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Resumo
A utilização de Veículos Aéreos Não Tripulados (VANTs) em operações de busca e sal-
vamento tem crescido significativamente, principalmente devido à redução de custos e ao
menor risco associado. No entanto, a eficácia desses veículos está intimamente ligada à
qualidade dos sensores utilizados para captura e identificação de alvos, tornando a inves-
tigação desses equipamentos uma área crucial.

Este estudo apresenta uma revisão sistemática da literatura sobre a aplicação de Redes Ad-
versariais Generativas (GANs) em imagens geradas por VANTs com foco em busca e res-
gate. Além disso, introduzimos uma metodologia que utiliza a ferramenta Real-ESRGAN
para aprimorar imagens obtidas por VANTs durante missões de busca e salvamento, com
foco em sensores que operam na faixa infravermelha. Os resultados da aplicação dessa
técnica em nosso conjunto de dados, combinados com a validação utilizando a ferramenta
YOLOv8, revelam melhorias significativas na qualidade das imagens. Isso sugere que a
abordagem proposta pode ter aplicações valiosas no pós-processamento e na identificação
de alvos humanos durante operações de busca e resgate.

Palavras-chaves: Visão computacional; Processamento digital de imagens; Busca e sal-
vamento; Redes Generativas Adversariais.



Abstract
The use of Unmanned Aerial Vehicles (UAVs) in search and rescue operations has grown
significantly, primarily due to reduced costs and lower associated risks. However, the
effectiveness of these vehicles is closely linked to the quality of the sensors used for target
capture and identification, making the investigation of these devices a crucial area of
research.

This study presents a systematic review of the literature on the application of Genera-
tive Adversarial Networks (GANs) in UAV-generated images, with a focus on search and
rescue. Additionally, we introduce a methodology that uses the Real-ESRGAN tool to en-
hance images obtained by UAVs during search and rescue missions, specifically targeting
sensors that operate in the infrared spectrum. The results of applying this technique to
our dataset show significant improvements in image quality, suggesting that this approach
may have valuable applications in post-processing and in the identification of human tar-
gets in search and rescue operations.

Key-words: Computer vision; Digital image processing; Search and rescue; Generative

adversarial networks.
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1 Introduction

SAR (Search and Rescue) is a critically important activity for preserving human
life, safety, and societal comfort, primarily focusing on locating survivors and victims
of accidents and natural disasters [1, 2, 3, 4, 5, 6, 7]. Depending on the search area,
weather conditions, terrain, and other factors, this operation is conducted with the assis-
tance of aerial vehicles manned by specialized teams such as firefighters, the Brazilian Air
Force a.k.a FAB (Força Aérea Brasileira), and other agencies. Today, with advancements
in automation, robotics, and sensors, UAV (Unmanned Aerial Vehicle(s)) have become
significant allies in these operations. The use of drones offers advantages including cost
reduction in equipment and personnel, while also playing crucial roles in expansive re-
search areas within computer vision and digital image processing, given that photographic
cameras are the primary sensors employed on these vehicles.

In a UAV-assisted search and rescue operation, the initial task involves enhancing
sensor images to improve the identification of targets such as individuals, animals, or spe-
cific objects of interest. The effectiveness of this identification is significantly influenced
by sensor quality, with factors like noise, light spectrum, blur, and object distance poten-
tially degrading the performance of detection algorithms used for automated or manual
target localization.

1.1 Super-resolution
To address the sensors’ quality challenges, super-resolution techniques can be em-

ployed. Super-resolution is a method that enhances image resolution beyond its original
quality by using algorithms to generate HR (High-resolution) images from LR (Low-
resolution) inputs. This process involves reconstructing or estimating finer details in the
image, thus improving clarity and effectiveness in target identification despite the limita-
tions of the initial sensor quality.

Some classic examples of algorithms, as those presented on [8] focused on image
super-resolution include Nearest neighbor, Bilinear, Quadratic, Bicubic, and Lanczos in-
terpolations. These methods are used to enhance image quality by applying filters based
on neighboring pixels to improve the images. For instance:

Nearest Neighbor Interpolation: This is the simplest and most direct method,
where the value of the target pixel is simply the value of the nearest pixel in the original
image. While it is fast and easy to implement, it tends to result in images with hard edges
and blocky artifacts, as it does not consider surrounding pixels for smoothing. It is more
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suitable for situations where speed is critical and image quality is less of a priority.

Bilinear Interpolation: This method is simpler and faster compared to bicubic
interpolation. It uses the 4 nearest pixels (a 2x2 grid) to estimate the value of the target
pixel. Bilinear interpolation calculates a weighted average of these 4 pixels, taking into
account the distance of the target pixel from each neighboring pixel. Although it is less
sophisticated than bicubic interpolation, bilinear still provides a significant improvement
over the basic nearest neighbor method, especially for moderate resolution increases.

Quadratic Interpolation: This method is slightly more complex than bilinear in-
terpolation and is based on a quadratic polynomial. It uses a second-degree polynomial
formula to estimate the pixel value, taking into account a larger set of neighboring pixels
(generally a larger area than bilinear but smaller than bicubic). Quadratic interpolation
can provide improved image quality compared to bilinear interpolation, but it still does
not achieve the smoothness and precision of bicubic interpolation.

Bicubic Interpolation: This method considers the 16 closest pixels (a 4x4 grid)
around the target pixel. Bicubic interpolation is more advanced than bilinear and quadratic
methods because it uses a cubic polynomial to compute the value of the interpolated pixel.
This results in smoother transitions between pixels and better image quality with fewer
visual artifacts such as blurring or blockiness. It is often used in applications requiring
high image quality, such as photo editors and printing software.

Lanczos Interpolation: this method uses a windowed sinc function, defined by a
parameter called the "Lanczos kernel," to weigh surrounding pixels when computing new
pixel values. The kernel’s size, typically determined by the number of lobes (often 2 or
3), controls how many neighboring pixels influence the interpolation. This approach effec-
tively balances sharpness and smoothness, making it particularly useful for maintaining
image quality during scaling operations.

These algorithms are used to enhance image quality and reduce noise in images
captured by various devices, including CT scans, X-rays, CCTV cameras, and smart-
phones, and they can also be applied to low-quality images produced by UAVs. UAVs,
due to their high-speed movement, can introduce artifacts such as motion blur, further
affecting image clarity. Interpolation techniques, originally designed for resizing images,
also help mitigate noise and improve resolution by enhancing overall image detail and
reducing distortions.

While classical image processing algorithms operate on pixel-level data within the
image itself with kernels, generation algorithms can create new data from a trained latent
space. This capability enables segments of low-quality images generated by drones to
be artificially reconstructed, potentially enhancing contrast, resolution, and consequently
improving the overall quality of images captured by these sensors.



Chapter 1. Introduction 17

1.2 Systematic Literature Review
A SLR (Systematic Literature Review) is a rigorous scientific method to synthesize

evidence from multiple studies on a specific topic. Unlike common reviews, which may be
more informal and less structured, a systematic review follows a predefined and detailed
protocol to ensure objectivity and minimize biases.

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
protocol is a widely used guideline for planning, conducting, and reporting systematic re-
views. It includes steps such as defining the research question, systematically searching
for relevant studies, rigorously selecting articles, extracting data, and synthesizing results
in a transparent and replicable manner.

The main difference between a systematic review and a common review lies in
the robust methodology and systematic approach to identify, assess, and integrate all
available evidence impartially. This enables researchers to conduct a comprehensive and
reliable analysis of the available information on a specific topic, contributing to evidence-
based clinical, policy, or research decisions grounded in solid and up-to-date evidence.

The first stage in the development of this work involved a systematic literature
review using the PRISMA methodology. This SLR aimed to gather data on the application
of GAN algorithms used in images captured by drones, to provide an overview of how these
generative algorithms can be conceptualized and applied in search and rescue operations
for people.

1.3 Generative adversarial Networks
The GAN (Generative adversarial Networks) are convolutional artificial neural

networks designed to generate new images by training on a latent space. Developed by
Ian Goodfellow in 2014 as an enhancement over autoencoders [9, 10, 11], they incorporate
principles from zero-sum game theory. This framework involves two competing neural
networks in a minimax-like framework: the generator, which creates new images, and
the discriminator, which evaluates these generated images against real ones. The process
of training lies on the minimax loss function described in Equation 1.1, where 𝑉 (𝐷, 𝐺)
is the objective function, represented by the right part of Equatiion 1.1 which we’re
minimizing (min𝐺) with respect to the Generator or maximazing (max𝐷) with respect
of the discriminator. x and z denote the real data sample and random noise vector,
respectively; 𝑝data(x) represents the distribution of real data samples(x); 𝑝z(z) is the
distribution of noise vector(z); 𝐷(x) denotes the discriminator’s output for a real data
sample (x), while 𝐺(z) the generator’s output, which generates fake data given a noise
vector (z); Ex∼𝑝data(x) indicates the expectation over the distribution of real data, while
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Ez∼𝑝z(z) is the expectation over the distribution of the noise vector; log represents the
natural logarithm function and 1 − 𝐷(𝐺(z)) signifies the arithmetic operation used in
the loss function.

In summary, the generator aims to minimize the loss function described, while the
discriminator aims to maximize it.

min
𝐺

max
𝐷

𝑉 (𝐷, 𝐺) = Ex∼𝑝data(x)[log 𝐷(x)] + Ez∼𝑝z(z)[log(1 − 𝐷(𝐺(z)))] (1.1)

The adversarial process requires the generator to continuously improve its outputs
to better deceive the discriminator, with the training constrained by Nash’s equilibrium.
This makes defining an optimal stopping condition for the algorithm challenging. As the
generator becomes more proficient at creating realistic images, it becomes increasingly
difficult for the discriminator to distinguish them from real images, achieving the desired
outcome of the algorithm. The result is a generator capable of producing artificial images
that are indistinguishable from real-world images. GANs have various applications, such
as colorizing black-and-white photographs, generating text, enhancing images through
super-resolution, and more.

The Gans face several critical issues that can hinder their effectiveness. The van-
ishing gradient problem can disrupt generator training by diminishing the gradient flow,
impairing learning and slowing convergence. Model collapse presents another challenge,
where the generator may repetitively produce identical outputs, limiting diversity and re-
ducing the quality of generated samples. Moreover, failure to converge can occur, reducing
the discriminator’s feedback effectiveness and preventing the generator from achieving op-
timal performance. These issues underscore the ongoing challenges in GANs’ stability and
effectiveness in generating high-quality, diverse outputs.

1.4 Real-ESRGAN
The tests and development in this study are based on applying the work of [12],

utilizing their pre-trained model to enhance infrared images for subsequent detection of
individuals in search and rescue operations. The primary contribution of these authors
lies in introducing the Real-ESRGAN (Real Enhanced Super Resolution Generative Ad-
versarial Networks) model for blind image super-resolution. Real-ESRGAN is designed
to remove artifacts and enhance details in real-world images, using purely synthetic data
during training. This innovative approach aims to improve the visual quality of images,
surpassing traditional methods of blind super-resolution. Additionally, Real-ESRGAN
demonstrates superior performance in artifact removal and restoration of textural details
compared to previous approaches such as ESRGAN (Enhanced Super Resolution Gen-
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erative Adversarial Networks)[13], DAN (Deep Alternating Network)[14], CDC (Compo-
nent divide-and-conquer)[15], RealSR (Real-World Super-Resolution)[16], and BSRGAN
(Blind Super-Resolution Generative Adversarial Network)[17].

In the context of Real-ESRGAN, the architecture of the Generative Adversarial
Networks (GANs) is designed to effectively enhance image resolution. For the genera-
tor—the component responsible for producing high-resolution images from low-resolution
inputs—the authors use a deep neural network that incorporates several Residual-in-
Residual Dense Blocks RRDB (Residual-in-Residual Dense Blocks). These blocks are
essential for capturing intricate details and generating high-quality images.

The training of Real-ESRGAN involves comparing high-resolution images with
their low-resolution, degraded counterparts. This comparison helps the model learn how
to reconstruct the high-quality details from the lower-quality inputs. Real-ESRGAN’s
training process is more extensive than ESRGAN because it uses a training dataset that
covers a broader spectrum of image degradations. This makes the model’s task of distin-
guishing between the original high-resolution images and their degraded versions more
complex.

The authors employ a neural network architecture known as U-Net combined with
Spectral Normalization SN (Spectral Normalization) to manage this increased complexity,
as depicted in Figure 1. U-Net is particularly effective for image-to-image tasks due to
its encoder-decoder structure with skip connections, which helps preserve details and im-
proves the overall output quality. Spectral Normalization is a technique used to stabilize
the training of GANs by controlling the spectral norm of weight matrices in the network,
thus improving the model’s stability and performance. Since ESRGAN is a computation-
ally heavy network, the authors use a technique called pixel-unshuffle [18] before feeding
the inputs into the main ESRGAN architecture on the generator network, Figure 2 shows
the generator network.

The pixel-unshuffle is the inverse operation of pixel-shuffle. This step reduces the
spatial size of the input images while enlarging the channel size. By performing most of
the calculations on a smaller resolution space, this approach helps reduce GPU memory
and computational resource consumption, making the training process more efficient.

Additionally, the Real-ESRGAN model was trained using synthetic images. This
approach has several advantages. Synthetic images, which are artificially generated, allow
for the creation of diverse and controlled degradation scenarios that might be rare or
difficult to capture in real-world images. Training on these synthetic datasets helps the
model generalize better, leading to improved performance when applied to real-world
images.

Pre-trained models offer significant advantages in machine learning and computer
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Figure 1 – U-Net model with Spectral Normalization proposed by the authors on Real-
ESRGAN. Source: [12]

Figure 2 – The Generator Network in Real-ESRGAN takes LR images and transforms
them into high-resolution HR images. This process includes a technique called
"Pixel-unshuffle" which rearranges the pixels to make the image smaller in
terms of its spatial dimensions but richer in channels. Source: [12]

vision tasks. They serve as starting points for training specific models, saving time and
computational resources, especially useful with limited training datasets. These models
capture general and abstract features from large datasets, improving their ability to gen-
eralize across different datasets and tasks. Utilizing pre-trained models can reduce the risk
of overfitting, as they have already learned useful representations from diverse datasets.
They enable rapid prototyping and validation of ideas in new projects, accelerating the
development cycle. In many cases, pre-trained models outperform models trained from
scratch, particularly in computer vision tasks where pre-training on large image datasets
captures valuable visual information. Another important aspect to consider is that train-
ing a GAN network is computationally intensive and time-consuming. Therefore, using
pre-trained models can significantly accelerate the process.

1.5 OpenCV
OpenCV, an acronym for Open Source Computer Vision Library1, is an open-

source library widely used in the field of computer vision and digital image processing.
1 https://opencv.org/
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Initially developed in C++, the library also has support for the Python language, which
facilitates its use by developers and researchers in different areas of computer science. With
OpenCV, we can load images and represent them in matrices, which can be interpreted by
OpenCV itself or by the Matplotlib library, facilitating the use of linear algebra techniques.
By the way, in 2005, for the first time in history, an autonomous vehicle called Stanley,
which used OpenCV2, traveled 132 miles in the Mojave Desert, winning the DARPA
Grand Challenge, awarded a prize of 2 million dollars.

Computer vision is a branch of artificial intelligence focused on enabling computers
to understand and interpret images and videos, similar to how humans do. OpenCV is
a powerful library that offers many tools and functions to help you work on computer
vision projects. Some of its key features include image pre-processing, applying filters,
and post-processing.

Image preprocessing involves preparing images for subsequent analysis or process-
ing. This stage may include converting color images to grayscale, normalizing brightness
and contrast, and removing noise. OpenCV provides functions that streamline these op-
erations, making the process quick and efficient.

The application of filters is another essential functionality that can be performed
using OpenCV. Filters are used to enhance specific features of images such as edges, con-
tours, textures, and can also be employed to address certain image degradations. We can
create custom filters and apply them manually to images, expanding upon the convolution
process mathematically performed. This allows for research, replication, and development
of new techniques and frameworks for image processing.

Post-processing, in turn, involves enhancing images or extracting relevant infor-
mation after the initial processing. This can include object segmentation, face detection,
or identifying points of interest in an image.

In the context of artificial intelligence, OpenCV is often used in conjunction with
other machine learning libraries such as TensorFlow and PyTorch. During the training of
neural networks, it is common for images to need modification or adjustment to enhance
the model’s performance. OpenCV enables these modifications to be efficiently executed,
simplifying the process of creating and improving AI models.

In our specific project, we utilize OpenCV to extract images from videos captured
by infrared sensors, which will form the basis of our dataset. These images will undergo
enhancement using Real-ESRGAN and subsequent testing with YOLOv8.
2 https://docs.opencv.org/3.4/d0/de3/tutorial_py_intro.html
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1.6 YOLOv8
YOLO (You Only Look Once) is a highly versatile computer vision tool capable

of identifying, classifying, tracking, and segmenting objects in images. The application of
YOLO for object detection involves the following steps:

1. Dataset Preparation: To train a YOLO network to detect objects, preparation of
training and validation images along with their annotations is necessary. Annotating
an image involves mapping the location of objects of interest, and these annotations
must be exported in a format accepted by YOLO.

2. Training and Evaluation: After dataset preparation, the YOLO network is trained
using the annotated images. Post-training, the model can be evaluated using various
metrics to assess its performance.

3. Integration with SAR: In the context of Search and Rescue (SAR), the applica-
tion of YOLO typically follows the enhancement of images by GAN algorithms, such
as Real-ESRGAN with pre-trained models. This preprocessing step aims to improve
image quality before YOLO performs object detection, enhancing the accuracy and
reliability of target identification in SAR operations.

Version 8 enhances previous versions by improving its backbone network, feature
fusion techniques, and overall architecture, thereby achieving superior real-time object
detection capabilities with enhanced speed and accuracy.

1.7 Motivation
The use of low-cost equipment in UAVs, especially sensors, presents a trade-off

that requires careful analysis in their application for search and rescue purposes.

On one hand, there is the advantage of affordability, but on the other hand, there
is the issue of compromised efficiency in target identification due to the low quality of
generated images, caused by factors such as blur, stability, resolution, noise, lens distor-
tions, sharpness, among others. Additional factors like terrain topography, variations in
relief, and object distance can also negatively affect image quality, introducing distor-
tions and noise that hinder accurate data interpretation. These limitations can lead to
misinterpretations, impairing target detection accuracy.

Given the significant potential of GANs for improving image quality, correcting im-
perfections, and enhancing resolution—particularly in the context of images captured by
drones—we reviewed the literature and identified Real-ESRGAN [12] as the most suitable
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solution for our objectives. This algorithm is specifically designed to enhance image qual-
ity and works effectively in both visible and infrared spectra. The Real-ESRGAN models
and code are available on GitHub3, which simplifies its implementation and adaptation
to our specific needs.

Therefore, aiming to mitigate the negative effects of low-cost sensors and adverse
environmental conditions, we propose the study and utilization of Real-ESRGAN to eval-
uate the enhancement of images captured by UAVs. This, in turn, should improve the
accuracy and reliability of target detection processes.

1.8 Scope of the research
Initially, we conducted a systematic literature review aimed at gathering data and

information on the use of Generative Adversarial Networks (GANs) in the context of target
detection in images generated by Unmanned Aerial Vehicles (UAVs). This review allowed
us to identify the approaches and motivations behind the application of such algorithms in
object detection from UAV-generated images, as well as the metrics employed to evaluate
the outcomes.

Subsequently, we constructed two datasets: the first comprised images extracted
from videos captured by an infrared camera, and the second consisted of the same images
from the first dataset enhanced using Real-ESRGAN.

Following the previous stage, annotations were added to the dataset images to
train YOLO (You Only Look Once)(version 8) for detecting people, aiming to compare
the results between normal and enhanced images.

Next, we conducted a comparison of the high-resolution images with classical
super-resolution algorithms to evaluate their performance using similarity-oriented met-
rics.

Finally, we discussed the potential implications of the results obtained, such as the
feasibility of using GANs for enhancement and analysis of UAV images in real-world appli-
cations. We also suggested future research directions in this area, including the integration
of additional sensors and the development of more advanced algorithms for multispectral
image processing.

1.9 Related Work
Regarding Search and rescue, The most prominent work related in detecting peo-

ple is the LADD (Lacmus Drone Dataset) 4. This dataset was voluntarily created by
3 https://github.com/xinntao/Real-ESRGAN
4 https://www.kaggle.com/datasets/mersico/lacmus-drone-dataset-ladd-v40
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organizations such as Owl and LisaAlert. It consists of 1365 diverse images captured by
drones at a height of 40-50 meters, depicting people in various poses. The dataset also
includes annotations in a format compatible with YOLO, which facilitates the training of
automatic person detection in images captured by UAVs. However, the dataset is in the
visible light spectrum.

Regarding detecting targets in infrared scenarious, [19] presents the ITD-YOLOv8
model, designed for detecting infrared targets using UAVs. The model utilizes the HIT-
UAV dataset, comprising 2898 infrared images with classes including people, bicycles,
and vehicles. The key contributions include an improved YOLOv8 backbone network
for accurate target detection in complex environments and a lightweight convolutional
operation for model efficiency. The model’s ability to detect diverse targets in various
scenarios enhances its applicability in search and rescue missions, where quick and precise
target identification is crucial for successful operations.

[20] introduces the YOLOv8-EGP algorithm for infrared road object detection,
which enhances the YOLOv8 model by improving accuracy in detecting small targets in
infrared images. The study utilized the FLIR_ADAS_v2 dataset, consisting of 10,467
infrared images, and focused on detecting six specific classes: person, bike, car, bus, light,
and sign. The YOLOv8-EGP model showed significant improvements in accuracy com-
pared to the original model, making it suitable for real-world applications such as vehicle-
assisted driving, nighttime road recognition, and intelligent transportation. The enhanced
model’s capabilities in detecting small targets contribute to its effectiveness in search and
rescue operations.

[21] continues their work from [20] and presents an improved infrared road ob-
ject detection algorithm based on an attention mechanism in the YOLOv8 model. The
main contributions include incorporating the CPCA attention module and the CGBD
downsampling module to enhance model accuracy and performance. They use the same
FLIR_ADAS_v2 dataset. The enhanced model showed a 1.4% increase in mean average
precision (mAP) compared to YOLOv8s, demonstrating improved precision and recall.
This advancement in infrared object detection can benefit search and rescue operations by
accurately detecting and tracking objects in challenging environments, enhancing safety
and efficiency in such scenarios.

1.10 Goals

• Conduct a systematic literature review using the Prisma method to investigate
how GAN algorithms are used to enhance low-quality images for subsequent target
detection.
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• Assess the practicality of using the Real-ESRGAN algorithm, with pre-trained mod-
els, to enhance images captured by infrared sensors.

• Apply YOLOv8 to the enhanced images and compare the results with those from
other studies on target detection.

1.11 Work Structure
This study is structured as follows: Section 2 outlines the methodology employed in

the systematic literature review, along with the tools utilized throughout the processes.
Section 3 provides a detailed account of the step-by-step procedures used to test and
validate the super-resolution application on our dataset. It includes a demonstration of
how the Real-ESRGAN algorithm was implemented on images from our dataset using
pre-trained models and how we use YOLOv8. Section 4 presents the primary outcomes
derived from the tests conducted with the Real-ESRGAN and YOLOv8 algorithms. In
Section 5, we analyze and discuss the findings presented in Section 4. Finally, Section 6
concludes our study with insights, discussions on validation limitations, and proposals for
future research based on our contributions.
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2 Methodology

2.1 Systematic Literature Review
In the first step of our research, we conducted a systematic literature review.

This review aimed to analyze various GAN algorithms utilized for image enhancement,
edge detection, or target identification, evaluating their metrics, objectives, and potential
applications in search and rescue operations. The SLR plan followed the principles of the
PRISMA methodology, a key reference for constructing reviews of this scope. The review
began in mid-2023 and was completed in the early months of 2024.

2.1.1 Research Questions

Given the focus on search and rescue applications, we centered our research around
the following research question, which was replicated in the RSL article: How can GAN
algorithms help detect edges or objects in images generated by UAVs?

To assist in structuring the studies, we also formulated the following sub-questions:

1. How can GANs be addressed on SAR operations?

2. What benefits are gained from using a pre-trained model rather than training one
from scratch?

3. Which metrics are most suitable for validating these algorithms?

Sub-question 1 above guides the main objective of the research, aimed at examining
how edge and object detections can be addressed in search and rescue targets, specifically
focusing on vulnerable individuals such as people or animals in distress situations.

Sub-question 2 above arose from the observation that Real-ESRGAN was able
to enhance our images using a pre-trained model, which was not specifically related to
those images. In other words, a different dataset could also be useful for improving images
unrelated to it.

Sub-question 3 stemmed from the need to observe the metrics used in validat-
ing GANs, considering that these algorithms converge based on Nash equilibrium [9].
Therefore, analyzing their performance becomes challenging to achieve.
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2.1.2 PICOC framework

In the context of a systematic literature review, PICOC (Population; Intervention;
Comparison; Outcome; Context) is an acronym representing criteria for study selection.
These criteria help to clearly define and specify the relevant articles for the review, en-
suring that the research is conducted in a structured and comprehensive manner. For our
study, we formulated the following PICOC criteria to guide the selection of studies:

• Population: Our population consisted of studies applying GAN algorithms to images
generated by UAVs.

• Intervention: We seek algorithms and techniques for enhancing images generated by
UAVs, specifically for detecting people.

• Comparison: We did not utilize this item, as our focus is not on comparing studies
but rather on conducting a review of articles using GAN algorithms for object and
edge detection.

• Outcome: Our outcome focused on validating the most effective solutions employing
GANs in enhancing target and edge detection, especially when applied to people
and animals.

• Context: Our context centers on publications using GANs for analysis in UAV im-
ages, particularly focusing on object detection, edge detection, and object classifi-
cation.

2.1.3 Search string and databases

To maximize the retrieval of relevant articles addressing the main research question
and sub-questions, we formulated the following search string: ("edge detection" OR
"object detection") AND ( uav OR drones ) AND ( gan OR "genera tive
adversarial networks"). We chose Scopus and IEEE Xplore as they are significant
databases known for listing high-impact articles. After exporting the articles, we inputted
their information into the Parsifal tool (https://parsif.al/) to facilitate the review process.

The search string returned 69 raw results, comprising 42 from the SCOPUS database
and 27 from IEEE Xplore. After removing duplicates and secondary studies, 54 articles
(31 from SCOPUS and 23 from IEEE Xplore) were submitted for abstract analysis. Our
aim during this phase was to eliminate false positives, secondary studies, and those not
related to the PICOC framework used in our research.
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2.1.4 First Step of Analysis - Abstract Analysis

We conducted abstract analysis to eliminate false positives, secondary studies, or
those unrelated to the theme of the systematic literature review. After this analysis, the
number of articles under review decreased to 23 studies from the SCOPUS database and
16 from IEEE Xplore.

2.1.5 Second Step of Analysis - Quality Assessment

In this stage of quality assessment, we used the inclusion criteria defined in Table 3
to assign scores to the articles read in greater depth. Each inclusion criterion (IC) serves a
specific purpose in selecting studies that use GANs on UAV images. Here’s an explanation
of how each criterion contributes:

• IC1 helps in identifying studies where GANs are applied specifically to enhance
edge detection or object detection in UAV images. It ensures that the focus is on
the use of GANs for improving the clarity and accuracy of object boundaries or
entire objects in the images captured by UAVs.

• IC2 is relevant because using pre-trained models in GANs can significantly affect
the performance and efficiency of the algorithm. Studies that employ pre-trained
models often benefit from transfer learning, where knowledge gained from a large
dataset in a different domain can be leveraged to improve performance on UAV
images without requiring extensive training on UAV-specific data.

• IC3 ensures that studies provide transparency regarding the evaluation metrics
used to assess the performance of the GAN model applied to UAV images. Metrics
such as accuracy, precision, recall, and F1-score are essential for understanding how
well the GAN-enhanced images align with the intended objectives (e.g., detection
accuracy of objects).

• IC4 focuses on studies that specifically target images captured in the visible light
spectrum by UAVs.

• IC5 This criterion focuses on studies that specifically investigate images captured
in the infrared spectrum by UAVs. It considers that the human body, which is
the primary target for detection algorithms, emits heat in this spectral range. This
characteristic can aid UAVs in search operations.

• IC6 targets studies specifically applied to detect people or animals in UAVs images
as the main objective of the study is for search and rescue.

• IC7 was established to identify studies that incorporate any version of YOLO as
part of their methodology for detecting objects in UAV images.
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Table 3 – Inclusion criteria.

Code Criteria
IC1 Does the GAN algorithm aim to assist in detecting edges or objects?
IC2 Does the authors employ a pre-trained model?
IC3 Does the paper provide the metrics used for the applied model?
IC4 Is the solution proposed in the study aimed at images within the visible light spectrum?
IC5 Does the solution presented in the study target images within the infrared spectrum?
IC6 Is the SAR algorithm designed to detect people or animals?
IC7 Does the study utilize any version of YOLO in its development?

The scores regarding the inclusion criteria were assigned as follows: if the article
fully met the criteria, it received a score of 1.0; if it partially met the criteria, it received
a score of 0.5; if the study did not meet the criteria or there was no mention of it, it
received a score of 0.0. Although it would be possible to compile a table with these data,
there is no reason to classify the articles as better or worse based on their scores. This
is because the review yielded various types of results regarding the application of GANs,
each with its particularities.

2.1.6 Third step of Analysis - Metric Compilation

Once quality scores were assigned, articles most aligned with the study objectives
were organized into tables to qualitatively evaluate the metrics used. It was observed that
the studies employed the following metrics:

Precision (P): Precision indicates the proportion of correctly predicted positive
instances (true positives) relative to all instances predicted as positive (true positives +
false positives). A high precision value signifies that the model has a low false positive
rate, meaning that when it predicts an object, it is likely to be correct.

Recall (R): Recall, also known as sensitivity or true positive rate, evaluates the
model’s ability to identify and capture all relevant instances of the target objects within
the dataset. It calculates the ratio of correctly predicted positive instances (true positives)
to all actual positive instances in the dataset (true positives + false negatives). A high
recall value indicates that the model can effectively detect most of the relevant objects
present in the dataset.

The Structural Dissimilarity Index Measure (DSSIM) is a metric that addresses
the structural information in images during the optimization process of a neural network
model. DSSIM is used to improve the estimation of both the luminance and chrominance
pixels of images, particularly in tasks such as image translation or synthesis. By incorpo-
rating DSSIM loss into the optimization process, the model becomes more aware of the
structural information in the images, leading to better-shaped objects in the generated
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outputs. DSSIM defines a region (window size) in the images where it predicts the lumi-
nance and chrominance, thereby enhancing the overall quality of the generated images
by encouraging spatial smoothness. The use of DSSIM helps the model produce more
accurate and visually appealing results by focusing on preserving the structural details of
the images.

The Peak Signal-to-Noise Ratio (PSNR) is a widely used metric for assessing the
quality and similarity of images and video. It measures the ratio between the maximum
possible power of a signal and the power of corrupting noise that affects the fidelity of its
representation.

The Structural Similarity Index (SSIM) is a metric used to assess the similarity
between two images. SSIM takes into account three components of similarity: luminance,
contrast, and structure. It measures how well the structure of the images is preserved
when comparing a reference image to a target image. A higher SSIM value indicates a
higher degree of similarity between the two images in terms of their structure and content.
SSIM is commonly used in image processing and computer vision tasks to evaluate the
quality of image restoration, compression, and transformation algorithms. It provides a
more comprehensive assessment of image similarity compared to simple pixel-wise metrics
like Mean Squared Error (MSE).

The Inception Score (IS) is a metric used to evaluate the quality and diversity
of generated images in image generation tasks, particularly in the context of Generative
Adversarial Networks (GANs). IS measures the quality of generated images based on two
aspects: how realistic the images look (measured by the Inception-v3 network’s classifi-
cation accuracy) and how diverse the generated images are (measured by the entropy of
the class distributions). A higher IS indicates that the generated images are both visually
realistic and diverse in terms of different classes or categories. IS is a popular metric for
assessing the performance of GAN models in generating high-quality and diverse images.

The Mean Absolute Error (MAE) is a metric commonly used to measure the aver-
age magnitude of errors between predicted and actual values in a dataset. In the context
of image analysis, MAE can be used to evaluate the accuracy of pixel-wise predictions or
image-to-image translations by calculating the absolute differences between correspond-
ing pixels in the generated and ground truth images and then averaging these differences
across all pixels. A lower MAE value indicates a smaller average error between the pre-
dicted and actual pixel values, reflecting a higher level of accuracy in the image prediction
or translation task. MAE is a widely used metric in various machine learning and image
processing applications to quantify the overall prediction error.

The Segmentation Score (S-Score) is a metric used to evaluate the quality of seg-
mented images, particularly in the context of image translation tasks where segmentation
plays a crucial role. The S-Score assesses how well the shape of a segmented region is pre-
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served or transformed after the image translation process. It is calculated by comparing
the segmented regions of the generated images with the ground truth segmented regions
of the real images. A higher S-Score indicates that the shape of the segmented regions is
well-maintained or accurately transformed during the image translation process, reflect-
ing the effectiveness of the segmentation task in preserving the structural information of
the objects in the images. S-Score is a valuable metric for evaluating the performance of
segmentation models in image translation and related tasks.

The Dice Similarity Coefficient (DSC) is a metric commonly used in image segmen-
tation tasks to evaluate the similarity between two sets of segmented images. It measures
the spatial overlap between the segmented regions of two images and is calculated as the
ratio of twice the intersection of the segmented regions to the sum of the pixels in both
segmented regions. A higher DSC value indicates a greater overlap and similarity between
the segmented regions of the two images, reflecting the accuracy of the segmentation task.
DSC is a widely used metric in medical image analysis, computer vision, and other fields
where image segmentation is a critical component of the analysis.

The Fréchet Inception Distance (FID) is a metric commonly used to evaluate
the quality of generated images in image generation tasks, particularly in the context
of Generative Adversarial Networks (GANs). FID measures the similarity between real
and generated images by comparing statistics extracted from a pre-trained deep neural
network (typically Inception-v3) on both sets of images. A lower FID score indicates that
the generated images are more similar to the real images in terms of visual quality and
diversity. It is a popular metric for assessing the performance of GAN models in generating
realistic and diverse images.

Intersection over Union (IoU): IoU measures the overlap between the predicted
bounding box and the ground truth bounding box. It is calculated as the intersection
area divided by the union area of the two boxes.

Average Precision (AP): AP is a metric that considers precision and recall across
different thresholds. It is commonly used to evaluate the performance of object detection
models, especially in the context of precision-recall curves.

Mean Average Precision (mAP): mAP is the average of AP values calculated for
multiple classes or categories in a multi-class object detection task. It provides an overall
performance measure for the detector across all classes.

Accuracy: Accuracy is a general metric that measures the overall correctness of
the predictions made by the model. In object detection, accuracy can be calculated based
on the correct detection of objects within images.

False Positive Rate (FPR) and False Negative Rate (FNR): These metrics measure
the rate of false positives and false negatives generated by the detector, respectively.
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Receiver Operating Characteristic (ROC) Curve: The ROC curve is a graphical
representation of the true positive rate against the false positive rate at various threshold
settings. It is useful for evaluating the performance of binary classifiers.

2.1.7 Fourth step of Analysis - Clustering and Article Finalization

The fourth round of analysis occurred during the correction and revision phase of
the SLR article, following the initial peer review. Articles were grouped into clusters based
on shared objectives (Table 4). In total, five clusters were created, named A through E.
Cluster A includes studies focusing on GANs for data augmentation, super-resolution, and
motion prediction. Cluster B comprises studies utilizing GANs for deblurring, augmenta-
tion, and super-resolution. Cluster C consists of studies employing GANs for small object
detection, fusion, and anomaly detection. Cluster D encompasses studies using GANs for
image translation and fusion. Cluster E includes studies focusing on GANs for weather
correction, adverse condition handling, and deblurring. This clustering aids researchers
in focusing their research efforts on potential solutions applicable to search and rescue
applications. After completing the systematic literature review, we proceeded to the stage
of developing and analyzing the Real-ESRGAN algorithm with pre-trained models on our
dataset. These steps will be discussed next.

Appendix A provides a detailed overview of all the stages conducted in the sys-
tematic literature review submitted to Drones Journal 1. Appendix B displays the first
round of corrections made to the manuscript. You can check this published SLR on [22].

Table 4 – Tests using YOLOv8 applied to the infrared datasets

Cluster nº grouped studies
A: Data augmentation and enhancement 7

B: Super-resolution and deblurring 5
C: Anomaly and small-object detection 6

D: Image translation and fusion 3
E: Adverse condition handling 4

1 EISSN: 2504-446X
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3 Development

3.1 Target Detection Implementation

3.1.1 Datasets Creation

After drafting and submitting the SLR, we constructed three datasets to test
with YOLOv8 for human detection. These datasets were created by extracting frames
from three videos recorded by an infrared camera, depicting human targets in various
poses and scenarios such as grassy areas, sidewalks, nearby trees, houses, and streets. The
wavelength range of these images spans from 7 to 14 micrometers in the infrared spectrum
(Figure 3). 500 random images of size 640x512 pixels were extracted from the first and
second videos to form Dataset I, which was used for YOLOv8 training. Subsequently, 100
random frames were selected from all three videos to create Dataset II to validate the
YOLOv8 training. Figure 4 displays four samples from the three videos.

Figure 3 – The range of wavelengths covered by the samples in our dataset.

3.1.2 Using Real-ESRGAN to produce SR images for SRGAN training

Dataset III, also consisting of 100 random images from the three videos, was em-
ployed for the second test on YOLOv8, but the images were first processed by Real-
ESRGAN with 4x upscaling using the RealESRGAN_x4plus pre-trained model.

3.1.3 YOLOv8

To utilize YOLOv8, we annotated the datasets using the CVAT1 tool and extracted
annotations in the format accepted by YOLO. We annotated only the "human" class,
1 https://www.cvat.ai/
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Figure 4 – Frames captured from three videos recorded by the infrared camera. Plot (a)
corresponds to the first video, plot (b) to the second video, and plots (c) and
(d) to the third video.

as the primary objective was to detect humans in various scenarios. Subsequently, we
employed Google Colab with L4 GPU acceleration for the training process of YOLOv8.
The data was uploaded to Google Drive and referenced by the notebook running YOLOv8
on Colab. The default parameters were used on YOLO training.

In summary, two tests were conducted using the datasets: the first (Test 1) vali-
dated training using the normal dataset with original images (Dataset II), while the second
(Test 2) validated training using the normal dataset with enhanced images (Dataset III).
Both tests utilized 300 epochs with 16 images per batch. Table 5 summarizes the YOLOv8
schema applied in this study.
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Table 5 – Tests using YOLOv8 applied to the infrared datasets

Test nº Train dataset Validation dataset Epochs Batch size
1 I II 300 16
2 I III 300 16
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4 Results

4.1 Real-ESRGAN
The main idea of this study was to assess the application of the pre-trained Real-

ESRGAN algorithm for enhancing images in the infrared spectrum. Figure 5 illustrates a
comparison between regular images from the created dataset and their enhanced version
using the super-resolution tool. We observed significant improvements in the delineation
of trees, building windows, and people after the process of enhancement by the algorithm.

Figure 5 – Example of satisfactory contrast enhancement in image resolution by Real-
ESRGAN. (a) Image before enhancement. (b) Image after the process.

Despite noticeable improvements in image clarity, we observed minimal contrast
differences in some frames despite the increased scaling, as depicted in Figure 6, where
we observed low sharpness and contrast in the outlines and segments of people and the
ground after applying the algorithm, this reveals some limitations of Real-ESRGAN in
certain types of images.

It is also worth noting that the algorithm did not succeed in enhancing sharpness
and contrast in specific regions of the images, as observed in Figure 7, in the red square
of Figure 7(b), we can observe the absence of improvements after applying the super-
resolution algorithm.

Furthermore, artifacts were observed in certain areas of the images, as shown in
Figure 8, where a grid pattern can be observed in the upper right region of Figure 8(b).



Chapter 4. Results 37

Figure 6 – Example of minimal contrast improvement in an image after super-resolution
enhancement. (a) Image before enhancement. (b) Same image after enhance-
ment.

Figure 7 – Regions where the algorithm was not effective in improvement. (a) Image be-
fore algorithm application. (b) Region (red rectangle) showing absence of no-
ticeable contrast after enhancement.

Figure 8 – Artifacts observed in a region of an image after applying the enhancement
algorithm. (a) Original image depicting a window. (b) Observed artifacts.
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4.2 YOLOv8
We used the standard batch size of 16 images for training and validation in

YOLOv8, as seen in Figure 9. We trained one model at a time.

Figure 9 – Example of a batch during validation in the YOLOv8 process for Test 2.

YOLOv8 facilitates the extraction of metric data and results obtained during the
process, which simplifies the analysis and processing of the outcomes.

The Box loss serves as the optimization criterion in object detection models, specifi-
cally YOLO, aiming to minimize the disparity between predicted and ground truth bound-
ing box coordinates (x, y, width, height) of objects in images. Cls loss addresses the clas-
sification aspect by minimizing the difference between predicted class probabilities within
bounding boxes and the actual class labels of objects, ensuring accurate class prediction.
DFL loss refers to techniques that dynamically adjust feature representations during train-
ing in object detection tasks, potentially enhancing model adaptability to varying data
characteristics. Figure 10 illustrates the comparison of these losses across epochs for Test
1 and Test 2. The downward trend in all three losses indicates improvement over the 300
epochs. The identical results between tests are attributed to both using the same dataset
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(I) for training YOLO as depicted early in Table 5.

Regarding precision and recall, our results—illustrated in Figure 11—show signif-
icant differences between the two tests, with Test 2 outperforming Test 1.

After 300 epochs, we noted significant differences in the validation loss graphs, as
shown in Figure 12. Test 2 achieved a lower Box loss of 1.85, compared to 2.06 in Test 1,
and a lower Cls loss of 1.08, compared to 2.02 in Test 1. Additionally, Test 2 recorded a
DFL loss of 1.52, whereas Test 1 recorded 1.75.

mAP50 evaluates how accurately object detection models localize and classify ob-
jects using an IoU threshold of 0.5. It computes the average precision across all classes,
indicating better performance with higher scores. mAP50-95 expands this assessment
across IoU thresholds from 0.5 to 0.95, offering a broader evaluation of the model’s ability
to detect objects with different degrees of overlap with ground truth, providing a compre-
hensive measure of its performance. Higher mAP scores (both mAP50 and mAP50-95)
indicate better overall performance of the object detection model in accurately identifying
and localizing objects in images. In our results, as shown in Figure 13, we also observed
significant differences in the behavior of these metrics across 300 epochs, all converging to
an acceptable value of mAP scores. At the end of 300 epochs, Test 1 achieved a mAP50
score of 48.7%, while Test 2 achieved 83.4%. For mAP50-95, Test 1 scored 0.23, whereas
Test 2 scored 0.44%.
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Table 6 – Comparison of metrics from Tests 1 and 2 with results from other studies.

Study Precision(%) Recall(%) Map50% F1-Score(%) Epochs
[19] 90.3 88.6 93.5 89.4 300
[20] 85.6 74.0 82.9 79.3 300
[21] 84.2 70.2 78.2 76.5 300

Test 1 55.6 57.7 48.7 56.6 300
Test 2 92.9 71.6 83.4 80.9 300

Table 6 presents a comparison of metrics between Tests 1 and 2 alongside other
studies. It’s important to note that [19], [20], and [21] were trained on datasets different
from ours, which introduces bias into the comparison. Therefore, this table should be
viewed merely as a reference for the results obtained by those studies. We observed sig-
nificant differences between the results of the two tests: Test 2 exhibited a 67.1% higher
precision compared to Test 1, with a recall of 24.1% higher. The Map50 in Test 2 was
71.2% higher than in Test 1, and the F1-score in Test 2 was 42.9% better.

To evaluate how Real-ESRGAN compares to other super-resolution methods, we
use PSNR and SSIM metrics. These metrics help us compare the original image with its
enhanced version to determine their similarity. We compare Real-ESRGAN against several
interpolation techniques, including Nearest Neighbor, Bicubic, Bilinear, and Lanczos, all
implemented using OpenCV and Python. Since PSNR and SSIM require images to be
the same size, we scaled all images to 640x512 pixels with a 4x factor to ensure accurate
comparisons. The results of these comparisons are shown in Tables 7, 8, 9, 10, and 11.

Table 7 – Comparison of metrics against Bicubic Interpolation.

Algorithm PSNR𝑑𝐵 SSIM
Bicubic ∞ 1.00
Lanczos 47.97 0.99
Bilinear 41.60 0.98

NN 36.49 0.92
Real-ESRGAN 32.73 0.79

Table 8 – Comparison of metrics against Bilinear Interpolation.

Algorithm PSNR𝑑𝐵 SSIM
Bilinear ∞ 1.00
Bicubic 41.60 0.98
Lanczos 40.50 0.97

NN 36.55 0.92
Real-ESRGAN 32.91 0.80
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Table 9 – Comparison of metrics against Lanczos Interpolation.

Algorithm PSNR𝑑𝐵 SSIM
Lanczos ∞ 1.00
Bicubic 47.97 0.99
Bilinear 40.50 0.97

NN 36.37 0.91
Real-ESRGAN 32.70 0.79

Table 10 – Comparison of metrics against Nearest Neighbour Interpolation.

Algorithm PSNR𝑑𝐵 SSIM
NN ∞ 1.00

Bilinear 36.55 0.92
Bicubic 36.49 0.92
Lanczos 36.37 0.91

Real-ESRGAN 32.43 0.75

Table 11 – Comparison of metrics against Real-ESRGAN super-resolution.

Algorithm PSNR𝑑𝐵 SSIM
Real-ESRGAN ∞ 1.00

Bilinear 32.91 0.80
Bicubic 32.73 0.79
Lanczos 32.70 0.79

NN 32.43 0.79
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Figure 10 – Comparison of training loss graphs for the two tests over 300 epochs.
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Figure 11 – Comparison of Precision and Recall across 300 epochs for Tests 1 and 2.
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Figure 12 – Validation loss values for Tests 1 and 2 throughout 300 epochs.
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Figure 13 – mAP50 and mAP50-95 for both Tests.
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5 Analysis and discussion

The study aimed to explore the application of deep learning, specifically Generative
Adversarial Networks, in enhancing low-quality images captured by drones for target
identification, particularly in search and rescue operations. Drones offer cost-effective
solutions in such scenarios, yet their imagery often suffers from inherent quality issues.
Traditional image processing methods struggle to generate new data effectively, prompting
the investigation into GANs for super-resolution, a technique capable of synthesizing high-
quality images from low-resolution inputs based on trained latent spaces.

To further explore and validate the use of GANs to address SAR operations, a
systematic literature review was conducted, confirming the efficacy of GAN-based ap-
proaches in improving drone-captured images for object detection and edge delineation.
This systematic review facilitated the clustering of various studies, enabling targeted re-
search into specific gaps in each application scenario of GANs for object detection by
UAVs, facilitating future work.

Initially focusing on the Real-ESRGAN algorithm, suited for real-world images, the
study hypothesized its potential utility in drone imagery enhancement. Surprisingly, even
when using a pre-trained model unrelated to the specific dataset, satisfactory results were
achieved. This observation underscored the robustness of Real-ESRGAN across varied
datasets, highlighting its adaptability and effectiveness in diverse applications.

Despite significant advancements in image clarity through Real-ESRGAN, chal-
lenges persisted in achieving uniform contrast enhancement across all frames, as evidenced
in Figure 6. Moreover, certain regions of the images exhibited persistent issues with sharp-
ness and contrast, indicating limitations in the algorithm’s performance under specific
conditions (Figure 7). Additionally, artifacts were occasionally observed in localized areas
of the enhanced images (Figure 8), suggesting areas for further algorithm refinement.

In implementing the YOLOv8 model, standard procedures were adhered to, with
a batch size of 16 used for both training and validation. Both tests exhibited similar
loss patterns during training due to the same training dataset(Dataset I) applied across
experiments. However, after 300 epochs, Test 2 showed higher box, class, and DFL losses
compared to Test 1. Despite this, Test 2 achieved superior precision, recall, mAP50, and
F1-score relative to Test 1. These results are promising when compared to other studies
detailed in Table 6. It is important to note that our study employed a relatively small
dataset with just one class (human) for YOLOv8 process, compared to other studies.

In comparing Real-ESRGAN with traditional interpolation methods, it was found
that Real-ESRGAN had lower PSNR and SSIM values. This might initially suggest that
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Real-ESRGAN performs worse. However, it’s important to consider that interpolation
methods apply filters that make only minor adjustments to the image, leading to small
differences from the original. On the other hand, Real-ESRGAN significantly modifies
pixel values to enhance the image, which can introduce artifacts and cause more noticeable
deviations from the original. Therefore, the reduced PSNR and SSIM values reflect the
extent of these changes rather than indicating a fundamental flaw in the algorithm.

In conclusion, the integration of Real-ESRGAN for image enhancement and YOLOv8
for object detection showcases great promising advancements for detecting human targets
in drone imagery for search and rescue operations.
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6 Conclusion

The application of Real-ESRGAN on infrared spectrum images in this study
demonstrated improvements in sharpness, enhancing the accuracy of object identification
algorithms. The systematic literature review conducted and published highlighted the
primary applications of GANs in the context of target identification in drone-generated
images, showcasing their use across various target types such as animals, fires, trees,
humans, among others. It also emphasized the key metrics used to analyze the results.

6.1 Validation Limits
While the results presented demonstrate the significant potential of using pre-

trained Real-ESRGAN models for enhancing images followed by YOLOv8 application in
target detection, several validation limitations need to be addressed.

Regarding the dataset, it was relatively small compared to more comprehensive
studies, which may limit the generalizability of the results to different drone image capture
conditions.

Considering the targets, we used YOLOv8 to detect only one target, which is
"human". It is important to evaluate how the algorithm performs when multiple classes
are used in the images after image super-resolution.

Regarding image annotation procedures for the YOLOv8 application, annotations
were manually performed, and the accuracy of these annotations directly influences the
performance of detection algorithms. Inaccurate or inconsistent annotations may intro-
duce biases in the results.

Concerning the application of Real-ESRGAN in our study, the pre-trained models
used may not have been specifically optimized for images captured by drones in the
infrared spectrum. This could affect the algorithm’s ability to handle specific nuances of
these images.

Regarding metrics, although standard metrics such as precision, recall, and F1-
score were employed to evaluate results, they may not fully capture the complexity of
object detection tasks in dynamic and challenging environments.

The generalizability of the results may be specific to the experimental context
and conditions applied. Generalizing to different search and rescue scenarios may require
additional adaptations in algorithms and datasets.

These limitations underscore the importance of future research to enhance the
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robustness and applicability of image enhancement and object detection algorithms in
drone images, particularly in critical search and rescue scenarios where precision and
reliability are paramount.

Additionally, artifacts in images were inherent to the algorithm itself, as acknowl-
edged by the authors, affecting certain regions of the enhanced images. Unlike cartoon
images that tend to be predictable, real images captured by drones can exhibit random
issues such as terrain variation, lighting variations, blurring, and weather factors, com-
promising the captured data. Therefore, careful consideration is essential during image
capture to mitigate these issues.

Moreover, the generation algorithms to which GANs belong tend to consume sig-
nificant computational resources and time, necessitating further investigation for real-time
target detection applications. For instance, applying Real-ESRGAN to 1000 images using
an RX570 GPU took approximately 90 minutes to complete the enhancement process.

6.2 Main contributions
In summary, this study’s primary contribution stems from the observation and

validation that pre-trained models in a GAN network can effectively enhance images cap-
tured by UAVs, particularly in the infrared spectrum, for subsequent target identification,
primarily focusing on people and animals in search and rescue operations. This finding
emerged from tests using the Real-ESRGAN algorithm alongside a pre-trained model to
enhance images within our infrared dataset. Importantly, the images used in our tests were
initially unrelated to those used in the pre-trained models proposed by the authors, sug-
gesting the potential development of a comprehensive super-dataset capable of enhancing
various image classes.

This work opens avenues for future researchers to apply Super-ESRGAN to UAV
images across diverse spectra for super-resolution, followed by algorithms like YOLO for
target identification in search and rescue operations.

The systematic literature review solidified studies utilizing GAN algorithms for
improving target and edge detection in UAV-generated images, along with identifying
useful validation metrics across studies. By clustering studies in the systematic literature
review, researchers can identify critical gaps and foundational studies, providing insights
for developing algorithms and techniques to address and mitigate these gaps, as well as
identifying the most useful metrics for validating methodologies for this purpose.

Tests conducted with YOLOv8 demonstrated its versatility and efficiency in de-
tecting targets using a reduced dataset and limited training epochs. While differences in
results between tests using normal and enhanced images were minor, they highlight the
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potential for future investigations with enhanced resources and more refined methodolo-
gies.

6.3 Future works
In our study, artifacts in the enhanced images stemming from the Real-ESRGAN

algorithm were noted, as anticipated by the authors regarding potential issues in certain
regions of the improved images. Future research directions could focus on mitigating
these artifacts effectively. Additionally, while Real-ESRGAN proved highly effective in
enhancing images within our dataset, its real-time application during operations was not
addressed in this study. This area presents a compelling avenue for investigation, especially
with the advancements in real-time operating systems and embedded technologies like
FPGA, Beagle-bone Black, Raspberry Pi, ESP32, among others, which support Python
and its libraries, including OpenCV—the primary tool used in this study.

Moreover, OpenCV’s capability to handle image representation through pixel ma-
trices provides insights for developing robust applications. This includes extending train-
ing epochs and dataset sizes, leveraging parallel and/or distributed processing libraries like
OpenMP, Vulkan, among others, to assess algorithm performance across various GPUs or
clusters. Furthermore, this study paves the way for image enhancement in other capture
spectra and diverse applications such as contour detection, area-of-interest identification,
anomaly detection in parts, among others, fostering interdisciplinary collaborations with
engineering disciplines such as mechanical and aeronautical engineering offered by Unifei.

6.4 Final considerations
The dissertation described in this work was highly enriching, challenging, and

rewarding, providing a comprehensive understanding of all stages involved in a scientific
project, from its planning to its publication. This highlights the quality and excellence
of the graduate program in Computer Science and Technology at Unifei, in engaging the
development and consolidation of new scientific knowledge that significantly contributes
to societal well-being.
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Abstract: Research on unmanned autonomous vehicles (UAV) for search and rescue missions is 1

widespread due to its cost-effectiveness and enhancement of security and flexibility in operations. 2

However, a significant challenge arises from the quality of sensors, terrain variability, noise, and the 3

size of targets in the images and videos taken by them. Generative Adversarial Networks (GANs), 4

introduced by Ian Goodfellow among their variations, can offer excellent solutions for improving 5

the quality of sensors regarding super-resolution, noise removal and other image processing issues. 6

To identify new insights and guidance on how to apply the GANs to detect living beings in SAR 7

operations, a PRISMA-oriented systematic literature review was conducted to analyze primary 8

studies that explore the usage of GANs for edge or object detection in images captured by drones. 9

The results demonstrate the utilization of GAN algorithms in the realm of image enhancement for 10

object detection, along with the metrics employed for tool validation. These findings provide insights 11

on how to apply or modify them to aid in target identification during search stages. 12

Keywords: GAN; UAV; SAR. 13

1. Introduction 14

Search and rescue is a highly significant field in saving lives in perilous environments, 15

environmental disasters, and accidents involving both people and animals worldwide [1–9]. 16

The use of Unmanned Aerial Vehicles (UAVs) proves to be particularly valuable in these 17

operations[10,11], especially in hard-to-reach areas, as this technology offers conveniences 18

such as reduced operation costs, agility, safety, remote operation, and the use of sensors 19

calibrated across various light spectra, among others. Concerning these sensors, one of the 20

primary challenges to address is the quality of the camera, as the steps of mapping, remote 21

sensing, target class identification, visual odometry [12], and UAV positioning rely on the 22

analysis and interpretation of data captured by these sensors. Thus, processing the images 23

generated by UAVs through computer vision algorithms aided by deep learning techniques 24

is a highly important area of investigation in the deployment of these small vehicles. 25

The issues presented by sensors include motion blur, generated by the discrepancy 26

between the velocity and instability of the UAV during image capture, the quality of the 27

terrain where the image was captured, the distance from the targets (the farther away, the 28

more difficult the identification process), video noise, and artifacts generated by camera 29

quality, among others. 30

Some studies have been analyzing and proposing algorithms to address those quality 31

issues in the sensors. [13] propose a method for removing non-uniform motion blur from 32

multiple blurry images by addressing images blurred by unknown, spatially varying 33

motion blur kernels caused by different relative motions between the camera and the scene. 34

[14] proposes a novel motion deblurring framework that addresses challenges in image 35

deblurring, particularly in handling complex real-world blur scenarios and avoiding over- 36

and under-estimation of blur, which can lead to restored images remaining blurred or 37
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introducing unwanted distortion. They use BSDNEt to disentangle blur features from 38

blurry images, modeling motion blur, synthesizing blurry images based on extracted blur 39

features, and demonstrating generalization and adaptability in handling different blur 40

types. Regarding noise, [15] review with some techniques, using PSNR and SSIM among 41

other metrics to evaluate the studies under analysis. 42

[16] aims for brightness and contrast enhancement, and [17] handle the resolution 43

enhancement on the images. 44

The Generative Adversary networks [18](GANs) based solutions has shown interesting 45

results to address image enhancement, as some variations of this algorithm can generate 46

high quality new images from degraded ones [18–26]. [27] conduct a review upon these 47

GAN based techniques addressed on super-resolution, also using PSNR and SSIM to 48

evaluate and compare results among important datasets, including people and animal data, 49

but they do not address the SAR context on their study, neither target detection. 50

Considering the applicability of GAN networks for image enhancement, we conducted 51

a systematic literature review focused on the utilization of GAN algorithms for improve- 52

ments on target detection in images captured by UAVs, aiming to gain insights into the 53

techniques and metrics employed in this task and potential adaptations for search and 54

rescue applications. 55

2. Research Method 56

2.1. Research definition 57

Our research was divided in 3 parts as depicted in Figure 1. To initiate our research 58

endeavor, we formulated the following search question. 59

60

How can GAN algorithms help detect edges or objects in images generated by UAVs? 61

62

This question served as a guiding beacon, assisting in delineating the scope of our study 63

analysis. 64

Figure 1. Research steps utilized on our study. Initially, we framed our investigation by formulating a
primary research question along with three subsidiary questions that were aligned with the practical
applications of our findings. Subsequently, we executed several essential steps, including duplicate
removal, abstract analysis, quality assessment, and study selection. These processes were pivotal
in ensuring the integrity and rigor of our research. Finally, in terms of our findings, we introduced
and adhered to a standardized benchmark approach on our data. This benchmark framework was
designed to analyze an application of super-resolution on some selected images by state-of-art GAN
model along with its pre-trained default model.

To offer additional guidance for our analysis, particularly concerning metrics and the 65

utilization of pre-trained models within the studies under scrutiny, we have put forth the 66

following supplementary questions: 67

1. How can GANs be addressed on SAR operations? 68

2. What benefits are gained from using a pre-trained model rather than training one 69

from scratch? 70

3. Which metrics are most suitable for validating these algorithms? 71
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To study the role of Generative Adversarial Networks (GANs) in aiding the detection 72

of individuals and wildlife in search and rescue operations, we formulated a generic search 73

string for edge and object detection in images generated by Unmanned Aerial Vehicles 74

(UAVs), intending to capture the broadest possible range of results in the application area 75

of GANs for target detection in UAV-generated images. Below is the chosen search string 76

tailored for this purpose. 77

78

("edge detection" OR "object detection") AND ( uav OR drones ) AND ( gan OR "genera- 79

tive adversarial networks") 80

81

82

Assisted by Parsifal [28], the subsequent phase unfolded, characterized by a method- 83

ical and systematic methodology. Figure 2 depicts the sequential progression followed 84

during this stage. 85

Figure 2. Flowchart illustrating the step-by-step process followed on studies analysis. Studies were
scrutiniz

Figure 3 summarizes the implementation of the PICOC framework in this review. 86
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Figure 3. PICOC framework applied to this work.

The search string yielded 42 results from Scopus and 27 from IEEE Xplore databases. 87

An outline of the study selection and quality assessment process is illustrated in Figure 4 88

Figure 4. Study selection process. After removing duplicates and secondary studies, 31 articles from
the Scopus database and 23 from IEEE Xplore were subjected to abstract analysis. Subsequently, 23
from Scopus and 16 from IEEE Xplore were selected for quality assessment, while the remainder
were rejected. Finally, 13 studies from Scopus and 9 from IEEE Xplore were selected for evaluation
of the metrics presented in validating the tools used for enhancing and detecting objects in images
generated by UAVs.

2.2. Abstract analysis 89

After removing duplicate entries, we assessed the abstracts of the papers to make pre- 90

liminary selections, concentrating on the posed inquiries. Duplicate entries and secondary 91

works were excluded during the initial screening process. Following this, we examined the 92

abstracts of the articles to finalize our initial selections. Table 1 outlines the criteria utilized 93

for rejecting papers at this stage. 94
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Table 1. Exclusion criteria.

Code Criteria

EX1 False positives
EX2 Secondary studies
EX3 Not directly related

Five documents obtained from the data collected from the SCOPUS database were 95

excluded because they only contained informational notes from conference guides, and did 96

not presented any significant studies. The three following articles were removed regarding 97

EX1, criteria: [29] Addresses the application of GAN in protecting private images, given 98

the growing volume of images collected on IOT devices; [30] addresses concerns regarding 99

security and reliability in deep learning models aimed at industrial cyber-physical systems 100

ICPSs; [31] addresses a two-stage insulator defect detection method based on Mask R- 101

CNN(Masked Convolutional Neural Networks) focusing on the use of unmanned aerial 102

vehicles (UAVs) in the inspection of electrical power systems. 103

[32] were removed by EX2, It discusses several machine learning techniques, including 104

GANs in vehicle detection by UAVs. 105

The following studies were removed regarding EX3: [33] discusses the automatic 106

landing of UAVs in unknown environments based on the perception of 3D environments. 107

However, the algorithm uses Random Forest and not GAN; [34] augments the GAN 108

network training dataset by adding transformed images with increased realism, using the 109

PTL technique to deal with the degradation difference between the real and virtual training 110

images. Edge or object detection is not mentioned in the article, just improvement of the 111

dataset; [35] detail investigations into the detection of electromagnetic interference through 112

spoofing in UAV GPS systems. 113

2.3. Quality assessment 114

The incorporation of GAN is a requisite in our dataset; studies lacking its integration 115

were excluded during the quality assessment process. Our evaluation of quality was 116

conducted under the inclusion criteria outlined in Table 2. 117

Table 2. Inclusion criteria.

Code Criteria

IC1 Does the GAN algorithm aim to assist in
detecting edges or objects?

IC2 Does the authors employ a pre-trained model?

IC3 Does the paper provide the metrics used for
the applied model?

IC4 Is the solution proposed in the study aimed at
images within the visible light spectrum?

IC5 Does the solution presented in the study target
images within the infrared spectrum?

IC6 Is the SAR algorithm designed to detect people
or animals?

IC7 Does the study utilize any version of YOLO in
its development?

In IC1, we evaluate whether the primary emphasis of the GAN solution proposed in 118

the study is on detecting edges or objects, recognizing that numerous works may target 119

alternative applications such as UAV landing or autonomous navigation. Given that our 120

benchmark relies on pre-trained GAN models, IC2 examines whether the study utilizes a 121

pre-trained model or if the authors train one from scratch using a specific dataset. A pivotal 122

aspect of evaluating the study involves scrutinizing the metrics employed to assess the 123

algorithm; thus, IC3 analyzes if the paper provides these metrics for the GAN. IC4 and 124
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IC5 enable us to ascertain if the GAN solution presented in the study is trained and/or 125

applied to images in the visible light or infrared spectra, aligning with our benchmark’s 126

focus on these two spectra. In IC6, we verify if the object or edge detection aims to identify 127

people or animals, given our benchmark’s concentration on search and rescue operations. 128

As YOLO stands out as one of the most commonly used tools for real-time object detection, 129

in IC7, we verify if the paper employs any version of YOLO or a complementary tool. Each 130

Inclusion Criterion (IC) is assigned a score of 0 if the paper fails to meet the criteria or does 131

not mention it in the study, 0.5 if it partially meets the criteria, and 1 if it fully meets the 132

criteria. 133

3. Results 134

Using the quality assessment framework, our objective is to meticulously review the 135

studies to determine if they achieve the stated objectives of employing GANs for target 136

detection oriented for SAR operations aid. Table 3 presents the scoring outcomes for each 137

study. Initially, our analysis was directed towards verifying the Inclusion Criteria (ICs). 138

Subsequently, we scrutinized studies with a focus on detecting people or animals, followed 139

by those targeting other objects, then those addressing images in the infrared spectrum, 140

further examining studies utilizing some version of YOLO, and finally those dealing with 141

pre-trained models. 142

The following studies were excluded during the quality assessment stage; therefore, 143

they are not included in this results: [36] was inaccessible via our institutional tools and 144

network; consequently, it was excluded from our review. Studies [37] and [38] were deemed 145

false positives as they did not mention the utilization of GANs in their paper. Additionally, 146

it was observed that they were authored by the same individuals and focused on similar 147

research themes. [39] and [40] were rejected because the primary focus of the research was 148

on creating datasets using GANs, which lies outside the scope of our systematic review. 149

Figure 5(a) shows a bar chart relating the number of papers per score rate, and Figure 150

5(b) relates the number of studies per year and type of publication. 151

From the articles focused on the detection of humans and animals, we obtained the 152

following outcomes: 153

[53] propose a weight-GAN sub-network to enhance the local features of small targets and 154

introduce sample balance strategies to optimize the imbalance among training samples, 155

especially between positive and negative samples, and easy and hard samples, a technique 156

for object detection free to address issues of images generated by drone movement instabil- 157

ity and tiny object size, which can hinder identification, lighting problems, rain, fog, among 158

others. The study reported improvements in detection performance compared to other 159

methods, such as achieving a 5.46% improvement over Large Scale Images, a 3.91% im- 160

provement over SRGAN, a 3.59% improvement over ESRGAN, and a 1.23% improvement 161

over Perceptual GANs. This work would be an excellent reference for addressing issues 162

related to images taken from medium or high altitude in SAR operations. The authors use 163

accuracy as metric, comparing its value with the SRGAN, ESRGAN, and Perceptual GAN 164

models. Other metrics presented for evaluating the work include AP (average precision) 165

and AR (average recall). 166

167

[43] uses Faster-RCNN, but for detecting stingrays. The work proposes the application 168

of a GLO model (a variation of GANs where the discriminator is removed and learns to map 169

images to noise vectors by minimizing the reconstruction loss) to increase the dataset to 170

improve object detection algorithms. The used model (C-GLO) learns to generate synthetic 171

foreground objects (stingrays) given background patches using a single network, without 172

relying on a pre-trained model for this specific task. In other words, the article utilizes a 173

modified GAN network to expand the dataset of stingray images in oceans, considering the 174

scarcity of such images, which complicates the training of classification algorithms. Thus, 175

the dataset was augmented through C-GLO, and the data were analyzed by Faster-RCNN. 176



Version May 17, 2024 submitted to Journal Not Specified 7 of 22

They utilize the AP metric to assess the performance of RCNN applied to images of various 177

latent code dimensions. 178

[60] proposes a model for generating pedestrian silhouette maps, used for their recog- 179

nition; however, the application of GANs is not addressed. It was rejected because it lacks 180

the use of GANs in the development. 181

[61] was also rejected due to its failure to incorporate GAN usage in development, 182

despite utilizing YOLOv3 for target detection in UAV images. 183

considering studies oriented to object detection, [46] aims to address object detection 184

challenges in aerial images captured by UAVs in the visible light spectrum. To enhance 185

object detection in these images, the study proposes a GAN-based super-resolution method. 186

This GAN solution is specifically designed to up-sample images with low-resolution object 187

detection challenges, improving the overall detection accuracy in aerial imagery. 188

Table 3. Data from quality assessment. "Total" represents the cumulative points assigned to each
study based on inclusion criteria. "Base" denotes the source database where the papers were indexed,
while "Pub. type" indicates the publication format, distinguishing between journal papers (a) and
conference papers (b).

Study year IC1 IC2 IC3 IC4 IC5 IC6 IC7 Total Citations Base Pub. type
[41] 2017 0.5 1.0 0.5 1.0 0.0 0.0 0.0 3.0 - IEEE Xplore b
[42] 2017 5.0 0.0 1.0 1.0 0.0 0.0 0.0 2.5 - IEEE Xplore b
[43] 2018 0.0 0.0 1.0 1.0 0.0 1.0 0.0 3.0 - IEEE Xplore b
[44] 2019 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 - IEEE Xplore a
[45] 2019 1.0 0.0 1.0 1.0 0.0 0.0 0.0 3.0 - IEEE Xplore b
[46] 2019 0.0 0.0 1.0 1.0 0.0 0.0 0.0 2.0 33 SCOPUS a
[47] 2019 1.0 0.0 1.0 1.0 0.0 0.0 0.0 3.0 8 SCOPUS b
[48] 2019 1.0 0.0 1.0 1.0 0.0 0.0 0.0 3.0 - IEEE Xplore b
[49] 2020 0.0 0.0 1.0 0.5 0.0 0.0 1.0 2.5 12 SCOPUS a
[50] 2020 0.5 1.0 1.0 1.0 0.0 0.0 0.0 3.5 15 SCOPUS a
[51] 2020 1.0 0.0 1.0 1.0 0.0 0.0 0.0 3.0 7 SCOPUS a
[52] 2020 0.5 1.0 1.0 1.0 0.0 0.0 0.0 3.5 - IEEE Xplore b
[53] 2021 1.0 0.0 1.0 1.0 0.0 1.0 0.0 4.0 5 SCOPUS a
[54] 2021 1.0 0.0 1.0 1.0 1.0 0.0 1.0 5.0 1 SCOPUS a
[55] 2021 0.0 0.0 1.0 1.0 0.0 0.0 0.0 2.0 23 SCOPUS a
[56] 2021 1.0 0.0 1.0 1.0 0.0 0.0 0.0 3.0 0 SCOPUS a
[57] 2021 0.0 0.0 1.0 1.0 0.0 0.0 1.0 3.0 26 SCOPUS a
[58] 2021 0.5 0.0 1.0 0.0 0.0 0.0 1.0 2.5 10 SCOPUS a
[59] 2021 0.0 0.0 1.0 1.0 0.0 0.0 0.0 2.0 6 SCOPUS a
[60] 2021 1.0 0.0 0.0 1.0 0.0 1.0 0.0 3.0 - IEEE Xplore b
[61] 2021 0.0 0.0 0.0 0.5 0.0 1.0 1.0 2.5 - IEEE Xplore b
[62] 2022 1.0 0.0 1.0 1.0 1.0 0.0 1.0 5.0 1 SCOPUS b
[63] 2022 1.0 0.0 1.0 1.0 0.0 0.0 1.0 4.0 23 SCOPUS a
[64] 2022 0.0 0.0 1.0 1.0 0.0 0.0 0.0 2.0 0 SCOPUS b
[65] 2022 1.0 0.0 1.0 1.0 0.0 0.0 1.0 4.0 8 SCOPUS a
[66] 2022 0.0 0.0 1.0 1.0 0.0 0.0 0.0 2.0 8 SCOPUS a
[67] 2022 1.0 0.0 1.0 1.0 1.0 0.0 0.0 3.0 8 SCOPUS a
[68] 2022 1.0 0.0 1.0 1.0 0.0 0.0 0.0 3.0 1 SCOPUS a
[69] 2022 1.0 0.0 1.0 0.0 0.0 0.0 0.0 2.0 - IEEE Xplore b
[70] 2022 1.0 1.0 1.0 0.0 0.0 0.0 0.0 3.0 - IEEE Xplore b
[71] 2022 0.0 0.0 1.0 0.0 1.0 0.0 0.0 2.0 - IEEE Xplore b
[72] 2022 0.0 0.0 1.0 1.0 0.0 0.0 0.0 2.0 - IEEE Xplore b
[73] 2023 1.0 0.0 1.0 1.0 0.0 0.0 1.0 4.0 1 SCOPUS b
[74] 2023 0.0 0.0 1.0 1.0 0.0 0.0 1.0 3.0 2 SCOPUS a
[75] 2023 0.5 0.0 1.0 0.0 1.0 0.0 0.0 2.5 - IEEE Xplore b
[76] 2023 1.0 0.0 1.0 1.0 1.0 0.0 1.0 5.0 - IEEE Xplore b
[77] 2023 1.0 0.0 1.0 0.5 0.0 0.0 1.0 3.5 - IEEE Xplore b
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Figure 5. (a) Studies divided by quality assessment score. (b) Quantity of studies under analysis over
the publication years, classified by journal or conference publication.

[73] utilized a GAN-based real-time data augmentation algorithm to enhance the 189

training data for UAV vehicle detection tasks, specifically focusing on improving the 190

accuracy of detecting vehicles, pedestrians, and bicycles in UAV images. By incorporating 191

the GAN approach, along with enhancements like using FocalLoss and redesigning the 192

target detection head combination, the study achieved a 4% increase in detection accuracy 193

over the original YOLOv5 model. 194

[66] introduces a novel two-branch Generative Adversarial Network architecture 195

designed for detecting and localizing anomalies in RGB aerial video streams captured by 196

UAVs at low altitudes. The primary purpose of the GAN-based method is to enhance 197

anomaly detection and localization in challenging operational scenarios, such as identifying 198

small dangerous objects like improvised explosive devices (IEDs) or traps in various 199

environments. The GAN architecture consists of two branches: a detector branch and a 200

localizer branch. The detector branch focuses on determining whether a given video frame 201

depicts a normal scene or contains anomalies, while the localizer branch is responsible 202

for producing attention maps that highlight abnormal elements within the frames when 203

anomalies are detected. In the context of search and rescue operations, the GAN-based 204

method can be instrumental in identifying and localizing anomalies or potential threats 205

in real-time aerial video streams. For example, in search and rescue missions, the system 206

could help in detecting hazardous objects, locating missing persons, or identifying obstacles 207

in disaster-affected areas. By leveraging the GAN’s capabilities for anomaly detection and 208

localization, search and rescue teams can enhance their situational awareness and response 209

effectiveness in critical scenarios. 210

[56] proposes a novel end-to-end multi-task GAN architecture to address the challenge 211

of small object detection in aerial images. The GAN framework combines super-resolution 212

(SR) and object detection tasks to generate super-resolved versions of input images, enhanc- 213

ing the discriminative detection of small objects. The generator in the architecture consists 214

of an SR network with additional components such as a gradient guidance network (GGN) 215

and an edge-enhancement network (EEN) to mitigate structural distortions and improve 216

image quality. In the discriminator part of the GAN, a faster region-based convolutional 217

neural network (FRCNN) is integrated for object detection. Unlike traditional GANs that 218

estimate the realness of super-resolved samples using a single scalar, realness distribution is 219

used as a measure of realness. This distribution provides more insights for the generator by 220

considering multiple criteria rather than a single perspective, leading to improved detection 221

accuracy. 222

[67] introduces a novel detection network, Region Super-Resolution Generative Ad- 223

versarial Network (RSRGAN), to enhance the detection of small infrared targets. The GAN 224
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component of RSRGAN focuses on super-resolution enhancement of infrared images, im- 225

proving the clarity and resolution of small targets like birds and leaves. This enhancement 226

aids in accurate target detection, particularly in challenging scenarios. In the context of 227

search and rescue operations, the application of RSRGAN could be beneficial for identifying 228

small targets in infrared imagery with greater precision. By enhancing the resolution of 229

images containing potential targets, such as individuals in distress or objects in need of 230

rescue, RSRGAN could assist search and rescue teams in quickly and accurately locating 231

targets in various environmental conditions. The improved detection capabilities offered 232

by RSRGAN could enhance the efficiency and effectiveness of search and rescue missions, 233

ultimately contributing to saving lives and optimizing rescue efforts. 234

[47] concentrates on enhancing small object detection in UAV aerial imagery captured 235

by optical cameras mounted on Unmanned Aerial Systems (UAVs). The proposed GAN 236

solution, known as classification-oriented super-resolution generative adversarial networks 237

(CSRGAN), aims to improve the classification results of tiny objects and enhance detection 238

performance by recovering discriminative features from original small objects. In the 239

context of search and rescue operations, the application of CSRGAN could be beneficial 240

for identifying and locating small objects, such as individuals or objects, in aerial images. 241

By enhancing the resolution and classification-oriented features of these small objects, 242

CSRGAN could assist in improving the efficiency and accuracy of search and rescue 243

missions conducted using UAVs. This technology could aid in quickly identifying and 244

pinpointing targets in large areas, ultimately enhancing the effectiveness of search and 245

rescue operations. 246

[59] focuses on LighterGAN, an unsupervised illumination enhancement GAN model 247

designed to improve the quality of images captured in low illumination conditions using 248

urban UAV aerial photography. The primary goal of LighterGAN is to enhance image 249

visibility and quality in urban environments affected by low illumination and light pol- 250

lution, making them more suitable for various applications in urban remote sensing and 251

computer vision algorithms. In the context of search and rescue operations, the application 252

of LighterGAN could be highly beneficial. When conducting search and rescue missions, 253

especially in low light or nighttime conditions, having clear and enhanced images from 254

UAV aerial photography can significantly aid in locating individuals or objects in need of 255

assistance. By using LighterGAN to enhance images captured by UAVs in low illumination 256

scenarios, search and rescue teams can improve their visibility, identify potential targets 257

more effectively, and enhance overall situational awareness during critical operations. 258

[42] explores the use of GANs to enhance image quality through a super-resolution 259

deblurring algorithm. The GAN-based approach aims to improve the clarity of images af- 260

fected by motion blur, particularly in scenarios like UAV (Unmanned Aerial Vehicle) image 261

acquisition. By incorporating defocused fuzzy kernels and multi-direction motion fuzzy 262

kernels into the training samples, the algorithm effectively mitigates blur and enhances 263

image data captured by UAVs. 264

[48] introduces a novel approach utilizing a GAN to address the challenge of small 265

object detection in aerial images captured by drones or Unmanned Aerial Vehicles (UAVs). 266

By leveraging the capabilities of GAN technology, the research focuses on enhancing the 267

resolution of low-quality images depicting small objects, thereby facilitating more accurate 268

object detection algorithms. 269

[44] utilizes a Generative Adversarial Networks GAN solution to augment typical 270

easily confused negative samples in the pretraining stage of a saliency-enhanced multi- 271

domain convolutional neural network (SEMD) for remote sensing target tracking in UAV 272

aerial videos. The GAN’s purpose is to enhance the network’s ability to distinguish 273

between targets and the background in challenging scenarios by generating additional 274

training samples. In SAR operations, the study can assist in distinguishing between targets 275

and the background. 276

[45] introduces a Generative Adversarial Network named VeGAN, trained to generate 277

synthetic images of vehicles from a top-down aerial perspective for semantic segmentation 278
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tasks. By leveraging the GAN for content-based augmentation of training data, the study 279

aims to enhance the accuracy of a semantic segmentation network in detecting cars in aerial 280

images. We can take the study as a basis for training the identification of other targets. 281

[55]The study aimed to enhance maize plant detection and counting using deep 282

learning algorithms applied to high-resolution RGB images captured by UAVs. To address 283

the challenge of low-quality images affecting detection accuracy, the study proposed a 284

GAN-based super-resolution method. This method aimed to improve results on native 285

low-resolution datasets compared to traditional upsampling techniques. This study was 286

rejected because it focused on agricultural purposes rather than SAR. 287

[57] The study utilizes a Generative Adversarial Network (GAN), specifically the 288

CycleGAN model, for domain adaptation in bale detection for precision agriculture. The 289

primary objective is to enhance the performance of the YOLOv3 object detection model in 290

accurately identifying bales of biomass in various environmental conditions. The GAN is 291

employed to transfer styles between images with diverse illuminations, hues, and styles, 292

enabling the YOLOv3 model to effectively detect bales under different scenarios. We also 293

reject it because of its non-SAR purpose. 294

[68] The study utilizes a conditional generative adversarial network (cGAN) for the 295

automated extraction and clustering of peach tree crowns based on UAV images in a peach 296

orchard. The primary focus is on monitoring and quantitatively characterizing the peach 297

tree crowns using remote sensing imagery. It was also rejected because it doesn’t focus on 298

agriculture. 299

[69] proposes a novel approach using the Pix2Pix GAN architecture for Unmanned 300

Aerial Vehicle (UAV) detection. The GAN is applied to detect UAVs in images captured by 301

optical sensors, aiming to enhance the efficiency of UAV detection systems. By utilizing 302

the GAN framework, the study focuses on improving the accuracy and effectiveness of 303

identifying UAVs in various scenarios, including adverse weather conditions. We reject 304

this study because it’s aimed on air defense by identifying UAVs in the air by some sensors 305

on the ground. 306

[64] It employs GAN networks to enhance transmission line images. The article doesn’t 307

mention YOLO; it uses a dataset from scratch. Therefore, we can conclude that the GAN 308

network was used for super-resolution. We cannot classify it as a study focused on SAR. 309

Hence, we reject the study at this stage. 310

Considering studies with images in the infrared spectrum, [54] employ GANs to 311

facilitate the translation of color images to thermal images, specifically aiming to enhance 312

the performance of color-thermal ReID (Re-identification). This translation process involves 313

converting probe images captured in the visible range to the infrared range. By utilizing 314

the GAN framework for color-to-thermal image translation, the study aims to improve the 315

effectiveness of object recognition and re-identification tasks in cross-modality scenarios, 316

such as detecting objects in thermal images and matching them with corresponding objects 317

in color images. Yolo and any other object detector was mentioned, the study utilizes 318

various metrics for evaluating the ThermalReID framework and modern baselines. For the 319

object detection task, they use Intersection over Union (IoU) and mean Average Precision 320

(mAP) metrics. In the ReID task, they employ Cumulative Matching Characteristic (CMC) 321

curves and normalized Area-Under-Curve (nAUC) for evaluation purposes. 322

In [62] The primary objective of utilizing GANs is to address the challenge posed by 323

the differing characteristics of thermal and RGB images, such as varying dimensions and 324

pixel representations. By employing GANs, the study aims to generate thermal images 325

that are compatible with RGB images, ensuring a harmonious fusion of data from both 326

modalities. 327

The StawGAN in [75] is used to enhance the translation of night-time thermal infrared 328

images into daytime color images. The StawGAN model is specifically designed to improve 329

the quality of target generation in the daytime color domain based on the input thermal 330

infrared images. By leveraging the GAN architecture, which comprises a generator and 331

a discriminator network, the StawGAN model aims to produce more realistic and well- 332
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shaped objects in the target domain, thereby enhancing the overall image translation 333

process. 334

[76] employs GAN as a sophisticated image processing technique to enhance the 335

quality of input images for UAV target detection tasks. The primary objective of integrating 336

GAN technology into the research framework is to elevate the accuracy and reliability of 337

the target detection process, particularly in the context of detecting UAVs. By harnessing 338

the capabilities of GANs as image fusion technology, the study focuses on amalgamating 339

images captured from diverse modalities, such as those obtained from both the infrared and 340

visible light spectrums. This fusion process is crucial as it enriches the visual information 341

available for identifying and pinpointing UAV targets within the imagery. Essentially, the 342

GAN functions as a tool to generate fused images by adapting and refining the structures of 343

both the generator and discriminator components within the network architecture. Through 344

this innovative approach, the research aims to enhance the precision and robustness of 345

the target detection mechanism embedded within the YOLOv5 model. By leveraging the 346

power of GAN-based image fusion, the study endeavors to optimize the focus and clarity 347

of the target detection process, ultimately leading to improved performance in identifying 348

UAV targets within complex visual environments. 349

[71] focuses on utilizing a Conditional Generative Adversarial Network (CGAN), 350

specifically the Pix2Pix model, to generate depth images from monocular infrared images 351

captured by a camera. This application of CGAN aims to enhance collision avoidance 352

during drone flights at night by providing crucial depth information for safe navigation. 353

The research emphasizes the use of CGAN for converting infrared images into depth images, 354

enabling the drone to determine distances to surrounding objects and make informed 355

decisions to avoid collisions during autonomous flight operations in low-light conditions. 356

This study can be leveraged in drone group operations, but in terms of ground object 357

identification, it is not applicable. Therefore, we reject the study. 358

[51] The study proposes a novel approach for insulator object detection in aerial 359

images captured by drones by utilizing a Wasserstein-Generative Adversarial Network 360

(WGAN) for image deblurring. The primary purpose of the GAN solution is to enhance the 361

clarity of insulator images that may be affected by factors such as weather conditions, data 362

processing, camera quality, and environmental surroundings, leading to blurry images. 363

By training the GAN on visible light spectrum images, the study aims to improve the 364

detection rate of insulators in aerial images, particularly in scenarios where traditional 365

object detection algorithms may struggle due to image blurriness. It was rejected because it 366

is not oriented towards search and rescue. 367

While some studies utilized Faster-RCNN [43], [50] and [48] or custom object detection 368

solutions [67], the majority of the selected ones employed some version of YOLO, with the 369

most common being versions 3 and 5, as depicted in Figure 6(a). 370

[65] aimed to enhance wildfire detection by GANs to produce synthetic wildfire 371

images. These synthetic images were utilized to address data scarcity issues and enhance 372

the model’s detection capabilities. Additionally, Weakly Supervised Learning (WSOL) was 373

applied for object localization and annotation, automating the labeling task and mitigating 374

data shortage issues. The annotated data generated through WSOL was then used to train 375

an improved YOLOv5-based detection network, enhancing the accuracy of the wildfire 376

detection model. The integrated use of GANs for image generation, WSOL for annotation, 377

and YOLOv5 for detection aimed to enhance the model’s performance and automate the 378

wildfire detection process. This study could also aid in Search and Rescue operations, as 379

the presence of fire in an area may indicate potential areas of interest during search efforts. 380

[74] is centered on image deblurring in the context of aerial remote sensing to en- 381

hance object detection performance. It introduces the Adaptive Multi-Scale Fusion Blind 382

Deblurred Generative Adversarial Network (AMD-GAN) to address image blurring chal- 383

lenges in aerial imagery. The AMD-GAN leverages multi-scale fusion guided by image 384

blurring levels to improve deblurring accuracy and preserve texture details. In the study, 385

the AMD-GAN is applied to deblur aerial remote sensing images, particularly in the visible 386
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light spectrum, to enhance object detection tasks. The YOLOv5 model is utilized for object 387

detection experiments on both blurred and deblurred images. The results demonstrate 388

that deblurring with the AMD-GAN significantly improves object detection indices, as 389

evidenced by increased Mean Average Precision (MAP) values and enhanced detection 390

performance compared to using blurred images directly with YOLOv5. 391

[77] engages on enhancing small object detection in drone imagery through the use 392

of a Collaborative Filtering Mechanism (CFM) based on a Cycle Generative Adversarial 393

Network (CycleGAN). The purpose of the GAN in the study is to improve object detection 394

performance by enhancing small object features in drone imagery. The CFM, integrated into 395

the YOLO-V5s model, filters out irrelevant features during the feature extraction process to 396

enhance object detection. By applying the CFM module to YOLO-V5s and evaluating its 397

performance on the VisDrone dataset, the study demonstrates significant improvements 398

in detection performance, highlighting the effectiveness of the GAN-based approach in 399

enhancing object detection capabilities in drone imagery 400

[63] aims to develop a portable and high-accuracy system for detecting and tracking 401

pavement cracks to ensure road integrity. To address the limited availability of pavement 402

crack images for training, a GAN called PCGAN is introduced. PCGAN generates realistic 403

crack images to augment the dataset for improved detection accuracy using an improved 404

YOLO v3 algorithm. The YOLO-MF model, a modified version of YOLO v3 with accel- 405

eration and median flow algorithms, is employed for crack detection and tracking. This 406

integrated system enhances the efficiency and accuracy of pavement crack detection and 407

monitoring for infrastructure maintenance, We reject this study because it lacks relation to 408

SAR operation. 409

[49] focuses on addressing the challenges of motion deblurring and marker detection 410

for autonomous drone landing using a deep learning-based approach. To achieve this, the 411

study proposes a two-phase framework that combines a slimmed version of the DeblurGAN 412

model for motion deblurring with the YOLOv2 detector for object detection. The purpose 413

of the DeblurGAN model is to enhance the quality of images affected by motion blur, 414

making it easier for the YOLOv2 detector to accurately detect markers in drone landing 415

scenarios. By training a variant of the YOLO detector on synthesized datasets, the study 416

aims to improve marker detection performance in the context of autonomous drone landing. 417

Overall, the study leverages the DeblurGAN model for motion deblurring and the YOLOv2 418

detector for object detection to enhance the accuracy and robustness of marker detection in 419

autonomous drone landing applications. We reject it as its focus is on landing assistance 420

rather than search and rescue. 421

[57] utilizes a GAN solution, specifically the CycleGAN model, for domain adaptation 422

in the context of bale detection in precision agriculture. The primary objective is to enhance 423

the performance of the YOLOv3 object detection model for accurately detecting bales of 424

biomass in various environmental conditions. The GAN is employed to transfer styles 425

between images with diverse illuminations, hues, and styles, enabling the YOLOv3 model 426

to be more robust and effective in detecting bales under different scenarios. By training the 427

YOLOv3 model with images processed through the CycleGAN for domain adaptation, the 428

study aims to improve the accuracy and efficiency of bale detection, ultimately contributing 429

to advancements in agricultural automation and efficiency. The study was rejected because 430

its focus is more aligned with the application of UAVs in agriculture 431

[58] introduces InsulatorGAN, a novel model based on conditional Generative Ad- 432

versarial Nets (GAN), designed for insulator detection in high-voltage transmission line 433

inspection using unmanned aerial vehicles (UAVs). The primary purpose of Insulator- 434

GAN is to generate high-resolution and realistic insulator-detection images from aerial 435

images captured by drones, addressing limitations in existing object detection models due 436

to dataset scale and parameters. In the study, the authors leverage the YOLOv3 neural 437

network model for real-time insulator detection under varying image resolutions and 438

lighting conditions, focusing on identifying ice, water, and snow on insulators. This appli- 439

cation of YOLOv3 demonstrates the integration of advanced neural network models within 440
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the context of insulator detection tasks. While the study does not explicitly mention the 441

use of pre-trained models or training from scratch for InsulatorGAN, the emphasis is on 442

enhancing the quality and resolution of generated insulator images through the proposed 443

GAN framework. By combining GAN technology with YOLOv3 for insulator detection, the 444

study aims to advance the precision and efficiency of detecting insulators in transmission 445

lines using UAV inspection, contributing to the field of computer vision and smart grid 446

technologies. We decline it due to its lack of emphasis on search and rescue operations. 447

Figure 6(a) compiles the YOLO versions and the number of studies that utilize each 448

one of them. 449

Considering the use of pre-trained models and weights, [50] aims to predict indi- 450

vidual motion and view changes of objects in UAV videos for multiple object tracking. 451

To achieve this, the study proposes a novel network architecture that includes a social 452

LSTM network for individual motion prediction and a Siamese network for global motion 453

analysis. Additionally, a GAN is introduced to generate more accurate motion predictions 454

by incorporating global motion information and objects’ positions from the last frame. 455

The GAN is specifically utilized to enhance the final motion prediction by leveraging the 456

individual motion predictions and view changes extracted by the Siamese network. It plays 457

a crucial role in generating refined motion predictions based on the combined information 458

from the individual and global motion analysis components of the network. Furthermore, 459

the Siamese network is initialized with parameters pre-trained on ImageNet and fine-tuned 460

for the task at hand. This pre-training step helps the Siamese network learn relevant fea- 461

tures from a large dataset like ImageNet, which can then be fine-tuned to extract changing 462

information in the scene related to the movement of UAVs in the context of the study. 463

[72] The study focuses on using generative adversarial networks (GANs) to enhance 464

object detection performance under adverse weather conditions by restoring images af- 465

fected by weather corruptions. Specifically, the Weather-RainGAN and Weather-NightGAN 466

models were developed to address challenges related to weather-corrupted images, such 467

as rain streaks and night scenes, to improve object detection accuracy for various classes 468

like cars, buses, trucks, motorcycles, persons, and bicycles in driving scenes captured in 469

adverse weather conditions. The study can provide valuable insights in SAR scenarios in 470

snow-covered regions or other severe weather conditions. 471

[70] It introduces a GAN for a specific purpose, although the exact application domain 472

is not explicitly mentioned in the provided excerpts. The GAN is crafted to achieve a 473

particular objective within the context of the research, potentially linked to tasks in image 474

processing or computer vision. Furthermore, the study incorporates the use of a pre-trained 475

model, which serves a specific purpose in developing or enhancing the proposed GAN 476

solution. The application of the pre-trained model within the study likely aims to leverage 477

existing knowledge or features to improve the performance or capabilities of the GAN in 478

its intended application domain. This study, despite its focus on human-face recognition, 479

is deemed unnecessary for SAR operations, as the UAV is anticipated to operate at high 480

altitudes where facial images of potential individuals would not be readily identifiable. 481

Therefore, we reject this study. 482

[41] introduces a dual-hop generative adversarial network (DH-GAN) to recognize 483

roads and intersections from aerial images automatically. The DH-GAN is designed to 484

segment roads and intersections at the pixel level from RGB imagery. The first level of the 485

DH-GAN focuses on detecting roads, while the second level is dedicated to identifying 486

intersections. This two-level approach allows for the end-to-end training of the network, 487

with two discriminators ensuring accurate segmentation results. Additionally, the study 488

utilizes a pre-trained model within the DH-GAN architecture to enhance the intersection 489

detection process. By incorporating the pre-trained model, the DH-GAN can effectively 490

extract intersection locations from the road segmentation output. This integration of the pre- 491

trained model enhances the overall performance of the DH-GAN in accurately identifying 492

intersections within the aerial images. We decline it because it’s not closely aligned with 493
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the topic, as it focuses on road detection rather than the detection of objects, animals, or 494

people. 495

[52] The study aims to enhance tracking performance in UAV videos by transferring 496

contextual relations across views. To achieve this, a dual GAN learning mechanism is 497

proposed. The tracking-guided CycleGAN (T-GAN) transfers contextual relations between 498

ground-view and drone-view images, bridging appearance gaps. This process helps adapt 499

to drone views by transferring contextual stable ties. Additionally, an attention GAN 500

(A-GAN) refines these relations from local to global scales using attention maps. The 501

pre-trained model, a Resnet50 model, is fine-tuned to output context operations for the 502

actor-critic agent, which dynamically decides on contextual relations for vehicle tracking 503

under changing appearances across views. Typically, SAR operations are conducted in 504

remote or hard-to-reach areas, making ground-based image capture impractical. Therefore, 505

we reject the study. 506

This Sistematic Literature Review yielded highly detailed and diverse results, consid- 507

ering that drone images can serve various purposes such as agriculture, automatic landing, 508

face recognition, identification of objects on power lines, and so on. Since our focus was 509

primarily on SAR operations, we rejected papers that were unrelated to this topic. Table 4 510

and 5displays the selected results along with the metrics used to evaluate the proposals. 511

Here, AP stands for average precision; AR means average recall; AUC (Area under the 512

receiver operating characteristic curve.); ROC (Receiver operating characteristic curve); 513

MAP (Mean average precision); NIQE (Natural image quality evaluator); AG (Average 514

gradient); PIQE (Perception index for quality evaluation), PSNR (Peak Signal-to-Noise 515

Ratio), SSIM (Structural Similarity Index), FID (Fréchet Inception Distance); DSC - (The 516

Dice Similarity Coefficient); S-Score (Segmentation Score); MAE (Mean Absolute Error); 517

IS (Inception Score); SMD (Standard Mean Difference); EAV (Edge-Adaptive Variance); 518

PI (Perceptual Index); IOU (Intersection over Union) and CPx and CPy refer to the center 519

position errors in the longitudinal and lateral driving direction. Figure 6(b) shows the most 520

used metrics, along with the number of studies that use them. 521

Table 4. Classic metrics from selected studies

Study Accuracy Precision AP Recall AR ROC AUC MAP F1-Score
[43] - - ✓ - - - - - -
[44] - ✓ - - - - - - -
[45] - - - - - - - - -
[46] ✓ - ✓ - - - - - -
[47] ✓ - - - - - - - -
[48] - - - - - - - ✓ -
[50] - - - - - - - - ✓
[53] ✓ - ✓ - ✓ - - - -
[54] - - - - - ✓ - - -
[56] - - ✓ - - - - - ✓
[59] - - - - - - - - -
[62] - - ✓ - - - - ✓ -
[65] - ✓ ✓ ✓ - - - - ✓
[66] - - - - - - ✓ - -
[67] - - ✓ ✓ - - - ✓ ✓
[42] - - - - - - - - -
[72] - - - - - - - ✓ -
[73] - - - - - - - ✓ -
[74] ✓ ✓ - ✓ - - - ✓ -
[75] - - - - - - - -
[76] - ✓ - ✓ - - ✓ - -
[77] - ✓ - ✓ - - - - -
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Table 5. Other metrics from Studies

Study PSNR SSIM Other Other Other Other Other
[45] - - IOU CPx CPy - -
[48] ✓ ✓ PI - - - -
[56] ✓ ✓ AG NIQE - - -
[59] - - PIQE - - - -
[65] - - FDR FNR - - -
[66] - ✓ - - - -
[42] - - SMD EAV - - -
[74] ✓ ✓ - - - - -
[75] ✓ ✓ DSC FID IS S-Score MAE
[77] - - MAP 0.5 MAP 0.95 - - -

Figure 6. (a) Number of studies regarding the YOLO version used. (b) Studies by the most used
metrics.

[76] The study conducted a comprehensive comparison of precision, recall, and Mean 522

Average Precision (MAP) metrics between their proposed improved versions of YOLOv5 523

and the following models: original YOLOv5; YOLOv5+CBAM and YOLOv5+Image Fusionl. 524

The results demonstrated superior performance of their proposed models in terms of object 525

detection accuracy. This comparative analysis not only highlights the advancements 526

achieved with the enhanced YOLOv5 variants but also underscores the importance of 527

employing classical evaluation metrics in assessing the efficacy of GANs and YOLOv5 in 528

practical applications. 529

[77] also uses Yolov5 and comparison between different techniques for object detection 530

with mAP 0.5; mAP 0.5:0.95, precision and recall. 531

[50] presented a comprehensive array of metrics, including Identification Precision 532

(IDP), Identification Recall (IDR), IDF1 score (F1 score), Multiple Object Tracking Accu- 533

racy (MOTA), Multiple Object Tracking Precision (MOTP), Mostly Tracked targets (MT), 534

Mostly Lost targets (ML), Number of False Positives (FP), Number of False Negatives 535

(FN), Number of ID Switches (IDS), and Number of times a trajectory is Fragmented (FM). 536

The authors utilized diverse datasets and compared object monitoring performance across 537

various techniques, namely Faster-RCNN, R-FCN, SSD, and RDN. This extensive metric 538

evaluation renders this reference an excellent resource for validating metrics applied in 539

target identification in SAR applications. 540

[74] The study conducts a comparison of Mean Average Precision (MAP), Precision, 541

and Recall in object identification using the methods GT + YOLOV5, Blur + YOLOV5, 542

and AMD-GAN + YOLOV5. It serves as an excellent resource for detection comparisons 543

with YOLOV5. Regarding the GAN utilized, the article employs metrics such as Peak 544

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), comparing these 545
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metrics with various methods, including AMD-GAN without NAS MFPN, AMD-GAN 546

with NAS MFPN, AMD-GAN without AMS Fusion, and AMD-GAN with AMS Fusion. 547

[59] compares the performance of several algorithms, including LighterGAN; En- 548

lightenGAN; CycleGAN; Retinex; LIME (Low-Light Image Enhancement via Illumination 549

Map Estimation), this one shows the highest PIQE score, and DUAL (Dual Illumination 550

Estimation for Robust Exposure Correction), with respect to PIQE metric. 551

[72] The study employs Average Precision (AP) and mean Average Precision (mAP) 552

metrics to assess the performance of various restoration methods, including Gaussian 553

Gray Denoising Restormer, Gaussian Colour Denoising Restormer, Weather-RainGAN, and 554

Weather-NightGAN. It evaluates these metrics across different object classes such as car, 555

bus, person, and motorcycle. This comparison serves as an excellent resource for applying 556

these metrics in the context of object detection in works involving the application of GANs. 557

[75] The study utilizes PSNR and SSIM, in addition to FID and IS, to compare image 558

modality translation among the methods pix2pixHD, StarGAN v, 3 PearlGAN, TarGAN, 559

and StawGAN. Furthermore, they compare segmentation performance using metrics such 560

as Dice Similarity Coefficient (DSC), S-Score, and Mean Absolute Error (MAE) specifically 561

for TarGAN and StawGAN. This comprehensive evaluation provides insights into the 562

effectiveness of these methods for image translation and segmentation tasks. 563

[48] compared PSNR, SSIM and average PI with SRGAN, ESRGAN and their proposal 564

model. They also use the MAP metric to evaluate different methods for object detection 565

such as SSD and Faster R-CNN. 566

[43] Used Average precision to compared augmentation methods to Faster R-CNN 567

without augmentation, in the context of detection of stingrays. 568

[45] employed the IOU metric to quantify the degree of overlap between predicted car 569

regions and ground truth car regions in the images. Through the analysis of CPx and CPy 570

values, the study has shown how accurately the segmentation network was able to localize 571

and position the detected cars within the images. 572

4. Benchmark 573

To finish our analysis, we conduct the third part of the research as a benchmark 574

regarding a GAN model from state-of-art, in order to evaluate the super-resolution feature 575

from a pre-trained model, applied on some samples images from our data. Considering the 576

second research sub-question, What benefits are gained from using a pre-trained model 577

rather than training one from scratch? We selected the Real-ESRGAN algorithm [26]. This 578

study provides an algorithm with pre-trained models that we can utilize to evaluate its 579

performance in the application to our proposed images, which are not related to the model 580

provided by the algorithm, as some are in the infrared spectrum. 581

The first image was extracted from a video recorded by a sensor in the infrared 582

spectrum, where it is possible to observe the heat signature of three people walking on a 583

lawn near the university. The original image as shown in Figure 7 (a) contained 640X512 584

pixels, and after processing through the algorithm as depicted in Figure 7 (b), its size was 585

increased to 2560X2040. We cropped important parts of the image for comparison and 586

observed a significant improvement in the contour features of the people, grass, and tree. 587

The second image, in the visible light spectrum, was captured by a smartphone, 588

depicting some ropes used for guiding a trail-following drone. The original image as 589

shown in Figure 8 (a) had 509X277 pixels, and after processing through the algorithm as 590

depicted in Figure 8 (b), it had 2036X1108 pixels. It is also possible to observe contrast 591

improvements in the yellow, red, and blue lines of the figure. 592

Figure 9 (a) displays some artifacts found in the region of a window of buildings from 593

Figure 7, while in Figure 9 (b), we have examples of artifacts found in the lawn area of 594

the same figure, indicating some algorithmic flaws. Those artifacts was mention by the 595

authors. 596
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Figure 7. Real-ESRGAN on Infrared Camera. (a) Original image. (b) After Super-resolution

Figure 8. Real-ESRGAN on Visible Light Camera. (a) Original image. (b) After Super-resolution
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Figure 9. (a) Artifact 1. (b) Artifact 2

5. Discussion 597

The search string was devised to retrieve results related to edge and object detection 598

in general, considering these tasks as the initial steps of image preprocessing. Identification 599

of whether the object is an animal, a person, a car, or something else would fall under sub- 600

sequent algorithmic steps, which may not necessarily executed by a generation algorithm 601

as presented by some studies in the analysis. 602

Out of the 38 articles analyzed during the quality assessment phase, 19 were conference 603

papers. Additionally, it was observed that the majority of the articles found were recent, 604

with an age of less than 5 years, indicating that research focused on the use of GANs in object 605

detection in images generated for UAVs is recent, as is research focused on the use of GANs 606

in edge detection or object detection. The results show that GAN networks are applied 607

in the image enhancement stage, for subsequent application in edge or target detection, 608

performed by other algorithms such as YOLO or similar ones. Furthermore, the study 609

highlights various types of detection targets in remote sensing literature besides people 610

and animals, such as smoke, insulators, fire, among other targets related to agriculture. 611

From the score analysis, we observe that the results were quite dispersed, with the majority 612

of articles falling within the score intervals of 2 to 4, indicating considerable variability and 613

diferent perspectives in the outcomes. 614

In light of the article analyses, RSRGAN[67] emerges as the optimal reference point 615

for conducting further investigations into object detection, particularly in the context of 616

adapting detection methods for identifying individuals and animals, as it not only provides 617

super-resolution capabilities but also introduces a proprietary target detection system, 618

accompanied by comparative analyses against alternative detectors. 619

Regarding the detection algorithms, YOLO predominated in versions 3 and 5, with 620

Faster-RCNN also being used for the same purpose. 621

In terms of the metrics employed in the studies, we observed the utilization of classical 622

metrics derived from digital image processing. These metrics are used to validate the 623

classification outcomes of images generated through the application of YOLO or other 624

detectors, as well as metrics for assessing noise or image degradation from datasets. The 625

versatility of applications of these various metrics provides us with insights and ideas 626

regarding their potential application for measuring the efficiency of generation algorithms 627

in future works. 628

Thus, we can address the primary research question as follows: Overall, the studies 629

develop or modify GANs for super-resolution, with the majority employing models trained 630

from scratch using specific datasets. Following this training, the algorithm is applied to 631

the target images, with object identification conducted before and after, aiming to evaluate 632

the comparisons between the GAN algorithms used and their similarities, as well as 633

the subsequent detection stage, where some version of YOLO is predominantly applied. 634
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Consequently, this entire process can be adapted for image enhancement with targets 635

relevant to SAR, aiming to improve UAV sensors for the rapid and real-time identification 636

of these targets. 637

Addressing the first sub-question: From the studies examined, it is evident that the 638

application of GANs in SAR operations may focus on enhancing sensors for subsequent 639

target detection. 640

Regarding the second sub-question: A few studies has shown great results regarding 641

pre-trained weights and models. Our framework, developed with Real-ESRGAN with 642

default parameters and pre-trained model, demonstrates that the application of these 643

approach yields satisfactory results in both visible light and infrared spectra, irrespective 644

of the dataset used for pre-training, but it needs further investigation with new and related 645

pre-training models to evaluate more accurately its impacts on practice. 646

Regarding the third sub-question, our observations revealed the utilization of PSNR 647

and SSIM metrics to validate the results of GAN models. In addition to these traditional 648

metrics, classic CNN metrics were also employed alongside various other metrics equally 649

distributed to validate the detection algorithms and defect analyses, with Average Precision 650

being the metric with the highest number of studies. This give us some light for comparing 651

results and suggests a necessity for further studies aimed at reviewing and developing a 652

framework capable of offering more profound insights into the most effective metrics to 653

guide conclusions regarding the model under analysis. 654

Regarding Parsif.al tool, during the Quality Assessment phase, it was observed that a 655

duplicated article escaped the automatic removal filter of the tool. Additionally, the data 656

extraction step could automatically retrieve data from the article detail tab, allowing export 657

in CSV format. 658

6. Conclusions 659

The systematic literature review has revealed that the application of GAN networks 660

in SAR contexts is currently under development, with a focus on super-resolution for 661

subsequent object detection. Other identified areas of application include the enhancement 662

of training datasets for networks and drone navigation purposes. The results indicate that 663

studies concerning search and rescue operations might be primarily oriented towards image 664

enhancement, dataset expansion, and object identification models for subsequent target 665

identification using classical algorithms such as YOLO, Faster-RCNN and others, with 666

versions 3 and 5 of YOLO being the most prevalent in the evaluated studies. Potential areas 667

for further investigation include real-time applications, target distance in photography, 668

types of search targets, search region quality, and their impacts on photography. Although 669

few results utilize pre-trained models, our benchmark has demonstrated that the utilization 670

of a trained model, regardless of the dataset used, has shown interesting results regarding 671

super-resolution in both the visible light and infrared spectrum. Furthermore, the Super- 672

ESRGAN is a great candidate to be applied on the first stage of image processing for 673

SAR. The validation limitations of this work include the selection of only two research 674

databases (SCOPUS and IEEE), which may overlook other relevant articles not indexed by 675

these databases. Additionally, our benchmark employs pre-trained models on images with 676

targets close to the ground, lacking a comparison with a potential dataset tailored to search 677

and rescue situations where the UAV is scanning at high altitudes. Lastly, the search string 678

focuses on edge and object detection, which could be reconsidered to include animals and 679

people as targets, along with incorporating the term "Search and Rescue" into the search. As 680

future work, we propose studying the behavior of GAN algorithms in real-time, utilizing 681

embedded hardware in UAVs on images captured at medium or high altitudes, to explore 682

possibilities for target detection during real-time rescue operations. 683

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 684

study. 685
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