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“For small creatures such as  we, the 

vastness is bearable only through love.” 

 
(Carl Sagan) 

 



 
 

ABSTRACT 

 

Magnetorheological fluids (MRFs) are smart materials of increasing interest in 

research and industry due to their versatility in mechanical and mechatronic systems. 

As main rheological features, MRFs must present low viscosity in the absence of a 

magnetic field (0.1 - 1.0 Pa.s) and high yield stress (50 - 100 kPa) when magnetized 

in order to optimize the magnetorheological effect, which is responsible for its most 

important properties. These properties, in turn, are directly influenced by the 

composition, volume fraction (concentration), size, and size distribution (polydispersity) 

of the suspended particles, the latter being one of the most important factors in 

improving their quality. As is well known in the literature, widening the size distribution 

of the solid phase increases the maximum packing fraction and reduces the viscosity 

of concentrated suspensions. Therefore, by carefully adjusting the polydispersity, it is 

possible to increase the magnetorheological effect of concentrated MRFs. However, 

there is no known analytical model to calculate the so-called packing efficiency of 

particulate materials, and a numerical approach is often necessary. In this context, 

many functions can be used in these approximations, and this work aims to study via 

simulations three common models from science and engineering: the Andreasen-

Andersen distribution, the Dinger-Funk distribution (modified Andreasen-Andersen), 

and the Weibull distribution. Simulations in 1D and 3D were carried out to compute the 

packing fractions, and their data were compared. The simulation results show that 

when the distribution modulus of the Dinger-Funk distribution is 𝑞 ≈ 0.5, there is a 

maximum packing fraction that should lower the relative viscosity. Also, the results 

show that by widening the particle size distribution, it is possible to get an even greater 

polydispersity of the solid phase. These data suggest that it may be possible to 

optimize the viscosity of MRFs by carefully adjusting the size distribution, paving the 

way for preparing MRFs with a stronger magnetorheological effect. 

 

Keywords: Magnetorheological Fluid; Carbonyl Iron Powder; Polydispersity; 

Simulations; Random Close Packing; Power Law; Weibull distribution. 
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1 INTRODUCTION 

 

Magnetorheological fluids (MRF) are smart materials that undergo a rapid and 

reversible transition from the liquid state to a quasi-solid state when exposed to an 

external magnetic field, modifying many of its rheological properties, such as 

viscoelasticity, plastic viscosity, yield stress, among others [1–3]. 

This transition, the so-called magnetorheological effect [4], makes the MRF 

extremely versatile materials, especially when dealing with mechanical systems that 

need vibration or torque control, such as dampers, brakes, and clutches [1, 5]. 

Furthermore, recent research indicates that MRFs are also viable options in high-

precision polishing [6], robotics [7] (mechatronics), and even in the construction of 

devices for biomedical applications such as actuators in upper limb rehabilitation [8] 

and hydraulic actuation systems in surgeries [9]. 

This versatility is directly linked to the practicality of the magnetorheological 

effect: the magnetization of the suspended particles allows one to control the fluid’s 

viscosity. By applying an external magnetic field to the fluid, each particle quickly 

becomes a dipole and starts interacting with adjacent ones. These attractive 

interactions create chain-like structures, which are aligned in the direction of the 

magnetic field, as illustrated in Figure 1 [1, 2, 4, 10]: 

 

 

 

Figure 1 - The magnetorheological effect. The application of an external magnetic field generates chain-

like structures parallel to the field lines. Source: Author, 2024. 
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The chain-like structures create resistance to flow, strengthening the 

suspension and increasing its viscosity. This resistance is directly related to the 

magnitude of the dipolar interactions, and these are influenced by the strength of the 

external magnetic field together with the volume fraction (concentration), magnetic 

properties, and shape of the suspended particles [2, 4, 11]. 

The composition of MRF is characterized by its simplicity: there is a suspended 

solid phase in the form of magnetizable particles (typically up to 50% of the volume, 

with a usual size of 0.1 – 10 μm) and a carrier liquid. For the solid-phase formulation, 

both ferrimagnetic materials (such as magnetite and chromium dioxide) and 

ferromagnetic materials (such as nickel, cobalt, iron, and carbonyl iron powder) can be 

used, with carbonyl iron powder being the most common choice due to its spheroidal 

shape and high saturation magnetization. 

As for the carrier liquid, typical options include mineral or vegetable oils, 

synthetic or silicone oils, polyesters, polyethers, hydrocarbons, water, and ionic liquids 

[1, 10, 12, 13]. The liquid must have a wide operable temperature range [5] (−40 to 

150 ºC, at least), be chemically inert (non-corrosive and non-reactive), show low vapor 

pressure and, preferably, be non-toxic. 

Many patents also include surfactants and thixotropic additives in their 

composition to avoid agglomeration of the particles, slow their sedimentation, and 

control the fluid’s viscosity. It is clear, therefore, that the formulation of an MRF is 

extremely dependent on the desired applications [2, 5, 10, 12]. 

Over the last few decades, much research has been carried out to improve the 

quality of these fluids, as well as to optimize the magnetorheological effect under 

different conditions. As ideal properties, an MRF should have low viscosity in the 

absence of field (off-state), and high viscosity and yield stress in the presence of field 

(on-state) [1, 2, 11, 14]. 

In this context, many studies indicate that the size and size distribution of the 

magnetic particles are important factors in manipulating these properties [3, 11, 14]. 

Since the work of Farris [15], it has been known that using bimodal, trimodal, or 

tetramodal particle populations can substantially reduce the relative viscosity of any 

suspension while also increasing its concentration. 
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The so-called “Farris effect” (illustrated in Figure 2) becomes increasingly large 

at concentrations above 50 vol% and is extremely useful for adjusting the rheological 

properties of an MRF. For this reason, much research has been done in this area, and 

works such as Foister [16] pioneered (to the best of our knowledge) in patenting MRF 

based on bimodal mixtures. 

To optimize the Farris effect, two parameters are key: (1) the size ratio between 

the particle sizes and (2) the amounts of particles and the particle size distributions 

used to prepare the suspension. For populations with the same median size and at 

fixed volume fractions, it is widely recognized that the broader their particle size 

distributions, the lower their viscosity will be [15, 17, 18, 19]. However, for most 

suspensions, including magnetorheological fluids and electrorheological fluids (ERF), 

the Farris effect is only noticeable in fractions well above 20 vol%; that is, it is only 

relevant in concentrated suspensions.  

One must take care when dealing with concentrated suspensions, though: it is 

well reported in the literature that the viscosity of any dispersion increases dramatically 

by increasing the volume fraction of the solid phase. Therefore, the Farris effect must 

be carefully adjusted to maximize the magnetorheological effect: the viscosity should 

be as low as possible and the concentrations as high as possible.  

 

Figure 2 - By using many sizes of particles, one can greatly increase the concentration of the 

solid phase and reduce the relative viscosity of the suspension. Source: Author, 2024. 
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In this context, it is also well known that a suspension's relative viscosity is 

dependent on the packing of its particles. This packing, in turn, is strictly related to their 

particle size distribution. To further delve into this topic, we must detail some 

fundamental concepts in particle size analysis and rheology, starting with the definition 

of polydispersity. 

When analyzing particulate materials in detail, especially dense suspensions, 

one can easily see that they are seldom monodisperse; that is, the particles rarely 

show the same size. Most of the time, these particles will have different sizes and 

shapes, being, therefore, polydisperse. This is illustrated in Figure 3: 

 

These variations in size can be described by using frequency distributions, the 

so-called particle size distributions (PSD) [18, 20]. A particle size distribution 

(illustrated in Figure 4) is a probability density function that expresses, in detail, the 

polydispersity of the analyzed material, that is, how different the particle sizes in a 

system are. Many statistical distributions can be used to model a size distribution, and 

along with important mathematical tools, such as mode, mean, median, and standard 

deviation, these variations in particle sizes can be studied and quantified [21, 22]. 

 

 

 

Figure 3 - Monodisperse and polydisperse particles. Source: Author, 2024. 
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A key piece in particle size analysis, size distributions are critical in several areas 

of science and engineering, often appearing in soil and aerosol studies, mining, and 

even in the food industry. Polymers and resins [23], paints [24], and drugs [25] are 

directly influenced by the size, quantity, and morphology of their particles. A list of the 

most common particle size distributions is given in Appendix A for reference. 

Several statistical parameters may prove useful when describing a PSD. Among 

them, the polydispersity index 𝛼 is the one that stands out the most: a direct measure 

of polydispersity, the higher its value, the greater the discrepancy in particle sizes. Its 

definition is given in equation 1 [18, 26]: 

 

𝛼 =
√〈Δ𝐷2〉

〈𝐷〉
  ,                                                                                                       (1)                                                                                             

 

where 𝐷 is the particle diameter, 〈𝐷〉 is the mean, ⟨𝐷𝑛⟩ = ∫ 𝐷𝑛𝑃(𝐷)𝑑𝐷
∞

0
 is the n-th 

moment of 𝐷, 𝛥𝐷 = 𝐷 − 〈𝐷〉 and 〈𝛥𝐷𝑛〉 = ∫ 𝛥𝐷𝑛𝑃(𝐷)𝑑𝐷
∞

0
. 

 

 

Figure 4 – A gaussian particle size distribution: the greater its width, the greater its 

polydispersity. Source: Author, 2024. 
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It is worth noting that 𝛼 takes many different forms depending on the probability 

distribution 𝑝(𝐷) that we choose. However, its meaning is always the same: a measure 

of the spread of a variable around the mean [18]. As for the width of the distribution, 

one can define another important parameter, the span, to analyze it [27, 28]: 

 

𝑆𝑝𝑎𝑛 = 
𝐷90−𝐷10

𝐷50
  ,                                                                                                (2)                                                                                             

 

where 𝐷90 is the particle size corresponding to the 90th percentile, 𝐷10 is the size of the 

10th percentile and 𝐷50, the median size.  

The span is also closely related to the variations in particle sizes and works 

similarly to 𝛼: the higher its value, the greater the polydispersity. The shape of a PSD, 

in turn, is determined by the coefficients of skewness 𝑆 and kurtosis 𝐾, respectively. 

Their definitions are given below [26, 29]: 

 

𝑆 =
〈Δ𝐷3〉

〈Δ𝐷2〉3/2
   ,                                                                                                      (3)                                                                                             

 

𝐾 =
〈Δ𝐷4〉

〈Δ𝐷2〉2
     .                                                                                                      (4)                                                                                             

 

In general, the skewness measures the distortion of a frequency distribution, 

that is, how much it deviates from symmetry: 𝑆 > 0 indicate a larger fraction of small 

particles, 𝑆 < 0 indicates a larger fraction of large particles, and 𝑆 = 0 indicates a 

symmetric distribution [29, 30]. 

Kurtosis, in turn, is commonly interpreted as a measure of peakedness: a 

positive value generates distributions with higher peaks and larger tails, while negative 

values generate more flattened curves, with smaller tails [30, 31]. Together, all these 

concepts can be used to properly describe the variability of a particulate material.  

Another important (and often overlooked) detail is that there are several ways 

to describe the same particle size distribution according to the physical property that is 

measured [20]. For example, if we simply count the frequency of each class of particles 

in a system, we obtain what is called a number-weighted size distribution. 
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However, if we employ a laser technique such as the Low-Angle Laser Light 

Scattering (LALLS) to analyze our particles, we obtain a measure of the total volume 

of each class of particles, creating a volume-weighted distribution. To convert between 

each type, one can use the formula below [20]: 

 

𝑞𝑟(𝐷) =
𝐷𝑟−𝑡

∫ 𝐷𝑟−𝑡𝑞𝑡(𝐷)𝑑𝐷
𝐷𝑚𝑎𝑥
𝐷𝑚𝑖𝑛 

 𝑞𝑡(𝐷)  ,                                                                                             (5)                                                                                             

 

where 𝑞𝑡 is our original probability distribution and 𝑞𝑟 is our converted distribution. The 

parameters 𝑟 and 𝑡 are chosen according to the conversion and can assume the values 

0, 1, 2, and 3 for number, length, surface, and volume distributions, respectively. For 

example, if we want to convert a number distribution to a volume distribution, we use 

𝑡 = 0 and 𝑟 =  3 [20]. However, one must take care when transforming between 

distributions, because some statistical information is always lost, leading to conversion 

errors. 

By reviewing the literature on particulate materials, especially regarding civil 

engineering, one may come across two important volume-based models: the 

Andreasen-Andersen model [32], which is based on the work of Furnas [33], Fuller and 

Thompson [34], and the Dinger-Funk model [35], which is a modified version of the 

Andreasen and Andersen equation. Both models were developed to explain the 

granulometry of cement and concrete and their cumulative distributions (CDF) are 

defined as follows: 

 

1. Andreasen-Andersen model [32]: 

 

𝐹(𝐷) = (
𝐷

𝐷𝑚𝑎𝑥
)
𝑞

            0 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥 ;     𝑞 > 0 ;   𝐷𝑚𝑎𝑥 > 0    ,                  (6) 

 

where 𝐷 is the i-th particle size, 𝐷𝑀𝑎𝑥 is the largest particle size, and 𝑞 is the distribution 

modulus, an empirically determined exponent.  
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2. Dinger-Funk model (modified Andreasen-Andersen) [35]: 

 

𝐹(𝐷) =
𝐷𝑞−𝐷𝑚𝑖𝑛

𝑞

𝐷𝑚𝑎𝑥
𝑞

−𝐷𝑚𝑖𝑛
𝑞              𝐷𝑚𝑖𝑛 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥 ;     𝑞 ≠ 0, 𝐷𝑚𝑖𝑛 , 𝐷𝑚𝑎𝑥 > 0  ,   (7) 

 

where 𝐷 is the particle size, 𝐷𝑚𝑖𝑛 is the minimum particle size, 𝐷𝑚𝑎𝑥 is the largest 

particle size and 𝑞 is the distribution modulus. Both models, which are special types of 

power laws, found many applications in industrial processes, especially regarding the 

production of ceramics and milling [35].  

Another important model from particle size analysis is the so-called Rosin-

Rammler distribution [36]. Originally developed to analyze powdered coal, this volume-

weighted function is defined as follows [37]: 

 

𝐹(𝑥)  =  1 − 𝑒
(− 

𝑥

𝑥0
)
𝑛

 ,                                                                                       (8) 

 

where 𝑛 and 𝑥0 are constants that describe the material uniformity and the 

“characteristic particle size”, respectively.  

 

Despite being empirically determined, Weibull [38] showed that this function 

belongs to a greater family of functions that are applicable to a wide range of problems 

in science and engineering [39, 40, 41]. For this reason, it is now known as the Weibull 

distribution. A more general formula for this distribution is given below: 

 

𝐹(𝐷) =  1 − 𝑒
−(
𝐷−𝑎

𝑏
)
𝑐

                    𝐷 ≥ 𝑎;  𝑎, 𝑏, 𝑐 > 0  ,                                         (9) 

 

where 𝑎, 𝑏, and 𝑐 are the location, scale and shape parameters, respectively. 

 

In addition to describing particle sizes, these models' contributions may be 

extended even further: there is a well-known relationship between viscosity and 

packing efficiency. In fact, if we know the maximum packing fraction of this 

arrangement, we can estimate the viscosity of a suspension prepared with these 

particles.   
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To do so, we may use some well-established models from both rheology and 

particle size analysis, such as the Maron, Pierce, Kitano, and Quemada equation [42, 

43, 44]: 

 

𝜂𝑟 =
𝜂𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛

𝜂𝑝𝑢𝑟𝑒 𝑓𝑙𝑢𝑖𝑑
= (1−

𝜙

𝜙𝑚𝑎𝑥  
)
−2

    ,                                                                                        (10) 

 

where 𝜂𝑟 is the relative viscosity of the MR fluid, 𝜙 is the volume fraction of the solid 

phase, and 𝜙𝑚𝑎𝑥 is the maximum packing fraction.  

 

A more complete version of this model is given by Krieger and Dougherty [45], 

which  considers a shape-dependent factor called intrinsic viscosity [𝜂]: 

 

𝜂𝑟 = (1 −
𝜙

𝜙𝑚𝑎𝑥  
)
−[𝜂]𝜙𝑚𝑎𝑥

   .                                                                                       (11) 

 

Naturally, since magnetorheological fluids are a special type of suspension, an 

extension of these concepts to magnetorheology would prove most useful: by 

optimizing the packing efficiency of the solid phase, one can effectively reduce the off-

state viscosity and increase the magnetorheological effect. 

However, we first need to know both the size distribution and the packing 

efficiency of the solid phase, that is, its maximum packing fraction. Unfortunately,  up 

to now, there is no known analytical formula to calculate this parameter directly, and 

we need to either estimate the maximum packing fraction by empirically analyzing the 

material's viscosity vs. solid fraction curve [46] or use computer simulations [26, 47].  

In a previous work [48], our research group successfully investigated, both 

experimentally and via simulations, the influence of polydispersity on the properties of 

concentrated magnetorheological fluids. In fact, we showed that by increasing the 

polydispersity of the solid phase, the maximum packing fraction increases, optimizing 

the magnetorheological effect. 
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This work is an extension of our previous paper, and we aim to study both the 

power law and Weibull models and compare their packings via simulations in 1D and 

3D. At first, a review of power laws and Weibull distributions is performed, followed by 

an extensive discussion of the methodology. Then, the results are presented and 

discussed. Finally, the work is concluded, and proposals for future research are 

presented. 

 

2 OBJECTIVES 

 

2.1 GENERAL OBJECTIVES  

 

Study the power law and Weibull models in the context of particle simulations to 

determine if these models can potentially be used to improve the magnetorheological 

effect of MRF. 

 

2.2 SPECIFIC OBJECTIVES  

 

Describe the most common packing models and how they can be used in the 

context of magnetorheology. 

 

Develop a fast and reliable algorithm to analyze histograms of particle sizes, 

allowing one to quickly estimate the maximum packing fraction of the solid phase of 

dispersions. 
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3 POWER LAWS 

 

Power law (or scaling law) is a generic term used to describe a non-linear 

relationship between two variables such that [49, 50]: 

 

𝑦 = 𝑎𝑥𝑞   ,                                                                                                          (12) 

 

where 𝑎 and 𝑞 are constants that describe, respectively, the width of the scaling 

relationship and the magnitude of the power law. 

There are many types of power laws in science and statistics, depending on the 

constants utilized. For example, the so-called Pareto distribution (Zipf’s law) is defined 

as follows [51, 52]:  

 

𝑝(𝑋) =
𝑞

𝑋
(
𝑋𝑚𝑖𝑛

𝑋
)
𝑞

                             𝑋𝑚𝑖𝑛  ≤ 𝑋 < ∞,   𝑋𝑚𝑖𝑛 > 0,   𝑞 > 0     ,           (13) 

 

𝐹(𝑋) = 1− (
𝑋𝑚𝑖𝑛 

𝑋
)
𝑞

                      𝑋𝑚𝑖𝑛  ≤ 𝑋 < ∞,   𝑋𝑚𝑖𝑛 > 0,   𝑞 > 0      ,           (14) 

 

where 𝑋 is a random variable, 𝑋𝑚𝑖𝑛  is the scale parameter, and 𝑞 is the shape 

parameter.  

 

Another important variation that will be thoroughly analyzed throughout this 

thesis is simply known as “power function distribution”. It is defined as [52]: 

 

𝑝(𝑋) =
𝑞

𝑋
(

𝑋

𝑋𝑚𝑎𝑥
)
𝑞

     0 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥 ,      𝑋𝑚𝑎𝑥 > 0,      𝑞 > 0   ,                                      (15) 

 

𝐹(𝑋) = (
𝑋

𝑋𝑚𝑎𝑥
)
𝑞

       0 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥,      𝑋𝑚𝑎𝑥 > 0,      𝑞 > 0    ,                                   (16) 

 

where 𝑋 is the random variable, 𝑋𝑚𝑎𝑥 is the scale parameter, and 𝑞 is the shape 

parameter. Notice that equations 13 and 15 are closely related: the power function 

distribution is just the inverse transformation of the Pareto distribution [53]. 
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To better characterize the “power function distribution”, we can use the following 

statistical parameters [52]: 

 

Table 1 – Properties of the power function distribution 

 

Parameters 

 

 

Random Variable 𝒙, shape parameter 𝒒, scale parameter 𝒙𝒎𝒂𝒙 

 

 

Range 

 

0 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 

 

PDF 

 

𝑓(𝑥) =
𝑞𝑥𝑞−1

𝑥𝑚𝑎𝑥
𝑞  

 

Mean 

 

𝑥𝑚𝑎𝑥  𝑞

𝑞 + 1
 

 

Mode 

 

{
𝑥𝑚𝑎𝑥 ,   𝑖𝑓 𝑞 > 1
0 ,   𝑖𝑓 𝑞 < 1      

 

 

Median 

 

𝑥𝑚𝑎𝑥 

21/𝑞
 

 

Variance 

 

𝑥𝑚𝑎𝑥 
2 𝑞

(𝑞 + 2)(𝑞 + 1)2
 

 

Coefficient of                                                                    

Variation  

(Polydispersity 

Index) 

[𝑞(𝑞 + 2)]−1/2 

 

Skewness 

 

2(1 − 𝑞)(2 + 𝑞)
1
2

𝑞1/2(3 + 𝑞)
 

 

Kurtosis 

 

3(𝑞 + 2)[2(𝑞 + 1)2 + 𝑞(𝑞 + 5)]

𝑞(𝑞 + 3)(𝑞 + 4)
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Power laws are extremely common in nature and can be used to model a vast 

range of phenomena, such as the growth of city populations, the size of earthquakes, 

and the frequency at which words are used in human languages [51]. They are also 

closely related to fractals [54], showing the important property of scale-invariance, that 

is, 𝑓(𝜆𝑥) ∝ 𝑓(𝑥) for every value of 𝜆 [50]. The Andreasen-Andersen model and the 

Dinger-Funk model, extensively described in the following sections, are both power 

law models or power law-like models. 

 

3.1 THE ANDREASEN-ANDERSEN MODEL 

 

In 1907, Fuller and Thompson started to study the packing efficiency of 

concrete, mixing several populations of particles to obtain the densest possible 

configuration [35]. In 1928, Furnas [33] conducted similar research: using a series of 

regular sieves, he noted that the amounts of particles needed to “build” a cumulative 

size distribution followed a geometric progression; in other words, the ratio between 

the weights of two consecutive screens was always constant [33].  

Naturally, both theories were quickly adopted to study packings of particles [35]. 

In this context, aiming to extend these models even further, Andreasen and Andersen 

[32] proposed their own empirical model, which is based on a power law. From 

equation 6, we know that their model is defined as follows: 

 

𝐶𝐷𝐹 = (
𝐷

𝐷𝑚𝑎𝑥
)
𝑞

               0 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥,      𝐷𝑚𝑎𝑥 > 0,      𝑞 > 0   ,                                   

 

where 𝐷 is the i-th particle size, 𝐷𝑚𝑎𝑥 is the greatest particle size, and 𝑞 is the 

distribution modulus, an empirically determined exponent. Also, recall from equation 

16 that: 

 

𝐹(𝑋) = (
𝑋

𝑋𝑚𝑎𝑥
)
𝑐

       0 ≤ 𝑋 ≤ 𝑋𝑚𝑎𝑥 ,      𝑋𝑚𝑎𝑥 > 0,      𝑐 > 0   .                                       

 

 So, it is straightforward to see that the Andreasen-Andersen model follows a 

power law distribution (more specifically, a power function distribution) with 𝑐 = 𝑞 and 

𝑋𝑚𝑎𝑥 = 𝐷𝑚𝑎𝑥.  
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After extensive experimentation, Andreasen and Andersen advised that the 

exponent 𝑞 should be between 1/3 < 𝑞 < 1/2 for better packing efficiency of concrete 

and mortar formulations. Also, by letting 𝑞 → ∞, we get more and more closer to a 

monodisperse arrangement. 

 

3.2 THE DINGER-FUNK MODEL 

 

Despite its usefulness, the Andreasen-Andersen model raised many objections 

and was overlooked by their peers for several years. This happened not only because 

their model was empirical but because it had an important limitation: it admitted the 

existence of infinitely small particles in the system.  

This limitation would be solved only fifty years later when Dinger and Funk [35] 

proposed a modified version of the Andreasen-Andersen model. From equation 7, we 

know that their model is defined as follows: 

 

𝐶𝐷𝐹(𝐷) =
𝐷𝑞 − 𝐷𝑚𝑖𝑛

𝑞

𝐷𝑚𝑎𝑥
𝑞

 − 𝐷𝑚𝑖𝑛
𝑞            𝐷𝑚𝑖𝑛 < 𝐷 < 𝐷𝑚𝑎𝑥   ;    𝐷𝑚𝑖𝑛 , 𝐷𝑚𝑎𝑥 , 𝑞 ≠ 0  ,           

 

where 𝐷 is the i-th particle size, 𝐷𝑚𝑖𝑛 is the minimum particle size, 𝐷𝑚𝑎𝑥 is the maximum 

particle size, and 𝑞 is the distribution modulus, which was obtained via simulations. For 

better packing efficiency, that is, the densest possible configuration, Dinger and Funk 

recommended that 𝑞 = 0.56 in 2D systems and 𝑞 = 0.37 in 3D systems. 

An interesting result of this model is that the exponent 𝑞 now has a well-defined 

physical meaning: it measures the availability of contiguous volume that the particles 

can occupy. When 𝑞 = 0.37 (the optimum value), the contiguous space is ideal, and 

the porosity goes to zero at the highest possible rate. When 𝑞 < optimum, the 

arrangement’s porosity (void fraction) goes to zero by adding smaller particles. Finally, 

when 𝑞 > optimum, the porosity never reaches zero and eventually settles into a fixed 

value if we add more finer particles [35].  

The derivation of the Dinger and Funk model is brilliantly described using an 

empirical approach in their book. However, it is also possible to derive their model by 

truncating the power law distribution. According to Tokmachev [55], a doubly truncated 

probability density function is defined as: 
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𝑡(𝑥) =
𝑝(𝑥)

∫ 𝑝(𝑥)𝑑𝑥
𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

               𝑥𝑚𝑖𝑛  ≤ 𝑥 < 𝑥𝑚𝑎𝑥 ,   𝑥𝑚𝑖𝑛 > 0, 𝑥𝑚𝑎𝑥 > 𝑥𝑚𝑖𝑛   ,            (17)   

 

where 𝑝(𝑥) is our original probability density function.  

 

Integrating equation 17, we can quickly obtain the doubly truncated cumulative 

distribution: 

 

𝑇(𝑥) =
∫ 𝑝(𝑡)𝑑𝑡
𝑥
𝑥𝑚𝑖𝑛

∫ 𝑝(𝑥)𝑑𝑥
𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

              𝑥𝑚𝑖𝑛  ≤ 𝑥 < 𝑥𝑚𝑎𝑥 ,   𝑥𝑚𝑖𝑛 > 0, 𝑥𝑚𝑎𝑥 > 𝑥𝑚𝑖𝑛    .            (18)   

  

Combining equations 15 and 17, we find that the doubly truncated power law is 

given by: 

 

𝑡(𝑥) =
𝑐𝑥𝑐−1

𝑥𝑚𝑎𝑥
𝑐  −𝑥𝑚𝑖𝑛

𝑐     .                                                                                           (19)   

 

Integrating, we get: 

 

𝑇(𝑥) =
𝑥𝑐  − 𝑥𝑚𝑖𝑛

𝑐

𝑥𝑚𝑎𝑥
𝑐  −𝑥𝑚𝑖𝑛

𝑐    .                                                                                            (20)   

 

Comparing equations 7 and 20, it is straightforward to see that the Dinger-Funk 

model is, in fact, a doubly truncated power function distribution with 𝑐 = 𝑞, 𝑥𝑚𝑎𝑥 =

𝐷𝑚𝑎𝑥 , and 𝑥𝑚𝑖𝑛 = 𝐷𝑚𝑖𝑛.Therefore, the Andreasen-Andersen and Dinger-Funk models 

are not only closely related but also have a well-defined mathematical behavior: the 

power law. 
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4 WEIBULL DISTRIBUTION 

 

Originally identified by Fréchet [56] in 1927 and extensively studied by Weibull 

[38], the Weibull distribution is one of the most common models when analyzing non-

normal data. A powerful tool in several areas of science and engineering, the Weibull 

distribution can also be utilized to model particle size distributions [36, 57, 58, 59].  

Described by three main parameters, location (𝑎), scale (𝑏), and shape (𝑐), the 

Weibull distribution (illustrated in Figure 5) encompasses a family of versatile and 

flexible functions that may be used to describe many types of distributions, whether 

they are approximately symmetrical or skewed [39, 40, 52]. Its number-weighted 

definition is given below:  

 

𝑝(𝐷) =  
𝑐

𝑏
(
𝐷−𝑎

𝑏
)
𝑐−1

𝑒
−(
𝐷−𝑎

𝑏
)
𝑐

               𝑥 ≥ 𝑎;  𝑎, 𝑏, 𝑐 > 0      ,                                                                        (21)   

 

where 𝐷 is the i-th diameter of a particle. 

 

Figure 5 - Weibull distributions with variable parameters. Source: Author, 2024. 



29 
 

 

The main properties of this distribution are presented in table 2 [39, 40, 41, 52]:  

 

Table 2 – Properties of a Weibull distribution 

 

Parameters 

 

 

Random Variable 𝒙, Location Parameter (𝒂), Scale Parameter (𝒃) and 

Shape Parameter (𝒄) 

 

Range 

 

 

𝑥 ≥ 𝑎;  𝑎, 𝑏, 𝑐 > 0 

 

PDF 

 

𝑓(𝑥) =
𝑐

𝑏
(
𝑥 − 𝑎

𝑏
)
𝑐−1

𝑒−(
𝑥−𝑎
𝑏 )

𝑐

 

 

Mean 

 

 

𝐸(𝑋) =  𝑎 + 𝑏𝛤(1 + 1/𝑐) ‡ 

 

Mode 

 

 

𝑀𝑜𝑑𝑒(𝑥) =  {
𝑎 + 𝑏(1 − 1/𝑐)1/𝑐,   𝑐 ≥ 1        

𝑎,   0 < 𝑐 ≤ 1                                
 

 

Median 

 

 

𝑀𝑒𝑑(𝑥) = 𝑎 + 𝑏(𝑙𝑛2)1/𝑐 

 

Variance 

 

 

𝑉𝑎𝑟(𝑥) =  𝑏2{𝛤(1 + 2/𝑐) − [𝛤(1 + 1/𝑐)]2} 

 

Coefficient of 

Variation 

(Polydispersity 

Index) 

 

 

𝛼 =  
𝑏{𝛤(1 + 2/𝑐) − [𝛤(1 + 1/𝑐)]2}1/2

𝑎 + 𝑏𝛤(1 + 1/𝑐)
 

 

 

Skewness 

 

𝑆 =
𝛤 (1 +

3
𝑐) − 3𝛤 (1 +

2
𝑐)𝛤 (1 +

1
𝑐) + 2 [𝛤 (1 +

1
𝑐)]

3

{𝛤 (1 +
2
𝑐) − [𝛤 (1 +

1
𝑐)]

2

}

3/2  

 

 

Kurtosis 

 

 

𝐾 =
𝛤 (1 +

4
𝑐
) − 4𝛤 (1 +

3
𝑐
)𝛤 (1 +

1
𝑐
) + 6𝛤 (1 +

2
𝑐
) [𝛤 (1 +

1
𝑐
)]
2

− 3 [𝛤 (1 +
1
𝑐
)]
4

{𝛤 (1 +
2
𝑐) − [𝛤 (1 +

1
𝑐)]

2

}

2  

‡ Where 𝛤(𝑥) is the gamma function of 𝑥, defined as: 𝛤(𝑥) = ∫ 𝑡𝑥−1
∞

0 𝑒−𝑡𝑑𝑡. 



30 
 

 

Since the Weibull distribution was originally employed to analyze coal slurries 

[36], it is also a suitable candidate for describing the solid phase of magnetorheological 

fluids. For the sake of simplicity, however, in this study, we will only analyze the 

behavior of the number-weighted Weibull distribution since it is easier to implement in 

the packing algorithms. Then, we will analyze how well this model can estimate the 

packing fraction of an arrangement of spherical particles.  

Now that all models have their statistics well described, it should be easier to 

apply them in the context of magnetorheology. Recall from equations 10 and 11 that 

there is a well-defined relationship between the packing efficiency (which is controlled 

by the particle size distribution) and the relative viscosity of a suspension. If we 

somehow develop a simulation method to calculate this packing efficiency, we may be 

able to optimize the properties of future formulations of magnetorheological fluids.  

These simulation methods will be described in the following sections. 

 

5 METHODOLOGY 

 

By reviewing the literature, we can find several algorithms that may be used to 

estimate the maximum packing fraction of an arrangement of particles [60, 61, 62]. 

Among them, two stand out: the 1D algorithm developed by Farr and Groot [63] and 

the 3D algorithm by Desmond and Weeks [26]. Our simulations will be based on these 

two methods, and we will provide a detailed description of each.  

 

5.1 FARR AND GROOT ALGORITHM (1D) 

 

Most algorithms described in the literature simulate the spherical particles in two 

or three dimensions. However, these algorithms often require a powerful computer to 

run, and depending on the number of particles used, these simulations may take 

several weeks to finish. 

Aiming to simplify this process, Farr and Groot [63] developed an ingenious 

method to run the packing calculations by mapping the 3D particles into one-

dimensional rods. By using this method, it is possible to estimate the random close 

packing fraction (𝜙𝑅𝐶𝑃) of each population of sphere-like particles, such as particles of 

carbonyl iron powder (CIP). To do so, the authors define a “distribution of diameters” 

(rod distribution) via the following algorithm: 
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Suppose that we have a random arrangement of spherical particles in a system. 

Now imagine that we draw a random line of size 𝑅 throughout these particles, such 

that the portion of this random line contained within each particle creates a rod of size 

𝐿𝑖. This is illustrated in Figure 6: 

 

 

The probability of this random line to produce a rod of length 𝐿 is given by [63]: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ 𝑝3𝐷(𝐷)𝑑𝐷
∞
𝐿

∫ 𝑝3𝐷(𝐷)𝐷
2𝑑𝐷

∞
0

   ,                                                                                 (22)        

 

where 𝑝3𝐷(𝐷) is the regular particle size distribution and 𝑝1𝐷(𝐿) is the normalized, 

number-weighted “rod distribution” - a probability density function that expresses the 

frequency of each rod size. All packing calculations depend on this function. 

 

There are several ways to implement this function computationally. The original 

algorithm from Farr and Groot used the inverse transform method by calculating the 

cumulative distribution of 𝑝1𝐷: 

 

Figure 6 – By drawing a random line through an arrangement of particles, we can create a series of rods 

𝐿1, 𝐿2, 𝐿3, …𝐿𝑁, each with probability 𝑝(𝐿𝑖). Source: Farr and Groot, 2009 (modified). 
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𝐹(𝐿) = ∫ 𝑝1𝐷
𝐿

0
(𝐿′)𝑑𝐿′   .                                                                                     (23) 

  

Then, a numerical method is used to compute the inverse of 𝐹(𝐿) via binary 

search.  After the set of rods 𝐿1, 𝐿2, 𝐿3, … 𝐿𝑁 is generated, the maximum packing fraction 

𝜓 can be estimated as: 

 

 𝜓 =
∑𝐿𝑖

R
   ,            (24)      

 

where 𝑅 is the length of the random line. This method is extremely versatile and is also 

way faster than most packing algorithms. Their original version, SpherePack1D, is 

available for download at https://sourceforge.net/projects/spherepack1d/. 

 

5.1.1 RCPython 

 

Despite its usefulness, the original Farr and Groot algorithm has some 

limitations: so far, it only runs simulations based on Dirac delta functions and log-

normal distributions. Since our goal is to study power law and Weibull models, we 

decided to use the theory described in Farr and Groot [63] and Farr [64] to translate 

their original algorithm to Python and add other types of particle size distributions.  

Our modified version of the algorithm, called RCPython, will be made available 

online under the GNU General Public License. The full list of implemented distributions 

(and all their calculations) is given in Appendix B. It is worth mentioning that the 

algorithm of the Dirac delta function and log-normal distributions (as well as their 

mixtures) follow the exact same formulas used in Farr and Groot’s original algorithm 

but translated into a different programming language. 

 

5.1.2 Testing RCPython and Comparing Both Algorithms 

 

To check if the RCPython algorithm is working as intended, some experimental 

data from Manuel et al. [48] were tested in both algorithms and their results were then 

compared.  

 

 

https://sourceforge.net/projects/spherepack1d/
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We begin our tests by using the ‘-𝑙’ parameter in SpherePack1D, which 

computes the random close packing fraction 𝜙𝑅𝐶𝑃 based on two important constants, 

the 𝐷4,3 and 𝐷3,2. The 𝐷4,3, also called the De Brouckere mean diameter, measures the 

volume-weighted mean particle size. The 𝐷3,2, the so-called Sauter mean diameter, 

measures the surface-weighted mean particle size. Their definitions are given as 

follows [20, 64]: 

 

𝐷4,3 =
⟨𝐷4⟩

⟨𝐷3⟩
   ,                                                                                                    (25)      

 

𝐷3,2 =
⟨𝐷3⟩

⟨𝐷2⟩
   ,                                                                                                    (26)      

 

where ⟨𝐷𝑛⟩ = ∫ 𝐷𝑛𝑃(𝐷)𝑑𝐷
∞

0
 is the n-th raw moment of the distribution. 

 

The code was then entered as follows: 

 

spherepack1d -l -p 3 

 

D4,3 (fine)   D3,2 (fine)   Mass_used_in_the_mixture (fine) 

 

D4,3 (medium) D3,2 (medium) Mass_used_in_the_mixture (medium) 

 

D4,3 (coarse) D3,2 (coarse) Mass_used_in_the_mixture (coarse) 

 

From our previous work, detailed in Manuel et al. [48], we know that: 

 

Table 3 – Experimental data from each powder (volume-based) 

 

Powder ID 

 

D10 (μm) 

 

D50 (μm) D90 (μm) D4,3 (μm) D3,2 (μm) 

 

#1 (Fine) 
 

1.49 2.98 11.30 4.69 2.73 

 
#2 (Medium) 

 

4.57 8.29 14.46 8.99 7.44 

 
#3 (Coarse) 

 

6.52 18.94 42.82 23.36 13.42 
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Table 4  – Experimental data for each powder (number-based) 

 

Powder ID 
 

D10 (μm) 

 

D50 (μm) D90 (μm) D4,3 (μm) D3,2 (μm) 

 
#1 (Fine) 

 
0.95 1.43 2.49 4.69 2.73 

 
#2 (Medium) 

 
2.96 4.59 8.07 8.99 7.44 

 

#3 (Coarse) 
 

2.12 3.42 8.15 23.36 13.42 

 

 

Also, from Manuel et al. [48], the following amounts of carbonyl iron powders 

were used to prepare the blends: 

 

Table 5 – Amounts of powder used in the blends 

 

 

Blend ID 

 

Powder 1 
(Fine) (g) 

Powder 2 
(Medium) (g) 

 
Powder 3 

(Coarse) (g) 

 

Total (g) 

A  
 
0 
 

150 0 150 

B  
 

25 
 

100 25 150 

C  
 

50 
 

50 50 150 

 

 

 

Substituting the values above in SpherePack1D and RCPython, we get: 
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Table 6 – Maximum packing fractions of the experimental blends (𝐷4,3  and 𝐷3,2) 

 

 

 

 

 

 

 

 

 

 

 

As one can see, the results are almost identical up to five decimal places. Then, 

the simulations were re-run using the ‘−𝑁’ parameter, adding more rods and increasing 

precision:   

 

spherepack1d -l -p 3 -N 100000 

 

D4,3 (fine)   D3,2 (fine)   Mass_used_in_the_mixture (fine) 

 

D4,3 (medium) D3,2 (medium) Mass_used_in_the_mixture (medium) 

 

D4,3 (coarse) D3,2 (coarse) Mass_used_in_the_mixture (coarse) 

 

Inputting the values from Tables 3, 4 and 5 into both algorithms, we get: 

 

Table 7 – Maximum packing fractions of the experimental blends (𝐷4,3  and 𝐷3,2, 100000 rods) 

 

 

 

 

 

 

 

 

 

 

 
Spherepack1D 

 

 
RCPython 

 

 
Blends 

 

 

𝝓𝒎𝒂𝒙 

 
Blends 

 

 

𝝓𝒎𝒂𝒙 

 
A 

 
0.694950 

 

 
A 

 
0.694950 

 

 
B 

 
0.747812 

 

 
B 

 
0.747814 

 

 
C 

 
0.792017 

 

 
C 

 
0.792019 

 

 

Spherepack1D 

 

 

RCPython 
 

 

Blends 

 

 

𝝓𝒎𝒂𝒙 

 

Blends 

 

 

𝝓𝒎𝒂𝒙 

 

A 

 

0.694953 
 

 

A 

 

0.694953 
 

 
B 

 
0.747832 

 

 
B 

 
0.747834 

 

 
C 

 
0.792039 

 

 
C 

 
0.792041 

 



36 
 

 

And once again, the results are practically identical. We then repeated all these 

simulations using another parameter: the occluded volume. According to Farr [64], the 

occluded volume is the total volume occupied by the particles when submerged in a 

liquid they are insoluble; that is, it is the volume the particles displace in an 

Archimedean sense. For each population of particles, their occluded volume can be 

computed as: 

 

𝑣𝑖 =
𝑚𝑖

𝜌𝑖
   ,                                                                                (27) 

where 𝑚𝑖  is the mass of a given population of particles and 𝜌𝑖 is the density of this 

population. Note that the occluded volume of each blend will vary according to the 

amounts of powder that were used in the formulation.  

 

Since we need the true densities of each population of particles, the samples 

from Manuel et al. [48] were analyzed via helium pycnometry. These results are 

expressed in Tables 8, 9 and 10: 

 

 

Table 8 – Densities and occluded volumes of each powder in blend A 

 

 

Powder ID 

 

 
𝒎𝒊 (g) 

 

𝝆𝒊 (g.cm-3) 
 

𝒗𝒊 (cm3) 

 

#1 (Fine) 
 

 

0 
 

 

7.7448 

 

0 

 
#2 (Medium) 

 

 
150 

 

 
7.8406 

 
19.1312 

 
#3 (Coarse) 

 

 
0 

 

 
7.8729 

 
0 
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Table 9 – Densities and occluded volumes of each powder in blend B 

 

 
Powder ID 

 

 
𝒎𝒊 (g) 

 

𝝆𝒊 (g.cm-3) 
 

𝒗𝒊 (cm3) 

 
#1 (Fine) 

 

 
25 
 

 
7.7448 

 
3.2280 

 
#2 (Medium) 

 

 
100 

 

 
7.8406 

 
12.7541 

 

#3 (Coarse) 
 

 

25 
 

 

7.8729 

 

3.1754 

 

 

Table 10 – Densities and occluded volumes of each powder in blend C 

 

 
Powder ID 

 

 
𝒎𝒊 (g) 

 

𝝆𝒊 (g.cm-3) 
 

𝒗𝒊 (cm3) 

 

#1 (Fine) 
 

 

50 
 

7.7448 

 

6.4559 

 

#2 (Medium) 
 

 

50 
 

7.8406 

 

6.3771 

 
#3 (Coarse) 

 

 
50 

 

7.8729 
 

6.3509 

 

 

The following code was then entered in SpherePack1d: 

 

spherepack1d -l -p 3 

 

D4,3 (fine)   D3,2 (fine)   Occluded_Volume_of_the_Powder (fine) 

 

D4,3 (medium) D3,2 (medium) Occluded_Volume_of_the_Powder (medium) 

 

D4,3 (coarse) D3,2 (coarse) Occluded_Volume_of_the_Powder (coarse) 

 

 

The values from Tables 8, 9 and 10 were inputted in both algorithms, generating: 
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Table 11 – Maximum packing fractions of the experimental blends (Occluded volume) 

 

 

 

 

 

 

 

 

 

 

 

 

We can see that the results are extremely close. Finally, the simulations were 

repeated in both algorithms one last time with an increased number of rods:  

 

spherepack1d -l -p 3 -N 100000 

 

D4,3 (fine)   D3,2 (fine)   Occluded_Volume_of_the_Powder (fine) 

 

D4,3 (medium) D3,2 (medium) Occluded_Volume_of_the_Powder (medium) 

 

D4,3 (coarse) D3,2 (coarse) Occluded_Volume_of_the_Powder (coarse) 

 

Then we got: 

 

Table 12 – Maximum packing fractions of the experimental blends (Occluded volume, 100000 rods) 

 

 

 

 

 

 

 

 

 

 

 
Spherepack1D 

 

 
RCPython 

 

 
Blends 

 

 

𝝓𝒎𝒂𝒙 

 
Blends 

 

 

𝝓𝒎𝒂𝒙 

 
A 

 
0.694950 

 

 
A 

 
0.694950 

 

 
B 

 
0.748128 

 

 
B 

 
0.748130 

 

 
C 

 
0.792099 

 

 
C 

 
0.792101 

 

 
Spherepack1D 

 

 
RCPython 

 

 
Blends 

 

 

𝝓𝒎𝒂𝒙 

 
Blends 

 

 

𝝓𝒎𝒂𝒙 

 
A 

 
0.694953 

 

 
A 

 
0.694953 

 

 
B 

 
0.748148 

 

 
B 

 
0.748150 

 

 
C 

 
0.792121 

 

 
C 

 
0.792123 
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We can see once more that the results were practically the same. Therefore, it 

is safe to conclude that RCPython correctly reproduces the results from 

SpherePack1D.  

 

5.1.3 Implementing new probability distributions 

 

After translating the algorithm, it is straightforward to add new distributions to it. 

The steps below can be used to add any type of distribution to the code and were taken 

directly from Farr [64]: 

 

1. Start the computations by calculating the number-weighted rod distribution 

(𝑝1𝐷) using equation 22: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ 𝑝3𝐷(𝐷)𝑑𝐷
∞
𝐿

∫ 𝑝3𝐷(𝐷)𝐷
2𝑑𝐷

∞
0

   ,                                                                         

 

where 𝐷 is the diameter, 𝑝3𝐷(𝐷) is a number-weighted probability distribution, 

and 𝐿 is the rod length. 

 

2. Then, we compute the cumulative distribution of 𝑝1𝐷 using equation 23: 

 

𝐹(𝐿) = ∫ 𝑝1𝐷
𝐿

0
(𝐿′)𝑑𝐿′  .                                                                                

 

Now, compute the inverse of the cumulative distribution, that is, 𝐹−1(𝐿). This 

function will sample the rod sizes.  

 

Remark: This process can be done analytically or numerically. The method 

used in Farr [64] is numerical and uses a type of algorithm called binary 

search [65]. 

 

3. Finally, generate a list of lengths such that: 

 

𝐿𝑖 = 𝐹
−1 (

2𝑁−2𝑖+1

2𝑁
)   .                                                                                 (28) 
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Lists are easily created in Python and can be passed as arguments to equations 

22, 23 and 28 to compute the rod sizes. To better illustrate this procedure, we will 

compute these equations for the Dirac delta function.  

 

The Dirac delta function describes a monodisperse arrangement of spheres and 

is defined as [66]: 

 

𝛿(𝑥 − 𝑥0) = {
∞, 𝑖𝑓 𝑥 = 𝑥    ,  
0, 𝑖𝑓 𝑥 ≠ 𝑥0  .

          (29) 

 

And, therefore, a probability distribution of monodisperse spheres is given by: 

 

𝑝3𝐷(𝐷) = 𝛿(𝐷 − 𝐷0)  ,    −∞ < 𝐷 < ∞  ,         (30) 

 

where 𝐷0 is the mean size of the particles. From equation 22 we know that a rod 

distribution is computed as: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ 𝑝3𝐷(𝐷)𝑑𝐷
∞
𝐿

∫ 𝑝3𝐷(𝐷)𝐷
2𝑑𝐷

∞
0

  . 

 

Substituting the function 𝑝3𝐷(𝐷) with the Dirac delta function, we get: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ 𝛿(𝐷−𝐷0)𝑑𝐷
∞
𝐿

∫ 𝛿(𝐷−𝐷0)𝐷
2𝑑𝐷

∞
0

 . 

 

The integral from the denominator can be reduced to: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ 𝛿(𝐷−𝐷0)𝑑𝐷
∞
𝐿

𝐷0
2  . 

 

But one must be extra careful with the integral on the numerator, since it goes 

from [𝐿,∞), instead of  (−∞,∞).  
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To solve this integral, we must remember that there is a well-defined relationship 

between the Dirac Delta function and the Heaviside step function 𝜃 [66]: 

 

∫ 𝛿(𝐷′ − 𝐷0)𝑑𝐷′
𝐷

−∞
= 𝜃(𝐷 − 𝐷0) .          (31) 

 

By taking the original integral from the delta function and splitting it in two parts, 

we get: 

 

∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷
∞

−∞
= ∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷

𝐿

−∞
+ ∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷

∞

𝐿
 . 

 

And: 

 

1 = 𝜃(𝐿 − 𝐷0) + ∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷
∞

𝐿
 . 

 

Therefore: 

 

∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷
∞

𝐿
= 1 − 𝜃(𝐿 − 𝐷0) . 

 

The Heaviside step function has an important identity: 

 

 

𝜃(𝑥 − 𝑥0) + 𝜃(𝑥0 − 𝑥) = 1 . 

 

Therefore: 

∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷
∞

𝐿
= 𝜃(𝐷0 − 𝐿) . 

 

And we finally get: 

 

𝑝1𝐷(𝐿) =
2𝐿

𝐷0
2 𝜃(𝐷0− 𝐿) = {

2𝐿

𝐷0
2 ,   𝑖𝑓 𝐿 ≤ 𝐷0 ,

0,   𝑖𝑓 𝐿 > 𝐷0   .
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Now, we calculate the cumulative rod distribution:  

 

𝐹(𝐿) = ∫ 𝑝1𝐷(𝐿
′)𝑑𝐿′

𝐿

0
 . 

 

Since the function above is defined piecewise, we have: 

 

𝐹(𝐿) = {
∫
2𝐿′

𝐷0
2 𝑑𝐿′

𝐿

0

,   𝑖𝑓 𝐿 ≤ 𝐷0  ,

0,   𝑖𝑓 𝐿 > 𝐷0   .                     

 

 

And therefore: 

 

𝐹(𝐿) = {(
𝐿

𝐷0
)

2

,   𝑖𝑓 𝐿 ≤ 𝐷0  ,         

0,   𝑖𝑓 𝐿 > 𝐷0   .                  

 

 

The inverse of 𝐹(𝐿) was then implemented numerically in Python via binary 

search. 

 

5.1.4 Reading histograms 

 

One useful feature added to RCPython is the ability to compute the maximum 

packing fraction based on number-sized histograms, that is, raw experimental data. 

This feature was developed in collaboration with Dr. Eric R. Weeks and Emory 

University and closely follow the methods described in section 4.3 of Farr [64]. The 

calculations are made as described below. 

 

We start by assuming that we have a mixture of two particle sizes 𝐷1 and 𝐷2, 

with 𝐷2 > 𝐷1 and such that: 

 

𝑝3𝐷(𝐷) =
1

2
𝛿(𝐷 − 𝐷1) +

1

2
𝛿(𝐷 − 𝐷2) . 

 

Then, using the Farr and Groot algorithm, we would have:  
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𝑝1𝐷(𝐿) = 2𝐿
∫ [𝛿

1

2
𝛿(𝐷−𝐷1)+

1

2
𝛿(𝐷−𝐷2)]𝑑𝐷

∞

𝐿

∫ [𝛿
1

2
𝛿(𝐷−𝐷1)+

1

2
𝛿(𝐷−𝐷2)]𝐷

2𝑑𝐷
∞

0

 . 

 

The integral from the denominator quickly evaluates to: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ [𝛿

1

2
𝛿(𝐷−𝐷1)+

1

2
𝛿(𝐷−𝐷2)]𝑑𝐷

∞

𝐿
1

2
[𝐷1
2+𝐷2

2]
 . 

 

The integral on the numerator, however, must be treated carefully, since it goes 

from [𝐿,∞), instead of  (−∞,∞). As with the Dirac Delta functions, we need to make 

sure that it includes all the “peaks”. Therefore, we must split the integral into three 

parts: 

 

∫ [𝛿
1

2
𝛿(𝐷 − 𝐷1) +

1

2
𝛿(𝐷 − 𝐷2)]𝑑𝐷

∞

𝐿

= {

1 ,   𝑖𝑓 𝐿 < 𝐷1     ,      
1

2
,   𝑖𝑓 𝐷1 < 𝐿 < 𝐷2   ,

0,   𝑖𝑓 𝐿 > 𝐷2    .       

 

 

And the rod distribution for a mixture of two monodisperse population quickly 

becomes: 

 

𝑝1𝐷(𝐿) = {

4𝐿 (𝐷1
2 +𝐷2

2)⁄ ,   𝑖𝑓 𝐿 < 𝐷1    ,                       

2𝐿 (𝐷1
2+𝐷2

2)⁄ ,   𝑖𝑓 𝐷1 < 𝐿 < 𝐷2   ,             

0,   𝑖𝑓 𝐿 > 𝐷2     .                                            

                                                    (32) 

 

This argument can be generalized to a sum of 𝑁 monodisperse distributions 

𝐷1 , 𝐷2 ,𝐷3 ,… ,𝐷𝑁. To do so, suppose that we have a mixture of 𝑁 particle populations 

such that: 

 

𝑝3𝐷(𝐷) =
1

𝑁
𝛿(𝐷 − 𝐷1) +

1

𝑁
𝛿(𝐷 − 𝐷2) +

1

𝑁
𝛿(𝐷 − 𝐷3)+ ⋯+

1

𝑁
𝛿(𝐷 − 𝐷𝑁)   .  

 

Then, via the Farr and Groot algorithm, we get: 
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𝑝1𝐷(𝐿) = 2𝐿
∫ [

1

𝑁
𝛿(𝐷−𝐷1)+

1

𝑁
𝛿(𝐷−𝐷2)+

1

𝑁
𝛿(𝐷−𝐷3)+⋯+

1

𝑁
𝛿(𝐷−𝐷𝑁)]𝑑𝐷

∞

𝐿

∫ [
1

𝑁
𝛿(𝐷−𝐷1)+

1

𝑁
𝛿(𝐷−𝐷2)+

1

𝑁
𝛿(𝐷−𝐷3)+⋯+

1

𝑁
𝛿(𝐷−𝐷𝑁)]𝐷2𝑑𝐷

∞

0

   . 

 

The integral from the denominator quickly evaluates to: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ [

1

𝑁
𝛿(𝐷−𝐷1)+

1

𝑁
𝛿(𝐷−𝐷2)+

1

𝑁
𝛿(𝐷−𝐷3)+⋯+

1

𝑁
𝛿(𝐷−𝐷𝑁)]𝑑𝐷

∞
𝐿

1

𝑁
[𝐷1
2+𝐷2

2+𝐷3
2+⋯+𝐷𝑁

2 ]
   . 

 

But the integral on the numerator, again, must be treated carefully, and we need 

to make sure that it includes all the “peaks”. To do so, we split the integral into 𝑁 + 1 

parts: 

 

∫ 𝑝3𝐷(𝐷)𝑑𝐷
∞

𝐿

=

{
 
 
 
 

 
 
 
 
1 ,   𝑖𝑓 𝐿 < 𝐷1     ,                                                                         

(𝑁 − 1) 𝑁⁄ ,   𝑖𝑓 𝐷1 < 𝐿 < 𝐷2     ,                                              

(𝑁 − 2) 𝑁⁄ ,   𝑖𝑓 𝐷2 < 𝐿 < 𝐷3     ,                                              

(𝑁 − 3) 𝑁⁄ ,   𝑖𝑓 𝐷3 < 𝐿 < 𝐷4   ,                                                

⋮                                                      

1 𝑁⁄ ,   𝑖𝑓 𝐷𝑁−1 < 𝐿 < 𝐷𝑁    ,                                                      

0,   𝑖𝑓 𝐿 > 𝐷𝑁    .                                                                          

 

 

And the rod distribution for a mixture of 𝑁 monodisperse population becomes: 

 

𝑝1𝐷(𝐿) =

{
 
 
 
 

 
 
 
 
2𝑁𝐿 (𝐷1

2 +𝐷2
2 +𝐷3

2+ ⋯+ 𝐷𝑁
2)⁄ ,   𝑖𝑓 𝐿 < 𝐷1      ,               

2(𝑁 − 1)𝐿/(𝐷1
2+ 𝐷2

2+𝐷3
2 +⋯+𝐷𝑁

2),   𝑖𝑓 𝐷1 < 𝐿 < 𝐷2   ,

2(𝑁 − 2)𝐿/(𝐷1
2+𝐷2

2 +𝐷3
2+ ⋯+ 𝐷𝑁

2),   𝑖𝑓 𝐷2 < 𝐿 < 𝐷3   ,

2(𝑁 − 3)𝐿/(𝐷1
2+ 𝐷2

2+𝐷3
2 +⋯+𝐷𝑁

2),   𝑖𝑓 𝐷3 < 𝐿 < 𝐷4

⋮

2(1)𝐿/(𝐷1
2+ 𝐷2

2+𝐷3
2 +⋯+𝐷𝑁

2),   𝑖𝑓 𝐷𝑁−1 < 𝐿 < 𝐷𝑁    ,

0,   𝑖𝑓 𝐿 > 𝐷𝑁  .                                                                               

  ,           (33) 

 

Then, via the inversion method, we can calculate the CDF of this distribution:  

 

𝐹(𝐿) = ∫ 𝑝1𝐷(𝐿
′)𝑑𝐿′

𝐿

0
  . 
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For two populations of particles, we get: 

 

𝐹(𝐿) = {

2𝐿′2/(𝐷1
2+𝐷2

2) ,   𝑖𝑓 𝐿 < 𝐷1   ,                  

(𝐷1
2 + 𝐿′2)/(𝐷1

2 +𝐷2
2),   𝑖𝑓 𝐷1 < 𝐿 < 𝐷2   ,

1,   𝑖𝑓 𝐿 > 𝐷2    .                                              

                                                (34) 

 

And for 𝑁 populations of particles, we finally get: 

 

𝐹(𝐿) =

{
 
 
 
 

 
 
 
 
𝑁𝐿′2/(𝐷1

2 +𝐷2
2 + 𝐷3

2 +⋯+𝐷𝑁
2) ,   𝑖𝑓 𝐿′ < 𝐷1     ,                                                                          

[𝐷1
2 + (𝑁 − 1)𝐿′2]/(𝐷1

2 +𝐷2
2 +𝐷3

2 + ⋯+ 𝐷𝑁
2),   𝑖𝑓 𝐷1 < 𝐿′ < 𝐷2     ,                                       

[𝐷1
2 +𝐷2

2 + (𝑁 − 2)𝐿′2]/(𝐷1
2+𝐷2

2 +𝐷3
2 + ⋯+ 𝐷𝑁

2),   𝑖𝑓 𝐷2 < 𝐿′ < 𝐷3         ,                        

[𝐷1
2 + 𝐷2

2 +𝐷3
2 + (𝑁 − 3)𝐿′2]/(𝐷1

2+ 𝐷2
2 +𝐷3

2 +⋯+𝐷𝑁
2),      𝑖𝑓 𝐷3 < 𝐿′ < 𝐷4      ,             

⋮

[𝐷1
2 +𝐷2

2 +𝐷3
2 + ⋯+ 𝐷𝑁−1

2 + 𝐿′2]/(𝐷1
2+ 𝐷2

2 +𝐷3
2 +⋯+ 𝐷𝑁

2),   𝑖𝑓 𝐷𝑁−1 < 𝐿′ < 𝐷𝑁      ,

1,   𝑖𝑓 𝐿′ > 𝐷𝑁      .                                                                                                                                   

     (35) 

 

The inverse function of the integral 𝐹(𝐿) can then be computed numerically (via 

binary search) or analytically to generate values following 𝑝1𝐷(𝐿). 

 

5.2 DESMOND AND WEEKS ALGORITHM (3D) 

 

We have already defined a one-dimensional algorithm that approximates the 

maximum packing fraction using one-dimensional rods. Now, we will establish a more 

accurate, three-dimensional version of these calculations. To do so, we will follow the 

same methodology from a previous work, which is detailed in Manuel et al. [48]. Also, 

note that we will be using the radius 𝑅 instead of the diameter 𝐷 in all the calculations 

of this method. 

Then, in order to compute the random close packing volume fractions of our 

size distributions, we will follow the computational methods from Xu, Blawzdziewicz, 

and O’Hern [47], and Desmond and Weeks [26, 67]. We begin by taking the 

experimentally determined particle size distribution and generating N random particle 

radii consistent with the desired particle size distribution.  Then, we randomly place 

these N particles in a large cubical box with periodic boundary conditions, with the box 

size chosen so that the starting volume fraction is 1% (or 0.1% if the ratio of largest 

particle radius to smallest is larger than 50). 
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Starting from this initial condition, we gradually increase the size of all particles 

in small steps and move the particles that overlap until we reach a close packed state. 

Specifically, at each size increase step, we expand the particles by multiplying their 

radii by 1 + ε, so that the particle size distribution remains unchanged except for the 

overall scale. In particular, the polydispersity, skewness, and kurtosis remain 

unchanged. After an expansion step, we then examine all particles that are touching 

another particle. We treat each particle as a soft particle with an interaction potential 

that is equal to the square of the overlap of each particle pair. That is, this potential 

goes smoothly to zero at the separation distance rij equal to the sum of the two particle 

radii (Ri + Rj); and the potential increases as (Ri + Rj - rij)2 when particles overlap. We 

consider overlapping particles in random order, moving an individual particle via two 

conjugate gradient steps to minimize the interaction energy, hopefully to zero.  For any 

particles not in contact with any other particles, we move them a small random step (if 

that does not cause any new overlaps). This random step facilitates finding dense 

packings. When the total system energy is reduced below a numerical tolerance, the 

next expansion step is tried. 

At some point, the total system energy cannot be reduced below the chosen 

tolerance. The program then reverts to a lower volume fraction, reduces the expansion 

factor ε, and then tries another expansion step. This is repeated until no expansion 

seems to be possible. At this point, the computation slightly decreases the size of all 

particles (by a uniform multiplicative factor) so that the energy is strictly zero, which is 

to say that no particles are overlapping at all, and this determines the final random 

close packing state for the N particles. 

We then repeat this process many times for N = 300, 400, 800, and 1600 

particles; each repetition is performed with a new set of N random particle sizes drawn 

from a desired particle size distribution. For each N, we then compute the mean 

random close packing volume fraction. Following the work of Desmond and Weeks 

[67], we note that the mean volume fraction grows linearly with N-1/3, thus allowing us 

to extrapolate to the N → ∞ limit and then compute the maximum packing fraction. For 

a perfectly monodisperse packing, this algorithm yields 𝜙𝑅𝐶𝑃  = 63.6 ± 0.1%, in good 

agreement with experimental observations.  
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5.3 RUNNING THE PARTICLE SIMULATIONS 

 

Finally, the algorithms described in sections 5.1 and 5.2 were used to compute 

the maximum packing fractions of our spheroidal carbonyl iron powders. These 

calculations were performed for the volume-weighted power laws and the number-

weighted Weibull distribution. The goal was to test how well the power laws and Weibull 

distributions estimate the packing efficiency and to search for an optimum configuration 

that creates the highest maximum packing fraction, and consequently, the lowest 

possible viscosity. These results are detailed in the following sections. 

 

6 RESULTS AND DISCUSSION 

 

After defining our methodology, it is now possible to run the simulations and 

check how well our algorithms can estimate the packing fractions of the power law and 

Weibull models.  

 

6.1 SIMULATION RESULTS – DINGER-FUNK DISTRIBUTION 

 

We shall start with the Dinger-Funk distribution since it is the modern version of 

the Andreasen-Andersen model and also because, due to the truncation, it always 

converges. According to the theory proposed by Dinger and Funk, in order to obtain 

the densest possible arrangement, the distribution modulus must be 𝑞 = 0.37  in 3D 

systems. Therefore, by plotting the maximum packing fraction against the distribution 

modulus, we should expect an optimum point around this region.  

 

For a fixed number of rods (𝑁 =  16000, which is the default value used by 

SpherePack1D), the following exponents from the Dinger-Funk distribution were tested 

in RCPython: 
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Table 13 – Maximum packing fractions of the Dinger-Funk distribution 

(RCPython, 16000 rods, number-weighted, 𝐷𝑚𝑖𝑛 =  0.1 𝜇𝑚, 𝐷𝑚𝑎𝑥 =  50 𝜇𝑚) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distribution Modulus (𝒒) 

 

𝝓𝒎𝒂𝒙 

 

 

-1 

 

0.689700 

 

-0.50 

 

0.750065 

 

0 

 

0.847714 

 

0.30 

 

0.903343 
 

0.35 

 

0.910615 
 

0.37 

 

0.913323 
 

0.40 

 

0.917162 
 

0.45 

 

0.922954 
 

0.50 

 

0.923939 

 

0.55 

 

0.918213 
 

0.60 

 

0.909825 
 

1 

 

0.831217 

 

1.5 

 

0.755432 

 

2 

 

0.719430 

 

2.5 

 

0.698070 

 

3 

 

0.684398 

 

3.5 

 

0.675150 

 

4 

 

0.668625 
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These data allow us to plot the following graph: 

 

 

 

 Note that the optimum point is located at 𝑞 =  0.5, which is not far from the value 

predicted by Dinger and Funk (𝑞 =  0.37). What is even more interesting, however, is 

that this trend also appears for wider size ranges: for a distribution with 𝐷𝑚𝑖𝑛  =  0.1 𝜇𝑚 

and 𝐷𝑚𝑎𝑥 = 100 𝜇𝑚, we have:  

 

 

 

 

 

 

Figure 7 - The optimum packing fraction of the volume-weighted Dinger-Funk 

distribution with size range 0.1 – 50 µm. Source: Author, 2024 
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Table 14 – Maximum packing fractions of the Dinger-Funk distribution 

(RCPython, 16000 rods, number-weighted, 𝐷𝑚𝑖𝑛 =  0.1 𝜇𝑚, 𝐷𝑚𝑎𝑥 =  100 𝜇𝑚) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distribution Modulus (𝒒) 

 

𝝓𝒎𝒂𝒙 

 

 

-1 

 

0.689862 

 

-0.50 0.752923 

 

0 0.861280 

 

0.30 

 

0.922010 
 

0.35 

 

0.929588 
 

0.37 

 

0.932378 
 

0.40 

 

0.936305 
 

0.45 

 

0.941984 
 

0.50 0.939432 

 

0.55 

 

0.931093 
 

0.60 

 

0.922553 
 

1 0.840337 

 

1.5 0.755680 

 

2 0.719436 

 

2.5 0.698070 

 

3 0.684398 

 

3.5 0.675150 

 

4 0.668625 
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This allows us to plot the following graph: 

 

 

 

 

For a distribution with 𝐷𝑚𝑖𝑛  =  0.1 𝜇𝑚 and 𝐷𝑚𝑎𝑥 = 1000 𝜇𝑚, we have:  

 

 

 

 

 

 

 

 

 

Figure 8 - The optimum packing fraction of the volume-weighted Dinger-Funk 

distribution with size range 0.1 – 100 µm. Source: Author, 2024 
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Table 15 – Maximum packing fractions of the Dinger-Funk distribution  

(RCPython, 16000 rods, number-weighted, 𝐷𝑚𝑖𝑛 =  0.1 𝜇𝑚, 𝐷𝑚𝑎𝑥 =  1000 𝜇𝑚) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distribution Modulus (𝒒) 

 

𝝓𝒎𝒂𝒙 

 

 

-1 0.689923 

 

-0.50 0.756266 

 

0 0.893029 

 

0.30 

 

0.961735 
 

0.35 

 

0.968519 
 

0.37 

 

0.970887 
 

0.40 

 

0.974096 
 

0.45 

 

0.975789 
 

0.50 0.972384 

 

0.55 

 

0.971825 
 

0.60 

 

0.970894 
 

1 0.881235 

 

1.5 0.756390 

 

2 0.719438 

 

2.5 0.698070 

 

3 0.684398 

 

3.5 0.675150 

 

4 0.668625 
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This allows us to plot the following graph: 

 

 

 

Therefore, this “peak” seems to appear independently of the size range of our 

particles. We can also plot the three graphs together, to analyze the dependency of 

the maximum packing fraction on the size ratio of our particles. This is depicted in 

Figure 10: 

Figure 9 - The optimum packing fraction of the volume-weighted Dinger-Funk 

distribution with size range 0.1 – 1000 µm. Source: Author, 2024 
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As we can see, the greater the ratio 𝐷𝑚𝑎𝑥/𝐷𝑚𝑖𝑛 , the greater the packing. But 

we can extend our tests even further: to ensure the accuracy and consistency of our 

results, we can run more simulations with the same exponents, but this time using the 

3D algorithm. This should allow us to rigorously validate our data and check how well 

the results agree by using a different type of simulation.  

 

Assuming a size ratio 𝐷𝑚𝑎𝑥/𝐷𝑚𝑖𝑛  =  100, the following exponents were tested: 

 

 

 

 

 

 

Figure 10 - The optimum packing fraction depends on the size range. 

Source: Author, 2024. 
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Table 16 – Maximum packing fractions of the Dinger-Funk model  

(3D algorithm, volume-weighted, size ratio = 100) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on these data, we can plot the following graph: 

 

 

 

 

Distribution Modulus (𝒒) 

 

𝝓𝒎𝒂𝒙 

 

-1 

 
 

0.691998 

 
-0.5 

 
 

0.721206 

 
0.1 

 
 

0.779553 

 
0.30 

 
 

0.802665 

 
0.40 

 
 

0.811636 

 
0.5 

 
 

0.802592 

 
0.6 

 
 

0.796253 

 
0.8 

 
 

0.761905 

 
2 

 
 

0.697348 

 
3 

 
 

0.6720086 

 
4 

 
 

0.657323 
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Although the packings generated by the 1D (purple line) and 3D (blue triangles) 

simulations are slightly different, both algorithms predicted an optimum packing 

fraction at around 𝑞 ≈  0.40. This value is not only close to what Dinger and Funk 

predicted (𝑞 ≈  0.37), but also agrees well with results already published in the recent 

literature [68, 69]. However, one must take care with the overestimation generated by 

the 1D algorithm since packings of 95% would be hard to achieve experimentally. Also, 

we can expect the 3D algorithm to be more accurate since it runs several simulations 

with different numbers of particles and then computes the mean random close packing 

fraction via extrapolation. 

 
 

 
 
 

Figure 11 – The optimum packing fraction generated by a Dinger-Funk distribution. Both simulations, 1D (purple line) 

and 3D (blue triangles), predicted an optimum packing fraction at around 0.40. Source: Author, 2024. 
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6.2 SIMULATION RESULTS – ANDREASEN-ANDERSEN 

 

We can also use the previous methods to test the Andreasen-Andersen 

distribution. According to their model, the maximum packing fraction of a population of 

particles can be estimated through a “regular” power law. Also, if the distribution 

modulus falls anywhere between 1/3 <  𝑞 < 1/2, this packing is optimum and 

generates the lowest possible viscosity. With that in mind, we can plot the following 

graph: 

 

By analyzing Figure 12, we can notice that the region between 1/3 <  𝑞 < 1/2 

is located between the blue and green lines. Any packing outside this region will be 

non-optimum and will generate higher viscosities for our magnetorheological fluids. 

With that in mind, we shall test several exponents inside and outside this region and 

check their packing fractions. 

 

Figure 12 – The Andreasen-Andersen model for several 𝑞 exponents. Source: Author, 2024. 
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For the same fixed number of rods (𝑁 =  16000, which is the default value used 

by SpherePack1D), and by assuming that 𝐷𝑚𝑎𝑥 = 100 𝜇𝑚, the following exponents 

were tested: 

 

Table 17 – Maximum packing fractions of the Andreasen-Andersen 

equation for different exponents (RCPython, 16000 rods, 𝐷𝑚𝑎𝑥 = 100 𝜇𝑚, volume-weighted) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Distribution Modulus (𝒒) 

 

𝝓𝒎𝒂𝒙 

 

 
0.01 

 
1.000000 

 
0.05 0.996720 

 
0.1 0.945767 

 
0.15 0.876791 

 
0.2 0.835152 

 
0.3 0.796649 

 
0.4 0.771821 

 
0.5 0.756857 

 
0.75 0.734940 

 
1 0.719438 

 
1.5 0.698070 

 
2 0.684398 

 
2.5 0.675150 

 
3 0.668625 

 
4 0.660293 

 
5 0.655407 

 
10 0.647002 

 
100 0.643520 
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We can plot the following graph: 

 

Compare this plot to Figures 7 - 10: due to the mathematical definition of the 

power law, the Andreasen-Andersen distribution is not well-behaved. Since it is not 

doubly truncated, the packing efficiency diverges for some values of the algorithm, and 

it fails to describe the regions below 𝑞 < 0. As a result, the algorithm overflows and we 

cannot estimate an optimum packing fraction since the behavior of the function is 

asymptotic. 

The main power law results, however, arise from the Dinger-Funk distribution: 

the data show that we can optimize the off-state viscosity of an MRF by carefully 

adjusting the distribution modulus of a truncated power law. In fact, if these results are 

confirmed experimentally, they should allow us to reduce the viscosity of MRF in 

general and prepare fluids with even greater magnetorheological effects.   

 

 

 

Figure 13 - The maximum packing fraction × distribution modulus results for the volume-

weighted Andreasen-Andersen distribution. Source: Author, 2024. 
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6.3 SIMULATION RESULTS – WEIBULL DISTRIBUTION 

 

Recall from section 4 that the number-weighted Weibull distribution is an 

extremely flexible function due to its three parameters: location (a), scale (b), and 

shape (c). Therefore, to better analyze how these parameters will influence the 

polydispersity, we must change their values as little as possible.  

 We will start by analyzing the influence of the shape factor on the packing of 

the solid particles. As should be expected, even small changes in this parameter can 

cause significant changes in the overall shape of the distribution. This is illustrated in 

Figure 14: 

 

 

However, it also causes significant changes in the polydispersity of the solid 

particles: 

 

 

 

Figure 14 - By adjusting only the shape parameter 𝑐, it is possible to get many shapes 

of the Weibull distribution, each with different packing efficiencies. Source: Author, 2024 
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Table 18 – Maximum packing fractions of the Weibull distribution for different shape parameters  

(RCPython, number-weighted, 16000 rods) 

 

 

 

As we can see, there seems to be an inverse relationship between the shape 

parameter 𝑐 and the maximum packing fraction. By increasing the shape parameter, 

we decrease the packing efficiency. This result makes sense if we consider the 

polydispersity index (coefficient of variation) of the number-weighted Weibull 

distribution, which is described in equation 36: 

 

𝛼 =
𝜎

𝜇
=
𝑏2[Γ(1+

2

𝑐
)−Γ2(1+

1

𝑐
)]

𝑏Γ(1+
1

𝑐
)+𝑎

   .                                                                (36) 

 

From the formula above, we can see that by increasing the shape parameter, 

the coefficient of variation gets smaller and smaller and, therefore, the polydispersity 

decreases. However, it is also worth mentioning that we must avoid choosing a 

minimum particle size that is too small; otherwise, the MR effect is lost, and the 

suspension becomes a ferrofluid. Now, consider three different Weibull distributions 

centered around the same mode, as illustrated in Figure 15: 

 

 

 

Distribution 

 

 

Shape Parameter (c) 

 

 

Polydispersity 

Index (𝜶) 
 

𝝓𝒎𝒂𝒙 

 
Blue 

 
0.5 

 
10 

 
0.771422 

 
Red 

 
1.0 

 
1 

 
0.720659 

 
Green 

 
1.5 

 
0.42 

 
0.697482 

 
Golden 

 
5.0 

 
0.05 

 
0.656684 
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By inputting the parameters 𝑎, 𝑏, and 𝑐 from Figure 15 into RCPython, we get 

the following values of 𝜙𝑀𝑎𝑥: 

 

Table 19 – Maximum packing fractions of the Weibull distribution centered around the same mean 

(RCPython, number-weighted, 16000 rods) 

 

 

 

 

 

 

 

 

 

 
Distribution 

 

 
Polydispersity 

Index (𝜶) 

 

 

𝝓𝒎𝒂𝒙 

 
Blue 

 
0.26 

 
0.664659 

 
Red 

 
0.66 

 
0.680572 

 
Black 

 
1.69 

 
0.695474 

Figure 15 - By centering the distributions around the same mode, it is possible to 

better analyze their polydispersity. Source: Author, 2024 
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As we can see, broadening the size distribution can increase the maximum 

packing fraction. This result is in good agreement with what we previously reported in 

Manuel et al. [48] and shows that, independently of the size distribution, greater ranges 

of particle sizes can contribute even further to the polydispersity of the solid phase.  

Also, note that the modes in Figure 15 do not need to be matched, since the maximum 

packing fraction is independent of the mode. 

 

7 CONCLUSIONS 

 

Magnetorheological fluids are smart materials whose properties are directly 

influenced by the packing of their solid phase. By carefully adjusting the concentration, 

size, and particle size distribution of its magnetic particles, it is possible to greatly 

improve the magnetorheological effect, which is responsible for its most relevant 

properties. Depending on the particle size distribution utilized, the relative viscosity of 

these fluids can be significantly enhanced, and, in this context, the power law and 

Weibull distributions arise as well-established methods to adjust the solid phase. In 

this work, we have studied three statistical models, the Andreasen-Andersen 

distribution, the Dinger-Funk distribution, and the Weibull distribution. By modifying a 

powerful algorithm from the literature, we were able to study these models in-depth 

and explain their significance in the context of magnetorheology. According to the data, 

the Dinger-Funk model is well-behaved and gives an optimum packing fraction that 

should allow us to reduce the viscosity of future magnetorheological formulations 

significantly. The Andreasen-Andersen, however, is mathematically limited and did not 

prove useful in predicting an optimum packing fraction for the magnetic particles. The 

Weibull distribution proved useful not only as a good model to describe the solid phase, 

but also as a very flexible function that can be used to design many shapes of 

histograms. As a proposal for future works, we suggest investigating whether the 

observed behavior can be applied in practice in magnetorheology and if it works with 

other smart materials, such as magnetorheological gels and electrorheological fluids, 

in addition to MRF with different materials and volume fractions. These results, 

however, are not restricted to magnetorheology. Since the algorithms use geometric 

arguments throughout their calculations, we expect them to be useful in several other 

areas of science and engineering, especially when working with particulate materials. 
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APPENDIX A – COMMON PARTICLE SIZE DISTRIBUTIONS 

 

In the literature, several probability distributions are used to describe the 

variations in particle sizes. The most common choices are:  

 

1. Dirac delta function: 

 

The delta function is a mathematical object that completely describes the 

packing of monodisperse spheres; that is, the packing of spheres with the same 

diameter. From equation 29, we know it is defined as follows [66]: 

 

𝛿(𝑥 − 𝑥0) = {
∞,   𝑖𝑓 𝑥 = 𝑥0  ,
0,     𝑖𝑓 𝑥 ≠ 𝑥0 .

                                                                                

 

Therefore, a probability distribution consisting of monodisperse spheres was 

given by equation 30: 

 

𝑝3𝐷(𝐷) = 𝛿(𝐷 − 𝐷0) ,    −∞ < 𝐷 < ∞    ,                                                            

 

where 𝐷0 is the mean particle size. The most important properties of the delta function 

are [66]: 

 

𝛿(𝑥) = 𝛿(−𝑥)    ,                                                                                                (37) 

 

∫ 𝛿(𝑥 − 𝑥0)𝑑𝑥
∞

−∞
= 1    ,                                                                                    (38) 

 

∫ 𝑓(𝑥)𝛿(𝑥)𝑑𝑥
∞

−∞
= 𝑓(0) and ∫ 𝑓(𝑥)𝛿(𝑥 − 𝑥0)𝑑𝑥

∞

−∞
= 𝑓(𝑥0)   .                              (39) 

 

In this context, the delta function is extremely important in both science and 

statistics since it returns the value of the function 𝑓(𝑥) at the point 𝑥 = 𝑥0. The Dirac 

delta function is illustrated in Figure 16: 
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Also, from equation 31, we know that there is an important relationship between 

the Dirac Delta function and the Heaviside step function [66]: 

 

𝜃(𝑥 − 𝑥0) = ∫ 𝛿(𝑥′ − 𝑥0)𝑑𝑥′
𝑥

−∞
    .                                                                        

 

And therefore: 

 

𝑑

𝑑𝑥
𝜃(𝑥 − 𝑥0) = 𝛿(𝑥 − 𝑥0)       ,                                                                          (40) 

 

where 𝜃(𝑥 − 𝑥0) is the unit step function. 

 

 

 

 

Figure 16 – The Dirac 𝛿 function is a mathematical object that is zero everywhere, except at the point 𝑥 = 𝑥0, where it 

goes to infinity. Also, the area under the “curve” is always equal to one. Source: Author, 2024. 
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2. Normal distribution (gaussian): 

 

The most important and most widely used probability distribution in all statistics, 

the normal distribution encompasses a family of symmetrical bell-shaped curves that 

differ from each other by the location parameter (𝜇) and the shape parameter (𝜎). First 

described by de Moivre in 1733, the normal distribution is also known as the Gaussian 

distribution, in honor of the German mathematician Carl Friedrich Gauss, who 

developed and applied this function to study the motion of celestial bodies [52, 70, 71]. 

An example is illustrated in Figure 17: 

 

 

 

The Gaussian distribution appears in a wide range of phenomena across 

science and mathematics [70, 71] and is sometimes used to describe the polydispersity 

of particulate materials, especially when we have narrower ranges of sizes [20, 72]. 

The main properties of this distribution are expressed in Table 20 [52, 70, 71]: 

Figure 17 - A normal distribution centered at 𝜇 = 4 with 𝜎 = 1 . Source: Author, 2024. 
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Table 20 – Properties of a normal distribution 

 

 

Parameters 

 

 

Random Variable 𝑿, Mean (𝝁) and 

Standard Deviation (𝝈) 

 

Range 

 

−∞ < 𝑋 < ∞;  𝜎 > 0 

 

PDF 

 

𝑓(𝑥) =  
1

𝜎√2𝜋
𝑒𝑥𝑝(−

1

2𝜎2
(X − 𝜇)2) 

 

Mean 

 

𝐸(𝑋) =  𝜇 

 

Mode 

 

𝑀𝑜𝑑𝑒(𝑋) =  𝜇 

 

Median 

 

𝑀𝑒𝑑(𝑋) = 𝜇 

 

Variance 

 

𝑉𝑎𝑟(𝑋) =  𝜎2 

 

Coefficient of Variation 

(Polydispersity Index) 

 

𝛼 =  𝜎/𝜇 

 

Skewness 

 

𝑆 = 0 

 

Kurtosis 

 

𝐾 = 3 
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3. Log-normal distribution: 

 

During the study of particulate materials, one often encounters skewed 

distributions, which are common when the mean values are low, strictly positive, and 

with wide variances. In this regard, the traditional Gaussian distribution is not able to 

accurately represent the data and, therefore, the use of log-normal distributions is 

common practice [20, 22]. 

 

 

 

As one can see in Figure 18, unlike the symmetrical Gaussian distributions, log-

normal distributions are asymmetric, that is, they always have 𝑆 > 0. Its main 

properties are summarized in Table 21 [ 22, 26, 52, 73]: 

 

 

 

 

 

Figure 18 - A log-normal distribution in a) a linear scale and b) a logarithmic scale. Source: Author, 2024. 
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Table 21 – Properties of a log-normal distribution 

 

 

Parameters 

 

 

Random Variable 𝑿, Mean (𝝁) of 𝐥𝐧(𝑿)  and 

Standard Deviation (𝝈) of 𝐥𝐧(𝑿) 

 

Range 

 

0 < 𝑋 < ∞;  𝜎 > 0 

 

 

PDF 

 

𝑓(𝑥) = {
 
1

𝑋𝜎√2𝜋
𝑒𝑥𝑝(−

1

2𝜎2
(ln(𝑋) − 𝜇)2) , 𝑋 > 0

0,   𝑋 ≤ 0                                                          

 

 

Mean 

 

𝐸(𝑋) =  𝑒( 𝜇+
1
2 𝜎

2)
 

 

Mode 

 

𝑀𝑜𝑑𝑒(𝑋) =  𝑒( 𝜇−𝜎
2) 

 

Median 

 

𝑀𝑒𝑑(𝑋) = 𝑒𝜇 

 

Variance 

 

𝑉𝑎𝑟(𝑋) = 𝑒( 2𝜇+𝜎
2). (𝑒𝜎

2
− 1) 

 

Coefficient of Variation 

(Polydispersity Index) 

 

𝛼 =  √𝑒𝜎2 − 1 

 

Skewness 

 

𝑆 = (𝑒𝜎
2
+ 2) √𝑒𝜎2 − 1 

 

Kurtosis 

 

𝐾 = 𝑒4𝜎
2
+ 2𝑒3𝜎

2
+  3𝑒2𝜎

2
− 3 
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APPENDIX B – IMPLEMENTED DISTRIBUTIONS IN RCPYTHON 

 

This is the list of distributions currently implemented in RCPython. Note that all 

of them are computed using the following two steps: First, we calculate the rod 

distribution, as described in Farr [64]. Then, we use either an analytical or a numerical 

method to generate the rods according to this rod distribution, as detailed in Numerical 

Recipes [74]. We’ll start with the simplest case where we only have one particle size 

distribution; that is, only one population of particles. Most of these individual 

distributions have a link from DESMOS for the readers to test each parameter for 

themselves. 

 

1. Dirac delta function: 

 

The delta function completely describes the packing of monodisperse spheres, 

that is, spheres with the same diameter. From section 3.2.1, we know that: 

 

𝛿(𝑥 − 𝑥0) = {
∞, 𝑖𝑓 𝑥 = 𝑥0   ,  
0, 𝑖𝑓 𝑥 ≠ 𝑥0   .

 

 

And, therefore, a probability distribution of monodisperse spheres is given by: 

 

𝑝3𝐷(𝐷) = 𝛿(𝐷 − 𝐷0) ,    −∞ < 𝐷 < ∞   , 

 

where 𝐷0 is the mean size of the particles. 

 

a) Rod distribution: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ 𝛿(𝐷−𝐷0)𝑑𝐷
∞

𝐿

∫ 𝛿(𝐷−𝐷0)𝐷2𝑑𝐷
∞

0

   . 
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The integral from the denominator quickly reduces to: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ 𝛿(𝐷−𝐷0)𝑑𝐷
∞

𝐿

𝐷0
2    . 

 

But one must be extra careful with the integral on the numerator, since it goes 

from [𝐿,∞), instead of  (−∞,∞). To solve this integral, we must remember that there is 

a well-defined relationship between the Dirac Delta function and the Heaviside step 

function: 

 

∫ 𝛿(𝐷′ − 𝐷0)𝑑𝐷′
𝐷

−∞
= 𝜃(𝐷 − 𝐷0)   . 

 

By taking the original integral from the delta function and splitting it in two parts, 

we get: 

 

∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷
∞

−∞
= ∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷

𝐿

−∞
+ ∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷

∞

𝐿
   , 

 

 

and: 

 

1 = 𝜃(𝐿 − 𝐷0) + ∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷
∞

𝐿
  . 

 

Therefore: 

 

∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷
∞

𝐿
= 1 − 𝜃(𝐿 − 𝐷0)  . 

 

 

The Heaviside step function has an important identity: 

 

𝜃(𝑥 − 𝑥0) + 𝜃(𝑥0 − 𝑥) = 1  . 
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Therefore: 

 

∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷
∞

𝐿
= 𝜃(𝐷0 − 𝐿)  , 

  

and we finally get: 

 

𝑝1𝐷(𝐿) =
2𝐿

𝐷0
2 𝜃(𝐷0− 𝐿) = {

2𝐿

𝐷0
2 ,   𝑖𝑓 𝐿 ≤ 𝐷0  ,

0,   𝑖𝑓 𝐿 > 𝐷0   .

 

 

b) Cumulative distribution: 

  

 

𝐹(𝐿) = ∫ 𝑝1𝐷(𝐿
′)𝑑𝐿′

𝐿

0
  . 

 

Since the function above is defined piecewise, we have: 

 

𝐹(𝐿) = {
∫
2𝐿′

𝐷0
2 𝑑𝐿′

𝐿

0

,   𝑖𝑓 𝐿 ≤ 𝐷0  ,

0,   𝑖𝑓 𝐿 > 𝐷0   ,                

 

 

and therefore: 

 

𝐹(𝐿) = {(
𝐿

𝐷0
)
2

,   𝑖𝑓 𝐿 ≤ 𝐷0  ,         

0,   𝑖𝑓 𝐿 > 𝐷0   .

 

 

The inverse of 𝐹(𝐿) was then implemented numerically in Python via binary 

search. 
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2. Log-normal distribution: 

 

The most common distribution in particle size analysis, the log-normal 

distribution has density defined as follows: 

 

𝑝3𝐷(𝐷) =
1

𝐷𝜎√2𝜋
exp {−

[𝑙𝑛(𝐷/𝐷0  )]
2

2𝜎2
}  ,   0 < 𝐷 < ∞ ;  𝜇 > 0 ;   𝜎 > 0   , 

 

where 𝐷0 is the mean size of the logarithm of the diameters and 𝜎 is the standard 

deviation of the logarithm of the diameters. 

 

a) Rod distribution: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫

1

𝐷𝜎√2𝜋
exp{−

[𝑙𝑛(𝐷/𝐷0)]
2

2𝜎2
}𝑑𝐷

∞

𝐿

∫
𝐷

𝜎√2𝜋
exp{−

[𝑙𝑛(𝐷/𝐷0)]
2

2𝜎2
}𝑑𝐷

∞

0

   . 

 

 To solve this expression, note that the denominator of 𝑝1𝐷(𝐿) is the second raw 

moment of the log-normal distribution, that is [52, 64, 73]: 

 

𝐸[𝑋2] = 𝑉𝑎𝑟[𝑋] + 𝐸2[𝑋] = ∫
𝐷

𝜎√2𝜋
exp {−

[𝑙𝑛(𝐷/𝐷0)]
2

2𝜎2
}𝑑𝐷 = 𝐷0

2exp (2
∞

0

𝜎2)  . 

 

Therefore: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫

1

𝐷𝜎√2𝜋
exp {−

[𝑙𝑛(𝐷/𝐷0)]
2

2𝜎2
} 𝑑𝐷

∞

𝐿

𝐷0
2exp (2𝜎2)

   . 

 

Reorganizing the exponential, we get: 

 

𝑝1𝐷(𝐿) =
2𝐿

𝐷0
2exp (2𝜎2)

 ∫
1

𝐷𝜎√2𝜋
exp {−(

ln(𝐷/𝐷0)

𝜎√2
)

2

}𝑑𝐷
∞

𝐿

   . 

 

 



82 
 

 

Since 𝑒𝑟𝑓𝑐(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

∞

𝑥
, we factor out 1/√𝜋 : 

 

𝑝1𝐷(𝐿) =
2𝐿

𝐷0
2exp (2𝜎2)

1

√𝜋
∫

1

𝐷𝜎√2
exp {−(

ln(𝐷/𝐷0)

𝜎√2
)

2

}𝑑𝐷
∞

𝐿

   . 

 

Then, we let 𝑢 =
ln(𝐷/𝐷0)

𝜎√2
 and 𝑑𝑢 =

1

𝐷𝜎√2
𝑑𝐷: 

 

𝑝1𝐷(𝐿) =
𝐿

𝐷0
2exp (2𝜎2)

2

√𝜋
 ∫ exp{−𝑢2}𝑑𝑢
∞

𝐿

   . 

 

and we can clearly see that: 

 

𝑝1𝐷(𝐿) =
𝐿 exp(−2𝜎2)

𝐷0
2 𝑒𝑟𝑓𝑐 [

ln(𝐿/𝐷0)

𝜎√2
]   . 

 

b) Cumulative Distribution: 

  

𝐹(𝐿) = ∫ 𝑝1𝐷(𝐿′)𝑑𝐿′
𝐿

0

= ∫
𝐿′ exp(−2𝜎2)

𝐷0
2 𝑒𝑟𝑓𝑐 [

ln(𝐿′/𝐷0)

𝜎√2
]𝑑𝐿′

𝐿

0

   . 

 

Using identity 25 from Farr [64], we know that: 

 

𝑉𝑎𝑟(𝐷)𝐹(𝐿) = 𝐿2∫ 𝑝3𝐷(𝐷)𝑑𝐷
∞

𝐿

+∫ 𝑝3𝐷(𝐷)𝐷
2𝑑𝐷 

𝐿

0

 , 

 

and therefore: 

 

𝐹(𝐿) =
𝐿2 ∫ 𝑝3𝐷(𝐷)𝑑𝐷

∞

𝐿

𝑉𝑎𝑟(𝐷)
+
∫ 𝑝3𝐷(𝐷)𝐷

2𝑑𝐷 
𝐿

0

𝑉𝑎𝑟(𝐷)
   , 

 

𝐹(𝐿) =
𝐿2 ∫ 𝑝3𝐷(𝐷)𝑑𝐷

∞

𝐿

𝐷0
2exp (2𝜎2)

+
∫ 𝑝3𝐷(𝐷)𝐷

2𝑑𝐷 
𝐿

0

𝐷0
2exp (2𝜎2)

   . 
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The integral on the left is easier to solve: 

 

𝐹(𝐿) =
𝐿2

𝐷0
2exp (2𝜎2)

[1 −
1

2
𝑒𝑟𝑓𝑐 (−

ln(𝐿 𝐷0⁄ )

𝜎√2
) ]  + 

∫ 𝑝3𝐷(𝐷)𝐷
2𝑑𝐷 

𝐿

0

𝐷0
2exp (2𝜎2)

   , 

 

and we get: 

 

𝐹(𝐿) =
𝐿2exp (−2𝜎2)

2𝐷0
2 𝑒𝑟𝑓𝑐 [

ln(𝐿/𝐷0)

𝜎√2
] + 

∫ 𝑝3𝐷(𝐷)𝐷
2𝑑𝐷 

𝐿

0

𝐷0
2exp (2𝜎2)

   . 

 

The integral on the right side is trickier. However, from Farr [64], equation 20, 

we know that: 

 

𝐼𝑛(𝐿) = ∫ 𝐷𝑛 exp {−(
ln(𝐷/𝐷0)

𝜎√2
)

2

} 𝑑𝐷
∞

𝐿

= 𝐷0
𝑛+1𝜎√

𝜋

2
 𝑒[(𝑛+1)

2𝜎2 2⁄ ] 𝑒𝑟𝑓𝑐 [
ln(𝐿 𝐷0⁄ )

𝜎√2
−
(𝑛 + 1)𝜎

√2
]   . 

 

Therefore: 

 

𝐹(𝐿) =
𝐿2exp (−2𝜎2)

2𝐷0
2 𝑒𝑟𝑓𝑐 [

ln(𝐿/𝐷0)

𝜎√2
]  +  

1

𝐷0
2exp (2𝜎2)

[𝑉𝑎𝑟(𝐷) −
1

𝜎√2𝜋
𝐼1(𝐿)]   , 

 

 

𝐹(𝐿) =
𝐿2exp (−2𝜎2)

2𝐷0
2 𝑒𝑟𝑓𝑐 [

ln(𝐿/𝐷0)

𝜎√2
]  +  

1

𝐷0
2exp (2𝜎2)

[𝐷0
2exp (2𝜎2) −

1

𝜎√2𝜋
𝐼1(𝐿)]   . 

 

And finally: 

 

𝐹(𝐿) =
𝐿2 exp(−2𝜎2) 

2𝐷0
2 𝑒𝑟𝑓𝑐 [

ln(𝐿/𝐷0)

𝜎√2
]+ 1−

1

2
𝑒𝑟𝑓𝑐 [

ln(𝐿/𝐷0)

𝜎√2
−
2𝜎

√2
]   . 

 

 

The inverse of 𝐹(𝐿) was then implemented numerically using binary search.  

 

 DESMOS → https://www.desmos.com/calculator/gzh8itolth?lang=pt-BR 

https://www.desmos.com/calculator/gzh8itolth?lang=pt-BR


84 
 

 

3. Weibull distribution: 

 

The Weibull distribution is one of the most powerful tools in reliability analysis 

and can also be utilized to model particle size distributions. In its most basic form, the 

Weibull distribution has only one parameter, as follows:  

 

𝑝(𝐷) = 𝑐𝐷𝑐−1 exp{−𝐷𝑐}  ,   0 ≤ 𝐷 < ∞ ;   𝑐 > 0   . 

 

However, we want to implement the more general, three-parameter version of the 

Weibull distribution, which is defined as: 

 

𝑝3𝐷(𝐷) =
𝑐

𝑏
(
𝐷 − 𝑎

𝑏
)
𝑐−1

exp {− (
𝐷 − 𝑎

𝑏
)
𝑐

} ,   𝑎 ≤ 𝐷 < ∞ ;   𝑎,   𝑏,   𝑐 > 0   , 

 

where 𝑐 is the shape parameter, 𝑏 is the scale parameter, and 𝑎 is the location 

parameter. To “convert” the one-parameter Weibull into its number-weighted three-

parameter form, we can perform a location-scale transformation: 

 

𝑝3𝐷(𝐷) =
1

𝑏
𝑝(
𝐷 − 𝑎

𝑏
)   . 

 

From the formula above, we get: 

 

𝑐𝐷𝑐−1 exp{−𝐷𝑐}   
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛−𝑠𝑐𝑎𝑙𝑒
→              

𝑐

𝑏
(
𝐷 − 𝑎

𝑏
)
𝑐−1

exp {− (
𝐷 − 𝑎

𝑏
)
𝑐

}   . 

 

This same reasoning will be used to compute the rod distribution: first we will 

calculate the one-parameter rod distribution and then a location-scale transformation 

will be performed to obtain the three-parameter rod distribution. 
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a) Rod distribution: 

 

As stated before, the one-parameter Weibull is given by: 

 

𝑝(𝐷) = 𝑐𝐷𝑐−1 exp{−𝐷𝑐}  ,   0 ≤ 𝐷 < ∞ ;   𝑐 > 0   . 

 

Thus, its rod distribution is: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ 𝑐𝐷𝑐−1 exp{−𝐷𝑐}   𝑑𝐷
∞

𝐿

∫ 𝑐𝐷𝑐+1 exp{−𝐷𝑐}   𝑑𝐷
∞

0

   . 

 

To solve this expression, we first note that the denominator of 𝑝1𝐷(𝐿) is the second raw 

moment of the one-parameter Weibull, that is [39, 52, 64]: 

 

𝐸[𝑋2] = 𝑉𝑎𝑟[𝑋] + 𝐸2[𝑋] = ∫ 𝑐𝐷𝑐+1 exp{−𝐷𝑐}   𝑑𝐷
∞

0

= Γ (1 +
2

𝑐
)   . 

 

Therefore: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ 𝑐𝐷𝑐−1 exp{−𝐷𝑐}   𝑑𝐷
∞

𝐿

Γ (1 +
2

𝑐
)

   . 

 

To solve the integral at the numerator, we let 𝑢 = 𝐷𝑐 and 𝑑𝑢 = 𝑐𝐷𝑐−1𝑑𝐷. Then: 

 

∫ exp{−𝑢}𝑑𝑢
∞

𝐿

= |−exp[−𝑢]|𝐿
∞  .  

 

Substituting back the original values, we get: 

 

∫ 𝑐𝐷𝑐−1 exp{−𝐷𝑐}   𝑑𝐷
∞

𝐿

= |− exp[−𝐷𝑐]|𝐿
∞ = exp[−𝐿𝑐]   . 
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And finally: 

 

𝑝1𝐷(𝐿) = 2𝐿
exp[−𝐿𝑐]

Γ (1 +
2

𝑐
)
   . 

 

 Now, we can use the location-scale transformation to get our three-parameter 

rod distribution: 

 

2𝐿
exp[−𝐿𝑐]

Γ (1 +
2

𝑐
)
   
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛−𝑠𝑐𝑎𝑙𝑒
→             

2 (
𝐿 − 𝑎
𝑏
)exp [− (

𝐿 − 𝑎
𝑏
)
𝑐

]

bΓ(1 +
2

𝑐
)⏟                

   .

𝑇ℎ𝑟𝑒𝑒−𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑅𝑜𝑑 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

 

 

 

b) Cumulative Distribution: 

 

𝐹(𝐿) = ∫ 𝑝1𝐷(𝐿′)𝑑𝐿′
𝐿

𝑎

= ∫    
2 (
𝐿′ − 𝑎
𝑏 )exp [−(

𝐿′ − 𝑎
𝑏 )

𝑐

]

bΓ (1 +
2

𝑐
)

  𝑑𝐿′
𝐿

𝑎

   , 

 

𝐹(𝐿) =
2 ∫    (

𝐿′ − 𝑎
𝑏 ) exp [− (

𝐿′ − 𝑎
𝑏 )

𝑐

]   𝑑𝐿′
𝐿

𝑎

bΓ (1 +
2

𝑐
)

   . 

 

The integral in the numerator is not straightforward to solve. However, we can 

implement both 𝐹(𝐿) and its inverse numerically. This was done with the help of SciPy, 

a scientific computing library from Python. 

 

DESMOS → https://www.desmos.com/calculator/ts5hmopqqd?lang=pt-BR 

 

 

 

 

 

https://www.desmos.com/calculator/ts5hmopqqd?lang=pt-BR
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4. Andreasen-Andersen Distribution (Power Law): 

 

As described in section 4.1, the Andreasen-Andersen distribution is a volume-

weighted power law with probability density function: 

 

𝑝3𝐷(𝐷) = 𝑞.
𝐷𝑞−1

𝐷𝑚𝑎𝑥
𝑞

 
       0 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥 ;     𝑞 > 0 ;  𝐷𝑚𝑎𝑥 > 0   , 

 

where 𝐷𝑚𝑎𝑥  is the maximum particle size and 𝑞 is the exponent of the distribution, the 

so-called distribution modulus. To calculate its rod distribution, however, we first need 

to convert 𝑝3𝐷(𝐷) into a number-weighted distribution. Recall from equation 5 that: 

 

𝑞𝑟(𝐷) =
𝐷𝑟−𝑡

∫ 𝐷𝑟−𝑡𝑞𝑡(𝐷)𝑑𝐷
𝐷𝑚𝑎𝑥
𝐷𝑚𝑖𝑛 

 𝑞𝑡(𝐷)   ,                                                                                                                                                                                             

 

where 𝑞𝑡 is our original probability distribution and 𝑞𝑟 is our converted distribution. 

Setting 𝑟 =  0 and 𝑡 = 3,  we can get our number-weighted Andreasen-Andersen 

model: 

 

𝑝3𝐷 𝑁𝑢𝑚𝑏𝑒𝑟(𝐷) = (𝑞 − 3).
𝐷𝑞−4

𝐷𝑚𝑎𝑥
𝑞−3

 
       0 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥 ;     𝑞 > 3 ;  𝐷𝑚𝑎𝑥 > 0   . 

 

This is the function that will be used to compute the rod distribution.  

 

a) Rod distribution: 

 

Since the support of the Andreasen-Andersen model is truncated at 

[0, 𝐷𝑚𝑎𝑥], the rod distribution is calculated in a slightly different way: 

 

𝑝1𝐷(𝐿) = 2𝐿

∫ (𝑞 − 3).
𝐷𝑞−4

𝐷𝑚𝑎𝑥
𝑞−3  

𝑑𝐷
𝐷𝑚𝑎𝑥
𝐿

∫ (𝑞 − 3).
𝐷𝑞−4

𝐷𝑚𝑎𝑥
𝑞−3  

𝐷2𝑑𝐷
𝐷𝑚𝑎𝑥
0

   . 
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We can cancel out the constants to get: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ 𝐷𝑞−4𝑑𝐷
𝐷𝑚𝑎𝑥
𝐿

∫ 𝐷𝑞−2𝑑𝐷
𝐷𝑚𝑎𝑥
0

   , 

 

and the expression quickly reduces to: 

 

𝑝1𝐷(𝐿) = 2𝐿

|
𝐷𝑞−3

𝑞 − 3|
𝐿

𝐷𝑚𝑎𝑥

|
𝐷𝑞−1

𝑞 − 1
|
0

𝐷𝑚𝑎𝑥
   . 

 

Therefore: 

 

𝑝1𝐷(𝐿) = 2𝐿
(𝑞−1)

(𝑞−3)

(𝐷𝑚𝑎𝑥
𝑞−3

−𝐿𝑞−3)

(𝐷𝑚𝑎𝑥
𝑞−1

)
       0 ≤ 𝐿 ≤ 𝐷𝑚𝑎𝑥 ;     𝑞 > 1 ;  𝐷𝑚𝑎𝑥 > 0   . 

 

 

b) Cumulative Distribution: 

 

𝐹(𝐿) = ∫ 𝑝1𝐷(𝐿′)𝑑𝐿′
𝐿

0

= ∫ 2𝐿′
(𝑞 − 1)

(𝑞 − 3)

(𝐷𝑚𝑎𝑥
𝑞−3

− 𝐿′𝑞−3)

(𝐷𝑚𝑎𝑥
𝑞−1 )

𝑑𝐿′
𝐿

0

   . 

 

Factoring out the constants, we get: 

 

𝐹(𝐿) =
2(𝑞 − 1)

𝐷𝑚𝑎𝑥
𝑞−1 (𝑞 − 3)

∫ 𝐿′(𝐷𝑚𝑎𝑥
𝑞−3

− 𝐿′𝑞−3)𝑑𝐿′    ,
𝐿

0

 

 

𝐹(𝐿) =
2(𝑞 − 1)

𝐷𝑚𝑎𝑥
𝑞−1 (𝑞 − 3)

[∫ 𝐷𝑚𝑎𝑥
𝑞−3
𝐿′𝑑𝐿′

𝐿

0

−∫ 𝐿′𝑞−2𝑑𝐿′
𝐿

0

]   . 

 

These integrals are straightforward to solve: 
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𝐹(𝐿) =
2(𝑞−1)

𝐷𝑚𝑎𝑥
𝑞−1 (𝑞−3)

[
𝐷𝑚𝑎𝑥
𝑞−3

𝐿2

2
−
𝐿𝑞−1

𝑞−1
]      0 ≤ 𝐿 ≤ 𝐷𝑚𝑎𝑥 ;     𝑞 > 1 ;  𝐷𝑚𝑎𝑥 > 0   . 

 

Finally, to completely describe the behavior of the Andreasen-Andersen 

distribution, the exponent 𝑞 must be greater than zero. Therefore, 𝑝1𝐷(𝐿) and 𝐹(𝐿) 

need to be displaced one unit to the left. By substituting 𝑘 =  𝑞 –  1, we get: 

 

𝑝1𝐷(𝐿𝑘) = 2𝐿𝑘
𝑘

𝑘−2

(𝐷𝑚𝑎𝑥
𝑘−2−𝐿𝑘

𝑘−2)

(𝐷𝑚𝑎𝑥
𝑘 )

       0 ≤ 𝐿 ≤ 𝐷𝑚𝑎𝑥 ;     𝑘 > 0;  𝐷𝑚𝑎𝑥 > 0   , 

 

𝐹(𝐿𝑘) =
2𝑘

𝐷𝑚𝑎𝑥
𝑘 (𝑘−2)

[
𝐷𝑚𝑎𝑥
𝑘−2 𝐿𝑘

2

2
−
𝐿𝑘
𝑘

𝑘
]      0 ≤ 𝐿 ≤ 𝐷𝑚𝑎𝑥 ;    𝑘 > 0;  𝐷𝑚𝑎𝑥 > 0   . 

 

The inverse of 𝐹(𝐿𝑘) was then implemented numerically using binary search.  

 

DESMOS → https://www.desmos.com/calculator/tqayxjrrpe?lang=pt-BR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.desmos.com/calculator/tqayxjrrpe?lang=pt-BR
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5. Dinger-Funk Distribution (Doubly Truncated Power Law): 

 

As described in section 4.2, the Dinger-Funk distribution is a power law doubly 

truncated in the interval [𝐷𝑚𝑖𝑛 ,𝐷𝑚𝑎𝑥] and with probability density function given by: 

 

𝑝3𝐷(𝐷) = 𝑞.
𝐷𝑞−1

𝐷𝑚𝑎𝑥
𝑞

−𝐷𝑚𝑖𝑛
𝑞

 
       𝐷𝑚𝑖𝑛 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥 ;     𝑞 ≠ 0, 𝐷𝑚𝑖𝑛 ,𝐷𝑚𝑎𝑥 > 0   , 

 

where 𝐷𝑚𝑖𝑛 is the minimum particle size, 𝐷𝑚𝑎𝑥  is the maximum particle size and 𝑞 is 

the exponent of the distribution, called distribution modulus.  

Since the Dinger-Funk distribution is a truncated version of the Andreasen-

Andersen distribution, then the  Dinger-Funk rod distribution will also be a truncated 

version of the Andreasen-Andersen rod distribution. In other words, by truncating the 

following expression: 

 

𝑝1𝐷(𝐿) = 2𝐿
(𝑞−1)

(𝑞−3)

(𝐷𝑚𝑎𝑥
𝑞−3

−𝐿𝑞−3)

(𝐷𝑚𝑎𝑥
𝑞−1

)
   ,      0 ≤ 𝐿 ≤ 𝐷𝑚𝑎𝑥 ;     𝑞 > 1 ;  𝐷𝑚𝑎𝑥 > 0   . 

 

We can compute the Dinger-Funk rod distribution. 

 

a) Rod distribution: 

 

Recall from equation 17 that a doubly truncated probability distribution is defined 

as follows: 

 

𝑡(𝐷) =
𝑝(𝐷)

∫ 𝑝(𝐷)𝑑𝐷
𝐷𝑚𝑎𝑥
𝐷𝑚𝑖𝑛

   ,              𝐷𝑚𝑖𝑛  ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥 ,   𝐷𝑚𝑖𝑛 > 0, 𝐷𝑚𝑎𝑥 > 𝐷𝑚𝑖𝑛   .       

 

Therefore, the truncated Andreasen-Andersen rod distribution is:  

 

𝑝1𝐷(𝐿) =

2𝐿
(𝑞 − 1)
(𝑞 − 3)

(𝐷𝑚𝑎𝑥
𝑞−3

− 𝐿𝑞−3)

(𝐷𝑚𝑎𝑥
𝑞−1 )

∫ 2𝐿
(𝑞 − 1)
(𝑞 − 3)

(𝐷𝑚𝑎𝑥
𝑞−3 − 𝐿𝑞−3)

(𝐷𝑚𝑎𝑥
𝑞−1 )

𝑑𝐿
𝐷𝑚𝑎𝑥
𝐷𝑚𝑖𝑛

   . 
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Cancelling the constants, we get: 

 

𝑝1𝐷(𝐿) =
𝐿(𝐷𝑚𝑎𝑥

𝑞−3
− 𝐿𝑞−3)

∫ 𝐿(𝐷𝑚𝑎𝑥
𝑞−3 − 𝐿𝑞−3)𝑑𝐿

𝐷𝑚𝑎𝑥
𝐷𝑚𝑖𝑛

   . 

 

The integral in the denominator is straightforward to solve and quickly becomes: 

 

𝑝1𝐷(𝐿) =
𝐿(𝐷𝑚𝑎𝑥

𝑞−3 − 𝐿𝑞−3)

𝐷𝑚𝑎𝑥
𝑞−3  
2

(𝐷𝑚𝑎𝑥
2 −𝐷𝑚𝑖𝑛

2 ) −
1 
𝑞 − 1

(𝐷𝑚𝑎𝑥
𝑞−1 −𝐷

𝑚𝑖𝑛
𝑞−1)

   . 

 

b) Cumulative Distribution: 

 

Integrating the previous function, we get: 

 

𝐹(𝐿) = ∫ [
𝐿(𝐷𝑚𝑎𝑥

𝑞−3 − 𝐿𝑞−3)

[𝐷
𝑚𝑎𝑥
𝑞−3  (𝐷𝑚𝑎𝑥

2 − 𝐷𝑚𝑖𝑛
2 ) 2⁄ ] − [(𝐷𝑚𝑎𝑥

𝑞−1 − 𝐷𝑚𝑖𝑛
𝑞−1) 𝑞 − 1⁄ ]

]𝑑𝐿
𝐿

𝐷𝑚𝑖𝑛  

   .  

 

By factoring out the constants, we get: 

 

𝐹(𝐿) =
∫ 𝐿(𝐷𝑚𝑎𝑥

𝑞−3 − 𝐿𝑞−3)𝑑𝐿
𝐿

𝐷𝑚𝑖𝑛

[𝐷𝑚𝑎𝑥
𝑞−3  (𝐷𝑚𝑎𝑥

2 − 𝐷𝑚𝑖𝑛
2 ) 2⁄ ] − [(𝐷𝑚𝑎𝑥

𝑞−1 − 𝐷𝑚𝑖𝑛
𝑞−1) 𝑞 − 1⁄ ]

   . 

 

The integral on the numerator is easily solvable and yields: 

 

𝐹(𝐿) =
[𝐷𝑚𝑎𝑥
𝑞−3(𝐿2 − 𝐷𝑚𝑖𝑛

2 ) 2⁄ ] − [(𝐿𝑞−1 −𝐷𝑚𝑖𝑛
𝑞−1) 𝑞 − 1⁄ ]

[𝐷𝑚𝑎𝑥
𝑞−3
 (𝐷𝑚𝑎𝑥

2 −𝐷𝑚𝑖𝑛
2 ) 2⁄ ] − [(𝐷𝑚𝑎𝑥

𝑞−1
−𝐷𝑚𝑖𝑛

𝑞−1
) 𝑞 − 1⁄ ]

   . 

 

The inverse of 𝐹(𝐿) was then implemented numerically using binary search.  

 

DESMOS → https://www.desmos.com/calculator/f3wobdezh5?lang=pt-BR 

https://www.desmos.com/calculator/f3wobdezh5?lang=pt-BR
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Now, we can start computing the packing fractions of mixtures of different 

populations of particles. According to Farr [64], any mixture of distributions can be 

decomposed into a sum of “simpler” distributions following the equation: 

 

𝑝3𝐷(𝐷) =∑𝑎𝑖𝑝𝑖(𝐷)

𝑖

   , 

 

where 𝑝𝑖  is the i-th distribution and 𝑎𝑖  are fractions of the total number of particles such 

that ∑ 𝑎𝑖 = 1𝑖 , that is, they are the weights of each population of particles. The process 

is extremely similar to the cases where we had only one population of particles. Also, 

the weights guarantee that the resulting distribution is normalized.  

Note, however, that it is difficult to know the exact number of particles in each 

population, so the easiest way to compute the packings is by using the occluded 

volume of each population. Recall from equation 27 that the occluded volume is the 

total volume occupied by the particles when they are submerged in a liquid where they 

are insoluble, that is: 

 

𝑣𝑖 =
𝑚𝑖
𝜌𝑖
   , 

 

where 𝑚𝑖  is the mass of a given population of particles and 𝜌𝑖 is the density of this 

population. 

 

With that in mind, the weights of each population of particles can be calculated 

as: 

 

𝑎𝑖 = (
𝑣𝑖
𝜇3,𝑖
)[∑(

𝑣𝑗
𝜇3,𝑖
)

𝑗

]

−1

   , 

 

where 𝜇3,𝑖 = ∫ 𝑝𝑖𝐷
3𝑑𝐷

∞

0
 is the third raw moment of the i-th number-weighted size 

distribution. 

 

So far, RCPython can compute mixtures of the following functions:  
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1. Dirac delta functions: 

 

Assuming the distribution of interest is composed by a sum of delta functions, 

we have: 

 

𝑝3𝐷(𝐷) = ∑𝑎𝑖𝛿(𝐷 − 𝐷𝑖)
𝑖

= 𝑎1𝛿(𝐷 − 𝐷1) + 𝑎2𝛿(𝐷 − 𝐷2) + 𝑎3𝛿(𝐷 − 𝐷3) +⋯+ 𝑎𝑛𝛿(𝐷 − 𝐷𝑛)  . 

 

Then, the weights of the distributions can be calculated as [64]: 

 

𝑎𝑖 = (
𝑣𝑖

𝐷𝑖
3)[∑(

𝑣𝑗

𝐷𝑗
3)

𝑗

]

−1

  . 

 

Now, we can perform the calculations of the rod distribution: 

 

 

a) Rod distribution: 

 

𝑝1𝐷(𝐿) = 2𝐿
∫ [𝑎

1
𝛿(𝐷 − 𝐷1) + 𝑎2𝛿(𝐷 −𝐷2) + 𝑎3𝛿(𝐷 − 𝐷3) + ⋯+ 𝑎𝑛𝛿(𝐷 − 𝐷𝑛)]𝑑𝐷

∞

𝐿

∫ [𝑎1𝛿(𝐷 − 𝐷1) + 𝑎2𝛿(𝐷 − 𝐷2) + 𝑎3𝛿(𝐷 − 𝐷3) + ⋯+ 𝑎𝑛𝛿(𝐷 − 𝐷𝑛)]𝐷
2𝑑𝐷

∞

0

   . 

 

 

We already know that  ∫ 𝛿(𝐷 − 𝐷0)𝑑𝐷
∞

𝐿
= 𝜃(𝐷0− 𝐿). Therefore:  

 

𝑝1𝐷(𝐿) = 2𝐿
∑ 𝑎𝑖  𝜃(𝐷𝑖 − 𝐿)𝑖

∑ 𝑎𝑖𝐷𝑖
2

𝑖

   , 

 

where 𝜃(𝐷0 − 𝐿) is the Heaviside step function. 
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b)  Cumulative Distribution: 

 

𝐹(𝐿) = ∫ 𝑝1𝐷(𝐿′)𝑑𝐿′
𝐿

0

   , 

 

𝐹(𝐿) = ∫ 2𝐿′
∑ 𝑎𝑖𝜃(𝐷𝑖 − 𝐿′)𝑖

∑ 𝑎𝑖𝐷𝑖
2

𝑖

𝑑𝐿′
𝐿

0

   , 

 

𝐹(𝐿) =
[∑ 𝑎𝑖𝐷𝑖

2
𝑖:𝐷𝑖≤𝐿

+∑ 𝑎𝑖𝐿
2

𝑖:𝐷𝑖>𝐿
]

∑ 𝑎𝑖𝐷𝑖
2

𝑖

   . 

 

The inverse of 𝐹(𝐿) was then implemented numerically via binary search. Note 

that this method follows the same reasoning as the one described in section 5.1.4. 

 

 

2. Log-normal distributions: 

 

Assuming the distribution of interest is composed by a sum of number-weighted 

log-normal distributions and that we know the values of D4,3 and D3,2 for each 

population, then [64]: 

 

𝑝3𝐷(𝐷) = ∑
𝑎𝑖

𝐷𝜎𝑖√2𝜋
exp{− [

𝑙𝑛(𝑒7𝜎𝑖
2 2⁄ 𝐷 𝐷4,3;𝑖⁄ )

𝜎𝑖√2
]

2

}    ,
𝑖

 

 

where: 

 

𝑎𝑖 = (
𝑣𝑖

(𝐷4,3;𝑖)
3𝑒−6𝜎𝑖

2)[∑(
𝑣𝑗

(𝐷4,3;𝑗)3𝑒
−6𝜎𝑗

2)

𝑗

]

−1

   , 
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and: 

 

𝜎𝑖 = √ln(
𝐷4,3;𝑖
𝐷3,2;𝑖

)   . 

 

Therefore, the rod distribution and its cumulative function are given by: 

 

 

a) Rod distribution: 

 

𝑝1𝐷(𝐿) = 2𝐿

∫ [∑
𝑎𝑖

𝐷𝜎𝑖√2𝜋
exp {− [𝑙𝑛 (𝑒7𝜎𝑖

2 2⁄ 𝐷 𝐷4,3;𝑖⁄ ) 𝜎𝑖√2⁄ ]
2

}𝑖 ] 𝑑𝐷
∞

𝐿

∫ [∑
𝑎𝑖

𝐷𝜎𝑖√2𝜋
exp {−[𝑙𝑛(𝑒7𝜎𝑖

2 2⁄ 𝐷 𝐷4,3;𝑖⁄ ) 𝜎𝑖√2⁄ ]
2
}𝑖 ]𝐷2𝑑𝐷

∞

0

   . 

 

Setting 𝑢 = 𝑙𝑛 (𝑒7𝜎𝑖
2 2⁄ 𝐷 𝐷4,3;𝑖⁄ ) 𝜎𝑖√2⁄    and   𝑑𝑢 = 𝑑𝐷/𝜎𝑖√2, we get: 

 

𝑝1𝐷(𝐿) = 2𝐿
∑ {

𝑎𝑖
2 𝑒𝑟𝑓𝑐 [𝑙𝑛(𝑒

7𝜎𝑖
2 2⁄ 𝐿 𝐷4,3;𝑖⁄ ) 𝜎𝑖√2⁄ ]}𝑖

∑ [𝑎𝑖(𝐷4,3;𝑖)
2
𝑒−5𝜎𝑖

2

𝑖 ]
   . 

 

b) Cumulative Distribution 

 

𝐹(𝐿) = ∫ 𝑝1𝐷(𝐿′)𝑑𝐿′
𝐿

0

   , 

 

 

𝐹(𝐿) = ∫ [2𝐿′
∑ {

𝑎𝑖
2 𝑒𝑟𝑓𝑐 [𝑙𝑛 (𝑒

7𝜎𝑖
2 2⁄ 𝐿′ 𝐷4,3;𝑖⁄ ) 𝜎𝑖√2⁄ ]}𝑖

∑ [𝑎𝑖(𝐷4,3;𝑖)
2
𝑒−5𝜎𝑖

2

𝑖 ]
] 𝑑𝐿′

𝐿

0

   . 
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And finally: 

 

𝐹(𝐿) =
∑ 𝑎𝑖𝑖 [𝐴𝑖(𝐷4,3;𝑖)

2
+ 𝐵𝑖𝐿

2]

∑ 𝑎𝑖(𝐷4,3;𝑖)
2
𝑒−5𝜎𝑖

2

𝑖

   , 

 

where: 

 

𝐴𝑖 =
𝑒−5𝜎𝑖

2

2
{2 − 𝑒𝑟𝑓𝑐 [

𝑙𝑛 (𝑒7𝜎𝑖
2 2⁄ 𝐿 𝐷4,3;𝑖⁄ )

𝜎𝑖√2
−
2𝜎𝑖

√2
]   , 

 

 

𝐵𝑖 =
1

2
𝑒𝑟𝑓𝑐 [

𝑙𝑛(𝑒7𝜎𝑖
2 2⁄ 𝐿 𝐷4,3;𝑖⁄ )

𝜎𝑖√2
]   . 

 

 

The inverse of 𝐹(𝐿) was then implemented numerically using binary search.  

 

 


