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Abstract
This thesis presents a novel methodology for optimizing patch antenna designs for both
ISM (industrial, scientific, and medical) and 5G frequency bands, based on the particle
swarm optimization (PSO) algorithm. Traditional design methods rely on equations to
approximate antenna dimensions based on target frequencies, often requiring iterative ad-
justments to achieve desired performance specifications. This research demonstrates that
by employing PSO to estimate geometric parameters, the time-consuming fine-tuning
process can be significantly reduced. The proposed approach is validated through the
design of patch antennas for both ISM and 5G bands. Results indicate substantial im-
provements in return loss and size reduction, achieving a 25% decrease in antenna size
for ISM applications and a 12% reduction for 5G designs. This research contributes to
the advancement of antenna design methodologies, showcasing the potential of PSO for
efficient and effective optimization across different frequency bands.

Key-words: Antenna design, particle swarm optimization, patch antenna, ISM band, 5G
band, optimization methodology.
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1 Introduction

The introduction of wireless systems to the communication grid has marked a shift
in the way information is transmitted and received. The core of these systems are antennas,
the critical components that make transmission and reception of waves possible [1, 2].
Among many types of antennas, microstrip patch antennas have emerged as a common
choice for different projects due to their compact size, performance, and fabrication cost
[3]. Examples of these applications are mobile devices and satellite communication [4].

Despite their widespread use, microstrip patch antennas also have limitations,
especially because the requirements from the design performance increase continuously
as technology evolves. As the tech industry moves towards more compact and portable
devices, the pressure to design smaller antennas without lost performance intensifies [5].
This miniaturization need has provided an incentive for the study and explorations of
creative solutions, such as the use of fractals and hybrid combinations in the patch shape.
However, the introduction of these techniques can increase design complexity. To address
this problem, artificial intelligence (AI) has been pointed out as a potential solution [6].

Since the traditional design methodologies typically involve labor-intensive ma-
nual adjustments or mathematical optimizations, which are often time-consuming and
may not always deliver optimal results, the use of AI becomes attractive for this parti-
cular application [7]. The integration of techniques such as machine learning (ML) and
artificial neural networks (ANNs) offers promising opportunities for improving the design,
simulation, and optimization of antennas [8].

This thesis specifically explores the application of Particle Swarm Optimization
(PSO) in the optimization of microstrip patch antennas. PSO follows the logic of social
behavior patterns of swarms in nature to continuously refine design parameters, enabling
the efficient convergence on optimal solutions. By incorporating PSO into the antenna
design process, this work aims to overcome the limitations of conventional design methods
while providing broader options that could be used in different application scenarios.

1.1 Justification
Antenna size plays a critical role in the performance of wireless communication

systems. As antenna size decreases, the antenna bandwidth also decreases, which poses
a challenge for compact antenna design [9]. The performance of reduced-size antennas
must be comparable to that of their larger counterparts, as smaller antennas are increa-
singly preferred in modern wireless systems for their portability and aesthetic appeal [10].
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Consequently, researchers and engineers must develop innovative design techniques and
materials to overcome the limitations imposed by smaller antennas while maintaining the
desired performance characteristics.

Designing an antenna at a required operating frequency is fundamentally an op-
timization problem since the patch geometric parameters need to be adjusted to reduce
the error between the performance of the antenna designed according to the simplified
equations and the actual antenna [9].

Traditionally, the design of antennas is a complex and iterative process that in-
volves manual trial and error methods, or mathematical optimization techniques [11].
Through a set of equations, it is possible to design a base antenna according to the re-
quired frequency resonance, which can be further improved manually by making small
modifications to the antenna dimensions. Likewise, other requirements such as impedance
matching, radiation pattern, gain, bandwidth, and radiation efficiency can be adjusted
through the fine-tuning of input impedance, ground plane height, and substrate width
[11].

However, in recent years, there has been a growing trend toward using artificial
intelligence techniques to improve the efficiency and accuracy of antenna design. The AI
techniques, such as ML and Artificial Neural Networks (ANNs), have been used to model
and predict the behavior of antennas, allowing for more efficient optimization [6].

In addition to improving the optimization process, AI techniques have also been
used to enhance the accuracy of antenna design simulations. ANNs, for example, have
been used to model the behavior of antennas in complex environments, such as in the
presence of obstacles or in multi-path fading scenarios [12].

Many researchers have explored machine learning algorithms as a solution for
the design of antennas. These solutions can be broadly categorized into two distinct
yet interconnected areas [8]. The first covers optimization through data training, where
algorithms like ANNs play a crucial role. These algorithms use historical simulation data to
leverage past designs and optimize the parameters of new antenna models. This approach
not only streamlines the design process but also improves accuracy and reliability in the
performance of the antennas [8].

The second area is the enhancement of evolutionary computation algorithms.
Where, machine learning is applied to evolutionary algorithms like PSO, creating a sy-
nergistic relationship that improves the capabilities of these computational methods. By
embedding ML into the framework of evolutionary algorithms, the antenna design pro-
cess becomes more efficient and effective. The algorithms are able to rapidly converge on
optimal solutions, significantly reducing the time and computational resources required
for design and testing. The integration accelerates the design step and supports a more
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innovative exploration of antenna capabilities, enabling designers to achieve desired levels
of performance and efficiency [8].

Usually, the ML algorithms are mainly applied in a specific step of the design
process. Since the design goes through several steps, such as estimation of base parameters,
feedline, gaps, and further tuning based on tests, the PSO algorithm, which converges to
an optimal solution in a complex space of possibilities, may offer a better and less costly
solution when applied to the complete design process [7].

While PSO represents a more direct method of optimization, seamlessly integrating
into the antenna design process, it operates by iteratively refining the antenna parameters,
leveraging a swarm intelligence algorithm that mimics social behavior patterns observed in
nature [13]. This method allows for direct, real-time adjustments to the antenna design,
converging towards an optimal solution through a dynamic exploration of the design
space. The integration of PSO within the design process enables it to respond smoothly
to changes in design parameters, making it an ideal choice for scenarios where rapid
optimization is required [14].

On the other hand, ANNs and similar machine learning techniques rely heavily
on pre-existing databases, following a three-step approach: simulating electromagnetic
characteristics, storing these simulations in a database, and then using this accumulated
data to train the ANN [8]. This training enables the ANN to recognize complex patterns
and relationships within the data, subsequently applying this learned knowledge to predict
antenna designs. While this approach offers the advantage of learning from an array of past
simulations and uncovering insights that would otherwise be overlooked in direct methods,
it inherently depends on the quality and comprehensiveness of the database. Additionally,
the process of training the ANN can have more computational costs, especially with large
databases [8].

Comparatively, the direct optimization approach is faster and more adaptable to
specific designs. However, it may fail to capture insights that a well-trained ANN could
provide, especially in cases where past data presents a wide variety of scenarios and
parameters. In contrast, ANNs excel in scenarios where historical data is rich, allowing
the algorithm to extract interactions within the data, which can lead to more innovative
and refined designs. That being said, some researchers propose a combined approach,
aiming for the benefits of both methods [12, 15, 16].

Table 1 presents a selection of these works to provide a comprehensive understan-
ding of the research being conducted in PSO-based microstrip antenna design. Table 1
highlights each study’s key features and achievements, such as the antenna shape, specific
AI techniques used, the resonance frequency, the achieved patch area reduction, dimensi-
ons, and simulation software used.
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Table 1 – Study of Existing PSO-based Microstrip Antenna Design
Methods

Ref Shape AI Technique Frequency Results Dimensions Software

[9] Hemicircle
hybrid PSO 2.45 and 7.0

GHz N/A 32x28mm HFSS

[12] Tree hybrid
fractal ANN-PSO 2.45 GHz N/A Lg = 17.70

mm HFSS

[17] Pinwheel
fractal PSO

0.98,1.59,
2.22, 2.45,
and 3.6 GHz

50% reduc-
tion 12.5x11.5 mm HFSS

[15] Circular
fractal PSO-ANN 2.45 GHz 35.5% reduc-

tion R = 13.50 mm CST

[18]
Square
(Ground
fractal)

PSO 2.4 and 4.9
GHz

69.08%
reduction

10x10mm
SF=1/6 HFSS

[16] Tree hybrid
fractal BFO-PSO 5.2 and 10.6

GHz
43.1% reduc-
tion

22.9x21.9mm
75.09◦ HFSS

Article [9] employed a PSO-based optimization technique to design a hemicircle
hybrid antenna operating at 2.45 and 7.0 GHz, though specific performance improve-
ments were not detailed. This early work demonstrates the versatility of PSO in handling
complex hybrid structures, establishing a foundation for further research in multi-band
antennas.

In contrast, [12] and [15] advanced the field by integrating Artificial Neural Networks
(ANN) with PSO to optimize fractal-based antenna designs, specifically at the 2.45 GHz
band. The inclusion of ANN allowed for enhanced predictive capabilities in the optimi-
zation process, leading to a notable size reduction of 35.5% in [15]. The use of fractal
geometries in these studies highlights the effectiveness of combining AI techniques for
compact antenna design, particularly in frequency bands that are critical for wireless
communication.

Further emphasizing the capability of PSO in achieving compact designs, articles
[17] and [18] focused exclusively on size reduction through PSO optimization applied to
fractal antenna shapes. [17] achieved a 50% reduction across multiple frequency bands, in-
cluding 2.45 GHz, showcasing the flexibility of PSO in handling multi-band requirements.
Meanwhile, [18] achieved a reduction of 69.08% at 2.4 and 4.9 GHz, demonstrating the
significant impact of fractal geometries when combined with PSO for area reduction.

Lastly, [16] explored a hybrid approach by combining Bacterial Foraging Optimi-
zation (BFO) with PSO, targeting fractal-shaped antennas operating at higher frequency
bands (5.2 and 10.6 GHz). This study demonstrated a substantial size reduction of 43.1%,
further validating the potential of hybrid optimization techniques in addressing the chal-
lenges of modern antenna design, particularly in higher-frequency applications.

The traditional optimization methods used in antenna design often focus on a
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single design parameter or optimization target, resulting in sub-optimal solutions that
may not meet all performance requirements. By automating the design of the antenna,
with options to adjust the requirements, the method proposed in this article takes into
account multiple design parameters and optimization targets, resulting in a more focused
and well-rounded solution for different problems.

Therefore, the contribution of this paper to the field of antenna design optimization
is the development of an automated optimization process that considers multiple design
parameters and optimization targets.

1.2 Objective
The main objective of this thesis is to propose an optimization methodology for

microstrip patch antenna design based on a particle swarm optimization technique. This
exploration is driven by the need for compact, high-performance antennas in the rapidly
evolving field of wireless communication. To achieve the proposed general objective, this
work delineates three specific objectives:

• Develop a generalized PSO-based method for microstrip antenna design that con-
siders multiple objectives, optimizing key performance indicators such as size, reso-
nance frequency, bandwidth, and return loss. The intent is to create a flexible design
tool that can accommodate a wide range of design specifications;

• Validate the effectiveness of the developed PSO-based design methodology by ap-
plying it to the design of antennas for common applications, such as the ISM band
and 5G band. This will involve designing, simulating, and comparing the results to
assess improvements in performance.

1.3 Structure of the Work
This thesis is structured into five main sections to provide a comprehensive un-

derstanding of the process and outcomes of the proposed design. Section I sets the stage
by presenting the study’s general considerations, motivations, and objectives. Section II
discusses the literary background used in this work. Specifically, the design and operation
of microstrip antennas. Section III details the steps involved in the design process. Sec-
tion IV presents the outcomes of the study, including the optimized antenna designs, their
performance characteristics, and a comparison with benchmarks from the literature and
the base antenna. Section V summarizes the main findings, highlights the contributions of
the research, and suggests opportunities for future work in the area of microstrip antenna
design using artificial intelligence techniques.
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2 Patch Antennas for ISM and 5G band ap-
plications

Microstrip antennas, or patch antennas, consist of a conducting patch on one side
of a dielectric substrate and a ground plane on the other [19]. The versatile features of
microstrip antennas, such as their low profile, lightweight construction, and compatibility
with printed circuit board (PCB) technology, have paved the way for their widespread
adoption across various applications. These antennas are extensively used in wireless
communication systems, both as transmitting and receiving elements in mobile phones,
wireless routers, and other communication equipment. The compact size and flexibility in
shape of microstrip antennas make them suitable for integration into the limited spaces
of portable electronic devices [3].

In satellite communications, microstrip antennas are used due to their low mass
and small size, which are important in space applications where payload weight is a major
consideration. An example is the arrays of microstrip antennas used in beam-steering
systems, vital for maintaining communication with moving satellites [20]. Moreover, the
inherent reliability and durability of these antennas under harsh environmental conditions
make them ideal for space and air applications.

Radio Frequency Identification (RFID) systems also benefit from the use of mi-
crostrip antennas. Considering that these systems focus on tracking and identification
for logistics, they require compact and efficient antennas with specific radiation patterns.
Microstrip antennas can be easily designed to meet these specific requirements [21].

Likewise, the advancement in microstrip antenna technology has contributed to
new fields such as wearable electronics, where antennas must be printed on non-traditional
surfaces and operate efficiently close to the human body. The adaptability of microstrip
antennas in terms of shape and size, combined with their ability to operate across a wide
range of frequencies, makes them a good choice for integration into wearable devices for
health monitoring, personal communication, and location tracking [22].

ISM (Industrial, Scientific, and Medical) and 5G band patch antennas are essen-
tial components of modern wireless communication systems. The ISM band, particularly
the 2.45 GHz frequency, is widely used for applications such as Wi-Fi, Bluetooth, and
microwave ovens due to its unlicensed spectrum availability and robust performance in
diverse environments [23]. On the other hand, 5G technology, operating in the 3.3 to 3.8
GHz range, represents the next generation of mobile networks, promising significantly
enhanced data rates, reduced latency, and improved connectivity for several applications,
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from autonomous vehicles to smart cities [24]. The widespread use of 2.45 GHz antennas
facilitates the availability of extensive references, enabling comprehensive comparisons
and validation of research findings. Additionally, the inclusion of the 5G band due to its
innovative potential highlights the relevance and forward-thinking nature of this research.

Overall, microstrip antennas offer a range of benefits and are extensively used
in wireless systems. Understanding the radiation pattern, performance parameters, and
design considerations is essential for optimizing the performance of these antennas. By
shaping the radiation pattern, considering parameters such as patch dimensions and subs-
trate properties, and addressing design factors such as feed line placement and impedance
matching, microstrip antennas can be designed to meet specific application requirements
[20].

2.1 Design Considerations
Microstrip antennas are chosen for several applications due to their compactness

and cost-effectiveness. However, other performance parameters must be considered when
designing an antenna. These parameters include gain, resonance frequency, and return
loss [25]. Optimizing these parameters ensures the microstrip antenna meets the desired
specifications and performs effectively within its intended application.

Fig. 1 illustrates a standard rectangular patch microstrip antenna. The patch,
with length (𝐿) and width (𝑊 ), is located on the top side of the dielectric substrate.
The substrate of height (ℎ) is positioned between the patch and the ground plane. Below
the substrate lies the ground plane, which serves as a reference point for the antenna.
Connected to the rectangular patch, the feedline is responsible for delivering the input
signal. The precise dimensions and the arrangement of these elements are essential for
determining the antenna’s performance [26].

Figure 1 – Microstrip Patch Antenna.
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2.1.1 Antenna Gain

Gain is a measure of an antenna’s ability to direct or concentrate radio frequency
energy in a particular direction when compared to a hypothetical isotropic radiator that
emits equally in all directions [26]. The gain of a microstrip antenna is influenced by its
physical dimensions and the electrical properties of the substrate. Larger patches and
substrates with higher dielectric constants can increase the gain but may also affect the
antenna’s bandwidth and efficiency [27].

Antennas achieve gain by concentrating the radiated energy in a specific direction
while sacrificing gain in other directions [1]. For mobile applications, minimizing upward
and downward radiation while concentrating the signal in the forward direction is advan-
tageous. This can be achieved by shaping the radiation pattern of microstrip antennas,
improving their performance, and providing directional coverage tailored to specific re-
quirements [28].

2.1.2 Resonance Frequency

The resonance frequency (𝑓𝑟) is usually the starting point of the antenna design
process. It defines the frequency range within which the antenna is expected to operate
efficiently. The choice of 𝑓𝑟 is dictated by the application for which the antenna is being
designed, such as a specific communication band (Wi-Fi, Bluetooth, GPS). The frequency
directly influences the dimensions of the radiating patch, as these dimensions are typically
a fraction of the wavelength (𝜆) at the desired 𝑓𝑟 [26].

The simplified resonance frequency 𝑓𝑟 can be calculated using the following equa-
tion:

𝑓𝑟 = 𝑐

2𝐿
√

𝜀𝑟

(2.1)

Where,

• 𝑓𝑟 is the resonant frequency;

• 𝑐 is the speed of light in a vacuum (3 × 108 meters per second);

• 𝐿 is the length of the microstrip antenna;

• 𝜀𝑟 is the relative permittivity of the substrate material.

2.1.3 Radiation Pattern

The radiation pattern of an antenna describes the spatial distribution of the radia-
ted power and is an important characteristic of microstrip antennas. It can be represented
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mathematically or graphically, showcasing properties such as power flux density, radiation
intensity, field strength, and polarization. In the far-field region, the radiation pattern is
determined with respect to space or directional coordinates [29].

For microstrip antennas, the radiation pattern is predominantly determined by the
shape and size of the radiating patch, as well as the dielectric properties of the substrate
[30]. The pattern can be broadly categorized into two main types, omni-directional and
directional. Omni-directional patterns radiate power uniformly in all directions in a single
plane, making them ideal for applications requiring broad coverage. In contrast, directional
patterns focus the radiated power in specific directions, offering higher gains but limited
coverage areas [31].

2.1.4 Return Loss

Return loss is a critical performance parameter in antenna design for several rea-
sons. High return loss ensures that more power is effectively radiated into space, contribu-
ting to better signal transmission and reception. While, low return loss leads to increased
power losses within the system, reducing its effectiveness [32]. Moreover, return loss also
affects the bandwidth and frequency response of the antenna. A wider bandwidth typically
corresponds to a higher return loss, indicating that the antenna can operate efficiently
over a broader range of frequencies without significant losses [33].

The selection of resonance frequency, substrate material, and substrate thickness
are critical steps in the microstrip antenna design process, setting the stage for subse-
quent design decisions such as the determination of the patch dimensions, feed type, and
impedance matching techniques.

2.1.5 Substrate

The substrate material of microstrip antenna project is chosen based on its dielec-
tric constant (𝜀𝑟), loss tangent (tan 𝛿), and mechanical properties [26]. A higher 𝜀𝑟 results
in a smaller antenna size for a given frequency but can also reduce the bandwidth and
increase the losses. The loss tangent indicates the amount of electromagnetic energy ab-
sorbed by the substrate material, affecting the antenna’s efficiency. Mechanical properties,
including the substrate’s rigidity and thermal stability, are also important considerations,
especially in environments subject to physical stress or temperature variations [3].

The thickness of the substrate (ℎ) impacts the antenna’s bandwidth and radiation
pattern. A thicker substrate can offer a wider bandwidth due to increased space for the
electromagnetic fields to propagate, but it may also lead to a more significant fringing
effect and a higher radiation angle away from the surface plane [26]. The choice of ℎ

involves balancing the need for bandwidth with the desire for a compact design and
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specific radiation characteristics.

These initial design parameters are correlated, and their selection must consider the
trade-offs involved to meet the antenna’s performance requirements. For example, while
a high dielectric constant substrate can reduce the antenna’s size, it might necessitate
compromises in terms of bandwidth and efficiency. Similarly, optimizing the substrate
thickness for a wider bandwidth might require adjustments in the patch dimensions or
the selection of a substrate material with a suitable dielectric constant.

2.1.6 Feedline

Each feeding technique impacts the antenna’s performance, bandwidth, and ease
of integration with other components. The choice of feed method depends on the specific
requirements of the application, including impedance matching, bandwidth, size cons-
traints, and fabrication considerations [34].

2.1.6.1 Coaxial Feed

The coaxial or probe feed technique involves inserting a coaxial cable through the
substrate to make direct contact with the radiating patch. This method allows for precise
control over the feed point’s location, enabling the designer to adjust the impedance
matching by moving the feed point towards or away from the patch center. The closer the
feed point is to the edge of the patch, the higher the impedance, which can be beneficial
for matching purposes. However, the coaxial feed can introduce unwanted inductance and
may disrupt the radiation pattern if not properly designed [35]

2.1.6.2 Aperture Coupling

Aperture coupling involves feeding the radiating patch indirectly through an aper-
ture or slot in the ground plane, separating the feed line from the patch with a dielectric
layer. This technique minimizes perturbations to the radiating element, potentially offe-
ring better bandwidth and radiation pattern control [36]. The aperture coupled feed allows
for dual-polarization and frequency operation, making it versatile for complex antenna
systems. However, it is more complex to design and manufacture due to the multi-layer
structure [35].

2.1.6.3 Microstrip Feed

The microstrip line feed involves a conducting strip directly connected to the
edge of the radiating patch, acting as both the feed line and the matching element.
This technique facilitates easier integration with printed circuit boards and can provide a
cleaner radiation pattern compared to the coaxial feed [35]. The main challenge with the
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microstrip line feed is achieving a wide bandwidth, as the feed line and the patch must
be carefully designed to ensure effective impedance matching over the desired frequency
range [37].

2.2 Traditional Patch Antenna Design
Design considerations for microstrip antennas are driven by system requirements

for low-profile design, lightweight construction, cost-effectiveness, and easy integration
with microwave-integrated circuits, as emphasized by [29]. These considerations make
microstrip antennas suitable for applications where space constraints and performance
optimization are crucial factors.

When designing microstrip antennas, several factors must be carefully considered.
The physical and electrical properties of the substrate material play an important role
in the antenna’s performance. Specifically, the dielectric constant (𝜀𝑟) of the substrate
influences the antenna’s size and resonance frequency. A higher 𝜀𝑟 typically results in a
smaller antenna size but may reduce the bandwidth and increase the loss [26].

The dimensions of the patch, length (𝐿) and width (𝑊 ), will influence the reso-
nant frequency (𝑓𝑟) of the antenna. The length of the patch is approximately half the
wavelength (𝜆/2) of the desired resonant frequency in the substrate medium, making the
effective length (𝐿𝑒𝑓𝑓 ) important for accurate design calculations. While the width of the
patch affects the radiation pattern and impedance bandwidth, wider patches generally
offer wider bandwidths [26].

Achieving optimal impedance matching between the microstrip line and the patch
is important for maximizing power transfer and minimizing reflections at the feed point.
This can be accomplished through the selection of the feed line’s position and characteris-
tics, ensuring that the antenna’s input impedance matches the characteristic impedance
of the feed line. Techniques such as quarter-wave impedance transformers, inset feed, and
probe feeding are commonly employed to achieve desired impedance levels [20].

The placement of the microstrip feed line and achieving impedance matching are
also essential for optimizing the antenna’s performance [20].

2.2.1 Width (𝑊 )

The width of the patch is mostly determined to control the radiation pattern and
to achieve a desired impedance, typically 50 Ω for most applications [38]. The width can
be calculated using the following equation:
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𝑊 = 𝑐

2𝑓𝑟

√︁
𝜀𝑟+1

2

(2.2)

Where,

• 𝑊 is the width of the microstrip patch;

• 𝑐 is the speed of light in a vacuum (3 × 108 meters per second);

• 𝑓𝑟 is the resonance frequency;

• 𝜀𝑟 is the relative permittivity of the substrate material.

This equation provides a starting point for the patch width, ensuring that the
antenna’s resonates at the desired frequency with a controlled impedance level.

2.2.2 Dielectric Constant (𝜀𝑒𝑓𝑓)

The effective dielectric constant (𝜀𝑒𝑓𝑓 ) is a parameter that accounts for the mixed
dielectric medium (substrate and air) around the patch due to the fringing fields. It is a
weighted average of the dielectric constant of the substrate (𝜀𝑟) and the air (approximately
1). The fringing fields increase the effective electrical path length, which in turn affects
the velocity of propagation of the waves on the patch surface and thereby the resonant
frequency [39]. The effective dielectric constant can be calculated using the equation:

𝜀𝑒𝑓𝑓 = 𝜀𝑟 + 1
2 + 𝜀𝑟 − 1

2

⎛⎝ 1√︁
1 + 12 ℎ

𝑊

⎞⎠ (2.3)

This equation reflects how 𝜀𝑒𝑓𝑓 is influenced by the height (ℎ) of the substrate
and the width (𝑊 ) of the patch. The fringing effect becomes more evident with thicker
substrates and narrower patches, leading to a higher 𝜀𝑒𝑓𝑓 and thus a lower resonant
frequency than would be predicted by considering the substrate’s dielectric constant alone.

2.2.3 Effective Length (𝐿𝑒𝑓𝑓)

The effective length of the patch contains the physical length of the patch and an
additional length due to the fringing fields around the patch edges. The fringing effect
extends the electrical length of the patch, lowering the resonant frequency [40]. To estimate
𝐿𝑒𝑓𝑓 , the subsequent steps are followed:

1. Determine the Extended Length (Δ𝐿):
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Δ𝐿 = 0.412ℎ

(︃
𝜀𝑒𝑓𝑓 + 0.3

𝜀𝑒𝑓𝑓 − 0.258

)︃(︂
𝑊 + 0.264
𝑊 + 0.8

)︂
(2.4)

Where,

• ℎ is the substrate thickness;

• 𝜀𝑒𝑓𝑓 is the effective dielectric constant, calculated as previously described.

2. Calculate the actual Length (𝐿): With Δ𝐿 determined, the actual length of the
patch can be calculated by considering the desired resonant frequency and the effective
dielectric constant:

𝐿 = 𝑐

2𝑓𝑟
√

𝜀𝑒𝑓𝑓

− 2Δ𝐿 (2.5)

This step ensures that the patch resonates at 𝑓𝑟 by compensating for the fringing
effect, which effectively increases the electrical size of the patch.

The effective length (𝐿𝑒𝑓𝑓 ) is then 𝐿 + 2Δ𝐿, providing a more accurate represen-
tation of the patch’s resonant behavior.
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3 Optimization Problem Definition

This section details the methodology followed in designing a rectangular microstrip
antenna using the Particle Swarm Optimization (PSO) algorithm, implemented through
a combination of MATLAB and CST software. The main goal of the design is to reduce
the physical area of the antenna while optimizing the return loss and considering the
resonance frequency and minimum bandwidth requirements.

The research methodology was structured to ensure a comprehensive and systema-
tic approach to optimizing microstrip antenna design using PSO. The process began with
a literature review to gain a deep understanding of the strategies employed in antenna
design through artificial intelligence techniques, with a particular focus on PSO and si-
milar algorithms. This review informed the development of a new strategy that accounts
for multiple evaluation parameters during the optimization process, ensuring a holistic
approach to antenna design.

Following the literature review, the key design parameters were defined, including
antenna size, resonance frequency, and minimum bandwidth. A cost function was carefully
formulated to evaluate the trade-offs among these parameters, striking a balance between
the physical size and the performance of the antenna. The design process was further
refined by imposing constraints, specifically limiting the antenna to a rectangular shape
with inlets in the feed connection. These constraints were incorporated to ensure that the
final designs adhered to specified requirements. Additionally, a base antenna resonating
at the proposed frequency was designed according to equations (2.2) and (2.5) to set
reasonable parameter limitations and serve as a benchmark for later comparisons.

The PSO algorithm was then meticulously designed to search for optimal solutions
within the defined design space, guided by the cost function and design constraints. This
algorithm was implemented in MATLAB and iteratively applied to optimize the antenna
design. The integration of MATLAB with CST simulation software was achieved through
the development of a custom connection module based on an open-source code. This
integration allowed the PSO algorithm to seamlessly send antenna design parameters to
CST for simulation and performance evaluation at each iteration. The simulation results
were then used to update the particle swarm, guiding the search process toward optimal
design solutions.

The experimentation phase involved testing and iterative modification of the algo-
rithm to enhance its performance in achieving the design objectives. The search process
was fine-tuned, and convergence properties were carefully assessed to ensure that the algo-
rithm reliably produced optimal results. Finally, the performance of the optimized antenna
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designs was thoroughly analyzed by comparing them with relevant benchmarks from the
literature. This comparative analysis served to validate the effectiveness of the PSO-based
design strategy, demonstrating its relevance compared to other AI-based methodologies
in optimizing the size and performance of rectangular microstrip antennas.

3.1 Cost Function
Following the main objective of reducing the base dimensions of the patch antenna

while maintaining or improving its efficiency, the cost function or fitness function needs
to consider the size of the antenna, the resonance frequency, and the return loss inside
the required bandwidth.

𝐶𝑓𝑢𝑛𝑐 = (𝐿 × 𝑊 ) × 𝛼 + (
√︁

(𝑓𝑟 − 𝑓)2) × 𝛽 +

⎛⎜⎜⎝45 +

𝑛∑︀
𝑘

𝑆11(𝑘)

𝑛

⎞⎟⎟⎠× 𝛾 (3.1)

Where, 𝐿 is the length of the patch, 𝑊 the width of the patch, 𝑓𝑟 the expected
resonance frequency, 𝑓 the actual resonance frequency, 𝑆11 the return loss in dB, 𝑘 and 𝑛

are the index and upper limits of the summation, which assume values within the array
of sampled frequencies of the antenna bandwidth.

To offset the negative amplitude of 𝑆11 at the resonance frequency, the value 45
was added to the last term of the equation. This number was estimated according to the
maximum amplitude present in other works.

Because the three parts of the cost function (patch size, frequency error, and return
loss) will influence the optimized solution differently, they need to be balanced. Not only
to prevent one part from adding excessive cost to a potential solution but also to establish
what compromises are more acceptable in the design. For instance, while a larger antenna
might be undesirable for a certain application, a high deviation in the resonance frequency
would be unacceptable.

Therefore, the coefficients 𝛼, 𝛽, and 𝛾 are used to balance the weight of the antenna
size, resonance frequency, and return loss, respectively, in the desired solution. The values
are calculated by trial starting from an initial value that sets the three parts of the function
on the same scale.

3.2 Metaheuristic Optimization
Many real-world problems are inherently complex and involve multi-objective tar-

gets, multiple variables, and big datasets. These large-scale problems have many correlated
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elements and wide search spaces, commonly found in applications in industrial control,
aerospace, telecommunications, and logistics [41].

In computer science, metaheuristics are a class of optimization techniques that
use a probabilistic approach to find near-optimal solutions to complex problems [42].
These algorithms are valuable for targeting large-scale challenges that were previously
considered problematic due to their computational complexity [43]. The development of
various optimization and metaheuristic algorithms has led to ongoing research focused on
identifying the most suitable approach for specific problems [44].

Solving large-scale problems using metaheuristics often requires a higher compu-
tational cost compared to simpler problems. Processing times can range from hours to
days, requiring more powerful computing resources to achieve optimal results [45]. In fact,
metaheuristics belong to the broader category of stochastic optimization, which involves
searching for the best element within a set using a defined objective function that incor-
porates random variables [46]. This technique is particularly useful for problems where
constraints and parameters are highly random.

In this context, metaheuristics are defined as a collection of algorithms, techniques,
and methods that use some randomness to achieve optimal or near-optimal solutions for
complex problems [47]. Since the true optimal solution may not be obvious, metaheuristics
rely on iterative testing to discover the best possible outcome. Even though the most
optimal solution is not guaranteed.

3.2.1 Artificial Intelligence, Machine Learning, and Particle Swarm Optimi-
zation

Artificial Intelligence (AI) involves the development of computational systems that
display intelligent behaviors typically associated with humans. These behaviors include
learning, reasoning, problem-solving, and adaptation [48]. Therefore, AI research aims to
create machines capable of handling complex tasks traditionally requiring human exper-
tise.

Similarly, Machine Learning (ML) is a subfield of AI that focuses on algorithms
that enable machines to learn and improve from data without being explicitly programmed
[49]. ML algorithms use different techniques like supervised, unsupervised, and reinforce-
ment learning to extract patterns, make predictions, and guide decision-making [50].

Meanwhile, optimization plays a critical role in artificial intelligence and machine
learning. Optimization algorithms refine algorithms to achieve the best possible perfor-
mance, with either training models, improving accuracy, or boosting efficiency. These al-
gorithms search for optimal parameter configurations or model structures that minimize
or maximize a defined objective function [51].
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The PSO algorithm is a simplified model of social swarming theory well adapted
for the optimization of nonlinear functions in multidimensional space [52]. This technique
attempts to reproduce generic social behavior and has been tested against many real-world
problems with good performance [53].

AI is the broadest field, encompassing all technologies and methods that enable
machines to mimic human intelligence. Within AI, Machine Learning represents a subset
focused on algorithms that allow systems to learn and improve from experience without
being explicitly programmed. PSO is a specific optimization technique, often used for
solving problems by iteratively improving a candidate solution with respect to a given
measure of quality [54].

Compared to other genetic algorithms, the PSO has shown an advantage due
to its simplicity and robustness [46]. Besides, it has been applied and tested in many
electromagnetic applications [55]. Another worthy point is the capacity of accommodating
multi-objective optimizations by adding multiple fitness functions [52].

In the algorithm, each individual is called a particle while the population is the
swarm. A fitness value is assigned to each particle before being evaluated against the fitness
function. Initially, the population assumes random solutions in the space of possibilities.
Then, each particle moves with a set velocity towards a combination of its local best and
the global best solution [53].

After each iteration, the particles should move closer to a global best solution.
The algorithm either stops after achieving a preset number of iterations or when the
successive local best solutions have a distance shorter than an acceptable tolerance. The
latter indicates that the local best solution is close enough to the optimal solution and
the distance of the new local best should be negligible [56].

Particle Swarm Optimization benefits lie in its simplicity, efficiency, and adap-
tability, offering advantages in certain AI and ML optimization scenarios [53]. In PSO,
particles navigate a search space, guided by their own best positions and the collective
best position of the swarm. This mechanism avoids complex calculations, making PSO sui-
table for various optimization problems [57]. While parameter tuning is required for PSO,
its stochastic nature can help maintain exploration, potentially preventing stagnation in
local minima. This makes it adaptable to various optimization landscapes. Since particle
updates can be calculated independently, PSO scales well for large datasets and distribu-
ted computing environments, making it a good option for large parallel tasks [58]. Due to
this versatility, PSO has been successfully employed in many areas, such as engineering,
finance, healthcare, and many other fields, demonstrating its potential for addressing di-
verse optimization challenges, which encourages research and new application techniques
[59].
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3.2.2 PSO Algorithm

On a PSO algorithm, a swarm of particles is randomly initialized. Each particle
having a position (𝑥𝑖), a velocity (𝑣𝑖), and a personal best (𝑝𝑖). In this context, position
is defined as a candidate solution within the search space, represented by a vector of real
numbers. The dimensionality of this vector depends on the number of variables involved
in the problem [60].

Likewise, the velocity is the representation of the particle’s movement vector, which
is a real-valued vector with the same dimensionality as the position. Initially, velocities
are randomly assigned. While the personal best marks the best solution encountered by
the particle so far, which is set initially to the particle’s initial position [52].

During the execution of the algorithm, each particle’s position is evaluated using
the objective or fitness function specific to the optimization problem. This function quan-
tifies the potential solution, allowing the algorithm to differentiate between better and
worse solutions [61]. To determine a general solution to the problem, the algorithm needs
to identify the global best position (g) from the position of the particle with the best
fitness value encountered so far across the entire swarm. Following this logic, with every
iteration, the algorithm updates each particle’s velocity based on equation (3.2):

𝑣𝑘+1
𝑖 = 𝜔𝑣𝑘

𝑖 + 𝜑1 · 𝑟1 · (𝑝𝑘
𝑖 − 𝑥𝑘

𝑖 ) + 𝜑2 · 𝑟2 · (𝑔𝑘 − 𝑥𝑘
𝑖 ) (3.2)

Where,

• 𝜔 is the inertial weight, which controls the momentum from the particle’s previous
velocity. A higher 𝜔 encourages exploration, while a lower 𝜔 promotes exploitation.
Common strategies involve dynamically decreasing 𝜔 over iterations to improve
convergence.

• 𝜑1 and 𝜑2 are acceleration coefficients. These coefficients influence the attraction
towards the particle’s personal best (𝑝𝑘

𝑖 ) and the swarm’s global best (𝑔𝑘), respecti-
vely.

• 𝑟1 and 𝑟2 are random numbers (uniformly distributed between 0 and 1) to introduce
randomness and prevent premature convergence.

The position update is carried out based on the updated velocity, according to the
following equation:

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖 (3.3)

Where,
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• 𝑥𝑘+1
𝑖 is the updated position of the 𝑖-th particle at iteration 𝑘 + 1.

• 𝑥𝑘
𝑖 is the current position of the 𝑖-th particle at iteration 𝑘.

• 𝑣𝑘+1
𝑖 is the updated velocity of the 𝑖-th particle at iteration 𝑘 + 1.

Following that, the personal best is set if a particle’s new position (𝑥𝑘+1
𝑖 ) has a

better fitness value than its current personal best (𝑝𝑘
𝑖 ).

Moving forward, the iteration process is repeated for a predefined number of ite-
rations (k) or until a convergence criterion is met. Ideally, the swarm converges towards
optimal or near-optimal solutions within the search space.

Therefore, the algorithm terminates either when the maximum number of itera-
tions is reached or the improvement in the global best position falls below a specified
tolerance, indicating negligible benefit from further optimization.

Considering the PSO specifics discussed above, an algorithm can be optimized for
a particular problem by tuning parameters or changing the smarm size. The performance
of PSO is highly sensitive to the chosen values for (𝜔), (𝜑1), and (𝜑2). These parameters
can significantly affect the balance of objectives and convergence behavior. Strategies like
linearly decreasing (𝜔) and carefully selecting (𝜑1) and (𝜑2) are important for optimal
performance. Similarly, the size of the swarm (number of particles) can influence the
algorithm’s efficiency and convergence. While a larger swarm may improve exploration,
it also increases computational cost.

That being said, analyzing and understanding the convergence behavior of the
algorithm for a specific problem will be essential to adjusting those parameters. After all,
the PSO is designed to operate in a balance between exploration (searching new areas of
the search space) and exploitation (refining known promising solutions) [60].

Mathematical analysis has demonstrated that carefully selected ranges for these
parameters promote convergence, preventing particles from straying too far into unpro-
ductive regions of the search space [61].

In the process of antenna design optimization, it is crucial to consider the challen-
ges posed by the significant non-linearity behavior of the antenna. Traditional optimiza-
tion methods may struggle to address these complexities effectively. Recent studies have
suggested the use of stochastic global optimizers to tackle these issues, with PSO being
a particularly promising candidate. According to [62], "As a stochastic global optimizer,
PSO is a good candidate to address the significant nonlinearity and multimodal effect
induced by the full-wave analysis."This highlights the potential of PSO in navigating the
complex design landscape and finding optimal solutions for antenna design.



Chapter 3. Optimization Problem Definition 32

3.2.3 MATLAB-CST Interface

The minimum requirement for an improved miniaturized antenna is to maintain
its efficiency to a certain level while reducing its total area, thus reducing its production
cost [63]. Therefore, the experiments require a practical method to simulate the antenna’s
performance at several settings, as needed for any machine learning technique. Since
relatively accurate and largely accepted simulators already exist, this work chose to use
the CST Studio Suite [64], which is a software for designing, analyzing, and improving
electromagnetic components.

Besides performing many simulations, the PSO technique also requires real-time
modifications in the parameters of the antenna. Additionally, based on similar research,
it is estimated more than a hundred iterations before the algorithm delivers a solution.
On that account, manually setting each antenna parameter for every simulation becomes
impractical. Fortunately, the literature already records examples of using task automation
in the CST with the help of programmable software like MATLAB [65].

Since this research focuses on the PSO algorithm and the miniaturization techni-
ques, it is best to use a finished and tested application to interface between the software.
The chosen interface is available open-source in a GitHub repository [66]. Due to its simple
and functional interface, which uses VBS code to invoke tools inside the CST software,
it is possible to modify the code to access any designing functions in the simulator. Mo-
reover, this interface uses Matlab, which can readily implement the PSO algorithm and
provide all the graphical analysis tools for the later discussion of results.

Fig. 2 represents the algorithm flow used in this thesis. The proposed PSO algo-
rithm commences by randomly initializing particle positions (W and L dimensions) within
the search space. A known optimal solution is incorporated by designating a particle with
the base antenna dimensions as an initial target. Subsequently, antenna performance re-
sults are simulated for each particle’s dimensions. A cost function evaluates these results,
and particles update their velocities and positions based on their individual best (personal
best) and the swarm’s global best positions. This iterative process continues until prede-
fined termination criteria are satisfied, culminating in optimized antenna dimensions.

Fig. 3 demonstrates the Data Diagram of the complete integration. The proposed
workflow commences with user-defined antenna target parameters, which subsequently
inform PSO algorithm configurations. Particle positions, initialized randomly with a por-
tion of particles set to base antenna dimensions, are iteratively updated based on personal
best and swarm intelligence. These dimensions are then translated into antenna drawing
commands via a MATLAB-CST interface. The CST software simulates the generated an-
tenna structures, exporting performance data back to the interface for processing. A cost
function evaluates these results against target parameters, determining whether to update
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Figure 2 – PSO Algorithm Flow.

particle positions or terminate the optimization process based on predefined convergence
criteria.

Figure 3 – Data Diagram.
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4 Results and Discussion

In this section, the results of the study on designing the proposed antennas are
presented. For the simulation of all the antennas, standard values of the dielectric constant
𝜀𝑟 (3.6) and substrate thickness (1.6 mm) were used. Furthermore, the microstrip line
feed was used as the feedline method of the simulated antennas. The dimensions of the
base antennas used for comparison were obtained by using the equations (2.2) and (2.5)
for the 2.45 and 3.5 GHz frequencies.

First, experiments were carried out to determine the appropriate coefficients (𝛼,
𝛽, 𝛾) of the cost function that would better suit the proposed objectives. These tests
involved the use of the PSO algorithm to obtain the most suitable dimensions for the
antenna according to the targets (resonance frequency, return loss, and area) of the cost
function.

The weights of the coefficients were adjusted from 0 to 10, adopting values of either
0, 5, or 10. Since the most basic requirement of an antenna is to operate at a certain
frequency or band, the 𝛽 value, which represents the weight of the resonance frequency,
only assumed the values of 5 and 10. Figure 4 presents the estimated dimensions and
reflection pattern of the antenna for different values of the constants.

The first test, presented in Fig. 4a, which set 𝛼 and 𝛾 to 0, keeping only the
resonance frequency error in the cost function, achieved perfect resonance at the 2.45
GHz frequency. This result proves the ability of the proposed algorithm to converge to
a solution. However, the estimated dimensions did not have any relevant improvements
compared to the base antenna, while the return loss was worsened. By adding value to
𝛾, as shown in Fig. 4b thus including the return loss in the cost function, with the same
weight as the resonance frequency error, the width of the antenna increased but the return
loss improved.

When altering 𝛽 to 5, reducing the weight of resonance frequency in relation to
the return loss, the simulated antenna reached the lowest return loss, improving its per-
formance considerably while only experiencing a small shift in the resonance frequency as
demonstrated in Fig. 4c. However, the dimensions of the antenna further increased.

The final tests presented in Fig. 4d and Fig. 4e included 𝛼, and consequently, the
antenna area in the cost function. With lower coefficients for the return loss and area, the
simulated antenna experienced a size reduction and return loss improvement. Meanwhile,
balancing the three coefficients reached better performance in antenna area and return
loss, but with a bigger shift in the resonance frequency, which was still within acceptable
limits of ISM band applications.
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(a) Patch Dimensions (W=35mm, L=29mm)
and Coefficients (𝛼=0, 𝛽=10, 𝛾=0)

(b) Patch Dimensions (W=37mm, L=29mm)
and Coefficients (𝛼=0, 𝛽=10, 𝛾=10)

(c) Patch Dimensions (W=34mm, L=30mm)
and Coefficients (𝛼=0, 𝛽=5, 𝛾=10)

(d) Patch Dimensions (W=32mm, L=26.5mm)
and Coefficients (𝛼=5, 𝛽=10, 𝛾=5)

(e) Patch Dimensions (W=31 mm, L=25mm)
and Coefficients (𝛼=10, 𝛽=10, 𝛾=10)

Figure 4 – S11 - Cost Function Coefficients for the Patch Antenna at 2.45 GHz
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Considering the previous tests, the values of 𝛼, 𝛽, and 𝛾, were set to 8, 10, and 10,
respectively. This arrangement kept the frequency error with a higher weight to avoid a
relevant error in the resonance frequency, while also balancing the return loss and patch
area, which are important targets of the proposed antenna.

4.1 Case Study 1: ISM band at the 2.45 GHz frequency
The design requirements are set according to a commercial ISM Band antenna

operating at the 2.45 GHz frequency, with an acceptable frequency error of ±5% (range
of 2.32 GHz to 2.57 GHz) and bandwidth of at least 80 MHz. Figure 5, which illustrates
the proposed antenna design, and Table 2, which provides the design dimensions, demons-
trate the results of the proposed approach for the ISM band antenna. The representative
drawing of the antenna design was created using CST software, following the dimensions
obtained through the optimization algorithm.

Figure 5 – Design of the proposed antenna

Table 2 – Antenna Dimensions: 2.45 GHz band

Dimension Base Antenna (mm) Proposed Antenna(mm)
W 37 31
L 28 25
Fi 5.70 5.70

Gpw 1.53 1.53
Wf 14 14

The optimized dimensions obtained with one decimal value precision are as follows:
W (width) = 31 mm, L (length) = 25 mm, Fi (feed inset) = 5.70 mm, Gpw (gap width)
= 1.53 mm, and Wf (feed width) = 14 mm. These dimensions represent a reduction of
25% in patch area when compared with the base antenna, and the algorithm’s ability to



Chapter 4. Results and Discussion 37

converge to these values in 20 iterations demonstrates its efficiency in design optimization.
Consequently, the PSO-based approach significantly reduces the number of iterations
required to fine-tune the base antenna, leading to similar or improved performance in a
shorter timeframe.

In order to further compare the performance of the proposed and base antennas,
a more thorough analysis of the differences in their performances is needed. Specifically,
the results of response parameters, such as reflection pattern (S11) and radiation pattern
allow for an objective evaluation of the designs. Therefore, the CST was used again to
simulate the base and PSO antennas. The S11 plots of both antennas are described in
Figure 6, while the other parameters are listed in Table 3. Likewise, the 3D representation
of the farfield of the antennas monitored in the 2.45GHz frequency is presented in Figure
7.

Figure 6 – S11 - Patch Antenna at 2.45 GHz

Table 3 – Comparison of Proposed and Base Antennas Parameters

Attributes Base Antenna PSO Designed Antenna
Resonance Frequency 2.45 GHz 2.4 GHz

Bandwidth 0.2 GHz 0.25 GHz
Return Loss -25 dB -29 dB

Area 1036 mm2 775 mm2

While both antennas had resonance close enough to the desired frequency, the PSO
antenna achieved a lower magnitude with a minimum closer to the 2.45 GHz frequency.
The base antenna reached -25dB and the PSO antenna -29dB of return loss, approxi-
mately, which is an improvement of 16%. Regarding the bandwidth, the two antennas
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(a) Base Antenna (b) PSO Antenna

Figure 7 – Radiation Pattern at 2.45GHz

also fit the requirements of being broader than 80 MHz, with the PSO antenna having a
slightly larger bandwidth than the base antenna. Finally, the radiation patterns plotted
demonstrate that PSO antenna did not suffer disturbances since the proposed antenna
continued following a similar pattern.

Because of its widespread applications, the 2.45 GHz antenna has a variety of
research on the design assisted by artificial intelligence. Therefore, a comparison between
related work can be done. Table 4 below presents a comparison of design parameters and
operation results between the proposed antenna and other works that use PSO in the
antenna design.

Table 4 – Comparative Study of Proposed Antenna and Existing Antennas

Ref Dimension (mm) Area (mm2) Return Loss (dB) Fr Iterations
[2] 37.52x29.06 1090.3 -25 2.44 GHz NA
[67] 46x55 2530 -22.5 2.45 GHz NA
[68] 49x39.62 1941.4 -43 2.4 GHz NA
[69] 29x15 435 -30 2.45 GHz 50

Proposed Antenna 31x25 775 -29 2.4 GHz 20

Compared to the base antenna, the proposed antenna featured smaller dimensions
of 31x25 mm2, significantly reducing the area to 775 mm2. Despite the reduced size, the
proposed antenna managed to improve the return loss to -29 dB, signifying better impe-
dance matching at the desired frequency of 2.4 GHz. It’s noteworthy that the proposed
antenna achieved these results with just 20 PSO iterations, indicating efficient optimiza-
tion with lower computational costs.

In contrast to the promising results achieved by the proposed antenna and the work
by [69], the other related works employing PSO-related algorithms did not demonstrate
significant improvements in both size reduction and return loss when compared to the
base antenna. For instance, [67] presented a larger antenna with dimensions of 46x55
mm2, resulting in an area of 2530 mm2, while only achieving a return loss of -22.5 dB.
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Similarly, [2] utilized an antenna with dimensions of 37.52x29.06 mm2, resulting in an area
of 1090.3 mm2, with a return loss of -25 dB. Both of these works failed to substantially
reduce the antenna size or improve the return loss when compared to the base antenna
values. Moreover, [68] presented an antenna with dimensions of 49x39.62 mm2, resulting
in a considerable area of 1941.4 mm2, but with a significant improvement in the return
loss of -43 dB.

Comparatively, the work by [69] demonstrated a small antenna with dimensions of
29x15 mm2, resulting in a compact area of 435 mm2. This work achieved a return loss of
-30 dB, similar to that of the proposed antenna, indicating effective impedance matching.
However, it’s important to note that [69] required 50 PSO iterations to reach these results,
which is higher than the 20 iterations used for the proposed antenna.

Therefore, the proposed antenna successfully reduced the antenna’s area while
simultaneously improving the return loss, showcasing its efficiency in achieving desired
performance metrics with fewer PSO iterations. On the other hand, the work by [69]
managed a similar return loss but at the cost of a higher number of PSO iterations.
When considering recurrent usage and computation costs, the proposed antenna presents
a compelling advantage due to its efficient optimization process.

4.2 Case Study 1: 5G band at the 3.5 GHz frequency
Since the PSO-based optimization for the ISM band antenna achieved positive

results, this work proceeded to apply it to the design of an antenna for 5G applications
(3,300 to 3,800 GHz). For this antenna, the design requirements are set to an acceptable
frequency error of ±5% (range of 3.32 GHz to 3.67 GHz) and bandwidth of at least 100
MHz. Following the same methodology, the algorithm with an adjusted cost function was
employed and then compared to the base antenna for operation in the 3.5 GHz frequency.
Table 5 describes the dimensions of the proposed and base antennas, revealing reductions
in width (W) and length (L).

Table 5 – Antenna Dimensions - 5G Band

Dimension Base Antenna (mm) Proposed Antenna(mm)
W 26 25.4
L 20 18
Fi 5.70 5.70

Gpw 1.53 1.53
Wf 10 10

The reflection coefficient (S11) plot shown in Figure 8, presents the performance of
the simulated base and proposed antennas. The optimized antenna achieved a return loss
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of -41 dB, surpassing the -34 dB of the base antenna, further enhancing its performance
by 20%.

Figure 8 – S11 - Patch Antenna at 3.5 GHz

Table 6 provides a comparison between the base and proposed antennas. The
optimized design maintains resonance at 3.5 GHz while broadening the bandwidth from
0.18 GHz to 0.22 GHz, which met the design requirements. Furthermore, the antenna
area was reduced by 12%, demonstrating the efficacy of the PSO algorithm in optimizing
antenna dimensions.

Table 6 – Comparison of Proposed and Base Antennas Parameters - 5G
Band

Attributes Base Antenna PSO Designed Antenna
Resonance Frequency 3.5 GHz 3.5 GHz

Bandwidth 0.18 GHz 0.22 GHz
Return Loss -34 dB -41 dB

Area 520 mm2 457 mm2

Finally, Figure 9 illustrates the 3D far-field radiation patterns of both antennas
at 3.5 GHz. The similarity in the radiation patterns confirms that the proposed antenna
preserves the desirable radiation characteristics of the base antenna.
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(a) Base Antenna (b) PSO Antenna

Figure 9 – Radiation Pattern at 3.5GHz
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5 Conclusion

This thesis presented a comprehensive exploration of Particle Swarm Optimization
as an approach for designing efficient and compact microstrip patch antennas applied to
ISM and 5G bands. Motivated by the increasing demand for smaller, high-performance
antennas in modern wireless communication systems, this work sought to overcome the
limitations of traditional manual design methods and explore the potential of PSO opti-
mization.

While recent works have explored PSO for antenna optimization, they often lacked
a solution for multiple performance parameters and streamlined integration between the
algorithm and simulation software, hindering potential broader applicability. Recognizing
this gap, this research not only leveraged PSO to enhance antenna design but also develo-
ped a seamless interface between the algorithm and simulation software. This integration
can facilitate the exploration of antenna designs across different frequency bands, inclu-
ding both ISM and 5G bands. With minimal modification of target parameters and cost
function, the algorithm achieved optimization in another resonance frequency, attesting
to the viability of the proposed approach.

The developed PSO-based methodology offered a flexible and adaptable framework
for antenna design, seamlessly integrated with an electromagnetic field simulation soft-
ware (CST). By considering multiple design parameters and optimization targets simul-
taneously, the PSO algorithm searched the complex design space to converge on optimal
solutions. This approach not only streamlines the design process but also enables the
exploration of non-intuitive designs that may have been overlooked using conventional
methods.

The results obtained from the application of PSO to both the 2.45 GHz ISM
band antenna and the 3.5 GHz 5G antenna demonstrate the significant advantages of
this approach. In both cases, the PSO algorithm achieved reductions in antenna size
while simultaneously enhancing performance metrics such as return loss and bandwidth.
The 25% size reduction and 16% return loss improvement in the ISM band antenna,
coupled with the 12% size reduction and 20% enhancement in return loss for the 5G
antenna, showcased the versatility and effectiveness of the proposed algorithm across
different frequency bands and application scenarios.

Moreover, the success in optimizing these antennas with relatively few iterations
(20) highlights its computational efficiency. This efficiency is particularly valuable in sce-
narios where rapid design iterations are required.

Therefore, this thesis demonstrates that PSO based algorithms are powerful tools
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for antenna design optimization, capable of delivering compact, high-performance anten-
nas across different frequency bands and applications. By automating and streamlining
the design process, PSO based algorithms can not only accelerate the development of an-
tenna solutions but also open new possibilities for exploring unconventional designs and
optimizing multiple performance parameters simultaneously.

5.1 Future Work
The results obtained in this study can contribute for several avenues of future

research to further explore and expand the capabilities of PSO in antenna design optimi-
zation. One important possibility is the adaptation of the algorithm to accommodate more
complex antenna geometries beyond the simple rectangular shape explored in this work.
This could involve adapting the current interface or incorporating geometric constraints
to guide the optimization process towards desired shapes.

Another potential direction is to explore the impact of different substrate materials
on antenna performance and optimize the PSO algorithm accordingly. By considering the
dielectric properties of various substrates, it may be possible to achieve further enhance-
ments in antenna efficiency, bandwidth, and size reduction.

Additionally, the current work focused on specific frequency bands (2.45 GHz
and 3.5 GHz). Future research could investigate the effectiveness of PSO in optimizing
antennas for a wider range of frequencies.

Extending the application of PSO to fractal antennas and MIMO configurations
presents another promising area for future work. Fractal geometries offer unique advan-
tages in terms of miniaturization and multiband operation, while MIMO configurations
enable higher data rates and improved link reliability. Integrating PSO with these ad-
vanced antenna designs could offer new possibilities for optimizing their performance and
expanding their application domains. ———————————————————-
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