous 

estimation of hygrothermal properties of a prefabricated lightweight wall using one-

year on-site measurements to solve inverse problems. 

• Ramos N P, Buenrostro L D, Lima e Silva S M M, and Gosselin L. Inverse estimation 

of the annual heat flux through the internal surface of a multilayer wall in an occupied 

prefabricated house from field measurements.  

• Ramos N P, Antunes M M, Silva A A A P, Guimarães G, and Lima e Silva S M M. 

Influence of quenching and tempering heat treatment on the heat flux to the workpiece 

in dry milling of AISI 1045 steel. 

 

6.3 Thermal property measurements 

 

• Measurement of the thermal conductivity of a skin cream using the hot-wire method for 

the company InoxNews. 
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• Measurement of the thermal conductivity of composite materials using the hot-plate 

method for the company General Electrics. 

 

6.4 Sandwich PhD 

 

From August 2022 to May 2023, PhD internship at the Thermal Energy Transfer laboratory 

at Université Laval, under the supervision of Professor Louis Gosselin. The research internship 

focused on applying inverse heat and moisture analysis to investigate the hygrothermal behavior 

of building walls and their materials. 
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