UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

PROJETO DE HIDROGERADORES ORIENTADO À EFICIÊNCIA

MAURO KEN ITI UEMORI

ITAJUBÁ MAIO DE 2023

UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

MAURO KEN ITI UEMORI

PROJETO DE HIDROGERADORES ORIENTADO À EFICIÊNCIA

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Elétrica como parte dos requisitos para obtenção do Título de Mestre em Engenharia Elétrica

Área de Concentração: Sistemas Elétricos de Potência

Orientador: Prof. Dr. Edson Da Costa Bortoni

Itajubá Maio de 2023

PROJETO DE HIDROGERADORES ORIENTADO À EFICIÊNCIA

Mauro Ken Iti Uemori

Esta dissertação foi julgada adequada para obtenção do Título de Mestre em Engenharia Elétrica, Área de Concentração em Sistemas Elétricos de Potência, e aprovados em sua forma final pelo Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Itajubá.

DEDICATÓRIA

Dedico este trabalho ao meu pai Michio Uemori (in memoriam) e minha mãe Mieko Uemori, que desde cedo me incentivaram e me deram total apoio para que pudesse me dedicar inteiramente aos estudos.

AGRADECIMENTOS

Na realização da presente dissertação, contei com o apoio e incentivo de minha esposa Júlia V. S. Uemori, a quem agradeço imensamente pela compreensão das noites e finais de semana em que estive ausente.

Ao meu amigo de longa jornada de trabalho, Dr. Jorge Johnny Rocha Echeverria, pelo incentivo e apoio incondicional ao trabalho, contribuindo com a revisão de textos e disponibilizando todo o seu acervo bibliográfico. Aqui lhe exprimo a minha eterna gratidão por ter me feito acreditar que eu seria capaz de tamanha proeza. Agradeço por ter investido horas de descanso e sono ou o próprio convívio familiar para me auxiliar neste trabalho.

Ao orientador desta dissertação, o Prof. Dr Edson da Costa Bortoni, por ter acreditado em meu potencial e investido o seu precioso tempo na orientação, na estruturação da dissertação e revisão do trabalho, mostrando sempre o seu entusiasmo na área de energia e mais especificamente na área de geradores para usinas hidroelétricas.

À GE Energias Renováveis por me ter permitido colaborar por mais de 40 anos, o que possibilitou a formação da minha família, por todo o conhecimento que eu adquiri e que, parte dela, eu consolido aqui neste trabalho.

Por fim, a todos que direta ou indiretamente contribuíram para que este trabalho pudesse ser concluído.

LISTA DE ILUSTRAÇÕES

Figura 1-1 - Curvas de isorendimento do gerador de 82,25 MVA	. 26
Figura 1-2 - Curvas de isorendimento do gerador de 679 MVA	. 26
Figura 1-3 - Corrente de excitação com diferentes fatores de potência	. 27
Figura 1-4 - Participação das perdas nas perdas totais para gerador de 82,25 MVA	. 28
Figura 1-5 - Participação das perdas nas perdas totais para gerador de 679 MVA	. 28
Figura 1-6 – Variação de vazão para Usinas à fio d'água	. 30
Figura 1-7 – Variação de vazão para Usinas com reservatório	. 30
Figura 2-1 - Gerador Síncrono Vertical	. 34
Figura 2-2 - Principais componentes do gerador	. 35
Figura 2-3 - Base do estator	. 35
Figura 2-4 - Carcaça do estator	. 36
Figura 2-5 - Núcleo do estator	. 39
Figura 2-6 - Corte de uma ranhura com bobinas de múltiplas espiras	. 40
Figura 2-7 - Barras Roebel com transposição 360º	. 41
Figura 2-8 - Enrolamento do estator com Barras Roebel	. 47
Figura 2-9 - Rotor do gerador	. 47
Figura 2-10 - Aranha do rotor	. 48
Figura 2-11 - Anel magnético	. 49
Figura 2-12 - Anel ou pista de freio	. 50
Figura 2-13 - Núcleo dos polos	. 51
Figura 2-14 - Bobina polar	. 52
Figura 2-15 - Eixos do gerador	. 53
Figura 2-16 - Anéis coletores	. 54
Figura 2-17 - Cruzeta superior, inferior e mancais	. 54
Figura 2-18 - Revestimento do gerador	. 57
Figura 2-19 - Auxiliares do gerador	. 57
Figura 2-20 - Sistema de lubrificação forçada para o mancal de escora:	. 58
Figura 2-21 - Sistema de resfriamento e circulação do óleo do mancal	. 59
Figura 2-22 - Sistema de refrigeração ar-água	. 60

Figura 2-23 - Macacos de freio e levantamento 62
Figura 3-1 - Painel e transformador de excitação64
Figura 3-2 - Composição das perdas ferro70
Figura 3-3 – Tipo e arranjo dos condutores74
Figura 4-1 - Curva de saturação e permeabilidade relativa
Figura 4-2 - Circuito eletromagnético 81
Figura 4-3 - Densidade volumétrica de energia no entreferro da Figura 4-2
Figura 4-4 - Máquina síncrona de relutância84
Figura 4-5 – Campo magnético sobre a linha do entreferro de um polo
Figura 4-6 – Superfície de dissipação de calor do enrolamento do estator
Figura 4-7 - Momento de inércia em função de Sr/nn
Figura 4-8 - Dimensões de um toróide sólido emulando o conjunto coroa magnética e polos
Figura 4-9 - Constante do raio de giração do rotor em função do índice do gerador 100
Figura 4-10 - Curva de saturação do gerador104
Figura-4-11 - Densidade de fluxo de um polo104
Figura-4-12 – Estrutura do entreferro 105
Figura-4-13 - Densidade de fluxo correspondente ao entreferro daFigura-4-12 105
Figura 4-14 - Comportamento da tensão entre duas barras como função da distância entre elas.
Figura 4-15 - Variação de tensão e frequência para hidrogeradores 111
Figura 5-1 - Curva para estimativa do valor de C (Esson number ou fator de aproveitamento)
Figura 5-2 - Chapa de ventilação com os perfis ${f I}$ soldados

LISTA DE TABELAS

Tabela 2-1 - Comparação de bobinas de múltiplas espiras com barras Roebel	42
Tabela 2-2 - Comparativo de enrolamento imbricado versus ondulado	44
Tabela 3-1 - Temperatura de referência	64
Tabela 3-2 - Tabela das principais qualidades das chapas siliciosas GNO	71
Tabela 4-1 - Universo observado para a capa de corrente	96
Tabela 4-2 - Valores usuais de Induções magnéticas	103
Tabela 4-3 - Análise dos pontos operacionais com variação de tensão e frequênci	a 111
Tabela 4-4 - Elevação de temperatura [K] acima do ar de refrigeração de 40 °C	113
Tabela 5-1 - Número de ranhuras por polo e fase x Número de ranhuras	119
Tabela 5-2 - Dimensionamento da ranhura do estator	121
Tabela 5-3 - Dimensionamento do núcleo do estator	123
Tabela 5-4 - Dimensionamento do polo	124
Tabela 5-5 - Dimensionamento da ranhura do estator	130
Tabela 5-6 - Dimensionamento do núcleo do estator	131
Tabela 5-7 - Dimensionamento do polo	132
Tabela 5-8 - Principais dados dos 2 geradores de 300 MVA	136
Tabela 5-9 - Número de ranhuras por polo e fase x Número de ranhuras	145
Tabela 5-10 - Dimensionamento da ranhura do estator	147
Tabela 5-11 - Dimensionamento do núcleo do estator	148
Tabela 5-12 - Dimensionamento do polo	149
Tabela 5-13 - Número de ranhuras por polo e fase x Número de ranhuras	154
Tabela 5-14 - Dimensionamento da ranhura do estator	155
Tabela 5-15 - Dimensionamento do núcleo do estator	157
Tabela 5-16 - Dimensionamento do polo	158
Tabela 5-17 - Dimensionamento da ranhura	163
Tabela 5-18 - Dimensionamento do núcleo	165
Tabela 5-19 - Dimensionamento do polo	166
Tabela 5-20 - Comparativo entre as 3 soluções	170
Tabela 5-21 - Comparativo dos principais dados das simulações dos geradores	173

Tabela 5-22 – Ganho de energia anual máquina de 300 MVA	175
Tabela 5-23 – Ganho de energia anual máquina de 100 MVA	175
Tabela 5-24 - Aumento em massa dos geradores	176
Tabela 5-25 – Balanço aumento do preço versus produção de energia	176

LISTA DE ACRÔNIMOS

ANEEL	Agência Nacional de Energia Elétrica
СА	Corrente alternada
СС	Corrente contínua
GNO	Grão não orientado
GO	Grão orientado
ONS	Operador Nacional do Sistema Elétrico
RTD	Resistance Temperature Detector (Detetor de Temperatura por Resistência)
SIN	Sistema Interligado Nacional
UMP	Unbalanced Magnetic Pull (Empuxo magnético desbalanceado)

LISTA DE SIMBOLOS

A	Area de passagem do fluxo
а	Número de circuito paralelos
a,b,c	Números inteiros que fazem parte de q
A_D	Intensidade linear de corrente do amortecedor
A _{dis}	Superfície interna de dissipação de calor
A _i	Intensidade linear de corrente
A_k	Fatores de ponderação na carga específica
A _{s_des}	Intensidade linear de corrente para carga desequilibrada
bp_k	Largura do núcleo polar
С	Fator de aproveitamento
C_{pp}	Fator de aproveitamento em função do número de polos
D _i	Diâmetro interno do estator
Db _D	Diâmetro da barra de amortecimento
DV	Variação de tensão
f	Frequência
FC	Fator de construção
F _H	Empuxo hidráulico da turbina
fn	Frequência nominal
Н	Constante de inércia
i	Corrente no circuito
I _b	Corrente da bobina
I _D	Corrente da barra do enrolamento amortecedor
<i>I</i> ₂	Corrente de sequência negativa
J _b	Densidade de corrente na bobina

I _{fn}	Corrente de fase-neutro
I _{fo}	Corrente de excitação em vazio
I_g	Índice do gerador
I_{fg}	Corrente de excitação do entreferro
J	Momento de inércia
J_D	Densidade de corrente da barra de amortecimento
k _{ff}	Valor efetivo da fundamental do campo magnético
k _{fs}	Fator de forma de uma onda senoidal
k_j	Constante de giração do rotor
kVA	Potência aparente
k _w	Fator de enrolamento
1	Comprimento do circuito
l_b	Comprimento total de 1/2 espira
l _{est}	Comprimento axial do núcleo do estator
l_s	Comprimento da coroa magnética
l_w	Comprimento total do condutor
m	Número de fases
n	Número de espiras do circuito
n_d	Rotação de disparo
N_D	Número de barras de amortecimento
n_n	Rotação nominal
N_{ph}	Número de espiras por fase
N _s	Número de ranhuras do estator
N _{tc}	Número de espiras por bobina
р	Número de pares de polos

P_1	Perda do mancal corrigida para a temperatura de referência do óleo
p_{amb}	Pressão do ambiente
P_B	Perda total do mancal de escora
P _b	Parcela do gerador da perda do mancal de escora
P _{cu}	Perdas no cobre
pD_{amb}	Pressão do vapor de água à temperatura ambiente
p_{Dc}	Pressão vapor de água
P_k	Potência em uma carga específica
Po	Perda do mancal a temperatura diferente da referência do óleo
Pv_c	Perda de ventilação corrigida à temperatura de referência
Pv_m	Perda de ventilação à temperatura de ensaio
q	Número de ranhuras por polo e fase
R	Resistência
R	Altura radial do polo ou coroa
r	Raio externo da coroa
R_A	Constante do ar
R _B	Resistência do cobre
RCC	Relação de curto-circuito
R_D	Constante do vapor de água
R _{ext}	Raio externo dos polos
R _{int}	Raio interno da coroa
RMPG	Rendimento médio ponderado do gerador
SI	Índice de saturação
S _r	Potência aparente
t	Tempo

Td	Passo do enrolamento amortecedor
Ts	Passo de ranhuras do estator
T"d	Constante de tempo em curto-circuito, subtransitória, eixo direto
T"do	Constante de tempo a vazio, subtransitória, eixo direto
T"q	Constante de tempo em curto-circuito, subtransitória, eixo quadratura
T"qo	Constante de tempo a vazio, subtransitória, eixo quadratura
T'd	Constante de tempo em curto-circuito, transitória, eixo direto
T'do	Constante de tempo a vazio, transitória, eixo direto
U _n	Tensão nominal do gerador
U_{ff}	Tensão fase-fase
U _{fn}	Tensão de fase-terra
V	Tensão
Vol	Volume ocupado pelo fluxo magnético no entreferro
Vol _{cm}	Volume do toróide formado pela coroa magnética
V_p	Velocidade periférica
W_{g}	Peso da parte rotativa do gerador
W_T	Peso da parte rotativa da turbina
X"ds	Reatância subtransitória de eixo direto, saturado
X"du	Reatância subtransitória de eixo direto, não saturado
X"q	Reatância subtransitória de eixo quadratura
X"qs	Reatância subtransitória de eixo quadratura, saturado
X"qu	Reatância subtransitória de eixo quadratura, não saturado
X2	Reatância de sequência negativa
XB	Reatância de dispersão do estator com rotor retirado
Xds	Reatância síncrona de eixo direto, saturado

X'ds	Reatância transitória de eixo direto, saturado
Xdu	Reatância síncrona de eixo direto, não saturado
X'du	Reatância transitória de eixo direto, não saturado
Хо	Reatância de sequência zero
Xqs	Reatância síncrona de eixo quadratura, saturado
Xqu	Reatância síncrona de eixo quadratura, não saturado
XST	Reatância de dispersão do estator
XSX	Reatância de dispersão total do estator
y1	Passo do enrolamento lado acoplado
у2	Passo do enrolamento lado não acoplado
$\alpha 1_i$	Fator de encerramento de uma senoide
α_{cs}	Fator de dissipação de calor da máquina
α_k	Coeficiente de transferência de calor
α _i	Fator de cobertura polar
$\beta 1_{rms}$	Relação campo efetivo/médio
β	Campo magnético
β_{avg}	Valor médio do campo magnético
β_{max}	Densidade de fluxo magnético, valor de pico
β_{rms}	Valor efetivo do campo magnético
Δk_j	Indicador de quão densamente estão distribuídos os polos
ΔT	Elevação de temperatura
η_o	Viscosidade dinâmica do óleo à temperatura durante ensaio
η_1	Viscosidade dinâmica do óleo à temperatura de referência
η_k	Rendimento à uma carga específica

F	Força magneto motriz
${\cal H}$	Intensidade do campo magnético
θ_{amb}	Temperatura ambiente
$\mathcal{K}\pi_s$	Capa de corrente
μ_o	Permeabilidade magnética do ar
μ	Permeabilidade magnética do meio
μ_{ar}	Permeabilidade magnética do ar
μ_{fe}	Permeabilidade do ferro
μ_m	Permeabilidade do material
$ ho_b$	Resistividade do condutor
ρ _c	Densidade do ar
$ ho_{dAc}$	Densidade parcial do ar seco
$ ho_{Dc}$	Densidade parcial do valor de água
$ ho_{Fe}$	Densidade do aço
$ ho_{tm}$	Densidade do ar na temperatura do ensaio
$ ho_{tref}$	Densidade do ar na temperatura de referência
δ_m	Entreferro mínimo
δ	Entreferro
τ	Torque mecânico
$ au_p$	Passo polar
φ_{amb}	Umidade relativa do ambiente
φ	Fluxo magnético
Φ_{avg}	Fluxo magnético necessário induzir tensão nominal F-N
ω _{mec}	Velocidade angular mecânica

ω	Velocidade angular
∂W_{el}	Energia elétrica de entrada
∂W_{joule}	Energia elétrica de dissipação térmica
∂W_{mag}	Energia magnética armazenada
λ	Passo da ranhura do estator
Г1	Posição da barra amortecedora #1
Г2	Posição da barra amortecedora #2
ΔT_D	Elevação de temperatura do enrolamento amortecedor

RESUMO

Apresentar-se-á uma descrição detalhada de um hidrogerador vertical síncrono de polos salientes, discorrendo sobre o projeto, sobre os processos de fabricação e sobre os materiais de todos os principais componentes.

Elabora-se uma descrição de todas as perdas envolvidas no cálculo do rendimento, suas origens e métodos para a redução das perdas e consequente aumento do rendimento.

Para consolidar os conceitos, discorre-se sobre uma abordagem teórica versando sobre os princípios do dimensionamento elétrico e térmico dos geradores síncronos.

Para enriquecer a abordagem teórica foram apresentados dois casos de aplicação. Em cada caso foi simulado duas alternativas, uma visando alto rendimento e outra visando reduzir o custo.

O primeiro caso trata de um gerador hipotético de 300 MVA e 120 rpm, com o intuito de expor o procedimento de otimização. Já no caso, esses rudimentos de dimensionamento são aplicados a um gerador de 100 MVA e 257,14 rpm que retrata um gerador real, fabricado, projetado e comissionado com êxito.

No segundo caso além de simular a máquina na forma como foi construída, expõem-se duas variantes adicionais. Numa primeira variante, sobre o projeto da máquina construída, elabora-se uma versão com o mesmo alto rendimento, porém, introduzindo atualizações tecnológicas com as que poderia se reduzir o custo original. Já na segunda variante no lugar do projeto original, elabora-se um gerador totalmente orientado para redução de custo. Assim, quando se procede à comparação de resultados, comparam-se a variante de rendimento otimizada, com a variante totalmente orientada para custo.

Finalmente faz-se uma análise do incremento dos preços de venda dos geradores orientados a alto rendimento, quando comparado com geradores dimensionados para otimização de custos, e uma análise de ganhos em venda de energia adicional decorrente da diminuição das perdas, chegando finalmente a estimar os anos de operação necessários para igualar o incremento do preço.

ABSTRACT

A detailed description of a salient pole synchronous vertical hydrogenerator will be presented, discussing the design, the manufacturing processes and the materials of all the main components.

A description of all the losses involved in the calculation of the efficiency is elaborated, their origins and methods for the reduction of the losses and consequent increase of the efficiency.

To consolidate the concepts, a theoretical approach is discussed on the principles of electrical and thermal dimensioning of synchronous generators.

To enrich the theoretical approach, two application cases were presented. In each case, two alternatives were simulated, one aiming at high efficiency and the other aiming at reducing the cost.

The first case deals with a hypothetical generator of 300 MVA and 120 rpm, to expose the optimization procedure. In this case, these sizing rudiments are applied to a generator of 100 MVA and 257.14 rpm that represents a real generator, manufactured, designed and successfully commissioned.

In the second case, in addition to simulating the machine as it was built, two additional variants are exposed. In a first variant, based on the design of the machine built, a version with the same high efficiency is elaborated, however, introducing technological updates with which the original cost could be reduced. In the second variant, in place of the original project, a generator totally oriented to cost reduction is elaborated. Thus, when comparing results, compare the performance-optimized variant with the fully cost-oriented variant.

Finally, an analysis is made of the increase in sales prices of high-efficiency oriented generators, when compared to generators sized for cost optimization, and an analysis of gains in the sale of additional energy resulting from the reduction of losses, finally estimating the years of operation required to match the price increase.

SU	MÁR	0
00		

DEDICATÓRIA	4
AGRADECIMENTOS	5
LISTA DE ILUSTRAÇÕES	6
LISTA DE TABELAS	8
LISTA DE ACRÔNIMOS	10
LISTA DE SIMBOLOS	11
RESUMO	18
ABSTRACT	19
SUMÁRIO	20
1. INTRODUÇÃO	25
1.1 MOTIVAÇÃO	25
1.1.1 RENDIMENTO E CURVAS DE ISORENDIMENTOS	25
1.1.2 CONSIDERAÇÃO DO RENDIMENTO MÉDIO PONDERADO	28
1.1.3 CONSIDERAÇÃO DO TIPO DE USINA	29
1.1.4 QUESTÕES DE MERCADO	31
1.2 ESCOPO DA DISSERTAÇÃO	32
1.3 ESTRUTURA DA DISSERTAÇÃO	32
2 DESCRITIVO DO GERADOR	34
2.1 ESTATOR	35
2.1.1 BASES	35
2.1.2 CARCAÇA	36
2.1.3 NÚCLEO DO ESTATOR	37
2.1.4 ENROLAMENTO DO ESTATOR	39
2.1.4.1 BOBINAS MULTIPLAS ESPIRAS	39
2.1.4.2 BARRAS ROEBEL	40
2.1.4.3 ENROLAMENTO IMBRICADO VERSUS ONDULADO	42
2.1.4.4 COMPOSIÇÃO DAS BARRAS ROEBEL	44
2.1.4.5 COMPOSIÇÃO DAS BOBINAS MULTIPLAS ESPIRAS	44
2.1.4.6 ISOLAÇÃO DAS BARRAS/BOBINAS	45
2.1.4.7 MATERIAL DE INSTALAÇÃO DAS BARRAS/BOBINAS	46
2.2 ROTOR	47

	2.2.1	ARA	NHA	47
	2.2.1	1.1	CUBO DA ARANHA	47
	2.2.1	1.2	LATERAL DA ARANHA	48
	2.2.2	ANE	L MAGNÉTICO	49
	2.2.3	ANE	L DE FREIO	50
	2.2.4	POL	OS	50
	2.2.4	4.1	NÚCLEO DOS POLOS	50
	2.2.4	4.2	BOBINAS POLARES	51
	2.2.4	4.3	ENROLAMENTO AMORTECEDOR	52
	2.2.4	1.4	FIXAÇÃO DOS POLOS	52
	2.2.5	EIXC)	53
	2.2.6	ANÉ	IS COLETORES	54
	2.3 C	RUZE	TA SUPERIOR, CRUZETA INFERIOR, MANCAIS E REVESTIMENTOS	54
	2.3.1	CRU	ZETAS SUPERIOR E INFERIOR	55
	2.3.2	MAM	NCAL DE GUIA	55
	2.3.3	MAM	NCAL DE ESCORA	55
	2.3.4	INV	ÓLUCRO DO GERADOR	56
	2.4 A	UXILI	ARES	57
	2.4.1	SIST	EMA DE ÓLEO À ALTA PRESSÃO	57
	2.4.2	SIST	EMA DE RESFRIAMENTO E CIRCULAÇAO DO ÓLEO	58
	2.4.3	SIST	EMA DE REFRIGERAÇÃO DO GERADOR	59
	2.4.3	3.1	TROCADORES DE CALOR	60
	2.4.3	3.2	TUBULAÇÃO E VÁLVULAS	60
	2.4.4	SIST	EMA DE FRENAGEM E LEVANTAMENTO	61
3	PERDA	S E RE	ENDIMENTO	63
	3.1 P	ERDA.	S CONSIDERADAS NO RENDIMENTO DO GERADOR	63
	3.1.1	PERI	DAS I ² R DOS ENROLAMENTOS DO ESTATOR E ROTOR	63
	3.1.2	PERI	DAS NO SISTEMA DE EXCITAÇÃO DO GERADOR	64
	3.1.3	PERI	DAS NOS MANCAIS DO GERADOR	65
	3.1.3	3.1	CORREÇÃO DAS PERDAS DOS MANCAIS COM A TEMPERATURA DO ÓLEO	65
	3.1.3 AS N	3.2 IORM	ALOCAÇÃO DAS PERDAS DO MANCAL DE ESCORA / MANCAL COMBINADO SE AS IEC, IEEE E AS PRÁTICAS USUAIS	GUNDO 66
	3.1.4	PERI	DAS DE VENTILAÇÃO	67
	3.2 R	ENDII	MENTO MÉDIO PONDERADO DO GERADOR (RMPG)	68
	3.3 C	LASSI	FICAÇÃO DAS PERDAS	69
	3.3.1	PERI	DAS FERRO DO ESTATOR	70

	3.3.2	PERDAS NO ENROLAMENTO DO ESTATOR	72
	3.3.3	PERDAS NO ENROLAMENTO DE CAMPO	74
	3.3.4	PERDAS NO ENROLAMENTO AMORTECEDOR	74
	3.3.5	PERDAS NA SUPERFÍCIE DA SAPATA DO POLO	75
	3.3.6	PERDAS ADICIONAIS NAS EXTREMIDADES DO NÚCLEO DO ESTATOR	75
	3.3.7	OUTRAS PERDAS	76
	3.3.8	PERDAS DE VENTILAÇÃO	76
	3.3.9	PERDAS NOS MANCAIS	77
	3.3.10	MEDIÇÃO DAS PERDAS	77
4 SÍN		ÍPIOS DE DIMENSIONAMENTO ELETROMAGNÉTICO E TÉRMICO DE UM GERADOR	70
4	1.1 L	NTRODUCÃO	79
4	l.2 [DENSIDADE VOLUMÉTRICA DE ENERGIA	79
4	1.3 A	LEI CIRCUITAL DE AMPERE	79
4	.4 A	DENSIDADE VOLUMÉTRICA DE ENERGIA	81
4	l.5 4	MÁQUINA ELEMENTAR DE RELUTÂNCIA	84
4	4.6 A	IDENTIDADE CONSTRUTIVA DE UMA MÁQUINA SÍNCRONA DE POLOS SALIENTES	86
4	l.7 4	DENSIDADE VOLUMÉTRICA DE ENERGIA NUMA MÁQUINA SÍNCRONA	86
4	1.8 A	IDENTIDADE CONSTRUTIVA DO GERADOR	89
4	.9 I	NTENSIDADE LINEAR DE CORRENTE	93
4	l.10 F	RINCÍPIOS DE AQUECIMENTO NA MÁQUINA SÍNCRONA	93
	4.10.1	INTRODUÇÃO AOS PRINCÍPIOS DE AQUECIMENTO	93
	4.10.2	APLICAÇÃO CONSTRUTIVA DA CAPA DE CORRENTE	95
4	l.11 N	10MENTO DE INÉRCIA E CONSTANTE DE INÉRCIA	97
4	l.12 [DIÂMETRO INTERNO DO ESTATOR E COMPRIMENTO AXIAL DO NÚCLEO	98
	4.12.1	INTRODUÇÃO AO DIMENSIONAMENTO DO DIÂMETRO INTERNO DO ESTATOR	98
	4.12.2	O DIÂMETRO DO ESTATOR IMPOSTO PELO MOMENTO DE INÉRCIA ESPECIFICADO	98
	4.12.3	ESTIMATIVA DO COMPRIMENTO AXIAL DO NÚCLEO DO ESTATOR	101
4	1.13 E	NTREFERRO	101
4	l.14 F	EATÂNCIAS	101
	4.14.1	VALORES SUGERIDOS PELA NORMA	101
	4.14.2	TOLERÂNCIAS SUGERIDAS PELA NORMA	102
	4.14.3	VALORES USUAIS PARA USINAS HIDRELÉTRICAS DE GRANDE PORTE	102
4	1.15 S	ATURAÇÃO DO GERADOR	103
4	l.16 E	NROLAMENTO AMORTECEDOR	104

	4.16.1 ENR	OLAMENTO AMORTECEDOR E SUA INFLUÊNCIA NA FORÇA ELETROMOTRIZ	104
	4.16.2 DIM	ENSIONAMENTO DO ENROLAMENTO AMORTECEDOR	107
	4.16.2.1	CAPA DE CORRENTE	107
	4.16.2.2	CORRENTE DE SEQUÊNCIA NEGATIVA NO AMORTECEDOR	107
	4.16.2.3	NÚMERO MÍNIMO DE BARRAS DE AMORTECIMENTO	108
	4.16.2.4	CORRENTE NO AMORTECEDOR	108
	4.16.2.5	DIÂMETRO DA BARRA DO AMORTECEDOR	109
	4.16.2.6	ELEVAÇÃO DE TEMPERATURA DO ENROLAMENTO AMORTECEDOR	109
	4.16.2.7	ELEVAÇÃO DE TEMPERATURA DO ENROLAMENTO AMORTECEDOR DURANTE	
	TRANSITĆ	ORIOS	110
	4.17 CONDI	ÇÕES NOMINAIS DE OPERAÇÃO	110
5	SIMULAÇÃO	DE GERADORES	114
	5.1 OBIFTI	VO DAS SIMUI ACÕES DE GERADORES DE 300 MVA	
	5 1 1 ESDI		11/
			114
	5.1.2 DIIVI	ENSIONAMIENTO DO GERADOR DE 300 MVA ORIENTADO PARA RENDIMENTO	110
	5.1.2.1		110
	5.1.2.1	.1 DETERMINAÇÃO DO DIAMETRO INTERNO PELO METODO 1	11/
	5.1.2.1	.2 DETERMINAÇÃO DO DIÂMETRO INTERNO PELO MÉTODO 2	117
	5.1.2.1	.3 DIÂMETRO INTERNO ESCOLHIDO	118
	5.1.2.2	DETERMINAÇÃO DO COMPRIMENTO AXIAL NÚCLEO DO ESTATOR	118
	5.1.2.3	DETERMINAÇÃO DO NÚMERO DE RANHURAS	118
	5.1.2.4	DIMENSIONAMENTO DO FIO DE COBRE E RANHURA DO ESTATOR	120
	5.1.2.5	DIMENSIONAMENTO DO NÚCLEO DO ESTATOR	122
	5.1.2.6	DIMENSIONAMENTO DO POLO	123
	5.1.2.7	DADOS DE ENTRADA E DADOS DE SAÍDA DO PROGRAMA DE CÁLCULO	125
	5.1.3 DIM	ENSIONAMENTO DO GERADOR DE 300 MVA ORIENTADO PARA CUSTO	128
	5.1.3.1	DETERMINAÇÃO DO DIÂMETRO INTERNO DO ESTATOR	128
	5.1.3.2	DETERMINAÇÃO DO COMPRIMENTO AXIAL NÚCLEO DO ESTATOR	129
	5.1.3.3	DETERMINAÇÃO DO NÚMERO DE RANHURAS	129
	5.1.3.4	DIMENSIONAMENTO DO FIO DE COBRE E RANHURA DO ESTATOR	130
	5.1.3.5	DIMENSIONAMENTO DO NÚCLEO DO ESTATOR	131
	5.1.3.6	DIMENSIONAMENTO DO POLO	132
	5.1.3.7	DADOS DE ENTRADA E DADOS DE SAÍDA DO PROGRAMA DE CÁLCULO	133
	5.1.4 CON	IPARATIVO DOS PRINCIPAIS DADOS DOS 2 GERADORES DE 300 MVA	136
	5.2 OBJETI	VO DAS SIMULAÇÕES DE GERADORES DE 100 MVA	140
	5.2.1 ESPE	ECIFICAÇÃO TÉCNICA DO GERADOR	140
	5.2.2 DIM	ENSIONAMENTO DO GERADOR DE 100 MVA COM PROJETO ORIGINAL ORIENTA	DO
	PARA RENDI	MENTO	142

	5.2.2.1	DETERMINAÇÃO DO DIÂMETRO INTERNO DO ESTATOR	142
	5.2.2.1	.1 DETERMINAÇÃO DO DIÂMETRO INTERNO PELO MÉTODO 1	143
	5.2.2.1	.2 DETERMINAÇÃO DO DIÂMETRO INTERNO PELO MÉTODO 2	143
	5.2.2.1	.3 DIÂMETRO INTERNO ESCOLHIDO	144
	5.2.2.2	DETERMINAÇÃO DO COMPRIMENTO AXIAL NÚCLEO DO ESTATOR	144
	5.2.2.3	DETERMINAÇÃO DO NÚMERO DE RANHURAS	144
	5.2.2.4	DIMENSIONAMENTO DOS FIOS DE COBRE E RANHURA DO ESTATOR	146
	5.2.2.5	DIMENSIONAMENTO DO NÚCLEO DO ESTATOR	148
	5.2.2.6	DIMENSIONAMENTO DO POLO	148
	5.2.2.7	DADOS DE ENTRADA E DADOS DE SAÍDA DO PROGRAMA DE CÁLCULO	149
	5.2.3 DIM ORIENTADO	ENSIONAMENTO DO GERADOR DE 100 MVA COM PROJETO ATUALIZADO E PARA RENDIMENTO	153
	5.2.3.1	DIÂMETRO INTERNO, COMPRIMENTO E NÚMERO DE RANHURAS	153
	5.2.3.2	DIMENSIONAMENTO DO FIO DE COBRE E RANHURA DO ESTATOR	155
	5.2.3.3	DIMENSIONAMENTO DO NÚCLEO DO ESTATOR	156
	5.2.3.4	DIMENSIONAMENTO DO POLO	157
	5.2.3.5	DADOS DE ENTRADA E DADOS DE SAÍDA DO PROGRAMA DE CÁLCULO	158
	5.2.4 DIM	ENSIONAMENTO DO GERADOR DE 100 MVA ORIENTADO PARA CUSTO	162
	5.2.4.1	DIÂMETRO INTERNO, COMPRIMENTO E NÚMERO DE RANHURAS	162
	5.2.4.2	DIMENSIONAMENTO DO FIO DE COBRE E RANHURA DO ESTATOR	163
	5.2.4.3	DIMENSIONAMENTO DO NÚCLEO DO ESTATOR	164
	5.2.4.4	DIMENSIONAMENTO DO POLO	165
	5.2.4.5	DADOS DE ENTRADA E DADOS DE SAÍDA DO PROGRAMA DE CÁLCULO	166
	5.2.5 CON	IPARATIVO DOS PRINCIPAIS DADOS DOS 3 GERADORES DE 100 MVA	170
	5.3 COMPA	ARATIVO DOS PRINCIPAIS DADOS DAS SIMULAÇÕES DOS GERADORES	173
	5.3.1 GAN	IHOS DE ENERGIA E RETORNO DE INVESTIMENTO	174
6	CONCLUSÃO)	177
	6.1 RECON	IENDAÇÕES PARA FUTUROS TRABALHOS	
7	REFERÊNCIA	S BIBLIOGRÁFICAS	180
8	APÊNDICE E	ANEXO	
-	81 ΔPÊNΠ	ICE – CÁLCULO ELETROMAGNÉTICO	187
	8.2 ANEVO		201

1. INTRODUÇÃO

Apesar das hidrelétricas serem fontes energéticas limpas, muitos consideram que estas causam impactos socioambientais negativos e por isso geram tantos protestos contrários à sua implantação e muitas vezes levam até a uma revisão do projeto de modo a reduzir esses impactos tidos como negativos sociais e ambientais com a redução drástica nas dimensões dos reservatórios.

Isso leva à construção de usinas hidrelétricas "a fio d'água", que são aquelas que não precisam de reservatório de água ou têm dimensões menores do que poderiam ter e tem como consequência a maior preservação das áreas de entorno, a proteção da fauna e da flora e o deslocamento, se necessário, de uma quantidade menor de pessoas.

A desvantagem desse tipo de usina é que ela usa o fluxo de água do próprio rio para movimentar suas turbinas, ficando à mercê do volume de chuvas para a geração de energia e que em época de cheia a geração de energia aumenta, mas em época de seca, diminui e algumas vezes causam até o seu desligamento.

Apesar de ser um modelo sustentável, com vantagens ambientais e sociais, a usina a fio d'água diminui a segurança energética do país devido, exatamente, à sua dependência dos ciclos pluviais.

No entanto, implantar sistemas de pequenas e médias barragens é uma das atitudes cada vez mais necessárias para equilibrar a necessidade de geração de energia com a sustentabilidade ambiental e social pretendida pelo país e tem se mostrado como uma tendência a ser adotada.

Diante do exposto, o rendimento dos equipamentos de geração de energia tem um papel fundamental na continuidade do modelo das hidroelétricas com pequenos reservatórios, pois com o aumento do rendimento dos equipamentos, utiliza-se menos desta preciosa água para a mesma geração de energia, e que motivou a escolha deste tema para a presente dissertação de mestrado.

1.1 MOTIVAÇÃO

1.1.1 RENDIMENTO E CURVAS DE ISORENDIMENTOS

A experiência mostra que geradores podem ter suas curvas de desempenho diferentes em função das suas características de projeto. A análise desenvolvida em [1] resultou nas curvas de isorendimento desenhadas sobre a curva de capabilidade, sendo a Figura 1-1 para um gerador de 82,25 MVA acionado por uma turbina hidráulica bulbo e a Figura 1-2 para um gerador de 679 MVA acionado por uma turbina Francis.

Figura 1-1 - Curvas de isorendimento do gerador de 82,25 MVA

Fonte [1]

Figura 1-2 - Curvas de isorendimento do gerador de 679 MVA

Fonte [1]

A máquina de 82,25 MVA é um gerador projetado para ser usado com turbina Kaplan em arranjo bulbo, enquanto o gerador de 679 MVA foi projetado para trabalhar com uma turbina Francis. Assim, pode-se observar que o comportamento do rendimento pode ser diferente a depender do projeto do gerador.

Mesmo visualmente pode-se observar a diferença entre as curvas de isorendimentos. Dentro da curva de capabilidade, o primeiro possui uma curva de rendimento mais fechada, enquanto o segundo apresenta uma curva mais aberta.

No entanto, em ambos os casos, o ponto de máximo rendimento se dá em uma localização à esquerda do diagrama, isto é, com absorção de potência reativa pelo gerador.

Tal fato pode ser explicado baseado no conteúdo da Figura 1-3. Embora possa haver correntes de armadura com amplitudes iguais, as correntes de campo I_{F1} e I_{F2} podem ser diferentes, sendo $I_{F1} < I_{F2}$, assim, as perdas por efeito Joule do campo do gerador no ponto 1 será menor que no ponto 2, resultando numa eficiência maior para o ponto 1 do que para o ponto 2.

Figura 1-3 - Corrente de excitação com diferentes fatores de potência

Fonte [2]

Enquanto a perda por atrito dos mancais permanece a mesma para uma velocidade e forças constantes, posto que este é externo e não depende das dimensões da máquina, a perda por ventilação variará com o diâmetro do rotor elevado à quarta potência [3].

Com o aumento do diâmetro, o comprimento axial do núcleo vai diminuir inversamente ao diâmetro ao quadrado. A área do entreferro é inversamente proporcional ao diâmetro, logo esta diminui com o aumento do diâmetro. Como o fluxo no entreferro é o mesmo, a densidade de fluxo cresce proporcional ao aumento do diâmetro porque o comprimento diminuirá linearmente, enquanto o diâmetro varia com o quadrado.

A fim de manter a mesma tensão de saída, a corrente de excitação deve crescer aproximadamente na mesma proporção de crescimento do diâmetro do rotor. Embora a velocidade de rotação permaneça constante, também se espera que as perdas Joule aumentem, devido ao crescimento da corrente de excitação.

O aumento da corrente de excitação não implica diretamente no aumento da perda Joule do rotor, porque ela também depende da resistência do rotor. O mesmo raciocínio se aplica às perdas Joule do estator. Assim, as perdas nestes enrolamentos dependem das respectivas resistências e respectivos quadrado das correntes.

A se manter o material magnético, as perdas no ferro irão variar com o aumento do fluxo e das dimensões da coroa e dentes do estator. Se as dimensões forem as mesmas, as áreas de passagem do fluxo serão menores resultando em aumento da densidade de fluxo, logo as perdas no material magnético tendem a crescer com o aumento do diâmetro. Nas Figura 1-4 e Figura 1-5 são mostradas as perdas totais para cada um dos geradores, obtidas a partir dos dados das perdas parciais na referência [1].

Figura 1-4 - Participação das perdas nas perdas totais para gerador de 82,25 MVA

Figura 1-5 - Participação das perdas nas perdas totais para gerador de 679 MVA

1.1.2 CONSIDERAÇÃO DO RENDIMENTO MÉDIO PONDERADO

Sabe-se que uma máquina moderna deve suportar um alto número de ciclos de partidas e paradas; deve operar dentro dos limites de carga permitidos pela turbina, mas raramente em uma carga nominal; e permitir uma alta parcela de potência reativa para estabilização da rede com uso total da capacidade de subexcitação.

Estendendo as considerações além do impacto do ciclo de trabalho, o impacto da carga variável em outras características específicas do gerador, como o rendimento, também deve ser considerado. Isso pode ser de particular interesse e preocupação nos casos em que o gerador está sendo especificado para substituição de uma unidade existente, independente da máquina primária, por exemplo. Nesses casos, a comparação dos rendimentos do gerador explicitamente pode pesar na seleção do equipamento, enquanto na maioria dos casos em que tanto a máquina primária quanto o gerador são fornecidos como um pacote, o rendimento combinado é a consideração principal.

Com grandes variações de carga, as perdas do gerador variam, resultando em mudanças significativas no rendimento do gerador. Embora o rendimento geral da planta de geração seja amplamente ditado pela eficiência térmica do ciclo, uma análise das perdas do gerador em relação à carga é instrutiva.

Neste contexto, o rendimento médio ponderado desempenha um papel muito importante. Antigamente bastava a medição do rendimento em um determinado ponto, em geral a potência nominal. Hoje em dia, devido aos vários argumentos estabelecidos neste documento, percebeu-se que um gerador opera em vários pontos e, portanto, o conhecimento do rendimento de conversão de energia nesses pontos é importante, assim como o conhecimento do rendimento na condição nominal.

Considerando tensão, velocidade e frequência nominais em condições de carga equilibrada, o rendimento médio ponderado deve ser calculado de acordo com o descrito no item 3.2.

Assim, um gerador poderá ser apropriadamente dimensionado a depender de sua aplicação, ou até mesmo da disponibilidade de energia primária.

1.1.3 CONSIDERAÇÃO DO TIPO DE USINA

Uma central hidroelétrica depende da disponibilidade de recursos hídricos, isto é, quedas e vazões. Vale ressaltar que, por ser uma fonte de energia renovável, a usina hidrelétrica também está sujeita à disponibilidade de recursos. Claro que as variações são muito menores do que na geração eólica ou solar. O grau de influência da disponibilidade de recursos pode ser dividido em dois, dependendo se é uma usina a fio d'água ou se possui reservatório.

Para usinas a fio d'água, quase não há variação na queda disponível, mas a geração de energia ativa está sujeita à disponibilidade das afluências. A curva de duração das vazões pode ser utilizada para avaliar a variação das vazões conforme mostrado nas Figura 1-6 e Figura 1-7.

Figura 1-7 – Variação de vazão para Usinas com reservatório

Fonte [2]

As vazões de uma usina localizada na cabeceira da bacia, como exemplo a do rio Ouro no estado da Bahia, Brasil, são mostradas na Figura 1-6. A diferença entre a vazão máxima e mínima é perceptível. A curva mostrada na Figura 1-7 é quase plana e a diferença entre a vazão máxima e mínima é muito baixa. A Figura 1-7 representa as vazões do rio Formiga no estado de Mato Grosso, Brasil. Um índice de referência é a diferença da afluência máxima para a mínima sobre a média das afluências. Para o primeiro caso, o índice é de 1,668 enquanto para o primeiro caso é de 0,439. Isso significa, de forma bastante observável, que a potência gerada no primeiro caso terá variações maiores do que no segundo caso, que permanecerá quase constante.

A variação das afluências reflete-se também na variação da potência gerada e na energia no período correspondente. Portanto, devido a baixas afluências em alguns períodos de um determinado ano, o gerador trabalhará com baixa potência, inferior à sua potência nominal. No entanto, com altas afluências, o gerador trabalhará em sua potência máxima. Essa mesma questão se refletirá em outros assuntos, como o número de unidades em uma usina. Se houver muita variação de vazão, a turbina deve suportar a vazão mínima, caso em que pode ser necessário um número maior de unidades. Quando quase não há variação de vazão, o número de unidades pode ser menor. O número de unidades pode aumentar por outros motivos tecnológicos, como é o caso da hidrelétrica de Itaipu. A hidrelétrica está localizada na foz do rio Paraná com regularização natural. Por se tratar de uma usina de 14.000 MW, a potência total deve ser dividida entre as 20 unidades existentes de forma a manter a potência de cada gerador abaixo do limite superior de projeto na época da construção da hidrelétrica.

Essas questões, entre outras que podem ser levantadas, estão relacionadas às hidrelétricas a fio d'água que não possuem reservatório. Para aquelas hidrelétricas com reservatórios, a vazão na turbina pode ser bastante constante, pois a água é armazenada quando há altas afluências e a água é liberada para as baixas afluências, mantendo-a bastante constante. Portanto, o fluxo não varia muito, mas a carga pode variar com os fluxos de entrada.

1.1.4 QUESTÕES DE MERCADO

Enquanto a geração hidrelétrica depende da disponibilidade de recursos hídricos, o produto final, ou seja, a energia gerada, é vendido no mercado de eletricidade ao preço corrente. O termo energia é aplicado à potência ativa ao longo do tempo enquanto a potência reativa pode ser paga como um serviço ancilar para manter a tensão nos sistemas de potência dentro de valores aceitáveis e atender questões de estabilidade.

As premissas do mercado dependem do país de estudo, pois cada país desenvolve suas próprias regras para lidar com esse problema. Existem muitos métodos de avaliação monetária. Por exemplo, um método impõe preços fixos para a energia em que a usina é reembolsada com base em sua energia firme e a monetização de qualquer potência reativa demandada está incluída neste preço [2]. Como alternativa, o proprietário da usina pode negociar diretamente com o consumidor estabelecendo o preço da energia. Outro método é o chamado mercado à vista, onde tanto o produtor quanto o consumidor negociam os preços da energia em uma câmara, geralmente para ajudar a resolver um problema de superávit ou déficit. Existem mercados em que o preço da energia é definido por horas, vulgarmente conhecido por TOU – *Time-Of-Use* [2].

Assim, estão em jogo a eficiência da conversão energética, a disponibilidade de recursos e os preços tanto da energia como dos serviços ancilares. O carregamento de um gerador deve maximizar os benefícios junto com a venda de energia. Claro que, do outro lado deste equilíbrio, e no centro do jogo, está a máquina geradora que deve suportar a variação de geração necessária, tendo sempre em conta a sua perda de vida mantendo-se sob controle.

1.2 ESCOPO DA DISSERTAÇÃO

O escopo da dissertação está limitado a geradores de usinas hidrelétricas de grande porte, acionadas por turbinas hidráulicas, sendo geradores síncronos de polos salientes, trifásicos, de eixo vertical com potência maior ou igual a 10 MVA, rotação abaixo de 1200 rpm, frequência de 50 ou 60 Hz e tensão acima de 6 kV.

Porém grande parte do estudo também pode ser utilizado para geradores síncronos de polos salientes de eixo horizontal, motores síncronos de polos salientes de eixo vertical ou horizontal, compensadores síncronos que normalmente são fabricados em eixo horizontal e bulbogeradores.

Também pode ser utilizado para usinas reversíveis que utilizem motores e geradores síncronos de polos salientes.

1.3 ESTRUTURA DA DISSERTAÇÃO

A dissertação foi estruturada em 9 capítulos, procurando facilitar a compreensão com uma divisão clara dos assuntos abordados.

O capítulo 2 apresenta uma descrição detalhada de um gerador síncrono, trifásico, de polos salientes de grande porte, com referências aos materiais utilizados, projeto e processos de fabricação.

Detalha os aspectos construtivos da parte estática, que são: carcaça, núcleo, enrolamento e base, cruzetas, partes estáticas dos mancais, plataformas e revestimentos. Da parte rotativa tem-se os polos, anel magnético, aranha, eixos, anel coletor e partes rotativas dos mancais. Também descreve o sistema de frenagem, sistema de resfriamento ar-água e óleo-água.

O capítulo 3 define as perdas que devem ser inclusas no cálculo do rendimento baseados em normas internacionais, define também a temperatura de referência em função da classe de temperatura de operação para cálculo das resistências ôhmicas do enrolamento do estator e rotor, a temperatura do óleo para as garantias das perdas dos mancais e a temperatura do ar de refrigeração para as perdas de ventilação. Caso durante o ensaio a temperatura do óleo não seja o valor na qual a perda foi garantida, sugere-se um método de correção das perdas medidas do mancal de escora e de guia. O mesmo princípio se aplica para a perda de ventilação, em que a perda medida pode ser corrigida pela densidade do ar em função da temperatura em que a perda foi medida e da temperatura em que a perda foi garantida.

Cita também a alocação de perdas dos mancais e a divisão de perdas do mancal comum a gerador e turbina.

E finalmente apresenta o rendimento médio ponderado utilizando as duas fórmulas normalmente utilizadas nas especificações técnicas dos clientes, assim como os fatores de ponderação.

Apresenta a classificação das perdas, onde se expõe em detalhes todas as perdas em uma máquina síncrona de polos salientes, os componentes que as geram e como reduzi-las com mudança de material ou de concepção. Tem um grande enfoque na influência das harmônicas do campo principal, das harmônicas da reação da armadura e dos fluxos de dispersão.

Faz um comparativo entre a utilização da ventilação axial e radial, assim como critérios normalmente utilizados para definição do tipo a ser utilizado.

Discorre-se sobre a melhor localização para instalação do mancal de escora com o objetivo de reduzir as perdas, e a utilização de materiais mais modernos de revestimento dos segmentos principalmente dos de escora.

O capítulo 4 disserta sobre os princípios de dimensionamento eletromagnético e térmico de um gerador síncrono de polos salientes.

Neste capítulo aborda-se o conceito da densidade volumétrica de energia, a lei circuital de Ampere, a máquina elementar de relutância, a identidade construtiva de uma máquina síncrona de polos salientes, a intensidade linear de corrente, os princípios de aquecimento e o momento de inércia e a constante de inércia.

Expõe-se um método para a estimativa do diâmetro interno do estator e o comprimento bruto axial, critérios para os limites de entreferro, a saturação do circuito magnético relacionada com o índice de saturação e as reatâncias.

Apresenta as definições das condições nominais de operação baseadas em normas técnicas internacionais. Discute os efeitos da variação de tensão e frequência e seus efeitos na saturação e temperatura dos enrolamentos com os respectivos impactos em sua vida útil.

No capítulo 5 apresenta-se o cálculo de um gerador de 300 MVA e um de 100 MVA, calculando uma máquina intencionada a obter o melhor rendimento e outra visando o menor custo.

Nesse processo de cálculo segue-se passo a passo com o dimensionamento do gerador com uma explicação detalhada, iniciando pela escolha do diâmetro interno, comprimento do núcleo, número de ranhuras, valor do entreferro, e dimensões dos polos. As dimensões apresentadas nestes cálculos são as finais obtidas após um exaustivo processo de cálculo.

No capítulo 6 são estabelecidas as conclusões da dissertação, e no capítulo 6.1 as recomendações para projetos futuros.

No capítulo 7 tem-se as referências bibliográficas e no capítulo 7 estão os Apêndice (Cálculo Eletromagnético), e Anexo (Cálculo do enrolamento amortecedor).

2 DESCRITIVO DO GERADOR

Este descritivo tem o objetivo de apresentar em detalhes os componentes principais de um gerador síncrono de polos salientes, trifásico e eixo vertical.

No exemplo da Figura 2-1 desta seção a linha de eixo do gerador tem 2 mancais, sendo um mancal de guia acima do rotor do gerador e outro mancal combinado escora/guia abaixo do rotor do gerador.

1) Aranha do rotor, 2) Anel magnético, 3) Eixo do Gerador, 4) Polos, 5) Núcleo do estator, 6) Carcaça, 7) Freios, 8) Cruzeta inferior, 9) Mancal combinado escora/guia, 10) Trocadores de calor, 11) Mancal de guia, 12) Anéis coletores, 13) Eixo da turbina, 14) Enrolamento do estator, 15) Cruzeta superior e 16) Base.

Fonte [4]

O gerador é dividido em 3 conjuntos principais, o estator, rotor e auxiliares, descritos na Figura 2-2. Nesta figura, faz-se um quadro em vermelho nos tópicos que serão detalhados a seguir.

Figura 2-2 - Principais componentes do gerador

2.1 ESTATOR

O estator é composto de 4 partes principais: Bases, Carcaça, Núcleo, Enrolamento e Elementos de fixação.

2.1.1 BASES

As bases de um gerador são compostos pela placa de base e chumbadores e tem a função de fixar o estator ao concreto e suportar os esforços tangenciais provenientes de um transitório tais como curto-circuito e erro de sincronização, esforços verticais provenientes do peso do estator, cruzeta superior, plataforma superior e trocadores de calor ar-água, e caso o mancal de escora esteja instalado na cruzeta superior, deverá ainda suportar o peso da parte rotativa do gerador e turbina e mais o empuxo hidráulico. Os esforços radiais são provenientes basicamente pela expansão do estator devido ao aquecimento. Caso o projeto utilize a carcaça com os elementos oblíquos, a força tangencial será decomposta em dois componentes, sendo uma no sentido tangencial e outra no sentido radial. Esta componente de força radial deve ser adicionada ao esforço radial devido ao aquecimento do estator.

Figura 2-3 - Base do estator Fonte: [Figuras ilustrativas cedidas pela GE VERNOVA]

2.1.2 CARCAÇA

A carcaça é estrutura adequada para suportar e fixar o núcleo do estator com o enrolamento, assim como será dimensionada para absorver as dilatações térmicas, tanto de sua própria estrutura quanto aquelas provenientes do núcleo, de modo a evitar sua flambagem ("*buckling*") e transmitir os esforços mecânicos para a base.

Dependendo do tipo construtivo do gerador, a carcaça deve ser projetada para suportar o peso da cruzeta superior, a plataforma e os trocadores de calor ar-água. Caso a cruzeta superior comporte um mancal de escora, adicionalmente deverá suportar todo o peso das partes rotativas do gerador e turbina, assim como o empuxo hidráulico da turbina.

A estrutura da carcaça do estator é constituída de vários anéis de chapas de aço, dispostos horizontalmente e separados entre si por meio de tubos ou nervuras e colunas verticais, localizados em torno da circunferência da carcaça, formando uma estrutura poligonal, de tal forma que suportem os esforços produzidos pelos elementos de prensagem do núcleo.

A carcaça garante a não deformação da estrutura quando esta estiver sujeita aos esforços provenientes do transporte, montagem, momento máximo de curto-circuito e forças tangenciais e verticais aplicadas durante o funcionamento do gerador.

A construção da carcaça será tal que permite fácil passagem do ar de refrigeração aos trocadores de calor ar-água, os quais estão distribuídos adequadamente em sua periferia.

A carcaça poderá ser transportada em peça única ou em partes, dependendo das limitações de transporte.

Abaixo a Figura 2-4 abaixo mostra uma carcaça de um hidrogerador vertical de grande porte e com a utilização das colunas oblíquas.

Figura 2-4 - Carcaça do estator Fonte: [5]
2.1.3 NÚCLEO DO ESTATOR

O núcleo do estator é um componente da parte ativa do gerador e tem a função de permitir a passagem do fluxo magnético com baixas perdas, são fabricados com chapas de aço-silício de alta permeabilidade magnética, normalmente espessura de 0,5 mm, baixas perdas, laminadas a frio e de grão não orientado (GNO). Em alguns casos se utilizam chapas de 0,35 mm de espessura de grão não orientado ou de grão orientado (GO). A utilização da chapa de 0,35 mm ou 0,5 mm, assim como GO ou GNO depende das perdas no núcleo que se deseja. O mais comum é a utilização de chapas de baixas perdas, grão não orientado e 0,5 mm de espessura.

Estas chapas são estampadas com uma ferramenta única e por meio de um processo contínuo, obtendo segmentos que tem, de um lado, seções com ranhuras para receber as barras estatóricas e do outro, a forma apropriada para receber as cunhas estruturais do estator, que terá um perfil de duplo rabo de andorinha para fixação à carcaça.

Depois de estampadas, as chapas de aço-silício são submetidas a um processo de limpeza para eliminar as rebarbas. Após isto, as chapas são envernizadas em ambas as faces com verniz isolante apropriado para minimizar os efeitos das perdas.

Quando da montagem do núcleo, este será empilhado em camadas sobrepostas formando pacotes. Estes pacotes são separados por espaçadores com perfil em duplo T (ou perfil I) de material não magnético, que formam canais radiais de ventilação, facilitando a passagem do ar refrigerante até os trocadores de calor ar-água.

O empilhamento poderá ser feito chapa por chapa, ou em pacotes de 2 ou mais chapas sobrepostas, em empilhamento contínuo caso seja montado em obra, ou poderá ser partido em seções para permitir o transporte do estator.

Estatores partidos em seções apresentam maiores dificuldades em manter a circularidade do estator dentro das tolerâncias de normas ou de projeto e consequentemente a uniformidade do entreferro, além de ser um ponto fraco em termos de *buckling* e tem se mostrado em diversas máquinas em operação ser um ponto vulnerável a defeitos.

Como uma regra normal, estatores com diâmetro interno menor que 5600 mm são empilhados em partes na fábrica, transportadas e unidas em obra. Em raros casos, oberva-se máquinas com diâmetro interno em torno de 10 m sendo empilhados em 4 ou mais partes em fábrica e unidas em obra. Tecnicamente falando, a melhor solução seria o núcleo empilhado de forma contínua com sobreposição de chapa a chapa.

Normalmente escadinhas são feitas em suas extremidades e tem a função de reduzir o fluxo disperso e minimizar fluxo magnético em sentido axial, evitando sobreaquecimento da região e diminuindo as perdas. Para máquinas com dentes largos, em torno de 45 mm ou maior, rasgos (*slits*) são feitos nos dentes para simular dentes mais estreitos e diminuir o aquecimento e as perdas devido ao fluxo disperso.

Durante a montagem das chapas são executadas prensagens intermediárias com a finalidade de assegurar uma boa compactação. Depois de terminada a montagem, as chapas são prensadas, finalmente, através de tirantes apertados por meio de dispositivo hidráulico e a pressão adquirida será homogênea e mantida pelas placas e dedos de pressão. A pressão média de prensagem do laminado utilizado pelos fabricantes de hidrogeradores é de 1,5 Mpa, valor este que é definido como regra para hidrogeradores de grande porte e a prática tem mostrado que é muito adequado para garantir uma boa operação.

Embora, o sistema de aperto assegure uma pressão contínua ao longo da vida útil do equipamento, o sistema empregado deve permitir um novo reaperto caso os pacotes de chapas se afrouxem durante a operação da máquina por algum motivo não previsto.

A aplicação de verniz isolante é feita em ambas às faces, em estufa com esteira transportadora contínua e com temperatura ajustável.

Os espaçadores de ventilação são de material não magnético de perfil I (duplo T). São instalados em sentido radial dentro do núcleo do estator, formando canais de ventilação eficientes que aumentam a área de dissipação de calor.

Os elementos de prensagem do núcleo são compostos de placas, dedos de pressão e tirantes de aperto. As placas de pressão são projetadas de maneira a manter o núcleo em estado compacto durante o funcionamento da máquina. Estas peças são fabricadas em segmentos para compensar as diferenças de dilatações térmicas do conjunto. Os dedos de pressão servem para distribuir os esforços das placas e manter o núcleo compacto. Os dedos de pressão são fabricados com material não magnético. Os tirantes de aperto são projetados para providenciar o aperto do núcleo através das placas e dedos de pressão de aperto assim como uma distribuição homogênea em toda a sua secção.

Para evitar a flambagem do núcleo são previstas, durante a concepção do projeto, medidas que previnem o surgimento deste fenômeno. Assim, a carcaça do estator é dimensionada e projetada com uma elasticidade radial adequada, de forma a reduzir ao mínimo, dentro de valores aceitáveis, as forças provenientes da diferença de expansão térmica entre a carcaça e o núcleo. Associado a isto, o sistema de aperto e fixação do núcleo é dimensionado e projetado de tal maneira que, devido à pressão atingida e à sua distribuição, núcleo e carcaça formem um único e harmonioso conjunto.

A ligação da carcaça ao concreto é feita por meio de placas de base com meios eficientes para permitir a expansão radial do estator devido ao aquecimento do núcleo. Estas placas são centradas e niveladas previamente à concretagem. Posteriormente a carcaça é apoiada e fixada sobre as placas de base, garantindo assim o seu perfeito nivelamento.

O núcleo do estator é fixado à carcaça por meio de cunhas tipo rabo de andorinha e guias da cunha, os quais transmitem os esforços tangenciais e radiais do núcleo à carcaça do estator e, também são utilizadas para a centralização do núcleo.

A Figura 2-5 mostra o núcleo do estator e algumas de suas particularidades, tais como:

(a) Núcleo com escadinhas, rasgos nos dentes e dedos de pressão

(c) Parte superior do núcleo

(b) Empilhamento do núcleo

(d) Núcleo empilhado

Figura 2-5 - Núcleo do estator Fonte: [Figuras ilustrativas cedidas pela GE VERNOVA]

2.1.4 ENROLAMENTO DO ESTATOR

O projetista de máquinas elétricas rotativas, especificamente de geradores síncronos, poderá ter, no momento da concepção da máquina, a flexibilidade de escolher o melhor tipo de enrolamento, sendo que essa opção dependerá, além das limitações fabris, de outros parâmetros como: perdas, arranjo de mancais, empuxo magnético residual (*UMP* – *Unbalanced Magnetic Pull*), entreferro, vibração, manutenções corretivas, confiabilidade, para citar alguns fatores relevantes.

2.1.4.1 BOBINAS MULTIPLAS ESPIRAS

Nas bobinas de múltiplas espiras cada espira é formada por um conjunto de condutores elementares (ou fios), e cada bobina, conforme a necessidade, poderá ter mais de uma espira. Na Figura 2-6 se mostra o corte da ranhura de um enrolamento de dupla camada formada por bobinas de múltiplas espiras. A bobina da Figura 2-6 é constituída por seis espiras e cada espira é formada por quatro fios [6].

Figura 2-6 - Corte de uma ranhura com bobinas de múltiplas espiras

A possibilidade de se alocar mais espiras por bobina oferece maior flexibilidade no projeto desses enrolamentos, possibilitando variar o número de ranhuras e circuitos paralelos para se obter a melhor solução.

Por ser constituída por várias espiras na mesma bobina, esta solução se torna mais sensível a surtos de tensão advindos de descargas atmosféricas ou de operações de chaveamento. Assim, quando um pulso de alta tensão é injetado para dentro do enrolamento, o mesmo acontece com velocidades muito elevadas, o que provoca ameaçadoras diferenças de tensão entre espiras da mesma bobina, motivo pelo qual a isolação entre espiras deve ser rigorosamente definida.

Em relação à montagem das bobinas no núcleo de médios e grandes hidrogeradores, como a bobina contempla a espira completa, há a necessidade de se prover flexibilidade às cabeças de bobina para facilitar a sua inserção nas ranhuras. Para tal finalidade se utiliza na cabeça de bobina técnicas e/ou materiais especiais para permitir tal elasticidade.

Uma consequência natural da geometria das bobinas está associada aos processos de manutenção. Se, por eventualidade, resultar que o lado inferior da bobina, interno à ranhura, for danificado, será necessário levantar o lado superior das bobinas correspondente a um passo de bobina e, assim, proceder a sua remoção; de onde se justifica a necessidade de se prover flexibilidade às cabeças desse tipo de bobina. Se tal defeito ocorrer no lado superior, será suficiente cortar os condutores na região das cabeças de bobina, substituí-la por uma semibobina sobressalente, soldar fio a fio e recompor a isolação. Sem dúvida alguma que tal tarefa deverá ser realizada por uma equipe técnica capacitada.

2.1.4.2 BARRAS ROEBEL

A barra Roebel é formada por vários condutores de seção retangular transpostos de 360° de acordo com o sistema Roebel, sendo que cada fio é isolado independentemente, ver Figura 2-7. Este processo de transposição distribui a corrente homogeneamente por toda a seção da barra, fazendo com que as perdas por correntes parasitas do efeito Field¹ (perdas por adensamento de corrente e proximidade) sejam minimizadas [6].

¹ Optamos por denominar com efeito Field às perdas por adensamento de corrente e por proximidade como uma homenagem ao primeiro cientista a proporcionar uma solução ao enigma de porque as resistências de um mesmo condutor dentro de uma ranhura eram diferentes quando medidas em CA e CC. Esse trabalho pioneiro foi publicado

Figura 2-7 - Barras Roebel com transposição 360° Fonte: [7]

O projeto eletromagnético com enrolamentos composto de barras Roebel é mais limitado em relação às opções para enrolamentos com bobinas de múltiplas espiras. Como o número de circuitos paralelos é função número de espiras por condutor e do número de polos do gerador, em alguns casos a definição do número de ranhuras se torna restrita. Para barras Roebel o número de espiras por condutor é igual a um.

Um aspecto relevante no uso de enrolamentos com barras Roebel é a facilidade da sua montagem e manutenção. Como são inseridas semiespiras individualmente, faz-se a formação da espira completa com o auxílio de conexões soldadas. Outro fato é a facilidade na retirada da semiespira em caso de dano, já que basta retirar a conexão soldada e soldá-la novamente.

Tanto barras quanto bobinas buscam otimizar esse arranjo para minimizar as perdas no gerador. Entretanto, nas barras Roebel as transposições são feitas totalmente dentro do comprimento do núcleo, em intervalos constantes, regularizando a densidade de corrente ao longo do comprimento da espira. Nas bobinas de múltiplas espiras, a transposição, chamada "natural", ocorre somente na região da cabeça de bobina.

Quando comparadas, as barras Roebel fornecem excelentes resultados, pois a quantidade de transposições realizadas por cada condutor é maior que nas bobinas. Em determinados casos, no entanto, é possível de se conseguir resultados similares com bobinas, mesmo que para isso se recorra a uma torção complementar interna de 180º numa das espiras, na região das cabeças de bobina.

Em termos de custos, a solução com bobinas deve ser um pouco mais competitiva, mas considerando aspectos operacionais e de manutenção, a solução com barras Roebel e do tipo Imbricado deve ser mais efetivo.

A Tabela 2-1 mostra um comparativo entre bobinas múltiplas espiras e barras Roebel.

em 1905 por A. B. FIELD sob o título de EDDY CURRENTS IN LARGE SLOT-WOUND CONDUCTORS, apresentado ao 22d Annual Convention of the American Institute of Electrical Engineers, Asheville, N. C., June 19-23. 1905.

	Bobinas múltiplas espiras	Barras Roebel	
Flexibilidade projeto eletromagnético	Mais flexível	Menos flexível	
Possibilidade curto-circuito entre espiras	Existe possibilidade	Não existe	
Perdas	Perda igual ou maior	Perda menor	
Montagem	Maior dificuldade	Menor dificuldade	
Manutenção	Maior dificuldade	Menor dificuldade	
Custo	Mais competitivo	Menos competitivo	
Solução para uma futura reforma		Recomendada a utilização das barras Roebel sempre que possível	

Tabela 2-1 - Comparação de bobinas de múltiplas espiras com barras Roebel

2.1.4.3 ENROLAMENTO IMBRICADO VERSUS ONDULADO

É chamado passo a distância angular entre 2 barras ou lados de bobinas que formam a espira, sendo o passo pleno quando a distância entre as 2 barras ou lados de bobinas é de 180° elétricos, passo encurtado quando a distância é menor que 180° e passo avançado quando a distância é maior que 180°. Na prática o passo utilizado é dado em número de ranhuras.

Na imensa maioria dos casos o enrolamento tipo imbricado tem o seu passo encurtado em número de ranhuras num valor aproximado que corresponde a 5/6 do passo polar τp conforme (2-1),

$$y1 = round\left(\frac{5}{6}\tau p\right),\tag{2-1}$$

Onde *round* é uma função que retorna o valor de um número arredondado para o inteiro mais próximo, e o passo polar τp é definido em número de ranhuras conforme (2-2),

$$\tau p = \frac{Ns}{2p} \tag{2-2}$$

e o passo complementar de um enrolamento tipo imbricado é definido como sendo de 1 ranhura a menos que o passo y1 conforme (2-3),

$$y^2 = y^1 - 1$$
 (2-3)

E a soma dos passos é dado por (2-4).

$$y1 + y2$$
 (2-4)

No caso de enrolamento do tipo ondulado, os passos y1 + y2 é dado por (2-5),

$$y1 + y2 = round (2 \tau p).$$
 (2-5)

Onde:

Ns é o número de ranhuras [-];

p é o número de pares de polos [-];

au p é o passo polar em número de ranhuras [-].

Como no imbricado a soma dos passos (y1 + y2) é menor, significa que o comprimento desenvolvido de uma barra é menor, portanto, tendo menos cobre e menores perdas ôhmicas [6].

Para máquinas com grande número de polos, tem-se no tipo imbricado um maior número de conexões de grupo, que adicionadas às conexões dos circuitos paralelos e terminais, totalizam peças mais longas, necessitando mais cobre e isolação em comparação com os enrolamentos ondulados.

Comparativamente, o imbricado tem barras mais curtas e conexões mais longas ficando, no final, com uma ligeira vantagem em relação ao ondulado, ou seja, menor perda e menor peso de cobre.

A diferença no comprimento da barra não modifica a mão-de-obra de fabricação, mas o maior número de peças de conexões de grupo aumenta as horas de fabricação, ficando então dependendo da relação de custos de material e mão-de-obra.

A experiência adquirida em vários projetos de hidrogeradores executados no Brasil e no mundo nos mostra que a escola americana tem preferência para enrolamentos imbricados e a Européia tende para enrolamentos ondulados. Para enrolamento com q inteiro a vantagem competitiva é nítida para enrolamentos ondulados.

O valor de q é definido por (2-6), onde q é o número de ranhuras por polo e fase.

$$q = \frac{N_s}{3 \cdot 2 p} \tag{2-6}$$

O enrolamento imbricado, quando constituído de 2 ou mais circuitos paralelos, tem o dom natural de reduzir o empuxo magnético desequilibrado (UMP), enquanto o ondulado também pode reduzir o UMP, porém às custas de um maior número de conexões e maior custo.

Quanto à manutenção, o imbricado leva uma certa vantagem, pois para remover uma barra inferior seria necessário a remoção de y1 + 1 barras superiores, e no caso de enrolamento ondulado y1 + y2 + 1 barras superiores.

A Tabela 2-2 mostra um comparativo entre enrolamento imbricado e ondulado.

	Imbricado	Ondulado		
Comprimento de 1 barra	+ curta	+ longa		
Número de conexões	Maior número	Menor número		
Perdas ôhmicas e peso de cobre	Menores perdas e mais cobre	mais Maiores perdas e peso de cobre		
Fabricação	Maior quantidade de horas	Menor quantidade de horas		
Custos	Maior custo	Menor custo		
Redução do UMP	Redução natural do UMP	Normal sem redução do UMP		
Manutenção: retirar uma barra inferior	Remover y1+1 barras superiores	Remover y1+y2+1 barras superiores		

Tabela 2-2 - Comparativo de enrolamento imbricado versus ondulado

2.1.4.4 COMPOSIÇÃO DAS BARRAS ROEBEL

O sistema de isolação normalmente utilizado atualmente pertence a classe 155(F) e a barra é composta pelos seguintes itens:

- Fio de cobre eletrolítico, retangular e isolado com uma combinação de fibra de vidro e poliéster, com espessura aproximada de 0,10 mm por lado,
- Isolante separador vertical entre as duas colunas de fios, de espessura aproximada de 0,3 mm,
- Fita de mica com vidro, aproximadamente 0,15 mm de espessura, para isolação principal,
- Resina epóxi-poliéster para impregnação,
- Fita condutiva para proteção corona na parte reta,
- Fita semicondutiva para proteção corona nas cabeças.

Cada barra é formada por vários condutores isolados elementares de cobre eletrolítico, de secção retangular, transpostos de 360° de acordo com o sistema Roebel.

2.1.4.5 COMPOSIÇÃO DAS BOBINAS MULTIPLAS ESPIRAS

O sistema de isolação normalmente utilizado atualmente pertence a classe 155 (F) e a bobina é composta pelos seguintes itens:

• Fio de cobre eletrolítico, retangular e isolado com uma combinação de fibra de vidro e poliéster, com espessura aproximada de 0,10 mm por lado,

- Fita de mica com vidro, aproximadamente 0,15 mm de espessura, para isolação entre espiras,
- Fita de mica com vidro, aproximadamente 0,15 mm de espessura, para isolação principal,
- Resina epóxi-poliéster para impregnação,
- Fita condutiva para proteção corona na parte reta,
- Fita semicondutiva para proteção corona nas cabeças.

Cada bobina é formada por vários condutores isolados elementares de cobre eletrolítico, de secção retangular, transposição natural. Este processo de transposição distribui a corrente homogeneamente por toda a secção da barra, fazendo com que as perdas por correntes parasitas e pelo efeito Field¹ (perdas por adensamento de corrente e proximidade) sejam minimizadas.

2.1.4.6 ISOLAÇÃO DAS BARRAS/BOBINAS

O isolamento principal em classe 155 (F) das barras/bobinas é obtido pela aplicação de camadas sobrepostas de fitas de mica entretecidas com fibra de vidro e posteriormente impregnado com uma resina epóxi-poliéster. Após a aplicação da fita, a barra é impregnada pelo processo VPI (*Vacuum Pressure Impregnation*), recebendo a forma geométrica final por meio de dispositivos especiais.

A impregnação da resina é efetuada sob temperatura apropriada, empregando nitrogênio pressurizado para criar um ambiente inerte e garantir que a resina penetre em todos os pontos da barra, eliminando falhas e evitando formação de bolhas prejudiciais à isolação.

Para proteger a isolação contra as descargas superficiais, é aplicada uma proteção contra o efeito Corona. Esta proteção consiste em uma fita condutiva a base de poliuretano classe 155(F) e que é aplicada na região que vai dentro da ranhura e fita semicondutiva na parte das cabeças das barras.

Para a instalação das barras dentro das ranhuras é empregado um sistema especial de tal forma que as barras se adaptam facilmente à ranhura. A elasticidade dos materiais aplicados, tanto na proteção como na isolação das barras, permite acompanhar a dilatação natural do cobre, evitando o surgimento de fissuras no material isolante.

A proteção contra o efeito Corona é aplicada sobre a parte reta da barra e consiste na aplicação de uma fita condutiva que terá resistência superficial na faixa de 1,2 a 8 k Ω . Esta proteção anti-corona se estende de ambos os lados além da parte embutida na ranhura, a uma certa distância, e esta porção será sobreposta pela fita semicondutiva de proteção contra Corona das cabeças do enrolamento.

2.1.4.7 MATERIAL DE INSTALAÇÃO DAS BARRAS/BOBINAS

As cunhas serão de laminado isolante classe 155 (F), fabricados com mantas de fibra de vidro e resina epóxi como aglutinante e têm a função de manter as barras fixas, ou seja, devem suportar a força radial exercida pelas barras superior e inferior.

Os calços entre a cunha e a barra superior são também em material isolante classe 155(F). Este material é um laminado fabricado de tramas de fibra de vidro e resina epóxi como aglutinante. A sua principal função é a proteção mecânica da barra, tendo sua espessura e quantidade determinadas pela pressão que a cunha exerce sobre a barra.

Um bom projeto utiliza mola ondulada entre a cunha e a barra e tem a função de fixar a barra radialmente, evitando vibração devido as forças de origem magnéticas geradas pelas correntes nas barras/bobinas. A deflexão da mola quando montada permite manter necessária pressão mesmo com as acomodações das barras/bobinas ao longo do tempo. È comum que este sistema mantenha a sua função por toda a sua vida útil.

As duas barras são separadas por meio de um material isolante. Este separador consiste em um material laminado confeccionado com mantas ou tramas de fibras de vidro e resina epóxi como aglutinante. Nas duas superfícies em contacto com as barras, será aplicada uma camada de verniz semicondutivo para se ter boa distribuição de potencial elétrico. Alternativamente pode-se utilizar este separador fabricado com material semicondutivo. A espessura deste isolante é tal que permite a instalação dos detectores de temperatura (RTD – *Resistance Temperature Detector*) e mantém distância suficiente entre barras superior e inferior para não haver descarga elétrica ou surgimento de efeito Corona entre duas barras de mesma ranhura. Estes RTDs medem a temperatura das barras e servem para avaliar o atendimento às temperaturas garantidas do enrolamento ou as temperaturas das normas.

Para formar uma espira se fará uso de conexões especiais que unirão as barras superiores e inferiores. Estas conexões serão do tipo olhal duplo e confeccionadas em cobre, caracterizando-se por facilitar tanto a montagem como a desmontagem do enrolamento estatórico.

As conexões de grupo serão fabricadas de perfis de cobre e terão isolação classe 155 (F).

Os anéis de circuito serão fornecidos com secção suficiente para que a temperatura durante a operação esteja dentro dos limites especificados. Os anéis serão isolados com classe 155(F) e estarão localizados na parte superior do gerador, adjacentes às cabeças do enrolamento, e consistem em 3 terminais de fase e 3 terminais de neutro. Os terminais de fase serão adequados para a conexão com o barramento e os terminais de neutro serão adequados para a conexão com os transformadores de corrente e barramento de neutro.

A Figura 2-8 mostra um enrolamento do estator com barras Roebel.

Figura 2-8 - Enrolamento do estator com Barras Roebel Fonte: [Figuras ilustrativas cedidas pela GE VERNOVA]

2.2 ROTOR

O rotor do gerador síncrono será formado pelos seguintes elementos principais: polos, anel magnético, aranha, cubo da aranha, eixo superior/inferior e anéis coletores. Os tópicos marcados no quadro em vermelho na Figura 2-9 serão detalhados a seguir.

2.2.1 ARANHA

A aranha é um componente mecânico e tem a função de suportar o peso do anel magnético e os polos do gerador, transmitir o torque da turbina e deve manter o anel magnético concêntrico em qualquer condição operativa. Para geradores com ventilação radial, este também exerce a função de ventilador.

2.2.1.1 CUBO DA ARANHA

O cubo da aranha do rotor será construído em chapas de aço soldado, sendo composto pelos seguintes elementos principais:

- Anel inferior
- Anel superior
- Cilindro central
- Nervuras que ligam os anéis e o cubo central.

O cubo do rotor é devidamente usinado para acoplar no anel inferior o eixo inferior e no anel superior o eixo superior ou o eixo auxiliar do anel coletor se a forma construtiva não contemplar mancal superior.

O cubo é projetado considerando todos os esforços a que o rotor estará sujeito. No entanto, deverá suportar os esforços impostos pelo dispositivo de içamento, quando do levantamento do conjunto girante, a menos do eixo superior.

A ligação do cubo com a lateral da aranha será por meio de solda executada na obra.

2.2.1.2 LATERAL DA ARANHA

A lateral da aranha será constituída de chapas de aço soldadas em forma de disco, sendo formada por:

- Anel superior
- Anel inferior
- Nervuras ou alma que interligam os dois anéis.

A lateral da aranha será soldada ao cubo formando a aranha.

A fixação do anel magnético à aranha será feita através de encaixes, localizados nas extremidades das nervuras de reforço da aranha e também através de cunhas axiais. A soldagem da fixação da aranha será feita na obra, após o pré-chapeamento da camada inferior do anel magnético.

No sentido vertical, o anel magnético será suportado em placas reforçadas, soldadas na parte inferior da aranha.

A Figura 2-10 ilustra um projeto típico de uma aranha de um grande hidrogerador vertical, e que utiliza no seu projeto os braços oblíquos.

Figura 2-10 - Aranha do rotor Fonte: [Figuras ilustrativas cedidas pela GE VERNOVA]

2.2.2 ANEL MAGNÉTICO

O núcleo magnético laminado do rotor, conhecido como anel magnético ou coroa do rotor, é construído em chapas de aço laminado, que após montadas formam um conjunto toroidal rígido e compacto. Estas lâminas são de aço carbono comum, de 2,75 a 4,75 mm de espessura e são cortadas a laser, com ranhuras para receber os pés dos polos em seu perímetro externo e as cunhas da aranha no seu perímetro interno.

As chapas que formam o anel magnético são submetidas a um processo de limpeza que tem por objetivo eliminar qualquer irregularidade das suas superfícies, assegurando um empilhamento dentro das tolerâncias de projeto, de forma que no final do processo as ranhuras já se encontrem dentro de suas dimensões permitidas.

O empilhamento destas chapas é feito seguindo um processo homogêneo, dispondo as mesmas em forma de um anel de modo a conferir ao conjunto um perfeito balanceamento mecânico. O seu empilhamento se fará transpondo grupos de 2 até 5 chapas. Estas chapas serão submetidas a prensagens intermediárias para garantir um perfeito empilhamento.

Para compensar as diferenças de espessura dos segmentos do chapeamento, serão empregados calços de lâminas de aço. Desta maneira se promoverá um maior contato entre chapas, prescindindo-se assim do uso de espaçadores.

Nos casos de ventilação radial, os segmentos serão cortados com largura menor de forma que no empilhamento formem dutos de ar. Estes dutos permitem a passagem do ar de ventilação e também funcionam como elementos de pressurização.

As forças tangenciais são resistidas por tirantes. É previsto um mínimo de folga entre o diâmetro dos tirantes e os furos na coroa, apenas o suficiente para permitir a inserção dos tirantes e o seu aperto. Uma vez empilhado o anel magnético, não será necessário alargar o diâmetro dos furos.

Os tirantes possuem roscas nas suas extremidades e serão fixados com porcas assegurando um conjunto rígido e compacto capaz de suportar as forças centrífugas e tangenciais a que estarão sujeitas.

A Figura 2-11 ilustra o anel magnético sendo empilhado em obra.

Figura 2-11 - Anel magnético Fonte: [Figuras ilustrativas cedidas pela GE VERNOVA]

2.2.3 ANEL DE FREIO

Na parte inferior do anel magnético será fixado o anel de freio, do tipo segmentado, onde serão aplicados os cilindros de freio e levantamento. Os parafusos de fixação também servirão para nivelar os segmentos, de modo a se conseguir uma superfície de frenagem perfeitamente plana. O anel será montado em segmentos, permitindo a rápida desmontagem em caso de manutenção. Para aumentar o atrito com as lonas de freio, as superfícies dos segmentos receberão uma usinagem adequada.

A Figura 2-12 ilustra o anel de freio na parte inferior de um hidrogerador vertical de grande porte.

Figura 2-12 - Anel ou pista de freio Fonte: [Figuras ilustrativas cedidas pela GE VERNOVA]

2.2.4 POLOS

Os polos do rotor são compostos pelas seguintes partes principais: núcleo, bobina e enrolamento amortecedor.

2.2.4.1 NÚCLEO DOS POLOS

Os núcleos dos polos do rotor são construídos com chapas laminadas a quente de 2 a 4 mm de espessura, de modo a reduzir as perdas devido a fenômenos magnéticos causados pelas aberturas das ranhuras do estator e também devido às harmônicas contidas no fluxo magnético no entreferro. Também utiliza chapas laminadas a frio de 1 mm de espessura com o objetivo de reduzir ainda mais as perdas devido as harmônicas de campo criando correntes parasitas na superfície polar.

Após o corte da chapa, cada chapa é submetida a um processo de limpeza e eliminação de rebarbas, permitindo assim uma perfeita montagem.

Os núcleos polares são montados na fábrica por um processo homogêneo de empilhamento de chapas, sendo estas prensadas e fixadas por meio de pinos de aço que atravessam todo o núcleo do polo em sentido axial.

Nas duas extremidades do núcleo serão montadas as placas de pressão, onde os pinos que atravessam todo o núcleo serão fixados após uma prensagem final, mantendo-se assim o núcleo devidamente compactado.

A Figura 2-13 ilustra um rotor com os polos montados.

Figura 2-13 - Núcleo dos polos Fonte: [Figuras ilustrativas cedidas pela GE VERNOVA]

2.2.4.2 BOBINAS POLARES

Cada bobina polar é construída de várias espiras de cobre eletrolítico de formato retangular ou de perfil especial, de forma a se obter aletas na sua extremidade externa, que tem contato com o ar de refrigeração, objetivando garantir um bom resfriamento das bobinas polares mediante aumento da superfície de refrigeração das bobinas e consequente aumento de transmissão de calor.

Para formação da espira contínua, estes segmentos de cobre eletrolítico são unidos entre si de modo a formarem uma espira contínua.

A isolação das bobinas é executada com materiais Nomex[®] de classe de isolação 155(F), e que garante a perfeita isolação das mesmas, mesmo quando sujeito às forças centrífugas oriundas do funcionamento do gerador em quaisquer condições, inclusive a rotação de disparo.

A bobina, com isolamento aplicado, é montada no dispositivo de prensagem, que visa garantir o adequado alinhamento entre espiras, é então submetida ao processo monitorado de pressão / temperatura, de modo a formar um conjunto rígido e compacto.

A bobina compactada, após eliminação dos excessos de isolamento e escorrimentos de verniz, controles dimensionais e testes elétricos de comprovação da qualidade do isolamento entre espiras, é então montada no núcleo do polo, sendo que nas superfícies

de contato entre a bobina e o núcleo são introduzidos anéis e calços isolantes, de classe de isolação F.

Figura 2-14 - Bobina polar Fonte: [Própria]

2.2.4.3 ENROLAMENTO AMORTECEDOR

O enrolamento amortecedor é construído com barras de cobre eletrolítico, instaladas em ranhuras axiais na sapata polar. As extremidades destas são interligadas por meio de chapas de cobre, que estão localizadas entre a placa de pressão e a chapa do polo. A ligação do enrolamento amortecedor entre polos se dará via anel magnético.

Para se ter um enrolamento amortecedor com mais baixa resistência, estas barras são curtos-circuitadas nas suas 2 extremidades por meio de perfil de cobre. A ligação do amortecedor entre polos se dará por meio de conexão flexível, provendo uma interligação de baixa resistência.

Também existe o projeto com enrolamentos amortecedores tipo aberto, onde as barras amortecedoras são curtos-circuitadas em suas extremidades, porém não há interligação entre polos.

O enrolamento amortecedor é projetado e executado de modo a assegurar a perfeita estabilidade do gerador, sobretudo em casos de curtos-circuitos ou variações bruscas de carga.

2.2.4.4 FIXAÇÃO DOS POLOS

O polo completo será fixado ao anel magnético através de encaixes tipo rabo de andorinha ou similar e chavetas, garantindo uma fixação rígida e estável, de modo a suportar todas as forças atuantes devido à operação do gerador em qualquer condição. Este tipo construtivo permite que cada polo possa ser retirado para manutenção sem necessidade de remoção do rotor.

Mecanicamente, todo o conjunto polar é projetado e executado de modo a suportar qualquer esforço proveniente do funcionamento do gerador, incluindo rotação de disparo.

2.2.5 EIXO

Os eixos de uma unidade geradora têm a função de transmitir o torque mecânico proveniente da turbina, e também manter a estabilidade mecânica do conjunto girante.

Abaixo Figura 2-15 ilustram alguns tipos de eixos.

(a) Eixo inferior da turbina

(b) eixo inferior do gerador com o bloco de escora e flange para acoplamento com eixo da turbina

(c) eixo do gerador com bucha do mancal de guia

Figura 2-15 - Eixos do gerador

Fonte: [9]

O eixo superior da máquina será constituído por uma peça única em aço forjado, cuja extremidade inferior será usinada para acoplar-se ao cubo da aranha e a extremidade superior terá o anel coletor.

O eixo inferior tem a função de transmitir o torque da turbina à aranha do gerador, é constituído por uma peça única em aço forjado, cuja extremidade inferior será usinada para acoplar-se à turbina e na sua extremidade superior o acoplamento ao cubo da aranha.

2.2.6 ANÉIS COLETORES

O anel coletor é uma interface que permite a corrente de excitação passar do barramento de excitação que é estático para a parte rotativa do gerador. A parte rotativa que recebe esta corrente é o conjunto dos polos.

Os anéis coletores serão executados em aço carbono e fixados ao eixo auxiliar do rotor do gerador e isolados. São dimensionados e executados de modo a assegurar a perfeita operação das escovas, através de um bom contato destas com a superfície de deslizamento. Para garantir o desgaste uniforme e bom contato das escovas, os anéis são construídos com ranhuras em forma espiral na superfície de deslizamento.

A conexão entre os anéis coletores e as bobinas polares é feita através de barras de cobre isoladas da estrutura, que passarão internamente ao eixo superior e sobre a face superior da aranha, para alcançar a conexão dos polos.

A inspeção e manutenção das escovas e anéis coletores serão feitas através das aberturas do revestimento.

Figura 2-16 ilustra o conjunto de anéis coletores com as escovas e porta-escovas.

Figura 2-16 - Anéis coletores Fonte: [própria]

2.3 CRUZETA SUPERIOR, CRUZETA INFERIOR, MANCAIS E REVESTIMENTOS

Os tópicos marcados no quadro em vermelho na Figura 2-17 serão detalhados a seguir.

Figura 2-17 - Cruzeta superior, inferior e mancais Fonte: [Figuras ilustrativas cedidas pela GE VERNOVA]

2.3.1 CRUZETAS SUPERIOR E INFERIOR

As cruzetas são construídas em chapas de aço soldadas e são constituídas de uma parte central e os braços. Os braços da cruzeta ou a sua fixação devem ser projetados de modo a permitir uma expansão radial devido ao aquecimento e evitar a deformação do mancal, assim como prover uma rigidez adequada para manter uma margem de segurança adequada para a linha de eixo em relação a rotação crítica até a rotação de disparo da unidade.

2.3.2 MANCAL DE GUIA

O mancal de guia é do tipo pivotado, sendo que cada segmento terá seu ponto de pivotamento deslocado do centro, no sentido de rotação, facilitando a formação do filme de óleo entre os segmentos e as partes rotativas.

O número de segmentos e a área são determinados por meio de cálculos para assegurar uma formação ideal de filme de óleo, minimização das perdas de atrito e temperaturas dentro dos valores garantidos.

O mancal de guia é composto de vários segmentos do tipo regulável, aplicados em posições equidistantes sobre a superfície de deslizamento do eixo.

Os segmentos são fixados à cruzeta de modo a permitir uma regulagem fácil de cada um individualmente, através do sistema de cunhas (o qual deve permitir desmontagem dos segmentos sem perder os ajustes). Este sistema tem a vantagem de melhorar o funcionamento do mancal no que se refere à rigidez.

Os segmentos são construídos em aço, revestidos com metal patente em sua superfície de contato de deslizamento. Esta superfície além do processo de usinagem e polimento que permitem ótimo funcionamento e baixas perdas, possui um recesso lateral que permite a passagem do óleo entre as superfícies deslizantes, otimizando assim a sua lubrificação.

Dependendo da rotação e da perda de pressão do circuito de refrigeração do óleo e a vazão necessária, os segmentos podem ser dotados de canais para funcionar também como meio de pressurização e circulação do óleo, evitando as motobombas elétricas externas, diminuindo o custo de implantação e de manutenção.

2.3.3 MANCAL DE ESCORA

A função do mancal de escora é suportar os esforços axiais devido ao peso de todas as partes rotativas (gerador e turbina) e o empuxo hidráulico da turbina. As sapatas devem permitir a rotação do rotor ao longo de superfícies deslizantes imersas em um filme de óleo para minimizar as perdas por atrito entre as partes fixas e rotativas.

Os principais objetivos do projeto são: distribuição uniforme de forças entre todas as sapatas; amortecimento de choques de forças hidráulicas ocasionais durante falhas (suporte ajustável, molas de disco); dimensionamento das sapatas de acordo com o diâmetro mínimo do eixo a fim de minimizar as perdas.

Existem dois tipos diferentes de sapatas de escora projetadas para atender às necessidades dos geradores hidrelétricos, que são:

- Sapatas convencional, apoiadas em pinos, molas ou membranas
- Sapatas de escora de dupla camada

A sapata de escora convencional é o tipo mais difundido, uma vez que é adequado para a maioria dos casos de hidrogeradores.

Para casos especiais em que a sapata de escora convencional não se mostra adequado, recomenda-se então o uso de sapatas de dupla camada. Trata-se de um projeto mais elaborado, que permite que a mesma sapata suporte cargas axiais maiores que a convencional. Consiste em uma primeira camada fina suportada por pinos verticais de diferentes diâmetros, que retransmite na sapata mais grossa. Este projeto é adequado para controlar deformações na sapata do mancal mantendo uma película de óleo sustentável entre a sapata e o bloco de escora.

A camada de metal patente ou metal branco é uma camada fina usada para cobrir a superfície da sapata na qual o bloco de escora irá deslizar. Este material é mais macio que o material do eixo para protegê-lo de qualquer dano que possa ocorrer.

Existe solução com as sapatas de escora revestidas com polímero, que devido a sua característica mais maleável e mais isolante termicamente, que permite operar com maior pressão específica e filmes de óleo mais finos, podendo assim reduzir as suas dimensões e reduzir drasticamente as perdas.

Para facilitar a entrada de óleo entre a bloco e a sapata, deve ser previsto um chanfro na borda de entrada de óleo da sapata.

A fixação do suporte das sapatas depende do tipo de suporte, que é responsável pela inclinação das sapatas e também pela equalização das cargas axiais entre elas.

Existem 3 sistemas de suporte diferentes: placa de mola, fuso e membrana (autoequalizador), mas praticamente pode-se considerar que existem apenas 2 tipos diferentes de fixação para a almofada, já que as da placa de mola e do fuso são quase as mesmas.

2.3.4 INVÓLUCRO DO GERADOR

Normalmente o gerador será instalado em um barril de concreto, haverá uma estrutura metálica para apoiar a plataforma superior ou tampas superiores. Esta estrutura será apoiada no barril de concreto e será fornecida com meios para a passagem de cabos elétricos, de controle, bem como bandejas de cabos para os cabos de excitação.

A tampa superior será fabricada em setores, facilmente removível, para manutenção ou para substituição dos trocadores de calor ar-água.

A tampa inferior será necessária para isolar o circuito de refrigeração do ambiente e servir de plataforma para futuras manutenções e reparos.

As tampas serão adequadamente vedadas para evitar a perda de ar do circuito interno do gerador.

A Figura 2-18 ilustra a tampa superior, guias de ar e fechamento inferior.

Figura 2-18 - Revestimento do gerador Fonte [10]

2.4 AUXILIARES

Os auxiliares são compostos pelos sistemas: resfriamento do ar do gerador, resfriamento do óleo dos mancais, frenagem, lubrificação forçada e anti-incêndio. Os tópicos marcados no quadro em vermelho na Figura 2-19 serão detalhados a seguir.

Figura 2-19 - Auxiliares do gerador

2.4.1 SISTEMA DE ÓLEO À ALTA PRESSÃO

Quando a máquina está em repouso, o peso do rotor resulta em falta de óleo entre a sapata de escora e o bloco de escora. As sapatas podem ser danificadas se o rotor partir sem óleo entre as superfícies. A mesma situação acontece quando a máquina está

prestes a parar. A velocidade diminui e, a certa altura, a película de óleo deixa de ser autossustentável e se rompe.

Portanto, um sistema especial deve ser instalado para fornecer óleo entre essas superfícies antes que o rotor comece a funcionar ou pare. A pressão deve ser suficiente para criar e manter uma película de óleo para que o rotor possa girar sem nenhum dano. Uma bomba externa, que bombeia óleo da câmara de óleo para as sapatas deve fornecer essa pressão.

Em geral, este sistema deve ser ligado pelo menos dois minutos antes da partida da máquina e mantido em funcionamento até que a máquina atinja sua velocidade nominal. Depois disso, pode ser desligado. Normalmente, durante a aceleração do rotor, a velocidade mínima na qual o sistema de alta pressão pode ser desligado é 50 % da velocidade nominal. Também deve estar funcionando a partir do momento em que a velocidade atinge 30 % da velocidade nominal até que a máquina esteja totalmente parada. Uma vez que a máquina não deve arrancar sem este sistema, é fornecida uma motobomba de reserva caso a principal não esteja disponível.

Caso a sapata do mancal de escora seja revestida com polímero, o sistema de óleo à alta pressão não é necessário durante as partidas e paradas da unidade geradora.

Figura 2-20 - Sistema de lubrificação forçada para o mancal de escora: (a) mancal de escora com segmentos sobre colchão visco-elásticas e (b) mancal de escora com segmentos de dupla camada com pinos elásticos.

Fonte: [11]

2.4.2 SISTEMA DE RESFRIAMENTO E CIRCULAÇÃO DO ÓLEO

O nível de óleo (que é do tipo ISO VG68 ou VG46) é tal que praticamente não existe formação de espumas e vapores de óleo, assim como garante o perfeito funcionamento do mancal durante a operação normal, e possíveis regimes transitórios.

A fim de se evitar que vapor de óleo penetre dentro do gerador, os mancais são projetados com sistema de vedação "*cross flow*", ou a instalação de um sistema de exaustor de vapor de óleo.

A refrigeração do óleo do mancal, é preferencialmente externa, por meio de 2 trocadores de calor óleo/água do tipo placas, sendo um deles de reserva ("*stand by*") e a circulação do óleo obtida através do sistema *auto-pump*, que consiste na circulação forçada do óleo

pela ação do próprio mancal. Para mancais em que o *auto-pump* não tem a capacidade de circular o fluxo de óleo necessário, motobombas são utilizadas.

Figura 2-21 - Sistema de resfriamento e circulação do óleo do mancal Fonte: [Própria]

2.4.3 SISTEMA DE REFRIGERAÇÃO DO GERADOR

A refrigeração do gerador será feita pela circulação do ar em circuito fechado, obtida pelo próprio efeito de rotação do rotor e por refrigeradores ar-água instalados na periferia da carcaça do gerador.

Para o sistema de ventilação do tipo radial, o ar frio será forçado pela aranha a circular através dos dutos de ventilação existentes no anel magnético, que por sua vez, forçará o ar a circular através do próprio anel magnético até os polos, enrolamento e núcleo estatórico. O ar de refrigeração atravessará os dutos radiais existentes no núcleo estatórico resfriando-o através de contato direto.

No caso de ventilação tipo axial/radial, o ar frio será forçado a circular por meio dos ventiladores axiais instalados em cada lado do rotor para o espaço interpolar e depois será forçado a circular no sentido radial pelo efeito de pressurização dos polos, passando pelo enrolamento e núcleo.

Após o resfriamento do núcleo estatórico, o ar quente atravessará radialmente os refrigeradores ar-água, sendo resfriado por contato direto com as aletas e voltando novamente, pela parte superior e inferior do gerador, a circular em seu interior.

O ar de refrigeração será dirigido às partes vitais do gerador com auxílio de guias de ar superior e inferior.

As tubulações, válvulas, coletores e todo material necessário para completar o sistema de refrigeração fazem parte do sistema de refrigeração.

Para grandes usinas hidroelétricas quase sempre o cliente estabelece que a capacidade dos refrigeradores seja calculada de maneira a manter a temperatura na saída do ar não

superior a 40 °C, com o gerador operando em potência nominal, reserva de 10 % na superfície do lado ar, e com a água entrando à temperatura conforme especificado.

O sistema de refrigeração deve ser dimensionado para funcionar com um refrigerador inoperante.

2.4.3.1 TROCADORES DE CALOR

Os trocadores de calor tipo ar-água, serão instalados na carcaça. Os tubos serão construídos em CuNi ou Cu, com chapas de alumínio ou de cobre formando aletas, comuns a todos os tubos em toda sua extensão, de modo a aumentar a área de dissipação de calor. Estes tubos serão fixados a dois espelhos, formando um feixe tubular, que por sua vez será montado à estrutura suporte.

A tampa inferior dos refrigeradores será provida de bujões aparafusados, para permitir a drenagem dos mesmos, sem desmontar as tubulações ou o próprio refrigerador. A desmontagem e remoção dos refrigeradores será facilmente executada, bastando desparafusar os flanges e retirá-los por aberturas previstas na plataforma superior.

A Figura 2-22 ilustra o trocador de calor ar-água e a tubulação de água.

(a) Trocador de calor

(b) Tubulação de fornecimento de água

Figura 2-22 - Sistema de refrigeração ar-água Fonte: [Figuras ilustrativas cedidas pela GE VERNOVA]

2.4.3.2 TUBULAÇÃO E VÁLVULAS

O sistema inclui toda a tubulação interna ao poço do gerador, interligando os refrigeradores e destes até o flange localizado imediatamente na parte externa da parede do poço. A tubulação será cortada e parcialmente ajustada na fábrica, a fim de permitir a montagem perfeita na obra. A conexão entre os refrigeradores e a tubulação de água será feita por flanges.

2.4.4 SISTEMA DE FRENAGEM E LEVANTAMENTO

O sistema de frenagem dos geradores é operado com ar comprimido e consiste de cilindros em disposição equidistante, instalados abaixo do rotor.

Normalmente o sistema é projetado para operar quando a velocidade atingir 20 % da rotação nominal no caso de parada normal, e com 50 % da rotação nominal no caso de parada de emergência, sem danificar a pista de frenagem do rotor com a pressão de ar na faixa de 0,65 a 0,80 MPa, sendo que este é suprido pelo sistema de ar comprimido da usina.

O processo de frenagem consiste no levantamento dos pistões até as lonas localizadas em cima das sapatas encostarem ao anel de freio. Para garantir o retorno das sapatas à sua posição, os cilindros estão equipados com molas de retração.

O sistema de frenagem e levantamento poderá utilizar os mesmos cilindros e a mesma câmara.

O levantamento dos cilindros é limitado por chave fim de curso que interrompe o comando de levantamento quando se atinge a altura máxima. Esta altura permite uma fácil inspeção, montagem ou desmontagem de partes do mancal. Para sinalização da posição dos cilindros e deslocamento máximo, são fornecidas chaves fim de curso. É previsto um sistema de travamento que bloqueia os cilindros em sua posição de levantamento máximo, permitindo que o sistema hidráulico fique fora de serviço.

Normalmente o sistema de frenagem e levantamento usa o mesmo circuito de tubulação. Portanto, após a operação de levantamento todo o óleo é drenado do circuito por ar forçado, ficando após isto, apto à nova operação como freio com ar comprimido. Com este método não haverá óleo no cilindro durante a operação de frenagem.

A tubulação do sistema de frenagem e levantamento é toda em tubos sem costura para suportar as pressões impostas.

O sistema de levantamento de cada gerador é operado por uma bomba motorizada com tanque de óleo, válvulas e acessórios, montado num carrinho, com mangueiras com engate rápido para a ligação ao sistema de levantamento do rotor.

O corpo dos cilindros de freio e levantamento será executado de tubo de aço, recebendo um tratamento especial de usinagem na superfície de deslizamento do pistão.

Na parte lateral inferior do cilindro de freio será previsto um furo que interligará sua parte interna com o flange da tubulação externa.

A base de assentamento do cilindro na face de contato, possuindo furos para sua fixação por meio de parafusos, os quais serão dimensionados de modo a resistir aos esforços provenientes do acionamento do freio.

O pistão é executado em aço adequadamente selecionado, recebendo um tratamento especial de usinagem, o que permite um deslizamento suave com as partes fixas do corpo do cilindro, por ocasião das operações de frenagem e levantamento.

Na parte superior do pistão é prevista uma rosca para regulagem e fixação da sapata de freio. Para assegurar a fixação, o pistão tem sua parte superior em forma esférica, sendo a sapata fixada por meio de pino.

Figura 2-23 - Macacos de freio e levantamento Fonte: [Própria]

3 PERDAS E RENDIMENTO

A seguir discorre-se sobre as perdas produzidas e inclusas no cálculo do rendimento, abordando o conceito do cálculo do rendimento médio ponderado utilizando os índices de ponderação que refletem as permanências das potências ao longo do tempo, na sequência, apresenta-se a classificação das perdas, onde se cita em detalhes todas as perdas em uma máquina síncrona de polos salientes, os componentes que as geram e como reduzi-las com mudança de material ou de concepção, enfocando na influência das harmônicas no campo principal e das harmônicas da reação da armadura e os fluxos dispersão. Apresenta-se um comparativo entre a utilização da ventilação axial e radial, assim como critérios normalmente utilizados para definição do tipo a ser utilizado, e discorre sobre a melhor localização para a instalação do mancal de escora com o objetivo de reduzir as perdas, e a utilização de materiais mais modernos de revestimento dos segmentos, principalmente de escora.

3.1 PERDAS CONSIDERADAS NO RENDIMENTO DO GERADOR

As perdas do gerador devem ser preferencialmente medidas pelo método calorimétrico, de acordo com a IEC 60034-2-1 "Standard methods for determining losses and efficiency from tests (excluding machines for traction vehicles)" [12] e IEC 60034-2-2 "Specific methods for determining separate losses of large machines from tests - Supplement to IEC 60034-2-1" [13]. As seguintes perdas podem estar inclusas no cálculo do rendimento:

- Perdas Ferro
- Perdas I²R do enrolamento do estator
- Perdas adicionais
- Perdas I²R no enrolamento de campo
- Perdas do sistema de excitação
- Perdas nas escovas
- Perdas nos mancais radiais do gerador
- Perdas no mancal de escora, somente a parcela devido ao gerador
- Perdas de ventilação

Nos itens a seguir: 3.1.1, 3.1.2, 3.1.3 e 3.1.4, discorre-se sobre as particularidades de cada item na consideração do rendimento.

3.1.1 PERDAS I²R DOS ENROLAMENTOS DO ESTATOR E ROTOR

Para determinar as perdas I²R nos enrolamentos, a resistência CC deve ser convertida para o valor correspondente à temperatura de referência em relação à classe do sistema de isolamento da máquina. Se a classe térmica inferior for aplicada ao enrolamento, a temperatura de referência da classe térmica inferior deve ser aplicada para o cálculo da perda do enrolamento, conforme mostrado na Tabela 3-1. Em todo caso, prevalece os valores especificados pelo cliente em suas especificações técnicas.

Tabela 3-1 - Temperatura de referência

Classe térmica do sistema de isolação	Temperatura de referência (°C)
130(B)	95
155(F)	115

Fonte: [14]

3.1.2 PERDAS NO SISTEMA DE EXCITAÇÃO DO GERADOR

As perdas no sistema de excitação incluem as perdas nos painéis, no transformador de excitação e os cabos ou barramentos lado CA desde a derivação do barramento do gerador até o transformador de excitação, e do transformador até os painéis de excitação, e nos cabos ou barramentos CC desde os painéis até a chegada aos anéis coletores.

A perda nas escovas inclui a parcela de perdas elétricas devido a queda de tensão nas escovas e mecânicas que é devido ao atrito com os anéis coletores.

As perdas no painel de excitação devem ser fornecidas pelo fabricante do sistema de excitação, e a perda do transformador de excitação fornecida pelo fabricante do mesmo. As perdas dos barramentos são obtidas por cálculo levando-se em conta as resistências e correntes.

Para a medição das perdas totais do sistema de excitação durante o comissionamento do gerador basta medir a potência de entrada e a potência de saída. O rendimento é dado pela divisão da potência de saída pela potência de entrada.

A seguir a Figura 3-1 ilustra um típico painel e transformador de excitação.

3.1.3 PERDAS NOS MANCAIS DO GERADOR

As perdas nos mancais radiais do gerador são as perdas geradas nos mancais de guia de escopo de fornecimento do gerador, com a unidade geradora a plena carga.

As perdas do mancal de escora a ser considerado no rendimento do gerador corresponde somente a parcela devido ao gerador P_b , com a unidade geradora a plena carga.

Para unidades geradoras verticais, a parcela do gerador pode ser calculada pela seguinte fórmula (3-1):

$$P_b = \frac{W_G}{W_G + W_T + F_H} P_B \tag{3-1}$$

Onde:

 W_G é o peso das partes rotativas do gerador, em [kN];

 W_T é o peso das partes rotativas da turbina, em [kN];

 F_H = máximo valor garantido do empuxo hidráulico nas condições nominais de operação e com os valores de projeto da folga dos selos do rotor da turbina, em [kN];

 P_B = perda total do mancal de escora com o óleo a 45 °C, ou outro valor de temperatura do óleo conforme previamente acordado entre fabricante e cliente, em [kW].

Se o mancal de escora é combinado com mancal de guia, P_B se refere sómente à parcela do mancal de escora. A separação entre perdas do mancal de escora e do mancal de guia é feita por cálculo.

3.1.3.1 CORREÇÃO DAS PERDAS DOS MANCAIS COM A TEMPERATURA DO ÓLEO

Se a temperatura do óleo é diferente de 45 °C ou outro valor se previamente acordado, as correções das perdas devem ser feitas para as perdas no mancal de escora e nos mancais de guia (radiais) conforme Anexo C da IEC 60034-33 [14].

Para mancais de guia das máquinas verticais aplicar (3-2):

$$P_1 = P_o \sqrt{\frac{\eta_1}{\eta_o}} \tag{3-2}$$

Onde:

 P_o é a perda medida no mancal de guia à temperatura diferente da temperatura em que esta perda foi garantida, em [kW];

 P_1 é a perda no mancal de guia corrigida para a temperatura do óleo garantido, em [kW];

 η_1 = Viscosidade dinâmica do óleo à temperatura em que a perda foi garantida, em [Pa s];

 η_o = Viscosidade dinâmica do óleo à temperatura do ensaio, em [Pa s].

Para mancais radiais das máquinas horizontais, a seguinte fórmula se aplica (3-3):

$$P_1 = P_o \sqrt[4]{\frac{\eta_1}{\eta_o}} \tag{3-3}$$

Para os mancais de escora das máquinas verticais, a mesma fórmula (3-3) se aplica.

3.1.3.2 ALOCAÇÃO DAS PERDAS DO MANCAL DE ESCORA / MANCAL COMBINADO SEGUNDO AS NORMAS IEC, IEEE E AS PRÁTICAS USUAIS

A seguir tem-se uma comparação entre as normas IEC, IEEE e as práticas mais usuais no mercado.

```
IEC 60034-2 item 10.1 [17]
```

As perdas em mancais comuns, tais como mancal de escora ou mancal combinado, devem ser apresentadas em separado, não sendo incluso no cálculo do rendimento do gerador.

```
IEC 60034-2-2 item 7.2.5.6 [13]
```

As perdas em mancais comuns, tais como mancal de escora ou mancal combinado, devem ser apresentadas em separado, não sendo incluso no cálculo do rendimento do gerador. Essas perdas devem ser subtraídas do total de perdas mecânicas.

```
IEC 60034-33 item 5.7.2 [14]
```

Referente à perda do mancal comum ao gerador e turbina, somente aquela parcela da perda devido ao gerador deve ser incluída no cálculo do rendimento do gerador.

```
IEEE C50.12 item 8.3.6.c [18]
```

No caso de geradores equipados com um jogo completo de mancais, somente aquela parcela das perdas devido ao gerador deve ser incluída no cálculo do rendimento.

No caso de geradores não equipadas com um jogo completo de mancais, apenas aquelas parcelas de perdas dos mancais fornecidos pelo gerador devem ser incluídas. Quando as perdas são divididas entre equipamentos ou entre fabricantes, o método de alocação das perdas estará sujeito a acordo entre o fabricante e o cliente.

Baseando em experiência de anos trabalhando com geradores, a perda do mancal comum ao gerador e turbina, seja somente mancal de escora ou mancal combinado escora/guia nem sempre houve um consenso no cálculo das perdas.

 Quando o mancal de escora é de escopo do gerador, existem casos em que as perdas do mancal de escora foram indicadas em separado e não incluído no rendimento do gerador, outra vezes incluindo-se somente a parcela das perdas do mancal de escora devido ao gerador e, em alguns, casos a inclusão das perdas totais do mancal de escora no computo do rendimento do gerador.

- Quando o mancal de escora é fornecido pela turbina, normalmente as perdas deste mancal fica a cargo do fabricante da turbina e não se inclui no cálculo do rendimento do gerador. São raros os casos em que a parcela de perdas do mancal de escora devido ao gerador é considerada no rendimento do gerador.
- Aqui será mencionado somente o mancal de escora, mas o mesmo é válido quando se trata de um mancal combinado escora/guia.

3.1.4 PERDAS DE VENTILAÇÃO

As perdas de ventilação são as perdas devido ao atrito viscoso do fluxo de ar dentro da máquina e devem ser referidas à temperatura do ar frio de resfriamento previamente acordado, geralmente 40 °C, e umidade relativa acordada, geralmente 40 %.

Ao medir as perdas de ventilação durante um ensaio de rendimento de acordo com a IEC 60034-2-2, ou seja, com a máquina em giro mecânico na rotação nominal e sem excitação. Nesse ensaio a temperatura do ar frio geralmente não está na temperatura de projeto. Isso ocorre porque a vazão de água de resfriamento é reduzida para aumentar a diferença de temperatura da água e melhorar a precisão das medidas. Por outro lado, as perdas geradas nesse ensaio são muito menores do que as perdas a plena carga.

As perdas de ventilação devem ser referidas à densidade do ar frio e podem ser recalculadas para sua condição nominal com a seguinte fórmula (3-4):

$$Pv_c = Pv_m \frac{\rho_{tref}}{\rho_{tm}} \tag{3-4}$$

Onde:

 Pv_c é a perda de ventilação corrigida para a temperatura de referência de 40 °C, ou outro valor previamente acordado, em [kW];

 Pv_m é a perda de ventilação medido, em [kW];

 ρ_{tm} é a densidade do ar na temperatura do ar de refrigeração durante o ensaio, em [kg/m³];

 ho_{tref} é a densidade do ar na temperatura de referência, em [kg/m³].

Caso a rotação da máquina esteja diferente da rotação nominal, considerar que a perda de ventilação varia com o cubo da rotação.

Para calcular a densidade do ar frio a partir da temperatura do ar frio e das condições ambientais, a ISO 5801 [19] fornece um bom método de cálculo. A ISO 5801 apresenta uma fórmula polinomial para calcular a pressão de vapor de água ambiente.

Pressão do vapor de água (p_{D_amb}) a temperatura ambiente $\theta_{amb} \leq 30$ °C

$$p_{D_amb} = \varphi_{amb} \, e^{\left(17,438 \frac{\theta_{amb}}{239,78 + \theta_{amb}} + 6,4147\right)} \tag{3-5}$$

Pressão do vapor de água (p_{D_amb}) a temperatura ambiente $\theta_{amb} > 30$ °C

$$p_{D_{amb}} = (610,8 + 44,442 \,\theta_{amb} + 1,4133 \,\theta_{amb}^2 + 0,02768 \,\theta_{amb}^3 + 2,5566 \,10^{-4} \,\theta_{amb}^4 + 2,89166 \,10^{-6} \,\theta_{amb}^5) \,\varphi_{amb}$$
⁽³⁻⁶⁾

$$\rho_{Dc} = \frac{p_{Dc}}{R_D \left(273, 15 + \theta_c\right)} \tag{3-7}$$

$$\rho_{dAc} = \frac{p_{amb} - p_{Dc}}{R_A \left(273, 15 + \theta_c\right)} \tag{3-8}$$

$$\rho_c = \rho_{Dc} + \rho_{dAc} \tag{3-9}$$

Onde:

 ho_{Dc} é a densidade parcial do vapor de água, em [kg/m³];

 ho_{dAc} é a densidade parcial do ar seco, em [kg/m³];

 p_{Dc} é a pressão do vapor de água, em [kPa];

 p_{amb} é a pressão do ambiente=101325, em [Pa];

 φ_{amb} é a umidade relativa do ambiente, valor normal = 0,40, em [-];

 θ_{amb} é a temperatura do ambiente, em [°C];

 $heta_c$ é a temperatura do ar frio, em [°C]

 R_A é a constante do ar=287,3 , em $\left[\frac{J}{kg}K\right]$

 R_D é a constante do vapor de água=460 , em $\left[\frac{J}{kg}K\right]$

3.2 RENDIMENTO MÉDIO PONDERADO DO GERADOR (RMPG)

Estudos são realizados pelas equipes de engenharia sobre a afluência da bacia hidrológica na afluência no local da instalação da usina, tomando-se como base o histórico de vários anos, sofrendo influência do período de seca e período de chuva. Também há que se considerar que as usinas hidrelétricas atuais tendem a ser construídas a fio de água com um reservatório muito reduzido.

Nesse estudo se avalia a operação das unidades geradoras em determinada potência dentro dos limites permitidos pela turbina, e para cada potência se determina a permanência operativa nessa condição. O índice de permanência em cada ponto operativo se denomina de fator de ponderação. Cabe ao projetista do gerador otimizar o RMPG ao invés do rendimento a 100 % de carga. Para a otimização do RMPG o projetista

deve priorizar o maior rendimento na carga em que lhe é atribuído o maior fator de ponderação.

De acordo com a IEC60034-33 [14] a fórmula (3-10) se aplica no cálculo do RMPG:

$$RMPG = \sum_{k=1}^{n} A_k \eta_k \tag{3-10}$$

Onde:

 A_k (k=1,2,3,...,n) são os fatores de ponderação a uma carga específica e definido pela equação (3-11), em [-],

$$\sum_{k=1}^{n} A_k = 1 \tag{3-11}$$

 η_k (k=1,2,3,...,n) são os rendimentos à tensão, rotação nominais e a um fator de potência e carga específica, em [%].

Como resultado de uma coletânea de várias especificações técnicas analisadas, para a maioria dos geradores fabricados no Brasil, há uma fórmula diferente do item anterior e que também apresenta resultados um pouco diferentes.

$$RMPG = \frac{\sum_{k=1}^{n} P_k A_k \eta_k}{\sum_{k=1}^{n} P_k A_k}$$
(3-12)

Onde:

 P_k (k=1,2,3,...,n) são as potências parciais à tensão e rotação nominais e um determinado fator de potência, em [pu].

 A_k (k=1,2,3,...,n) são os fatores de ponderação a uma carga específica, em [-] e definido pela equação (3-11).

 η_k (k=1,2,3,...,n) são os rendimentos à tensão, rotação nominais e a um fator de potência e carga específica, em [%].

3.3 CLASSIFICAÇÃO DAS PERDAS

Além das ações mais óbvias para otimização do rendimento como utilização de materiais de aço-silício de baixas perdas, ou aumento de seção de cobre nas barras/bobinas do enrolamento do estator e enrolamento dos polos, discorrer-se-á sobre as muitas ações que podem ser tomadas para redução de perdas e otimização do rendimento do gerador.

As perdas em uma máquina síncrona de polos salientes podem ser classificadas pelos itens abaixo [20], [1], [21], [22], [23], [24] e [25]:

3.3.1 PERDAS FERRO DO ESTATOR

O fluxo magnético alternado passando através das laminações do núcleo do estator gera perdas no material do núcleo. Essas perdas são criadas por efeitos de histerese (perdas de histerese), por fenômenos de correntes parasitas de Foucault (perdas por correntes parasitas) e mudanças na estrutura do domínio de histerese (perdas em excesso). Estas perdas dependem fortemente da amplitude e da frequência do campo de excitação alternado [20].

Figura 3-2 - Composição das perdas ferro

Fonte: [Própria]

A Tabela 3-2 lista as principais chapas de aço-silício GNO espessura de 0,35 e 0,5 mm, atualmente utilizadas pelos grandes fabricantes de geradores de grande porte para usinas hidrelétricas. A qualidade da chapa se baseia na perda magnética a 1,5 T e 50 Hz, mas durante a fabricação destas, é possível solicitar ao fabricante da chapa garantir em outro ponto de indução e frequência.

Qualidade da chapa	Espessura [mm]	Perdas Magnéticas [W/kg]			
		1.	ОТ	1.5	5 T
		50 Hz	60 Hz	50 Hz	60 Hz
M210-35A	0,35	0,90	1,15	2,10	2,65
M235-35A	0,35	0,95	1,20	2,35	2,90
M250-35A	0,35	1,00	1,25	2,50	3,14
M270-35A	0,35	1,10	1,40	2,70	3,36
M230-50A	0,50	1,00	1,30	2,30	2,95
M250-50A	0,50	1,05	1,35	2,50	3,20
M270-50A	0,50	1,10	1,40	2,70	3,45
M290-50A	0,50	1,15	1,45	2,90	3,65
M310-50A	0,50	1,25	1,58	3,10	3,85

Tabela 3-2 - Tabela das principais qualidades das chapas siliciosas GNO

Fonte: [26]

A utilização da chapa de GNO de 0,35 mm de espessura aumenta em mais de 40 % (0,5/0,35=1,43) a quantidade de lâminas a serem estampadas, envernizadas, e empilhadas e que afetam nos custos de fabricação e empilhamento. A perda magnética da melhor chapa de 0,35 mm é um pouco melhor que a melhor chapa de 0,5 mm. O fator de empilhamento da chapa de GNO de 0,35 mm é em torno de 0,93 a 0,94, enquanto a chapa de 0,50 mm é de 0,95 a 0,96, significando que o projeto utilizando chapa de 0,35 mm em um mesmo comprimento axial do núcleo, tem menos volume de chapa siliciosa, ou seja, maior saturação dos dentes e da coroa.

Considerando os aspectos de perdas e custos de fabricação e montagem, a melhor chapa a ser utilizada é a M230-50A. Dependendo do custo e benefício do ganho de rendimento a chapa M250-50A pode também ser uma boa alternativa.

Ao longo de vários anos de projeto de hidrogeradores, nota-se que as chapas de GO – Grão Orientado não são de uso normal em geradores hidrelétricos por seu alto custo e baixo ou nenhum benefício sobre as perdas. No entanto, tem-se conhecimento de aplicação de dessas chapas de GO em hidrogeradores, nesses casos, é importante dispor das curvas de magnetização tanto no sentido da laminação como no sentido transversal e, durante o cálculo da força magnetomotriz, deverá ser considerado o sentido do fluxo magnético concomitante com o sentido de orientação dos grãos ou o do sentido transposto [27]. As perdas ferro também dependem das harmônicas presentes no campo principal do entreferro em vazio [20], portanto a otimização da forma da sapata polar para minimizar as harmônicas do campo tem um bom impacto nas perdas ferro. Para a otimização da forma da sapata pode se utilizar sapatas com 3 raios, ou com raio único e relação $\frac{\delta_{max}}{\delta_{min}} > 1,35$, onde δ_{max} é o entreferro na borda da sapata e δ_{min} é o entreferro no centro do polo.

Normalmente escadinhas são feitas nas extremidades do núcleo do estator e tem a função de reduzir o fluxo disperso e minimizar fluxo magnético em sentido axial incidente sobre a lateral dos dentes nas extremidades, evitando sobreaquecimento da região e diminuindo as perdas devido as correntes parasitas de *Foucault* nessas chapas. Ver ilustração Figura 2-5.

Para máquinas com dentes largos (dimensão em sentido tangencial), em torno de 45 mm ou maior, rasgos (*slits*) são feitos nos dentes para simular dentes mais estreitos e diminuir o aquecimento e as perdas devido ao fluxo disperso de sentido axial. Ver ilustração Figura 2-5.

O fluxo disperso nas extremidades do núcleo também cria correntes parasitas nos dedos de pressão e causam perdas, embora os dedos de pressão sejam materiais não magnéticos, devido ao trabalho de corte, usinagem e solda, a permeabilidade magnética se modifica para valores em torno de 1,10, sendo que o critério utilizado pelo fabricante para aceitação dos dedos de pressão é que a permeabilidade magnética relativa seja no máximo 1,10. Dedos mais estreitos reduzem perdas, portanto ao invés de um dedo de pressão largo, maior que 30 mm, dividi-lo em 2 de 15 mm produz perdas menores. Ver ilustração Figura 2-5.

O fluxo magnético de dispersão pode ser minimizado com otimização das extremidades axiais das sapatas polares, por exemplo, fazendo o polo com comprimento axial em torno de dois a quatro comprimentos do entreferro menor que o comprimento total do núcleo do estator [27].

Todas as perdas magnéticas mencionadas acima variam com a magnitude do campo do entreferro ao quadrado. Cabe considerar que para reduzir o campo do entreferro há que se aumentar o número de espiras por fase ou as dimensões físicas do gerador.

3.3.2 PERDAS NO ENROLAMENTO DO ESTATOR

São perdas no enrolamento do estator calculadas de forma a incluir as principais causas que promovem essas perdas. As perdas no enrolamento do estator consistem em:

- Perdas ôhmicas I²R no enrolamento do estator, devido à corrente de armadura, porém, considerando a corrente nominal como se fosse corrente contínua, ou seja, incluir qualquer outro fenômeno;
- Perdas por correntes parasitas (efeito pelicular) nos condutores devido ao campo de dispersão de ranhura pulsante transversal,
- Perdas de correntes parasitas locais nos condutores superiores da ranhura devido ao campo de entreferro radial variável penetrante,
- Perdas de correntes parasitas circulantes e locais devido a campos parasitas de dispersão na região final das cabeças do enrolamento.

A ação mais corriqueira para diminuir as perdas ôhmicas do enrolamento do estator, é aumentando a seção de cobre, que implica em aumentar a dimensão da ranhura e aumentar a densidade de fluxo no núcleo do estator. Esta ação diminui as perdas no cobre, porém aumenta perdas no núcleo, e para manter as perdas no núcleo tem-se que aumentar as dimensões físicas da máquina.

Portanto vê-se a importância de um projeto da barra otimizado para reduzir o estresse elétrico da isolação principal, o que pode permitir reduzir a sua espessura e operar com uma rigidez dielétrica maior em torno de 3,0 kV/mm. A redução da espessura pode ser compensada pelo aumento de cobre e redução de perdas ôhmicas.

Pela experiência adquirida ao longo da vida profissional, tem-se que se considerar as mesmas dimensões da ranhura e da barra isolada, e utilizar fios mais finos aumentando a quantidade de tal forma que a área permaneça similar a perda diminui. Por fios mais finos entende-se espessura de 1,6 a 1,8 mm e fios grossos para espessuras em torno de 2.5 mm. A espessura dos fios tem grande influência nas perdas para barras grandes que conduzem correntes maiores que 2500 A. Para barras menores e com pouca influência da espessura dos fios, utilizar o mais espesso, pois estes são mais baratos em termos de matéria prima e de maior facilidade de fabricação.

Diminuindo a altura axial do dedo de pressão, se mecanicamente permitido, a barra poderá ser mais curta e gerar menos perdas.

As conexões de grupos (jumpers), as conexões que fecham os circuitos paralelos até os terminais devem ser dimensionadas com geometria devidamente estudada para reduzir as perdas devido à redução de área pelo efeito pelicular (*skin effect*). Para condutores ocos, deixar a parede em torno de 11 a 12 mm de espessura e, para condutores chatos, quanto menor a espessura menor será o efeito pelicular. Valores normalmente utilizados estão na faixa de 12 a 16 mm, alguns casos chegando a 20 mm. Os condutores redondos têm alto valor para o efeito pelicular, o que significa que a parte central do condutor está subutilizado, portanto uma verificação de custo entre condutor oco e condutor redondo deve ser feita. Estas constatações são resultado de cálculos executados e experiência de longos anos em projeto de geradores.

A disposição das conexões deve ter as fases alternadas para aproveitar o efeito produzido pelos campos magnéticos das correntes que estão defasados de 120 graus elétricos para minimizar o aumento da resistência devido ao efeito de proximidade. Evitar condutores adjacentes de mesma fase.

A seguir, na Figura 3-3, algumas ilustrações das conexões redondas, ocas, retangulares e seu arranjo físico.

(a) Cundutor redondo

(d) Disposição das conexões

(c) Condutor retangular

(e) Arranjo das conexões

(f) Disposição dos condutores para efeito proximidade

Figura 3-3 – Tipo e arranjo dos condutores

Fonte: [Própria]

Para cada tipo de máquina estudar em detalhes o enrolamento tipo imbricado ou ondulado e utilizar aquele que produzir as menores perdas ôhmicas.

3.3.3 PERDAS NO ENROLAMENTO DE CAMPO

Perdas ôhmicas I²R no enrolamento de campo, devido a corrente de excitação.

Para reduzir perdas só com aumento de cobre ou redução da FMM do polo. O aumento da quantidade de cobre causará um aumento nas tensões mecânicas dos polos, sendo necessário melhorar o material do núcleo polar ou aumentar as suas dimensões causando um completo redimensionamento do gerador.

Poder-se-ia também reduzir a FMM do polo com a diminuição do entreferro ou aumento do número de espiras no enrolamento do estator.

3.3.4 PERDAS NO ENROLAMENTO AMORTECEDOR

Harmônicas do campo do entreferro que gira em uma rotação diferente da síncrona, induz tensão nas barras de amortecimento [28], [29], [30].

Como consequência circula uma corrente nas barras de amortecimento gerando perdas, que são baseados em:

1. Harmônicos de ranhuras com a máquina à vazio,

2. Harmônicos da força magnetomotriz da reação da armadura do enrolamento do estator em carga.

Aumentar o diâmetro das barras de amortecimento reduz as perdas no amortecedor, porém pode ser necessário aumentar a altura radial da sapata, o qual aumenta a dispersão do polo e aumento do peso do polo, que pode ter influência no anel magnético, aranha e até aumento de carga no mancal de escora. Logo esta não é uma solução sensata.

Pode-se reduzir o efeito das harmônicas de ranhura, com o estreitamento da ranhura ou aumento do entreferro, que pode levar a um completo redimensionamento da máquina.

Perdas devido a harmônicos da reação da armadura pode ser reduzida com a redução das harmônicas com adequada escolha do número de ranhuras e passo de enrolamento, ou aumento de entreferro.

3.3.5 PERDAS NA SUPERFÍCIE DA SAPATA DO POLO

Essas perdas são da mesma origem que as perdas no enrolamento do amortecedor, e são causados pela pulsação da relutância produzida pelos dentes e pelos harmônicos da FMM de reação da armadura do enrolamento do estator [20].

Pode-se reduzir o efeito das harmônicas de ranhura, com o estreitamento da ranhura ou aumento do entreferro, que pode levar a um completo redimensionamento da máquina.

Perdas devido a harmônicos da reação da armadura pode ser reduzida com a redução das harmônicas com adequada escolha do número de ranhuras e passo de enrolamento, ou aumento de entreferro.

Estas perdas também são inversamente proporcionais ao quadrado da espessura das lâminas dos polos. As chapas normalmente utilizadas são de 2 a 4 mm de espessura, laminadas a quente. O próprio óxido gerado devido a laminação prove necessária isolação entre chapas. No mercado da China tem disponível chapas de 1,5 mm laminadas a quente. Para minimizar ainda mais as perdas, pode-se utilizar chapas de 1 mm de espessura laminadas a frio. Estas chapas têm um limite de escoamento de no máximo 350 Mpa e devem ser isoladas entre si para não formar um bloco de chapa maciço e aumentar as perdas. O limite na qualidade mecânica destas chapas pode conduzir ao redimensionamento completo do gerador.

Estas perdas não são somente devido às chapas finas, mas tem grande influência das placas de pressão dos polos, quando existente. Pode-se aumentar a distância da superfície da placa de pressão com o núcleo do estator (aumento do entreferro localizado na região da placa de pressão do polo), e/ou pode-se fazer rasgos tangencias (ranhuras) nas placas, simulando como se fosse um conjunto de chapas finas.

3.3.6 PERDAS ADICIONAIS NAS EXTREMIDADES DO NÚCLEO DO ESTATOR

Campos de dispersão nas extremidades do núcleo causam correntes parasitas locais nas extremidades frontais do núcleo do estator [20],

- Perdas por correntes parasitas nas placas de pressão.
- Perdas por correntes parasitas nos dedos de pressão.

• Perdas por correntes parasitas nas laminações de extremidade do núcleo.

Para redução destas perdas, veja item 3.3.1 acima.

3.3.7 OUTRAS PERDAS

São perdas que são muito difíceis de avaliar e são classificadas como outras perdas, por exemplo. perdas adicionais em conexões do enrolamento, perdas por correntes parasitas em carcaça, caixas de terminais e guias de ar [20].

As perdas devido ao fluxo de dispersão causado pelas correntes que circulam nas cabeças de bobinas geram perdas e tem relação com o comprimento desenvolvido das cabeças das barras. Por este motivo os enrolamentos do tipo imbricado produzem menores perdas que enrolamentos ondulados.

Este fluxo disperso nas cabeças de bobinas pode gerar correntes parasitas nas guias de ar metálicas e magnéticas. A redução destas perdas pode ser feita através do aumento de distância entre guias de ar e cabeças do enrolamento, e que pode causar aumento no layout do gerador. Outra ação mitigadora seria utilizar guias de ar com materiais não magnéticos, como fibra de vidro, aço inoxidável não magnético ou alumínio.

3.3.8 PERDAS DE VENTILAÇÃO

As perdas de ventilação de ar consistem em perdas de geração de pressão (por exemplo, nos ventiladores montados no eixo) e perdas por atrito viscoso de ar (por exemplo, na superfície do rotor).

As perdas de ventilação dependem em grande parte do tipo de ventilação utilizado, sendo que o sistema com ventilação axial/radial produz perdas bem menores quando comparado ao sistema de ventilação radial (*rotor-rim ventilation*). Redução de perdas de ventilação pode chegar facilmente a 30 %.

Pela experiência adquirida em anos de profissão, geradores com velocidade tangencial do rotor de 50 m/s ou maior e comprimento total axial do núcleo do estator menor ou igual a 2200 mm podem utilizar ventiladores axiais, ou alguma outra condição, desde que estudos detalhados sejam feitos em CFD.

A vantagem do sistema de ventilação radial é a melhor uniformidade de temperatura no núcleo do estator e nos polos do rotor, e é um projeto muito mais seguro por não necessitar de aletas de ventilação, que acidentalmente pode se romper e danificar a máquina e seu custo é menor que o sistema axial/radial.

As perdas de ventilação são proporcionais a vazão de ar que circula no gerador, portanto reduzir a vazão de ar e direcioná-lo corretamente às partes vitais da máquina para refrigeração, pode ser uma solução desafiadora. Regras utilizadas dentre os principais fabricantes de geradores mantém a elevação de temperatura do ar em 30 a 32 graus Celsius no máximo.

3.3.9 PERDAS NOS MANCAIS

Perdas por atrito nos mancais e perdas adicionais devido à potência de bombeamento auxiliar.

Pela experiência adquirida em anos de profissão, para geradores com diâmetro interno do estator menor que 5600 mm usa-se preferencialmente o mancal de escora acima do rotor do gerador. A grande vantagem desta solução é que o eixo superior não necessitando transmitir torque, pode ser dimensionado com diâmetro menor que o eixo inferior. Eixo com diâmetro menor permite projetar mancal de escora com menor diâmetro e tem a grande vantagem de produzir menores perdas de atrito. Para diâmetros maiores que 5600 mm normalmente se utiliza o mancal de escora ou o mancal combinado abaixo do rotor para reduzir o peso da cruzeta em que esse mancal está instalado. Se o mancal combinado ficar acima do rotor com diâmetro do estator maior que 5600 mm a cruzeta torna-se muito robusta e pesada.

Se for necessário projetar com um mancal de escora abaixo do rotor do gerador, empenhar todos os esforços no projeto de um mancal com diâmetro o menor possível. Esta solução passa por projetar o bloco de escora como parte integrante do eixo inferior, que pode economizar alguns centímetros no diâmetro do mancal.

Outra possibilidade seria utilizar o mancal de escora revestido com polímero do tipo teflon ou *peek,* que devido as suas características de serem mais moles e termicamente mais isolantes, permitem a utilização com maiores pressão específica e menor espessura do filme de óleo [23].

Normalmente os mancais de escora com revestimento com metal patente permitem uma pressão específica de 3 MPa, enquanto os mancais de escora com sapatas revestidas com polímeros permitem uma pressão específica de 6 MPa. Haverá uma redução substancial nas dimensões do mancal e grande redução das perdas por atrito.

3.3.10 MEDIÇÃO DAS PERDAS

Esse modelo de perda é baseado em considerações físicas, portanto, é muito complicado para comparação com medições de perda de uma máquina real. Máquinas síncronas de grande porte não podem ser medidas a plena carga por um acionamento de motor calibrado na fábrica, portanto essas máquinas são comissionadas na obra por segregação de perdas (ver norma IEC 60034-2-1 [12]), levando em consideração os seguintes componentes:

P1 – Sem carga, não excitado: Este teste mede as perdas por atrito mecânico e ventilação (perdas por movimentar o ar por atrito viscoso e perdas nos mancais).

P2 - Sem carga, excitado: O teste de perdas em circuito aberto avalia a soma de todas as perdas elétricas e magnéticas em circuito aberto e as perdas por atrito mecânico. As perdas dependentes do campo de excitação principal estão disponíveis após subtrair as perdas medidas com o gerador sem carga. Então, desejando calcular as perdas

magnéticas do gerador sem carga deve se subtrair as perdas de I²R das bobinas de campo (com a corrente de excitação medida durante o teste)

P3 - Curto-circuito, excitado: Durante o teste de curto-circuito, com corrente nominal circulando pelo estator, é medida a soma de todas as perdas dependentes da corrente do estator (após subtrair as perdas P2 – sem carga-excitado).

As perdas ôhmicas no enrolamento de campo do rotor são determinadas a partir da corrente de campo CC medida I_f e da resistência ôhmica do campo.

A soma desses três componentes de perdas fornece a perda total e a rendimento da máquina. A segregação das perdas dependentes do campo principal e das perdas dependentes da corrente do estator não refletem exatamente as perdas reais na máquina. No entanto, é um método simples e útil, que está definido nas normas (por exemplo, IEC 60034-2-1 [12] e IEC 60034-33 [14]) e se aproxima muito das perdas reais da máquina.

4 PRINCÍPIOS DE DIMENSIONAMENTO ELETROMAGNÉTICO E TÉRMICO DE UM GERADOR SÍNCRONO DE POLOS SALIENTES

4.1 INTRODUÇÃO

Um dos grandes desafios dos engenheiros dedicados ao projeto de dínamos foi o de entender as leis eletrodinâmicas que governam o cálculo do dimensionamento eletromagnético das máquinas elétricas rotativas. Pode-se citar pelo seu empenho e perseverança a W. B. Esson 1890 [31] e Ernest Wilson 1897 [32] em cujos trabalhos pode-se notar quão nebuloso parecia desbravar esta área do conhecimento, responsável pelo conforto humano e desenvolvimento industrial.

Muito embora, por volta de 1850, a lei circular de Ampere e a relação entre a intensidade do campo magnético (\mathcal{H}) e o campo magnético (\mathcal{B}) a ele associado já fossem bem conhecidas, pode-se notar que esses princípios ainda não estavam devidamente absorvidos e incorporados às práticas do cotidiano de projetar máquinas elétricas.

Após mais de um século, ainda é um desafio assimilar esses princípios, embora o caminho já nos tenha sido mostrado por J. H. Walker 1968 [33]. Todavia, a sua associação com os princípios de conversão de energia, ainda não foram amplamente divulgados.

Diante desse cenário, o presente capítulo se propõe a mostrar a origem da identidade construtiva de uma máquina síncrona de polos salientes, a partir do conceito fundamental da densidade volumétrica de energia, restrito aos princípios de conversão de energia e sua aplicação imediata às máquinas síncronas de polos salientes.

4.2 DENSIDADE VOLUMÉTRICA DE ENERGIA

Só o conceito de energia eletromagnética, dentro de um processo de conversão de energia, pouco acrescenta à percepção da sua relação com os requisitos dos materiais que compõem o seu circuito magnético.

Por isso há a necessidade de se buscar um conceito que envolva as caraterísticas desses materiais, de forma que nos permita obter uma identidade que associe a energia eletromagnética ao material por onde permeiam as linhas de fluxo magnético.

Esse conceito é denominado de densidade volumétrica de energia eletromagnética, que será discutido a seguir.

4.3 A LEI CIRCUITAL DE AMPERE

Tudo indica que foi J. C. Maxwell que, por volta de 1855 [34], quem nos legou a lei circuital de Ampere na sua forma mais conhecida,

$$\oint \mathcal{H} \, dl = n \, i = \mathcal{F} \tag{4-1}$$

Onde n é o número de espiras, i é a corrente (A), e \mathcal{F} é a força magnetomotriz (FMM) e \mathcal{H} é intensidade magnética linear, dada por $\mathcal{H} \triangleq (n i)/l$

Há que se notar que na expressão (4-1) não há nenhuma correlação com o meio ou material por onde circulam as linhas de fluxo.

Quando se faz necessário levar em consideração a influência do meio ou matéria que afeta a ação motriz de \mathcal{H} , deve se recorrer a uma medição experimental² para determinar a resposta de cada material à influência de valores crescentes de forças magneto motrizes sob a forma da \mathcal{H} .

Para essa finalidade, há a necessidade de introduzir o conceito da densidade de fluxo magnético (\mathcal{B}) que relaciona a quantidade de linhas de fluxo magnético (ϕ) que atravessa perpendicularmente uma seção de área conhecida (A) conforme descrito pela equação (4-2)

$$\mathcal{B} = \frac{\Phi}{A} = \mu \,\mathcal{H} \tag{4-2}$$

Assim, a correlação experimental entre \mathcal{H} e \mathcal{B} se estabelece por meio da μ permeabilidade magnética do meio [35]- que rege sobre a forma como as linhas de fluxo magnético permeiam a matéria.

Somente no ar é que a permeabilidade magnética tem um comportamento constante e igual a (4-3)

$$\mu_{ar} = \mu_0 \cong 4\pi \ 10^{-7} \ [\text{H/m}] \tag{4-3}$$

Principalmente para os materiais ferromagnéticos a permeabilidade magnética adquire um comportamento altamente dependente de \mathcal{H} e, experimentalmente, pode-se comprovar que esses materiais têm limitação definida e associada à sua capacidade de deixar permear linhas de fluxo magnético. À essa limitação se deu o nome de saturação. É por isso que o registro da ação da \mathcal{H} sobre o material foi denominada como curva de saturação [35].

Algebricamente, a relação entre a intensidade linear do campo magnético \mathcal{H} que excita o material e a densidade de fluxo \mathcal{B} medida numa seção desse material é dada por (4-4),

$$\mathcal{B} = \mu_m \,\mathcal{H} \tag{4-4}$$

$$\mu_m = \mu_0 \mu_r = f(\mathcal{H}) \tag{4-5}$$

Onde, por uma questão de sensibilidade de grandeza, define-se o conceito de permeabilidade relativa ($\mu_r \triangleq \mu_m/\mu_0$) do material em questão, fazendo uma associação com a permeabilidade magnética do ar. A título de ilustração, na Figura 4-1 se mostra a

² Quando observado em materiais ferromagnéticos, o levantamento da curva de saturação, em geral, faz-se empregando o quadro de Epstain.

curva de saturação e a sua correspondente curva de permeabilidade relativa de uma chapa de aço silício de M250-50A-50 Hz-C3.

Dessa forma, levando (4-2) em (4-1), a lei circuital de Ampere pode ser escrita como em (4-6)

$$\oint \mathcal{H} \, dl = \oint \frac{\mathcal{B}}{\mu} \, dl = n \, i = \mathcal{F} \tag{4-6}$$

Que estabelece uma relação com a matéria por onde permeia o fluxo magnético.

Figura 4-1 - Curva de saturação e permeabilidade relativa de uma chapa de aço silício M250-50A-50 Hz-C3 com 0,5 mm de espessura. Fonte: [3]

4.4 A DENSIDADE VOLUMÉTRICA DE ENERGIA

Um circuito eletromagnético como o da Figura 4-2, pode ser descrito por:

Figura 4-2 - Circuito eletromagnético

Fonte: [3]

$$v = R \ i + n \frac{d\phi}{dt} \tag{4-7}$$

Multiplicando ambos os lados por i dt

$$v \, i \, dt = R \, i^2 dt + n \, i \, d\phi \tag{4-8}$$

Tem-se a equação de conservação de energia associada ao esquema da Figura 4-2.

$$\partial W_{el} = \partial W_{loule} + \partial W_{mag} \tag{4-9}$$

Onde:

 ∂W_{el} representa a energia elétrica de entrada, em [Ws];

 ∂W_{Ioule} representa a energia de dissipação térmica;

 ∂W_{mag} representa a energia armazenada no campo magnético, em [Ws].

Aplicando a lei circuital de Ampere conforme equação (4-6) à estrutura da Figura 4-2, tem-se:

$$\oint_{l_{fe}} \frac{\mathcal{B}}{\mu_{fe}} dl + \oint_{l_g} \frac{\mathcal{B}}{\mu_0} dl = n \, i = \mathcal{F}$$
(4-10)

Na característica magnética do material ilustrado na Figura 4-1, pode-se constatar que para uma indução de 1,50 [T] a permeabilidade relativa desse material, comumente empregado em geradores de grande potência, é 1875 vezes maior que a permeabilidade do ar (μ_0). Se o entreferro no núcleo toroidal tivesse 10 % do caminho circunferencial médio de uma linha de fluxo, significaria que a força magnetomotriz necessária para magnetizar o núcleo ferromagnético seria de apenas 0,50 % e os outros 99,5 % do total da \mathcal{F} seriam investidos para pular ou magnetizar o ar do entreferro.

Isto posto, a (4-10) pode ser simplificada, sem nenhuma perda de mérito para o presente estudo. Assim, pode-se assumir que a \mathcal{F} necessária para magnetizar o circuito eletromagnético descrito na Figura 4-2 pode ser descrita por (4-11)

$$\oint_{l_g} \frac{\mathcal{B}}{\mu_0} dl = n \, i = \mathcal{F} \tag{4-11}$$

Que por sua vez tem impacto direto na ∂W_{mag} -e informa que a energia magnética no circuito se encontra predominantemente armazenada no entreferro. Portanto, como a permeabilidade do ar é constante e não satura, pode-se muito bem calcular a quantidade de energia requerida para magnetizar o entreferro. Para isso, bastará integrar a ∂W_{mag} até a condição do ϕ fluxo magnético desejado [36]. Assim,

$$W_{mag} = \int_0^{\phi} \mathcal{F} \, d\phi \tag{4-12}$$

Como se verifica em (4-11), essa expressão carece de qualquer informação relativa ao material por onde circula o fluxo magnético. Por isso, faz-se necessário introduzir algumas modificações em ∂W_{mag} . Assim, multiplicando e dividindo pelo volume ocupado pelo fluxo magnético no entreferro ($Vol = A l_g$), e rearranjando tem-se,

$$\partial W_{mag} = A \, l_g \left(\frac{n \, i}{l_g}\right) d\left(\frac{\phi}{A}\right) = A \, l_g \left(\frac{\mathcal{F}}{l_g}\right) d\left(\frac{\phi}{A}\right) = Vol \, \mathcal{H} \, d\mathcal{B} \tag{4-13}$$

Donde pode-se definir o conceito conhecido como densidade volumétrica de energia. Para isso, bastará integrar a (4-13) na característica magnética do entreferro até alcançar o valor de \mathcal{B} desejado,

$$WV_{mag} = \frac{W_{mag}}{Vol} = \int_0^{\mathcal{B}} \mathcal{H} \, d\mathcal{B} \tag{4-14}$$

A (4-2) quando aplicada ao entreferro adquire uma caraterística estritamente linear

$$\mathcal{B} = \mu_0 \mathcal{H} \tag{4-15}$$

pois a permeabilidade do ar é constante. Donde, pode-se assumir uma caraterística magnética semelhante à ilustrada na Figura 4-3, de modo que a densidade volumétrica de energia em (4-14) pode ser escrita como,

$$WV_{mag} = \frac{W_{mag}}{Vol} = \frac{1}{2} \mathcal{H} \mathcal{B} = \frac{1}{2} \frac{\mathcal{H}^2}{\mu_0}$$
 (4-16)

Para entender como essa densidade volumétrica de energia armazenada no entreferro pode ser transformada em energia mecânica, faz-se necessário analisar um sistema rotativo simples.

Figura 4-3 - Densidade volumétrica de energia no entreferro da Figura 4-2 Fonte: [3]

4.5 A MÁQUINA ELEMENTAR DE RELUTÂNCIA

Essa máquina pode ser encontrada na literatura [37] recebendo o título pomposo de sistema magnético de rotação síncrona alimentado por uma única fonte. As máquinas de relutância requerem uma fonte externa de corrente senoidal alternada, não possuem partida própria e a sua rotação mecânica tem que estar em sincronismo com o campo magnético pulsante que se manifesta pelo eixo d em consequência da corrente alternada.

Imagine um instante onde o eixo do rotor se encontra θ radianos à frente do eixo d, sob essas condições, o balanço energético do sistema ilustrado na Figura 4-4 pode ser descrito como (4-17)³

$$\partial W_{el} = \partial W_{Joule} + \partial W_{mag} + \partial W_{mec} \tag{4-17}$$

Ou seja, todo a energia elétrica que abastece a máquina é transformada em três tipos de energia: a ∂W_{Joule} energia de dissipação térmica; a ∂W_{mag} energia magnética armazenada no entreferro e, agora presente, a ∂W_{mec} energia mecânica.

Figura 4-4 - Máquina síncrona de relutância

Fonte: [3]

Levando em consideração que as máquinas elétricas rotativas são projetadas de forma a minimizar as suas perdas, sendo normal que as mesmas sejam inferiores a 2 %, fica evidente que, para os propósitos deste estudo, as mesmas podem ser desconsideradas. Desse modo, a (4-18) pode ser escrita como em (4-19)

³ Sob essas circunstâncias, assume-se que as perdas de origem magnética e mecânica ou estão sob controle, ou bem, podem ser desconsideradas.

$$\partial W_{el} = \partial W_{mag} + \partial W_{mec} \tag{4-18}$$

Se levarmos em consideração a informação presente em (4-18) e a possibilidade de reescrever a variação da energia elétrica em função do fluxo, e que $v = n \cdot \frac{\partial \phi}{\partial t}$ então a ∂W_{el} pode ser escrita como:

$$\partial W_{el} = v \, i \, \partial t = \left(n \, \frac{\partial \phi}{\partial t} \right) \, i \, \partial t = n \, i \, \partial \phi \tag{4-19}$$

A seguir, se impusermos que todo o processo de conversão de energia ocorra sob uma condição de fluxo constante, isso implicaria em que a variação da energia elétrica seja zero: $\phi = ctte \rightarrow \partial \phi = 0 \rightarrow \partial W_{el} = 0$. Com isso, toda a energia magnética armazenada no entreferro seria igual ao débito de energia mecânica. Ou seja, transformar-se-ia em energia mecânica.

Com esse objetivo em foco, optar-se-á por manter a corrente da fonte constante, uma vez que isso significa manter o fluxo magnético também constante. Logo,

$$\frac{\partial W_{el}}{\partial \phi} = 0 = \frac{\partial W_{mag}}{\partial \phi} + \frac{\partial W_{mec}}{\partial \phi} \rightarrow \qquad \partial W_{mag} = -\partial W_{mec} \qquad (4-20)$$

Lembrando que em sistemas mecânicos rotativos a energia mecânica é igual ao trabalho, ou seja, $W_{mec} = \tau \theta$ (torque multiplicado pelo deslocamento angular equivale à força multiplicada pela distância e que caracteriza o conceito de energia na forma de trabalho). Assim, uma variação de energia mecânica, sob torque constante, pode adquirir algumas nuances muito interessantes,

$$W_{mec} = \mathcal{T} \cdot \theta \quad \rightarrow \quad \partial W_{mec} = \mathcal{T} \cdot \partial \theta \quad \rightarrow \quad \mathcal{T} = \frac{\partial W_{mec}}{\partial \theta}$$
(4-21)

Dividindo ambos os lados de (4-20) por *Vol* $\partial \theta$, onde Vol é o volume do entreferro em [m³], tem-se

$$\frac{\partial W_{mag}}{Vol\ \partial\theta} = -\frac{\partial W_{mec}}{Vol\ \partial\theta} = -\frac{\mathcal{T}}{Vol} \tag{4-22}$$

Lembrando que o conceito de densidade volumétrica energia, sob a sua forma descrita em (4-13) e levando em (4-22), vem

$$\frac{\mathcal{H}\,d\mathcal{B}}{\partial\theta} = -\frac{\mathcal{T}}{Vol}\tag{4-23}$$

~~~~

Agora, considerando que a velocidade angular  $\omega = \partial \theta / \partial t$  e levando em (4-23), pode-se reescrever essa expressão para adquirir uma leitura mais interessante,

$$-\frac{\mathcal{T}}{Vol} = \mathcal{H} \frac{d\mathcal{B}}{\partial \theta} = \frac{\mathcal{H}}{\omega} \frac{d\mathcal{B}}{\partial t}$$
(4-24)

Significando que, em um sistema mecânico rotativo, sempre que se possa manter um fluxo constante no entreferro, toda a densidade volumétrica de energia magnética armazenada será transformada em uma densidade volumétrica de energia mecânica, enquanto se mantém o rotor em movimento com uma velocidade angular constante. Como pode ser coligido de (4-24), sob fluxo magnético constante o processo de conversão de energia impõe um deslocamento tangencial da densidade de fluxo, o que justifica a necessidade de uma velocidade angular constante na máquina de relutância descrita na Figura 4-4.

## 4.6 A IDENTIDADE CONSTRUTIVA DE UMA MÁQUINA SÍNCRONA DE POLOS SALIENTES

Para descrever o processo de conversão de energia em uma máquina elétrica rotativa, é necessário identificar a densidade volumétrica de energia.

Para essa finalidade, partindo do conceito de potência aparente de uma máquina síncrona  $(S_r)$  e da equação que rege a tensão entre fase e neutro induzida nos seus terminais  $(U_{fn})$ , obtém-se a expressão básica que orienta o dimensionamento eletromagnético de uma máquina síncrona de polos salientes.

#### 4.7 A DENSIDADE VOLUMÉTRICA DE ENERGIA NUMA MÁQUINA SÍNCRONA

A potência aparente de um gerador síncrono conectado em estrela é dada por:

$$S_r = 3 \frac{U_{ff}}{\sqrt{3}} I_{fn} = 3 U_{fn} I_{fn}$$
(4-25)

Quando a forma de onda da distribuição circunferencial da densidade de linhas de fluxo magnético adquire uma forma senoidal, demonstra-se que a tensão de fase-neutro ( $U_{fn}$ ) pode ser escrita como:

$$U_{fn} = \frac{4}{\sqrt{2}} l_{est} \tau_p f k_w N_{ph} \beta_{max}$$
(4-26)

$$\tau_p = \frac{\pi D_i}{2 p} \tag{4-27}$$

$$f = p \; \frac{n_n}{60} \tag{4-28}$$

$$N_{ph} = \frac{N_s N_{tc}}{m a} \tag{4-29}$$

Onde:

 $l_{est}$  é o comprimento axial bruto do núcleo do estator, em [m];

 $\tau_p$  é o passo polar, em [m];

 $D_i$  é o diâmetro interno do núcleo do estator, em [m];

p é o número de pares de polos, [-];

*f* é a frequência do gerador, em [Hz];

 $n_n$  é a rotação nominal do gerador, em [rpm];

 $k_w$  é o fator de enrolamento, [-]

 $N_{ph}$  é o número de espiras em séries por fase, [-];

 $N_s$  é o número de ranhuras do estator, [-];

N<sub>tc</sub> é o número de espiras por bobina, [-];

*m* é o número de fases, [-];

*a* é o número de circuitos em paralelo por fase, [-].

 $\beta_{max}$  é o valor de pico da densidade de fluxo magnético quando observado sobre a linha do entreferro médio, em [T].

Levando (4-26) em (4-25) e após alguns arranjos convenientes,

$$S_r = 3 \frac{4}{\sqrt{2}} l_{est} \left(\frac{\pi D_i}{2p}\right) f k_w \left(\frac{N_s N_{tc}}{m a}\right) \beta_{max} I_{fn}$$
(4-30)

$$S_r = \sqrt{2} \left(\frac{\pi D_i^2}{4} l_{est}\right) \left(\frac{2\pi f}{p}\right) \left(k_w \frac{N_s \, 2 \, N_{tc}}{\pi D_i} \frac{I_{fn}}{a}\right) \beta_{max} \tag{4-31}$$

Dessa forma, a expressão (4-31) nos permite descrever a potência aparente de um gerador incluindo as suas dimensões físicas principais e os fenômenos eletromagnéticos que ocorrem no entreferro.

Na (4-31) pode-se identificar um volume,

$$Vol = \frac{\pi D_i^2}{4} l_{est} \tag{4-32}$$

que envolve todo o cilindro contido dentro do diâmetro interno do estator. Na prática, numa máquina síncrona, de 85 % a 90 % da força magneto motriz é investida para magnetizar o entreferro. Desse modo, no contexto da (4-31) pode-se considerar esse volume como sendo o contido no entreferro da máquina. Pode-se também identificar a velocidade angular mecânica

$$\omega_{mec} = \frac{2\pi f}{p} \tag{4-33}$$

e, restrito ao conceito de densidade volumétrica de energia, identifica-se uma expressão associada à corrente que circula por uma perna de paralelo que, em conjunto com as outras fases, dá origem ao campo magnético girante, ao qual será denominado como intensidade magnética linear efetiva

$$\mathcal{H}_{ef} = k_w \frac{N_s \, 2 \, N_{tc}}{\pi D_i} \, \frac{I_{fn}}{a}.\tag{4-34}$$

Incorporando esses conceitos em (4-31), obtém-se uma descrição para a densidade volumétrica de energia,

$$S_r = \sqrt{2} (Vol) (\omega_{mec}) (\mathcal{H}_{ef}) \beta_{max}$$
(4-35)

$$\frac{\tau}{Vol} = \frac{S_r}{Vol\ \omega_{mec}} = 2\sqrt{2}\ \frac{\mathcal{H}_{ef}\ \beta_{max}}{2} = 2\sqrt{2}\ WV_{mag} \tag{4-36}$$

A expressão (4-36) merece uma reflexão:

As máquinas síncronas são dimensionadas para suprir o torque mecânico e não para atender a sua potência;

 Informa que o volume físico onde se encontra armazenado o campo magnético deve ter capacidade suficiente para abrigar o processo eletromagnético de conversão de energia

$$WV_{mag} = \frac{W_{mag}}{Vol} = \frac{1}{2} \mathcal{H} \mathcal{B}$$
(4-37)

sem ultrapassar os limites térmicos e/ou magnéticos dos materiais envolvidos.

- ii. Em  $\mathcal{H}$  da equação (4-34) a expressão  $k_w N_s 2 N_{tc}$  representa a quantidade de condutores que conduzem corrente sobre a circunferência interna do estator  $\pi \cdot D_i$  e que contribuem para sua efetiva transformação em força magneto motriz. Por tanto, o volume definido pelo diâmetro interno do estator deverá ser capaz de conter todos os condutores efetivos dentro das restrições térmicas contratadas;
- iii. As restrições infligidas pela saturação magnética dos materiais ferromagnéticos que compõem o circuito magnético da máquina são impostas por  $\beta_{max}$ , embora este seja o valor de pico do campo magnético no entreferro.

Todavia, essa visão acadêmica de uma identidade que permitiria, sem perda de mérito, dimensionar as máquinas síncronas, é algo recente. Os pioneiros no projeto e construção de máquinas elétricas rotativas nos legaram uma expressão contextualmente semelhante, a que denominaram como identidade construtiva do gerador, como será visto a seguir.

#### 4.8 A IDENTIDADE CONSTRUTIVA DO GERADOR

O empenho em desenvolver uma identidade que permita governar o dimensionamento eletromagnético de uma máquina elétrica rotativa não é nada atual e remonta ao final do século XIX. Tudo indica que foi Mr. W. B. Esson [31], membro da *Institution of Electrical Engineers*, quem, de forma pioneira, teria se dedicado a desvendar essa identidade sem registros do seu sucesso.

Contudo, foi J. H. Walker [33] quem na década de 1960, nos legou a sua expressão mais madura, junto com o que ele denominou de *output coeficiente*. Em referências posteriores pode-se encontrar um autor alemão [38] denominando essa mesma grandeza de *Esson number*, em uma justa homenagem ao pioneiro Mr. W. B. Esson.

Para apreciar a identidade construtiva do gerador, reescrever-se-á a (4-31) incluindo o conceito de revoluções por minuto  $n_n$  no lugar da frequência. Para isso, tem-se que lembrar da equação (4-28) assim,

$$S_{r} = \frac{\pi^{2}}{60\sqrt{2}} \left( D_{i}^{2} l_{est} \right) (n_{n}) k_{w} \left( \frac{N_{s} 2 N_{tc}}{\pi D_{i}} \frac{I_{fn}}{a} \right) \beta_{max}$$
(4-38)

Donde se deriva a identidade construtiva no formato mais empregado na indústria de fabricantes de grandes geradores síncronos.

$$\frac{S_r}{D_i^2 l_{est} n_n} = \frac{\pi^2}{60\sqrt{2}} k_w \left(\frac{N_s 2 N_{tc}}{\pi D_i} \frac{I_{fn}}{a}\right) \beta_{max}$$
(4-39)

Que de uma forma precária, lembra o conceito de densidade volumétrica de energia. Uma vez que  $S_r/n_n$  lembra o conceito de torque e  $D_i^2 l_{est}$  envolve as dimensões construtivas do volume do entreferro.

Nesse contexto, pode-se definir uma grandeza muito popularmente conhecida por vários nomes que representam o mesmo significado, como: *fator de aproveitamento, fator de utilização, constante da máquina, ou mesmo, número de Esson,* 

$$C \triangleq \frac{S_r}{{D_i}^2 \, l_{est} \, n_n} \tag{4-40}$$

Ainda pode ser encontrada sob outra notação, também deduzida a partir de (4-31)

$$C_{pp} \triangleq \frac{S_r}{{D_i}^2 \, l_{est} \, 2p} \tag{4-41}$$

A expressões (4-40) e (4-41), por envolver dimensões básicas, têm uma grande penetração na comunidade de engenheiros, pois com ela se consegue formar um banco de dados muito poderoso [39].

Já o lado direito da identidade (4-39) requer algumas observações:

 $k_w$  representa o fator de enrolamento estatórico que, na atualidade, é formado por duas camadas de espiras distribuídas, com passo encurtado, para formar um polo [37]. Dentro dessas limitações construtivas, o valor ideal que se pode conseguir é 0,9215 quando o passo de espira coincide com 5/6 para enrolamento imbricado e 5/6 ou 7/6 para enrolamento ondulado, condição em que se consegue otimamente mitigar a influência das 5ª e 7ª harmônicas da reação de armadura ou da tensão induzida nos terminais do gerador. Particularmente, na opção por enrolamento tipo ondulado, poderão encontrarse valores próximos de 0,945.

$$A_i \triangleq \frac{N_s \ 2 \ N_{tc}}{\pi \ D_i} \frac{I_{fn}}{a} \tag{4-42}$$

A exemplo da definição da intensidade magnética  $\mathcal{H}$  que relaciona a força magneto motriz com o comprimento observado de uma linha de fluxo magnético, aqui se define  $A_i$ -intensidade linear de corrente- como uma grandeza que relaciona a corrente que flui tangencialmente dentro do perímetro interno do núcleo do estator, com a circunferência que abrange essa corrente. Para sua compreensão, pode-se imaginar todos os condutores das ranhuras do estator conduzindo a mesma corrente ( $I_{fn}/a$ ), como se fosse um cilindro oco de diâmetro  $D_i$  e de espessura igual a altura radial da ranhura por onde, tangencialmente, circula a corrente de um circuito paralelo, logo a ação dessa corrente é relacionada com a circunferência da sua influência. Tradicionalmente, esse valor é mantido dentro de um intervalo ( $60 \leq A_i \leq 85$ ) [A/mm]

 $\beta_{max}$  representa o valor de pico de um campo magnético senoidal, medido sobre a linha média do entreferro. Nas máquinas modernas, é possível encontrar fabricantes praticando, para a 1ª harmônica do campo sem carga, valores em torno de  $\beta_{max} = 1,20$  [T]

Levando esses conceitos para a (4-39) obtém-se

$$C = \frac{\pi^2}{60\sqrt{2}} k_w A_i \beta_{max} = \frac{\pi^2}{60} k_w A_i \beta_{rms}$$
(4-43)

Para campos não senoidais, como os quase trapezoidais encontrados na prática e ilustrados na Figura 4-5, a (4-43) precisa ser modificada para contemplar essa condição de forma,

como:

$$k_{ff} = \frac{\beta_{rms}}{\beta_{avg}} \tag{4-44}$$

$$\alpha_i = \frac{\beta_{avg}}{\beta_{max}} \tag{4-45}$$

$$\beta_{rms} = k_{ff} \,\beta_{avg} = k_{ff} \,\alpha_i \,\beta_{max} \tag{4-46}$$

Logo:

$$C = \frac{\pi^2}{60} k_w A_i \beta_{rms} = \frac{\pi^2}{60} k_w A_i \left( k_{ff} \beta_{avg} \right) = \frac{\pi^2}{60} k_w A_i k_{ff} \frac{\phi_{avg}}{l_{est} \tau_p}$$
(4-47)

$$FC = \frac{\pi^2}{60} k_w A_i k_{ff} \frac{\phi_{avg}}{l_{est} \tau_p}$$
(4-48)

$$FC = \frac{\pi^2}{60} k_{ff} \alpha_i k_w A_i \beta_{max}$$
(4-49)

As expressões em (4-48) e (4-49) são menos divulgadas e será denominado como **fator de construção** da máquina.

Onde:

 $\beta_{max}$  como a forma de onda do campo magnético não é mais senoidal, o valor de pico deve corresponder ao representado pela onda real conforme ilustrado na Figura 4-5. Nesse contexto, quando o gerador está operando a vazio e com tensão nominal, na época presente é possível encontrar valores de até 1,10 [T].

 $k_{ff}$  é conhecido como fator de forma por relacionar o valor efetivo  $\beta_{rms}$  com o valor médio  $\beta_{avg}$  do semiperíodo da forma de onda do campo magnético. Na prática pode assumir valores em torno de 1,12.

 $\phi_{avg}$  é o fluxo magnético necessário para induzir a tensão nominal de fase-neutro numa perna de paralelo envolvendo  $N_{ph}$  espiras por perna de paralelo por fase.

$$\phi_{avg} = \frac{U_{ff}}{4\sqrt{3} k_{ff} f k_w N_{ph}}$$
(4-50)

 $lpha_i$  é conhecido como fator de encerramento polar ou fator de cobertura polar e se o define na Figura 4-5 de modo que

$$\tau_p \beta_{avg} = \alpha_i \, \tau_p \, \beta_{max} \tag{4-51}$$

Podem ser encontrados valores para  $\alpha_i$  próximos a 0,745.



Figura 4-5 – Campo magnético sobre a linha do entreferro de um polo Fonte: [3]

Todavia, antes de continuar, faz-se necessário uma reflexão para associar o fator de cobertura da 1ª harmônica de campo  $(\alpha 1_i)$  com o valor correspondente ao da forma real  $(\alpha_i)$ .

Para isso há que ponderar que a tensão senoidal induzida nos terminais do gerador é assegurada pela 1ª harmônico do campo magnético, pois o enrolamento do estator, pela sua topologia e o arranjo de conexão estrela, comportando-se como um filtro, mitigará efetivamente as harmônicas ímpares e as 5ª e 7ª harmônicas. Donde decorre a necessidade de assegurar que o fator de cobertura do campo magnético tenha capacidade de induzir a tensão efetiva nos terminais do gerador.

Assim, tem que se verificar que:

$$\beta 1_{rms} = \beta_{rms} \tag{4-52}$$

Foi visto que:

$$\beta_{rms} = k_{ff} \,\beta_{avg} = k_{ff} \,\alpha_i \,\beta_{max} \tag{4-53}$$

Logo:

$$k_{fs} \alpha 1_i \beta 1_{max} = k_{ff} \alpha_i \beta_{max} \tag{4-54}$$

Onde:

 $k_{fs}$  é o fator de forma de uma onda senoidal

$$k_{fs} = \frac{\pi}{2\sqrt{2}} \tag{4-55}$$

 $\alpha 1_i$  é o fator de encerramento de uma senoide

$$\alpha 1_i = \frac{2}{\pi} \tag{4-56}$$

Assim,

$$\alpha_i = \alpha \mathbf{1}_i \; \frac{k_{fs}}{k_{ff}} \frac{\beta \mathbf{1}_{max}}{\beta_{max}} = \frac{\beta \mathbf{1}_{max}}{\sqrt{2} \; k_{ff}} \tag{4-57}$$

Isso porque em estudos normalizados como o mostrado na Figura 4-5 o valor máximo da forma de onda do campo magnético sobre a linha do entreferro sempre será  $\beta_{max} = 1$  e  $\beta 1_{max}$  corresponde ao valor da amplitude da sua 1ª harmônica.

#### 4.9 INTENSIDADE LINEAR DE CORRENTE

A exemplo da definição da intensidade magnética  $\mathcal{H}$  que relaciona a força magneto motriz com o comprimento observado de uma linha de fluxo magnético, aqui se define  $A_i$  - intensidade linear de corrente [3] (4-42) como uma grandeza que relaciona a corrente que flui tangencialmente dentro do perímetro interno do núcleo do estator, com a circunferência que abrange essa corrente. Para sua compreensão, pode-se imaginar todos os condutores das ranhuras do estator conduzindo a mesma corrente  $(I_{fn}/a)$ , como se fosse um cilindro oco de diâmetro  $D_i$  e de espessura igual a altura radial da ranhura por onde, tangencialmente, circula a corrente de um circuito paralelo, logo a ação dessa corrente é relacionada com a circunferência da sua influência. Tradicionalmente, esse valor é mantido dentro de um intervalo ( $60 \leq A_i \leq 85$ ) [A/mm]

### 4.10 PRINCÍPIOS DE AQUECIMENTO NA MÁQUINA SÍNCRONA

### 4.10.1 INTRODUÇÃO AOS PRINCÍPIOS DE AQUECIMENTO

Assumir-se-á que todo o calor produzido pelas perdas magnéticas do núcleo do estator será dissipado pela sua superfície externa. Dessa forma, a elevação de temperatura do estator será consequência das perdas por efeito Joule no enrolamento do estator e se admitirá que todo esse calor seja dissipado pela superfície interna do enrolamento, incluindo as cabeças de bobina.

As perdas no cobre do enrolamento estatórico que dão origem ao efeito Joule podem ser descritas como,

$$P_{cu} = R_b I_b^{\ 2} = \rho_b \frac{l_w}{A_b} I_b^{\ 2}$$
(4-58)

Onde, com apoio da Figura 4-6, tem-se:

 $l_w$  é o comprimento total do condutor contido no enrolamento do estator, em [m];

$$l_w = 2 \ l_b \ N_s \ N_{tc} \tag{4-59}$$

 $A_b$  é a seção do material condutor de uma espira, em [m<sup>2</sup>];

 $I_b$  é a corrente contida dentro de uma semibobina, em [A]. Se o enrolamento for composto de barras Roebel então  $N_{tc} = 1$ ;

$$I_b = \frac{I_{fn}}{a} \tag{4-60}$$

 $\rho_b$  é a resistividade do condutor presente no enrolamento estatórico, em [ $\Omega$ . m<sup>2</sup>/m]; Num ambiente adiabático, as perdas por efeito Joule se transformam em calor promovendo uma elevação de temperatura  $\Delta T$  seguindo a (4-61),

$$P_{cu} = \alpha_k \, A_{dis} \, \Delta T \tag{4-61}$$



Figura 4-6 – Superfície de dissipação de calor do enrolamento do estator Fonte: [3]

Onde:

 $\alpha_k$  representa o coeficiente de transferência de calor, em  $[W/m^2K]$ ;

 $A_{dis}$ , de acordo como a Figura 4-6, representa a superfície interna de dissipação de calor do enrolamento do estator, em  $[m^2]$ .

$$A_{dis} = \pi D_i l_b \tag{4-62}$$

 $\Delta T$  é a elevação de temperatura do enrolamento, em [K].

Levando (4-61 em (4-58), tem-se que a elevação da temperatura do estator pode ser aproximada por

$$\Delta T = \frac{P_{cu}}{\alpha_k A_{dis}} = \frac{\rho_b}{\alpha_k} \frac{I_b}{A_b} \left( \frac{2 N_s N_{tc}}{\pi D_i} \frac{I_{fn}}{a} \right)$$
(4-63)

$$\Delta T = \frac{\rho_b}{\alpha_k} J_b A_i = \alpha_{CS} \mathcal{K} \pi_s \tag{4-64}$$

Onde:

 $J_b$  é a densidade de corrente na espira, em [A/ $m^2$ ]

$$J_b \triangleq \frac{I_b}{A_b} \tag{4-65}$$

 $\alpha_{CS}$  é o fator de dissipação de calor da máquina, em  $[(K mm^3)/A^2]$ 

$$\alpha_{CS} \triangleq \frac{\rho_b}{\alpha_k} \tag{4-66}$$

Pode ser considerado como um *fator de dissipação de calor da máquina* e que, de modo mais amplo, envolve inclusive a efetividade do sistema de resfriamento da máquina;

 $\mathcal{K}\pi_s$  é a capa de corrente, em  $[A^2/m^3]$ 

$$\mathcal{K}\pi_s \triangleq J_b \cdot A_i \tag{4-67}$$

Classicamente é conhecida como *capa de corrente* [3], representa o calor produzido por efeito Joule num cilindro oco de comprimento  $l_b$ , diâmetro interno  $D_i$  e com uma espessura igual a altura da ranhura do estator, por onde circula tangencialmente a corrente de uma perna de paralelo. Assim, pode-se pensar como sendo o calor produzido dentro desse cilindro que será resfriado pela condição de ventilação da unidade, definido pelo fator de dissipação de calor da máquina ( $\alpha_{CS}$ )

Uma constatação importante em (4-63) nos ilustra que o comprimento do núcleo do estator terá pouca influência no aquecimento do estator, e que ele é inversamente proporcional ao seu diâmetro interno.

#### 4.10.2 APLICAÇÃO CONSTRUTIVA DA CAPA DE CORRENTE

Até o advento das soluções computacionais, o cálculo estimativo da elevação de temperatura do enrolamento do estator era feito controlando-se o valor da capa de corrente, mantendo-a dentro de certos limites consequentes da condição dos seus parâmetros primários.

Para ilustrar esse conceito, foi realizado um levantamento estatístico em 10 geradores com ( $260 \le S_r/n_n \le 125000$ ) e potências entre 100 MVA e 950 MVA, todas fabricadas entre 1970 e 2016 [11].

Mantendo as unidades praticadas na indústria, constata-se a adoção de domínios seguros para as variáveis que compõem a capa de corrente, conforme destacado a seguir:

| $J_b$ densidade de corrente na espira, geradores resfriados com ar | $(2,90 \le J_b \le 4,5)$ | $[A/mm^2]$      |
|--------------------------------------------------------------------|--------------------------|-----------------|
| $A_i$ intensidade linear de corrente                               | $(60 \le A_i \le 85)$    | [ <i>A</i> /mm] |
| Logo, tem-se:                                                      |                          |                 |

 $\mathcal{K}\pi_s \triangleq J_b \cdot A_i$  capa de corrente, resulta do produto do menor valor de  $J_b$  com o maior valor de  $A_i$  e vice-versa (246  $\leq \mathcal{K}\pi_s \leq 270$ ) [ $A^2/mm^3$ ]

Há que se salientar que todos esses geradores tiveram os seus aquecimentos calculados com a utilização de redes de ventilação e aquecimento. Naturalmente que as máquinas de maior  $S_r/n_n$  tiveram os seus cálculos de aquecimento e ventilação corroborados por estudos de CFD (Computational Fluid Dynamics) [11]. Portanto, os valores apresentados podem ser aplicados a estudos preliminares com muita segurança.

O estudo da capa de corrente desse conjunto de geradores apontou para um valor médio de 255  $[A^2/mm^3]$  mostrando a prática comum de controlar o produto do menor valor de  $J_b$  com um outro maior de  $A_i$  e vice-versa, conforme mostrado na Tabela 4-1.

Ainda trabalhado sobre a (4-64), a busca por um domínio para  $\alpha_{CS}$  fator de dissipação de calor conduziu a duas situações: à referente ao valor calculado e àquela associada ao valor garantido, ambos para a elevação de temperatura do enrolamento do estator [11].

As temperaturas garantidas são as previstas na IEEE C50.12 [18] e IEC 60034-33 [14] para a classe 130 (B), de elevação de temperatura, corrigidas conforme o nível de tensão nominal. Já os valores calculados sofreram influência das penalidades associadas às garantias de rendimento e elevação de temperatura. Amparados nessas restrições, encontra-se um universo de valores no qual orbitam os valores do fator de dissipação de calor, conforme Tabela 4-1.

| $\Delta T = \frac{\rho_b}{\alpha_k} J_b A_i = \alpha_{CS}  \mathcal{K} \pi_s \qquad [K]$ | Mínimo | Médio | Máximo |
|------------------------------------------------------------------------------------------|--------|-------|--------|
| $\mathcal{K} \pi_s$ capa de corrente $[A^2/mm^3]$                                        | 246    | 255   | 274    |
| $lpha_{{\it CS}}$ para $\Delta T$ calculado $[(Kmm^3)/A^2]$                              | 0,20   | 0,24  | 0,29   |
| $lpha_{{\cal CS}}$ para $\Delta T$ garantido $[(Kmm^3)/A^2]$                             | 0,28   | 0,30  | 0,42   |
| $\Delta T$ estimado para representar o valor calculado                                   | 49     | 61    | 80(*)  |
| $\Delta T$ estimado para representar o valor garantido                                   | 69     | 77    | 115(*) |

Tabela 4-1 - Universo observado para a capa de corrente

 $^{(*)}$  significa que se na máquina de referência forem encontrados valores elevados de  $\alpha_{cs}$ então o valor da  $\mathcal{K}\pi_s$  deverá ser mais moderado e não estar no seu valor máximo.

*Fonte:* [3]

## 4.11 MOMENTO DE INÉRCIA E CONSTANTE DE INÉRCIA

Uma breve coletânea de geradores com ( $100 < S_r < 1000$ ) MVA e ( $50 < S_r/n_n < 7000$ ) kVA/rpm permitiu obter a distribuição de pontos para o momento de inércia J em função de um índice do gerador obtido na rotação nominal ( $S_r/n_n$ ) [39], conforme ilustrado na Figura 4-7.



 $S_r/n_n$ 

Figura 4-7 - Momento de inércia em função de Sr/nn

#### Fonte: [39]

Na Figura 4-7 é importante observar que cada um dos pontos ilustrados representa um gerador fabricado e em operação. Da linha de tendência da Figura 4-7, pode-se obter uma equação referencial para prospectar o momento de inércia, em  $[t m^2]$ :

$$J = 0.197 \left( S_r / n_n \right)^{1.4301} \tag{4-68}$$

O conceito de constante de inércia H está estritamente relacionado com o da quantidade de energia cinética armazenada no rotor em [kW.s], quando ele é descrito de forma normalizada em valores relacionados com a potência aparente do gerador em [kVA].

Baseado no valor do J estimado acima, a constante de inércia H em [s] será:

$$H = \frac{1}{2} \frac{J}{S_r} \left(\frac{2\pi n_n}{60}\right)^2$$
(4-69)

## 4.12 DIÂMETRO INTERNO DO ESTATOR E COMPRIMENTO AXIAL DO NÚCLEO

## 4.12.1 INTRODUÇÃO AO DIMENSIONAMENTO DO DIÂMETRO INTERNO DO ESTATOR

Como ilustrado na identidade construtiva e no princípio de aquecimento do enrolamento do estator, o diâmetro interno do estator tem um papel determinante na definição do arcabouço do gerador.

Além de definir as condições de aquecimento, o diâmetro interno do estator também é determinante para definir o momento de inércia do rotor. Se o projeto do gerador dependesse unicamente da inércia e do aquecimento, então poder-se-ia imaginar que, quanto maior for o diâmetro, melhor será a solução do gerador.

Todavia, tem-se que ponderar:

As perdas por atrito viscoso, dentro do conceito de perdas de ventilação, variam com a quarta potência do e com o cubo da rotação nominal. Isso deve nos alertar a controlar o diâmetro em função da rotação para não distorcer a importância relativa das perdas na composição do rendimento.

A tensão mecânica devido à tração radial, a força centrífuga imposta pela massa dos polos e da coroa magnética do rotor, é outro conceito que deve ser avaliado sistematicamente pois, embora já se possa contar no mercado com aços laminados de 5 mm de espessura e com tensões de escoamento que chegam a 900 MPa, a sua aplicação deve ser objeto de uma profunda reflexão, uma vez que para valores mais elevados de tensão de escoamento, menores são os índices de elasticidade desses materiais.

Deverá ser previsto a passagem da maior peça da turbina pelo diâmetro interno do estator do gerador.

Pela experiência adquirida em anos de profissão, a velocidade periférica de geradores de grande porte projetados nos últimos 40 anos tem indicado uma velocidade  $V_p < 180 m/s$ .

## 4.12.2 O DIÂMETRO DO ESTATOR IMPOSTO PELO MOMENTO DE INÉRCIA ESPECIFICADO

O momento de inércia de um toróide sólido de seção retangular, conforme mostrado na Figura 4-8, pode ser calculado a partir de (4-70):

$$\mathcal{I} = \rho_{Fe} \, \frac{Vol_{cm}}{2} \left( R_{ext}^2 + R_{int}^2 \right) \tag{4-70}$$

$$Vol_{cm} = \pi \, l_s \big( R_{ext}^2 - R_{int}^2 \big) \tag{4-71}$$

Onde:  $\rho_{Fe} = 7,85 \ [Ton/m^3]$  é a densidade do aço e  $Vol_{cm}$  é o volume do toróide formado pela coroa magnética e pelos polos, conforme se mostra na Figura 4-8.



Figura 4-8 - Dimensões de um toróide sólido emulando o conjunto coroa magnética e polos. Fonte: [3]

Aplicando-se o conceito descrito em (4-70) à estrutura da coroa magnética do rotor junto com os seus polos, seguindo a Figura 4-8, então pode-se definir:

$$R_{ext} = r + R \tag{4-72}$$

$$R_{int} = r - R \tag{4-73}$$

$$k_{\mathcal{I}} = \frac{r}{R} \tag{4-74}$$

Onde  $k_{\mathcal{I}}$  é definido como constante do raio de giração do rotor.

Levando os conceitos definidos em (4-74) dentro da (4-70), obtém-se:

$$\mathcal{I} = \rho_{Fe} \, \frac{\pi \, l_s}{2} \left( R_{ext}^{4} - R_{int}^{4} \right) \tag{4-75}$$

$$\mathcal{I} = \rho_{Fe} \frac{\pi l_s}{4} D_i^4 \left[ \frac{k_j^3 + k_j}{(k_j + 1)^4} \right]$$
(4-76)

$$\mathcal{I} = \frac{\pi}{4} \rho_{Fe} \frac{1}{C} \left(\frac{S_r}{n_n}\right) D_i^2 \Delta k_{\mathcal{I}}$$
(4-77)

Em (4-77) pode-se imaginar  $\Delta k_J$  como um indicador de quão densamente estão distribuídos os polos na periferia do anel magnético do rotor.

$$\Delta k_{\mathcal{I}} = \frac{\left(k_{\mathcal{I}}^{3} + k_{\mathcal{I}}\right)}{(1+k_{\mathcal{I}})^{4}} \tag{4-78}$$

Sendo  $I_g$  o índice do gerador obtido na rotação de disparo  $(n_d)$ 

$$I_g \triangleq S_r / n_d \tag{4-79}$$

(4-80)

uma breve coletânea de geradores [39] com ( $100 < S_r < 1000$ ) e ( $250 < I_g < 12500$ ) [kVA/rpm] permitiu obter a distribuição de pontos para  $k_J$ , conforme ilustrado na Figura 4-9, cuja linha de tendência pode ser aproximada por (4-80). Observe que na Figura 4-9 os pontos em azul representam geradores fabricados que por motivos contratuais tiveram o se valor de momento de inércia diferente daquele que naturalmente seria obtido num projeto padrão.

 $k_{\mathcal{I}} = 3.6 \, \ln\left(\frac{S_r}{n_d}\right) - 13$ 



Figura 4-9 - Constante do raio de giração do rotor em função do índice do gerador

na velocidade de disparo.

Fonte: [3]

Assim tem-se na equação (4-80) uma expressão prática que nos permite obter uma expectativa de valor do momento de inércia em função do índice do gerador. Na ausência de qualquer outra informação relevante, esse valor pode muito bem ser adotado na (4-77). Dessa forma, para lidar com a equação (4-77) tem-se condições de obter valores dos nossos bancos de dados. Assim,

- . Fator de utilização;
- . A densidade do ferro  $\rho_{Fe} = 7,85 \ t/m^3$  e,
- .  $k_{\mathcal{I}}$  pode ser obtido de (4-80) para calcular  $\Delta k_{\mathcal{I}}$

Com esses argumentos, a expressão (4-77) pode ser rearranjada para pôr  $D_i$  em evidência,

$$D_{i\,ref} = \sqrt{\frac{4\,\mathcal{I}\,C}{\pi\,\rho_{Fe}\,I_g\,\Delta k_{\mathcal{I}}}} \tag{4-81}$$

Então, têm-se duas possibilidades para obter um primeiro valor estimativo para o diâmetro interno do gerador. O estimado pela (4-81) e o outro em base ao limite da velocidade periférica tangencial no disparo. Devem-se calcular os dois e utilizar o menor.

### 4.12.3 ESTIMATIVA DO COMPRIMENTO AXIAL DO NÚCLEO DO ESTATOR

Para o cálculo do comprimento axial do núcleo do estator (alguns chamam de altura do núcleo) parte-se do fator de aproveitamento, e do diâmetro interno do estator estimado no item anterior.

$$C = \frac{S_r}{D_i^2 l_{est} n_n}$$
$$l_{est} = \frac{S_r}{D_i^2 C n_n}$$

#### 4.13 ENTREFERRO

O entreferro é um dos pontos mais importante no dimensionamento de um gerador em termos elétrico e mecânico. É responsável por aproximadamente 90 % da Força Magneto Motriz (FMM) do circuito magnético, tem grande impacto no empuxo magnético, nas perdas, no rendimento e no aquecimento do gerador.

O projetista elétrico tende a utilizar o menor entreferro, enquanto o projetista mecânico prefere maiores valores para o entreferro.

Portanto é importante definir o "entreferro natural" segundo a boa prática experimental aprendida dos nossos mentores da Brown Boveri Co. Nesse conceito, o entreferro mínimo  $\delta_m$  se relaciona com o passo polar  $\tau_p$  de modo que:

$$\left(0,03 \le \frac{\delta_m}{\tau_p} \le 0,05\right) \tag{4-82}$$

Uma outra regra de ouro que se acostuma utilizar para valores mínimos de entreferro é dada por:

$$\delta_m = 1,5\%_0 D_i \text{ com}$$
 (4-83)

Com  $D_i$  dado em [mm].

#### 4.14 REATÂNCIAS

#### 4.14.1 VALORES SUGERIDOS PELA NORMA

De acordo com a IEC60034-33 item 5.8 [14], sugere os seguintes intervalos para as reatâncias:

- Relação de curto-circuito RCC > 0,80, consequentemente Xds < 1,25 pu;
- Reatância transitória de eixo direto, 0,30 ≤ X'du ≤ 0,45 pu
- Reatância subtransitória de eixo direto, 0,10 < X"ds < 0,25 pu

Os valores acima sugeridos visam abranger toda a faixa de escopo da norma, ou seja, se aplica a geradores síncronos de polos salientes trifásicos e motores-geradores síncronos para aplicações com turbina hidráulica e turbina-bomba, que tenham frequência nominal de 50 Hz ou 60 Hz, potência nominal de 10 MVA e acima, 3 pares de polos e acima, e tensão nominal de 6 kV e acima.

## 4.14.2 TOLERÂNCIAS SUGERIDAS PELA NORMA

Quando os valores limites [14] deste documento ou outros limites tiverem sido especificados ou acordados, não haverá tolerância negativa nos valores mínimos e nenhuma tolerância positiva nos valores máximos. Uma tolerância positiva sobre valores declarados em valores mínimos e uma tolerância negativa sobre valores declarados em valores máximos de 15 % para regime permanente e 30 % para regimes transitórios e subtransitórios, devem ser aplicados.

Se os valores forem especificados, mas não declarados como limites, eles devem ser considerados como valores nominais e devem estar sujeitos a uma tolerância de  $\pm 15$  % para regime permanente e  $\pm 30$  % para regime transitório e subtransitório.

Se nenhum valor de reatância tiver sido especificado pelo comprador, o fabricante deve fornecer valores com tolerância de  $\pm 15$  % para regime permanente e  $\pm 30$  % para regime transitório e subtransitório.

## 4.14.3 VALORES USUAIS PARA USINAS HIDRELÉTRICAS DE GRANDE PORTE

Restrito aos geradores de usinas hidroelétricas de grande porte, acima de 100 MVA, os valores descritos abaixo são os mais utilizados pela comunidade técnica internacional, baseando-se no levantamento de muitas máquinas dimensionadas, projetadas, fabricadas e comissionadas e que, principalmente, demostraram, excelente performance no sistema elétrico de potência.

- Relação de curto-circuito RCC  $\geq$  1,0, consequentemente Xds  $\leq$  1,00 pu;
- Reatância transitória de eixo direto, 0,25 < X'du < 0,35 pu
- Reatância subtransitória de eixo direto, 0,17 < X"ds < 0,25 pu
- Relação X"q/X" d  $\leq$  1,3, sendo o mais comum valores na ordem de X"q/X" d  $\leq$  1,10

Valores de X"q/X"d  $\leq$  1,30 normalmente necessita de um gerador com o enrolamento amortecedor conectado com baixa resistência, ou seja, existe uma conexão flexível que interliga os segmentos que curto-circuitam as barras de amortecimento.

Valores de X"q/X"d  $\geq$  1,3 necessita de um enrolamento amortecedor conectado, porém pode ser através da conexão tipo "*copper sheet*" ou "placa de cobre". Este tipo de conexão tem nas extremidades do laminado do corpo polar uma chapa de cobre com o mesmo perfil da chapa do polo, e que curto-circuitam as barras amortecedoras, e na região dos pés dos polos que faz uma conexão elétrica com o anel magnético, que fará a conexão entre polos. É um projeto econômico e muito seguro.

## 4.15 SATURAÇÃO DO GERADOR

Como a condição de saturação da máquina impacta no rendimento e valores das reatâncias, e uma vez que algum nível de saturação pode ser bem-vindo na operação, por exemplo, para mitigar o empuxo magnético devido a um entreferro não uniforme, se estabeleceu um consenso quanto aos limites dos procedimentos modernos de dimensionamento de núcleos magnéticos para geradores com potência superior a 10 MVA [27]. A Tabela 4-2 define os limites máximos e mínimos usuais para cada parte do circuito magnético do gerador.

| Região das Induções Magnéticas                             | Faixa usual [T]     |
|------------------------------------------------------------|---------------------|
| Coroa do núcleo do estator                                 | [1,15 - 1,50]       |
| Dentes do núcleo do estator, região fundo da ranhura       | [1,45 - 1,87]       |
| Dentes do núcleo do estator, na altura média do dente      | [1,60-1,92]         |
| Dentes do núcleo do estator, na região do diâmetro interno | [1,70-1,95]         |
| Entreferro                                                 | [0,80-1,10]         |
| Núcleo do polo em vazio                                    | [1,30-1,60]         |
| Núcleo do polo em carga                                    | [1,40 - 1,95]       |
| Anel magnético                                             | [ <u>&lt;</u> 1,60] |

Tabela 4-2 - Valores usuais de Induções magnéticas

#### Fonte: [27]

Nas faixas indicadas acima, os valores máximos não devem ser excedidos, sendo que dependendo dos requerimentos de reatâncias e rendimentos os valores mínimos podem ser ultrapassados. Caso os limites superiores sejam excedidos uma análise bastante cuidadosa deverá ser feita.

Para dimensionamento de uma máquina normal procura-se evitar que todas as regiões estejam nos limites máximos, pois poderia resultar em uma máquina muito saturada. Para melhor controlar os limites das induções por região, deve-se analisar também o Índice de Saturação (*SI-Saturation Index*) que está limitado em 1,15.

O SI é definido [27] como sendo a relação entre a corrente de excitação em vazio ( $I_{fo}$ ) pela corrente de excitação do entreferro ( $I_{fg}$ ),

$$SI = \frac{I_{fo}}{I_{fg}} \le 1,15$$
 (4-84)

Como exemplo a Figura 4-10 abaixo, com a curva de saturação do gerador utilizada para obter o SI:



Figura 4-10 - Curva de saturação do gerador Fonte: [3]

## 4.16 ENROLAMENTO AMORTECEDOR

O funcionamento do enrolamento amortecedor é bem complexo e foi exaustivamente estudado por J. Johnny Rocha E. e consolidado em sua tese de doutorado [29] e vários artigos em seminários [40], [41], [28], [30].

### 4.16.1 ENROLAMENTO AMORTECEDOR E SUA INFLUÊNCIA NA FORÇA ELETROMOTRIZ

A forma de onda da densidade de fluxo magnético sobre a linha do entreferro depende da geometria da sapata polar, do tipo de raio e os valores dos raios de curvatura.

Esta forma de onda, para polos com raio único pode ser feita por meio de uma série de Fourier, a qual denominamos de função Trassínio.



Figura-4-11 - Densidade de fluxo de um polo Fonte: [40]

Porém normalmente os geradores têm em seu diâmetro interno a abertura das ranhuras, podendo ser abertas ou semiabertas, mas para o propósito desta dissertação pode-se considerar estas aberturas afetando a permeância do entreferro, conforme mostrado na Figura-4-13, curva em azul.



 Figura-4-12 – Estrutura do entreferro
 Figura-4-13 - Densidade de fluxo correspondente ao entreferro da Figura-4-12

 Fonte : [40]
 Fonte : [40]

Como a descrição detalhada da modulação da forma de onda do campo magnético dos polos, pela permeância das ranhuras, foge do escopo do presente trabalho, o leitor interessado poderá encontrar uma explicação detalhada em [29].

A curva em preto da Figura-4-13 corresponde a superposição da permeância do entreferro com a densidade de fluxo de um polo, que pode ser dado por:

$$\beta(x) = p(x) \Im(x) \tag{4-86}$$

Onde  $\beta(x)$  é a função espacial da densidade de fluxo magnético, p(x) é a permeância específica da região do entreferro, e  $\Im(x)$  é a força magnetomotriz de um polo.

Na Figura-4-13, a forma de onda do polo, quando vista desde o estator, será uma onda viajante, em que a influência da permeância das ranhuras terá o efeito de uma onda pulsante que se sobrepõe à onda viajante. Contudo, se o observador que estava no estator, agora estiver sobre o rotor, observará uma onda estacionária (o campo do polo) modula por uma onda pulsante (efeito da permeância das ranhuras). O período espacial dessas ondas pulsantes é igual ao passo de ranhura do estator.

Se, o passo de ranhura do enrolamento amortecedor coincidir com o período da onda pulsante, então, ter-se-á uma situação semelhante à descrita na Figura 4-14. Ocasião em que a pulsação magnética induzirá tensão sobre cada barra de amplitude diretamente proporcional a amplitude da onda de campo magnético criado pelas ranhuras.

Ocorre que, quando o q - número de ranhuras por polo e fase do gerador- for um número inteiro, então, promover-se-á uma situação semelhante à descrita na Figura 4-14 e, os efeitos da tensão induzida nas barras amortecedoras produzirão fluxos magnéticos

pulsantes que serão percebidos pelo enrolamento do estator, e farão que a forma de onda da tensão induzida nos terminais do gerador seja poluída com um conteúdo indesejável que não atenderá aos critérios de aprovação.



Figura 4-14 - Comportamento da tensão entre duas barras como função da distância entre elas.

Entre as regras de ouro do projeto de geradores, tem-se que a relação  $T_D / \lambda$  (passo do enrolamento amortecedor/ passo das ranhuras do estator) deve ser igual a 1 ou estar na faixa de 90 a 110 %; da relação dos passos e, quando o q for um número inteiro, como é o caso ilustrado na Figura 4-14, poderá se compreender o mecanismo que leva ao surgimento das indesejáveis harmônicas de ranhura.

Para isso, basta verificar que a diferença de potencial entre a primeira barra da esquerda (1) e a barra locada em F2 será máxima, promovendo máxima circulação de corrente e, portanto, os fluxos gerados-serão máximos. Se, entretanto, a barra da esquerda (1) for alocada na origem e a sua complementar em F2 (4) for mantida na sua posição, então, a diferença de potencial será mínima, e a distância entre a origem (1)e F2 será de  $\tau_p$ +  $\lambda/2$  (situação semelhante ocorrerá com as barras posicionadas no par de F1 onde o passo será de  $\tau_p$ -  $\lambda/2$ ). Por isso, a implantação desta solução (regra prática) requer que o eixo de simetria das barras amortecedores de um polo seja deslocado de ½ passo de ranhura do estator ( $\lambda/2$ ).

Na prática, o eixo de simetria do enrolamento amortecedor desloca-se um polo  $+\frac{\lambda}{4}$  e o eixo do polo adjacente desloca-se de  $-\frac{\lambda}{4}$  totalizando uma defasagem entre barras amortecedoras complementares de  $\pm \lambda/2$ .

Um outro tipo de projeto utilizado na prática é ter polos alternados com uma barra a menos, por exemplo polo Norte com 5 barras e polo Sul com 4 barras, também resulta em uma defasagem entre barras complementares de  $\pm \lambda/2$ .

Portanto para geradores com q inteiro deve-se deslocar as barras amortecedoras de um polo em  $+\frac{\lambda}{4}$  e o polo adjacente desloca-se de  $\frac{-\lambda}{4}$  totalizando uma defasagem entre barras amortecedoras complementares de  $\pm \lambda/2$ , com o principal objetivo de minimizar a influência das harmônicas de ranhuras na tensão induzida nos terminais do gerador.

Dependendo da magnitude do entreferro e a abertura da ranhura (entreferros pequenos e ranhuras largas), a segunda harmônica de ranhura poderá ter uma influência significativa na Força Eletromotriz da tensão e poderá ter risco de não atender aos critérios de TIF ou THD.

### 4.16.2 DIMENSIONAMENTO DO ENROLAMENTO AMORTECEDOR

Embora sem referência bibliográfica, para o dimensionamento do enrolamento amortecedor, segue-se o método das imagens de capa de corrente, apresentado no item 4.10. Um dos atributos desse método, postula que a capacidade de dissipar calor em ambos os lados do entreferro será similar se o enrolamento do rotor também for dimensionado para ter a mesma capa de corrente.

### 4.16.2.1 CAPA DE CORRENTE

Este valor está associado à distribuição circunferencial de condutores de corrente elétrica do enrolamento, localizado na superfície do entreferro sem ultrapassar o aumento de temperatura. É o mesmo que observar uma condução de corrente tangencial onde há uma circulação de corrente de  $(I_{fn}/a,)$  [A] e a superfície do entreferro com capacidade suficiente para dissipar o calor causado pelas perdas ôhmicas do estator $(I^2R)$ . Quando essa intensidade linear de corrente se a associa com a densidade de corrente de cada condutor, obtém-se a capa de corrente, responsável direto pelo aquecimento

## 4.16.2.2 CORRENTE DE SEQUÊNCIA NEGATIVA NO AMORTECEDOR

De acordo com a IEC 60034-33 [14] a corrente de sequência negativa máxima que o gerador deverá suportar é  $I_2 = 0.08 pu$ 

Considerações:

- Durante serviço contínuo e carga simétrica, o enrolamento amortecedor não tem função;
- Corrente no amortecedor existirá quando a carga for desiquilibrada;
- A corrente do amortecedor é proporcional à corrente de sequência negativa *I*<sub>2</sub>.
- De acordo com o projeto, durante a corrente de sequência negativa, o amortecedor terá a mesma intensidade linear de corrente do enrolamento do estator, que significa também a mesma dissipação térmica.

$$A_{s\_des} = \frac{I_2 \ I_n \ N_s \ (2 \ N_{tc})}{a \ \pi \ D_i} \tag{4-87}$$

$$A_{s\_des} = I_2 A_s \tag{4-88}$$

Onde:

 $I_2$  é a corrente de sequência negativa para carga desequilibrada, em [pu];

 $I_n$ é a corrente nominal do gerador, em [A];

 $N_s$  é o número de ranhuras do estator, em [-];

 $N_{tc}$  é o número de espiras por bobina, em [-];

a é o número de circuitos paralelos, em [-];

 $D_i$  é o diâmetro interno do estator, em [mm];

 $A_{s\_des}$  é a intensidade linear de corrente do estator para a corrente de sequência negativa, em [A/mm];

 $A_s$  é a intensidade linear de corrente do estator, em [A/mm]

A intensidade linear de corrente do amortecedor é:

$$A_D = I_D \frac{2p N_D}{\pi D_i} \tag{4-89}$$

Onde:

p é o número de pares de polos, em [-];

 $N_D$  é o número de barras de amortecimento por polo, em [-];

 $D_i$  é o diâmetro interno do estator, em [mm];

 $A_D$  é a intensidade de corrente do enrolamento amortecedor, em [A/mm].

### 4.16.2.3 NÚMERO MÍNIMO DE BARRAS DE AMORTECIMENTO

De acordo com as regras de dimensionamento, o passo do enrolamento amortecedor deve ter o mesmo passo que as ranhuras do estator, porém dentro de uma faixa de +/-10 %.

$$N_D = \frac{bp_k}{T_D} + 1$$
 (4-90)

Onde:

 $bp_k$  é a largura do núcleo do polo, em [mm];

 $T_D$  é o passo do enrolamento amortecedor, em [mm]

4.16.2.4 CORRENTE NO AMORTECEDOR

Considerando  $A_s = A_D$
$$I_D = I_a A_s \frac{\pi D_i}{2 p N_D}$$
(4-91)

#### 4.16.2.5 DIÂMETRO DA BARRA DO AMORTECEDOR

Como regra geral, pode-se assumir a densidade de corrente do amortecedor igual à densidade de corrente do enrolamento do estator.

$$J_D = J_s \tag{4-92}$$

$$J_D = \frac{I_D}{\frac{\pi \ Db_D^2}{4}} \tag{4-93}$$

$$Db_D = \sqrt{\frac{4 I_D}{\pi J_D}} \tag{4-94}$$

#### 4.16.2.6 ELEVAÇÃO DE TEMPERATURA DO ENROLAMENTO AMORTECEDOR

A elevação de temperatura do enrolamento localizado na circunferência do entreferro é uma função da intensidade linear de corrente é dado por:

$$\Delta t = k_t A_s J \tag{4-95}$$

$$k_t = \frac{\rho_{Cu}}{\alpha_k} \tag{4-96}$$

O valor de  $k_t$ para o enrolamento do estator é dado pela (4-97)

$$k_t = \frac{\Delta T_s}{A_s J_s} \tag{4-97}$$

Este fator  $k_t$  será o mesmo para o enrolamento amortecedor.

$$J_D = \frac{I_D}{\frac{\pi D b_D^2}{4}} \tag{4-98}$$

$$A_D = I_D \; \frac{P_z \; N_D}{\pi \; Di_s} \tag{4-99}$$

$$\Delta T_D = k_t A_D J_D \tag{4-100}$$

# 4.16.2.7 ELEVAÇÃO DE TEMPERATURA DO ENROLAMENTO AMORTECEDOR DURANTE TRANSITÓRIOS

A elevação de temperatura quando operando a  $I_2^2 t = 20$  também deve ser verificado e ficar abaixo do limite de 115K.

O processo de cálculo é o mesmo, porém como neste caso, envolve tempo e inércia térmica, para calcular o aquecimento deve-se utilizar a constante de tempo térmica.

Estes cálculos podem ser feitos por meio de uma rotina de MathCad que está no item 8.2 ANEXO – CÁLCULO DO ENROLAMENTO AMORTECEDOR.

# 4.17 CONDIÇÕES NOMINAIS DE OPERAÇÃO

Os geradores e os motores síncronos devem ser capazes de operar sob potência nominal contínua com fator de potência nominal, nas faixas de  $\pm$  5 % na tensão (ou tolerâncias estabelecidas na especificação técnica), e  $\pm$  2 % em frequência, conforme definido pela área sombreada da Figura 4-15 (zona A); Contudo, a elevação de temperatura pode ser maior quando operando na zona B, no caso do mercado brasileiro, é normal ser solicitado uma variação de tensão na faixa de + 5 e -10 % [14], [18].

A elevação de temperatura ou limites de temperatura aplicam-se apenas no ponto nominal e podem ser progressivamente excedidos à medida que o ponto de operação se afasta do ponto nominal. Para condições nos limites extremos da zona A, a temperatura pode exceder os limites especificados em [42] e/ou em [18], por isso devem ser previamente acordados.

Uma máquina deve ser capaz de operar dentro da zona B com potência nominal, mas exibe maiores desvios de seu desempenho na tensão e frequência nominais do que na zona A. As elevações de temperatura serão maiores do que na tensão e frequência nominais e provavelmente serão superiores aos da zona A. Os limites de temperatura para sistemas de isolamento podem ser excedidos, por isso devem ser previamente acordadas. A operação estendida no perímetro da zona B deve ser limitada a um tempo menor que 10 minutos, tempo de recorrência não menor que 6 horas e não mais que 2 vezes ao mês [14].



Figura 4-15 - Variação de tensão e frequência para hidrogeradores

Fonte: [14]

Para cada ponto marcado no gráfico calcula-se a relação tensão por frequência (V/f) que é um indicativo da saturação da máquina. Os valores maiores que V/f > 1,00 indica maior saturação do gerador, e valores de V/f < 1,00 indica gerador menos saturado. A Tabela 4-3 lista os valores de V/f para cada ponto de operação.

| Ponto   | Tensão<br>[pu] | Frequência<br>[pu] | V/f   | observações                                               |
|---------|----------------|--------------------|-------|-----------------------------------------------------------|
| nominal | 1,00           | 1,00               | 1,000 | Ponto de operação nominal                                 |
| 1       | 1,05           | 1,00               | 1,050 |                                                           |
| 2       | 1,03           | 0,98               | 1,051 | Aumento da saturação e aumento da temperatura do rotor    |
| 3       | 1,00           | 0,98               | 1,020 |                                                           |
| 4       | 0,95           | 0,98               | 0,969 | Aumento da corrente da armadura                           |
| 5       | 0,95           | 1,00               | 0,950 | com aumento da temperatura do                             |
| 6       | 0,97           | 1,02               | 0,951 | temperatura do rotor                                      |
| 7       | 1,00           | 1,02               | 0,980 | Diminuição da saturação e da<br>temperatura do rotor      |
| 8       | 1,05           | 1,02               | 1,029 | Aumento da saturação e aumento da<br>temperatura do rotor |
| P1      | 1,10           | 1,00               | 1,100 | Grande aumento da saturação e                             |
| P2      | 1,04           | 0,94               | 1,106 | grande aumento da temperatura do                          |
| P3      | 1,00           | 0,94               | 1,064 | classe 155                                                |

Tabela 4-3 - Análise dos pontos operacionais com variação de tensão e frequência

| P4 | 0,90 | 0,94                                            | 0,957 | Aumento da corrente da armadura                                      |
|----|------|-------------------------------------------------|-------|----------------------------------------------------------------------|
| P5 | 0,90 | ),90 1,00 0,900 com aumento da estator e reduçã |       | com aumento da temperatura do<br>estator e redução da saturação e da |
| P6 | 0,94 | 1,04                                            | 0,904 | temperatura do rotor                                                 |
| P7 | 1,00 | 1,04                                            | 0,962 | Diminuição da saturação e da<br>temperatura do rotor                 |
| P8 | 1,10 | 1,04                                            | 1,058 | Aumento da saturação e aumento da<br>temperatura do rotor            |

Considerando a zona A da Figura 4-15, os pontos de operação críticos são: 1, 2, 3 e 8 onde a máquina está mais saturada, exigindo maior corrente de excitação e elevando a temperatura do rotor. Os pontos 4, 5 e 6 são pontos operacionais onde o aquecimento acontece no estator.

Considerando a zona B, os pontos P1, P2, P3 e P8 são aquelas condições operacionais com gerador mais saturado, exigindo mais corrente de excitação e a temperatura pode ultrapassar os limites da classe 155(F). Os pontos P4, P5 e P6 são pontos operacionais onde o aquecimento acontece no estator, podendo ultrapassar os limites da classe 155 (F).

À medida que o ponto de operação se afasta dos valores nominais de tensão e frequência, a elevação de temperatura ou as temperaturas totais dos componentes podem aumentar progressivamente. A operação contínua perto de certas partes do limite da zona A na Figura 4-15 em potências próximas aos limites da curva de capacidade reativa do hidrogerador pode fazer com que o isolamento envelheça termicamente em aproximadamente duas a seis vezes sua taxa normal [18].

Para minimizar a redução da vida útil do gerador devido aos efeitos da temperatura e dos diferenciais de temperatura, a operação dentro da zona B deve ser limitada em extensão, duração e frequência de ocorrência. A potência deve ser reduzida ou outras medidas corretivas tomadas o mais rápido possível.

Os limites da Figura 4-15 fazem com que os circuitos magnéticos do hidrogerador sofram sobrefluxo ou subfluxo em não mais que 5 % na zona A e 10 % na zona B. Os limites inclinados correspondem a volts/hertz constantes.

À medida que a frequência de operação se afasta da frequência nominal, os efeitos além do gerador podem se tornar importantes e precisam ser considerados. Como exemplos, o fabricante da turbina especificará faixas de frequência e períodos correspondentes durante os quais a turbina pode operar, e a capacidade dos equipamentos auxiliares de operarem em uma faixa de tensão e frequência devem ser consideradas [18]. A operação em uma faixa ainda maior de tensão e frequência, se necessária, deve estar sujeita a acordo entre o comprador e o fabricante [18].

A operação em tensões abaixo de -5 % podem ser aceitáveis desde que previamente acordado entre fabricante e comprador, ou haja uma redução semelhante na faixa de

operação do MVA. Nesses casos, deve-se considerar as limitações de outros equipamentos conectados eletricamente ao gerador [18].

A Tabela 4-4 tem os valores de elevação de temperatura dependentes da classe de isolação.

|                                                         | Classe 130(B) | Classe 155(F)      |
|---------------------------------------------------------|---------------|--------------------|
| Enrolamento do estator, medido por RTDs                 | 85(*)         | 110 <sup>(*)</sup> |
| Núcleo do estator                                       | 75            | 100                |
| Enrolamento rotor, medido por variação d<br>resistência | <b>le</b> 90  | 115                |

Tabela 4-4 - Elevação de temperatura [K] acima do ar de refrigeração de 40 °C

#### *Fonte:* [14]

(\*) Segundo a norma IEC60034-1 [42] a elevação de temperatura do enrolamento do estator, quando medido por RTD, deve ser reduzido de 1 K para cada 1 kV acima de 12 kV até o limite de 24 kV. Para tensão maior que 24 kV, o valor deve ser determinado em comum acordo entre comprador e o fabricante. Segundo a norma IEC60034-33 [14], se é especificado o gerador fabricado com materiais classe 155(F), mas operando na classe inferior, ou seja, classe 130(B), a correção da elevação de temperatura em função da tensão não é necessária.

# 5 SIMULAÇÃO DE GERADORES

# 5.1 OBJETIVO DAS SIMULAÇÕES DE GERADORES DE 300 MVA

A seguir a simulação através de cálculo elétrico de um hidrogerador de 300 MVA acionados por turbina tipo Francis será exposto em detalhes. Será apresentado como um dimensionamento orientado a obter o rendimento otimizado de um hidrogerador, e outra simulação com projeto orientado ao menor custo. Estas simulações foram executadas utilizando um programa de Cálculo Eletromagnético e que está anexado a este documento no item 8.1 APÊNDICE – CÁLCULO ELETROMAGNÉTICO.

Será apresentado uma comparação das principais características dos 2 hidrogeradores com rendimento e relação comparativa de custos.

Junto com o dimensionamento do primeiro caso do gerador de 300 MVA com projeto orientado a rendimento, será oferecida uma explicação para cada parâmetro utilizado no dimensionamento [24] [43].

## 5.1.1 ESPECIFICAÇÃO TÉCNICA DO GERADOR

| Potência (Sr)                                        | 300 MVA                                   |
|------------------------------------------------------|-------------------------------------------|
| Tensão nominal (Un)                                  | 16000 V                                   |
| Variação de tensão (DV)                              | +5 % / -10 %                              |
| Fator de potência (fp)                               | 0.90                                      |
| Frequência nominal (fn)                              | 60 Hz                                     |
| Rotação nominal (nn)                                 | 120 rpm                                   |
| Rotação de disparo (nd)                              | 230 rpm                                   |
| Tipo construtivo                                     | IM8015 ou W-1                             |
| Tipo de refrigeração                                 | ICW37A81                                  |
| Temperatura da água de refrigeração (Tagua)          | 30 °C                                     |
| Xdu – Reatância síncrona de eixo D, não saturado     | <u>&lt;</u> 1,1 pu                        |
| RCC – Relação de curto-circuito                      | <u>≥</u> 1,0                              |
| X´du – Reatância transitória de eixo D, não saturado | <u>&lt;</u> 0,35 pu                       |
| X"ds – Reatância subtransitória de eixo D, saturado  | 0,18 <u>&lt;</u> X"ds <u>&lt;</u> 0,30 pu |
| X"q/X"d – Relação das reatâncias subtransitórias     | <u>&lt;</u> 1,35                          |
| Momento de inércia (J)                               | 16000 tm <sup>2</sup>                     |
| Isolação do estator e rotor                          | Classe 155(F)                             |
| Elevação de temperatura do enrolamento estator       | 85 K (medido pelos<br>RTDs)               |

| Elevação de temperatura do núcleo do estator | 75 K (medido pelos<br>RTDs)               |
|----------------------------------------------|-------------------------------------------|
| Elevação de temperatura do enrolamento rotor | 90 K (medido por<br>variação resistência) |
| Rendimento mínimo (η)                        | 98,95 % à condições<br>nominais           |

As perdas do gerador devem ser preferencialmente medidas pelo método calorimétrico, de acordo com a IEC60034-2-1 [12] e IEC 60034-2-2 [13]. As seguintes perdas devem estar inclusas no cálculo do rendimento:

- Perdas Ferro
- Perdas I<sup>2</sup>R do enrolamento do estator
- Perdas adicionais
- Perdas I<sup>2</sup>R no enrolamento de campo
- Perdas do sistema de excitação
- Perdas nas escovas
- Perdas nos mancais guia superior do gerador, óleo a 45°C
- Perdas de Ventilação, com ar frio a 40°C

Temperatura de referência para o cálculo do rendimento: 95°C

Rendimento médio ponderado (RMPG)

98,90 %

$$RMPG = \sum_{k=1}^{n} A_k \, \eta_k$$

Sendo:

 $A_k$  Fatores de ponderação

 $\eta_k$  Rendimento nas cargas parciais (k)

Os fatores de ponderação são:

Potência do gerador [%] Ponderação  $A_k$ 

100 0,56

- 96 0,07
- 90 0,32
- 80 0,04
- 70 0,01

# 5.1.2 DIMENSIONAMENTO DO GERADOR DE 300 MVA ORIENTADO PARA RENDIMENTO

Para início do dimensionamento do gerador deve-se estimar o valor de C, o qual se baseia em uma estatística de inúmeras máquinas projetadas, fabricadas e comissionadas com sucesso, e sugere o melhor valor para os requisitos normais na época em que o banco de dados foi construído. Com o passar do tempo, a escassez dos recursos hídricos e a conscientização ambiental onde as usinas atuais são construídas com reservatórios a fio d'água, o rendimento dos equipamentos tem se tornado de suma importância. O valor de C deverá ser revisado com a criação de um banco de dados considerando o alto rendimento normalmente solicitado nos projetos mais recentes.



Figura 5-1 - Curva para estimativa do valor de C (Esson number ou fator de aproveitamento)

## Fonte: [Própria]

O valor de  $S_r/2p$  (300/60) nesta máquina é de 5,0 [MVA/polo], logo o valor inicial para C conforme a Figura 5-1 é C=8,0, porém considerando que o alto valor especificado de rendimento, um bom valor inicial poderia ser C=7,0, lembrando que o valor C é uma sugestão inicial, e que após exaustivos cálculos mais refinados, analisa-se este valor para verificar a sua aderência à uma faixa normal e razoável. Valores muito fora da faixa é um indicativo que algo está não está de acordo com as práticas normais de dimensionamento.

# 5.1.2.1 DETERMINAÇÃO DO DIÂMETRO INTERNO DO ESTATOR

O primeiro desafio nesta simulação é a determinação do diâmetro interno do estator, pois há que se considerar que as perdas de ventilação têm a sua variação com a quarta potência do diâmetro interno e o rendimento é de grande importância pois ele está especificado com valor muito arrojado [11].

Outro item muito importante é realizar esta máquina com custos compatíveis e ao mesmo tempo atender ao momento de inércia especificado, considerando que geradores com maior diâmetro tendem a serem mais competitivos.

Logo a determinação do diâmetro interno do estator será um compromisso entre o rendimento e o custo, atendendo ainda todos os outros parâmetros especificados, tais como: temperatura dos enrolamentos e reatâncias.

#### 5.1.2.1.1 DETERMINAÇÃO DO DIÂMETRO INTERNO PELO MÉTODO 1

Utilizando as fórmulas (4-81), (4-78) e (4-80) do item 4.12

$$D_{i ref} = \sqrt{\frac{4 \mathcal{J} C}{\pi \rho_{Fe} I_g \Delta k_g}}$$
$$\Delta k_g = \frac{\left(k_g^3 + k_g\right)}{(1 + k_g)^4}$$
$$k_g = 3.6 \cdot l n \left(\frac{S_n}{n_d}\right) - 13$$

Onde:

$$\begin{aligned} \mathcal{I} &= 16000 \ Tm2; \\ \mathcal{C} &= 7,0 , \text{Fator de aproveitamento sugerido no item 5.1.2} \\ \rho_{Fe} &= 7,85 \ T/m3; \\ I_{g \ ndisp} &= \frac{S_r}{n_d} = 1304; \\ k_{\mathcal{I}} &= 3,6 \cdot l \ n \left(\frac{S_n}{n_{dis}}\right) - 13 = 12,8; \\ S_r &= 300000 \ kVA; \\ n_n &= 120 \ rpm; \\ n_d &= 230 \ rpm. \end{aligned}$$

Substituindo estes valores nas fórmulas, resulta em uma primeira estimativa para o diâmetro interno de  $D_{i\,ref} = 11,18$  m, e a velocidade periférica ( $V_p = \pi D_{i\,ref} n_d$ ) resulta em  $V_p = 134,7$  m/s.

## 5.1.2.1.2 DETERMINAÇÃO DO DIÂMETRO INTERNO PELO MÉTODO 2

Este método utiliza as equações (4-74), (4-81) e (4-78), sendo utilizado ainda uma estimativa inicial dos raios do anel magnético e altura radial dos polos e da coroa do rotor.

r = 6 m Raio externo do anel magnético

$$R = \frac{(Rpolo + Ranel)}{2} = \frac{0.25 + 0.5}{2} = 0.375$$
$$k_j = \frac{r}{R} = \frac{6}{0.375} = 16$$

$$D_{i ref} = \sqrt{\frac{4 \mathcal{J} C}{\pi \rho_{Fe} I_g \Delta k_{\mathcal{I}}}}$$
$$\Delta k_{\mathcal{I}} = \frac{\left(k_{\mathcal{I}}^3 + k_{\mathcal{I}}\right)}{(1 + k_{\mathcal{I}})^4}$$

Substituindo estes valores nas fórmulas, resulta em uma segunda estimativa para o diâmetro interno de  $D_{i\,ref} = 12,15$  m e a velocidade periférica ( $V_p = \pi D_{i\,ref} n_{dis}$ ) resulta em  $V_p = 146,3$  m/s.

## 5.1.2.1.3 DIÂMETRO INTERNO ESCOLHIDO

Velocidades periféricas elevadas ou no seu limite máximo são utilizadas em geradores dimensionados para otimização de custos, ou que tenham dificuldades em atender aos requisitos da rotação crítica, onde se objetiva obter máquinas com menor comprimento axial do núcleo e menor distância entre mancais.

Dentre os 2 valores sugeridos para o diâmetro interno do estator 11,18 m e 12,15 m, e tendo em conta o alto rendimento especificado, e após algumas iterações de cálculo será adotado o diâmetro interno  $D_i = 12,0 m$ , e a velocidade periférica  $V_p = 144,5 m/s$  que está dentro dos valores mais comumente utilizados pela comunidade de engenheiros calculistas para este tipo de máquina.

#### 5.1.2.2 DETERMINAÇÃO DO COMPRIMENTO AXIAL NÚCLEO DO ESTATOR

Para determinação do comprimento do núcleo do estator utiliza-se a equação (4-40) e o fator de aproveitamento C que representa a densidade volumétrica de energia.

$$C = \frac{S_r}{D_i^2 l_{est} n_n}$$

Com C = 7,0 resulta  $l_{est} = 2,48 m$ , portanto será utilizado o valor de  $l_{est} = 2400 mm$ 

## 5.1.2.3 DETERMINAÇÃO DO NÚMERO DE RANHURAS

Do item 4.7 quando a forma de onda da distribuição circunferencial da densidade de linhas de fluxo magnético adquire uma forma senoidal, demonstra-se que a tensão de fase-neutro ( $U_{fn}$ ) pode ser escrita como em (4-26):

$$U_{fn} = \frac{4}{\sqrt{2}} \, l_{est} \, \tau_p \, f \, k_w \, N_{ph} \, \beta_{max}$$

Para estimativa inicial será adotado o fator de enrolamento  $k_w = 0.93 \text{ e } \beta_{max} = 0.9 \text{ T}$ , e obtém-se  $N_{ph} = 43 \text{ espiras}$ .

A corrente nominal pode ser calculada pela fórmula abaixo que é um rearranjo da equação (4-25) :

$$I_n = \frac{S_r}{\sqrt{3} U_n} = 10825 A$$

Para este tipo de máquina deve-se utilizar o projeto com barras Roebel com transposição de 360 graus. O normal para uma barra Roebel é conduzir em torno de 2000 a 3500 A, logo sugere-se utilizar a=4 circuitos paralelos que resulta em 2706 A passando na barra Roebel. O número de circuitos paralelos deve ser um divisor do número de polos. Para projeto com barras,  $N_{tc} = 1$ .

Utilizando a fórmula (4-29) que relaciona número de espiras por fase, número de ranhuras, número de fases e número de circuitos paralelos.

$$N_{ph} = \frac{N_s N_{tc}}{m a}$$
$$N_s = \frac{N_{ph} m a}{N_{tc}} = \frac{43 \cdot 3 \cdot 4}{1} = 516 \ ranhuras$$

Pelos cálculos acima sugere-se aproximadamente 516 ranhuras, e para uma escolha mais assertiva lista-se abaixo uma faixa de possíveis valores de q (número de ranhuras por polo e fase) e correspondente número de ranhuras, a fim de facilitar a adoção do melhor valor. O valor de q é de extrema importância pois fornece um indicativo de possíveis riscos de ressonância no estator.

Considerando que se adotou a=4 circuitos paralelos e com 60 polos, possíveis valores para o valor c da equação  $q = a \frac{b}{c}$  limita-se a 15, 5, 3 e 1. Para um enrolamento trifásico e equilibrado o valor de c não pode ser múltiplo de 3, logo nos resta somente c = 1 e 5. O número de ranhuras deve ser múltiplo de 3 [44], [45], [46], [47], [48], [49].

A Tabela 5-1 lista os possíveis números de ranhuras para este gerador.

| q       | Número de ranhuras $N_s$ |
|---------|--------------------------|
| 2 + 1/5 | 396                      |
| 2 + 2/5 | 432                      |
| 2 + 3/5 | 468                      |
| 2 + 4/5 | 504                      |
| 3       | 540                      |
| 3 + 1/5 | 576                      |
| 3 + 2/5 | 612                      |
| 3 + 3/5 | 648                      |
| 3+4/5   | 684                      |
| 4       | 720                      |

Tabela 5-1 - Número de ranhuras por polo e fase x Número de ranhuras

Número de ranhuras muito abaixo do valor sugerido de 516 leva a máquina a valores altos de saturação, e valores maiores leva a máquina a ser menos saturada. Portanto os possíveis números de ranhuras são 504 e 540, e que a princípio será adotado 504.

Para 504 ranhuras, tem-se-que o passo de ranhura é  $\tau_n = 74,8 \ mm$ . Este valor está bem dentro da faixa usual (50 a 90 mm) então a escolha do número de ranhuras de 504 continua válido.

Outro parâmetro a ser verificado é a Intensidade linear de corrente que está definido no item 4.9, e expressão (4-42):

$$A_i \triangleq \frac{N_s \ 2 \ N_{tc}}{\pi \ D_i} \frac{I_n}{a}$$
$$A_i \triangleq \frac{504 \cdot 2 \cdot 1}{\pi \cdot 12000} \cdot \frac{10825}{4} = 72.4 \ A/mm$$

O valor de  $A_i = 72,4$  A/mm está bem dentro dos valores recomendados que é de  $(60 \le A_i \le 85)$  conforme item 4.10.2. Sabendo que valores no limite inferior tende a possibilitar máquinas com maior rendimento, logo mais uma vez a confirmação que o número de ranhuras adotado de 504 é acertado assim como a tensão de 16000 V está bem adequado ao projeto.

O tipo de enrolamento mais indicado para este tipo de máquina é do tipo imbricado, pois este tipo produz menores perdas, grande redução de empuxo magnético (UMP) e mais facilidade de manutenção em caso de falhas em barras.

# 5.1.2.4 DIMENSIONAMENTO DO FIO DE COBRE E RANHURA DO ESTATOR

Para o dimensionamento da barra Roebel e a ranhura, será aplicada uma isolação principal de 3,24 mm de espessura, que significa uma rigidez dielétrica de 2,85 kV/mm. Este valor é ainda um pouco conservativo e tem sido utilizado pelos grandes fabricantes de geradores, sendo que pela tecnologia atual poder-se-ia utilizar até o valor máximo de 3,0 kV/mm.

Para o fio de cobre optar-se-á uma espessura de 1,8 mm com o objetivo de reduzir as perdas adicionais por correntes parasitas e densidade de corrente de aproximadamente 3 A/mm<sup>2</sup>. A largura do fio é escolhido considerando que irá definir a largura da ranhura, o qual terá influência na saturação do dente. Serão utilizados 58 fios de 9,00 x 1,80 mm.

A Tabela 5-2 mostra os cálculos para a determinação da largura e profundidade da ranhura, considerando todos os componentes utilizados para embutimento das barras.

| LARGURA DA RANHURA           | Dimensão [mm] |       |  |
|------------------------------|---------------|-------|--|
| Fios de cobre                | 2 x 9,00      | 18,00 |  |
| Isolação dos fios            | 4 x 0,105     | 0,42  |  |
| Espaçador vertical           | 0,30          | 0,30  |  |
| Isolação principal           | 2 x 3,24      | 6,48  |  |
| Proteção corona              | 2 x 0,15      | 0,30  |  |
| Tolerância positiva          | 0,3           | 0,30  |  |
| Sistema de embutimento       | 0,50          | 0,50  |  |
| Largura da ranhura montada   |               | 26,30 |  |
| Largura da ranhura estampada |               | 26,60 |  |

Tabela 5-2 - Dimensionamento da ranhura do estator

| PROFUNDIDADE DA RANHURA | Dimensã        | Dimensão [mm] |  |  |
|-------------------------|----------------|---------------|--|--|
| Fios de cobre (58 fios) | 30 x 1,8       | 54,00         |  |  |
| Isolação dos fios       | 30 x 2 x 0,105 | 6,30          |  |  |
| Proteção corona interna | 2 x 0,15       | 0,30          |  |  |
| Isolação principal      | 2 x 3,24       | 6,48          |  |  |
| Proteção corona         | 2 x 0,15       | 0,30          |  |  |
| Tolerância positiva     | 0,50           | 0,50          |  |  |
| Sistema de embutimento  | 0,50           | 0,50          |  |  |
| Altura radial da barra  |                | 68,38         |  |  |
|                         |                |               |  |  |
| Alturas das 2 barras    | 2 x 68,38      | 136,76        |  |  |
| Separador de camadas    | 8,30           | 8,30          |  |  |
| Calços de proteção      | 0,34           | 0,34          |  |  |
| Calços deslizantes      | 0,80           | 0,80          |  |  |

| Mola ondulada                 | 1,30 | 1,30   |
|-------------------------------|------|--------|
| Contracunha                   | 2,50 | 2,50   |
| Cunha                         | 6,00 | 6,00   |
| Altura cunha/diâmetro interno | 1,00 | 1,00   |
| Profundidade da ranhura       |      | 157,00 |

## 5.1.2.5 DIMENSIONAMENTO DO NÚCLEO DO ESTATOR

Devido ao alto valor de rendimento especificado, será utilizada a chapa M230-50A, que é a melhor chapa siliciosa de 0,5 mm de espessura disponível atualmente no mercado. O núcleo terá escadinhas nos pacotes de extremidades para reduzir o fluxo de dispersão nessa região, e adicionalmente os dentes terão rasgos (*slits*) para reduzir as perdas devido ao fluxo no sentido axial.

Os dedos de pressão serão de materiais antimagnéticos e fisicamente serão compostos por 2 dedos por dente, com o objetivo de reduzir as perdas.

A altura radial da coroa (*yoke*) é dimensionada pelos limites de saturação e perdas geradas, porém não deve ser menor que 80 % da profundidade da ranhura por limites de rigidez mecânica.

Dependendo da vazão de ar que passa através do núcleo do estator, os dutos de ar devem ocupar uma parcela de 10 a 15 % do seu comprimento bruto total. A possibilidade de empregar dutos de 5 mm de largura permitirá uma distribuição mais homogênea do ar de resfriamento e, com isso, a possibilidade de uma redução da temperatura, promovido por um incremento na superfície de dissipação de calor. Porém, tem que se esperar um incremento marginal no custo devido ao aumento do número de "chapas de ventilação" que são providos de separadores em aço antimagnético com perfis **I**, em geral esses separadores podem ter larguras que vão de 5 a 8 mm.



Figura 5-2 - Chapa de ventilação com os perfis **I** soldados Fonte: [Própria]

A altura radial das ranhuras para receber os elementos de fixação do estator tipo rabo de andorinha, alojadas na circunferência externa do núcleo, varia de 10 a 15 mm, dimensionado por critérios mecânicos. Nos cálculos analíticos de saturação essa faixa de 10 a 15 mm no diâmetro externo do núcleo do estator não participa do circuito magnético.

As demais dimensões serão em função da saturação, temperaturas do núcleo e enrolamento e perdas geradas.

A Tabela 5-3 apresenta todas as principais dimensões do núcleo e informações necessárias para um cálculo elétrico.

| NÚCLEO DO ESTATOR                      | Unida             | ade dimensão     |      |
|----------------------------------------|-------------------|------------------|------|
| Diâmetro interno                       | mr                | n 12000          |      |
| Diâmetro externo                       | mr                | n 12724          |      |
| Comprimento bruto axial                | mr                | n 2350           |      |
| Largura da ranhura                     | mr                | n 26,60          |      |
| Profundidade da ranhura                | mr                | n 157,0          |      |
| Altura radial da coroa do núcleo       | mr                | n 190,0          |      |
| Altura da ranhura para cunha andorinha | <b>rabo de</b> mr | n 15,0           |      |
| Número de dutos de ventilação          | -                 | 56               |      |
| Largura do duto de ventilação          | mr                | n 5,0            |      |
| Tipo de chapa siliciosa                | -                 | M230-50A         |      |
| Extremidades do núcleo                 | -                 | Escadinhas e ras | sgos |
| Empilhamento                           | -                 | Contínuo         |      |
| Fator de empilhamento                  |                   | 0,95             |      |

Tabela 5-3 - Dimensionamento do núcleo do estator

# 5.1.2.6 DIMENSIONAMENTO DO POLO

Para diminuir as perdas, o aumento do cobre do polo tem sido muito utilizado devido ao menor incremento de custo quando comparado as outras ações.

A largura da sapata foi dimensionada considerando valores próximos a 72 % do passo polar, e o comprimento axial da sapata do polo com uma redução de 30 mm em relação ao comprimento do núcleo do estator, com o objetivo de reduzir o fluxo de dispersão. A altura da sapata polar deve ser o menor possível para manter baixos os valores de dispersão do polo e reduzir a FMM necessária, por outro lado o seu dimensionamento deve ser no limite mecânico. O núcleo do polo tem uma largura aproximada de 70 % da largura da sapata polar como tentativa inicial, e para o seu comprimento axial se pode adotar um valor igual ao comprimento do núcleo do estator. A largura do perfil de cobre deve ser tal que o espaço interpolar permita a passagem do fluxo de ar sem causar elevadas perdas de pressão, bem como deve levar em conta que o coeficiente de transmissão térmica da bobina polar tem relação direta com a velocidade do ar em contato com a superfície do cobre. A altura radial do núcleo do polo fica em função de prover espaço adequado para acomodar as espiras do polo de tal modo que tenha controle sobre as perdas, temperaturas e tensão nas bobinas polares. Polos radialmente altos aumentam a dispersão dos polos e necessitam maiores valores de FMM.

As outras dimensões são decorrentes da otimização das perdas, temperaturas, limites de saturação e limites mecânicos.

A Tabela 5-4 lista as dimensões principais do polo para execução do cálculo elétrico.

| POLOS                                | unidade | dimensão |
|--------------------------------------|---------|----------|
| Largura da sapata                    | mm      | 450      |
| Altura da sapata                     | mm      | 50       |
| Comprimento axial da sapata polar    | mm      | 2320     |
| Largura do núcleo do polo            | mm      | 300      |
| Altura do núcleo do polo             | mm      | 220      |
| Comprimento axial do núcleo polar    | mm      | 2350     |
| Espessura da chapa do polo           | mm      | 1,5      |
| Número de espiras de cobre           | -       | 18       |
| Espessura do cobre da espira         | mm      | 10       |
| Largura da espira normal / com aleta | mm      | 90/100   |
| Número de barras amortecedoras       | -       | 5        |
| Diâmetro das barras de amortecimento | mm      | 19       |

Tabela 5-4 - Dimensionamento do polo

#### 5.1.2.7 DADOS DE ENTRADA E DADOS DE SAÍDA DO PROGRAMA DE CÁLCULO

Com todos os dados de entrada definidos, ou pela especificação técnica, ou pelo engenheiro calculista, executa-se o programa de cálculo elétrico. Do programa se obtém os vários parâmetros de saída que definem o gerador projetado.

|                      |        |          | DADOS DE ENTRADA       |          |         |
|----------------------|--------|----------|------------------------|----------|---------|
| Potência Nominal     | [kVA]  | 300000   | Tensão nominal         | [kV]     | 16.00   |
| Fator de potência    | [-]    | 0.900    | Rotação nominal        | [rpm]    | 120.00  |
| Momento inércia (J)  | [T.m2] | 16000    | Rotação disparo        | [rpm]    | 230.00  |
| H const de inércia   | [s]    | 4.211    | Número de polos        | [-]      | 60      |
|                      |        |          | NÚCLEO DO ESTATOR      |          |         |
| Diâmetro interno     | [mm]   | 12000.0  | Diâmetro externo       | [mm]     | 12724.0 |
| Comprimento núcleo   | [mm]   | 2350.0   | Altura da cunha        | [mm]     | 15.00   |
| Número dutos vent    | [-]    | 56       | Largura duto vent      | [mm]     | 5.00    |
| Altura Yoke          | [mm]   | 190.0    | Altura ranhura         | [mm]     | 157.0   |
| Largura da ranhura   | [mm]   | 26.6     | Número ranhuras        | [-]      | 504     |
| Tipo chapa silicio   | [W/kg] | 2.30     | Espessura chapa        | [mm]     | 0.50    |
|                      |        |          | ENROLAMENTO DO ESTATOR |          |         |
| Número de camadas    | [-]    | 2        | Espiras por barra      | [-]      | 1       |
| Circuitos paralelos  | [-]    | 4        | Passo enrolamento      | [-]      | 7       |
| Número de fios       | [-]    | 58       | Largura fio            | [mm]     | 9.00    |
| Espessura fio        | [mm]   | 1.80     | Raio fio               | [mm]     | 0.65    |
| Isolação principal   | [mm]   | 3.24     | Isolação fio           | [mm]     | 0.10    |
| Separador camada     | [mm]   | 8.30     | Espessura cunha        | [mm]     | 6.00    |
|                      |        |          | POLOS                  |          |         |
| Entreferro           | [mm]   | 21.00    | Entreferro máximo      | [mm]     | 31.00   |
| Largura sapata polo  | [mm]   | 450.00   | Larg. núcleo polo      | [mm]     | 300.00  |
| Comprimento sapata   | [mm]   | 2320.00  | Comprimento núcleo     | [mm]     | 2350.00 |
| Altura sapata        | [mm]   | 50.00    | Altura núcleo          | [mm]     | 220.00  |
| Espess chapa polo    | [mm]   | 1.50     | Espess colar isol sup  | 0 [ mm ] | 8.00    |
| Num espiras normais  | [-]    | 18.00    | Num espiras refrig     | [-]      | 0.00    |
| Espess espira normal | [mm]   | 10.00    | Espess espira refrig   | [mm]     | 10.00   |
| Larg espira normal   | [mm]   | 90.00    | Larg espira refriger   | [mm]     | 100.00  |
| Núm barras amortec   | [-]    | 5        | Diâm. barra amortec    | [mm]     | 19.00   |
| Passo amortecedor    | [mm]   | 70.00    | Seção segm amortec     | [mm2]    | 600.00  |
|                      |        |          | ANEL MAGNÉTICO         |          |         |
| Diâm ext. coroa rot  | [mm]   | 11418.00 | Comprim coroa rotor    | [mm]     | 2500.00 |
| Alt Radial coroa rot | [mm]   | 470.00   | Num segm coroa/volta   | [-]      | 15.00   |

|                      |        | DADOS    | RINCIPAIS DE SAIDA          |          |
|----------------------|--------|----------|-----------------------------|----------|
| Potência Nominal     | [kVA]  | 300000   | Tensão nominal [kV]         | 16.00    |
| Fator de potência    | [-]    | 0.900    | Rotação nominal [rpm]       | 120.00   |
| Momento inércia (J)  | [T.m2] | 16000    | Rotação disparo [rpm]       | 230.00   |
| H const de inércia   | [s]    | 4.211    | Número de polos [-]         | 60       |
|                      |        |          |                             |          |
| Fator aproveitamento | [-]    | 7.39     | Intens linear corrent[A/mm] | 72.36    |
| Dens corrente barra  | [-]    | 2.946    | Capa de corrente [A2/mm3    | ] 213.20 |
| Relação D/L          | [-]    | 5.106    | q num.ranh.polo fase [-] 2  | + 4 / 5  |
| Fator enrolamento 1h | [-]    | 0.92261  | Fator enrolamento 3h [-]    | -0.45110 |
| Corrente nominal     | [A]    | 10825.3  | Corrente por barra [mm]     | 2706.3   |
| Veloc perif nominal  | [m/s]  | 75.4     | Veloc perif disparo [m/s]   | 144.5    |
| bps/Tps              | [-]    | 0.716    | Entref max/nom [-]          | 1.476    |
|                      |        |          | ÚCLEO DO ESTATOR            |          |
| Diâmetro interno     | [mm]   | 12000.0  | Diâmetro externo [mm]       | 12724.0  |
| Comprimento núcleo   | [mm]   | 2350.0   | Altura da cunha [mm]        | 15.00    |
| Comp efetivo núcleo  | [mm]   | 1966.5   | Passo de ranhura [mm]       | 74.80    |
| Número seg volta     | [mm]   | 42.00    | Largura segmento [mm]       | 950.87   |
| Número dutos vent    | [-]    | 56       | Largura duto vent [mm]      | 5.00     |
| Altura Yoke          | [mm]   | 190.00   | Altura ranhura [mm]         | 157.00   |
| Largura da ranhura   | [mm]   | 26.60    | Número ranhuras [-]         | 504      |
| Tipo chapa silicio   | [W/kg] | 2.30     | Espessura chapa [mm]        | 0.50     |
|                      |        |          | NROLAMENTO DO ESTATOR       |          |
| Número de camadas    | [-]    | 2        | Espiras por barra [-]       | 1        |
| Circuitos paralelos  | [-]    | 4        | Passo enrolamento [-]       | 7        |
| Número de fios       | [-]    | 58       | Largura fio [mm]            | 9.00     |
| Espessura fio        | [mm]   | 1.80     | Raio fio [mm]               | 0.65     |
| Isolação principal   | [mm]   | 3.24     | Isolação fio [mm]           | 0.10     |
| Separador camada     | [mm]   | 8.30     | Espessura cunha [mm]        | 6.00     |
| Seção do fio         | [mm2]  | 15.837   | Seção da barra/bobina[mm2]  | 918.56   |
| Larg barra isolada   | [mm]   | 25.80    | Altura barra isolada [mm]   | 67.88    |
| Comprimento barra    | [mm]   | 3310.00  | Compr total conexões [m]    | 300.00   |
| Kmax                 | [-]    | 1.65     | KN [ ]                      | 1.22     |
| K fator CC/AC        | [-]    | 1.1555   | Resist 20oC por fase [ohm]  | 0.001422 |
| Resist Tref p/ fase  | [ohm]  | 0.001841 | Temp referência Tref [oC]   | 95       |
|                      |        |          | OLOS DO ROTOR               |          |
| Entreferro           | [mm]   | 21.00    | Entreferro máximo [mm]      | 31.00    |
| Largura sapata polo  | [mm]   | 450.00   | Larg. núcleo polo [mm]      | 300.00   |
| Comprimento sapata   | [mm]   | 2320.00  | Comprimento núcleo [mm]     | 2350.00  |
| Altura sapata        | [mm]   | 50.00    | Altura núcleo [mm]          | 220.00   |
| Espess chapa polo    | [mm]   | 1.50     | Espess colar isol sup[mm]   | 8.00     |
| Tipo de espiras      | [-]    | 1        | Passo polar [-]             | 628.32   |
| Num espiras normais  | [-]    | 18.00    | Num espiras refrig [-]      | 0.00     |
| Espess espira normal | [mm]   | 10.00    | Espess espira refrig [mm]   | 10.00    |
| Larg espira normal   | [mm]   | 90.00    | Larg espira refriger [mm]   | 100.00   |

| Núm barras amortec  | [-] 5            | Diâm. barr        | a amortec   | [mm]    | 19.00     |
|---------------------|------------------|-------------------|-------------|---------|-----------|
| Passo amortecedor   | [mm] 70.00       | Seção segm        | amortec     | [mm2]   | 600.00    |
| Dispersão polo vazi | 0[-] 1.144       | Dispersão         | polo carga  | [-]     | 1.252     |
| Seção espira normal | [mm2] 924.000    | Seção espi        | ra refriger | [mm2]   | 0.000     |
| Dens corr esp norma | l[A/mm2] 2.064   | Dens corr         | esp refrig  | [ – ]   | 0.000     |
| Resistência 20 oC   | [ohm] 0.122919   | Resist Tem        | p Refêrenc  | [oC]    | 0.159143  |
| Dist espiras refrig | [mm] 90.3        | Temp refer        | ência Tref  | [0C]    | 95        |
|                     |                  | -ANEL MAGNÉTICO   |             |         |           |
| Diâm ext. coroa rot | [mm] 11418.00    | Comprim co        | roa rotor   | [ mm ]  | 2500.00   |
| Alt Radial coroa ro | t[mm] 470.00     | Num segm c        | oroa/volta  | [-]     | 15.00     |
| CIRCU               | ITO MAGNÉTICO -  | INDUÇÃO E FMM A V | AZIO        |         |           |
|                     | Indução [T]      |                   |             |         | FMM [A.E] |
| Entreferro          | 0.9186           |                   |             |         | 33261.05  |
| Dente mínimo        | 1.6898           |                   |             |         |           |
| Dente médio         | 1.6562           |                   |             |         | 1473.01   |
| Dente máximo        | 1.6238           |                   |             |         |           |
| Coroa               | 1.2189           |                   |             |         | 92.34     |
| Entreferro polo/ane | 1                |                   |             |         | 1199.65   |
| Polo                | 1.5075           |                   |             |         | 1286.42   |
| TOTAL               |                  |                   |             |         | 37312.47  |
| Corrente de excitaç | ão a vazio       | [A]               |             |         | 1036.46   |
| Corrente de excitaç | ão do entreferro | [A]               |             |         | 947.24    |
| Corrente de excitaç | ão em curto-circ | uito [A]          |             |         | 1036.30   |
| CIRCU               | ITO MAGNÉTICO -  | INDUÇÃO E FMM EM  | CARGA       |         |           |
|                     | Indução [T]      |                   |             |         | FMM [A.E] |
| Entreferro          | 0.9321           |                   |             |         | 33746.93  |
| Dente mínimo        | 1.7145           |                   |             |         |           |
| Dente médio         | 1.6803           |                   |             |         | 1708.51   |
| Dente máximo        | 1.6476           |                   |             |         |           |
| Coroa               | 1.2367           |                   |             |         | 1003.74   |
| Reação da armadura  |                  |                   |             |         | 25676.85  |
| Entreferro polo/ane | 1                |                   |             |         | 1333.04   |
| Polo                | 1.6751           |                   |             |         | 2548.26   |
| Acréscimo (tol)     |                  |                   |             |         | 2640.69   |
| TOTAL               |                  |                   |             |         | 68658.04  |
| Corrente de excitaç | ão em carga [A]  |                   |             |         | 1907.17   |
|                     | RE               | ATÂNCIAS [pu]     |             |         |           |
| EIXO DIR            | ETO              |                   | EIXC        | QUADRAI | 'URA      |
| NÃO SATURADO S.     | ATURADO          | NÃO               | SATURADO    | SATUF   | ADO       |
| Xdu = 1.0940 X      | ds = 0.9999      | Xqu               | = 0.7465    | Xqs     | = 0.6822  |

127

X"qu = 0.2524 X"qs = 0.2372

X'du = 0.2837 X'ds = 0.2734

X"du = 0.2314 X"ds = 0.1966

|    |          |    |          | Dispersão |          |
|----|----------|----|----------|-----------|----------|
| X2 | = 0.2419 | X2 | = 0.2169 | XB        | = 0.1241 |
| X0 | = 0.1060 | X0 | = 0.0901 | XST       | = 0.1390 |
|    |          |    |          | XSX       | = 0.1638 |

|      |   |      |     | CONSTANTES | DE TEMPO | [s]          |
|------|---|------|-----|------------|----------|--------------|
| T'do | = | 6.67 | Tld | = 1.8244   | Tl       | lqo = 0.2311 |
| T"do | = | 0.08 | T"d | = 0.0624   | Т"с      | q = 0.0781   |

| PERDAS E RENDIMENTO |            |          |        |         |          |         |          |        |         |         |        |
|---------------------|------------|----------|--------|---------|----------|---------|----------|--------|---------|---------|--------|
|                     |            |          |        |         |          | PI      | ERDAS [k | W ]    |         |         |        |
| Perdas 1            | Ferro      |          |        |         |          | =       | 643.     | 06     |         |         |        |
| Perdas 3            | I2R esta   | tor a    | 95 oC  |         |          | =       | 647.     | 20     |         |         |        |
| Perdas i            | Adionais   |          |        |         |          | =       | 357.     | 30     |         |         |        |
| Perdas 3            | I2R roto   | ra 95    | oC     |         |          | =       | 585.     | 84     |         |         |        |
| Perdas 1            | Excitaçã   | 0        |        |         |          | =       | 58.      | 58     |         |         |        |
| Perdas V            | Ventilaç   | ão       |        |         |          | =       | 500.     | 00     |         |         |        |
| Perdas 1            | Mancal     |          |        |         |          | =       | 15.      | 00     |         |         |        |
| Perdas '            | FOTAL      |          |        |         |          | =       | 2806.    | 98     |         |         |        |
| RENDIME             | OTO        |          |        |         |          | =       | 98.9     | 71 %   |         |         |        |
|                     |            |          |        | -RENDIM | IENTO PO | NDERADO | )        |        |         |         |        |
| carga               | If         | Wi       | Pfe    | Pcuest  | Padic    | Pcurot  | Pexc     | Pvent  | Pmancal | Total   | Rend   |
| [pu]                | [A]        | [-]      | [kW]   | [kW]    | [kW]     | [kW]    | [kW]     | [kW]   | [kW]    | [kW]    | [%]    |
| 1.00                | 1907.20    | 56.00    | 643.06 | 647.20  | 357.30   | 585.86  | 58.59    | 500.00 | 15.00   | 2807.00 | 98.97  |
| 0.96                | 1863.30    | 7.00     | 643.06 | 596.46  | 329.28   | 559.52  | 55.95    | 500.00 | 15.00   | 2699.27 | 98.97  |
| 0.90                | 1799.80    | 32.00    | 643.06 | 524.23  | 289.41   | 522.50  | 52.25    | 500.00 | 15.00   | 2546.45 | 98.96  |
| 0.80                | 1698.50    | 4.00     | 643.06 | 414.21  | 228.67   | 466.10  | 46.61    | 500.00 | 15.00   | 2313.65 | 98.94  |
| 0.70                | 1598.50    | 1.00     | 643.06 | 317.13  | 175.07   | 413.63  | 41.36    | 500.00 | 15.00   | 2105.26 | 98.90  |
| Rendir              | nento méd: | io ponde | rado   |         |          |         |          |        |         |         | 98.966 |
|                     |            |          |        |         |          |         |          |        |         |         |        |

## 5.1.3 DIMENSIONAMENTO DO GERADOR DE 300 MVA ORIENTADO PARA CUSTO

Para início do dimensionamento desse gerador deve-se estimar o novo valor de C, levando em conta que o valor calculado conforme item 5.1.2 foi C=8,0 enquanto adotase um valor menor devido ao alto rendimento requerido, e este valor foi de C=7,39. Considerando que agora o dimensionamento terá como objetivo um gerador com as mesmas características elétricas, porém orientado ao menor custo, adotar-se-á o valor inicial de C=9,0.

#### 5.1.3.1 DETERMINAÇÃO DO DIÂMETRO INTERNO DO ESTATOR

Utilizando o mesmo procedimento do item 5.1.2.1 para a determinação do diâmetro interno do estator, obtém-se:

Diâmetro interno do estator pelo método 1, estimado Di = 12,68 m e  $V_p = 152,7$  m/s

Diâmetro interno do estator pelo método 2, estimado Di = 13,77 m e  $V_p$  = 165,9 m/s

Velocidades periféricas elevadas ou no seu limite máximo são utilizadas em geradores dimensionados para otimização de custos, ou que tenham dificuldades em atender aos requisitos da rotação crítica, onde se objetiva obter máquinas com menor comprimento axial do núcleo e menor distância entre mancais.

Dentre os 2 valores sugeridos para o diâmetro interno do estator 12,68 m e 13,77 m, e tendo em conta o objetivo de otimização de custo, após algumas iterações de cálculo resulta no melhor diâmetro interno de  $D_i = 13,0$  m, e a velocidade periférica  $V_p = 156,56$  m/s que está dentro dos valores mais comumente utilizados pela comunidade de engenheiros calculistas para este tipo de máquina.

## 5.1.3.2 DETERMINAÇÃO DO COMPRIMENTO AXIAL NÚCLEO DO ESTATOR

Para determinação do comprimento do núcleo do estator utiliza-se a equação (4-40) e o fator de aproveitamento C=9,0 que representa a densidade volumétrica de energia.

Seguindo o mesmo procedimento do item 5.1.2.2, obtém se o valor de  $l_{est} = 1,64~m$ , portanto será utilizado o valor de  $l_{est} = 1600~mm$ 

## 5.1.3.3 DETERMINAÇÃO DO NÚMERO DE RANHURAS

Seguindo o mesmo procedimento do item 5.1.2.3 e para estimativa inicial será adotado o fator de enrolamento  $k_w = 0.93$  e  $\beta_{max} = 1.0$  T, e obtém-se:

 $N_{ph} = 53$  espiras, e com a=4 circuitos paralelos, se obtém a estimativa do número de ranhuras de 638.

Verificando na Tabela 5-1 afim de escolher o melhor número de ranhuras e que seja factível com um enrolamento simétrico e equilibrado. Tem-se duas opções a saber: 612 e 648. Após exaustivos cálculos chega-se na melhor configuração com 612 ranhuras.

Para 612 ranhuras, tem-se-que o passo de ranhura de  $\tau_n = 66,7$  mm. Este valor está bem dentro da faixa usual (50 a 90 mm) então a escolha do número de ranhuras de 612 continua válido.

Outro parâmetro a ser verificado é a Intensidade linear de corrente que está definido no item 4.9, e expressão (4-42):

$$A_i = 81,1 \text{ A/mm}$$

O valor de  $A_i = 81,1$  A/mm está bem dentro dos valores recomendados que é de  $(60 \le A_i \le 85)$  conforme item 4.10.2. Sabendo que valores próximos ao limite superior tendem a possibilitar máquinas com menor custo, logo mais uma vez a confirmação que o número de ranhuras adotado de 612 é acertado assim como a tensão de 16000 V está bem adequado ao projeto.

O tipo de enrolamento mais indicado para este tipo de máquina é do tipo imbricado, pois este tipo produz menores perdas, grande redução de empuxo magnético (UMP) e mais facilidade de manutenção em caso de falhas em barras.

## 5.1.3.4 DIMENSIONAMENTO DO FIO DE COBRE E RANHURA DO ESTATOR

Seguindo o mesmo procedimento do item 5.1.2.4, e com o objetivo de otimização de custos adotar-se-á uma densidade de corrente de aproximadamente 3,8 A/mm<sup>2</sup>, resultando na configuração de 54 fios de 7,50 x 1,80 mm.

A Tabela 5-5 mostra os cálculos para a determinação da largura e profundidade da ranhura, considerando todos os componentes utilizados para embutimento das barras.

| LARGURA DA RANHURA           | Dimensão [mm] |       |  |  |  |
|------------------------------|---------------|-------|--|--|--|
| Fios de cobre                | 2 x 7,50      | 15,00 |  |  |  |
| Isolação dos fios            | 4 x 0,105     | 0,42  |  |  |  |
| Espaçador vertical           | 0,30          | 0,30  |  |  |  |
| Isolação principal           | 2 x 3,24      | 6,48  |  |  |  |
| Proteção corona              | 2 x 0,15      | 0,30  |  |  |  |
| Tolerância positiva          | 0,30          | 0,30  |  |  |  |
| Sistema de embutimento       | 0,50          | 0,50  |  |  |  |
| Largura da ranhura montada   |               | 23,30 |  |  |  |
| Largura da ranhura estampada |               | 23,60 |  |  |  |

Tabela 5-5 - Dimensionamento da ranhura do estator

| PROFUNDIDADE DA RANHURA | Dimensão [mm]  |       |  |  |
|-------------------------|----------------|-------|--|--|
| Fios de cobre (54 fios) | 28 x 1,8       | 50,40 |  |  |
| Isolação dos fios       | 28 x 2 x 0,105 | 5,88  |  |  |
| Proteção corona interna | 2 x 0,15       | 0,30  |  |  |
| Isolação principal      | 2 x 3,24       | 6,48  |  |  |
| Proteção corona         | 2 x 0,15       | 0,30  |  |  |
| Tolerância positiva     | 0,50           | 0,50  |  |  |
| Sistema de embutimento  | 0,50           | 0,50  |  |  |
| Altura radial da barra  |                | 64,36 |  |  |

| Alturas das 2 barras                     | 2 x 64,36 | 128,72 |
|------------------------------------------|-----------|--------|
| Separador de camadas                     | 8,30      | 8,30   |
| Calços de proteção                       | 0,38      | 0,38   |
| Calços deslizantes                       | 0,80      | 0,80   |
| Mola ondulada                            | 1,30      | 1,30   |
| Contracunha                              | 2,50      | 2,50   |
| Cunha                                    | 6,00      | 6,00   |
| Altura sobre a cunha no diâmetro interno | 1,00      | 1,00   |
| Profundidade da ranhura                  |           | 149,00 |

# 5.1.3.5 DIMENSIONAMENTO DO NÚCLEO DO ESTATOR

Seguindo o mesmo procedimento do item 5.1.2.5, e com o objetivo de otimização de custos adotar-se-á a chapa M250-50A, que é uma das melhores chapas siliciosas de 0,5 mm de espessura disponível atualmente no mercado.

A Tabela 5-6 apresenta todas as principais dimensões do núcleo e informações necessárias para um cálculo elétrico.

| NÚCLEO DO ESTATOR                                 | unidade | dimensão |
|---------------------------------------------------|---------|----------|
| Diâmetro interno                                  | mm      | 13000    |
| Diâmetro externo                                  | mm      | 13748    |
| Comprimento bruto axial                           | mm      | 1600     |
| Largura da ranhura                                | mm      | 23,60    |
| Profundidade da ranhura                           | mm      | 149,0    |
| Altura radial da coroa do núcleo                  | mm      | 210,0    |
| Altura da ranhura para cunha rabo de<br>andorinha | e mm    | 15,0     |
| Número de dutos de ventilação                     | -       | 40       |

Tabela 5-6 - Dimensionamento do núcleo do estator

| Largura do duto de ventilação | mm | 5,0                 |
|-------------------------------|----|---------------------|
| Tipo de chapa siliciosa       | -  | M250-50A            |
| Extremidades do núcleo        | -  | Escadinhas e rasgos |
| Empilhamento                  | -  | Continuo            |
| Fator de empilhamento         |    | 0,95                |

#### 5.1.3.6 DIMENSIONAMENTO DO POLO

Para dimensionamento do polo deve se seguir o mesmo procedimento do item 5.1.2.6, porém neste caso com o objetivo de otimização de custos.

As dimensões são decorrentes da otimização das perdas, temperaturas, limites de saturação e limites mecânicos.

A Tabela 5-7 lista as dimensões principais do polo para execução do cálculo elétrico.

| POLOS                                | unidade | dimensão |
|--------------------------------------|---------|----------|
| Largura da sapata                    | mm      | 490      |
| Altura da sapata                     | mm      | 50       |
| Comprimento axial da sapata polar    | mm      | 1580     |
| Largura do núcleo do polo            | mm      | 340      |
| Altura do núcleo do polo             | mm      | 190      |
| Comprimento axial do núcleo polar    | mm      | 1600     |
| Espessura da chapa do polo           | mm      | 2,0      |
| Número de espiras de cobre           | _       | 19       |
| Espessura do cobre da espira         | mm      | 8        |
| Largura da espira normal / com aleta | mm      | 100/110  |
| Número de barras amortecedoras       | -       | 6        |
| Diâmetro das barras de amortecimento | mm      | 18       |

Tabela 5-7 - Dimensionamento do polo

#### 5.1.3.7 DADOS DE ENTRADA E DADOS DE SAÍDA DO PROGRAMA DE CÁLCULO

Com todos os dados de entrada definidos, ou pela especificação técnica, ou pelo engenheiro calculista, executa-se o programa de cálculo elétrico. Do programa se obtém os vários parâmetros de saída que definem o gerador projetado.

|                      |        |          | DADOS DE ENTRADA       |       |         |
|----------------------|--------|----------|------------------------|-------|---------|
| Potência Nominal     | [kVA]  | 300000   | Tensão nominal         | [kV]  | 16.00   |
| Fator de potência    | [-]    | 0.900    | Rotação nominal        | [rpm] | 120.00  |
| Momento inércia (J)  | [T.m2] | 16000    | Rotação disparo        | [rpm] | 230.00  |
| H const de inércia   | [s]    | 4.211    | Número de polos        | [-]   | 60      |
|                      |        |          | NÚCLEO DO ESTATOR      |       |         |
| Diâmetro interno     | [mm]   | 13000.0  | Diâmetro externo       | [mm]  | 13728.0 |
| Comprimento núcleo   | [mm]   | 1600.0   | Altura da cunha        | [mm]  | 15.00   |
| Número dutos vent    | [-]    | 40       | Largura duto vent      | [mm]  | 5.00    |
| Altura Yoke          | [mm]   | 200.0    | Altura ranhura         | [mm]  | 149.0   |
| Largura da ranhura   | [mm]   | 23.6     | Número ranhuras        | [-]   | 612     |
| Tipo chapa silicio   | [W/kg] | 2.50     | Espessura chapa        | [mm]  | 0.50    |
|                      |        |          | ENROLAMENTO DO ESTATOR |       |         |
| Número de camadas    | [-]    | 2        | Espiras por barra      | [-]   | 1       |
| Circuitos paralelos  | [-]    | 4        | Passo enrolamento      | [-]   | 9       |
| Número de fios       | [-]    | 54       | Largura fio            | [mm]  | 7.50    |
| Espessura fio        | [mm]   | 1.80     | Raio fio               | [mm]  | 0.65    |
| Isolação principal   | [mm]   | 3.24     | Isolação fio           | [mm]  | 0.10    |
| Separador camada     | [mm]   | 8.30     | Espessura cunha        | [mm]  | 6.00    |
|                      |        |          | POLOS                  |       |         |
| Entreferro           | [mm]   | 24.00    | Entreferro máximo      | [mm]  | 36.00   |
| Largura sapata polo  | [mm]   | 490.00   | Larg. núcleo polo      | [mm]  | 340.00  |
| Comprimento sapata   | [mm]   | 1580.00  | Comprimento núcleo     | [mm]  | 1600.00 |
| Altura sapata        | [mm]   | 50.00    | Altura núcleo          | [mm]  | 190.00  |
| Espess chapa polo    | [mm]   | 2.00     | Espess colar isol sup  | >[mm] | 8.00    |
| Num espiras normais  | [-]    | 19.00    | Num espiras refrig     | [-]   | 0.00    |
| Espess espira normal | L[mm]  | 8.00     | Espess espira refrig   | [mm]  | 8.00    |
| Larg espira normal   | [mm]   | 100.00   | Larg espira refriger   | [mm]  | 110.00  |
| Núm barras amortec   | [-]    | 6        | Diâm. barra amortec    | [mm]  | 18.00   |
| Passo amortecedor    | [mm]   | 62.00    | Seção segm amortec     | [mm2] | 600.00  |
|                      |        |          | ANEL MAGNÉTICO         |       |         |
| Diâm ext. coroa rot  | [mm]   | 12472.00 | Comprim coroa rotor    | [mm]  | 1800.00 |
| Alt Radial coroa rot | [ mm ] | 520.00   | Num segm coroa/volta   | [ - ] | 15.00   |
|                      |        |          |                        |       |         |
|                      |        | DADOS    | PRINCIPAIS DE SAIDA    |       |         |
| Potência Nominal     | [kVA]  | 300000   | Tensão nominal         | [kV]  | 16.00   |
| Fator de potência    | [-]    | 0.900    | Rotação nominal        | [rpm] | 120.00  |
| Momento inércia (J)  | [T.m2] | 16000    | Rotação disparo        | [rpm] | 230.00  |
| H const de inércia   | [s]    | 4.211    | Número de polos        | [-]   | 60      |
|                      |        |          |                        |       |         |

| Fator aproveitamento | [-]     | 9.25     |        | Intens linear corrent | [A/mm] | 81.11     |
|----------------------|---------|----------|--------|-----------------------|--------|-----------|
| Dens corrente barra  | [-]     | 3.815    |        | Capa de corrente      | [A2/mm | 3] 309.42 |
| Relação D/L          | [-]     | 8.125    |        | q num.ranh.polo fase  | [-]    | 3 + 2 / 5 |
| Fator enrolamento 1h | [-]     | 0.93882  |        | Fator enrolamento 3h  | [-]    | -0.54204  |
| Corrente nominal     | [A]     | 10825.3  |        | Corrente por barra    | [mm]   | 2706.3    |
| Veloc perif nominal  | [m/s]   | 81.7     |        | Veloc perif disparo   | [m/s]  | 156.6     |
| bps/Tps              | [-]     | 0.720    |        | Entref max/nom        | [-]    | 1.500     |
|                      |         |          | NÚCLEC | DO ESTATOR            |        |           |
| Diâmetro interno     | [mm]    | 13000.0  |        | Diâmetro externo      | [mm]   | 13728.0   |
| Comprimento núcleo   | [mm]    | 1600.0   |        | Altura da cunha       | [mm]   | 15.00     |
| Comp efetivo núcleo  | [mm]    | 1330.0   |        | Passo de ranhura      | [mm]   | 66.73     |
| Número seg volta     | [mm]    | 51.00    |        | Largura segmento      | [mm]   | 845.11    |
| Número dutos vent    | [-]     | 40       |        | Largura duto vent     | [mm]   | 5.00      |
| Altura Yoke          | [mm]    | 200.00   |        | Altura ranhura        | [mm]   | 149.00    |
| Largura da ranhura   | [mm]    | 23.60    |        | Número ranhuras       | [-]    | 612       |
| Tipo chapa silicio   | [W/kg]  | 2.50     |        | Espessura chapa       | [mm]   | 0.50      |
|                      |         |          | ENROLA | MENTO DO ESTATOR      |        |           |
| Número de camadas    | [-]     | 2        |        | Espiras por barra     | [-]    | 1         |
| Circuitos paralelos  | [-]     | 4        |        | Passo enrolamento     | [-]    | 9         |
| Número de fios       | [-]     | 54       |        | Largura fio           | [mm]   | 7.50      |
| Espessura fio        | [mm]    | 1.80     |        | Raio fio              | [mm]   | 0.65      |
| Isolação principal   | [mm]    | 3.24     |        | Isolação fio          | [mm]   | 0.10      |
| Separador camada     | [mm]    | 8.30     |        | Espessura cunha       | [mm]   | 6.00      |
| Seção do fio         | [mm2]   | 13.137   |        | Seção da barra/bobina | [mm2]  | 709.42    |
| Larg barra isolada   | [mm]    | 22.80    |        | Altura barra isolada  | [mm]   | 63.86     |
| Comprimento barra    | [mm]    | 2560.00  |        | Compr total conexões  | [m]    | 300.00    |
| Kmax                 | [-]     | 1.49     |        | KN                    | []     | 1.17      |
| K fator CC/AC        | [-]     | 1.1046   |        | Resist 20oC por fase  | [ohm]  | 0.001738  |
| Resist Tref p/ fase  | [ohm]   | 0.002251 |        | Temp referência Tref  | [oC]   | 95        |
|                      |         |          | POLOS  | DO ROTOR              |        |           |
| Entreferro           | [mm]    | 24.00    |        | Entreferro máximo     | [mm]   | 36.00     |
| Largura sapata polo  | [mm]    | 490.00   |        | Larg. núcleo polo     | [mm]   | 340.00    |
| Comprimento sapata   | [mm]    | 1580.00  |        | Comprimento núcleo    | [mm]   | 1600.00   |
| Altura sapata        | [mm]    | 50.00    |        | Altura núcleo         | [mm]   | 190.00    |
| Espess chapa polo    | [mm]    | 2.00     |        | Espess colar isol sup | [ mm ] | 8.00      |
| Tipo de espiras      | [-]     | 1        |        | Passo polar           | [-]    | 680.68    |
| Num espiras normais  | [-]     | 19.00    |        | Num espiras refrig    | [-]    | 0.00      |
| Espess espira normal | [mm]    | 8.00     |        | Espess espira refrig  | [mm]   | 8.00      |
| Larg espira normal   | [mm]    | 100.00   |        | Larg espira refriger  | [mm]   | 110.00    |
| Núm barras amortec   | [-]     | 6        |        | Diâm. barra amortec   | [mm]   | 18.00     |
| Passo amortecedor    | [mm]    | 62.00    |        | Seção segm amortec    | [mm2]  | 600.00    |
| Dispersão polo vazio | [-]     | 1.146    |        | Dispersão polo carga  | [-]    | 1.259     |
| Seção espira normal  | [mm2]   | 819.000  |        | Seção espira refriger | [mm2]  | 0.000     |
| Dens corr esp normal | [A/mm2] | 2.881    |        | Dens corr esp refrig  | [-]    | 0.000     |

| Resistência 20 oC   | [ohm]    | 0.114226        | Resist   | Temp   | Refêrenc  | [oC]      | 0.147888  |
|---------------------|----------|-----------------|----------|--------|-----------|-----------|-----------|
| Dist espiras refrig | [mm]     | 85.2            | Temp re  | eferê  | ncia Tref | [oC]      | 95        |
|                     |          | ANEL            | MAGNÉTIO | 20     |           |           |           |
| Diâm ext. coroa rot | [mm]     | 12472.00        | Comprir  | m cor  | oa rotor  | [mm]      | 1800.00   |
| Alt Radial coroa ro | t[mm]    | 520.00          | Num sec  | gm co: | roa/volta | [-]       | 15.00     |
|                     |          |                 |          |        |           |           |           |
| CIRCU               | ITO MAGN | IÉTICO - INDUÇÃ | O E FMM  | A VA   | ZIO       |           |           |
|                     | Inc      | lução [T]       |          |        |           |           | FMM [A.E] |
| Entreferro          |          | 1.0074          |          |        |           |           | 41058.93  |
| Dente mínimo        |          | 1.8598          |          |        |           |           |           |
| Dente médio         |          | 1.8274          |          |        |           |           | 3813.73   |
| Dente máximo        |          | 1.7961          |          |        |           |           |           |
| Coroa               |          | 1.3869          |          |        |           |           | 260.29    |
| Entreferro polo/ane | 1        |                 |          |        |           |           | 1262.27   |
| Polo                |          | 1.5862          |          |        |           |           | 1458.22   |
| TOTAL               |          |                 |          |        |           |           | 47853.44  |
| Corrente de excitaç | ão a vaz | io              | [A]      |        |           |           | 1259.30   |
| Corrente de excitaç | ão do en | treferro        | [A]      |        |           |           | 1103.75   |
| Corrente de excitaç | ão em cu | rto-circuito    | [A]      |        |           |           | 1208.14   |
|                     |          |                 |          |        |           |           |           |
| CIRCU               | ITO MAGN | ÉTICO - INDUÇÃ  | O E FMM  | EM C   | ARGA      |           |           |
|                     | Ind      | lução [T]       |          |        |           |           | FMM [A.E] |
| Entreferro          |          | 1.0230          |          |        |           |           | 41694.85  |
| Dente mínimo        |          | 1.8886          |          |        |           |           |           |
| Dente médio         |          | 1.8557          |          |        |           |           | 4645.64   |
| Dente máximo        |          | 1.8239          |          |        |           |           |           |
| Coroa               |          | 1.4084          |          |        |           |           | 3311.16   |
| Reação da armadura  |          |                 |          |        |           |           | 31712.32  |
| Entreferro polo/ane | 1        |                 |          |        |           |           | 1408.50   |
| Polo                |          | 1.7700          |          |        |           |           | 3454.55   |
| Acréscimo (tol)     |          |                 |          |        |           |           | 3449.08   |
| TOTAL               |          |                 |          |        |           |           | 89676.10  |
| Corrente de excitaç | ão em ca | rga [A]         |          |        |           |           | 2359.90   |
|                     |          |                 |          |        |           |           |           |
|                     |          | REATÂNCI        | AS [pu]- |        |           |           |           |
| EIXO DIR            | ETO      |                 |          |        | EIXO      | ) QUADRAI | URA       |
| NÃO SATURADO S      | ATURADO  |                 | 1        | NÃO SI | ATURADO   | SATUR     | ADO       |
| Xdu = 1.0946 X      | ds = 0   | .9594           | Σ        | Xqu    | = 0.7460  | Xqs       | = 0.6538  |
| X'du = 0.2867 X     | 'ds = 0  | .2717           |          |        |           |           |           |
| X"du = 0.2288 X     | "ds = 0  | .1945           | Σ        | X"qu   | = 0.2433  | X"qs      | = 0.2287  |
|                     |          |                 | Ι        | Dispe  | rsão      |           |           |
| X2 = 0.2361 X       | 2 = 0    | .2116           | Σ        | ХB     | = 0.1290  |           |           |
| X0 = 0.1245 X       | 0 = 0    | .1058           | Σ        | XST    | = 0.1392  |           |           |
|                     |          |                 | Σ        | XSX    | = 0.1649  |           |           |

|      |   |      |     | CONSTANTES DE | E TEMPO [s] |            |
|------|---|------|-----|---------------|-------------|------------|
| T'do | = | 5.30 | Tld | = 1.5005      | Tllqo       | 0 = 0.2220 |
| T"do | = | 0.07 | T"d | = 0.0558      | T"q         | = 0.0724   |

|          |            |         |        | -PERDAS | E REND   | IMENTO |           |        |         |         |        |
|----------|------------|---------|--------|---------|----------|--------|-----------|--------|---------|---------|--------|
|          |            |         |        |         |          | Pl     | ERDAS [kW | [ N    |         |         |        |
| Perdas 1 | Ferro      |         |        |         |          | =      | 636.8     | 39     |         |         |        |
| Perdas 3 | I2R estat  | cor a   | 95 oC  |         |          | =      | 791.2     | 22     |         |         |        |
| Perdas A | Adionais   |         |        |         |          | =      | 535.9     | 98     |         |         |        |
| Perdas 3 | I2R roto:  | ra 95   | oC     |         |          | =      | 832.2     | 25     |         |         |        |
| Perdas I | Excitação  | þ       |        |         |          | =      | 83.2      | 22     |         |         |        |
| Perdas V | Ventilaçã  | ĭо      |        |         |          | =      | 985.0     | 0 0    |         |         |        |
| Perdas N | Mancal     |         |        |         |          | =      | 15.0      | 00     |         |         |        |
| Perdas 1 | TOTAL      |         |        |         |          | =      | 3879.5    | 55     |         |         |        |
| RENDIMEN | OTN        |         |        |         |          | =      | 98.58     | 33 %   |         |         |        |
|          |            |         |        | -RENDIM | IENTO PC | NDERAD | 0         |        |         |         |        |
| carga    | If         | Wi      | Pfe    | Pcuest  | Padic    | Pcurot | Pexc      | Pvent  | Pmancal | Total   | Rend   |
| [pu]     | [A]        | [-]     | [kW]   | [kW]    | [kW]     | [kW]   | [kW]      | [kW]   | [kW]    | [kW]    | [%]    |
| 1.00     | 2320.80    | 56.00   | 636.89 | 791.22  | 535.98   | 805.18 | 80.52     | 985.00 | 15.00   | 3849.78 | 98.59  |
| 0.96     | 2265.50    | 7.00    | 636.89 | 729.18  | 493.95   | 767.67 | 76.77     | 985.00 | 15.00   | 3704.47 | 98.59  |
| 0.90     | 2182.80    | 32.00   | 636.89 | 640.88  | 434.14   | 713.27 | 71.33     | 985.00 | 15.00   | 3496.51 | 98.58  |
| 0.80     | 2047.34    | 4.00    | 636.89 | 506.38  | 343.02   | 628.53 | 62.85     | 985.00 | 15.00   | 3177.67 | 98.55  |
| 0.70     | 1915.05    | 1.00    | 636.89 | 387.70  | 262.63   | 551.01 | 55.10     | 985.00 | 15.00   | 2893.32 | 98.49  |
| Rendir   | mento médi | o ponde | rado   |         |          |        |           |        |         |         | 98.587 |
|          |            |         |        |         |          |        |           |        |         |         |        |

## 5.1.4 COMPARATIVO DOS PRINCIPAIS DADOS DOS 2 GERADORES DE 300 MVA

Na Tabela 5-8 abaixo pode-se verificar os principais parâmetros do gerador de 300 MVA dimensionado para otimização de rendimento e na coluna ao lado o gerador dimensionado para redução de custos.

| Dados nominais     |     | Eficiência | Custo  |
|--------------------|-----|------------|--------|
| Potência nominal   | kVA | 300000     | 300000 |
| Tensão nominal     | V   | 16000      | 16000  |
| Frequência nominal | Hz  | 60         | 60     |
| Fator de potência  | -   | 0,90       | 0,90   |
| Rotação nominal    | rpm | 120        | 120    |
| Rotação de disparo | rpm | 230        | 230    |

Tabela 5-8 - Principais dados dos 2 geradores de 300 MVA

| Momento de Inércia (J)        | tm <sup>2</sup> | 16000       | 16000       |
|-------------------------------|-----------------|-------------|-------------|
|                               |                 |             |             |
| Núcleo do estator             |                 |             |             |
| Diâmetro interno              | mm              | 12000       | 13000       |
| Diâmetro externo              | mm              | 12724       | 13748       |
| Comprimento bruto axial       | mm              | 2350        | 1600        |
| Largura da ranhura            | mm              | 26,6        | 23,6        |
| Profundidade da ranhura       | mm              | 157         | 149         |
| Altura radial da coroa (Yoke) | mm              | 190         | 200         |
| Tipo de chapa siliciosa       | _               | M230-50A    | M250-50A    |
| Número de ranhuras            | -               | 504         | 612         |
|                               |                 |             |             |
| Barras Roebel                 |                 |             |             |
| Número de fios da barra       | -               | 58          | 54          |
| Dimensão dos fios             | mm              | 9,00 x 1,80 | 7,50 x 1,80 |
| Espessura isolação principal  | mm              | 3,24        | 3,24        |
|                               |                 |             |             |
| Entreferro nominal            | mm              | 21          | 24          |
|                               |                 |             |             |
| Polos                         |                 |             |             |
| Largura da sapata             | mm              | 450         | 490         |
| Altura da sapata              | mm              | 50          | 50          |
| Comprimento da sapata polar   | mm              | 2320        | 1580        |
| Largura do núcleo do polo     | mm              | 300         | 340         |
| Altura do núcleo do polo      | mm              | 220         | 190         |

| Comprimento do núcleo polar   | mm                              | 2350   | 1600    |
|-------------------------------|---------------------------------|--------|---------|
| Espessura da chapa do polo    | mm                              | 1,5    | 2,0     |
| Número de espiras de cobre    | mm                              | 18     | 19      |
| Espessura do cobre da espira  | mm                              | 10,0   | 8,0     |
| Largura espira normal / aleta | mm                              | 90/100 | 100/110 |
|                               |                                 |        |         |
| Parâmetros de controle        |                                 |        |         |
| Fator de aproveitamento (C)   | kVA/(m³rpm)                     | 7,39   | 9,25    |
| Densidade de corrente estator | A/mm <sup>2</sup>               | 2,946  | 3,815   |
| Intensidade linear corrente   | A/mm                            | 72,36  | 81,11   |
| Capa de corrente              | A <sup>2</sup> /mm <sup>3</sup> | 213,2  | 309,42  |
| Velocidade periférica nominal | m/s                             | 75,4   | 81,7    |
| Velocidade periférica disparo | m/s                             | 144,5  | 156,6   |
| Constante de inércia          | S                               | 4,211  | 4,211   |
|                               |                                 |        |         |
| INDUÇÕES                      |                                 |        |         |
| Entreferro                    | Т                               | 0,9186 | 1,0074  |
| Dente @ diam interno          | Т                               | 1,6898 | 1,8598  |
| Coroa                         | Т                               | 1,2189 | 1,3869  |
| Polo em vazio                 | Т                               | 1,5075 | 1,5862  |
| Polo em carga                 | Т                               | 1,6751 | 1,7700  |
| Índice de saturação           | -                               | 1,09   | 1,14    |

# REATÂNCIAS

| RCC                           | pu                | 1,00    | 1,04    |
|-------------------------------|-------------------|---------|---------|
| Xdu                           | pu                | 1,0940  | 1,0946  |
| X'du                          | pu                | 0,2837  | 0,2867  |
| X"ds                          | pu                | 0,1966  | 0,1945  |
|                               |                   |         |         |
| ELEVAÇÕES DE TEMPERATURAS     |                   |         |         |
| Enrolamento do estator        | К                 | 59,4    | 62,9    |
| Núcleo do estator             | К                 | 35,8    | 33,4    |
| Enrolamento do rotor          | К                 | 46,2    | 76,6    |
|                               |                   |         |         |
| Vazão de ar                   | m <sup>3</sup> /s | 100     | 150     |
| Total de perdas               | kW                | 2806,98 | 3879,55 |
| Rendimento @ 100 % carga      | %                 | 98,971  | 98,583  |
| Rendimento médio ponderado    | %                 | 98,966  | 98,578  |
| Peso de chapa aço-silício     | t                 | 176     | 131     |
| Peso cobre das barras estator | t                 | 28      | 20      |
| Peso cobre do rotor           | t                 | 56      | 40      |
| Peso do gerador               | t                 | 1300    | 1120    |

É notório que a máquina dimensionada para custos tem a maioria dos parâmetros muito próximos aos seus limites, por exemplo, nota-se que a densidade de corrente da barra e a intensidade linear de corrente estão dentro dos limites sugeridos, porém a capa de corrente ultrapassa o limite superior, mas pelos cálculos detalhados as temperaturas estão sob controle e dentro das garantias. O Índice de saturação também se aproxima do seu limite superior sugerido, e mais uma vez através de cálculos mais detalhados nota-se que a máquina está bem dimensionada. Estes exemplos mostram que os parâmetros com seus limites sugeridos, quando bem controlados e bem estudados podem ser ultrapassados, mas o que não pode acontecer é que todos os parâmetros estejam ultrapassando as fronteiras dos limites.

O gerador dimensionado para custos, tem o seu volume bem reduzido e a maioria dos parâmetros mais importantes mais próximos a fronteira do limite superior, atendendo à especificação técnica quanto aos parâmetros especificados.

# 5.2 OBJETIVO DAS SIMULAÇÕES DE GERADORES DE 100 MVA

A seguir a simulação através de cálculo elétrico de um hidrogerador de 100 MVA acionados por turbina tipo Francis será exposto em detalhes. Será apresentado um dimensionamento do gerador conforme projeto original com dados originais disponíveis, sendo que este gerador foi fabricado, montado e comissionado com sucesso. A continuação será apresentada outro exercício de dimensionamento, primeiro segundo um projeto atual orientado a obter o rendimento otimizado de um hidrogerador, e outra simulação com projeto atual orientado a obter o menor custo.

Será apresentado uma comparação das principais características dos 3 hidrogeradores: original, projeto atualizado e otimizado para rendimento e por último otimizado para custo.

No próximo item 5.2.1 segue os principais parâmetros especificados pelo cliente.

|  | 5.2.1 | ESPECIFICAÇÃO TÉCNICA DO GERADOR |
|--|-------|----------------------------------|
|--|-------|----------------------------------|

| Potência (Sn)                                        | 100 MVA                                   |
|------------------------------------------------------|-------------------------------------------|
| Tensão nominal (Un)                                  | 13800 V                                   |
| Variação de tensão (DV)                              | +5 % / -5 %                               |
| Fator de potência (fp)                               | 0,85                                      |
| Frequência nominal (fn)                              | 60 Hz                                     |
| Rotação nominal (nn)                                 | 257,14 rpm                                |
| Rotação de disparo (ndisp)                           | 495 rpm                                   |
| Tipo construtivo                                     | IM8225 ou W-42                            |
| Tipo de refrigeração                                 | ICW37A81                                  |
| Temperatura da água de refrigeração (Tagua)          | 30 °C                                     |
| Xdu – Reatância síncrona de eixo D, não saturado     | <u>&lt;</u> 1,2 pu                        |
| RCC – Relação de curto-circuito                      | <u>&gt;</u> 0,87                          |
| X´du – Reatância transitória de eixo D, não saturado | <u>&lt;</u> 0,40 pu                       |
| X"ds – Reatância subtransitória de eixo D, saturado  | 0,18 <u>&lt;</u> X"ds <u>&lt;</u> 0,25 pu |
| X"q/X"d – Relação das reatâncias subtransitórias     | <u>&lt;</u> 1,35                          |
| Momento de inércia (J)                               | 1050 tm <sup>2</sup>                      |
| Isolação do estator e rotor                          | Classe 155(F)                             |

| Elevação de temperatura do enrolamento estator | 82 K (medido pelos<br>RTDs)               |
|------------------------------------------------|-------------------------------------------|
| Elevação de temperatura do núcleo do estator   | 80 K (medido pelos<br>RTDs)               |
| Elevação de temperatura do enrolamento rotor   | 80 K (medido por<br>variação resistência) |
| Rendimento mínimo (η)                          | 98,76 % a condições<br>nominais           |

As perdas do gerador devem ser preferencialmente medidas pelo método calorimétrico, de acordo com a IEC60034-2-1 e IEC 60034-2-2. As seguintes perdas devem estar inclusas no cálculo do rendimento:

- Perdas Ferro
- Perdas I<sup>2</sup>R do enrolamento do estator
- Perdas adicionais
- Perdas I<sup>2</sup>R no enrolamento de campo
- Perdas do sistema de excitação
- Perdas nas escovas
- Perdas nos mancais (Inclui as perdas do mancal de guia superior, mancal de guia inferior e mancal de escora), óleo a 45 °C
- Perdas de Ventilação, com ar frio a 40 °C
- Temperatura de referência para cálculo do rendimento 75°C

Rendimento médio ponderado (RMPG)

98,60 %

$$RMPG = \frac{\sum_{k=1}^{n} P_k A_k \eta_k}{\sum_{k=1}^{n} P_k A_k}$$

Onde:

 $P_k$  (k=1,2,3,...,n) são as potências parciais à tensão e rotação nominais e um determinado fator de potência.

 $A_k$  (k=1,2,3,...,n) são os fatores de ponderação a uma carga específica e

$$\sum_{k=1}^{n} A_k = 1$$

 $\eta_k$  (k=1,2,3,...,n) são os rendimentos à tensão, rotação nominais e a um fator de potência e carga específica.

As cargas parciais e os respectivos fatores de ponderação são:

| Potência do gerador [%] $(P_k)$ | Ponderação ( $A_k$ ) |
|---------------------------------|----------------------|
| 100                             | 0,10                 |
| 90                              | 0,18                 |
| 80                              | 0,22                 |
| 70                              | 0,20                 |
| 60                              | 0,20                 |
| 50                              | 0,10                 |

# 5.2.2 DIMENSIONAMENTO DO GERADOR DE 100 MVA COM PROJETO ORIGINAL ORIENTADO PARA RENDIMENTO

Seguindo o mesmo procedimento do item 5.1.2, com a potência de 100 MVA e 28 polos, resulta em uma estimativa de valor C=7,4, porém considerando o alto valor especificado de rendimento, um bom valor inicial poderia ser C < 6,0, lembrando que o valor C é uma sugestão inicial, e que após exaustivos cálculos mais refinados, analisa-se este valor para verificar a sua aderência à uma faixa normal e razoável. Valores muito fora da faixa é um indicativo que algo está não está de acordo com as práticas normais de dimensionamento.

# 5.2.2.1 DETERMINAÇÃO DO DIÂMETRO INTERNO DO ESTATOR

O primeiro desafio nesta simulação é a determinação do diâmetro interno do estator, pois há que se considerar que as perdas de ventilação têm a sua variação com a quarta potência do diâmetro interno e o rendimento é de grande importância pois ele está especificado com valor muito arrojado.

Outro item muito importante é realizar esta máquina com custos compatíveis e ao mesmo tempo atender ao momento de inércia especificado, considerando que geradores com maior diâmetro tende a ser mais competitivo.

Logo a determinação do diâmetro interno do estator será um compromisso entre o rendimento e o custo, atendendo ainda todos os outros parâmetros especificados, tais como: temperatura dos enrolamentos e reatâncias.

#### 5.2.2.1.1 DETERMINAÇÃO DO DIÂMETRO INTERNO PELO MÉTODO 1

Utilizando as fórmulas (4-81), (4-78) e (4-80) do item 4.12

$$D_{i ref} = \sqrt{\frac{4 \mathcal{J} C}{\pi \rho_{Fe} I_g \Delta k_{\mathcal{I}}}}$$
$$\Delta k_{\mathcal{I}} = \frac{(k_{\mathcal{I}}^3 + k_{\mathcal{I}})}{(1 + k_{\mathcal{I}})^4}$$
$$k_{\mathcal{I}} = 3.6 ln \left(\frac{S_n}{n_{dis}}\right) - 13$$

Onde:

 $\begin{aligned} \mathcal{I} &= 1050 \text{ tm}^2; \\ \mathcal{C} &= 6 \text{ kVA/m}^3/\text{rpm}; \\ \rho_{Fe} &= 7,85 \text{ T/m}^3; \\ I_{g nd} &= \frac{S_r}{n_d} = 202 \text{ kVA/rpm}; \\ k_{\mathcal{I}} &= 3,6 l n \left(\frac{S_n}{n_{dis}}\right) - 13 = 6,11; \\ S_r &= 100000 \text{ kVA}; \\ n_n &= 257,14 \text{ rpm}; \\ n_d &= 495 \text{ rpm}. \end{aligned}$ 

Substituindo estes valores nas fórmulas, resulta em uma primeira estimativa para o diâmetro interno de  $D_{i\,ref} = 5,35$  m, e a velocidade periférica ( $V_p = \pi D_{i\,ref} n_{dis}$ ) resulta em  $V_p = 138,8$  m/s.

## 5.2.2.1.2 DETERMINAÇÃO DO DIÂMETRO INTERNO PELO MÉTODO 2

Este método utiliza as equações (4-74), (4-81) e (4-78), sendo utilizado ainda uma estimativa inicial dos raios do anel magnético e altura radial dos polos e da coroa do rotor.

r = 2,5 m Raio externo do anel magnético

$$R = \frac{(Rpolo + Ranel)}{2} = \frac{0.25 + 0.5}{2} = 0.375$$
$$k_j = \frac{r}{R} = \frac{2.5}{0.375} = 6.67$$
$$D_{i\,ref} = \sqrt{\frac{4\,J\,C}{\pi\,\rho_{Fe}\,I_g\,\Delta k_j}}$$
$$\Delta k_J = \frac{(k_J^3 + k_J)}{(1 + k_J)^4}$$

Substituindo estes valores nas fórmulas, resulta em uma segunda estimativa para o diâmetro interno de  $D_{i\,ref} = 5,47$  m e a velocidade periférica ( $V_p = \pi D_{i\,ref} n_{dis}$ ) resulta em  $V_p = 141,9$  m/s

#### 5.2.2.1.3 DIÂMETRO INTERNO ESCOLHIDO

Velocidades periféricas elevadas ou no seu limite máximo são utilizadas em geradores dimensionados para otimização de custos, ou que tenham dificuldades em atender aos requisitos da rotação crítica, onde se objetiva obter máquinas com menor comprimento axial do núcleo e menor distância entre mancais.

Dentre os 2 valores sugeridos para o diâmetro interno do estator 5,35 e 5,47 m, e tendo em conta o alto rendimento especificado, adotou-se o diâmetro interno  $D_i = 5,2 m$ , e a velocidade periférica  $V_p = 134,8 m/s$  que está até abaixo dos valores mais comumente utilizados pela comunidade de engenheiros calculistas para este tipo de máquina.

#### 5.2.2.2 DETERMINAÇÃO DO COMPRIMENTO AXIAL NÚCLEO DO ESTATOR

Para determinação do comprimento do núcleo do estator utiliza-se a equação (4-40) e o fator de aproveitamento C=6 kVA/m<sup>3</sup>/rpm que representa a densidade volumétrica de energia.

Com C = 6 resulta  $l_{est} = 2,4 m$ , e após vários cálculos executados chegou-se ao valor de  $l_{est} = 2,5 m$ 

# 5.2.2.3 DETERMINAÇÃO DO NÚMERO DE RANHURAS

Do item 4.7 quando a forma de onda da distribuição circunferencial da densidade de linhas de fluxo magnético adquire uma forma senoidal, demonstra-se que a tensão de fase-neutro ( $U_{fn}$ ) pode ser escrita como em (4-26):

$$U_{fn} = \frac{4}{\sqrt{2}} l_{est} \tau_p f k_w N_{ph} \beta_{max}$$

Para estimativa inicial será adotado o fator de enrolamento  $k_w = 0.92$  e  $\beta_{max} = 0.8$  T, e obtém-se  $N_{ph} = 43$  espiras.

A corrente nominal pode ser calculada pela fórmula abaixo que é um rearranjo da equação (4-25)

$$I_n = \frac{S_r}{\sqrt{3} \cdot U_n} = 4183,7 \, A$$

Para este tipo de máquina deve-se utilizar o projeto com barras Roebel com transposição de 360 graus. O normal para uma barra Roebel é conduzir em torno de 2000 a 3500 A, logo sugere-se utilizar a=2 circuitos paralelos que resulta em 2091,8 A passando na barra Roebel. O número de circuitos paralelos deve ser um divisor do número de polos. Para projeto com barras,  $N_{tc} = 1$ .
Utilizando a fórmula (4-29) que relaciona número de espiras por fase, número de ranhuras, número de fases e número de circuitos paralelos.

$$N_{ph} = \frac{N_s N_{tc}}{m a}$$
$$N_s = \frac{N_{ph} m a}{N_{tc}} = \frac{43 \cdot 3 \cdot 2}{1} = 258 \ ranhuras$$

Pelos cálculos acima sugere-se aproximadamente 258 ranhuras, e para uma escolha mais assertiva lista-se abaixo uma faixa de possíveis valores de q (número de ranhuras por polo e fase) e correspondente número de ranhuras, afim de facilitar a adoção do melhor valor. O valor de q é de extrema importância pois fornece um indicativo de possíveis riscos de ressonância no estator.

Considerando que se adotou a=2 circuitos paralelos e com 28 polos, possíveis valores para o valor c da equação  $q = a \frac{b}{c}$  limita-se a 14, 7, 2 e 1. Para um enrolamento trifásico e equilibrado o valor de c não pode ser múltiplo de 3, porém o número de ranhuras deve ser múltiplo de 3 [44], [45], [46], [47], [48], [49].

A Tabela 5-9 lista os possíveis números de ranhuras para este gerador.

| Q       | Número de ranhuras $N_s$ |
|---------|--------------------------|
| 2 + 1/2 | 210                      |
| 2 + 4/7 | 216                      |
| 2 + 5/7 | 228                      |
| 2 + 6/7 | 240                      |
| 3       | 252                      |
| 3 + 1/7 | 264                      |
| 3 + 2/7 | 276                      |
| 3 + 3/7 | 288                      |
| 3+1/2   | 294                      |
| 3+4/7   | 300                      |
| 3+5/7   | 312                      |
| 3+6/7   | 324                      |
| 4       | 336                      |

Tabela 5-9 - Número de ranhuras por polo e fase x Número de ranhuras

Número de ranhuras muito abaixo do valor sugerido de 258 leva a máquina a valores altos de saturação, e valores maiores leva a máquina a ser menos saturada. Portanto os possíveis números de ranhuras são 252 e 264, mas evitando utilizar ranhuras cujo

denominador seja 7 (q=a+b/7), adotou-se 252 ranhuras e q=3. O denominador 7 foi evitado por ser um potencial de risco de ressonância do estator.

Para 252 ranhuras, tem-se que o passo de ranhura é  $\tau_n = 64.8$  mm. Este valor está bem dentro da faixa usual (50 a 90 mm) então a escolha do número de ranhuras de 252 continua válido.

Outro parâmetro a ser verificado é a Intensidade linear de corrente que está definido no item 4.9, e expressão (4-42):

$$A_i = 64,5 \, \text{A/mm}$$

está bem dentro dos valores recomendados que é de  $(60 \le A_i \le 85)$  conforme item 6.10.2. Sabendo que valores no limite inferior tende a possibilitar máquinas com maior rendimento, logo mais uma vez a confirmação que o número de ranhuras adotado de 252 é acertado assim como a tensão de 13800 V está bem adequado ao projeto.

O valor de  $A_i = 64,5$  A/mm está bem dentro dos valores recomendados que é de  $(60 \le A_i \le 85)$  conforme item 4.10.2. Sabendo que valores no limite inferior tende a possibilitar máquinas com maior rendimento, logo mais uma vez a confirmação que o número de ranhuras adotado de 252 é acertado assim como a tensão de 13800 V está bem adequado ao projeto.

O tipo de enrolamento mais indicado para este tipo de máquina é do tipo imbricado, pois este tipo produz menores perdas e mais facilidade de manutenção em caso de falhas em barras. Como o projeto do enrolamento tem 2 paralelos a redução do empuxo magnético não é significativa e não será considerada como item decisório.

## 5.2.2.4 DIMENSIONAMENTO DOS FIOS DE COBRE E RANHURA DO ESTATOR

Para o dimensionamento da barra Roebel e a ranhura, aplicar-se-á uma isolação principal de 2,8 mm de espessura, que significa uma rigidez dielétrica de 2,85 kV/mm. Este valor é ainda um pouco conservativo e tem sido utilizado pelos grandes fabricantes de geradores sendo que pela tecnologia atual poder-se-ia utilizar até o valor máximo de 3,0 kV/mm.

Para o fio de cobre optar-se-á por uma espessura de 1,8 mm com o objetivo de reduzir as perdas adicionais por correntes parasitas e densidade de corrente de aproximadamente 2,4 A/mm<sup>2</sup>. A largura do fio é escolhido considerando que irá definir a largura da ranhura, o qual terá influência na saturação do dente. Foram utilizados 62 fios de 8,00 x 1,80 mm.

A Tabela 5-10 mostra os cálculos para a determinação da largura e profundidade da ranhura, considerando todos os componentes utilizados para embutimento das barras.

| LARGURA DA RANHURA            | Dimensã        | ăo [mm] |
|-------------------------------|----------------|---------|
| Fios de cobre                 | 2 x 8,00       | 16,00   |
| Isolação dos fios             | 4 x 0,105      | 0,42    |
| Espaçador vertical            | 0,30           | 0,30    |
| Isolação principal            | 2 x 2,80       | 5,60    |
| Proteção corona               | 2 x 0,15       | 0,30    |
| Tolerância positiva           | 0,60           | 0,60    |
| Sistema de embutimento        | 0,48           | 0,48    |
| Largura da ranhura montada    |                | 23,70   |
| Largura da ranhura estampada  |                | 23,90   |
| PROFUNDIDADE DA RANHURA       | Dimensã        | ăo [mm] |
| Fios de cobre (62 fios)       | 32 x 1,8       | 57,60   |
| Isolação dos fios             | 32 x 2 x 0,105 | 6,72    |
| Proteção corona interna       | 2 x 0,15       | 0,30    |
| Isolação principal            | 2 x 2,80       | 5,60    |
| Proteção corona               | 2 x 0,15       | 0,30    |
| Tolerância positiva           | 0,30           | 0,30    |
| Sistema de embutimento        | 0,50           | 0,50    |
| Altura radial da barra        |                | 71,02   |
|                               |                |         |
| Alturas das 2 barras          | 2 x 71,02      | 142,04  |
| Separador de camadas          | 6,3            | 6,30    |
| Calços de proteção            | 0,96           | 0,96    |
| Calços deslizantes            | 0,80           | 0,80    |
| Mola ondulada                 | 1,30           | 1,30    |
| Contracunha                   | -              | -       |
| Cunha                         | 6,00           | 6,00    |
| Altura cunha/diâmetro interno | 1,60           | 1,60    |
| Profundidade da ranhura       |                | 159,00  |

Tabela 5-10 - Dimensionamento da ranhura do estator

## 5.2.2.5 DIMENSIONAMENTO DO NÚCLEO DO ESTATOR

Seguindo o mesmo procedimento do item 5.1.2.5, e com o objetivo de otimização de rendimento adotar-se-á a chapa M230-50A, que é a melhor chapa siliciosa de 0,5 mm de espessura disponível atualmente no mercado.

A Tabela 5-11 apresenta todas as principais dimensões do núcleo e informações necessárias para um cálculo elétrico.

| NÚCLEO DO ESTATOR                              | unidade      | dimensão            |
|------------------------------------------------|--------------|---------------------|
| Diâmetro interno                               | mm           | 5200                |
| Diâmetro externo                               | mm           | 5900                |
| Comprimento bruto axial                        | mm           | 2500                |
| Largura da ranhura                             | mm           | 23,90               |
| Profundidade da ranhura                        | mm           | 159,0               |
| Altura radial da coroa do núcleo               | mm           | 176,0               |
| Altura da ranhura para cunha rabo<br>andorinha | <b>de</b> mm | 15,0                |
| Número de dutos de ventilação                  | -            | 34                  |
| Largura do duto de ventilação                  | mm           | 5,0                 |
| Tipo de chapa siliciosa                        | -            | M230-50A            |
| Extremidades do núcleo                         | -            | Escadinhas e rasgos |
| Empilhamento                                   | -            | Estator bipartido   |
| Fator de empilhamento                          |              | 0,95                |

Tabela 5-11 - Dimensionamento do núcleo do estator

## 5.2.2.6 DIMENSIONAMENTO DO POLO

Para dimensionamento do polo deve se seguir o mesmo procedimento do item 5.1.2.6.

As dimensões são decorrentes da otimização das perdas, temperaturas, limites de saturação e limites mecânicos.

A Tabela 5-12 lista as dimensões principais do polo para execução do cálculo elétrico.

| POLOS                                | unidade | dimensão |
|--------------------------------------|---------|----------|
| Largura da sapata                    | mm      | 400      |
| Altura da sapata                     | mm      | 42       |
| Comprimento axial da sapata polar    | mm      | 2460     |
| Largura do núcleo do polo            | mm      | 290      |
| Altura do núcleo do polo             | mm      | 189      |
| Comprimento axial do núcleo polar    | mm      | 2500     |
| Espessura da chapa do polo           | mm      | 2,0      |
| Número de espiras de cobre           | -       | 37       |
| Espessura do cobre da espira         | mm      | 4        |
| Largura da espira normal / com aleta | mm      | 110      |
| Número de barras amortecedoras       | -       | 4        |
| Diâmetro das barras de amortecimento | mm      | 20       |

#### Tabela 5-12 - Dimensionamento do polo

## 5.2.2.7 DADOS DE ENTRADA E DADOS DE SAÍDA DO PROGRAMA DE CÁLCULO

Com todos os dados de entrada definidos, ou pela especificação técnica, ou pelo engenheiro calculista, executa-se o programa de cálculo elétrico. Do programa se obtém os vários parâmetros de saída que definem o gerador projetado.

|                     |        | DADOS  | DE ENTRADA        |        |        |
|---------------------|--------|--------|-------------------|--------|--------|
| Potência Nominal    | [kVA]  | 100000 | Tensão nominal    | [kV]   | 13.80  |
| Fator de potência   | [-]    | 0.850  | Rotação nominal   | [rpm]  | 257.14 |
| Momento inércia (J) | [T.m2] | 1050   | Rotação disparo   | [rpm]  | 495.00 |
| H const de inércia  | [s]    | 3.807  | Número de polos   | [-]    | 28     |
|                     |        | NÚCLE  | O DO ESTATOR      |        |        |
| Diâmetro interno    | [mm]   | 5200.0 | Diâmetro externo  | [ mm ] | 5900.0 |
| Comprimento núcleo  | [mm]   | 2500.0 | Altura da cunha   | [mm]   | 15.00  |
| Número dutos vent   | [-]    | 34     | Largura duto vent | [mm]   | 5.00   |
| Altura Yoke         | [mm]   | 176.0  | Altura ranhura    | [mm]   | 159.0  |
| Largura da ranhura  | [mm]   | 23.9   | Número ranhuras   | [-]    | 252    |
| Tipo chapa silicio  | [W/kg] | 2.30   | Espessura chapa   | [mm]   | 0.50   |
|                     |        | ENROL  | AMENTO DO ESTATOR |        |        |

| Número de camadas    | [-]     | 2       | Espiras por barra      | [-]      | 1         |
|----------------------|---------|---------|------------------------|----------|-----------|
| Circuitos paralelos  | [-]     | 2       | Passo enrolamento      | [-]      | 8         |
| Número de fios       | [-]     | 62      | Largura fio            | [mm]     | 8.00      |
| Espessura fio        | [mm]    | 1.80    | Raio fio               | [mm]     | 0.65      |
| Isolação principal   | [mm]    | 2.80    | Isolação fio           | [ mm ]   | 0.10      |
| Separador camada     | [mm]    | 6.30    | Espessura cunha        | [mm]     | 6.00      |
|                      |         |         | POLOS                  |          |           |
| Entreferro           | [mm]    | 18.00   | Entreferro máximo      | [mm]     | 30.00     |
| Largura sapata polo  | [mm]    | 400.00  | Larg. núcleo polo      | [ mm ]   | 290.00    |
| Comprimento sapata   | [mm]    | 2460.00 | Comprimento núcleo     | [ mm ]   | 2460.00   |
| Altura sapata        | [mm]    | 42.00   | Altura núcleo          | [mm]     | 189.00    |
| Espess chapa polo    | [mm]    | 2.00    | Espess colar isol sup  | > [ mm ] | 6.00      |
| Num espiras normais  | [ – ]   | 19.00   | Num espiras refrig     | [ — ]    | 18.00     |
| Espess espira normal | L [mm]  | 4.00    | Espess espira refrig   | [ mm ]   | 4.00      |
| Larg espira normal   | [mm]    | 110.00  | Larg espira refriger   | [ mm ]   | 110.00    |
| Núm barras amortec   | [-]     | 4       | Diâm. barra amortec    | [mm]     | 20.00     |
| Passo amortecedor    | [mm]    | 64.60   | Seção segm amortec     | [mm2]    | 450.00    |
|                      |         |         | ANEL MAGNÉTICO         |          |           |
| Diâm ext. coroa rot  | [mm]    | 4702.00 | Comprim coroa rotor    | [ mm ]   | 2700.00   |
| Alt Radial coroa rot | [ mm ]  | 550.00  | Num segm coroa/volta   | [-]      | 7.00      |
|                      |         |         |                        |          |           |
|                      |         | DADOS   | PRINCIPAIS DE SAIDA    |          |           |
| Potência Nominal     | [kVA]   | 100000  | Tensão nominal         | [kV]     | 13.80     |
| Fator de potência    | [-]     | 0.850   | Rotação nominal        | [rpm]    | 257.14    |
| Momento inércia (J)  | [T.m2]  | 1050    | Rotação disparo        | [rpm]    | 495.00    |
| H const de inércia   | [s]     | 3.807   | Número de polos        | [-]      | 28        |
|                      |         |         |                        |          |           |
| Fator aproveitamento | o[-]    | 5.75    | Intens linear corrent  | :[A/mm]  | 64.54     |
| Dens corrente barra  | [-]     | 2.404   | Capa de corrente       | [A2/mm3  | 3] 155.12 |
| Relação D/L          | [-]     | 2.080   | q num.ranh.polo fase   | [-] 3    | 3 + 0 / 1 |
| Fator enrolamento 11 | n [ — ] | 0.94521 | Fator enrolamento 3h   | [-]      | -0.57735  |
| Corrente nominal     | [A]     | 4183.7  | Corrente por barra     | [ mm ]   | 2091.8    |
| Veloc perif nominal  | [m/s]   | 70.0    | Veloc perif disparo    | [m/s]    | 134.8     |
| bps/Tps              | [-]     | 0.686   | Entref max/nom         | [-]      | 1.667     |
|                      |         |         | NÚCLEO DO ESTATOR      |          |           |
| Diâmetro interno     | [mm]    | 5200.0  | Diâmetro externo       | [mm]     | 5900.0    |
| Comprimento núcleo   | [mm]    | 2500.0  | Altura da cunha        | [ mm ]   | 15.00     |
| Comp efetivo núcleo  | [mm]    | 2213.5  | Passo de ranhura       | [ mm ]   | 64.83     |
| Número seg volta     | [mm]    | 21.00   | Largura segmento       | [mm]     | 879.35    |
| Número dutos vent    | [-]     | 34      | Largura duto vent      | [mm]     | 5.00      |
| Altura Yoke          | [mm]    | 176.00  | Altura ranhura         | [ mm ]   | 159.00    |
| Largura da ranhura   | [mm]    | 23.90   | Número ranhuras        | [-]      | 252       |
| Tipo chapa silicio   | [W/kg]  | 2.30    | Espessura chapa        | [ mm ]   | 0.50      |
|                      |         |         | ENROLAMENTO DO ESTATOR |          |           |
| Número de camadas    | [-]     | 2       | Espiras por barra      | [-]      | 1         |

| Circuitos paralelos  | [-]      | 2              | Passo enrolamento     | [-]     | 8         |
|----------------------|----------|----------------|-----------------------|---------|-----------|
| Número de fios       | [-]      | 62             | Largura fio           | [mm]    | 8.00      |
| Espessura fio        | [ mm ]   | 1.80           | Raio fio              | [mm]    | 0.65      |
| Isolação principal   | [ mm ]   | 2.80           | Isolação fio          | [mm]    | 0.10      |
| Separador camada     | [ mm ]   | 6.30           | Espessura cunha       | [mm]    | 6.00      |
| Seção do fio         | [mm2]    | 14.037         | Seção da barra/bobina | a [mm2] | 870.31    |
| Larg barra isolada   | [ mm ]   | 22.92          | Altura barra isolada  | [mm]    | 71.02     |
| Comprimento barra    | [ mm ]   | 3450.00        | Compr total conexões  | [m]     | 127.00    |
| Kmax                 | [-]      | 1.72           | KN                    | []      | 1.24      |
| K fator CC/AC        | [-]      | 1.1775         | Resist 20oC por fase  | [ohm]   | 0.003080  |
| Resist Tref p/ fase  | [ohm]    | 0.003746       | Temp referência Tref  | [oC]    | 75        |
|                      |          | POLOS          | DO ROTOR              |         |           |
| Entreferro           | [mm]     | 18.00          | Entreferro máximo     | [mm]    | 30.00     |
| Largura sapata polo  | [mm]     | 400.00         | Larg. núcleo polo     | [mm]    | 290.00    |
| Comprimento sapata   | [ mm ]   | 2460.00        | Comprimento núcleo    | [mm]    | 2460.00   |
| Altura sapata        | [mm]     | 42.00          | Altura núcleo         | [mm]    | 189.00    |
| Espess chapa polo    | [ mm ]   | 2.00           | Espess colar isol sup | 0[mm]   | 6.00      |
| Tipo de espiras      | [-]      | 0              | Passo polar           | [-]     | 583.44    |
| Num espiras normais  | [-]      | 19.00          | Num espiras refrig    | [-]     | 18.00     |
| Espess espira normal | [mm]     | 4.00           | Espess espira refrig  | [mm]    | 4.00      |
| Larg espira normal   | [mm]     | 110.00         | Larg espira refriger  | [mm]    | 110.00    |
| Núm barras amortec   | [-]      | 4              | Diâm. barra amortec   | [mm]    | 20.00     |
| Passo amortecedor    | [mm]     | 64.60          | Seção segm amortec    | [mm2]   | 450.00    |
| Dispersão polo vazio | o [ — ]  | 1.120          | Dispersão polo carga  | [-]     | 1.222     |
| Seção espira normal  | [mm2]    | 439.000        | Seção espira refrige  | [mm2]   | 439.000   |
| Dens corr esp normal | [A/mm2]  | 1.683          | Dens corr esp refrig  | [-]     | 1.683     |
| Resistência 20 oC    | [ohm]    | 0.243295       | Resist Temp Refêrenc  | [oC]    | 0.295874  |
| Dist espiras refrig  | [mm]     | 12.9           | Temp referência Tref  | [oC]    | 75        |
|                      |          | ANEL           | MAGNÉTICO             |         |           |
| Diâm ext. coroa rot  | [ mm ]   | 4702.00        | Comprim coroa rotor   | [mm]    | 2700.00   |
| Alt Radial coroa rot | :[mm]    | 550.00         | Num segm coroa/volta  | [-]     | 7.00      |
|                      |          |                |                       |         |           |
| CIRCUI               | TO MAGN  | ÉTICO - INDUÇÃ | O E FMM A VAZIO       |         |           |
|                      | Ind      | ução [T]       |                       |         | FMM [A.E] |
| Entreferro           |          | 0.8343         |                       |         | 25999.28  |
| Dente mínimo         |          | 1.4756         |                       |         |           |
| Dente médio          |          | 1.4074         |                       |         | 171.56    |
| Dente máximo         |          | 1.3453         |                       |         |           |
| Coroa                |          | 0.9650         |                       |         | 47.36     |
| Entreferro polo/anel | -        |                |                       |         | 575.19    |
| Polo                 |          | 1.2047         |                       |         | 610.53    |
| TOTAL                |          |                |                       |         | 27403.91  |
| Corrente de excitaçã | io a vaz | io             | [A]                   |         | 370.32    |
| Corrente de excitaçã | io do en | treferro       | [A]                   |         | 356.78    |
| Corrente de excitaçã | io em cu | rto-circuito   | [A]                   |         | 428.35    |

|              | CIR            | CUITO    | MAGNÉT                                 | ICO - II | NDUÇÃO  | e fmm e | EM CARGA  |                  |         |          |      |
|--------------|----------------|----------|----------------------------------------|----------|---------|---------|-----------|------------------|---------|----------|------|
|              |                |          | Induç                                  | ão [T]   |         |         |           |                  |         | FMM [A.B | Ξ]   |
| Entreferro   | þ              |          |                                        | 0.8815   |         |         |           |                  |         | 27468.0  | 57   |
| Dente míni   | mo             |          |                                        | 1.5590   |         |         |           |                  |         |          |      |
| Dente médi   | _0             |          |                                        | 1.4869   |         |         |           |                  |         | 404.0    | )5   |
| Dente máxi   | mo             |          |                                        | 1.4213   |         |         |           |                  |         |          |      |
| Coroa        |                |          |                                        | 1.0196   |         |         |           |                  |         | 519.5    | 53   |
| Reação da    | armadur        | a        |                                        |          |         |         |           |                  |         | 22736.2  | 21   |
| Entreferro   | polo/a         | nel      |                                        |          |         |         |           |                  |         | 662.8    | 31   |
| Polo         |                |          |                                        | 1.3882   |         |         |           |                  |         | 785.8    | 36   |
| Acréscimo    | (tol)          |          |                                        |          |         |         |           |                  |         | 2103.0   | )9   |
| TOTAL        |                |          |                                        |          |         |         |           |                  |         | 54680.2  | 22   |
| Corrente d   | le excit       | ação e   | m carg                                 | a [A]    |         |         |           |                  |         | 738.9    | 92   |
|              |                |          |                                        | REA      | TÂNCIAS | [pu]    |           |                  |         |          |      |
|              | EIXO D         | IRETO    |                                        |          |         |         |           | EIXO             | QUADRAT | URA      |      |
| NÃO SATURA   | ADO            | SATUR    | ADO                                    |          |         | NÂ      | ĂO SATURI | ADO              | SATUR   | ADO      |      |
| Xdu = 1.     | 2006           | Xds      | = 1.1                                  | 567      |         | Xo      | qu = 0    | .7520            | Xqs     | = 0.724  | 15   |
| X'du = 0.    | 2892           | X'ds     | = 0.2                                  | 851      |         |         |           |                  |         |          |      |
| X"du = 0.    | 2500           | X"ds     | = 0.2                                  | 125      |         | Χ'      | 'qu = 0   | .2911            | X"qs    | = 0.273  | 36   |
|              |                |          |                                        |          |         | Di      | ispersão  |                  |         |          |      |
| X2 = 0.      | 2705           | X2       | = 0.2                                  | 431      |         | XI      | в = 0     | .1330            |         |          |      |
| X0 = 0.      | 1389           | X0       | = 0.1                                  | 180      |         | XS      | ST = 0    | .1499            |         |          |      |
|              |                |          |                                        |          |         | XS      | SX = 0    | .1765            |         |          |      |
|              |                |          |                                        | -CONSTA  | NTES DE | TEMPO   | [s]       |                  |         |          |      |
| T'do =       | 7.51           | Tld      | = 1.8                                  | 504      |         | TI      | llqo = 0  | .2133            |         |          |      |
| T"do =       | 0.08           | T"d      | = 0.0                                  | 688      |         | Τ'      | 'q = 0    | .0826            |         |          |      |
|              |                |          |                                        |          |         |         |           |                  |         |          |      |
|              |                |          |                                        | -PERDAS  | E REND  | IMENTO- |           |                  |         |          |      |
| Develo a Dev |                |          |                                        |          |         | - 11    | 105 LKDAS | ~ ^ ^ ^ ^        |         |          |      |
| Perdas fer   |                |          | E a C                                  |          |         | _       | 195.      | 20               |         |          |      |
| Perdas 12r   | estato         | ra /     | 5 00                                   |          |         | _       | 102       | 00<br>1 <i>C</i> |         |          |      |
| Perdas Aul   | onais          | 2 75     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |          |         | _       | 164       | 20               |         |          |      |
| Pordag Eve   | itação         | a /J     | 00                                     |          |         | _       | 16        | 13               |         |          |      |
| Perdae Vor   | tilec≅o        |          |                                        |          |         | _       | 202       | 50               |         |          |      |
| Perdae Mar   | .c±±aça0       |          |                                        |          |         | _       | 100       | 20               |         |          |      |
| Perdae TOT   | 'AT.           |          |                                        |          |         | _       | 1060      | 55<br>74         |         |          |      |
| RENDIMENTO   | )              |          |                                        |          |         | _       | 4009.1    | 58 ≗             |         |          |      |
|              | ,<br>          |          |                                        | -RENDIM  | ENTO PO |         |           |                  |         |          |      |
| carga        | <b>_</b><br>If | <b>-</b> | Pfe                                    | Pcuest.  | Padic   | Pcurot  | Pexc      | Pvent            | Pmancal | Total    | Rend |
| [pu]         | [A]            | [-]      | [ kW ]                                 | [kW]     | [kW]    | [kW]    | [kW]      | [kW]             | [kW]    | [kW]     | [%]  |

 1.00
 738.90
 10.00
 195.98
 196.68
 103.16
 164.28
 16.43
 202.50
 190.00
 1069.03
 98.76

 0.90
 699.30
 18.00
 195.98
 159.31
 83.56
 147.43
 14.74
 202.50
 190.00
 993.53
 98.72

 0.80
 660.40
 22.00
 195.98
 125.88
 66.03
 131.78
 13.18
 202.50
 190.00
 925.34
 98.66

 0.70
 621.90
 20.00
 195.98
 96.37
 50.55
 117.17
 11.72
 202.50
 190.00
 864.30
 98.57

 0.60
 583.70
 20.00
 195.98
 70.80
 37.14
 103.55
 10.35
 202.50
 190.00
 810.33
 98.44

 0.50
 546.00
 10.00
 195.98
 49.17
 25.79
 90.95
 9.09
 202.50
 190.00
 763.48
 98.24

 Rendimento médio ponderado )
 Fórmula num 1
 98.604
 98.604
 98.604

## 5.2.3 DIMENSIONAMENTO DO GERADOR DE 100 MVA COM PROJETO ATUALIZADO E ORIENTADO PARA RENDIMENTO

No caso anterior, item 5.2.2, utilizou-se um gerador com diâmetro interno de 5200 mm com o objetivo de ter baixa perda de ventilação e na época utilizou-se o tipo de ventilação radial (*rim ventilation*), mas no caso atual deve-se orientar o estudo para otimização de rendimento, com o gerador tendo a ventilação do tipo axial/radial com aletas de ventilação de perfil especial, que são mais eficientes que o tipo radial.

Outra melhoria em relação ao projeto original é a melhoria no dimensionamento do mancal de escora, utilizando material de cobertura da sapata que permite dimensionar com uma pressão específica maior, o que possibilita a redução do mancal e consequentemente as perdas.

#### 5.2.3.1 DIÂMETRO INTERNO, COMPRIMENTO E NÚMERO DE RANHURAS

Com a utilização da ventilação axial/radial com aletas de ventilação de perfil especial, que são mais eficientes que o tipo radial, pode-se aumentar um pouco o diâmetro interno do estator com o objetivo de atender ao alto rendimento solicitado e diminuir o custo do gerador.

Com este ganho de perdas pode-se adotar um diâmetro de 5,4 m.

O fator de aproveitamento resultante do cálculo do item anterior foi de C=5,75, e nesta máquina orientada para otimização de rendimento, pode-se utilizar um valor maior na ordem de C=6. O comprimento axial bruto do núcleo do estator a ser utilizado é de 2,2 m.

Do item 4.7 quando a forma de onda da distribuição circunferencial da densidade de linhas de fluxo magnético adquire uma forma senoidal, demonstra-se que a tensão de fase-neutro ( $U_{fn}$ ) pode ser escrita como em (4-26):

$$U_{fn} = \frac{4}{\sqrt{2}} l_{est} \tau_p f k_w N_{ph} \beta_{max}$$

Para uma estimativa inicial será adotado o fator de enrolamento  $k_w = 0.92$  e  $\beta_{max} = 0.9$  T , e obtém-se  $N_{ph} = 42 \ espiras$ ,

Utilizando a fórmula que relaciona número de espiras por fase, número de ranhuras, número de fases e número de circuitos paralelos,

$$N_{ph} = \frac{N_s \cdot N_{tc}}{m \cdot a}$$
$$N_s = \frac{N_{ph} \cdot m \cdot a}{N_{tc}} = \frac{42 \cdot 3 \cdot 2}{1} = 252 \ ranhuras$$

Pelos cálculos acima sugere-se aproximadamente 252 ranhuras, e para uma escolha mais assertiva lista-se abaixo uma faixa de possíveis valores de q (número de ranhuras por polo e fase) e correspondente número de ranhuras, a fim de facilitar a adoção do melhor valor, O valor de q é de extrema importância pois fornece um indicativo de possíveis riscos de ressonância no estator,

Considerando que se adotou a=2 circuitos paralelos e tem-se 28 polos, possíveis valores para o valor c da equação  $q = a \frac{b}{c}$  limita-se a 14, 7, 2 e 1, para um enrolamento trifásico e equilibrado o valor de c não pode ser múltiplo de 3, porém o número de ranhuras deve ser múltiplo de 3.

| q       | Número de ranhuras $N_s$ |
|---------|--------------------------|
| 2 + 1/2 | 210                      |
| 2 + 4/7 | 216                      |
| 2 + 5/7 | 228                      |
| 2 + 6/7 | 240                      |
| 3       | 252                      |
| 3 + 1/7 | 264                      |
| 3 + 2/7 | 276                      |
| 3 + 3/7 | 288                      |
| 3+1/2   | 294                      |
| 3+4/7   | 300                      |
| 3+5/7   | 312                      |
| 3+6/7   | 324                      |
| 4       | 336                      |

Tabela 5-13 - Número de ranhuras por polo e fase x Número de ranhuras

A Tabela 5-13 lista os possíveis números de ranhuras para este gerador.

Para 252 ranhuras, o passo de ranhura  $\tau_n = 67,3$  mm, valor está bem dentro da faixa usual (50 a 90 mm) então a escolha do número de ranhuras de 252 continua válido.

Outro parâmetro a ser verificado é a Intensidade linear de corrente que está definido no item 4.9, e expressão (4-42):

$$A_i = 62,1 \, \text{A/mm},$$

está bem dentro dos valores recomendados que é de  $(60 \le A_i \le 85)$  conforme item 4.10.2. Sabendo que valores no limite inferior tende a possibilitar máquinas com maior rendimento, logo mais uma vez a confirmação que o número de ranhuras adotado de 252 é acertado assim como a tensão de 13800 V está bem adequado ao projeto,

O tipo de enrolamento mais indicado para este tipo de máquina é do tipo imbricado, pois este tipo produz menores perdas e mais facilidade de manutenção em caso de falhas em barras, Como o projeto do enrolamento tem 2 paralelos a redução do empuxo magnético não é significativa.

## 5.2.3.2 DIMENSIONAMENTO DO FIO DE COBRE E RANHURA DO ESTATOR

Para o dimensionamento da barra Roebel e a ranhura, segue-se o mesmo procedimento do item 5.2.2.4.

Para o cobre optar-se-á por uma espessura de 1,8 mm com o objetivo de reduzir as perdas adicionais por correntes parasitas e densidade de corrente de aproximadamente 2,4 A/mm<sup>2</sup>, A largura do fio é escolhido considerando que irá definir a largura da ranhura, o qual terá influência na saturação do dente, Serão utilizados 62 fios de 8,00 x 1,80 mm.

A Tabela 5-14 mostra os cálculos para a determinação da largura e profundidade da ranhura, considerando todos os componentes utilizados para embutimento das barras.

| LARGURA DA RANHURA           | Dimensão [mm] |       |  |
|------------------------------|---------------|-------|--|
| Fios de cobre                | 2 x 8,00      | 16,00 |  |
| Isolação dos fios            | 4 x 0,105     | 0,42  |  |
| Espaçador vertical           | 0,30          | 0,30  |  |
| Isolação principal           | 2 x 2,80      | 5,60  |  |
| Proteção corona              | 2 x 0,15      | 0,30  |  |
| Tolerância positiva          | 0,60          | 0,60  |  |
| Sistema de embutimento       | 0,48          | 0,48  |  |
| Largura da ranhura montada   |               | 23,70 |  |
| Largura da ranhura estampada |               | 23,90 |  |

Tabela 5-14 - Dimensionamento da ranhura do estator

| PROFUNDIDADE DA RANHURA       | Dimensão [mm]  |        |  |
|-------------------------------|----------------|--------|--|
| Fios de cobre (58 fios)       | 32 x 1,8       | 57,60  |  |
| Isolação dos fios             | 32 x 2 x 0,105 | 6,72   |  |
| Proteção corona interna       | 2 x 0,15       | 0,30   |  |
| Isolação principal            | 2 x 2,80       | 5,60   |  |
| Proteção corona               | 2 x 0,15       | 0,30   |  |
| Tolerância positiva           | 0,30           | 0,30   |  |
| Sistema de embutimento        | 0,50           | 0,50   |  |
| Altura radial da barra        |                | 71,02  |  |
|                               |                |        |  |
| Alturas das 2 barras          | 2 x 71,02      | 142,04 |  |
| Separador de camadas          | 6,30           | 6,30   |  |
| Calços de proteção            | 0,96           | 0,96   |  |
| Calços deslizantes            | 0,80           | 0,80   |  |
| Mola ondulada                 | 1,30           | 1,30   |  |
| Contracunha                   | -              | -      |  |
| Cunha                         | 6,00           | 6,00   |  |
| Altura cunha/diâmetro interno | 1,60           | 1,60   |  |
| Profundidade da ranhura       |                | 159,00 |  |

## 5.2.3.3 DIMENSIONAMENTO DO NÚCLEO DO ESTATOR

Seguindo o mesmo procedimento do item 5.1.2.5, e com o objetivo de otimização de rendimento adotar-se-á a chapa M230-50A, que é a melhor chapa siliciosa de 0.5 mm de espessura disponível atualmente no mercado.

A Tabela 5-15 apresenta todas as principais dimensões do núcleo e informações necessárias para um cálculo elétrico.

| NÚCLEO DO ESTATOR                              | unidade | dimensão            |
|------------------------------------------------|---------|---------------------|
| Diâmetro interno                               | mm      | 5400                |
| Diâmetro externo                               | mm      | 6100                |
| Comprimento bruto axial                        | mm      | 2200                |
| Largura da ranhura                             | mm      | 23,90               |
| Profundidade da ranhura                        | mm      | 159,0               |
| Altura radial da coroa do núcleo               | mm      | 176,0               |
| Altura da ranhura para cunha rabo de andorinha | mm      | 15,0                |
| Número de dutos de ventilação                  | _       | 50                  |
| Largura do duto de ventilação                  | mm      | 5,0                 |
| Tipo de chapa siliciosa                        | _       | M230-50A            |
| Extremidades do núcleo                         | -       | Escadinhas e rasgos |
| Empilhamento                                   | _       | Estator bipartido   |
| Fator de empilhamento                          |         | 0,95                |

#### Tabela 5-15 - Dimensionamento do núcleo do estator

## 5.2.3.4 DIMENSIONAMENTO DO POLO

Para dimensionamento do polo deve se seguir o mesmo procedimento do item 5.1.2.6. As dimensões são decorrentes da otimização das perdas, temperaturas, limites de saturação e limites mecânicos.

A Tabela 5-16 lista as dimensões principais do polo para execução do cálculo elétrico.

Tabela 5-16 - Dimensionamento do polo

| POLOS                             | unidade | dimensão |
|-----------------------------------|---------|----------|
| Largura da sapata                 | mm      | 440      |
| Altura da sapata                  | mm      | 42       |
| Comprimento axial da sapata polar | mm      | 2160     |

| Largura do núcleo do polo            | mm | 300  |
|--------------------------------------|----|------|
| Altura do núcleo do polo             | mm | 189  |
| Comprimento axial do núcleo polar    | mm | 2200 |
| Espessura da chapa do polo           | mm | 2,0  |
| Número de espiras de cobre           | -  | 37   |
| Espessura do cobre da espira         | mm | 4    |
| Largura da espira normal / com aleta | mm | 100  |
| Número de barras amortecedoras       | -  | 4    |
| Diâmetro das barras de amortecimento | mm | 20   |

## 5.2.3.5 DADOS DE ENTRADA E DADOS DE SAÍDA DO PROGRAMA DE CÁLCULO

Com todos os dados de entrada definidos, ou pela especificação técnica, ou pelo engenheiro calculista, executa-se o programa de cálculo elétrico. Do programa se obtém os vários parâmetros de saída que definem o gerador projetado.

|                     |        | DADOS  | DE ENTRADA          |        |        |
|---------------------|--------|--------|---------------------|--------|--------|
| Potência Nominal    | [kVA]  | 100000 | Tensão nominal      | [kV]   | 13.80  |
| Fator de potência   | [-]    | 0.850  | Rotação nominal     | [rpm]  | 257.14 |
| Momento inércia (J) | [T.m2] | 1050   | Rotação disparo     | [rpm]  | 495.00 |
| H const de inércia  | [s]    | 3.807  | Número de polos     | [-]    | 28     |
|                     |        | NÚCLE  | DO ESTATOR          |        |        |
| Diâmetro interno    | [mm]   | 5400.0 | Diâmetro externo    | [mm]   | 6100.0 |
| Comprimento núcleo  | [mm]   | 2200.0 | Altura da cunha     | [ mm ] | 15.00  |
| Número dutos vent   | [-]    | 50     | Largura duto vent   | [mm]   | 5.00   |
| Altura Yoke         | [mm]   | 176.0  | Altura ranhura      | [ mm ] | 159.0  |
| Largura da ranhura  | [mm]   | 23.9   | Número ranhuras     | [ - ]  | 252    |
| Tipo chapa silicio  | [W/kg] | 2.30   | Espessura chapa     | [ mm ] | 0.50   |
|                     |        | ENROL  | AMENTO DO ESTATOR - |        |        |
| Número de camadas   | [-]    | 2      | Espiras por barra   | [-]    | 1      |
| Circuitos paralelos | [-]    | 2      | Passo enrolamento   | [-]    | 8      |
| Número de fios      | [-]    | 62     | Largura fio         | [mm]   | 8.00   |
| Espessura fio       | [ mm ] | 1.80   | Raio fio            | [mm]   | 0.65   |
| Isolação principal  | [mm]   | 2.80   | Isolação fio        | [ mm ] | 0.10   |
| Separador camada    | [mm]   | 6.30   | Espessura cunha     | [ mm ] | 6.00   |
|                     |        | POLOS  |                     |        |        |
| Entreferro          | [ mm ] | 17.00  | Entreferro máximo   | [ mm ] | 26.00  |

| Largura sapata polo   | [mm]    | 440.00  | Larg. núcleo polo       | [mm]    | 300.00    |
|-----------------------|---------|---------|-------------------------|---------|-----------|
| Comprimento sapata    | [mm]    | 2170.00 | Comprimento núcleo      | [mm]    | 2200.00   |
| Altura sapata         | [mm]    | 42.00   | Altura núcleo           | [mm]    | 189.00    |
| Espess chapa polo     | [mm]    | 2.00    | Espess colar isol sup   | [mm]    | 6.00      |
| Num espiras normais   | [-]     | 19.00   | Num espiras refrig      | [-]     | 18.00     |
| Espess espira normal  | [mm]    | 4.00    | Espess espira refrig    | [mm]    | 4.00      |
| Larg espira normal    | [mm]    | 100.00  | Larg espira refriger    | [mm]    | 100.00    |
| Núm barras amortec    | [-]     | 4       | Diâm. barra amortec     | [mm]    | 20.00     |
| Passo amortecedor     | [mm]    | 64.60   | Seção segm amortec      | [mm2]   | 450.00    |
|                       |         |         | ANEL MAGNÉTICO          |         |           |
| Diâm ext. coroa rot   | [mm]    | 4702.00 | Comprim coroa rotor     | [mm]    | 2700.00   |
| Alt Radial coroa rot  | [ mm ]  | 550.00  | Num segm coroa/volta    | [-]     | 7.00      |
|                       |         |         |                         |         |           |
|                       |         | DADOS   | PRINCIPAIS DE SAIDA     |         |           |
| Potência Nominal      | [kVA]   | 100000  | Tensão nominal          | [kV]    | 13.80     |
| Fator de potência     | [-]     | 0.850   | Rotação nominal         | [rpm]   | 257.14    |
| Momento inércia (J)   | [T.m2]  | 1050    | Rotação disparo         | [rpm]   | 495.00    |
| H const de inércia    | [s]     | 3.807   | Número de polos         | [-]     | 28        |
|                       |         |         |                         |         |           |
| Fator aproveitamento  | o [ – ] | 6.06    | Intens linear corrent   | [A/mm]  | 62.15     |
| Dens corrente barra   | [-]     | 2.404   | Capa de corrente        | [A2/mm3 | 3] 149.37 |
| Relação D/L           | [-]     | 2.455   | q num.ranh.polo fase    | [-] 3   | 8 + 0 / 1 |
| Fator enrolamento 1h  | n [ — ] | 0.94521 | Fator enrolamento 3h    | [-]     | -0.57735  |
| Corrente nominal      | [A]     | 4183.7  | Corrente por barra      | [mm]    | 2091.8    |
| Veloc perif nominal   | [m/s]   | 72.7    | Veloc perif disparo     | [m/s]   | 140.0     |
| bps/Tps               | [-]     | 0.726   | Entref max/nom          | [-]     | 1.529     |
|                       |         |         | -NÚCLEO DO ESTATOR      |         |           |
| Diâmetro interno      | [mm]    | 5400.0  | Diâmetro externo        | [mm]    | 6100.0    |
| Comprimento núcleo    | [mm]    | 2200.0  | Altura da cunha         | [mm]    | 15.00     |
| Comp efetivo núcleo   | [mm]    | 1852.5  | Passo de ranhura        | [mm]    | 67.32     |
| Número seg volta      | [mm]    | 21.00   | Largura segmento        | [mm]    | 909.16    |
| Número dutos vent     | [-]     | 50      | Largura duto vent       | [mm]    | 5.00      |
| Altura Yoke           | [mm]    | 176.00  | Altura ranhura          | [mm]    | 159.00    |
| Largura da ranhura    | [mm]    | 23.90   | Número ranhuras         | [-]     | 252       |
| Tipo chapa silicio    | [W/kg]  | 2.30    | Espessura chapa         | [mm]    | 0.50      |
|                       |         |         | -ENROLAMENTO DO ESTATOR |         |           |
| Número de camadas     | [-]     | 2       | Espiras por barra       | [-]     | 1         |
| Circuitos paralelos   | [-]     | 2       | Passo enrolamento       | [-]     | 8         |
| Número de fios        | [-]     | 62      | Largura fio             | [mm]    | 8.00      |
| Espessura fio         | [mm]    | 1.80    | Raio fio                | [mm]    | 0.65      |
| Isolação principal    | [mm]    | 2.80    | Isolação fio            | [mm]    | 0.10      |
| -<br>Separador camada | [mm]    | 6.30    | Espessura cunha         | [mm]    | 6.00      |
| Seção do fio          | [mm2]   | 14.037  | Seção da barra/bobina   | [mm2]   | 870.31    |
| Larg barra isolada    | [mm]    | 22.92   | Altura barra isolada    | [mm]    | 71.02     |
| Comprimento barra     | [mm]    | 3150.00 | Compr total conexões    | [m]     | 127.00    |

| Kmax                 | [-]     | 1.72       |        | KN                    | []     | 1.24      |
|----------------------|---------|------------|--------|-----------------------|--------|-----------|
| K fator CC/AC        | [-]     | 1.1710     |        | Resist 20oC por fase  | [ohm]  | 0.002830  |
| Resist Tref p/ fase  | [ohm]   | 0.003442   |        | Temp referência Tref  | [OC]   | 75        |
|                      |         |            | POLOS  | DO ROTOR              |        |           |
| Entreferro           | [mm]    | 17.00      |        | Entreferro máximo     | [mm]   | 26.00     |
| Largura sapata polo  | [mm]    | 440.00     |        | Larg. núcleo polo     | [mm]   | 300.00    |
| Comprimento sapata   | [mm]    | 2170.00    |        | Comprimento núcleo    | [mm]   | 2200.00   |
| Altura sapata        | [mm]    | 42.00      |        | Altura núcleo         | [mm]   | 189.00    |
| Espess chapa polo    | [mm]    | 2.00       |        | Espess colar isol sup | [ mm ] | 6.00      |
| Tipo de espiras      | [-]     | 0          |        | Passo polar           | [-]    | 605.88    |
| Num espiras normais  | [-]     | 19.00      |        | Num espiras refrig    | [-]    | 18.00     |
| Espess espira normal | [mm]    | 4.00       |        | Espess espira refrig  | [mm]   | 4.00      |
| Larg espira normal   | [mm]    | 100.00     |        | Larg espira refriger  | [ mm ] | 100.00    |
| Núm barras amortec   | [-]     | 4          |        | Diâm. barra amortec   | [mm]   | 20.00     |
| Passo amortecedor    | [mm]    | 64.60      |        | Seção segm amortec    | [mm2]  | 450.00    |
| Dispersão polo vazio | [-]     | 1.111      |        | Dispersão polo carga  | [-]    | 1.209     |
| Seção espira normal  | [mm2]   | 399.000    |        | Seção espira refriger | [mm2]  | 399.000   |
| Dens corr esp normal | [A/mm2] | 1.849      |        | Dens corr esp refrig  | [-]    | 1.849     |
| Resistência 20 oC    | [ohm]   | 0.243513   |        | Resist Temp Refêrenc  | [oC]   | 0.296139  |
| Dist espiras refrig  | [mm]    | 45.6       |        | Temp referência Tref  | [OC]   | 75        |
|                      |         |            | ANEL N | 1AGNÉTICO             |        |           |
| Diâm ext. coroa rot  | [mm]    | 4702.00    |        | Comprim coroa rotor   | [mm]   | 2700.00   |
| Alt Radial coroa rot | [mm]    | 550.00     |        | Num segm coroa/volta  | [-]    | 7.00      |
|                      |         |            |        |                       |        |           |
| CIRCUI               | TO MAGN | IÉTICO - I | NDUÇÃO | ) E FMM A VAZIO       |        |           |
|                      | Ind     | lução [T]  |        |                       |        | FMM [A.E] |
| Entreferro           |         | 0.8659     |        |                       |        | 25569.92  |
| Dente mínimo         |         | 1.5786     |        |                       |        |           |
| Dente médio          |         | 1.5096     |        |                       |        | 493.37    |
| Dente máximo         |         | 1.4465     |        |                       |        |           |
| Coroa                |         | 1.1794     |        |                       |        | 79.44     |
| Entreferro polo/anel |         |            |        |                       |        | 631.02    |
| Polo                 |         | 1.3216     |        |                       |        | 710.99    |
| TOTAL                |         |            |        |                       |        | 27484.74  |
| Corrente de excitaçã | o a vaz | io         |        | [A]                   |        | 371.42    |
| Corrente de excitaçã | o do en | treferro   |        | [A]                   |        | 351.51    |
| Corrente de excitaçã | o em cu | rto-circu  | ito    | [A]                   |        | 416.32    |
|                      |         |            |        |                       |        |           |
| CIRCUI               | TO MAGN | IÉTICO - I | NDUÇÃO | ) E FMM EM CARGA      |        |           |
|                      | Ind     | lução [T]  |        |                       |        | FMM [A.E] |
| Entreferro           |         | 0.8955     |        |                       |        | 26442.17  |
| Dente mínimo         |         | 1.6324     |        |                       |        |           |
| Dente médio          |         | 1.5611     |        |                       |        | 773.35    |
| Dente máximo         |         | 1.4958     |        |                       |        |           |
| Coroa                |         | 1.2196     |        |                       |        | 922.21    |

| Reação da armadura            |        | 22611.26 |
|-------------------------------|--------|----------|
| Entreferro polo/anel          |        | 709.96   |
| Polo                          | 1.4869 | 1029.78  |
| Acréscimo (tol)               |        | 2099.55  |
| TOTAL                         |        | 54588.28 |
| Corrente de excitação em carg | a [A]  | 737.68   |

-----REATÂNCIAS [pu]-----EIXO DIRETO EIXO QUADRATURA NÃO SATURADO SATURADO NÃO SATURADO SATURADO Xqu = 0.8011 Xqs = 0.7581 Xdu = 1.1844 Xds = 1.1209 X'du = 0.2611 X'ds = 0.2555 X"du = 0.2227 X"ds = 0.1893 X"qu = 0.2598 X"qs = 0.2442 Dispersão  $X2 = 0.2412 \quad X2 = 0.2167$ XB = 0.1170 X0 = 0.1237 X0 = 0.1052 XST = 0.1322 XSX = 0.1556

|      |   |      |     | CONSTANTES | DE TEMPO [s] |          |
|------|---|------|-----|------------|--------------|----------|
| T'do | = | 7.66 | Tld | = 1.7452   | Tllqo        | = 0.2519 |
| T"do | = | 0.08 | T"d | = 0.0673   | T <b>"</b> q | = 0.0817 |

-----PERDAS E RENDIMENTO-----

|         |                     |   | PERDAS [kW] |    |
|---------|---------------------|---|-------------|----|
| Perdas  | Ferro               | = | 252.65      |    |
| Perdas  | I2R estator a 75 oC | = | 180.74      |    |
| Perdas  | Adionais            | = | 98.84       |    |
| Perdas  | I2R rotor a 75 oC   | = | 163.89      |    |
| Perdas  | Excitação           | = | 16.39       |    |
| Perdas  | Ventilação          | = | 180.00      |    |
| Perdas  | Mancal              | = | 170.00      |    |
| Perdas  | TOTAL               | = | 1062.51     |    |
| RENDIME | INTO                | = | 98.765      | 00 |

-----RENDIMENTO PONDERADO-----

| carga  | If       | Wi       | Pfe    | Pcuest  | Padic | Pcurot | Pexc  | Pvent  | Pmancal | Total   | Rend   |
|--------|----------|----------|--------|---------|-------|--------|-------|--------|---------|---------|--------|
| [pu]   | [A]      | [-]      | [kW]   | [kW]    | [kW]  | [kW]   | [kW]  | [kW]   | [kW]    | [kW]    | [%]    |
| 1.00   | 737.70   | 10.00    | 252.65 | 180.74  | 98.84 | 163.90 | 16.39 | 180.00 | 170.00  | 1062.52 | 98.77  |
| 0.90   | 697.20   | 18.00    | 252.65 | 146.40  | 80.06 | 146.69 | 14.67 | 180.00 | 170.00  | 990.47  | 98.72  |
| 0.80   | 657.70   | 22.00    | 252.65 | 115.67  | 63.26 | 130.84 | 13.08 | 180.00 | 170.00  | 925.50  | 98.66  |
| 0.70   | 618.90   | 20.00    | 252.65 | 88.56   | 48.43 | 116.17 | 11.62 | 180.00 | 170.00  | 867.43  | 98.56  |
| 0.60   | 580.50   | 20.00    | 252.65 | 65.07   | 35.58 | 102.53 | 10.25 | 180.00 | 170.00  | 816.08  | 98.43  |
| 0.50   | 543.00   | 10.00    | 252.65 | 45.19   | 24.71 | 90.05  | 9.01  | 180.00 | 170.00  | 771.60  | 98.22  |
| Rendim | ento méd | io ponde | rado ) | Fórmula | num 1 |        |       |        |         |         | 98.601 |

#### 5.2.4 DIMENSIONAMENTO DO GERADOR DE 100 MVA ORIENTADO PARA CUSTO

Para início do dimensionamento desse gerador deve-se estimar o novo valor de C, levando em conta que o valor calculado conforme item 5.2.2 foi C=7,4 enquanto que utilizar-se-á um valor menor devido ao alto rendimento requerido, e este valor foi de C=5,7. Considerando que agora o dimensionamento terá como objetivo um gerador com as mesmas características elétricas, porém orientado ao menor custo, adotar-se-á o valor inicial de C=8,0.

## 5.2.4.1 DIÂMETRO INTERNO, COMPRIMENTO E NÚMERO DE RANHURAS

Nos casos anteriores, itens 5.2.2 e 5.2.3, foram utilizados geradores com diâmetro interno de 5,2 e 5,4 m com o objetivo de ter baixa perda de ventilação. Mas no caso atual, deve-se orientar o estudo para otimização de custo, o que sugere um maior diâmetro do gerador, que no presente caso, adotar-se-á um valor de 6,0 m.

Os fatores de aproveitamentos resultantes dos cálculos dos itens 5.2.2 e 5.2.3 anteriores foram de C=5,7 e C=6,06, e nesta máquina orientada para otimização de custo, pode-se utilizar um valor maior na ordem de C=8. O comprimento axial bruto do núcleo do estator a ser utilizado é de 1350 mm.

Do item 4.7, quando a forma de onda da distribuição circunferencial da densidade de linhas de fluxo magnético adquire uma forma senoidal, demonstra-se que a tensão de fase-neutro ( $U_{fn}$ ) pode ser escrita como:

$$U_{fn} = \frac{4}{\sqrt{2}} l_{est} \tau_p f k_w N_{ph} \beta_{max}$$

Para uma estimativa inicial será adotado o fator de enrolamento  $k_w = 0.93$  e  $\beta_{max} = 1.0$  T, e obtém-se  $N_{ph} = 56$  espiras.

Utilizando a fórmula que relaciona número de espiras por fase, número de ranhuras, número de fases e número de circuitos paralelos,

$$N_{ph} = \frac{N_s N_{tc}}{m a}$$
$$N_s = 336 \text{ ranhuras}$$

Para 336 ranhuras, o passo de ranhura  $\tau_n = 56,1$  mm, este valor está bem dentro da faixa usual (50 a 90 mm) então a escolha do número de ranhuras de 336 continua válido,

Outro parâmetro a ser verificado é a Intensidade linear de corrente que está definido no item 4.9, e expressão (4-42):

$$A_i = 74,6 \text{ A/mm}$$

O valor de  $A_i = 74,6$  A/mm está bem dentro dos valores recomendados que é de  $(60 \le A_i \le 85)$  conforme item 4.10.2, logo mais uma vez a confirmação que o número

de ranhuras adotado de 336 é acertado assim como a tensão de 13800 V está bem adequado ao projeto,

O número de ranhuras 336 tem o valor de q=4, portanto sem risco de ressonância do estator,

## 5.2.4.2 DIMENSIONAMENTO DO FIO DE COBRE E RANHURA DO ESTATOR

Seguindo o mesmo procedimento do item 5.1.2.4, e com o objetivo de otimização de custos adotar-se-á uma densidade de corrente de aproximadamente 3,5 A/mm<sup>2</sup>, resultando na configuração de 48 fios de 6,30 x 2,00 mm.

Tabela 5-17 mostra os cálculos para a determinação da largura e profundidade da ranhura, considerando todos os componentes utilizados para embutimento das barras.

| LARGURA DA RANHURA Dimensão [mm] |           |       |  |  |
|----------------------------------|-----------|-------|--|--|
| Fios de cobre                    | 2 x 6,30  | 12,60 |  |  |
| Isolação dos fios                | 4 x 0,105 | 0,42  |  |  |
| Espaçador vertical               | 0,30      | 0,30  |  |  |
| Isolação principal               | 2 x 2,80  | 5,60  |  |  |
| Proteção corona                  | 2 x 0,15  | 0,30  |  |  |
| Tolerância positiva              | 0,60      | 0,60  |  |  |
| Sistema de embutimento           | 0,48      | 0,48  |  |  |
| Largura da ranhura montada       |           | 20,30 |  |  |
| Largura da ranhura estampada     |           | 20,50 |  |  |

Tabela 5-17 - Dimensionamento da ranhura

| PROFUNDIDADE DA RANHURA   | Dimensão [mm]  |        |  |
|---------------------------|----------------|--------|--|
| Fios de cobre (48 fios)   | 25 x 2,0       | 50,00  |  |
| Isolação dos fios         | 25 x 2 x 0,105 | 5,25   |  |
| Proteção corona interna   | 2 x 0,15       | 0,30   |  |
| Isolação principal        | 2 x 2,80       | 5,60   |  |
| Proteção corona           | 2 x 0,15       | 0,30   |  |
| Tolerância positiva       | 0,30           | 0,30   |  |
| Sistema de embutimento    | 0,50           | 0,50   |  |
| Altura radial da barra    |                | 62,25  |  |
|                           |                |        |  |
| Alturas das 2 barras      | 2 x 62,25      | 124,50 |  |
| Separador de camadas      | 6,30           | 6,30   |  |
| Calços de proteção        | 0,50           | 0,50   |  |
| Calços deslizantes        | 0,80           | 0,80   |  |
| Mola ondulada             | 1,30           | 1,30   |  |
| Contracunha               | -              | -      |  |
| Cunha                     | 6,00           | 6,00   |  |
| Altura cunha/diam interno | 1,60           | 1,60   |  |
| Profundidade da ranhura   |                | 141,00 |  |

# 5.2.4.3 DIMENSIONAMENTO DO NÚCLEO DO ESTATOR

Seguindo o mesmo procedimento do item 5.1.2.5, e com o objetivo de otimização de custos adotar-se-á a chapa M250-50A, que é uma das melhores chapas siliciosas de 0,5 mm de espessura disponível atualmente no mercado.

A Tabela 5-18 apresenta todas as principais dimensões do núcleo e informações necessárias para um cálculo elétrico.

| NÚCLEO DO ESTATOR                              | unidade | dimensão            |
|------------------------------------------------|---------|---------------------|
| Diâmetro interno                               | mm      | 6000                |
| Diâmetro externo                               | mm      | 6712                |
| Comprimento bruto axial                        | mm      | 1350                |
| Largura da ranhura                             | mm      | 20,50               |
| Profundidade da ranhura                        | mm      | 141,0               |
| Altura radial da coroa do núcleo               | mm      | 200,0               |
| Altura da ranhura para cunha rabo de andorinha | mm      | 15,0                |
| Número de dutos de ventilação                  | -       | 34                  |
| Largura do duto de ventilação                  | mm      | 5,0                 |
| Tipo de chapa siliciosa                        | -       | M250-50A            |
| Extremidades do núcleo                         | -       | Escadinhas e rasgos |
| Empilhamento                                   | -       | Estator bipartido   |
| Fator de empilhamento                          |         | 0,95                |

Tabela 5-18 - Dimensionamento do núcleo

### 5.2.4.4 DIMENSIONAMENTO DO POLO

Para dimensionamento do polo deve se seguir o mesmo procedimento do item 5.1.2.6, porém neste caso com o objetivo de otimização de custos.

A Tabela 5-19 lista as dimensões principais do polo para execução do cálculo elétrico.

Tabela 5-19 - Dimensionamento do polo

| POLOS                             | unidade | dimensão |
|-----------------------------------|---------|----------|
| Largura da sapata                 | mm      | 490      |
| Altura da sapata                  | mm      | 50       |
| Comprimento axial da sapata polar | mm      | 1320     |

| Largura do núcleo do polo            | mm | 340       |
|--------------------------------------|----|-----------|
| Altura do núcleo do polo             | mm | 210       |
| Comprimento axial do núcleo polar    | mm | 1350      |
| Espessura da chapa do polo           | mm | 2,0       |
| Número de espiras de cobre           | -  | 26+14     |
| Espessura do cobre da espira         | mm | 4         |
| Largura da espira normal / com aleta | mm | 100 / 110 |
| Número de barras amortecedoras       | -  | 5         |
| Diâmetro das barras de amortecimento | mm | 18        |

## 5.2.4.5 DADOS DE ENTRADA E DADOS DE SAÍDA DO PROGRAMA DE CÁLCULO

Com todos os dados de entrada definidos, ou pela especificação técnica, ou pelo engenheiro calculista, executa-se o programa de cálculo elétrico. Do programa se obtém os vários parâmetros de saída que definem o gerador projetado.

|                     |        | DA     | ADOS DE ENTRADA       |        |        |
|---------------------|--------|--------|-----------------------|--------|--------|
| Potência Nominal    | [kVA]  | 100000 | Tensão nominal        | [kV]   | 13.80  |
| Fator de potência   | [ - ]  | 0.850  | Rotação nominal       | [rpm]  | 257.14 |
| Momento inércia (J) | [T.m2] | 1050   | Rotação disparo       | [rpm]  | 495.00 |
| H const de inércia  | [s]    | 3.807  | Número de polos       | [ - ]  | 28     |
|                     |        | NÚ     | ICLEO DO ESTATOR      |        |        |
| Diâmetro interno    | [mm]   | 6000.0 | Diâmetro externo      | [mm]   | 6712.0 |
| Comprimento núcleo  | [mm]   | 1350.0 | Altura da cunha       | [ mm ] | 15.00  |
| Número dutos vent   | [ – ]  | 34     | Largura duto vent     | [mm]   | 5.00   |
| Altura Yoke         | [mm]   | 200.0  | Altura ranhura        | [mm]   | 141.0  |
| Largura da ranhura  | [mm]   | 20.5   | Número ranhuras       | [ – ]  | 336    |
| Tipo chapa silicio  | [W/kg] | 2.50   | Espessura chapa       | [ mm ] | 0.50   |
|                     |        | EN     | IROLAMENTO DO ESTATOR |        |        |
| Número de camadas   | [ – ]  | 2      | Espiras por barra     | [ — ]  | 1      |
| Circuitos paralelos | [ – ]  | 2      | Passo enrolamento     | [ — ]  | 10     |
| Número de fios      | [ – ]  | 48     | Largura fio           | [mm]   | 6.30   |
| Espessura fio       | [ mm ] | 2.00   | Raio fio              | [ mm ] | 0.65   |
| Isolação principal  | [mm]   | 2.80   | Isolação fio          | [ mm ] | 0.10   |
| Separador camada    | [ mm ] | 6.30   | Espessura cunha       | [ mm ] | 6.00   |
|                     |        | PC     | LOS                   |        |        |
| Entreferro          | [mm]   | 20.00  | Entreferro máximo     | [ mm ] | 30.00  |
| Largura sapata polo | [ mm ] | 490.00 | Larg. núcleo polo     | [ mm ] | 340.00 |

166

| Comprimento sapata   | [ mm ]  | 1320.00 | Comprimento núcleo     | [ mm ]  | 1350.00  |
|----------------------|---------|---------|------------------------|---------|----------|
| Altura sapata        | [mm]    | 50.00   | Altura núcleo          | [ mm ]  | 210.00   |
| Espess chapa polo    | [mm]    | 2.00    | Espess colar isol sup  | [ mm ]  | 6.00     |
| Num espiras normais  | [-]     | 26.00   | Num espiras refrig     | [-]     | 14.00    |
| Espess espira normal | L[mm]   | 4.00    | Espess espira refrig   | [mm]    | 4.00     |
| Larg espira normal   | [mm]    | 100.00  | Larg espira refriger   | [mm]    | 110.00   |
| Núm barras amortec   | [-]     | 5       | Diâm. barra amortec    | [mm]    | 18.00    |
| Passo amortecedor    | [mm]    | 56.00   | Seção segm amortec     | [mm2]   | 450.00   |
|                      |         |         | -ANEL MAGNÉTICO        |         |          |
| Diâm ext. coroa rot  | [mm]    | 5440.00 | Comprim coroa rotor    | [mm]    | 1500.00  |
| Alt Radial coroa rot | c[mm]   | 600.00  | Num segm coroa/volta   | [-]     | 7.00     |
|                      |         | DADOS   | PRINCIPAIS DE SAIDA    |         |          |
| Potência Nominal     | [kVA]   | 100000  | Tensão nominal         | [kV]    | 13.80    |
| Fator de potência    | [-]     | 0.850   | Rotação nominal        | [rom]   | 257.14   |
| Momento inércia (J)  | [T.m2]  | 1050    | Rotação disparo        | [man]   | 495.00   |
| H const de inércia   | [s]     | 3.807   | Número de polos        | [-]     | 2.8      |
|                      | [-]     |         |                        |         |          |
| Fator aproveitamento | o[-]    | 8.00    | Intens linear corrent  | [A/mm]  | 74.58    |
| Dens corrente barra  | [-]     | 3.561   | Capa de corrente       | [A2/mm3 | ] 265.58 |
| Relação D/L          | [-]     | 4.444   | q num.ranh.polo fase   | [-] 4   | + 0 / 1  |
| Fator enrolamento 11 | n [ — ] | 0.92503 | Fator enrolamento 3h   | [-]     | -0.46194 |
| Corrente nominal     | [A]     | 4183.7  | Corrente por barra     | [ mm ]  | 2091.8   |
| Veloc perif nominal  | [m/s]   | 80.8    | Veloc perif disparo    | [m/s]   | 155.5    |
| bps/Tps              | [-]     | 0.728   | Entref max/nom         | [-]     | 1.500    |
|                      |         |         | -NÚCLEO DO ESTATOR     |         |          |
| Diâmetro interno     | [mm]    | 6000.0  | Diâmetro externo       | [mm]    | 6712.0   |
| Comprimento núcleo   | [mm]    | 1350.0  | Altura da cunha        | [mm]    | 15.00    |
| Comp efetivo núcleo  | [mm]    | 1121.0  | Passo de ranhura       | [ mm ]  | 56.10    |
| Número seg volta     | [mm]    | 28.00   | Largura segmento       | [mm]    | 751.51   |
| Número dutos vent    | [-]     | 34      | Largura duto vent      | [mm]    | 5.00     |
| Altura Yoke          | [mm]    | 200.00  | Altura ranhura         | [mm]    | 141.00   |
| Largura da ranhura   | [mm]    | 20.50   | Número ranhuras        | [-]     | 336      |
| Tipo chapa silicio   | [W/kg]  | 2.50    | Espessura chapa        | [mm]    | 0.50     |
|                      |         |         | ENROLAMENTO DO ESTATOR |         |          |
| Número de camadas    | [-]     | 2       | Espiras por barra      | [-]     | 1        |
| Circuitos paralelos  | [-]     | 2       | Passo enrolamento      | [-]     | 10       |
| Número de fios       | [-]     | 48      | Largura fio            | [mm]    | 6.30     |
| Espessura fio        | [mm]    | 2.00    | Raio fio               | [mm]    | 0.65     |
| Isolação principal   | [mm]    | 2.80    | Isolação fio           | [mm]    | 0.10     |
| Separador camada     | [mm]    | 6.30    | Espessura cunha        | [mm]    | 6.00     |
| Seção do fio         | [mm2]   | 12.237  | Seção da barra/bobina  | a [mm2] | 587.39   |
| Larg barra isolada   | [mm]    | 19.52   | Altura barra isolada   | [mm]    | 61.95    |
| Comprimento barra    | [mm]    | 2330.00 | Compr total conexões   | [m]     | 137.00   |
| Kmax                 | [-]     | 1.55    | KN                     | []      | 1.19     |

| K fator CC/AC                                        | [-] 1.10                                  | 92                               | Resist 20oC por fase  | [ohm] 0. | .004165                       |
|------------------------------------------------------|-------------------------------------------|----------------------------------|-----------------------|----------|-------------------------------|
| Resist Tref p/ fase                                  | [ohm] 0.0050                              | 65                               | Temp referência Tref  | [oC]     | 75                            |
|                                                      |                                           | POLOS                            | DO ROTOR              |          |                               |
| Entreferro                                           | [mm] 20.                                  | 00                               | Entreferro máximo     | [mm]     | 30.00                         |
| Largura sapata polo                                  | [mm] 490.                                 | 00                               | Larg. núcleo polo     | [mm]     | 340.00                        |
| Comprimento sapata                                   | [mm] 1320.                                | 00                               | Comprimento núcleo    | [mm] 1   | 350.00                        |
| Altura sapata                                        | [mm] 50.                                  | 00                               | Altura núcleo         | [mm]     | 210.00                        |
| Espess chapa polo                                    | [mm] 2.                                   | 00                               | Espess colar isol sup | o[mm]    | 6.00                          |
| Tipo de espiras                                      | [-]                                       | 0                                | Passo polar           | [-]      | 673.20                        |
| Num espiras normais                                  | [-] 26.                                   | 00                               | Num espiras refrig    | [-]      | 14.00                         |
| Espess espira normal                                 | [mm] 4.                                   | 00                               | Espess espira refrig  | [mm]     | 4.00                          |
| Larg espira normal                                   | [mm] 100.                                 | 00                               | Larg espira refriger  | [mm]     | 110.00                        |
| Núm barras amortec                                   | [-]                                       | 5                                | Diâm. barra amortec   | [mm]     | 18.00                         |
| Passo amortecedor                                    | [mm] 56.                                  | 00                               | Seção segm amortec    | [mm2]    | 450.00                        |
| Dispersão polo vazio                                 | [-] 1.1                                   | 45                               | Dispersão polo carga  | [-]      | 1.272                         |
| Seção espira normal                                  | [mm2] 399.0                               | 00                               | Seção espira refrige  | [mm2] 4  | 139.000                       |
| Dens corr esp normal                                 | [A/mm2] 2.3                               | 67                               | Dens corr esp refrig  | [-]      | 2.151                         |
| Resistência 20 oC                                    | [ohm] 0.1795                              | 82                               | Resist Temp Refêrenc  | [oC] 0.  | 218391                        |
| Dist espiras refrig                                  | [mm] 45                                   | .4                               | Temp referência Tref  | [oC]     | 75                            |
|                                                      |                                           | ANEL                             | MAGNÉTICO             |          |                               |
| Diâm ext. coroa rot                                  | [mm] 5440.                                | 00                               | Comprim coroa rotor   | [mm] 1   | 500.00                        |
| Alt Radial coroa rot                                 | [mm] 600.                                 | 00                               | Num segm coroa/volta  | [-]      | 7.00                          |
| CIRCUI                                               | TO MAGNÉTICO<br>Indução [                 | - INDUÇÃ<br>T]                   | O E FMM A VAZIO       | <br>FMN  | <br>1 [A.E]                   |
| Entreferro                                           | 0.96                                      | 78                               |                       | 33       | 3047.56                       |
| Dente mínimo                                         | 1.81                                      | 03                               |                       |          |                               |
| Dente médio                                          | 1.74                                      | 56                               |                       | 2        | 2250.75                       |
| Dente máximo                                         | 1.68                                      | 54                               |                       |          |                               |
| Coroa                                                | 1.31                                      | 66                               |                       |          | 164.39                        |
| Entreferro polo/anel                                 |                                           |                                  |                       |          | 717.40                        |
| Polo                                                 | 1.50                                      | 25                               |                       | 1        | 207.60                        |
| TOTAL                                                |                                           |                                  |                       | 37       | 7387.70                       |
| Corrente de excitaçã                                 | o a vazio                                 |                                  | [A]                   |          | 467.35                        |
| Corrente de excitaçã                                 | o do entrefer                             | ro                               | [A]                   |          | 419.37                        |
| Corrente de excitaçã                                 | o em curto-ci                             | rcuito                           | [A]                   |          | 498.18                        |
|                                                      |                                           |                                  |                       |          |                               |
| CIRCUI                                               | TO MAGNÉTICO                              | - INDUÇÃ                         | O E FMM EM CARGA      |          |                               |
|                                                      | Trducão [                                 | Tl                               |                       | F'MN     | 4 [A.E]                       |
| Entreferro                                           | Indução [                                 | -                                |                       |          |                               |
| Encretetto                                           | 0.99                                      | 70                               |                       | 34       | 1044.13                       |
| Dente mínimo                                         | 0.99<br>1.86                              | 970<br>549                       |                       | 34       | 1044.13                       |
| Dente mínimo<br>Dente médio                          | 1.79<br>1.79                              | 970<br>949<br>983                |                       | 34       | 4044.13<br>2991.88            |
| Dente mínimo<br>Dente médio<br>Dente máximo          | 11ddq30 (<br>0.99<br>1.86<br>1.79<br>1.73 | 970<br>949<br>983<br>963         |                       | 34       | 1044.13<br>2991.88            |
| Dente mínimo<br>Dente médio<br>Dente máximo<br>Coroa | 1.86<br>1.79<br>1.35                      | 2<br>70<br>849<br>83<br>63<br>63 |                       | 34       | 1044.13<br>2991.88<br>2203.57 |

| Entref | ferro polo  | /anel    |         |         |                |         |              |          |        |         | 821      | .43            |
|--------|-------------|----------|---------|---------|----------------|---------|--------------|----------|--------|---------|----------|----------------|
| Polo   |             |          |         | 1.7204  |                |         |              |          |        |         | 3093.    | .71            |
| Acrésc | cimo (tol)  |          |         |         |                |         |              |          |        |         | 2905.    | .78            |
| TOTAL  |             |          |         |         |                |         |              |          |        |         | 75550    | .38            |
| Corren | nte de exc  | itação   | em caro | ja [A]  |                |         |              |          |        |         | 944.     | .38            |
|        |             |          |         |         |                |         |              |          |        |         |          |                |
|        |             |          |         | REA     | ATÂNCIAS       | 5 [pu]- |              |          |        |         |          |                |
|        | EIXO        | DIRETO   |         |         |                |         |              |          | EIXO   | QUADRA  | IURA     |                |
| NÃO SA | TURADO      | SATU     | RADO    |         |                | N       | IÃO S        | ATUF     | RADO   | SATU    | RADO     |                |
| Xdu    | = 1.1879    | Xds      | = 1.0   | 0660    |                | Х       | lqu          | = C      | .8091  | Xqs     | = 0.72   | 260            |
| X'du   | = 0.2855    | X'ds     | = 0.2   | 2717    |                |         |              |          |        |         |          |                |
| X"du   | = 0.2229    | X"ds     | = 0.1   | 894     |                | Х       | ("qu         | = C      | .2406  | X"qs    | = 0.22   | 262            |
|        |             |          |         |         |                | Ε       | ispe         | rsão     | )      |         |          |                |
| Х2     | = 0.2318    | X2       | = 0.2   | 2078    |                | Х       | В            | = C      | .1223  |         |          |                |
| X0     | = 0.1022    | ХO       | = 0.0   | 868     |                | Х       | ST           | = C      | .1268  |         |          |                |
|        |             |          |         |         |                | Х       | SX           | = 0      | .1513  |         |          |                |
|        |             |          |         | CONST   | ANTES DE       | Z TEMPC | ) [9]        |          |        |         |          |                |
| T'do   | = 7.45      | Tld      | = 1.8   | 3993    |                | Т       | 'llao        | = (      | .2377  |         |          |                |
| T"do   | = 0.07      | т"d      | = 0 0   | 1583    |                | -<br>т  | ""a          | = 0      | 0707   |         |          |                |
| 1 00   | 0.07        | 1 0      | 0.0     |         |                | -       | 4            | ,        | •••••  |         |          |                |
|        |             |          |         | PERDAS  | S E RENI       | DIMENTC | )            | <br>S [} |        |         |          |                |
| Perdas | s Ferro     |          |         |         |                | =       |              | 227.     | 76     |         |          |                |
| Perdas | s I2R esta  | tor a    | 75 oC   |         |                | =       |              | 265.     | 95     |         |          |                |
| Perdas | Adionais    |          |         |         |                | =       |              | 170.     | 26     |         |          |                |
| Perdas | s I2R roto  | ra 75    | oC      |         |                | =       |              | 198.     | 26     |         |          |                |
| Perdas | s Excitaçã  | 0        |         |         |                | =       |              | 19.      | 83     |         |          |                |
| Perdas | s Ventilaç  | ão       |         |         |                | =       |              | 327.     | 26     |         |          |                |
| Perdas | Mancal      |          |         |         |                | =       |              | 220.     | 00     |         |          |                |
| Perdas | TOTAL       |          |         |         |                | =       | 1            | 429.     | 32     |         |          |                |
| RENDIM | 1ENTO       |          |         |         |                | =       |              | 98.3     | 846 %  |         |          |                |
|        |             |          |         | -RENDIN | MENTO PO       | ONDERAD | 0            |          |        |         |          |                |
| caro   | ga If       | Wi       | Pfe     | Pcuest  | Padic          | Pcurot  | : I          | exc      | Pvent  | Pmancal | Total    | Rend           |
| [pı    | 1] [A]      | [-]      | [kW]    | [kW]    | [kW]           | [kW]    | I            | kW]      | [kW]   | [kW]    | [kW]     | [%]            |
| 1.0    | 0 939.00    | 10.00    | 227.76  | 265.95  | 170.26         | 196.05  | 19           | .60      | 327.26 | 220.00  | 1426.88  | 98.35          |
| 0.9    | 90 882.40   | 18.00    | 227.76  | 215.42  | 137.91         | 173.53  | 8 17         | .35      | 327.26 | 220.00  | 1319.24  | 98.30          |
| 0.8    | 826.90      | 22.00    | 227.76  | 170.21  | 108.97         | 152.82  | : 15         | .28      | 327.26 | 220.00  | 11222.29 | 98.23          |
| 0.7    | 10 //4.40   | 20.00    | 221.76  | 130.31  | 83.43          | 117 77  | ) 13         | .45      | 327.26 | 220.00  | 1001 54  | 98.13          |
| 0.0    | 50 674 60   | 20.00    | 221.10  | 95.14   | 01.29<br>10 57 | 102 00  | . 11<br>2 17 | / /      | 327.26 | 220.00  | 1U01.54  | 97.96<br>17 71 |
| Rend   | dimento méd | io nonde | rado )  | Fórmula | ±∠.J/<br>num 1 | 102.00  | , <u> </u>   | . 23     | 521.20 | 220.00  | JJ1.24   | 98 165         |
|        |             | - ponue. | /       |         |                |         |              |          |        |         |          |                |

## 5.2.5 COMPARATIVO DOS PRINCIPAIS DADOS DOS 3 GERADORES DE 100 MVA

Na Tabela 5-20 abaixo pode-se verificar os principais parâmetros de 1 gerador com projeto original orientado para rendimento, outro com projeto mais atualizado e dimensionado para otimização de rendimento e na coluna ao lado o gerador dimensionado para redução de custos.

| Dados nominais               |                 | Original    | Rendimen<br>to | Custo       |
|------------------------------|-----------------|-------------|----------------|-------------|
| Potência nominal             | kVA             | 100000      | 100000         | 100000      |
| Tensão nominal               | $\vee$          | 13800       | 13800          | 13800       |
| Frequência nominal           | Hz              | 60          | 60             | 60          |
| Fator de potência            | -               | 0,85        | 0,85           | 0,85        |
| Rotação nominal              | rpm             | 257,14      | 257,14         | 257,14      |
| Rotação de disparo           | rpm             | 495         | 495            | 495         |
| Momento de Inércia (J)       | tm <sup>2</sup> | 1050        | 1050           | 1050        |
|                              |                 |             |                |             |
| Núcleo do estator            |                 | Original    | Rendimen<br>to | Custo       |
| Diâmetro interno             | mm              | 5200        | 5400           | 6000        |
| Diâmetro externo             | mm              | 5900        | 6100           | 6712        |
| Comprimento bruto axial      | mm              | 2500        | 2200           | 1350        |
| Largura da ranhura           | mm              | 23,9        | 23,9           | 20,5        |
| Profundidade da ranhura      | mm              | 159,0       | 159,0          | 141,0       |
| Altura radial da coroa       | mm              | 176,0       | 176,0          | 200,0       |
| Tipo de chapa siliciosa      | -               | M230-50A    | M230-50A       | M250-50A    |
| Número de ranhuras           | -               | 252         | 252            | 336         |
|                              |                 |             |                |             |
| Barras Roebel                |                 |             |                |             |
| Número de fios da barra      | -               | 62          | 62             | 48          |
| Dimensão dos fios            | mm              | 8,00 x 1,80 | 8,00 x 1,80    | 6,30 x 2,00 |
| Espessura isolação principal | mm              | 2,8         | 2,8            | 2,8         |
|                              |                 |             |                |             |
| Entreferro nominal           | mm              | 18          | 17             | 20          |

| ۲abela 5-20 - | Comparativo | entre | as 3 | soluções |  |
|---------------|-------------|-------|------|----------|--|
|---------------|-------------|-------|------|----------|--|

| Polos                            |                                 | Original | Rendimen<br>to | Custo   |
|----------------------------------|---------------------------------|----------|----------------|---------|
| Largura da sapata                | mm                              | 400      | 440            | 490     |
| Altura da sapata                 | mm                              | 42       | 42             | 50      |
| Comprimento da sapata polar      | mm                              | 2460     | 2170           | 1320    |
| Largura do núcleo do polo        | mm                              | 290      | 300            | 340     |
| Altura do núcleo do polo         | mm                              | 189      | 189            | 210     |
| Comprimento do núcleo polar      | mm                              | 2500     | 2200           | 1350    |
| Espessura da chapa do polo       | mm                              | 2,0      | 2,0            | 2,0     |
| Número de espiras de cobre       | mm                              | 37       | 37             | 26+14   |
| Espessura do cobre da espira     | mm                              | 4,0      | 4,0            | 4,0     |
| Largura espira normal / aleta    | mm                              | 110/110  | 100/100        | 100/110 |
|                                  |                                 |          |                |         |
| Parâmetros de controle           |                                 | Original | Rendimento     | Custo   |
| Fator de aproveitamento (C)      | kVA/(m³rpm)                     | 5,75     | 6,06           | 8,0     |
| Densidade de corrente<br>estator | A/mm <sup>2</sup>               | 2,404    | 2,404          | 3,561   |
| Intensidade linear corrente      | A/mm                            | 64,54    | 62,15          | 74,58   |
| Capa de corrente                 | A <sup>2</sup> /mm <sup>3</sup> | 155,12   | 149,37         | 265,58  |
| Velocidade periférica nominal    | m/s                             | 70,0     | 72,7           | 80,8    |
| Velocidade periférica disparo    | m/s                             | 134,8    | 140,0          | 155,5   |
| Constante de inércia             | S                               | 3,807    | 3,807          | 3,807   |
|                                  |                                 |          |                |         |
| INDUÇÕES                         |                                 | Original | Rendimento     | Custo   |
| Entreferro                       | Т                               | 0,8343   | 0,8659         | 0,9678  |
| Dente @ diâmetro interno         | Т                               | 1,4756   | 1,5786         | 1,8103  |
| Coroa                            | Т                               | 0,9650   | 1,1794         | 1,3166  |
| Polo em vazio                    | Т                               | 1,2047   | 1,3216         | 1,5025  |
| Polo em carga                    | Т                               | 1,3882   | 1,4869         | 1,7204  |
| Índice de saturação              | -                               | 1,04     | 1,06           | 1,11    |
|                                  |                                 |          |                |         |
| REATÂNCIAS                       |                                 | Original | Rendimento     | Custo   |
|                                  |                                 |          |                |         |

| RCC                       |         | pu                | 0,8645   | 0,8921     | 0,9381  |
|---------------------------|---------|-------------------|----------|------------|---------|
| Xdu                       |         | pu                | 1,2006   | 1,1844     | 1,1879  |
| X'du                      |         | pu                | 0,2892   | 0,2611     | 0,2855  |
| X"ds                      |         | pu                | 0,2125   | 0,1893     | 0,1894  |
|                           |         |                   |          |            |         |
| ELEVAÇÕES<br>TEMPERATURAS | DE      |                   | Original | Rendimento | Custo   |
| Enrolamento do estato     | or      | К                 | 61,1     | 57,5       | 50,2    |
| Núcleo do estator         |         | К                 | 44,7     | 44,4       | 29,6    |
| Enrolamento do rotor      |         | К                 | 77,7     | 77,7       | 59,1    |
|                           |         |                   |          |            |         |
| Vazão de ar               |         | m <sup>3</sup> /s | 30,0     | 30,0       | 65,0    |
| Total de perdas           |         | kW                | 1069,04  | 1062,51    | 1429,32 |
| Rendimento @ 100 %        | carga   | %                 | 98,758   | 98,765     | 98,346  |
| Rendimento<br>ponderado   | médio   | %                 | 98,604   | 98,601     | 98,165  |
| Peso de chapa siliciosa   | a       | t                 | 85       | 74         | 52      |
| Peso cobre das barras     | estator | t                 | 14       | 13         | 8       |
| Peso cobre do rotor       |         | t                 | 27       | 22         | 17      |
| Peso do gerador           |         | t                 | 520      | 480        | 390     |

O gerador dimensionado para custos, tem o seu volume bem reduzido e a maioria dos parâmetros mais importantes mais próximos a fronteira do limite superior, atendendo à especificação técnica quanto aos parâmetros especificados.

# 5.3 COMPARATIVO DOS PRINCIPAIS DADOS DAS SIMULAÇÕES DOS GERADORES

Para se ter uma melhor visão da comparação entre os geradores calculados para otimização de rendimento e para otimização de custos, lista-se abaixo na Tabela 5-21 os principais parâmetros que são impactados por estes cálculos. Para cada parâmetro listado, preenche-se a tabela com os valores para os geradores de 300 e 100 MVA, quando otimizado para rendimento e para custos.

Tabela 5-21 - Comparativo dos principais dados das simulações dos geradores

| Descrição | Unidade | Simulação num. 1 |       | Simulação num. 2 |       |
|-----------|---------|------------------|-------|------------------|-------|
|           |         | Rendimento       | Custo | Rendimento       | Custo |
|           |         |                  |       |                  |       |

| Potência                      | MVA                             |           | 300      | 1        | 00       |
|-------------------------------|---------------------------------|-----------|----------|----------|----------|
| Diâmetro Interno do estator   | mm                              | 12000     | 13000    | 5400     | 6000     |
| Comprimento do núcleo         | mm                              | 2350      | 1600     | 2200     | 1350     |
| Tipo de chapa siliciosa       | - N                             | /1230-50A | M250-50A | M230-50A | M250-50A |
| Número de ranhuras            | -                               | 504       | 612      | 252      | 336      |
| Fator aproveitamento (C)      | kVA/m³rpm                       | 7,39      | 9,25     | 6,06     | 8,0      |
| Densidade corrente estator    | A/mm <sup>2</sup>               | 2,946     | 3,815    | 2,404    | 3,561    |
| Intensidade linear corrente   | A/mm                            | 72,36     | 81,11    | 62,15    | 74,58    |
| Capa de corrente              | A <sup>2</sup> /mm <sup>3</sup> | 213,2     | 309,42   | 149,37   | 265,58   |
| Velocidade periférica nominal | m/s                             | 75,4      | 81,7     | 72,7     | 80,8     |
| Velocidade periférica disparo | m/s                             | 144,5     | 156,5    | 140,0    | 155,5    |
| Induções                      |                                 |           |          |          |          |
| Entreferro                    | Т                               | 0,9185    | 1,0074   | 0,8659   | 0,9678   |
| Dente                         | Т                               | 1,6898    | 1,8598   | 1,576    | 1,8103   |
| Coroa                         | Т                               | 1,2189    | 1,3869   | 1,1794   | 1,3166   |
| Polos em carga                | Т                               | 1,6751    | 1,7700   | 1,4869   | 1,7204   |
| Indice de saturação           | -                               | 1,09      | 1,14     | 1,06     | 1,11     |
| Rendimento @ 100 % carga      | %                               | 98,971    | 98,583   | 98,765   | 98,346   |
| Rend. médio ponderado         | %                               | 98,966    | 98,578   | 98,601   | 98,165   |
| Peso chapa aço-silício        | t                               | 176       | 131      | 74       | 52       |
| Peso cobre estator            | t                               | 28        | 20       | 13       | 8        |
| Peso cobre rotor              | t                               | 56        | 40       | 22       | 17       |
| Peso do gerador               | t                               | 1300      | 1120     | 480      | 390      |
| Peso do gerador               | %                               | 100       | 86,1     | 100      | 81,2     |

É notório que a máquina dimensionada para custos tem a maioria dos parâmetros muito próximos aos seus limites, por exemplo, nota-se que a densidade de corrente da barra e a intensidade linear de corrente estão dentro dos limites sugeridos, porém a capa de corrente ultrapassa o limite superior, mas pelos cálculos detalhados as temperaturas estão sob controle e dentro das garantias. O Índice de saturação também se aproxima do seu limite superior sugerido, e mais uma vez através de cálculos mais detalhados nota-se que a máquina está bem dimensionada. Estes exemplos mostram que os parâmetros com seus limites sugeridos, quando bem controlados e bem estudados podem ser ultrapassados, mas o que não pode acontecer é que todos os parâmetros estejam ultrapassando as fronteiras dos limites.

O gerador dimensionado para custos, tem o seu volume bem reduzido e a maioria dos parâmetros mais importantes mais próximos a fronteira do limite superior, atendendo à especificação técnica quanto aos parâmetros especificados.

Para um investidor com visão de curto prazo, a escolha mais natural seria investir nos geradores otimizados para menores custos. Como normalmente a concessão de uma usina é de 30 anos, o investidor deveria ter a visão de longo prazo. Para auxiliar a tomada de decisão apresenta-se no próximo item um estudo simplificado de custo, ganhos de energia e retorno do investimento.

## 5.3.1 GANHOS DE ENERGIA E RETORNO DE INVESTIMENTO

Uma vez que se tem apresentado as diferenças decorrentes das orientações de projeto, seja para rendimento ou custo, parece edificante apresentar os ganhos energéticos proporcionados por cada solução. Com essa finalidade, para cada carga parcial, calcular-se-ão os ganhos de perdas entre as alternativas de alto rendimento (que aqui será denominado de Alt1), e a alternativa de baixo custo (denominada como Alt2).

Prevendo algumas paradas durante o ano, e sendo conservativo pode-se adotar o ano como tendo 8000 h de operação (sendo que o ano completo tem 8760 h = 24 h x 365 dias/por ano), depois calcula-se o número de horas que o gerador opera a cada carga da ponderação, e multiplicando pelo ganho de perdas em cada ponto, tem-se o ganho de energia anual. Estes cálculos estão resumidos na Tabela 5-22 abaixo.

| Gerador de 300 MVA |                                          |                     |                     |                            |                                   |                              |  |
|--------------------|------------------------------------------|---------------------|---------------------|----------------------------|-----------------------------------|------------------------------|--|
| Potência<br>[pu]   | Fator de<br>ponderação<br>A <sub>k</sub> | Perdas<br>Alt1 [kW] | Perdas<br>Alt2 [kW] | Ganho de<br>perdas<br>[kW] | N° hs<br>ponderado<br>por ano [h] | Ganho de<br>energia<br>[MWh] |  |
| 1,00               | 0,56                                     | 2807,00             | 3849,78             | 1042,78                    | 4480                              | 4671,65                      |  |
| 0,96               | 0,07                                     | 2699,27             | 3704,47             | 1005,20                    | 560                               | 562,91                       |  |
| 0,90               | 0,32                                     | 2546,45             | 3496,51             | 950,06                     | 2560                              | 2432,15                      |  |
| 0,80               | 0,04                                     | 2313,65             | 3177,67             | 864,02                     | 320                               | 276,49                       |  |
| 0,70               | 0,01                                     | 2105,26             | 2893,32             | 788,06                     | 80                                | 63,04                        |  |
|                    |                                          | Soma                |                     |                            | 8000                              | 8006,25                      |  |

Tabela 5-22 – Ganho de energia anual máquina de 300 MVA

## O mesmo estudo foi feito para o gerador de 100 MVA, cujos valores estão resumidos na Tabela 5-23 abaixo.

Tabela 5-23 – Ganho de energia anual máquina de 100 MVA

| Gerador de 100 MVA |                                          |                     |                     |                            |                                   |                              |  |
|--------------------|------------------------------------------|---------------------|---------------------|----------------------------|-----------------------------------|------------------------------|--|
| Potência<br>[pu]   | Fator de<br>ponderação<br>A <sub>k</sub> | Perdas<br>Alt1 [kW] | Perdas<br>Alt2 [kW] | Ganho de<br>perdas<br>[kW] | N° Hs<br>ponderado<br>por ano [h] | Ganho de<br>energia<br>[MWh] |  |
| 1,00               | 0,10                                     | 1062,50             | 1426,88             | 364,38                     | 800                               | 291,50                       |  |
| 0,9                | 0,18                                     | 990,47              | 1319,24             | 328,77                     | 1440                              | 473,43                       |  |
| 0,80               | 0,22                                     | 925,50              | 1222,29             | 296,79                     | 1760                              | 522,35                       |  |
| 0,70               | 0,20                                     | 867,43              | 1136,66             | 269,23                     | 1600                              | 430,77                       |  |
| 0,60               | 0,20                                     | 816,08              | 1061,54             | 245,46                     | 1600                              | 392,74                       |  |
| 0,50               | 0,10                                     | 771,60              | 997,24              | 225,64                     | 800                               | 180,51                       |  |
|                    |                                          | Soma                |                     |                            | 8000                              | 2291,30                      |  |

Com o ganho de energia já equacionado, lista-se na Tabela 5-24 abaixo o aumento de massa do gerador dimensionado para otimização do rendimento.

| Gerador | Massa gerador Alt1<br>[T] | Massa gerador Alt<br>2 [T] | Aumento da massa<br>do gerador [T] |
|---------|---------------------------|----------------------------|------------------------------------|
| 300 MVA | 1300                      | 1120                       | 180                                |
| 100 MVA | 480                       | 390                        | 90                                 |

Tabela 5-24 - Aumento em massa dos geradores

O próximo desafio consiste em pesquisar na internet e obter uma média para o preço de venda de energia e a mais difícil é obter o preço médio de venda dos geradores em função do seu peso.

Consultando o site da ONS [50] e considerando o período de 06/09/2018 até 01/12/2022, o preço médio da energia é de R\$ 200,00 / MWh.

Pelo site da ANEEL [51] o preço médio da energia hidráulica fica em torno de R\$ 206,03 MWh. Portanto para o estudo deste trabalho pode-se considerar um preço de R\$ 200,00/MWh.

Para estimar o preço de venda de um gerador de grande porte a tarefa é mais difícil, pois não se encontra referências na Internet. A solução foi consultar um engenheiro de vendas sênior que trabalhou em uma grande fabricante de equipamentos para usinas hidroelétricas, e também basear na minha experiência de anos trabalhando com projeto e fabricação de geradores. Para geradores de 1300 t o preço estimativo é de R\$ 80/kg e para gerador de 500 t o preço estimativo é de R\$ 110/kg.

Com o aumento de preço devido ao gerador com maior eficiência e ganho em energia produzida por ter menores perdas, pode se estimar o tempo necessário para fazer o balanço entre pagamento e recebimento, ou seja, aumento do preço versus aumento de produção de energia. Os resumos destes cálculos estão listados na Tabela 5-25 abaixo.

| Gerador | Aumento de energia<br>anual [MW]<br>1 MWh = R\$ 200,00 |           | Aumento<br>R\$ 80,00/kg<br>R\$ 110/kg | Tempo para<br>equiparar<br>energia x preço |        |
|---------|--------------------------------------------------------|-----------|---------------------------------------|--------------------------------------------|--------|
|         | [MWh]                                                  | [R\$]     | Massa [t]                             | Preço [R\$]                                | [anos] |
| 300 MVA | 8006,25                                                | 1.601.250 | 180                                   | 14.400.000                                 | 9,0    |
| 100 MVA | 2291,30                                                | 458.260   | 90                                    | 9.900.000                                  | 21,6   |

Tabela 5-25 – Balanço aumento do preço versus produção de energia

Apesar do aumento do preço do gerador orientado a eficiência, este colabora mitigando em parte os impactos ambientais, e ao mesmo tempo pode produzir mais energia fazendo com que em alguns anos o aumento do preço seja compensado pela venda da energia.

# 6 CONCLUSÃO

Depois de apresentar uma breve introdução à engenharia do projeto de hidrogeradores, discorrer sobre as perdas que incidem no cálculo do rendimento dessas máquinas. Esses rudimentos foram aplicados para expor técnicas de otimização do cálculo eletromagnético dessas máquinas.

Deve se fazer notar que não há uma base teórica para a construção de fundamentos de otimização de projeto de geradores; por isso, nessa dissertação foram apresentadas as regras amealhadas ao longo dos mais de quarenta anos da experiencia do autor no seu cotidiano de projeto de hidrogeradores.

Para ilustrar esses procedimentos se propuseram dois casos de aplicação:

- <u>Caso A:</u> um gerador hipotético de 300 MVA e 120 rpm, com o intuito de expor os procedimentos de otimização;
- <u>Caso B:</u> um gerador de 100 MVA e 257,14 rpm que retrata uma máquina real, fabricada, projetada e comissionada com êxito.
  - <u>Caso B1</u>: sobre o projeto da máquina construída, elabora-se uma versão com o mesmo alto rendimento, porém, introduzindo atualizações tecnológicas com as que poderia se reduzir o custo original;
  - <u>Caso B2:</u> no lugar do projeto original, elabora-se um gerador totalmente orientado para redução de custo.

No Caso A, foram estudados dois casos, um orientado a obter elevado rendimento e o outro direcionado para uma solução competitiva de baixo custo.

Significando que em ambos os casos foram executadas duas simulações de dimensionamento de geradores com diferentes características, sendo que em cada simulação se promoveram estudos com projeto orientado a rendimento e projeto orientado a custos. No processo de concepção, explicou-se todos os passos para estimativa das dimensões, sendo as dimensões finais resultado de um exaustivo trabalho de cálculo elétrico, onde se procurou atingir além de todos os parâmetros especificados, o rendimento otimizado. Na simulação orientado a custos, todos os parâmetros especificados foram atendidos a menos dos rendimentos que foram preteridos em benefício de uma redução competitiva de custos.

No processo de dimensionamento dos geradores se demostra a aplicação de algumas regras de ouro para cada propósito específico.

Para obter geradores orientados à redução de custo:

- . Fator de aproveitamento mais elevado possível;
- O diâmetro interno do estator será o maior possível, limitado pela velocidade periférica (180 m/s) significando os limites de tensões mecânicas;
- A capa de corrente deverá ser a maior possível, limitado pela máxima elevação de temperatura especificada. Implica que a densidade de corrente direcionará a

elevação de temperatura e a intensidade linear de corrente praticada estará no seu limiar para a gestão das reatâncias especificadas.

• A máquina em geral apresentará um elevado índice de saturação, significando que as induções magnéticas serão dimensionadas em direção aos seus limites superiores.

Em consequência, densidade de corrente, junto com um alto valor de intensidade linear de corrente significará menor quantidade de cobre no estator e rotor.

Máquina mais saturada significa menor seção de núcleo magnético, implicando em diminuição direta do peso do gerador (menor quantidade de chapas siliciosas).

Com essas ações, para mesma constante de inércia, em geral obtém-se um rotor mais leve que terá consequência no projeto de um mancal de escora mais barato.

Já para obter geradores orientados a maiores rendimentos, pode-se apontar as seguintes diretrizes gerais demostradas nos casos estudados:

- O fator de aproveitamento será bastante generoso, significando um volume maior sob o entreferro;
- . Contudo, o diâmetro interno do estator praticado, deverá ser o menor possível, posto que as perdas de ventilação variam com a quarta potência desse diâmetro e, em máquinas relativamente rápidas as perdas de ventilação, devido ao atrito viscoso com o ar, adquirem um impacto significativo no cálculo do rendimento;
- O dimensionamento dos enrolamentos do estator e do rotor deverão buscar os menores valores possíveis de perdas por efeito Joule;
- O circuito magnético deverá se beneficiar da melhor qualidade de chapa de açosilício e o índice de saturação do gerador deverá estar o mais próximo possível da unidade.

Em complemento às regras de otimização de projeto de hidrogeradores, foi realizado um estudo comparando o ganho de energia com o incremento relativo de preço em cada um dos casos estudados. Pode-se concluir que apesar do impacto relativo no preço imposto pelo rendimento otimizado, observou-se que além de mitigar impactos ambientais, a maior produção de energia, a longo prazo, será compensada pela maior disponibilidade de venda de energia. Isso sem levar em consideração a redução dimensional nas obras civis da casa de máquina que, certamente, compensará o investimento adicional nos geradores.

# 6.1 RECOMENDAÇÕES PARA FUTUROS TRABALHOS

A mudança na matriz energética está levando à substituição da produção de energia convencional, gerada por máquinas síncronas rotativas, para parques de potência com baixa ou nenhuma inércia e sem recursos para a gestão de potência reativa. Esses novos parques são representados por fazendas eólicas e de energia solar consolidadas pela mídia como renováveis. Em comparação com esses parques de energias renováveis, as máquinas síncronas, principalmente as de polos salientes, oferecem uma elevada

constante de inércia, associada a uma inigualável flexibilidade na gestão de reativos e contribuindo para melhorar a capacidade de curto-circuito do sistema de transmissão. Fica como sugestão acrescentar um estudo similar a este, mas com a seguinte denominação: "PROJETO DE HIDROGERADORES ORIENTADO A INÉRCIA".

Normalmente gerador com alta eficiência pode ser dimensionado com temperaturas mais baixas quando comparado a um gerador normal. Pela teoria de Arrhenius gerador operando com temperatura mais baixa tem uma vida útil mais longa, e adicionando o fato que máquinas mais frias tem a tendência de ter menores custos de manutenção. Este ganho poderia ser quantificado e adicionado à análise anterior.

# 7 REFERÊNCIAS BIBLIOGRÁFICAS

- [1] E. Bortoni, R. T. Siniscalchi, S. Vaschetto, M. A. Darmani e A. Cavagnino, "Efficiency Mapping and Weighted Average Efficiency for Large Hydrogenerators," *IEEE Open Journal Industry Applications,* January 2021.
- [2] E. C. Bortoni, *Efficiency Map and Weighted Average Efficiency for synchronous machines for Hydropower Plants,* Itajubá, MG, 2019.
- [3] J. J. Rocha E, PRINCÍPIOS DE DIMENSIONAMENTO ELETROMAGNÉTICO E TÉRMICO DE UM GERADOR SÍNCRONO DE POLOS SALIENTES, 2018.
- [4] KarlAstrom, Productivity Improvements in Assembly Vertical synchronous generators stator core and rotor rim, UPPSALA UNIVERSITET, 2014.
- [5] DEDINI, "DEDINI INDÚDTRIAS DE BASE, PIRACICABA," 2010. [Online]. Available: https://www.dedini.com.br/index.php/setores-demercado/infraestrutura-e-energia/hidrogeracao. [Acesso em MAIO 2023].
- [6] W. OLIVEIRA, M. Uemori, J. J. R. ECHEVERRIA e C. DIAS, Barras Roebel versus bobinas multiplas espiras, Florianópolis, SC: XXI SNPTEE -Seminário Nacional de Produção e Transmissão de Energia Elétrica, 2011.
- [7] J. J. R. Echeverria, *LIMITACIONES CONSTRUCTIVAS DE DEVANADOS ESTATÓRICOS Y LA OPCIÓN ENTRE BARRAS TIPO ROEBEL O BOBINAS DE MULTIPLAS ESPIRAS,* FOZ DO IGUAÇU, PR, 2001.
- [8] BRASIL ENERGIA, "ENERGIA HOJE," 18 JULHO 2019. [Online]. Available: https://energiahoje.editorabrasilenergia.com.br/belo-monte-operaem-potencia-maxima/.
- [9] "https://www.google.com/search?q=hydro+generator+shaft&source=l mns&bih=625&biw=1366&hl=pt-BR&sa=X&ved=2ahUKEwj0qK3V6-\_8AhXxNbkGHbaSCkkQ\_AUoAHoECAEQAA#ip=1," [Online]. Available: https://www.google.com/search?q=hydro+generator+shaft&source=l mns&bih=625&biw=1366&hl=pt-BR&sa=X&ved=2ahUKEwj0qK3V6-\_8AhXxNbkGHbaSCkkQ\_AUoAHoECAEQAA#ip=1. [Acesso em MAIO 2023].
- [10] "UNIDADES GERADORAS," ITAIPU, [Online]. Available: https://www.itaipu.gov.br/energia/unidades-geradoras. [Acesso em MAIO 2023].
- [11] J. J. Rocha E., A. L. O. Torres, J. R. Da Silva, E. Von Zuben, M. Uemori e T. Hildinger, "Desafios no cálculo e no projeto de hidrogeradores de grande potência no século XX," XXV SNPTEE Seminário Nacional de Produção e Transmissão de Energia Elétrica, p. 12, 10 a 13 Novembro 2019.
- [12] IEC 60034-2-1, Rotating electrical machines Part 2-1: Standard methods for determining losses and efficiency from tests (excluding machines for traction vehicles), 2014.
- [13] IEC 60034-2-2, Rotating electrical machines Part 2-2: Specific methods for determining separate losses of large machines from tests -Supplement to IEC 60034-2-1, 2010.
- [14] IEC 60034-33, Rotating electrical machines Part 33: Synchronous hydrogenerators including motor-generator - Specific requirements, 2022.
- [15] REIVAX, "https://www.reivax.com/pt/solucoes/rtx-excitation-systemand-voltage-regulator/," [Online]. Available: https://www.reivax.com/pt/solucoes/rtx-excitation-system-andvoltage-regulator/. [Acesso em 09 junho 2023].
- [16] ADELCO, "https://www.adelco.com.br/pt\_br/transformadoresreatores/," [Online]. Available: https://www.adelco.com.br/pt\_br/transformadores-reatores/. [Acesso em 09 Junho 2023].
- [17] IEC 60034-2, Rotating electrical machines Part 2: Methods for determining losses and efficiency of rotating electrical machinery from tests (excluding machines for traction vehicles), 1996.
- [18] IEEE C50.12, IEEE Standard for Salient-Pole 50 Hz and 60 Hz Synchronous Generators and Generators/Motors for Hydraulic Turbine Application Rated 5 MVA and Above, 2005.
- [19] ISO 5801, FANS Performance testing using standardized airways, 2017.

- [20] G. Traxler-Samek, Analytical and Numerical Design Methods for the Electromechanical Calculation of Hidrogenerators, Nov 2014.
- [21] G. Traxler-Samek, T. Lugand e a. A. Schwery., "Additional losses in the damper winding of large hydrogenerators at open-circuit and load conditions," Vols. %1 de %2vol. 57, no. 1, p. pp. 154–160, January 2010.
- [22] G. Traxler-Samek, R. Zickermann e a. A. Schwery, "Cooling airflow, losses, and temperatures in large air-cooled synchronous machines.," vol. 57(1), pp. 172-180, 2010.
- [23] M. Uemori, P. Neubauer, O. Berchtold e M. Spiridon, PEEK-Nova tecnologia aplicada em revestimento para mancal de escora, resultados da aplicação em um gerador, Belo Horizonte, MG: XXV SNPTEE – Seminário Nacional de Produção e Transmissão de Energia Elétrica, 2019.
- [24] J. Rocha, W. Oliveira e M. Uemori, A especificação dos principais parâmetros e sua influência no custo dos geradores síncronos, Brasilia, DF: XXII SNPTEE – Seminário Nacional de Produção e Transmissão de Energia Elétrica, 2013.
- [25] E. C. Bortoni, R. T. Siniscalchi e J. A. Jardini, Determination of Hydrogenerator Efficiency Using Infrared Thermal Imaging Techniques,, Vols. %1 de %2vol. 26, no. 4, IEEE Trans on Energy Conversion, 2011, pp. pp. 1134-1139.
- [26] APERAM, AÇOS ELÉTRICOS DE GRÃO ORIENTADO E DE GRÃO NÃO ORIENTADO, TIMOTEO, MG, 2012.
- [27] Technical Brochure 813, WG A1.49, W. A. CIGRE, Magnetic Core dimensioning limits in Hydrogenerators, PARIS: CIGRE, Sep 2020.
- [28] J. ROCHA ECHEVERRIA e A. PENTEADO JUNIOR, *The influence of damper winding slot pitch upon losses and synchronizing torque,* vol. S.M. 100: proceedings, Zurich: International Conference on the Evolution and Modern Aspects of Synchronous Machines, 1991.
- [29] J. J. Rocha E., UMA ANÁLISE DOS EFEITOS DO ENROLAMENTO AMORTECEDOR SOBRE A FORÇA ELETROMOTRIZ DE GERADORES SÍNCRONOS DE PÓLOS SALIENTES, Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de Doutor em Engenharia., 1996.

- [30] J. Rocha Echeverria, A. Penteado Junior e M. K. I. Uemori, *The damper winding influence upon salient pole synchronous generator electromotive force,* IEEE International Electric Machines and Drives, 1997.
- [31] W. B. Esson, "Some points in dynamo and motor design," *The Journal of Institution of Electrical Engineers,* pp. 118-168, Issue 85 Vol. 19 1890.
- [32] E. Wilson, "The relative size, weight adn price of dynamo electric machines," *Journal of the Institution of Electrical Engineers*, pp. 174-178, Issue 127 Vol. 26 1897.
- [33] J. H. Walker, "Output coefficient of Syncrhonous machines A new concept," *Proc. IEE. Vol 115, No 12,* pp. 1801-1809, 1968 December .
- [34] A. K. T. Assis and J. P. M. C. Chaib, Ampère's Electrodynamics, Montreal, Canada: C. Rou Keys Inc, 2015.
- [35] J. D. Kraus e R. C. Keith, ELECTROMAGNETICS Second Edition, International Student Edition: McGraw-Hill - Kogakusha, Ltd., 1973.
- [36] L. W. Matsch e J. D. Morgan, ELECTROMAGNETIC AND ELECTROMECHANICAL MACHINES, New York: Harper & Row, Publishers, 1986.
- [37] J. F. Mora, *Máquinas Eléctricas,* Quinta edición ed., Madrid España:: McGraw-Hill - Interamericana de España, 2003.
- [38] K. Vogt, Elektrische Maschinen Berechnung rotierender elecktrischer Machinen, Berlin: BEB Verlag Technik , 1983.
- [39] Technical Brochure, WG A1.42, CIGRE, "Influence of Key Requirements to Optimize the Value of Hydro Generators," (to be published), Paris, 2019.
- [40] J. J. Rocha Echeverria, M. K. I. Uemori e A. d. A. Penteado, AUXILIO A PROJETO DE GERADORES SÍNCRONOS DE PÓLOS SALIENTES: UMA FERRAMENTA ANALÍTICA QUE PERMITE CONSIDERAR OS EFEITOS DO ENROLAMENTO AMORTECEDOR, 'BELÉM, PARÁ: XIV SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA, 1997.

- [41] J. J. Rocha Echeverria e M. K. I. Uemori, A INFLUÊNCIA DA 2a HARMÔNICA DE RANHURA SOBRE A FORMA DE ONDA DA TENSÃO EM GERADORES SÍNCRONOS DE PÓLOS SALIENTES, RECIFE, PERNAMBUCO: XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA, 2009.
- [42] IEC 60034-1, *ROTATING ELECTRICAL MACHINES Part 1: Rating and performance,* 2010.
- [43] F. J. Garcia, M. K. I. Uemori, J. J. R. Echeverria e E. C. Bortoni, *Design Requirements of Generators Applied to Low-Head Hydro Power Plants*, vol. 30 no 4, IEEE Trans on Energy Conversion, 2015, pp. 1630- 1638.
- [44] J. Rocha, E.C.Bortoni e M.Uemori, *Fundamentals of Tingley's Box" Na Expeditious Method to Construct the Winding Matrix of Standard and Unconventional Stator Winding Arrangement,* New Delhi: CIGRE SCA1 Colloquium, 2019.
- [45] J. J. Rocha, E. C. Bortoni e P. V. V. d. Silva, Construção de enrolamentos trifásicos equilibrados - Fundamentos do "Tingley's Box" - um método expedito, Rio de Janeiro, RJ: VIII ENAM - ENCONTRO NACIONAL DE MÁQUINAS ROTATIVAS, 2018.
- [46] W. Oliveira, M. Uemori, J. Rocha e R. Carlson, *Reduction of Unbalanced Magnetic Pull (UMP) due to equipotential connections among parallel circuits of the stator winding,* IEEE International Electrica Machines and Drives., 2009.
- [47] G. Traxler-Samek, T. Lugand e a. M. Uemori, *Vibrational forces in salient pole synchronous machines considering tooth ripple effects,* vol. 59(5), 2019, p. 2258–2266.
- [48] G. Traxler-Samek, T. Lugand e a. M. Uemori, *Parasitic Forces in Large Synchronous Machines Considering Tooth Ripple Effects,* Rome: XIX International Conference on Electrical Machines ICEM, 2010.
- [49] M. K. I. Uemori, P. R. D. Oda, J. R. Beffa e F. F. S. Sá, REABILITAÇÃO, MODERNIZAÇÃO E FUTURA REPOTENCIAÇÃO DAS MÁQUINAS DE ILHA SOLTEIRA 1, Curitiba, PR: XVIII SNPTEE - SEMINÁRIO DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA, 2005.
- [50] ONS, [Online]. Available: https://www.ons.org.br/Paginas/resultadosda-operacao/historico-da-operacao/cmo.aspx.

- [51] ANEEL, [Online]. Available: https://www.gov.br/aneel/ptbr/assuntos/noticias/2022/preco-medio-da-energia-hidraulica-e-tarifaatualizada-de-referencia-saoreajustados#:~:text=Com%20a%20atualiza%C3%A7%C3%A3o%2C%20 o%20PMEH,%24%2083%2C78%2FMWh.
- [52] M. Vaz Guedes, "O primeiro transporte trifásico de energia elétrica," *Electrotecnia*, p. 4, 2007.
- [53] G. Neidhöfer, "The evolution of the synchronous machine," *Engineering Science and Educational Journal*, pp. 239 248, October 1992.
- [54] M. K. e. L. Piotrovski, MÁQUINAS ELÉTRICAS, MOscú: Editorial MIR, 1975.
- [55] "I. USA, "ICA Industrial Control & Automation," Icain USA, [Online]. Available: https://icaincusa.com/a-power-story-the-history-of-theelectrical-generator/. [Acesso em 11 Janeiro 2023].," [Online].
- [56] "G. G. T. B. I. History, "Samuel Alfred Varley," [Online]. Available: https://www.gracesguide.co.uk/Samuel\_Alfred\_Varley. [Acesso em 31 01 2023].," [Online].
- [57] "Nature, "Samuel Alfred Varley, Nature 107,789–790 (1921).
   https://doi.org/10.1038/107789b0," 18 Augut 1921. [Online]. Available:
   https://www.nature.com/articles/107789b0. [Acesso em 31 Janeiro 2023].," [Online].
- [58] V. A. Moore, "Experienc with large hydro-generators ar Grand Coulee," IEEE Trans. on Power Apparatus and Systems, Vol. PAS-102, No 10, pp. 3265 - 3270, October 1983..
- [59] B. Dibner, "Michael Faraday a centennial," IEEE Spectrum, pp. 115 -119, August 1967..
- [60] B. Dibner, "Ten Founding Fathers of the Electical Science V. ANDRE MARIE AMPERE and the beginning of electrodynamics".*Electrical Engineering, pp. 724 725, August 1954.*
- [61] B. Dibner, "The founding fathers of the electrical science VIII. MICHAEL FARADAY and the discovery of the electromagnetic induction," Electrical Engineering, pp. 966 - 967, November 1954..

- [62] G. Guide, "Grace's guide to British Industrial History," Grace's Guide, [Online]. Available: https://www.gracesguide.co.uk/Floris\_Nollet. [Acesso em 11 janeiro 2023]..
- [63] E. -. E. d. P. Energética, "Matriz Energética e Elétrica," EPE Empresa de Pesquisa Energética , [Online]. Available: https://www.epe.gov.br/pt/abcdenergia/matriz-energetica-e-eletrica. [Acesso em 11 janeiro 2023].
- [64] F. J. Horn e P. S. Johrde, "Electrical and mechanical design features of the 615 MVA generators for Grand Coulee dam," IEEE Trans. Apparatus and Systems. Vol. PAS-94, No 6, pp. 2015 - 2022, November/December 1975..

# 8 APÊNDICE E ANEXO

### 8.1 APÊNDICE – CÁLCULO ELETROMAGNÉTICO

#CÁLCULO ELÉTRICO DE GERADOR # TIPO : SAV 1200/235/60 # Potencia : 300000 kVA # Tensão : 16000 V # Fator de potência : 0.90 # Frequencia : 60 Hz 120 rpm # Rotação : # Ligação do estator Estrela # Variação de tensão +5%/-10% # Normas Elétricas IEC 60034-33

# -----

| # DADOS NOMINAIS DO GEN | RADOR                                             |
|-------------------------|---------------------------------------------------|
| Sn = 300000             | # Potência aparente nominal [kVA]                 |
| Un = 16.0               | # Tensão nominal [kV]                             |
| fp = 0.90               | # Fator de potência [-]                           |
| fn = 60                 | # Frequência nominal [Hz]                         |
| nn = 120.               | # Rotação nominal [rpm]                           |
| nnd = 230.              | # Rotação de disparo [rpm]                        |
| mf = 3                  | # Número de fases [-]                             |
| J = 16000               | # Momento de inércia [T.m2]                       |
| TypeV = 1               | # Tipo de ventilação: axial=0 e radial=1          |
| Tref = 95               | # Temperatura de referência cálculo do rendimento |
| #                       |                                                   |

\_\_\_

# DADOS DE ENTRADA DO CÁLCULO

# DIMENSÃO DAS PARTES ATIVAS DO GERADOR

# DIMENSÃO DO NÚCLEO DO ESTATOR

| Da = 12724 | # Diâmetro externo do núcleo do estator [mm]                                |
|------------|-----------------------------------------------------------------------------|
| Di = 12000 | # Diâmetro interno do núcleo do estator [mm]                                |
| L = 2350   | # Comprimento do núcleo do estator [mm]                                     |
| bv = 5     | # Largura do duto de ventilação [mm]                                        |
| nv = 56    | # Número de dutos de ventilação [mm]                                        |
| W_KG = 2.3 | # Perda específica da cha siliciosa a 1.5 T e 50 Hz [W/kg] (2.3, 2.5 e 2.7) |
| ecs = 0.5  | # Espessura da chapa siliciosa [mm]                                         |
| Ns = 504   | # Número de ranhuras do estator [-]                                         |
| hk = 15    | # profundidade do rasgo para cunha do núcleo [mm]                           |
| fes = 0.95 | # Fator de empilhamento [-]                                                 |
| Nsg = 42.0 | # Número de segmentos por volta [-]                                         |
| bn = 26.6  | # Largura da ranhura                                                        |
| hn = 157.  | # Profundidade da ranhura                                                   |

| # DADOS DO ENROLAME   | NTO DO ESTATOR                                    |
|-----------------------|---------------------------------------------------|
| Zn = 2 #              | Número de lado de espiras por ranhura [-]         |
| a = 4 #               | Número de circuitos paralelos [-]                 |
| kw = 2 #              | Número de camadas [-]                             |
| y = 7 #               | Passo do enrolamento [-]                          |
| A = 2 #               | q = A+B/C                                         |
| в = 4                 |                                                   |
| C = 5                 |                                                   |
| # DADOS E DIMENSÕES   | DAS BARRAS/BOBINAS DO ENROLAMENTO DO ESTATOR      |
| m1 = 58 #             | Número de fios da barra [-]                       |
| b1 = 9.00 #           | Largura do fio nú [mm]                            |
| h1 = 1.8 #            | Espessura do fio nú [mm]                          |
| r1 = 0.65 #           | Raio do fio [mm]                                  |
| disfio = 0.105 #      | Espessura da isolação do fio unilateral [mm]      |
| sep = 0.30 #          | Separador entre colunas da barra Roebel [mm]      |
| cor_int = 0.30        | # Corona interna (2x0.15mm)                       |
| cap = 0.00 #          | Capinha de transposição Nomex normal 0.25 mm [mm] |
| dis = 3.24 #          | Espessura da isolação principal [mm]              |
| pcor = 0.15 #         | Espessura da pintura corona de ranhura [mm]       |
| rp = 0.50 #           | Espessura calço lateral RP [mm]                   |
| tol = 0.3 #           | Tolerância total na largura da barra isolada [mm] |
| rph = 0.2 #           | Espessura calço altura RP [mm]                    |
| tolh = 0.5 #          | Tolerância total na altura da barra [mm]          |
| scam = 8.3 #          | Espessura do separador de camada [mm]             |
| ccun = 2.5 #          | Contra cunha                                      |
| cfec = 6.0 #          | Cunha de fechamento da ranhura [mm]               |
| hnn = 1.0 #           | Distância cunha / diâmetro interno (vornut) [mm]  |
| mola = 1.30 #         | Mola ondulada [mm]                                |
| fol = 1.14            | Calcos radiais [mm]                               |
| Lk = 960 #            | Comprimento da cabeca da barra ambos lados [mm]   |
| Lc = 300 #            | Comprimento total das conexões e barramentos [mm] |
| Kstirn = 7.0 #        | Fator perdas nas extremidades do núcleo           |
| Kfec = 1.45 #         | Fator de acréscimo de perdas coroa                |
| Kfed = 1.64           | Fator de acréscimo de perdas dentes               |
|                       |                                                   |
| # DIMENSÃO DO ENTREFE | RRO                                               |
| ag = 21.0 #           | Entreferro no centro da sapata [mm]               |
| agm = 31.0 #          | Entreferro máximo [mm]                            |
| 5                     |                                                   |
| # DIMENSÕES DOS POLOS | E BOBINAS                                         |
| p2 = 60 #             | Número de polos                                   |
| bps = 450 #           | -<br>Largura da sapata do polo [mm]               |
| Lps = 2320 #          | Comprimento da sapata do polo [mm]                |
| hpo = 50 #            | Altura da sapata do polo [mm]                     |
| bpk = 300 #           | Largura do núcleo do polo [mm]                    |
| -<br>Lpk = 2350 #     | Comprimento do núcleo do polo [mm]                |
| hpk = 220             | Altura do núcleo do polo [mm]                     |
| -                     |                                                   |

| fep                                     | = 0.980                                           | # Fator de er                                           | npilhamento do polo [-]                                           |  |  |  |
|-----------------------------------------|---------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| ecp                                     | = 1.5                                             | # Espessura d                                           | da chapa do polo [mm]                                             |  |  |  |
| tesp<br>3=tri                           | = 1<br>.angular)                                  | # Tipo de esp                                           | piras (O=normal, 1= especial simétrica, 2=especial assimétrica,   |  |  |  |
| h3                                      | = 10.0                                            | # Espessura d                                           | da espira normal [mm]                                             |  |  |  |
| b3                                      | = 90                                              | # Largura da                                            | espira normal [mm]                                                |  |  |  |
| h4                                      | = 10.0                                            | # Espessura d                                           | da espira estendida [mm]                                          |  |  |  |
| b4                                      | = 100.                                            | # Largura da                                            | espira estendida [mm]                                             |  |  |  |
| wЗ                                      | = 18.0                                            | # Número de e                                           | espiras normais [-]                                               |  |  |  |
| w4                                      | = 0                                               | # Número de e                                           | espiras estendidas [-]                                            |  |  |  |
| wd                                      | = 0                                               | # Número de e                                           | espira morta [-]                                                  |  |  |  |
| eise                                    | = 0.4                                             | # Espessura i                                           | solação entre espiras (Nomex) [mm]                                |  |  |  |
| ecsu                                    | = 8.0                                             | # Espessura d                                           | do colar isolante superior [mm]                                   |  |  |  |
| dpl                                     | = 5.0                                             | # Distância e                                           | entre núcleo e cobre longitudinal [mm]                            |  |  |  |
| dpq                                     | = 5.0                                             | # Distância e                                           | entre núcleo e cobre cabeceiras [mm]                              |  |  |  |
| alfai                                   | = 0.677                                           | # Fator de co                                           | obertura do passo polar pelo fluxo [-]                            |  |  |  |
| agp                                     | = 0.5                                             | # Entreferro                                            | adicional polo/coroa [mm]                                         |  |  |  |
| Sf3                                     | = 924.                                            | # Para cobre                                            | do polo tipo 1,2,3                                                |  |  |  |
| Sf4                                     | = 0                                               |                                                         |                                                                   |  |  |  |
|                                         |                                                   |                                                         |                                                                   |  |  |  |
| # DAD                                   | OOS E DIMENSÕES                                   | DO ENROLAMEN                                            | O AMORTECEDOR                                                     |  |  |  |
| Dcd                                     | = 19.0                                            | # Diâmetro da                                           | a barra de amortecimento [mm]                                     |  |  |  |
| ncd                                     | = 5                                               | # Número de b                                           | parras de amortecimento [-]                                       |  |  |  |
| Tcd                                     | = 70.                                             | # Passso das                                            | barras de anortecimento [-]                                       |  |  |  |
| hdk                                     | = 3.0                                             | # Altura da a                                           | abertura da ranhura do amortecedor [mm]                           |  |  |  |
| bdk                                     | = 3.0                                             | # Largura da                                            | abertura da ranhura do amortecedor [mm]                           |  |  |  |
| Lcd                                     | = 2500                                            | # Comprimento                                           | o da barra de amortecimento [mm]                                  |  |  |  |
| qLd                                     | = 600                                             | # Seção das conexões de amortecimento entre polos [mm2] |                                                                   |  |  |  |
| # DAD                                   | OC E DIMENSÕES                                    | DO ANEL MACNI                                           | TTCO DO POTOR                                                     |  |  |  |
| T DAL                                   | - 11419                                           | # Diâmotro or                                           | storpe de apel magnétice [mm]                                     |  |  |  |
| Lor                                     | = 2500                                            | # Comprimento                                           | a do anel magnético [mm]                                          |  |  |  |
| bor                                     | - 470                                             | # Altura radi                                           | al de anel magnétice [mm]                                         |  |  |  |
| nec                                     | = 15                                              | # Número de s                                           | ar do aner magnetico (mm)                                         |  |  |  |
| 1130                                    | - 13                                              | # Numero de l                                           | egmentos por vorta da coroa [ ]                                   |  |  |  |
| # Out                                   | ros dados                                         |                                                         |                                                                   |  |  |  |
| Pvent                                   | il = 500                                          | # Perdas vent                                           | cilação kW (se =0, programa calcula, senão adota este valor dado) |  |  |  |
| Pmancal = 15. # Perdas nos mancais [kW] |                                                   |                                                         |                                                                   |  |  |  |
| Ppo =                                   | = 27.9 # Perdas nas sapatas polares em vazio [kW] |                                                         |                                                                   |  |  |  |
| Q = 1                                   | .00                                               | # Vazão de an                                           | c [m3/s]                                                          |  |  |  |
| #                                       |                                                   |                                                         |                                                                   |  |  |  |
| C =                                     | Sn/Di**2/L/nn*3                                   | L0**9 i                                                 | Esson [kVA/m3/rpm]                                                |  |  |  |
| DpL =                                   | = Di/L                                            | ŧ                                                       | Relação D/L                                                       |  |  |  |
| Fv =                                    | = nv*bv/L                                         | 4                                                       | ŧ Relação Dutos/L                                                 |  |  |  |
| Tn =                                    | = pi*Di/Ns                                        | ŧ                                                       | Passo de ranhuras [mm]                                            |  |  |  |
| In =                                    | = Sn/Un/(3**(1/2                                  | 2)) i                                                   | Corrente nominal [A]                                              |  |  |  |
| Ia =                                    | = In/a                                            | 4                                                       | Corrente por circuito [A]                                         |  |  |  |

```
AE = Zn*Ia/Tn
                                # Intensidade linear de corrente [A/mm]
S1 = h1*b1-(4-pi)*r1**2
                               # Área de 1 fio [mm2]
Scul = ml*Sl
                                # Área de cobre de uma barra [mm2]
Dcul = Ia/Scul
                                # Densidade de corrente da barra (A/mm2]
kapa = AE*Dcul
                                # Capa de corrente [A2/mm3]
Nc = Ns * Zn / 2 / mf / a
                                # Número de espiras em séries
H = 1/2*J/Sn*(2*pi*nn/60)**2
                               # Constante de inércia
D L = Di/L
                               # Relação D/l [-]
Vpn = pi*Di/1000*nn/60
                               # Velocidade periférica na nominal
Vpd = pi*Di/1000*nnd/60
                               # Velocidade periférica no disparo
Tpy = Ns/p2
# Núcleo do estator
Leff = (L-nv*bv)*fes
aseg = 2*pi/Nsg
bseg = Da*math.sin(aseg/2)
# Largura e profundidade da ranhura
bnb = 2*(b1+2*disfio)+sep+2*dis+2*pcor+rp+tol # Largura da ranhura montada
bnN = bnb + 0.3
                                               # Largura da ranhura estampada
hbl = ((m1/2+1)*(h1+2*disfio)+2*cap)+cor int+2*dis+2*pcor+rp+tolh # Altura da barra isolada [mm]
hnN = 2*hbl+scam+ccun+mola+fol+cfec+hnn
                                              # Profundidade da ranhura [mm]
hn1 = 2*hb1+scam-2*pcor-2*dis
                                               # Altura cobre-cobre das 2 barras
hn2 = dis+pcor+ccun+mola+fol+cfec+hnn
                                              # Altura cobre-diâmetro interno
bbi = bnb-rp
                                               # Largura máxima da barra isolada
                                               # Altura máxima da barra isolada
hbi = hb1-rp
hj = (Da-Di)/2-hn-hk
LB = L+Lk
Le = (Ns*Zn*LB*10**-3+Lc)/mf/a
Rcu20 = 0.01724  # Resistividade de cobre a 20 oC [ohm*mm2/m]
Ra20 = Rcu20*Le/(Scu1*a) # Resistência do enrolamento a 20 oC por fase
RaTref = (234.5+Tref)/(234.5+20)*Ra20 # Resistência do enrolamento a Tref oC por fase
# Polos
agm_ag = agm/ag
                                       # Relação entreferro máximo/nominal
Tps = pi*Di/p2
                                       # Passo polar [mm]
bp Tp = bps/Tps
                                       # Relação Tps/Bps [-]
hp3 = (w3+w4+wd)*h3+(w3+w4)*eise+ecsu+(w3+w4+wd)*h3*0.01 # Altura bobina + colar sup [mm]
hcp1 = 23
                                      # Distância cobre fim do polo [mm]
hpk1 = hp3+hcp1
                                       # Valor aproximado para hpk [mm]
dbb = pi*(Di-2*(ag+hpo+hp3))/p2-bpk-2*dpl-2*b4 # Distância bobina-bobina na ultima espira refrig
if tesp==0:
   Sf3 = h3*b3-1
   Sf4 = h4*b4-1
   L3m = ((Lpk+2*dpq+b3)+(bpk+2*dp1+b3))*2/1000*w3*p2 # Comprimento médio total espira normal [m]
   L4m = ((Lpk+2*dpq+b4)+(bpk+2*dp1+b4))*2/1000*w4*p2 # Comprimento médio total espira
refrigeração [m]
```

```
190
```

```
Rf20 = Rcu20*(L3m/Sf3+L4m/Sf4) # Resistência do rotor a 20 oC
else:
   T.3m
         = ((Lpk+2*dpq+(b3+b4))+(bpk+2*dpl+(b3+b4)))*2/1000*w3*p2 # Comprimento médio total espira
normal [m]
   Rf20 = Rcu20*(L3m/Sf3)
                                           # Resistência do rotor a 20 oC
RfTref = Rf20*(234.5+Tref)/(234.5+20)
                                          # Resistência do rotor a Tref oC
# CÁLCULO DOS FATORES E CONSTANTES
x1 = bps/Tps
x2 = ag/Tps
xa = agm/ag
# Cálculo de fb
fb = calcula fb (x1, x2, xa)
# Cálculo de Kd
Kd = calcula_Kd (x1,x2,xa) # Fator de reação pelo eixo D
# Calculo do Kq
Kq = calcula_Kq (x1,x2,xa) # Fator de reação pelo eixo Q
# Calculo do q e fw
q = Ns/mf/p2
qA = int(q)
aux = int((q-qA)*p2+0.00001)
MDC=math.gcd(aux,p2)
qB=int(aux/MDC)
qC = int(p2/MDC)
qF = qA * qC + qB
kdistr = (math.sin(pi/2/mf))/(qF*math.sin(pi/2/mf/qF))
kdistr3 = (math.sin(3*pi/2/mf))/(qF*math.sin(3*pi/2/mf/qF))
Beta = y/3/q
kcort = math.sin(Beta*pi/2)
kcort3 = math.sin(3*Beta*pi/2)
fw = kdistr*kcort
fw3 = kdistr3*kcort3
D = \alpha F
# Perdas adicionais no cobre do estator
alfa = (fn*2*b1*46/(50*bn*50))**0.5
Qsil = alfa/10*h1
FiQsi1 = (Qsi1**4)/3
FiQsi2 = (Qsi1**4)/3
Km1 = 1+(m1**2-m1)*FiQsi1
K1 = 1+7/3*((m1/2)**2)*FiQsi1
K2 = 1+1/3*(((m1/2)**2)-1)*FiQsi2
Km2 = (K1+K2)/2
Kn = (Km2-1) * L/(L+Lk) + 1
# Calculo da dispersão do polo Lambdap
Tp1 = pi*(Di-(2*ag+hpo))/p2
```

```
Tpm = pi*(Di-(2*ag+2*hpo+hp3))/p2
hp1 = hpo-(aqm-aq)
hp2 = (2*hpo+hp1)
Lps1 = hp1*Lps/(8*(Tp1-bps))
Lps2 = 2/10*hp2*math.log((1+pi/2*bps/(Tp1-bps)),10)
Lp1 = hp3*Lpk/(16*(Tpm-bpk))
Lp2 = hp3/10*math.log((1+pi/2*bpk/(Tpm-bpk)),10)
Lambdap = (Lps1+Lps2+Lp1+Lp2)
# -----
# CÁLCULO MAGNÉTICO DO GERADOR A VAZIO
fluxo = Un*1000/(3**(1/2)*(4*fb*fn*Nc*fw)) # Fluxo nominal pelo entreferro [Wb]
# Indução no entreferro a vazio
Tpa = pi*(Di-ag)/p2
                                          # Passo polar pelo diâmetro do entreferro [mm]
Lag = L-(L-Lps)/2
                                          # Comprimento passagem fluxo pelo entreferro [mm]
Se = alfai*Tpa*Lag*10**-6
                                          # Seção passagem do fluxo [m2]
Be = fluxo/Se
                                          # Indução no entreferro [T]
# Inducão no dente a vazio
Lef = (L-nv*bv)*fes
                                                   # Comprimento efetivo do núcleo
Sdmin = alfai*Ns/p2*Lef*(pi*Di/Ns-bn)*10**-6
                                                  # Seção dos dentes pelo diâmetro interno
Sdmed = alfai*Ns/p2*Lef*(pi*(Di+hn)/Ns-bn)*10**-6
                                                  # Seção dos dentes pelo diâmetro médio dos
dentes
Sdmax = alfai*Ns/p2*Lef*(pi*(Di+2*hn)/Ns-bn)*10**-6 # Seção dos dentes pelo diâmetro fundo da
ranhura
Bdmax = fluxo/Sdmin
                                                   # Inducão do dente min, med e max
Bdmed = fluxo/Sdmed
Bdmin = fluxo/Sdmax
# Indução na coroa (yoke) do núcleo
Sc = hj*Lef*10**-6
                                                  # Secão da coroa
By = fluxo/2/Sc
                                                   # Indução na coroa em vazio
# FMM no entreferro
# Fator de Carter Kc=Kc1*Kc2
Y1 = bn/ag*(1/(5+bn/ag))
Y2 = bv/ag*(1/(5+bv/ag))
Kc1 = Tn/(Tn-Y1*bn)
Kc2 = L/(L-Y2*nv*bv)
Kc = Kc1*Kc2
                              # Fator de Carter [-]
mu0 = 4*pi*10**-7
                              # Permeabilidade magnética do ar [H/m]
AWe = 2/mu0*Be*Kc*ag*10**-3
                              # FMM do entreferro [A.esp]
# FMM nos dentes
Hdmax=calcula Hc(Bdmax)
Hdmed=calcula_Hc(Bdmed)
Hdmin=calcula Hc(Bdmin)
```

```
Hd
     AWd = 2*hn/10*Hd
                                 # FMM dos dentes
# FMM na coroa
# Ka = 0.851
                                 # Fator de redução do comprimento magnético da coroa
Hy=calcula Hc(By)
Tpr = pi*(Di+2*hn)/p2
                                # Passo polar pelo diâmetro fundo da ranhura [mm]
AWy = Tpr/10*Hy
                                 # FMM da coroa
# Indução no polo
Sp = fep*(Lpk*bpk)*10**-6
AWjlz = AWe+AWd+AWy
                                        # FMM entreferro, dente e coroa [A.esp]
Sigmap = 1+(2*AWjlz*Lambdap)/fluxo/10**8 # Dispersão do polo
Bpo = fluxo/Sp*Sigmap
                                        # Indução no polo
# FMM dos polos
Hpo=calcula Hp(Bpo)
AWp = 2*hpk/10*Hpo
                                 # FMM do polo [A.esp]
# FMM Entreferro polo / anel magnético
AWpa = 2*agp/1000/mu0*Bpo
                               # FMM entreferro polo/anel
# FMM total do circuito magnético em vazio
AWt = AWe+AWd+AWy+AWp+AWpa
# Dados de excitação em vazio
DVe = 3
                                # Queda de tensão das escovas nas 2 polaridades [V]
Ie0 = AWt/2/(w3+w4)
                               # Corrente de excitação em vazio [A]
Ue0 = Ie0*RfTref+DVe
                               # Tensão de excitação a vazio a Tref oC [V]
Iagl = (AWe+0.7*AWpa)/2/(w3+w4) # Corrente do entreferro
SI = Ie0/Iagl
                                 # Indice de saturação
# CÁLCULO DO CIRCUITO MAGNÉTICO EM CARGA NOMINAL
# Cálculo da reação da armadura
Acpf = 2*In*Nc/p2
                               # Ampere-condutores por polo e fase
AWdt = mf*Acpf*fw*Kd
                               # Reação do estator pelo eixo D [A.esp]
AWg = mf*Acpf*fw*Kg
                               # Reação do estator pelo eixo Q [A.esp]
Zb = Un*1000/In/(3**(1/2))
                               # Impedância base [ohm]
\label{eq:Xb} Xb = 1.5*(fw*q*Zn/a)**2*L*p2/2*fn*10**-8/Zb \\ \# \ \mbox{Reat} \mbox{action com rotor retirado} \\ \label{eq:Xb}
ke = y*p2/Ns
kcu = 0.405+0.593*ke
kk = 0.24 + 0.76 * ke
LambdaNs = mu0*(hn1/3/bn*kcu+hn2/bn*kk)*10**6
                                                           # Permeância da ranhura do estator
Xsn = (4*pi*fn*Nc*Zn/a)*0.1*(L-0.5*bv*nv)*LambdaNs*10**-8/Zb # Reatância de dispersão das ranhuras
```

```
Lambdak = 0.92*kk*np.log10(Tn/bn)
Xzk = (4*pi*fn*Nc*Zn/a)*0.1*(L-0.5*bv*nv)*Lambdak*10**-8/Zb # Reatância dispersão abertura ranhura
Xwk = (4*pi*fn*Nc*Zn/a)*(0.0551*Tps)*q*10**-8/Zb
                                                             # Reatância dispersão cabeças
enrolamento
Xst = Xsn+Xzk+Xwk
                                                              # Reatância de dispersão do estator
Xsx = Xst+0.2*Xb
# Cálculo da variação do fluxo magnético nominal em vazio para carga e fp nominais
j = 1
                              # Carga em pu
Eq = j*AWq/AWdt
                              # Queda de tensão interna pela reação do estator eixo Q
Esigma = j*Xsx
                             # Queda de tensão interna pela dispersão do estator
fi = math.acos(fp)
sin_psi = (Esigma+Eq+math.sin(fi))/(1+(Esigma+Eq)**2-2*(Esigma+Eq)*math.cos(pi/2+fi))**(1/2)
# Ed1 = Fluxo magnetico para carga e fp nominais em valor pu do fluxo nominal
Ed1 = (1+(Esigma+Eq)**2-2*(Esigma+Eq)*math.cos(pi/2+fi))**(1/2)-Eq*sin_psi
# Cálculo das Induções e FMM no entreferro e no estator para carga e fp nominais
# Entreferro
Bel = Edl*Be
AWel = Edl*AWe
# Dentes do estator
Bdmin1 = Bdmin*Ed1
Bdmed1 = Bdmed*Ed1
Bdmax1 = Bdmax*Ed1
Hdmax1=calcula Hc(Bdmax1)
Hdmed1=calcula_Hc(Bdmed1)
Hdmin1=calcula_Hc(Bdmin1)
Hd1 = (Hdmax1+4*Hdmed1+Hdmin1)/6
AWd1 = 2*hn/10*Hd1
# Coroa do núcleo do estator
By1 = By * Ed1
Hy1=calcula_Hc(By1)
AWy1 = Tpr*Hy1
# FMM estator
```

```
AWjlz1 = AWe1+AWd1+AWy1
```

```
AWr1 = AWdt*sin psi # Parcela da reação do estator para carga nominal
# Polos do rotor
Sigmap1 = 1+2*(AWjlz1+AWr1)*Lambdap/(Ed1*fluxo*10**8)
Bp1 = fluxo*Sigmap1/Sp*Ed1
Hp1=calcula Hp(Bp1)
AWp1 = 2*hpk/10*Hp1
AWpa1 = 2*agp/1000/mu0*Bp1
AWa1 = 0.04*(AWjlz1+AWr1+AWp1+AWpa1)  # Tolerância de 4% sobre o total da FMM
# FMM total
AWt1 = AWe1+AWd1+AWy1+AWp1+AWpa1+AWa1+AWr1
# Tensão e Corrente de excitação em carga
Ie1 = AWt1/(2*(w3+w4))
                                    # Corrente de excitação em carga
Rf120 = (234.5+120)/(234.5+Tref)*RfTref
Ue1 = Rf120*Ie1+DVe
Dcf3 = Ie1/Sf3
if tesp==0:
   Dcf4 = Ie1/Sf4
else:
   Dcf4 = 0
# _____
# REATÂNCIAS E CONSTANTES DE TEMPO
Xad = AWdt/AWe
Xdu = Xad+Xst
                                     # Xdu [pu]
Xaq = AWq/AWe
Xqu = Xaq+Xst
                                     # Xqu [pu]
Ike = Xdu*Iagl
                                     # Corrente excitação em curto-circuito [A]
SCR = Ie0/Ike
                                     # Relação de curto-circuito [pu]
# Cálculo das reatâncias transitórias
Xf = Xad*(Sigmap-1)
Xldu = Xsx+Xad*Xf/(Xad+Xf)
                                     # X'du
Xlqu = Xqu
                                     # X'qu
# Cálculo das reatâncias subtransitórias
AWr = 0.5*AWdt/Kd*2*2**0.5/pi
Lambdakdn = 0.623 + hdk/bdk
                                   # Permeância específica da ranhura
Lambdakd1 = 0.06*Tpa/L*ncd
                                   # Permeância especificas das conexões do amortecedor
Lambdakde = Tcd/(10*ag*Kc)
                                   # Permeância específica do amortecimento para o entreferro
Lambdakd = 2*pi/ncd*(Lambdakdn+Lambdakd1+Lambdakde)
Xkd = mu0*Lambdakd*L*AWr/fluxo/1000
Xlldu = Xsx+1/(1/Xad+1/Xf+1/Xkd) # X"du
Xkq = 0.67 * Xkd
```

```
195
```

```
Xllqu = Xsx+1/(1/Xaq+1/Xkq) # X"qu
Rllqx = Xllqu/Xlldu # Relação X"q/X"d
X2 = (Xlldu+Xllqu)/2 # X2
X0 = (7/12*y/q-1)*Xlldu # X0
```

# Calculo das Reatâncias síncronas saturadas

| Xds = 1/SCR                               | # | Xds                |
|-------------------------------------------|---|--------------------|
| FS = Xdu/Xds                              | # | Fator de saturação |
| Xqs = Xqu/FS                              | # | Xqs                |
| Xads = Xad/FS                             |   |                    |
| Xfs = Xads*(Sigmap-1)                     |   |                    |
| <pre>Xlds = Xsx+Xads*Xfs/(Xads+Xfs)</pre> | # | X'ds               |
| Xlqs = Xqs                                | # | X'qs               |
| Xllds = 0.85*Xlldu                        | # | X"ds               |
| Xllqs = 0.94*Xllqu                        | # | X"qs               |
| X2s = (Xllds+Xllqs)/2                     | # | X2                 |
| XOs = (7/12*y/q-1)*X11ds                  | # | XO                 |

# Constantes de tempo do gerador

Iela = Iagl\*Xad rg = Iela\*\*2/Sn\*RfTref\*10\*\*-3 Tldo = (Xf+Xad)/rg\*1/(2\*pi\*fn)# T'do Tld = Tldo\*Xlds/Xds # T'd Ta = X2/(RaTref/Zb)/(2\*pi\*fn) # Ta Xlld = Xkd+Xad\*Xf/(Xad+Xf) rkd = (Lcd/(ncd\*pi\*(Dcd/10)\*\*2/4)+2\*(Di-2\*ag)/10/qLd/p2)\*Rcu20\*(234.5+Tref)/(234.5+20)\*AWr/fn/fluxo\*0.7\*10\*\*-5 # rkd = resistência do enrolamento amortecedor pelo eixo D Tlldo = Xlld/rkd\*(1/(2\*pi\*60)) # T"do Xllq = Xkq+Xaq rkq = (Lcd/(ncd\*pi\*(Dcd/10)\*\*2/4)+2\*(Di-2\*ag)/10/qLd/p2)\*Rcu20\*(234.5+Tref)/(234.5+20)\*AWr/fn/fluxo\*0.6\*10\*\*-5 # rkq = resistência do enrolamento amortecedor pelo eixo Q Tllqo = Xllq/rkq\*(1/(2\*pi\*60)) # T"qo # T"d Tlld = Tlldo\*Xlldu/Xldu Tllq = Tllqo\*Xllqu/Xlqu # T"q # -----# DETERMINAÇÃO DE PERDAS # Perdas FERRO Gespcs =  $7.6 \times 10 \times -6$ # Peso específico da chapa siliciosa [kg/m3] Wcs = calcula WKG(By,fn,W KG) Dci = Di+2\*hn Dce = Da-2\*hkGc = pi/4\*(Dce\*\*2-Dci\*\*2)\*(L-nv\*bv)\*fes\*Gespcs # Peso da coroa [kg]

```
Pfec = Gc*Wcs*Kfec*10**-3
                                     # Perdas ferro na coroa [kW]
Wds = calcula WKG(Bdmed, fn, W KG)
Gd = (pi/4*(Dci**2-Di**2)-Ns*bn*hn)*(L-nv*bv)*fes*Gespcs
Pfed = Gd*Wds*Kfed*10**-3
                                    # Perdas ferro nos dentes [kW]
Pfe = Pfec+Pfed+Ppo
                                    # Perdas Ferro [kW]
# Perdas I2R a Tref oC do enrolamento do estator
Pcuest = 3*RaTref*In**2/1000
                                   # Perdas I2R do estator [kW]
# Perdas I2R a Tref oC do enrolamento do rotor + escovas
Pescm = 2*0.16*2*10*8*(Ie1/10/8+1)/1000 # Perda de atrito das escovas por anel
(atrito*pressão*Vp*area*num)
Pesce = DVe*Te1/1000
Pcurot = (RfTref*Ie1**2/1000+Pescm+Pesce)  # Perdas I2R do estator+escovas [kW]
# Perdas adicionais
C3 = 1.0
Kp = 2.0
Cs = 5.0
Pcuad = (Kn-1)*Pcuest
Ppol1 = (p2/2*L*(AE/10)**2*fn/100*(Tps/100)**2*C3*Kp/20*10**-6)
Ppol2 = pi*Di*L/2/10**6*(Kp*Cs*10**-6*(Ns*nn/10**4)**1.5)*(Tn**2*100*AE*10/ag/10**4)
Ppol = Ppol1+Ppol2
                       # Perdas adicionais na sapata do polo em carga
Pstirn = Kstirn*fn/50*(AE*10*fw)**2*Di/1000*Tps/1000*y/3/q*10**-5
                             # Perdas adicionais [kW]
Padic = Pcuad+Ppol+Pstirn
# Perdas de ventilação
DP = 150
                  # Pressurização [Pa]
\text{RendV} = 0.35
                 # Rendimento do ventilador
Fv = 6
                   # Fator para ventilação 7 a 10 radial e 5 a 7 axial
if TypeV==1:
   Pvent = 1/1000*(Fv*(nn/1000)**3*(Di/1000)**4*(0.1*Di+2.9)+9.81*DP*Q/RendV)
else:
   Pvent = 1/1000*(25*(Di/1000)**3.6*(nn/100)**2.3*(L/1000)**0.6*(DP/10)**0.25)
if Pventil>0:
   Pvent=Pventil
else:
   x=0
# Perdas no sistema de excitação
Pexc = 0.1*Pcurot
                    # Perda no sistema de excitação [kW]
# TOTAL DE PERDAS DO GERADOR
Ptot = Pfe+Pcuest+Padic+Pcurot+Pexc+Pvent+Pmancal
#Rendimento
```

```
Pativa = Sn*fp
```

```
Rend = Pativa/(Pativa+Ptot)*100
```

# CÁLCULO DO RENDIMENTO MÉDIO PONDERADO

```
# Fatores de ponderação
Ifexc=np.array([1907.2,1863.3,1799.8,1698.5,1598.5])
                                                      # Entrar com os valores de correntes de
excitação
Sparc=np.array([1, 0.96, 0.90, 0.80, 0.70], dtype=float) # Entrar com os valores de cargas parciais
Wfactor=np.array([56, 7, 32, 4, 1], dtype=float)
                                                     # Entrar com os fatores de ponderação
NW = len(Wfactor)
Perdas = np.zeros((NW,16))
Soma3=0
Soma2=0
Soma4=0
for 1 in range (0,NW):
   Perdas [1,0] = Sparc [1]
   Perdas [1,1] = Ifexc [1]
   Perdas [1,2] = Wfactor [1]
   Perdas [1,3] = Pfe
   Perdas [1,4] = Pcuest*(Perdas[1,0])**2
   Perdas [1,5] = Padic*(Perdas[1,0])**2
   Perdas [1,6] =
RfTref*(Perdas[1,1])**2/1000+Pescm*Perdas[1,1]/Perdas[1,1]+Pesce*Perdas[1,1]/Perdas[1,1]
   Perdas [1,7] = 0.1*Perdas[1,6]
   Perdas [1,8] = Pvent
   Perdas [1,9] = Pmancal
for 1 in range (0,NW):
   Somal = 0
   for c in range (3, 10):
       Somal = Somal + Perdas [1,c]
       Perdas [1,10]=Somal
       Perdas [1,11] = Sn*fp*Perdas[1,0]/(Sn*fp*Perdas[1,0]+Perdas [1,10])*100
       Perdas [1,13] = Perdas [1,0]*Perdas [1,2]*Perdas [1,11]
       Perdas [1,14] = Perdas [1,0]*Perdas [1,2]
       Perdas [1,15] = Perdas [1,2]/100*Perdas [1,11]
   Soma2 = Soma2+Perdas [1,13]
   Soma3 = Soma3+Perdas [1,14]
   Soma4 = Soma4+Perdas [1,15]
Perdas [0,12] = Soma2/Soma3
Perdas [1, 12] = Soma4
print ('------DADOS DE ENTRADA------')
print ('Potência Nominal [kVA] {0:9.0f}'.format(Sn), '
                                                             Tensão nominal
                                                                                  [kV]
{0:10.2f}'.format(Un))
print ('Fator de potência [-] {0:10.3f}'.format(fp), '
                                                             Rotação nominal
                                                                                  [rpm]
{0:10.2f}'.format(nn))
print ('Momento inércia (J) [T.m2] {0:7.0f}'.format(J), '
                                                             Rotação disparo
                                                                                  [rom]
{0:10.2f}'.format(nnd))
```

| print<br>{0:10. | ('H const de inércia<br>Of}'.format(p2))     | [s]      | {0:10.3f}'. | format(H),     | '      | Número de polos       | [-]    |
|-----------------|----------------------------------------------|----------|-------------|----------------|--------|-----------------------|--------|
| print           | ('                                           |          |             | NÚCLEO DO ESTA | TOR    |                       | ')     |
| print<br>{0:10. | ('Diâmetro interno<br>1f}'.format(Da))       | [mm]     | {0:10.1f}'. | format(Di),    | '      | Diâmetro externo      | [ mm ] |
| print<br>{0:10. | ('Comprimento núcleo<br>2f}'.format(hk))     | [mm]     | {0:10.1f}'. | format(L),     | •      | Altura da cunha       | [ mm ] |
| print<br>{0:10. | ('Número dutos vent<br>2f}'.format(bv))      | [-]      | {0:10.0f}'. | format(nv),    | '      | Largura duto vent     | [mm]   |
| print<br>{0:10. | ('Altura Yoke<br>lf}'.format(hn))            | [mm]     | {0:10.1f}'. | format(hj),    | '      | Altura ranhura        | [ mm ] |
| print<br>{0:10. | ('Largura da ranhura<br>Of}'.format(Ns))     | [ mm ]   | {0:10.1f}'. | format(bn),    | •      | Número ranhuras       | [-]    |
| print<br>{0:10. | ('Tipo chapa silicio<br>2f}'.format(ecs))    | [W/kg    | ]{0:9.2f}'. | format(W_KG),  | '      | Espessura chapa       | [ mm ] |
| print           | ('                                           |          |             | ENROLAMENTO DO | ESTAT( | DR                    | ')     |
| print<br>{0:10. | ('Número de camadas<br>Of}'.format(Zn/2))    | [-]      | {0:10.0f}'. | format(kw),    | '      | Espiras por barra     | [-]    |
| print<br>{0:10. | ('Circuitos paralelos<br>Of}'.format(y))     | [-]      | {0:10.0f}'. | format(a),     | '      | Passo enrolamento     | [-]    |
| print<br>{0:10. | ('Número de fios<br>2f}'.format(b1))         | [-]      | {0:10.0f}'. | format(m1),    | •      | Largura fio           | [ mm ] |
| print<br>{0:10. | ('Espessura fio<br>2f}'.format(r1))          | [mm]     | {0:10.2f}'. | format(h1),    | •      | Raio fio              | [ mm ] |
| print<br>{0:10. | ('Isolação principal<br>2f}'.format(disfio)) | [mm]     | {0:10.2f}'. | format(dis),   | '      | Isolação fio          | [ mm ] |
| print<br>{0:10. | ('Separador camada<br>2f}'.format(cfec))     | [mm]     | {0:10.2f}'. | format(scam),  | '      | Espessura cunha       | [ mm ] |
| print           | ('                                           |          |             | POLOS          |        |                       | ')     |
| print<br>{0:10. | ('Entreferro<br>2f}'.format(agm))            | [mm]     | {0:10.2f}'. | format(ag),    | '      | Entreferro máximo     | [ mm ] |
| print<br>{0:10. | ('Largura sapata polo<br>2f}'.format(bpk))   | [ mm ]   | {0:10.2f}'. | format(bps),   | '      | Larg. núcleo polo     | [ mm ] |
| print<br>{0:10. | ('Comprimento sapata<br>2f}'.format(Lpk))    | [mm]     | {0:10.2f}'. | format(Lps),   | •      | Comprimento núcleo    | [ mm ] |
| print<br>{0:10. | ('Altura sapata<br>2f}'.format(hpk))         | [mm]     | {0:10.2f}'. | format(hpo),   | '      | Altura núcleo         | [mm]   |
| print<br>{0:10. | ('Espess chapa polo<br>2f}'.format(ecsu))    | [mm]     | {0:10.2f}'. | format(ecp),   | '      | Espess colar isol sup | [ mm ] |
| print<br>{0:10. | ('Num espiras normais<br>2f}'.format(w4))    | [-]      | {0:10.2f}'. | format(w3),    | '      | Num espiras refrig    | [-]    |
| print<br>{0:10. | ('Espess espira normal<br>2f}'.format(h4))   | . [mm]   | {0:10.2f}'. | format(h3),    | '      | Espess espira refrig  | [ mm ] |
| print<br>{0:10. | ('Larg espira normal<br>2f}'.format(b4))     | [mm]     | {0:10.2f}'. | format(b3),    | '      | Larg espira refriger  | [ mm ] |
| print<br>{0:10. | ('Núm barras amortec<br>2f}'.format(Dcd))    | [-]      | {0:10.0f}'. | format(ncd),   | '      | Diâm. barra amortec   | [ mm ] |
| print<br>{0:10. | ('Passo amortecedor<br>2f}'.format(qLd))     | [mm]     | {0:10.2f}'. | format(Tcd),   | '      | Seção segm amortec    | [mm2]  |
| print           | ('                                           |          |             | ANEL MAGNÉTICO | )      |                       | ')     |
| print<br>{0:10. | ('Diâm ext. coroa rot<br>2f}'.format(Lcr))   | [mm]     | {0:10.2f}'. | format(Dec),   |        | Comprim coroa rotor   | [ mm ] |
| print<br>{0:10. | ('Alt Radial coroa rot<br>2f}'.format(nsc))  | . [ mm ] | {0:10.2f}'. | format(hcr),   |        | Num segm coroa/volta  | [-]    |
| print           | ()                                           |          |             |                |        |                       |        |
|                 |                                              |          |             |                |        |                       | • .    |

| print ('Potência Nominal<br>{0:10.2f}'.format(Un))                  | [kVA]       | {0:9.0f}'   | .format(Sn),             | '       | Tensão nominal        | [kV]    |
|---------------------------------------------------------------------|-------------|-------------|--------------------------|---------|-----------------------|---------|
| <pre>print ('Fator de potência {0:10.2f}'.format(nn))</pre>         | [-]         | {0:10.3f}'  | .format(fp),             | '       | Rotação nominal       | [rpm]   |
| <pre>print ('Momento inércia (J) {0:10.2f}'.format(nnd))</pre>      | [T.m2       | {0:7.0f     | <pre>}'.format(J),</pre> | '       | Rotação disparo       | [rpm]   |
| <pre>print ('H const de inércia {0:10.0f}'.format(p2))</pre>        | [s]         | {0:10.3f}'  | .format(H),              | '       | Número de polos       | [-]     |
| print()                                                             |             |             |                          |         |                       |         |
| <pre>print ('Fator aproveitamento {0:10.2f}'.format(AE))</pre>      | o[-]        | {0:10.2f}'  | .format(C),              | 1       | Intens linear corrent | [A/mm]  |
| <pre>print ('Dens corrente barra [A2/mm3]{0:9.2f}'.format(kap</pre> | [-]<br>pa)) | {0:10.3f}'  | .format(Dcul),           | '       | Capa de corrente      |         |
| print ('Relação D/L<br>',qA,"+",qB,'/',qC)                          | [-]         | {0:10.3f}'  | .format(D_L),            | 1       | q num.ranh.polo fase  | [ – ]   |
| <pre>print ('Fator enrolamento 1h {0:10.5f}'.format(fw3))</pre>     | n [ — ]     | {0:10.5f}'  | .format(fw),             | 1       | Fator enrolamento 3h  | [ – ]   |
| <pre>print ('Corrente nominal {0:10.1f}'.format(Ia))</pre>          | [A]         | {0:10.1f}'  | .format(In),             | 1       | Corrente por barra    | [ mm ]  |
| <pre>print ('Veloc perif nominal {0:10.1f}'.format(Vpd))</pre>      | [m/s]       | {0:10.1f}'  | .format(Vpn),            | 1       | Veloc perif disparo   | [m/s]   |
| <pre>print ('bps/Tps {0:10.3f}'.format(agm_ag))</pre>               | [-]         | {0:10.3f}'  | .format(bp_Tp),          | , '     | Entref max/nom        | [-]     |
|                                                                     |             |             |                          |         |                       |         |
| print ('                                                            |             |             | -NÚCLEO DO ESTA          | ATOR    |                       | ')      |
| <pre>print ('Diâmetro interno {0:10.1f}'.format(Da))</pre>          | [mm]        | {0:10.1f}'  | .format(Di),             | '       | Diâmetro externo      | [ mm ]  |
| <pre>print ('Comprimento núcleo {0:10.2f}'.format(hk))</pre>        | [mm]        | {0:10.1f}'  | .format(L),              | '       | Altura da cunha       | [ mm ]  |
| <pre>print ('Comp efetivo núcleo {0:10.2f}'.format(Tn))</pre>       | [mm]        | {0:10.1f}'  | .format(Leff),           | 1       | Passo de ranhura      | [ mm ]  |
| <pre>print ('Número seg volta {0:10.2f}'.format(bseg))</pre>        | [mm]        | {0:10.2f}'  | .format(Nsg),            | '       | Largura segmento      | [ mm ]  |
| <pre>print ('Número dutos vent {0:10.2f}'.format(bv))</pre>         | [-]         | {0:10.0f}'  | .format(nv),             | '       | Largura duto vent     | [ mm ]  |
| <pre>print ('Altura Yoke {0:10.2f}'.format(hn))</pre>               | [mm]        | {0:10.2f}'  | .format(hj),             | '       | Altura ranhura        | [ mm ]  |
| <pre>print ('Largura da ranhura {0:10.0f}'.format(Ns))</pre>        | [mm]        | {0:10.2f}'  | .format(bn),             | 1       | Número ranhuras       | [-]     |
| <pre>print ('Tipo chapa silicio {0:10.2f}'.format(ecs))</pre>       | [W/kg       | []{0:9.2f}' | .format(W_KG),           | 1       | Espessura chapa       | [ mm ]  |
| print ('                                                            |             |             | -ENROLAMENTO DO          | ) ESTAT | DR                    | ')      |
| print ('Número de camadas<br>{0:10.0f}'.format(Zn/2))               | [-]         | {0:10.0f}'  | .format(kw),             | '       | Espiras por barra     | [-]     |
| <pre>print ('Circuitos paralelos {0:10.0f}'.format(y))</pre>        | [-]         | {0:10.0f}'  | .format(a),              | '       | Passo enrolamento     | [-]     |
| <pre>print ('Número de fios {0:10.2f}'.format(b1))</pre>            | [-]         | {0:10.0f}'  | .format(m1),             | '       | Largura fio           | [ mm ]  |
| <pre>print ('Espessura fio {0:10.2f}'.format(r1))</pre>             | [mm]        | {0:10.2f}'  | .format(h1),             | 1       | Raio fio              | [mm]    |
| <pre>print ('Isolação principal {0:10.2f}'.format(disfio))</pre>    | [mm]        | {0:10.2f}'  | .format(dis),            | '       | Isolação fio          | [ mm ]  |
| <pre>print ('Separador camada {0:10.2f}'.format(cfec))</pre>        | [mm]        | {0:10.2f}'  | .format(scam),           | 1       | Espessura cunha       | [mm]    |
| <pre>print ('Seção do fio {0:10.2f}'.format(Scul))</pre>            | [mm2]       | {0:10.3f}'  | .format(S1),             | 1       | Seção da barra/bobina | ı [mm2] |
| <pre>print ('Larg barra isolada {0:10.2f}'.format(hbi))</pre>       | [mm]        | {0:10.2f}'  | .format(bbi),            | '       | Altura barra isolada  | [ mm ]  |

| print<br>{0:10. | ('Comprimento barra<br>2f}'.format(Lc))         | [mm]   | {0:10.2f}'  | .format(  | LB),    | '      | Compr total conexões  | [m]    |
|-----------------|-------------------------------------------------|--------|-------------|-----------|---------|--------|-----------------------|--------|
| print<br>{0:10. | ('Kmax<br>2f}'.format(Km2))                     | [-]    | {0:10.2f}'  | .format(1 | Kml),   | '      | KN                    | []     |
| print<br>{0:10. | ('K fator CC/AC<br>6f}'.format(Ra20))           | [-]    | {0:10.4f}'  | .format(1 | Kn),    | 1      | Resist 20oC por fase  | [ohm]  |
| print<br>{0:10. | ('Resist Tref p/ fase<br>Of}'.format(Tref))     | [ohm]  | {0:10.6f}'  | .format(1 | RaTref) | ,'     | Temp referência Tre:  | É [oC] |
| print           | ('                                              |        |             | -POLOS DO | O ROTOR |        |                       | ')     |
| print<br>{0:10. | ('Entreferro<br>2f}'.format(agm))               | [mm]   | {0:10.2f}'  | .format(a | ag),    | •      | Entreferro máximo     | [mm]   |
| print<br>{0:10. | ('Largura sapata polo<br>2f}'.format(bpk))      | [mm]   | {0:10.2f}'  | .format(] | ops),   | '      | Larg. núcleo polo     | [ mm ] |
| print<br>{0:10. | ('Comprimento sapata<br>2f}'.format(Lpk))       | [mm]   | {0:10.2f}'  | .format(  | Lps),   | '      | Comprimento núcleo    | [ mm ] |
| print<br>{0:10. | ('Altura sapata<br>2f}'.format(hpk))            | [mm]   | {0:10.2f}'  | .format() | hpo),   | '      | Altura núcleo         | [ mm ] |
| print<br>{0:10. | ('Espess chapa polo<br>2f}'.format(ecsu))       | [mm]   | {0:10.2f}'  | .format(  | ecp),   | '      | Espess colar isol sup | c [mm] |
| print<br>{0:10. | ('Tipo de espiras<br>2f}'.format(Tps))          | [-]    | {0:10.0f}'  | .format(  | tesp),  | '      | Passo polar           | [-]    |
| print<br>{0:10. | ('Num espiras normais 2f}'.format(w4))          | [-]    | {0:10.2f}'  | .format(  | w3),    | '      | Num espiras refrig    | [-]    |
| print<br>{0:10. | ('Espess espira normal<br>2f}'.format(h4))      | . [mm] | {0:10.2f}'  | .format(1 | h3),    | •      | Espess espira refrig  | [ mm ] |
| print<br>{0:10. | ('Larg espira normal<br>2f}'.format(b4))        | [mm]   | {0:10.2f}'  | .format(] | o3),    | '      | Larg espira refriger  | [ mm ] |
| print<br>{0:10. | ('Núm barras amortec<br>2f}'.format(Dcd))       | [-]    | {0:10.0f}'  | .format(  | ncd),   | '      | Diâm. barra amortec   | [mm]   |
| print<br>{0:10. | ('Passo amortecedor<br>2f}'.format(qLd))        | [mm]   | {0:10.2f}'  | .format(  | Icd),   | '      | Seção segm amortec    | [mm2]  |
| print<br>{0:10. | ('Dispersão polo vazio<br>3f}'.format(Sigmap1)) | [-]    | {0:10.3f}'  | .format(  | Sigmap) | , '    | Dispersão polo carga  | a [-]  |
| print<br>{0:10. | ('Seção espira normal<br>3f}'.format(Sf4))      | [mm2]  | {0:10.3f}'  | .format(  | Sf3),   | ,      | Seção espira refrige: | r[mm2] |
| print<br>{0:10. | ('Dens corr esp normal<br>3f}'.format(Dcf4))    | [A/mr  | n2]{0:8.3f} | '.format  | (Dcf3), | 1      | Dens corr esp refrig  | [-]    |
| print<br>{0:10. | ('Resistência 20 oC<br>6f}'.format(RfTref))     | [ohm]  | {0:10.6f}'  | .format(1 | R£20),  | '      | Resist Temp Refêrenc  | [OC]   |
| print<br>{0:10. | ('Dist espiras refrig<br>Of}'.format(Tref))     | [mm]   | {0:10.1f}'  | .format(  | dbb),   | '      | Temp referência Tref  | [OC]   |
| print           | ('                                              |        |             | -ANEL MAG | GNÉTICO |        |                       | ')     |
| print<br>{0:10. | ('Diâm ext. coroa rot<br>2f}'.format(Lcr))      | [ mm ] | {0:10.2f}'  | .format(1 | Dec),   | '      | Comprim coroa rotor   | [ mm ] |
| print<br>{0:10. | ('Alt Radial coroa rot<br>2f}'.format(nsc))     | :[mm]  | {0:10.2f}'  | .format(1 | hcr),   | '      | Num segm coroa/volta  | [-]    |
| print           | ()                                              |        |             |           |         |        |                       |        |
| print           | ('CIRCUI                                        | TO MA  | GNÉTICO - 3 | INDUÇÃO 1 | e FMM A | VAZIO- |                       | ')     |
| print           | ('                                              | I      | ndução [T]  |           |         |        | FMM [A                | .E] ') |
| print<br>{0:10. | ('Entreferro<br>2f}'.format(AWe))               |        | {0:10.4f}'  | .format(1 | Be),    | '      |                       |        |
| print           | ('Dente mínimo                                  |        | {0:10.4f}'  | .format(1 | Bdmax)) |        |                       |        |
| print<br>{0:10. | ('Dente médio<br>2f}'.format(AWd))              |        | {0:10.4f}'  | .format(1 | Bdmed), | ,      |                       |        |
| print           | ('Dente máximo                                  |        | {0:10.4f}'  | .format(1 | Bdmin)) |        |                       |        |
| print<br>{0:10. | ('Coroa<br>2f}'.format(AWy))                    |        | {0:10.4f}'  | .format(1 | Ву),    | '      |                       |        |

print ('Entreferro polo/anel {0:10.2f}'.format(AWpa)) print ('Polo {0:10.4f}'.format(Bpo), ' {0:10.2f}'.format(AWp)) print ('TOTAL {0:10.2f}'.format(AWt)) print ('Corrente de excitação a vazio [A] {0:10.2f}'.format(Ie0)) print ('Corrente de excitação do entreferro [A] {0:10.2f}'.format(Iagl)) print ('Corrente de excitação em curto-circuito [A] {0:10.2f}'.format(Ike)) print ('Indice de Saturação [-] {0:10.2f}'.format(ST)) print () print ('-----CIRCUITO MAGNÉTICO - INDUÇÃO E FMM EM CARGA------') FMM [A.E] ') print (' Indução [T] print ('Entreferro {0:10.4f}'.format(Bel), ' {0:10.2f}'.format(AWe1)) print ('Dente mínimo {0:10.4f}'.format(Bdmax1)) print ('Dente médio {0:10.4f}'.format(Bdmed1),' {0:10.2f}'.format(AWd1)) print ('Dente máximo {0:10.4f}'.format(Bdmin1)) print ('Coroa {0:10.4f}'.format(By1), ' {0:10.2f}'.format(AWy1)) print ('Reação da armadura {0:10.2f}'.format(AWr1)) print ('Entreferro polo/anel {0:10.2f}'.format(AWpal)) print ('Polo {0:10.4f}'.format(Bp1), ' {0:10.2f}'.format(AWp1)) print ('Acréscimo (tol) {0:10.2f}'.format(AWa1)) print ('TOTAL {0:10.2f}'.format(AWt1)) {0.10 2f}' format(Tel)) print ('Corrente de excitação em carga [A] print () print (' EIXO DIRETO EIXO QUADRATURA') print ('NÃO SATURADO SATURADO NÃO SATURADO SATURADO') print ('Xdu = {0:6.4f}'.format(Xdu), ' Xds = {0:6.4f}'.format(Xds), ' Xqu = {0:6.4f}'.format(Xqu), ' Xqs = {0:6.4f}'.format(Xqs)) print ("X'du = {0:6.4f}".format(Xldu)," X'ds = {0:6.4f}".format(Xlds)) print ('X"du = {0:6.4f}'.format(Xlldu), ' X"ds = {0:6.4f}'.format(Xllds), ' X"qu = {0:6.4f}'.format(Xllqu), ' X"qs = {0:6.4f}'.format(Xllqs)) print (' Dispersão') print ('X2 = {0:6.4f}'.format(X2), ' X2 = {0:6.4f}'.format(X2s), ' XB {0:6.4f}'.format(Xb)) print ('X0 = {0:6.4f}'.format(X0), ' X0 = {0:6.4f}'.format(X0s), ' XST = {0:6.4f}'.format(Xst)) print (' XSX = {0:6.4f}'.format(Xsx)) print() print ('------') print ("T'do = {0:6.2f}".format(Tldo)," T'd = {0:6.4f}".format(Tld), ' = op"T {0:6.4f} ' .format(Tllqo)) print ('T"do = {0:6.2f}'.format(Tlldo),' T"d = {0:6.4f}'.format(Tlld), ' T"q = {0:6.4f}'.format(Tllq)) print()

print() print ('------') print (' PERDAS [kW]') = {0:6.2f}'.format(Pfe)) print ('Perdas Ferro print ('Perdas I2R estator a{0:4.0f}'.format(Tref),'oC',' \_ {0:6.2f}'.format(Pcuest)) print ('Perdas Adionais {0:6.2f}'.format(Padic)) = print ('Perdas I2R rotor a{0:4.0f}'.format(Tref),'oC',' = {0:6.2f}'.format(Pcurot)) {0:6.2f}'.format(Pexc)) print ('Perdas Excitação = {0:6.2f}'.format(Pvent)) print ('Perdas Ventilação \_ print ('Perdas Mancal = {0:6.2f}'.format(Pmancal)) print ('Perdas TOTAL = {0:6.2f}'.format(Ptot)) print ('RENDIMENTO {0:6.3f}'.format(Rend),'%') = print ('-----rendimento Ponderado------') Wi Pfe Pcuest Padic Pcurot Pexc Pvent Pmancal Total print (' carga If Rend') -[%]**'**) for l in range (0,NW): for c in range (0,12): print ('{:8.2f}'.format(Perdas[1][c]), end="") print() print(' Rendimento médio ponderado {0:6.3f}'.format(Perdas[1,12]))

## 8.2 ANEXO – CÁLCULO DO ENROLAMENTO AMORTECEDOR

Cálculo do enrolamento amortecedor

### DAMPER WINDING DIMENSIONING

#### 1 - Input data:

| HPP                            |                                                                                                                                                                        | TESE 1A                             |                      |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------|
| Туре                           |                                                                                                                                                                        | HIDROGERADOR                        | २                    |
| Output                         |                                                                                                                                                                        | $S_n := 300000$                     | [kVA]                |
| Rated voltage                  |                                                                                                                                                                        | U <sub>n</sub> := 16000             | Μ                    |
| Frequency                      |                                                                                                                                                                        | $\mathbf{f}_n \coloneqq 60$         | [Hz]                 |
| Speed                          |                                                                                                                                                                        | n <sub>n</sub> := 120               | [rpm]                |
| Statorsiotnumber               |                                                                                                                                                                        | $N_{\rm Z} \simeq 504$              | [-]                  |
| Number o trun per coil         |                                                                                                                                                                        | $Z_n \coloneqq 1$                   | [-]                  |
| Number of parallel dircuits    |                                                                                                                                                                        | $\mathbf{a} \coloneqq 4$            | [-]                  |
| Stator bore inner diameter     |                                                                                                                                                                        | Di <sub>s</sub> := 12000            | [mm]                 |
| Stator winding currnet density |                                                                                                                                                                        | $J_{g} \approx 2.95$                | [A/mm <sup>2</sup> ] |
| Stator winding temp. rise      |                                                                                                                                                                        | $\Delta T_{\rm S} \simeq 80$        | M                    |
| Damperbarlength                |                                                                                                                                                                        | L <sub>D</sub> := 2500              | [mm]                 |
| Damper slot opening width      |                                                                                                                                                                        | bd := 3.                            | [mm]                 |
| Pole shoe weight               |                                                                                                                                                                        | m <sub>sp</sub> := 300              | [kg]                 |
| Negative sequence current12    |                                                                                                                                                                        | $\mathbf{I_2} \coloneqq 0.08$       | [-]                  |
| <br>Copper conductibility      |                                                                                                                                                                        | $\sigma cu = 57 \cdot 10^6$         | [1/(m.Ω)]            |
| Air permeability               |                                                                                                                                                                        | $\mu o = 4 \cdot \pi \cdot 10^{-7}$ | [H/m]                |
| Specific heat of damper        |                                                                                                                                                                        | C <sub>cu</sub> := 394              | [W.s/(Kkg)]          |
| Rated current                  | $\mathbf{I}_n := \frac{\mathbf{S}_n \cdot 1000}{\sqrt{3} \cdot \mathbf{U}_n}$                                                                                          | I <sub>n</sub> = 10825.3            | [A]                  |
| Number of poles:               | $P_{\mathbf{Z}} := \frac{2 \cdot 60 \cdot \mathbf{f}_n}{\mathbf{n}_n}$                                                                                                 | $P_Z = 60$                          | [poios]              |
| Linear current Intensity       | $\boldsymbol{A}_{s} \coloneqq \frac{\boldsymbol{I}_{n}}{a} \cdot \frac{\boldsymbol{N}_{z} \cdot \left( 2 \cdot \boldsymbol{Z}_{n} \right)}{\pi \cdot \mathbf{Di}_{s}}$ | A <sub>5</sub> = 72.4               | [A/mm]               |

Página 1 de 8

#### 2 - Theory for dimensioning:

Linear current intensity:

This value is associated to the electric current condution capability of the winding, located in air gap surface without exceeding the temperature rise.

It is the same as if exists a tangential current conduction where there is a current circulation of I<sub>n</sub>/a [A] and the airgap surface with enough capacity to dissipate the heat caused by the ohmic losses of the stator (P.R).

Because of this, the temperature rise of the winding located on the airgap surface is direct associated to linear current intensity A<sub>s</sub>.

So, if there is a value of A<sub>s</sub> for the winding, to assume that this value is also valid for the damper winding is totally correct.

3 -Current on damper winding at continuous negative sequence current of I2 = 0.08;

Consideration:

- During the permanent load, simetric current, the damper winding has no main function;
- The current on damper winding will appears when the load is assimetric;
- The damper current is proportional to the negative sequence current l<sub>2</sub>;
- As per design, during negative sequence current, the damper winding will have the same linear current intensity as the stator winding.
- Same linear current intensity means, same thermal dissipation capability.

The Inear current intensity of the stator winding negative sequence:

$$A_{s\_des} \coloneqq \frac{I_2 \cdot I_n}{a} \cdot \frac{N_z \cdot (2 \cdot Z_n)}{\pi Di_s} \qquad [A/mm]$$

$$A_{s_{des}} = I_2 A_s$$
 [Amm]

The Inear current intensity of damper winding:

$$A_{D} := I_{D} \cdot \frac{P_{z} \cdot N_{D}}{\pi \cdot Di_{s}}$$
[Almm]

where:

N<sub>D</sub>-Number of damper bars per pole

Minimum number of damper bars per pole:

According to our experience the damper bar pitch shall have the same pitch as the stator slot modified by +/-10%. In our case the stator slot pitch is 74.8 mm and adopting the pitch ratio of 0.9, the damper pitch is 67.3 mm.

Stator slot pitch $\tau_s := \pi \cdot \frac{Di_s}{N_z}$  $\tau_s = 74.8$ mmDamper pitch $\tau_d := 0.90 \cdot \tau_s$  $\tau_d = 67.3$ mm

Bar per pole

Pole core width 
$$bp_k := 300 \text{ mm}$$

$$N_D := \frac{bp_k}{\tau_d} + 1$$
  $N_D = 5.5$   $N_{Dk} := 5$  bars per pole

Ourrent on the damper winding:

Considering As equal to AD:

$$I_{D} := \frac{I_{2} \cdot I_{n}}{ap} \cdot \frac{N_{z} \cdot 2 \cdot Z_{n}}{P_{z} \cdot N_{D}} \qquad \qquad I_{D} := I_{2} \cdot A_{s'} \frac{\pi \cdot Di_{s}}{P_{z} \cdot N_{D}} \qquad \qquad I_{D} = 727.5 \quad \text{[A]}$$

#### 4 - Damper bar diameter:

According to our experience we should assume J<sub>D</sub> damper current density equal to the value provided by stator winding, that means 3.694 [A/mm<sup>2</sup>]:

 $J_D := J_s$  [A/mm<sup>2</sup>]

and together with the formula of damper current, allows us to determine the diameter in order to meet the current density:

$$\begin{split} & \operatorname{Ab}_D \cdot J_D \coloneqq I_D & e & \operatorname{Ab}_D \coloneqq \frac{\pi}{4} \cdot \operatorname{Db}_D^{-2} & \text{ written in another way} \\ & \frac{\pi}{4} \cdot \operatorname{Db}_D^{-2} \cdot J_D \coloneqq \frac{I_2 \cdot I_n}{a} \cdot \frac{N_2 \cdot 2 \cdot Z_n}{P_2 \cdot N_D} \\ & \operatorname{Db}_D^{-2} \coloneqq I_2 \left( \frac{I_n}{a} \cdot \frac{N_2 \cdot 2 \cdot Z_n}{\pi \cdot \operatorname{Di}_s} \right) \cdot \frac{\operatorname{Di}_s}{P_2 \cdot N_D} \cdot \frac{4}{J_D} & \text{ finally} \end{split}$$

Defining fs as margin factor, we have :

fs := 1.15

Página 3 de 8

$$Db_{D\_cal} := \sqrt{I_2 \cdot f * A_s \cdot \frac{Di_s}{P_z \cdot N_D} \cdot \frac{4}{J_D}} \qquad Db_{D\_cal} = 19 \quad [mm]$$

5 - Damper winding main data:

$$\label{eq:Damperbarsperpole} \begin{split} Damperbarsperpole & N_D = 5 \\ Damperbardiameter & Db_D = 19.1 \quad [mm] \end{split}$$

#### 6 - Temperature rise of the damper winding:

The temperature rise of a winding located in the air gap dircunference, as a function of linear current intensity is given by:

 $\Delta T := k_t \cdot A \cdot J$ 

For stator winding the thermal proportionality factor is given by:

$$k_t := \frac{\Delta T_s}{A_s J_s} \qquad \qquad k_t = 0.4 \qquad [\Omega.K.mm^3 MV]$$

This factor will be the same for damper winding.

The damper bar current density is:

$$J_{Dx} = \frac{I_D \cdot 4}{\pi \cdot Db_D^2} \qquad J_D = 2.5 \quad [A/mm^2]$$

And the linear current intensity will be:

$$A_{D} := I_{D} \frac{P_{z} \cdot N_{D}}{\pi \cdot Di_{s}} \qquad A_{D} = 5.8 \qquad \text{[A/mm]}$$

Finally, the damper temperature is:

$$\Delta T_D := k_t \cdot A_D \cdot J_D$$
  $\Delta T_D = 5.5$  [K]

So the damper winding has enough capacity to withstand permanent assimetric bad as well as the transients coming from the network.

#### 7 - Damper winding during transient and operating at (l2)2.t = 20

The damper winding when operating at  $(I_2)^2 t = 20$ , the temperature rise should be within the acceptable limt:

Currents on damper winding: 
$$ID_x := Iv_{2_x} \cdot A_s \cdot \frac{\pi \cdot Di_s}{P_z \cdot N_D}$$
 [A]

Current density in one bar:  $JvD_x \approx 4 \cdot \frac{ID_x}{\pi \cdot Db_D^2}$  [A/mm<sup>2</sup>]

Linear current intensity: 
$$AD_x := ID_x \cdot \frac{P_z \cdot N_D}{\pi \cdot Di_s}$$
 [A/mm]

The temperature rise during permanent assimetric load (I2=0.08) :

$$\Delta TvD_x := k_t \cdot AD_x \cdot JvD_x$$
 [K]

As the rotor has a thermal inertia, to calculate the heating in a certain time, the time constant shall be used:

#### Ohmic losses in one damper bar.

As the damper bar has a circular shape and is located in the slot, when we have a current (I<sub>D</sub>), the ohmic resistance will be modified due to field effect (skin).

So, to calculate the actual resistance, we will use the method described below::

#### Alternating current impedance of a solid conductor of circular cross section placed in a semi-closed circular slot

Hans Anneil, Transactions of the Royal Institute of Technology, Electrical Engineering, Stockholm, v.9, n.200, p. 1-33, 1963

$$\begin{split} \omega &:= 2 \cdot \pi \cdot f_n & j := \sqrt{-1} \\ \text{od} &:= a \text{sin} \left( \frac{b d}{D b_D} \right) & \text{Sb} := \frac{\pi}{4} \cdot D b_D^2 \ \rho 75 := \frac{234.5 + 75}{234.5 + 20} \cdot \frac{1}{57} & \text{RdDC} := \rho 75 \cdot \frac{L_D \cdot 10^{-3}}{\text{Sb}} \\ \text{od} &= 0.2 & \text{[rad] - width of slot reactance} & \text{od} \cdot \frac{180}{\pi} = 9.037 \\ \text{Sb} &= 286.5 & \text{[mm2] - damper bar section} \\ \rho 75 &= 0.02134 & \text{[Wim] - cooper resistibity} \\ \text{RdDC} &= 0.000186 & \text{[W] - damper bar DC resistance} \\ v &:= 1 \dots 2 & \underset{pointer}{\overset{<<<++++==}{}} \text{XX harmonic} \\ w_v &:= v \cdot \omega \end{split}$$

$$\underbrace{ \frac{Db_{D} \cdot 10^{-3}}{2} }_{a = 0.00955} \qquad b := \frac{(Db_{D} + 0.2) \cdot 10^{-3}}{2} \qquad \frac{a}{b} = 1 \qquad \underbrace{ \frac{w_{v} = \frac{377}{254}}{\frac{377}{754}} }_{b = 0.00965}$$

$$n := 0...31$$

$$\begin{split} \mathcal{R}(\mathbf{v}) &:= -\mathrm{Re} \left[ \frac{\mathrm{Ka}_{\mathbf{v}} J_{0,\mathbf{v}}}{-2 \cdot J_{1,\mathbf{v}}} + \frac{(\mathrm{Ka}_{\mathbf{v}})^{2} \cdot \mathrm{In} \left(\frac{\mathrm{b}}{\mathrm{a}}\right)}{2} + \frac{(\mathrm{Ka}_{\mathbf{v}})^{2}}{\mathrm{cd}^{2}} \cdot \sum_{\mathbf{v}=1}^{30} \left( \frac{\mathrm{sin}(\mathbf{v} \cdot \mathrm{cd})^{2}}{\mathbf{v}^{3}} \cdot \frac{\mathbf{q}_{\mathbf{v}} + \mathbf{v} \mathbf{F}_{\mathbf{v},\mathbf{v}}}{1 + \mathbf{v} \cdot \mathbf{q}_{\mathbf{v}} \cdot \mathbf{F}_{\mathbf{v},\mathbf{v}}} \right) \\ \omega L(\mathbf{v}) &:= -\mathrm{Im} \left[ \frac{\mathrm{Ka}_{\mathbf{v}} J_{0,\mathbf{v}}}{-2 \cdot J_{1,\mathbf{v}}} + \frac{(\mathrm{Ka}_{\mathbf{v}})^{2} \cdot \mathrm{In} \left(\frac{\mathrm{b}}{\mathrm{a}}\right)}{2} + \frac{(\mathrm{Ka}_{\mathbf{v}})^{2}}{\mathrm{cd}} \cdot \sum_{\mathbf{n}=1}^{30} \left( \frac{\mathrm{sin}(\mathbf{n} \cdot \mathrm{cd})}{\mathbf{n}^{2}} \cdot \frac{\mathbf{q}_{\mathbf{n}} + \mathbf{n} \cdot \mathbf{F}_{\mathbf{n},\mathbf{v}}}{1 + \mathbf{n} \cdot \mathbf{q}_{\mathbf{n}} \cdot \mathbf{F}_{\mathbf{n},\mathbf{v}}} \right) \\ Li(\mathbf{v}) &:= -\mathrm{Im} \left[ \frac{\mathrm{Ka}_{\mathbf{v}} J_{0,\mathbf{v}}}{\pi \cdot \left( |\mathrm{Ka}_{\mathbf{v}}| \right)^{2}} \right] \\ \frac{\mathrm{R}(\mathbf{v}) = \frac{\omega L(\mathbf{v})}{\pi \cdot \left( |\mathrm{Ka}_{\mathbf{v}}| \right)^{2}} \\ \frac{\mathrm{R}(\mathbf{v}) = \frac{\omega L(\mathbf{v}) \cdot \mathrm{R} \mathrm{dDC}}{\mathbf{0}} = \frac{\mathrm{Li}(\mathbf{v}) = \frac{\mathrm{a} \sqrt{\mathbf{w}_{\mathbf{v}} \cdot \mathbf{\mu} \cdot \mathbf{\sigma} \mathrm{cu}}}{\frac{1 \cdot \mathrm{a}}{22}} \\ \frac{\mathrm{e} (1 - \frac{\mathrm{a}}{\mathrm{cd}}) - \frac{\mathrm{e} (1 - \frac{\mathrm{a}}{\mathrm{cd}} \cdot \mathbf{r})}{\pi \cdot \left( |\mathrm{Ka}_{\mathbf{v}}| \right)^{2}} \\ \frac{\mathrm{R}(\mathbf{v}) = \frac{\omega L(\mathbf{v}) \cdot \mathrm{R} \mathrm{dDC}}{\pi \cdot \left( |\mathrm{Ka}_{\mathbf{v}}| \right)^{2}} \\ \frac{\mathrm{e} (1 - \frac{\mathrm{a}}{\mathrm{cd}}) - \frac{\mathrm{e} (1 - \frac{\mathrm{a}}{\mathrm{cd}} \cdot \mathbf{r})}{\pi \cdot \left( |\mathrm{C} - \mathrm{R} \mathrm{cd} \mathrm{C} \cdot \mathbf{r} \right)} \\ \frac{\mathrm{e} (1 - \frac{\mathrm{e} (1 - \frac{\mathrm{e}}{\mathrm{cd}} \cdot \mathbf{r})}{\pi \cdot \left( |\mathrm{C} - \mathrm{e} \mathrm{cd} \mathrm{cd} \cdot \mathbf{r} \right)} \\ \frac{\mathrm{e} (1 - \frac{\mathrm{e} (1 -$$

It is observed that the rotating magnetic field produced by negative sequence current  $l_2$  should have synchronous spedd, but in opposite direction.

Due to this, the current in damper will have double of rated frequency, that means second harmonic. R(2) is calculated as:

$$R(2) = 4.35 \quad \text{[pu]-factor for AC current at} \qquad 2 \cdot f_n = 120 \quad \text{[Hz]}$$

The DC resistance will be:

$$\rho_{155} := \frac{234.5 + 155}{234.5 + 20} \cdot \frac{1}{\sigma_{cu}} \qquad \underbrace{RdDC}_{\sigma_{cu}} := \rho_{155} \cdot \frac{L_D \cdot 10^3}{\frac{\pi}{4} \cdot Db_D^2} \qquad RdDC = 0.000234 \qquad [\Omega]$$

The AC resistance will 
$$\operatorname{Rac}_{D} := R(2) \cdot RdDC$$
  $\operatorname{Rac}_{D} = 0.001019$  [ $\Omega$ ] be:

Página 7 de 8

The loss I2R in one damper bar at 100% current assimetry will be:

$$PD_{10.0\%} \approx (ID_0)^2 \cdot Rac_D$$
  $PD_{100\%} = 84259.5$  [M]

The time to heat one pole shoe having only the losses due to the damper bars will be:

$$\tau_{sp} \coloneqq \frac{\Delta T v D_0 \cdot C_{cu} \cdot m_{sp}}{N_D \cdot P D_{100\%}} \qquad \tau_{sp} = 241.5 \qquad [s]$$

Temperature rise in function of time:

$$\Delta T t D_{\mathbf{x}} \coloneqq \Delta T v D_{\mathbf{x}} \begin{pmatrix} -t_{\mathbf{x}} \\ \tau_{\mathbf{sp}} \end{pmatrix} \qquad \qquad [K]$$

Temperature rise-Temperature rise at Time I2 I2 final ∆TvD<sub>x</sub> [K] tx[s] [K] [S] [pu] Ā Iv2x t<sub>x</sub> = =  $\Delta TvD_x =$  $\Delta TtD_x =$ ID<sub>x</sub> = 1 20 9093.3 68.4 860.7 0.5 80 4546.6 215.2 60.7 0.2 500 Damper bar 1818.7 34.4 temperature rise at I22T = 20 0.15 30.1 888.9 1364 0.12 1388.9 18.9 19.4 1091.2 0.1 2000 909.3 12.4 12.4 0.08 3125 727.5 8.6 8.6 5.5 5.5

8- Conclusion

Considering that the maximum temperature rise of the damper winding is lower than 70 K, we can state that the damper bars are well dimensioned and can easily with stand an assimetric load according to specification.

12=0.08 pu and 122T = 20 s.

Página 8 de 8