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ABSTRACT 

The Brazilian electric power transmission sector faces a significant challenge 
involving the end of the regulatory useful life of several of equipment. Given the 
technical and economic infeasibility of renewing all depreciated assets from a 
regulatory standpoint, the need for an assertive risk management analysis and a 
reliable assessment of the physical useful life of assets is emphasized, especially 
power transformers, the main asset in the electrical energy transmission sector. In 
view of this scenario, the objective of the proposed thesis is to add value to asset 
management through the development of a data analysis methodology to assist in 
decision-making regarding the direction of maintenance investment in power 
transformers. Due to their similarity, reactors are also evaluated. To this end, data on 
moisture in the insulating oil of the equipment were used and the following categorical 
variables: voltage class, installation region (Regional), criticality, type, and age of the 
equipment. It is noteworthy that these variables are technical registry data of the 
assets, and the water content is an essential characteristic for determining the 
operational condition of the insulating oil, being one of the properties measured in the 
physicochemical tests. The original contribution of the thesis is the selection of 
categories with greater weight and categorical variables with higher predictive power 
using the statistical metrics Weight of Evidence (WoE) and Information Value (IV). 
Analyzing the predictive importance of a variable before developing a predictor can 
lead to better performing models. Furthermore, data based decisions lead to more 
assertive and proactive actions, and the prioritization of variables for evaluation is an 
important contribution, especially considering large equipment parks. The 
methodology was applied to a dataset of almost 10 thousand oil samples from 795 
power transformers and reactors from the ISA CTEEP, electrical energy transmission 
company in Brazil, responsible for approximately 95% of the energy transmitted in the 
state of São Paulo and about 30% of all energy in Brazil. 

 

Keywords – Power transformers; Asset management; Preventive actions; Insulating 
oil; Moisture in the oil; Variables prioritization; Information Value; Weight of Evidence. 
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1. INTRODUCTION 

Asset management plays an essential role when it comes to services that 

require high availability and high reliability, as is the case in the electrical sector. 

Considering the entire lifecycle of the asset, the Operation and Maintenance stage 

represents the longest period, and in this stage, asset management includes 

maintenance management. 

The efficient planning and scheduling of maintenance activities depend on a 

reliable assessment of the condition of the equipment. This is particularly critical in 

the transmission sector, where business sustainability is directly linked to the 

availability of assets and facilities. 

Failures in electrical network equipment result in substantial expenses for 

power utilities. Therefore, employing assessment techniques is essential for 

effectively diagnosing and estimating the true operational status of such equipment. 

Efficient diagnoses enable the management of this asset chain, aiming to strike the 

optimal balance between investments, maintenance costs, and operational 

performance [1]. 

This thesis proposes an original contribution to assist in the condition 

assessment of power transformers, the main asset in the transmission sector. Due to 

their similarity, reactors are also evaluated. The following sections will present the main 

motivations, objectives, and contributions of this work. 

1.1. MOTIVATION 

At a global level, in order to meet the growing demand for electrical energy, 

transmission companies made significant investments with a certain temporal 

concentration for the physical implementation of transmission electrical systems and 

currently, they are facing a major challenge, which involves the end of the regulatory 

lifespan of various equipment [2]. 

In Brazil, the Energy Research Company (Empresa de Pesquisa Energética – 

EPE) and the Ministry of Mines and Energy (Ministério de Minas e Energia – MME) 

point out, in the Ten-Year Energy Expansion Plan (Plano Decenal de Expansão de 

Energia – PDE) [3], that by 2031, the amount of fully depreciated transmission assets 
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could reach, approximately, US$ 219 billion (considering US$ 1 equal to R$ 6.08). 

This context can bring risks to the system, impact sectoral planning, and affect the 

capacity to support the energy transition. 

It is worth highlighting that in Brazil, in general, transmission equipment is 

operating satisfactorily, even with time exceeding regulatory expectations, which 

implies pressure to obtain spare parts and qualified labor to carry out maintenance. 

This need increases the risks of future failures for the transmission system, in addition 

to being able to cause penalties and losses for the transmission companies that 

operate the assets. In these terms, decision-making on how to proceed, that is, 

maintain, modernize or replace assets at the end of their useful life, is one of the 

biggest challenges for network operators and regulators, with repercussions also for 

the energy production industry. transmission system components [2]. 

Another important issue to highlight is that the management of transmission 

assets, on an international level, is characterized by the diversity of metrics used to 

evaluate performance. There is no consensus on the best practices to be adopted, 

which limits the exchange of international experiences. It is noteworthy that technical 

standards should consider the entire lifecycle, from design to decommissioning of 

equipment, including installation, operation, maintenance, modernization, and 

diagnostics. In this sense, there is a need and an opportunity for the development of 

standards and regulations for asset management in transmission networks [2]. 

1.2. OBJECTIVES AND ORIGINAL CONTRIBUTION 

Given the technical and economic infeasibility of renewing all depreciated 

assets from a regulatory standpoint, the need for an assertive risk management 

analysis and a reliable assessment of the physical useful life of assets is emphasized, 

especially power transformers, the main asset in the electrical energy transmission 

sector. 

Considering that dielectric failures are the main failure mode in transmission 

substation transformers in Brazil and worldwide [4], data analysis methodologies 

related to such failures can assist in preventive actions. 

Thus, the general objective of the proposed thesis is to add value to asset 

management through the development of a data analysis methodology to assist in 

decision-making regarding the direction of maintenance investment in power 



 

 

 

 

 

11 

transformers. Due to their similarity, reactors are also evaluated. 

To achieve the general objective of the thesis, the following specific objectives 

were developed: 

▪ Scoping review for analysis and understanding of what has been developed 

worldwide on the proposed topic; 

▪ Analysis of tests for the evaluation of the dielectric of power transformers; 

▪ Descriptive analysis of technical data and physicochemical test data on the oil 

of power transformers and reactors in operation; 

▪ Application of statistical metrics that evaluate the predictive importance of a 

variable in relation to the output; 

▪ Development of an analysis methodology to assist in the management of power 

transformers and reactors through the prioritization of categorical variables, 

based on real data from equipment in operation at ISA CTEEP, an electrical 

energy transmission company in Brazil. 

 The scoping review carried out was published in the article "Emerging Trends in 

Power Transformer Maintenance and Diagnostics: A Scoping Review of Asset 

Management Methodologies, Condition Assessment Techniques, and Oil Analysis" [5] 

in IEEE Access. 

The methodology and results of this thesis are presented in the article “Data 

analysis methodology utilizing the statistical metrics Weight of Evidence (WoE) and 

Information Value (IV) to assist in asset management of power transformers” also 

published in IEEE Access [6]. 

Figure 1.1 illustrates the object of study of this thesis, a power transformer in 

operation, installed in an ISA CTEEP substation. 
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Figure 1.1 – Power transformer in operation, installed in an ISA CTEEP substation [5]. 

The original contribution of the thesis is the selection of categories with greater 

weight and categorical variables with higher predictive power using the statistical 

metrics Weight of Evidence (WoE) and Information Value (IV). Analyzing the 

predictive importance of a variable before developing a predictor can lead to better 

performing models. Furthermore, data based decisions lead to more assertive and 

proactive actions, and the prioritization of variables for evaluation is an important 

contribution, especially considering large equipment parks. 

The proposed methodology is based on data on moisture in the insulating oil of 

the equipment and the following categorical variables: voltage class, installation region 

(Regional), criticality, type, and age of the equipment. The feasibility of applying the 

methodology is highlighted, as these categorical variables consist of technical 

registration data of transformers and reactors, and the moisture content is an essential 

characteristic for determining the operational condition of the insulating oil, being one 

of the properties measured in the physicochemical tests performed on the oil. 

1.3. THESIS STRUCTURE 

The document is structured as follows: this chapter presents an introduction to 

the topic, the motivation, objectives, and contributions of the thesis. 
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Chapter 2 provides a foundation on failures in transformers, the assessment of 

the condition of insulating oil and the metrics Weight of Evidence (WoE) and 

Information Value (IV). Chapter 3 presents the scoping review conducted. 

Chapter 4 presents the proposed methodology and a comparative analysis of 

the application of the proposed metrics in predictive models from different areas. The 

results and discussions are presented in Chapter 5. 

Finally, Chapter 6 presents the conclusions and include publications and 

possibilities for future work. In the APPENDIX are complementary analysis 

presentations.  
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2. THEORETICAL FOUNDATION 

This chapter provides a foundation on transformer failures, assessment of the 

condition of insulating oil and the metrics Weight of Evidence (WoE) and Information 

Value (IV). 

2.1. FAILURE MODES IN POWER TRANSFORMERS 

There is limited literature available in the public domain discussing transformer 

failure statistics [7], both in relation to failure numbers and modes [4]. 

For this reason, in 2008, the Cigrè formed Working Group A2.37 Transformer 

Reliability and published the resulting Transformer Reliability Survey material [4], with 

contributions from 58 concessionaires from 21 countries. A total of 964 failures 

occurring in transformers were examined, with 799 occurring in transmission 

substation transformers and 165 occurring in power plant step-up transformers. 

The mode describes the nature of the failure. The failure modes in the study 

were classified as follows: (a) dielectric – primarily related to PD and flashover; (b) 

electrical – open circuit, short circuit, and failure in electrical contacts; (c) thermal – 

overheating and hotspot; (d) chemical – oil contamination and corrosion; and (e) 

mechanical – bending, breakage, displacement, and loosening.  

Figure 2.1 shows the classification of the failure modes of the 964 failures 

collected. Dielectric-origin failures are the majority, representing more than 36%. 

 

Figure 2.1 – Classification of the failure modes of the 964 power transformer failures from 
concessionaires in 21 countries [4]. 

 
Figure 2.2 shows the failure mode classification analysis for transmission 
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substation and power plant transformers. In the case of power plant transformers, 

thermal-origin failures surpassed dielectric failures. 

 

Figure 2.2 – Classification of the failure modes of (a) 799 failures in transmission substation 
transformers and (b) 165 failures in power plant transformers [4]. 

 

Within the Brazilian electrical sector, the study was conducted with data from 

3198 transformers and reactors from voltage classes starting at 138 kV. The 

information came from thirteen concessionaires in the country, representing more than 

70% of the installed capacity in Brazil. The classification of failure modes is shown in 

Figure 2.3. It was found that dielectric failures accounted for more than 45% of the total 

failures. 

 

Figure 2.3 – Classification of failure modes of transformers and reactors with voltage classes starting 
from 138 kV from concessionaires in Brazil [4]. 

2.2. ASSESSMENT OF THE CONDITION OF INSULATING OIL 

Insulating oil serves as both a dielectric and cooling agent in high-voltage 

electrical equipment. ABNT NBR 10576:2017 [8] based on IEC 60422:2013 – Mineral 
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insulating oils in electrical equipment - Supervision and maintenance guidance – 

standardizes guidelines for supervision and maintenance related to mineral insulating oil 

in equipment in Brazil. According to the standard, oil is defined as a dielectric, heat 

transfer, and arc extinction medium, with its performance dependent on certain basic 

characteristics that can affect the overall performance of electrical equipment. 

Transformers are most significant apparatus in interconnected power systems 

with consideration of several aspects like reliability, efficiency, economy, wide 

applications and operation [9]. Therefore, condition assessment of these worthy 

components has been the main subject of many researches. Solid and oil insulation of 

transformers are the two dominant factors limiting transformers lifetime [10]. 

Physical-chemical and gas chromatography tests are conducted on the insulating 

oil of power transformers, respectively, to verify proper operating conditions and to 

analyze dissolved gases. 

The physical-chemical tests of the oil, classified as Group 1 - routine tests - 

evaluate the following properties: a) color and appearance; b) dielectric loss factor;          

c) neutralization index (acidity); d) dielectric strength; e) interfacial tension; f) moisture; 

and aim to determine if the oil conditions are suitable for continuous operation and 

suggest the type of corrective action necessary, if applicable [8]. 

2.2.1. PERIODICITY 

According to ABNT NBR 10576:2017 [8], it is not possible to establish a general 

rule for the periodicity of oil analysis for equipment in service. For power transformers 

and reactors, the following sampling periodicity is suggested: 

a) Before energization; 

b) 24 to 72 hours after energization; 

c) One month after energization; 

d) Semiannually until the end of the warranty; 

e) After the warranty period, conduct physical-chemical tests and dissolved gas 

analysis by chromatography annually. 

Additionally, the standard specifies that other criteria should be followed in special 

conditions, such as overload or changes close to the limit values in significant oil 

properties, which may require more frequent analyses. 
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2.2.2. MOISTURE IN THE OIL 

Moisture in oil and solid insulation has a significant impact on the operational 

condition and health of transformers, as changes in the dielectric can lead to failures. 

The main sources of moisture increase in transformer oil are atmospheric moisture 

ingress and degradation of solid insulation. Depending on the amount of water, 

insulation temperature, and oil aging degree, the moisture content of insulating oils 

influences: a) dielectric strength of the oil; b) cellulose insulation; c) oil and cellulose 

insulation aging rate [8].  

2.2.2.1. PARAMETERS FOR TRANSFORMERS AND REACTORS 

The oil from equipment in service can be classified as "meets limit values" or 

"does not meet limit values", based on the evaluation of its properties. 

In accordance with ABNT NBR 10576:2017 [8], the moisture content limit varies 

according to the voltage class of transformers and reactors. The maximum values are 

shown in Table 2.1 [8], measured in mg/kg (or ppm). When these values are exceeded, 

corrective action should be taken to treat the oil. 

 
Table 2.1 – Maximum moisture parameter for corrective action in the oil of transformers and reactors 

in use [8]. 

Voltage class range Maximum moisture parameter 

≤ 72.5 kV 40 mg/kg or ppm 

> 72.5 kV and ≤ 145 kV 30 mg/kg or ppm 

> 145 kV 20 mg/kg or ppm 

2.3. WEIGHT OF EVIDENCE (WOE) AND INFORMATION VALUE (IV) 

In this thesis, the use of WoE and IV metrics is proposed for the selection of 

categorical variables based on their predictive power in the context of assisting in the 

management of power transformers and reactors. The WoE metric indicates the 

difference between the proportion of good and bad samples and can be used to 

measure the performance of categories. The IV is used to indicate the degree of 

contribution of the variable to the prediction of a target variable [11]. The proposed 

method offers a quantitative way to evaluate and filter key information, generating more 

efficient planning scenarios [12]. 
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Equation (1) [11] shows the calculation of the WoE metric, where i corresponds 

to each category and T to the total value of the categories. 

𝑊𝑜𝐸𝑖 = ln (
% 𝑏𝑎𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑖

% 𝑔𝑜𝑜𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑖
)   

  or                                                                               (1) 

𝑊𝑜𝐸𝑖 = ln (
𝑏𝑎𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑖

𝑏𝑎𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑇
) - ln (

𝑔𝑜𝑜𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑖

𝑔𝑜𝑜𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑇
) 

 

The ratio of bad and good samples over their respective total values is a number 

between 0 and 1, and the natural logarithm (ln) of a number between 0 and 1 will 

always be negative. This occurs because the ln(𝑥) function describes the exponent to 

which you need to raise the number 𝑒 (approximately 2.71828) to get the value 𝑥. Since 

𝑒𝑦 for  y < 0 results in a number between 0 and 1, the natural logarithm of any number 

in this range will be negative. The closer the ratio is to 1, meaning values of samples 

in the category are close to the total values, the greater the natural logarithm will be.  

Still considering the Equation (1), when WoE is positive, the category is 

associated with undesired events, bad samples, and conversely, negative WoE is 

associated with desired events, good samples. A positive WoE value indicates that the 

predictor increases the likelihood of the outcome occurring, suggesting a positive 

association. On the other hand, a negative WoE value implies that the predictor 

decreases the likelihood of the outcome, indicating a negative association. In 

summary, the higher the WoE value, the greater the weight of evidence for undesired 

events. Table 2.2 provides a didactic example to illustrate the application of Equation 

(1).  

Table 2.2 – Example application of the WoE metric. 

Variable 1 

Number of 
Samples 

Sample Ratio ln 
WoE 

Bad Good Bad Good Bad Good 

Category A1 1 7 0.125 0.350 -2.079 -1.050 -1.030 

Category B1 4 8 0.500 0.400 -0.693 -0.916 0.223 

Category C1 3 5 0.375 0.250 -0.981 -1.386 0.405 

Total Samples 8 20      
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Equation (2) [11] illustrates the calculation of the IV metric, where i corresponds 

to the categories, T to the total value of the categories, and n to the number of 

categories of a variable. 

𝐼𝑉 =  ∑(% 𝑏𝑎𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑖 − % 𝑔𝑜𝑜𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑖) ∗ 𝑊𝑂𝐸𝑖

𝑛

𝑖=1

 

or                                                                            (2) 

𝐼𝑉 =  ∑ (
𝑏𝑎𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑖

𝑏𝑎𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑇
−

𝑔𝑜𝑜𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑖

𝑔𝑜𝑜𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑇
) ∗ 𝑊𝑂𝐸𝑖

𝑛

𝑖=1

 

 

The IV will only present positive values, since if the difference between the ratio 

of bad and good samples is positive, it means that the ratio of bad samples is greater, 

hence the WoE is also positive. Conversely, if the ratio between bad and good samples 

is negative, it means that the ratio of good samples is greater, so the WoE will also be 

negative. The Equation involves summation because the IV evaluates the predictive 

power of the variable as a whole and not individual categories. Table 2.3 shows a 

didactic example to illustrate the application of Equation (2). 
 

Table 2.3 – Example application of the IV metric. 

Variable 1 
Bad Samples - 
Good Samples 

WoE IV 
 

Category A1 -0.225 -1.030 0.232  

Category B1 0.100 0.223 0.022  

Category C1 0.125 0.405 0.051  

IV Variable 1 0.305  

Variable 2 
Bad Samples - 
Good Samples 

WoE IV 
 

 
Category A2 -0.150 -0.470 0.071  

Category B2 0.150 0.223 0.033  

IV Variable 2 0.104  

 

The highest IV will be from the variable where the sum of the product of WoE 

by the difference between event and non-event for each category is greater, regardless 

of desired or undesired events. In general, the higher the IV, the greater the degree of 

contribution of the variable. In the case of IV ≥ 0.50, the authenticity of the variable 

should be verified. After analysis, considering it authentic, the variable has strong 
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predictive power. The description of the resulting IV values is presented in Table 2.4 

[11].  

Table 2.4 – Description of IV value [11]. 

IV Description 

IV < 0.02 Useless variable 

0.02 ≤ IV < 0.10 Weak value variable 

0.10 ≤ IV < 0.30 Medium value variable 

0.30 ≤ IV < 0.50 Strong value variable 

IV ≥ 0.50 Value is too high, consider the authenticity of the variable 

 

In the example shown in Table 2.3, variable 1 has a strong contribution level, 

while variable 2 has a medium contribution level. 
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3. SCOPING REVIEW 

This chapter presents a scoping review of research on the methodologies and 

techniques used for the maintenance and condition assessment of power 

transformers, which are the main asset in the electrical power transmission sector. It 

addresses articles on asset management, monitoring and diagnostics, oil analysis, and 

insulation moisture, with these articles originating from twenty-five countries and being 

published in journals in the last fifteen years, with more than half of them published in 

the last five years. 

The aim of this research is to map the literature linked to the topic in a broader 

and more exploratory manner and to identify any existing gaps in knowledge. The 

methodology used in the research, a synthesis of the articles researched, 

characteristics of the sources of evidence and conclusions and limitations of the study 

are presented. 

3.1. SCOPING REVIEW METHODOLOGY 

This scoping review was prepared following the guidelines provided by the 

PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses 

extension for Scoping Reviews) protocol [13]. 

To identify potentially relevant articles, the bibliographic databases of the 

publishers Elsevier, IEEE, and Multidisciplinary Digital Publishing Institute (MDPI) were 

searched from October 2023 to June 2024. The complete electronic search strategies 

used in the Elsevier, IEEE and MDPI databases are presented below in such a way that 

it allows the reproduction of the searches carried out. 

The electronic search strategy for the Elsevier database used keywords, subject 

areas, and article type as selection filters. The keywords used were power transformers, 

asset management, condition based maintenance, failure analysis, moisture, and oil 

samples; the selected subject areas were energy, engineering, computer science, and 

materials science; and the chosen article types were review articles and research 

articles.  

The electronic search strategy for the IEEE database used keywords, article type, 

and publication topics as selection filters. The keywords used were power transformers 

and asset management and condition based maintenance and failure analysis and 
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moisture or oil samples; were selected articles from journals and magazines classified 

as Qualis CAPES Engineering IV A1 and A2, and selected the following publication 

topics: moisture, condition monitoring, and fault diagnosis. 

The electronic search strategy for the MDPI database used keywords, subjects, 

journals, and article type as selection filters. The keywords used were the same as the 

IEEE search, with the inclusion of the key word Condition monitoring, the subjects were 

engineering, computer science and mathematics, the journals selected were Energies 

and Sensors (considering the Qualis CAPES Engineering IV A1 and A2 classification) 

and the chosen article types were review articles and research articles. 

3.1.1. ELIGIBILITY CRITERIA 

To be included in this review, papers needed to address the topics of asset 

management and condition assessment of power transformers. To select articles, the 

following keywords were used: power transformer, asset management, condition based 

maintenance or condition monitoring, and failure analysis. 

Considering that dielectric failure is the main failure mode in transmission 

substation transformers in Brazil and worldwide [4], articles specifically addressing oil 

analysis and insulation moisture were also examined, as insulating oil has dielectric and 

cooling functions in power transformers. Physicochemical and gas chromatography 

tests are carried out on the equipment's insulating oil to confirm that operating conditions 

are adequate and to analyze dissolved gases, respectively. Water content is one of the 

properties evaluated in physical–chemical tests. The keywords oil analysis, oil samples, 

and moisture were included. 

Peer-reviewed journal papers were included if they were published in the period 

of 2009–2024 and in journals classified as Qualis CAPES Engineering IV A1 and A2, 

with the aim of mapping recent publications subjected to rigorous reviews. 

Another eligibility criterion was the article type: review articles and research 

articles were included, with the aim of including articles that provide a solid foundation 

on the topic and insights and guidance for further investigation. 

3.1.2. SELECTION OF SOURCES OF EVIDENCE 

After identifying articles by conducting a search by keywords and subject, articles 

were selected using the eligibility criteria. In the next stage of selecting sources of 
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evidence, the topics, titles, and abstracts were evaluated. Finally, an evaluation was 

carried out on the full text of all publications identified in searches for potentially relevant 

publications. Figure 3.1 shows a flow diagram that illustrates the steps taken to select 

sources of evidence and the number of articles selected per step. 

 

 

Figure 3.1 – Flow diagram illustrating the selection of sources of evidence [5]. 

3.1.3. DATA CHARTING 

The 63 articles included in this review are related to transformer asset 

management and condition assessment.  After reading and analysis, it was deemed 

possible to classify them into subtopics, as some articles address the topic more broadly, 

while others specifically address diagnostic techniques and/or failure analyses. Table 

3.1 shows the subtopic classification of the articles, considering the specificity of each 

work, and Figure 3.2 represents the hierarchy between the subtopics. 
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Table 3.1 – Classification of articles among the subtopics [5]. 

Subtopics 
Number of 

articles 

Asset management and condition assessment methodologies 10 

Monitoring and diagnostic techniques and methods 22 

Oil analysis 16 

Moisture in insulation 15 

 

 

Figure 3.2 – Hierarchical relationship between the subtopics of the articles [5]. 

 
Articles related to transformer design, engineering optimization, and new 

technologies linked to manufacturing were not considered. Regarding articles related to 

sustainability it was considered only papers focusing on analysis that seeks better 

efficiency in the performance of power transformers articles focusing on specific 

environmental characteristics were not selected. 

3.2. SYNTHESIS 

In the following sections, a synthesis of the articles is presented, focusing on their 

methodology, evaluated data, and contributions. At the end of each section, there is a 

table that summarizes the main subjects covered in each article, particularly the 
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monitoring techniques, data analysis methods, and condition assessment 

methodologies and models. 

3.2.1. ASSET MANAGEMENT AND CONDITION ASSESSMENT METHODOLOGIES 

Abu-Elanien and Salama [14] and Velasquez-Contreras, Sanz-Bobi, and Arellano 

[15] addressed about the monitoring techniques Dissolved Gas Analysis (DGA) and 

Frequency Response Analysis (FRA). 

Abu-Elanien and Salama also evaluate thermal analysis, vibration analysis, 

Partial Discharge (PD), and Recovery Voltage Measurement (RVM). Regarding the 

criteria for assessing the end-of-life physical condition of the equipment, the authors 

highlighted the degree of polymerization, maintained tensile strength, furanic 

compounds and addressed economic aging models considering linear depreciation and 

accelerated depreciation [14].  

Velasquez-Contreras, Sanz-Bobi, and Arellano developed the General Asset 

Management Model for an Electric Utility, an integrated approach for managing power 

transformer assets within an electric utility company environment. The authors 

introduced a novel method to characterize the deterioration process of power 

transformers using the Multi-State Condition (MSC) Model and a methodology based on 

Hidden Markov Chains in order to estimate the failure rate using DGA tests. Anomaly 

detection modeling is carried out using oil temperature data and neural networks, and 

Decision Trees are employed as classifiers to evaluate FRA measurements of the 

transformers. An approach for maintenance scheduling was proposed using asset 

prioritization diagrams to support decision-making [15]. 

Soni and Mehta [16] presented a comprehensive review of the methods used for 

assessing the condition of power transformers, highlighting useful practices for 

evaluating the Health Index (HI), extending the lifecycle, and predicting failures. The 

following methods are addressed by the authors: DGA, FRA, RVM, PD testing, 

thermography testing, transformer turns ratio test, dielectric dissipation factor, winding 

resistance, core ground resistance, and insulation resistance calculation [16]. 

Murugan and Ramasamy [17], Koziel et al. [18], Gorginpour, Ghimatgar, and 

Toulab [19], Balanta et al. [20], and Biçen and Aras [21] proposed condition assessment 

methodologies of power transformers. Koziel et al. proposed a data quality management 

framework and emphasized the need to consider and quantify data quality for efficient 
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asset management decisions [18] as Biçen and Aras introduced an intelligent asset 

management system for power transformers that enables a simultaneous and holistic 

evaluation of multiple input parameters for more accurate diagnostics, and it was based 

on a Failure-Sensitive Matrix (FSM) [21]. 

Murugan and Ramasamy developed statistical analysis of failures based on 

voltage level, geographic zone, and transformer components [17] while Gorginpour, 

Ghimatgar, and Toulab were based on the degree of polymerization and developed a 

Machine Learning (ML) algorithm with temperature, humidity, and daily scheduling data 

[19] and the method developed by Balanta et al. consider the insulation system 

degradation, risk index, Consequence Factor (CF), and economic impact [20]. The 

model proposed by Murugan and Ramasamy was based on a failure analysis of power 

transformers from two electric utility companies in Tamil Nadu, India, considering 196 

failure cases from 2009 to 2013 [17] while the method developed by Gorginpour, 

Ghimatgar, and Toulab was validated using data from damaged transformers in 

Bushehr, Iran, with a predicted useful life accuracy error of less than 10% [19]. 

Jin et al. [22] and Jin, Kim, and Abu-Siada [23] addressed about DGA, PD, and 

vibration analysis. The authors also addressed the temperature measurement [22] and 

presented about the methods based on temperature and paper degradation value, and 

insulation system degradation [23]. The article underscores the importance of 

understanding the characteristics of each technique to design effective condition 

monitoring systems and anticipates the development of more comprehensive systems 

that not only report on the transformer's condition but also provide guidance for asset 

management and estimates of remaining useful life [22]. Regarding reliability 

assessments, the authors highlighted the use of the HI and the combination of inspection 

and monitoring data as an important tool [23]. 

Table 3.2 shows the main topics covered and the respective references. 

Table 3.2 – Main subjects covered in each article on the subtopic of asset management and condition 
assessment methodologies [5]. 

Reference 
Index 

Monitoring techniques 
Condition assessment 
methodologies/models 

[14] 
Thermal analysis, vibration analysis, PD, 
DGA, RVM, and FRA. 

Degree of polymerization, maintained 
tensile strength, and furanic compounds. 

[15] 
DGA, oil temperature measurement and 
FRA. 

MSC model, Hidden Markov Chains, 
neural networks, and Decision Trees. 
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Reference 
Index 

Monitoring techniques 
Condition assessment 
methodologies/models 

[16] 

DGA, FRA, RVM, PD, thermography 
testing, transformer turns ratio test, 
dielectric dissipation factor, winding 
resistance, core ground resistance, and 
insulation resistance calculation. 

 

[17] 

  

Statistical analysis of failures based on 
voltage level, geographic zone, and 
transformer components. 

[18] 

  

Data quality management framework. 

[19]   
Degree of polymerization and ML 
algorithm based on temperature, 
humidity, and daily scheduling. 

[20]   
Insulation system degradation, risk 
index, consequence factor, and 
economic impact. 

[21]   FSM 

[22] 
DGA, PD, vibration analysis, and 
temperature measurement.   

[23] DGA, PD, and vibration analysis. 
Methods based on temperature and 
paper degradation value, and insulation 
system degradation.  

3.2.2. MONITORING AND DIAGNOSTIC TECHNIQUES AND METHODS 

Soni and Mehta [24] proposed an approach to identify the health indices of power 

transformers from the following tests: dielectric strength, acidity, breakdown voltage, 

DGA, furan compounds, the dielectric dissipation factor, the presence of moisture, 

interfacial tension, coil direct current resistance, and tangent delta. The authors utilize 

three mathematical analyses: Piecewise Linear Equations, the Analytic Hierarchy 

Process for weighting factors, and a residual analysis for curve fitting. Data from 100 

transformers (20 healthy, 60 partially damaged, and 20 with high probability of failure) 

were analyzed [24].  

Wong et al. [25] proposed the use of computational intelligence models through 

the analysis of techniques DGA, FRA, PD, Polarization and Depolarization Current 

(PDC) measurement, RVM, Infrared Thermography (IRT), and a Furan Analysis (FA) 

[25]. 

Ma, Saha, and Ekanayake [26], Guillen et al. [27], Didouche et al. [28], Sekatane 

and Bokoro [29], Beura, Wolters and Tenbohlen [30], and Liu et al. [31] addressed about 

PD measurement and analysis methods. 
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Ma, Saha, and Ekanayake addressed statistical learning techniques and 

highlighted the development of an algorithm based on a Support Vector Machine (SVM). 

To acquire knowledge about the statistical dependence between historical data and 

equipment conditions, data from PD in components collected from transformers were 

used [26]. Guillen et al. developed an algorithm to PD location in transformer windings. 

The authors used Discrete Wavelets Transform (DWT) and the Kullback–Leibler (KL) 

divergence [27]. Didouche et al. proposed a numerical localization method based on the 

Newton-Raphson iterative method which use mainly the finite elements method. This 

proposal reduces the number of sensors required for PD measurement [28].  

Sekatane and Bokoro investigated the use of time reversal and the integration 

with Convolution Neural Networks (CNNs) for diagnosing PD in power transformers [29] 

and Beura, Wolters and Tenbohlen use Dijkstra’s algorithm with additional line-of-sight 

propagation algorithms to determine the paths of the electromagnetic waves generated 

by PD sources. According to the authors, this algorithm can circumvent the time-

consuming and computationally intensive process of simulating or collecting 

experimental data for an Artificial Intelligence (AI) based system of partial discharges in 

power transformers [30]. Liu et al. developed an ultrasonic detection system based on 

Fabry–Perot optical fiber sensor. The system employs a directional cross-localization 

method built on the Multiple Signal Classification (MUSIC) algorithm to precisely pinpoint 

dual PD sources into the transformer interior [31]. 

Senobari, Sadeha, and Borsi [32] and Seifi et al. [33] discussed about FRA as a 

method for assessing and detecting faults in transformers. Senobari, Sadeha, and Borsi 

realized a literature review regarding the topic and highlighted points such as the 

development of methods independent of the transformer structure and mathematical 

and statistical understanding of FRA comparison indices [32]. And Seifi et al. proposed 

the Sweep Reflection Coefficient (SRC) method, using FRA, for the early detection of 

inter-turn faults and mechanical faults in the winding. The proposal was validated in 

distribution transformers, with localization errors of less than 5% for ground resistance 

faults and less than 15% for other types of faults [33]. 

Velásquez and Lara [34], Medina et al. [35], and Costa, Silva, and Branco [36] 

analyzed condition and diagnostic data using neural networks, Fuzzy logic, and linear 

regressions, respectively. In the implementation of the neural network, three layers and 

fourteen neurons in the hidden layer were used, and a backpropagation algorithm was 
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employed to predict the lifetime parameter of reactors. The proposed methodology was 

validated on power reactors from the Red de Energía del Perú through statistical tests, 

with a confidence level of 98.5% [34]. 

Medina et al. developed a Fuzzy Inference System (FIS) based approach to 

estimate the risk index of power transformers. Three FISs were used and tested on a 

fleet of 15 transformers: the HI, the CF, and the combination of both systems. The HI 

was calculated based on physical–chemical tests, considering the degree of 

polymerization. The failure CF was determined considering technical and operational 

parameters: load, oil volume, proximity to buildings, and penalties for asset 

unavailability. The third FIS combined the HI and CF to estimate the transformer's risk 

index [35].  

Costa, Silva, and Branco proposed a model using linear regressions and 

temperature parameters based on environmental and historical data, along with gas 

concentration information [36]. 

Da Silva et al. [1] presented the development of a methodology to estimate the 

health of power transformers through a new diagnostic factor based on a historical 

average daily load curve and the identification of insulation conditions. And Zhou et al. 

[37] proposed a fault diagnosis model for power transformers based on a Probabilistic 

Neural Network (PNN) and optimized using an improved Gray Wolf Optimizer (GWO) 

algorithm. The methodology proposed by Da Silva et al. was applied and validated using 

data oil sample and electrical quantities from 204 power transformers in operation and 

its advantages include reducing the time needed to obtain results, allowing for the 

monitoring of solid transformer insulation degradation in 24-hour cycles [1]. The 

methodology proposed by Zhou et al. used 555 real fault samples from the Jiangxi 

Power Supply Company [37]. 

Huang et al. [38] proposed an unsupervised clustering method Entropy-Weighted 

(EW) K-means and the classical two-parameter Weibull model to assess the average 

failures of different groups of transformers. The methodology was validated in a 

distribution transformer park of the Chongqing Electric Power Company in China [38]. 

Islam et al. [39] presented the implementation of an intelligent framework based on a 

Multilayer Perceptron (MLP) generative model and a logistic regression classifier with 

the aim of assessing the condition of power transformers. This methodology was valid 

with data from 608 real transformers [39]. 
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Wang et al. [40] proposed a new integrated multi-level and multi-parameter 

diagnostic method based on the integration of fault information. The method was 

validated using data from 628 fault samples from transformers across China [40]. 

Building upon the root cause analyses, in 2019 [41], the authors developed a systematic 

approach including traditional methods, Principal Component Analysis (PCA), data 

mining, and causal mapping. A total of 279 reactors in high-voltage systems in Latin 

America were analyzed, with the forecast of an additional 134 units in the coming years, 

and the methodology was validated in a case study on a 500 kV reactor [41]. 

Murugan and Ramasamy [42] proposed a practical approach based on statistical 

analysis to transformer maintenance using failure data and the HI, aiming to prevent 

failures and reduce the maintenance costs of this equipment. The article analyses 343 

failures in distribution and power transformer components, with voltage classes ranging 

from 33 kV to 400 kV, over 11 years at the Tamil Nadu Electric Utility in India. A case 

study involving the calculation of the HI for seven power transformers was presented to 

validate the methodology [42].  

Ariannik, Razi-Kazemi, and Lehtonen [43] presented the development of a 

lifespan estimation model for distribution transformers based on the degree of 

polymerization, considering the following variables: ambient temperature, load factor, 

and moisture content of the paper insulation. The calculation of the hot-spot temperature 

and a dynamic analysis of the polymerization degree profile were performed with 

variations in the operational conditions, and the optimal time to implement reductions in 

the paper insulation moisture content was suggested [43].  

And Liu et al. [44] proposed an algorithm for monitoring abnormal conditions in 

distribution transformers using the Spearman correlation coefficient and the t-Statistics 

test. The authors developed a data acquisition system and utilized phase current data 

from transformers. The algorithm was validated based on nine cases of real data from 

the power distribution system of Zhejiang, China [44]. 

Table 3.3 shows the main topics covered and the respective references. 

Table 3.3 – Main subjects covered in each article on the subtopic of monitoring and diagnostic 
techniques and methods [5]. 

Reference 
Index 

Monitoring techniques 
Condition assessment 
methodologies/models 

[1] 
An analysis data from oil samples and 
electrical quantities. 

Models based on the historical average 
daily load curve. 
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Reference 
Index 

Monitoring techniques 
Condition assessment 
methodologies/models 

[24] 

The dielectric strength, acidity, breakdown 
voltage, DGA, furan compounds, dielectric 
dissipation factor, presence of moisture, 
interfacial tension, coil direct current 
resistance, and tangent delta. 

Multi-Criteria Decision Making and 
Piecewise Linear Equations, Analytic 
Hierarchy Process for weighting 
factors, and residual analysis. 

[25] DGA, FRA, PD, PDC, RVM, IRT, and FA. 
  

[26]   
SVM based ML algorithm using PD 
data. 

[27] PD. DWT and KL. 

[28] PD. 
The Newton-Raphson iterative method 
based on finite elements method. 

[29] PD. 
The time reversal and integration with 
CNNs. 

[30] PD. Dijkstra’s algorithm. 

[31] PD. 

Sensor: Fabry–Perot optical fiber. 
Algortimo: directional cross-localization 
based on the 
MUSIC. 

[32] FRA.   

[33] FRA. SRC. 

[34]   Neural networks. 

[35] Physical–chemical tests. 

Models: Fuzzy logic. Data: degree of 
polymerization, load, oil volume, 
proximity to buildings, and penalties for 
asset unavailability 

[36] 

  

Models: linear regressions. Data: 
temperature parameters and gas 
concentration information. 

[37] 
  

PNN and GWO. 

[38] 

  

Unsupervised clustering method of 
EW-Kmeans and the classical two-
parameter Weibull model. Data: degree 
of polymerization. 

[39] 
  

MLP generative model and logistic 
regression classifier.  

[40] 
A comparative evaluation of the reliability of 
seven fault diagnostic methods in 
transformers, with emphasis on DGA.  

Integrated multi-level and multi-
parameter diagnostic method based on 
the integration of fault information.  

[41] 
An analysis based on data on mechanical, 
electrical, physical, and chemical 
dimensions.  

PCA, data mining, and causal mapping. 

[42] 

  

A statistical analysis of failure data and 
identification of failure causes through 
maintenance records, direct 
observations in the repair yard, and 
consultations with experts. 
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Reference 
Index 

Monitoring techniques 
Condition assessment 
methodologies/models 

[43]   

The degree of polymerization, 
considering the variables ambient 
temperature, load factor, and moisture 
content of the paper insulation.  

[44] 
  

Spearman correlation coefficient and 
the t-Statistics test. 

 

3.2.3. OIL ANALYSIS 

The developments proposed by Chen et al. [45], Abu-Siada and Islam [46], Abu-

Siada, Hmood, and Islam [47], Cui, Ma, and Saha [48], Tra, Duong, and Kim [49], Rajesh 

et al. [50], Velásquez and Lara [51], Aizpurua et al. [52], Bustamante et al. [53], Ward et 

al. [54], Menezes et al. [55], Soni and Mehta [56], [57], and Malik, Sharma, and Naayagi 

[58] were based on DGA data. 

In addition to DGA, Velásquez and Lara used data from corrosive sulfur, and 

physical–chemical and electrical tests [51] while Aizpurua et al. evaluated oil quality, and 

solid insulation [52] and Ward et al. also addressed PD data [54]. Bustamante et al. 

discussed about DGA continuous online [53]. Soni and Mehta proposed methods using 

moisture content, furan compounds, and interfacial tension [56] and thermal stability, 

acidity, water content, breakdown voltage, and viscosity [57]. 

Vrsaljko, Haramija, and Hadzi-Skerlev [59] did not use DGA data, the authors 

proposed the use of High-Performance Liquid Chromatography (HPLC) to determine the 

contents of phenol, m-cresol, and o-cresol in transformer oil. They confirmed that phenol, 

m-cresol, and o-cresol were not present in new oils, indicating their presence as a result 

of insulation material degradation. Therefore, the detection of these compounds serves 

as an additional diagnostic tool to assess the normal or abnormal condition of 

transformer insulation, and elevated concentrations suggest equipment overheating 

[59]. 

Fuzzy logic was used by the authors in data analysis algorithms [47], [56], [57], 

[58]. Soni and Mehta proposed a combined approach using a Fuzzy Logic Controller 

(FLC) and Fuzzy C-Means (FCM) [56] and, in addition to Fuzzy Logic, clustering, and 

conditional probability [57]. 

The following methods have also been covered by the authors: Wavelet [44]; 

Gene Expression Programming (GEP) [46]; MLP Neural Networks [47]; Bayesian 

Particle Filtering [52]; ML classifiers: the J48 Decision Tree and random forest 
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transformation with k-means, correlation based feature selection, and PCA [60], and 

Computational Intelligence based Decision Trees [52]. 

Cui, Ma, and Saha [48] and Tra, Duong, and Kim [49] proposed over-sampling 

methods with the aim of improving the diagnosis of the power transformer condition. The 

authors worked with oil analysis data, and the proposals were motivated by the fact that 

the nature of the data was not favorable for generalizing AI models. Both works used the 

Synthetic Minority Over-Sampling Technique (SMOTE), referred to by Cui, Ma, and 

Saha [48] as SMOTEBoost and by Tra, Duong, and Kim [49] as Adaptive SMOTE 

(ASMOTE), in their adaptive approach. To validate the effectiveness of the methods, 

SVM and k-Nearest Neighbor (kNN) classification algorithms were used by both authors.  

Cui, Ma, and Saha [48] also used Decision Trees and radial basis function 

networks, while Tra, Duong, and Kim [49] also used the MLP. In 2023, Rajesh et al. [50] 

proposed the use of the Adaptive Synthetic Sampling Approach (ADASYN) technique, 

also a variant of the SMOTE. The authors used 4580 DGA samples from operational 

transformers to train the ML models. 

The method proposed by Chen et al. [45] was validated in a total of 700 oil 

samples and the five proposed approaches out-perform the accuracy and efficiency of 

the conventional backpropagation neural network method [45]. The approach using 

GEP, proposed by Abu-Siada and Islam [46], combines Roger's ratio method, the IEEE 

method, and the CO/CO2 ratio for interpreting the results and the critical classification of 

the transformer. Analyses are conducted on 338 oil samples collected from transformers 

with different classifications and lifespans [46], while the method proposed by Abu-

Siada, Hmood, and Islam [47] was based on data from 2000 oil samples from different 

transformers, and the agreement of the method with real failures was tested on 70 

samples with known failures [47].  

Velásquez and Lara [51] analyzed failures in 61 transformers and a preliminary 

correlation study between sulfurinduced corrosion and PD activity was performed [51] 

and the proposal developed by Aizpurua et al. [52] was validated using data from a 

nuclear power plant [52]. 

The proposed approach by Soni and Mehta [56] was applied to data from 200 

transformers. Different oil analysis techniques were analyzed: (a) Duval Triangle, (b) 

Gouda’s Three-Ratio Method, (c) paper degradation based on the degree of 

polymerization and furans, and (d) insulation degradation based on moisture content 
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and interfacial tension [56]. In the same year, the authors published [57] about the 

implementation of alternative fluids to replace mineral oil in transformers, citing 

environmental concerns, scarcity, the high costs of petroleum resources, and disposal 

issues. 

Table 3.4 shows the main topics covered and the respective references. 

Table 3.4 – Main subjects covered in each article on the subtopic of oil analysis [5]. 

Reference 
Index 

Monitoring techniques 
Condition assessment 
methodologies/models 

[45] DGA Wavelet. 

[46] DGA GEP. 

[47] DGA Fuzzy logic. 

[48] DGA 
SMOTE, SVM and kNN, and Decision 
Trees and radial basis function networks. 

[49] DGA ASMOTE, SVM and kNN, and MLP. 

[50] DGA ADASYN. 

[51] 
DGA, corrosive sulfur, and physical–
chemical and electrical tests. 

Data mining and MLP neural networks. 

[52] DGA, oil quality, and solid insulation. Bayesian Particle Filtering. 

[53] DGA online contínuo.   

[54] DGA and PD.   

[55] DGA 
Computational intelligence based 
Decision Trees. 

[56] 
DGA, moisture content, furan 
compounds, and interfacial tension 

Degree of polymerization, FLC, and 
FCM. 

[57] 
Thermal stability, acidity, water content, 
DGA, dissolved gases, breakdown 
voltage, viscosity, and accelerated aging. 

Fuzzy logic, clustering, and conditional 
probability. 

[58] DGA 
Fuzzy logic, clustering, and conditional 
probability. 

[59] 
HPLC to determine phenol, m-cresol, 
and o-cresol contents in transformer oil. 

  

[60]   
ML J48 Decision Tree and random forest, 
transformation with k-means, correlation 
based feature selection, and PCA. 

3.2.4. MOISTURE IN INSULATION 

Velásquez and Lara [61], Liu et al. [62], [63], Zukowski et al. [64], Hernandez 

and Ramirez [65], and Vatsa and Hati [66] addressed about the application of 

Frequency-Domain Spectroscopy (FDS) for the early detection of moisture in power 

transformer. The technique detects the degradation of the paper layer due to moisture. 

Velásquez and Lara presented a study on the application of FDS in bushings. 
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The results of the technique and the conductivity associated with temperature changes 

in this layer is reflected in the characteristics of the dissipation factor and the 

capacitance of the bushing [61]. 

Liu et al. used the FDS with the algorithm-enhanced backpropagation neural 

network [62]. Liu et al. discussed conventional dielectric response measurement 

techniques in oil-immersed power transformers, such as RVM, FDS, and PDC. The 

authors proposed the use of Grey Relational Analysis (GRA) to assess insulation 

condition by analyzing various dielectric response data [63], while Zukowski et al. 

proposed an accurate way to determine the standard characteristics for the 

conductivity of paper impregnated with insulating oil and containing moisture. The 

authors used direct and alternating current conductivity frequencies obtained by FDS 

[64].   

Hernandez and Ramirez proposed an approach based on Vector Fitting (VF), a 

rational approximation, to find positive real parameters for the Extended Debye Model 

(EDM) using FDS data [65] and Vatsa and Hati developed a deep learning based aging 

assessment technique combining FDS and squeeze-and-excitation-enabled CNN [66]. 

Singh, Sood, and Verma [67] and Arsad et al. [68] discussed the presence of 

moisture in the insulation by analyzing it with other physicochemical tests. Meanwhile, 

Przybylek [69] proposed an alternative measurement method to determine the 

moisture content in oil and Koch, Tenbohlen, and Stirl [70] developed an analysis 

relating moisture through water saturation while Medina et al. [71] discussed about the 

solid insulation degradation.  

Singh, Sood, and Verma [67] presented a study on the influence of the age of 

transformers in operation on insulating oil, based on the following oil properties: 

moisture, dielectric strength, resistivity, the dissipation factor (tangent delta), interfacial 

tension, and flash point. They analyzed samples from 10 transformers in operation, 

with power ratings ranging from 16 to 20 MVA, manufactured between 1991 and 1997, 

installed in various substations in Punjab, India [67]. Medina et al. [71] used arithmetic 

Brownian Motion algorithms to estimate paper moisture. The method involved a holistic 

approach to assess the aging of solid insulation [71] while Przybylek [69] discussed 

methods for measuring moisture in liquid dielectrics, presenting the pros and cons of 

existing techniques and exploring the viability of Near-Infrared Spectroscopy (NIR) for 

this purpose [69]. 
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Suleiman et al. [72], Liao et al. [73], Tu et al. [74], and Villarroela, Burgos, and 

García [75] discussed about alternative insulators and the relationship with moisture. 

Suleiman et al. [72] discussed the effect of moisture on the dielectric strength and 

physicochemical structure of biodegradable palm based insulating oils, used as 

alternatives to mineral oil. The Fourier Transform Infrared (FTIR) technique was 

employed to analyze the molecular structure changes in the oils at different moisture 

levels [72]. 

Liao et al. [73] investigated the effects of thermal aging on moisture equilibrium 

curves of a mineral oil–paper insulation system and a new paper–oil insulation system 

more resistant to aging [73] and Tu et al. [74] conducted an analysis of the moisture 

variation in oil and solid insulation during thermal aging for three types of papers [74]. 

Villarroela, Burgos, and García [75] presented an analysis of moisture dynamics 

in transformers insulated with natural esters and highlighted the growing use of these 

liquids as insulation in transformers, aligned with the search for greater sustainability and 

clean energy [75]. 

Table 3.5 shows the main topics covered and the respective references. 

Table 3.5 – Main subjects covered in each article on the subtopic of moisture in insulation [5]. 

Reference 
Index 

Diagnosis of moisture level Condition assessment 

[61] 
The early detection of moisture in power 
transformer bushings. 

Technique: FDS. 

[62] A prediction of moisture content. 
Technique: FDS. Algorithms: Enhanced 
backpropagation neural network and ML. 

[63] 
A combination of techniques for 
evaluating dielectric response data. 

Technique: RVM, FDS, and PDC. 
Analysis: GRA. 

[64] 

A way of determining the standard 
characteristics for the conductivity of 
paper impregnated with insulating oil and 
containing moisture. 

Technique: FDS. 

[65] An approximation of moisture content. Technique: FDS. Analysis: VF and EDM. 

[66] 
A technique to assess the aging status of 
paper. 

Technique: FDS. Analysis: neural 
network. 

[67] 
Transformer age analysis and 
physicochemical tests on oil. 

Oil properties analyzed: moisture, 
dielectric strength, resistivity, the 
dissipation factor (tangent delta), 
interfacial tension, and flash point.  

[68] 
Th methods for detecting and quantifying 
moisture in oil. 

Oil properties analyzed: breakdown 
voltage and moisture. Analysis: 
accuracy, measurement time, and cost. 
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Reference 
Index 

Diagnosis of moisture level Condition assessment 

[69] 
An alternative method to the Karl Fischer 
Titration. 

Technique: NIR. 

[70] 
The determination of moisture in oil and 
cellulose in power transformer. 

Analysis: water saturation and 
representations of the isotherms 

[71] 
A method to estimate solid insulation 
degradation in power transformers. 

Oil properties analyzed: temperature and 
moisture. Algorithm: Arithmetic Brownian 
Motion. 

[72] 
The effect of moisture on alternative 
insulating oils compared to mineral oil. 

Technique: FTIR. Analysis: molecular 
structure changes in the oils at different 
moisture levels.  

[73] 

The effects of thermal aging on moisture 
equilibrium curves for mineral oil–paper 
insulation and proposal of a new paper–
oil insulation system more resistant to 
aging. 

Analysis: effects of moisture distribution 
based on the absorption capacity of oil 
and paper and the degree of 
polymerization. 

[74] 
The moisture variation in oil and solid 
insulation during thermal aging for three 
types of papers. 

Oil properties analyzed: temperature and 
moisture. Analysis: saturated solubility 
and breakdown of molecular chains. 

[75] 
An analysis of moisture dynamics in 
transformers insulated with natural 
esters. 

Oil properties analyzed: temperature and 
moisture 

 

3.3. CHARACTERISTICS AND SUMMARY OF THE SOURCES OF EVIDENCE 

This section presents information about the characteristics and summary of the 

sources of evidence. 

3.3.1. CHARACTERISTICS OF EACH SOURCE OF EVIDENCE 

Table 3.6 shows the reference, subtopic, journal, year, and country of each 

source of evidence and the Figures 3.3 and 3.4 illustrate, respectively, the number of 

articles per year of publication and by country in which the work was developed and/or 

country of origin of the main author. More than half of the articles were published in the 

last 5 years, which confirms the topicality of the topic. 

Table 3.6 – Information from each source of evidence [5]. 

Reference 
Index 

Reference Subtopic Journal Year Country 

[1] Da Silva et al. 2.2.2 Engineering Failure Analysis 2021 Brazil 

[14] 
Abu-Elanien and 
Salama 

2.2.1 
Electric Power Systems 
Research 

2010 Canada 

[15] 

Velasquez-
Contreras, Sanz-
Bobi, and 
Arellano 

2.2.1 
Electric Power Systems 
Research 

2011 Spain 
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Reference 
Index 

Reference Subtopic Journal Year Country 

[16] Soni and Mehta 2.2.1 Engineering Failure Analysis 2021 India 

[17] 
Murugan and 
Ramasamy 

2.2.1 Engineering Failure Analysis 2015 India 

[18] Koziel et al. 2.2.1 Applied Energy 2021 Sweden 

[19] 
Gorginpour, 
Ghimatgar and 
Toulab 

2.2.1 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2022 Iran 

[20] Balanta et al.  2.2.1 Energies 2023 Argentina 

[21] Biçen and Aras  2.2.1 Engineering Failure Analysis 2023 Australia 

[22] Jin et al.  2.2.1 Energies 2022 Australia 

[23] 
Jin, Kim, and 
Abu-Siada  

2.2.1 Engineering Failure Analysis 2023  Turkey 

[24] Soni and Mehta  2.2.2 Engineering Failure Analysis 2022 India 

[25] Wong et al.  2.2.2 Applied Soft Computing 2022 Malaysia 

[26] 
Ma, Saha, and 
Ekanayake  

2.2.2 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2012 Australia 

[27] Guillen et al. 2.2.2 
Electric Power Systems 
Research 

2016 Mexico 

[28] Didouche et al. 2.2.2 
Electric Power Systems 
Research 

2022 Algeria 

[29] 
Sekatane and 
Bokoro 

2.2.2 Energies 2023 South Africa 

[30] 
Beura, Wolters 
and Tenbohlen 

2.2.2 Sensors 2024 Germany 

[31] Liu et al. 2.2.2 Energies 2024 China 

[32] 
Senobari, 
Sadeha and Borsi  

2.2.2 
Electric Power Systems 
Research 

2018 Iran 

[33] Seifi et al.  2.2.2 
International Journal of 
Electrical Power & Energy 
Systems 

2022 Germany 

[34] 
Velásquez and 
Lara  

2.2.2 Engineering Failure Analysis 2018 Peru 

[35] Medina et al.  2.2.2 
Electric Power Systems 
Research 

2022 Argentina 

[36] 
Costa, Silva, and 
Branco 

2.2.2 Energies 2022 Portugal 

[37] Zhou et al. 2.2.2 Energies 2021 China 

[38] Huang et al.  2.2.2 
Reliability Engineering & 
System Safety 

2023 China 

[39] Islam et al.  2.2.2 
Electric Power Systems 
Research 

2023 Bangladesh 

[40] Wang et al. 2.2.2 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2013 China 

[41] 
Velásquez and 
Lara  

2.2.2 Engineering Failure Analysis 2019 Peru 

[42] 
Murugan and 
Ramasamy  

2.2.2 Engineering Failure Analysis 2019 India 
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Reference 
Index 

Reference Subtopic Journal Year Country 

[43] 
Ariannik, Razi-
Kazemi, and 
Lehtonen  

2.2.2 
Reliability Engineering & 
System Safety 

2020 Iran 

[44] Liu et al.  2.2.2 
IEEE Transactions on Power 
Delivery 

2019 China 

[45] Chen et al. 2.2.3 
IEEE Transactions on Power 
Delivery 

2009 China 

[46] 
Abu-Siada and 
Islam  

2.2.3 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2012 Australia 

[47] 
Abu-Siada, 
Hmood, and 
Islam  

2.2.3 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2013 Australia 

[48] 
Cui, Ma, and 
Saha  

2.2.3 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2014 Australia 

[49] 
Tra, Duong, and 
Kim  

2.2.3 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2019 South Korea 

[50] Rajesh et al.  2.2.3 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2023 India 

[51] 
Velásquez and 
Lara  

2.2.3 Engineering Failure Analysis 2018 Peru 

[52] Aizpurua et al.  2.2.3 Applied Soft Computing 2019 Spain 

[53] Bustamante et al.  2.2.3 Sensors 2019 Spain 

[54] Ward et al. 2.2.3 Sensors 2021 Egypt  

[55] Menezes et al.  2.2.3 
IEEE Transactions on Power 
Delivery 

2022 Brazil 

[56] Soni and Mehta  2.2.3 
Electric Power Systems 
Research 

2023 India 

[57] Soni and Mehta  2.2.3 
Electric Power Systems 
Research 

2023 India 

[58] 
Malik, Sharma, 
and Naayagi  

2.2.3 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2023 Singapore 

[59] 
Vrsaljko, 
Haramija, and 
Hadzi-Skerlev  

2.2.3 
Electric Power Systems 
Research 

2012 Croatia  

[60] 
Senoussaoui, 
Brahami, and 
Fofana 

2.2.3 Energies 2021 Algeria 

[61] 
Velásquez and 
Lara  

2.2.4 Engineering Failure Analysis 2018 Peru 

[62] Liu et al.  2.2.4 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2022 China 

[63] Liu et al. 2.2.4 Energies 2017 China 

[64] Zukowski et al. 2.2.4 Energies 2021 Poland 

[65] 
Hernandez and 
Ramirez 

2.2.4 Energies 2022 Mexico 

[66] Vatsa and Hati 2.2.4 
Engineering Applications of 
Artificial Intelligence 

2024 India 



 

 

 

 

 

40 

Reference 
Index 

Reference Subtopic Journal Year Country 

[67] 
Singh, Sood, and 
Verma  

2.2.4 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2012 India 

[68] Arsad et al.  2.2.4 Energies 2023 Malaysia 

[69] Przybylek  2.2.4 Energies 2022 Poland 

[70] 
Koch, Tenbohlen, 
and Stirl 

2.2.4 
IEEE Transactions on Power 
Delivery 

2010 Germany 

[71] Medina et al. 2.2.4 
Electric Power Systems 
Research 

2017 Ecuador  

[72] Suleiman et al. 2.2.4 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2014 Malaysia 

[73] Liao et al. 2.2.4 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2015 China 

[74] Tu et al. 2.2.4 
IEEE Transactions on 
Dielectrics and Electrical 
Insulation 

2016 China 

[75] 
Villarroela, 
Burgos, and 
García 

2.2.4 
International Journal of 
Electrical Power & Energy 
Systems 

2021 
 United 

Kingdom 

 

 

 

Figure 3.3 – Number of articles per year of publication. 
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Figure 3.4 – Number of articles per country. 

3.3.2. SUMMARY OF THE SOURCES OF EVIDENCE 

Articles [14], [15], [16], [17], [18], [19], [20], [21], [22], [23] addressed the 

importance of effective asset management for power transformers, focusing on 

monitoring techniques, condition assessments, and maintenance optimization. Models 

and methodologies were proposed to enhance reliability, reduce maintenance costs, 

and predict failures. Furthermore, there is a consensus on the importance of integrating 

diagnostic algorithms, monitoring techniques, and AI for fault prediction, with an 

emphasis on DGA and HI assessments. 

Articles [1], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], 

[37], [38], [39], [40], [41], [42], [43], [44] addressed a variety of methodologies and 

techniques for diagnosing faults and estimating the lifespan of power transformers. 

The authors highlighted the importance of DGA, PDs, statistical learning, online and 

offline diagnostic methods, lifespan models, and continuous monitoring techniques. 

Additionally, they emphasized the need for more accurate and efficient methods to 

ensure the reliability and operational safety of transformers, contributing to the 

optimization of maintenance strategies and the extension of the lifespan of this 

essential piece of equipment for power supply. 
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Articles [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], 

[59], [60] discussed the techniques and methodologies used for diagnosing faults in 

power transformers, with an emphasis on insulating oil analysis and a particular focus 

on dissolved gases.  The approaches included the use of statistical methods, AI 

techniques such as neural networks and Fuzzy logic, and physicochemical analyses. 

There is a search to find more effective and accurate methods, often combining 

multiple techniques to enhance result reliability. 

Articles [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], 

[75] addressed the issue of moisture in power transformers, exploring different aspects 

related to its impact on the performance and integrity of insulation systems. The 

authors discussed methods for assessing moisture, the effects of thermal aging on 

insulating materials, the influence of moisture on the properties of insulating oils, and 

sustainable alternatives to traditional mineral oils. Additionally, there is an emphasis 

on the importance of the early detection and monitoring of moisture, highlighting the 

need for precise and efficient techniques to ensure the safe and reliable operation of 

transformers. 

3.4. DISCUSSIONS 

This section presents the main limitations and conclusions of this scoping review. 

3.4.1. LIMITATIONS 

For this research, no specific systematic literature review tool was used. The 

search was carried out directly and only in the databases of Elsevier, IEEE, and MDPI.  

With the aim of mapping publications subjected to rigorous reviews, in this scoping 

review only journals classified as Qualis CAPES Engineering IV A1 and A2 were 

selected. Furthermore, a detailed description of each of the methods researched is not 

presented. 

3.4.2. CONCLUSIONS 

This scope review aimed to base the development of an original methodology 

to assist in asset management of power transformers. To this end, recent works 

published in twenty-five countries around the world were evaluated. 



 

 

 

 

 

43 

Asset management covers the entire life cycle of the equipment. The Operation 

and Maintenance stage, the largest part of the asset's useful life, includes Maintenance 

Management, which includes preventive, corrective and predictive maintenance. Figure 

3.5 represents the hierarchical relationship between the asset management and the 

types of maintenance. 

 

Figure 3.5 – Hierarchical relationship between the asset management and the types of      
maintenance [5]. 

One of the key research results is the finding that the data analysis 

methodologies related to identifying failures and aiding decision-making can add value 

to asset management, especially considering the aging of the transmission sector's 

infrastructure, the impracticality of replacing all depreciated assets from a regulatory 

perspective, the challenges posed by the system, including support for energy 

transition, and developments and advances in relation to smart grids. 

Another important research result is the finding of the opportunity and 

importance of developing algorithms related to the evaluation of transformer insulating 

oil. This knowledge still largely depends on assessments by experts. The analysis of 

the physical–chemical results of the oil is an important line of research. 

This research also found the importance of applying statistical tools prior to the 

application of AI algorithms. With the possibility of using diverse data from 
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transformers, the prioritization of variables prior to applying predictive models can 

result in better performance. 

As a future development trend, the application of data analysis tools and 

algorithms that contribute to a better evaluation of equipment stands out. Failure 

analysis, evaluation of maintenance data, equipment operating data and continuous 

online monitoring are important for the development of methodologies for diagnosis, 

prognosis of assets and estimation of their useful life. Figure 3.6 represents the 

hierarchy between these subjects. 

 

Figure 3.6 – Hierarchical relationship between the predictive maintenance and the data analysis 
methodologies [5]. 
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4. METHODOLOGY 

The proposed methodology aims to add value to the direction of maintenance 

investments in power transformers and reactors. It is a data analysis applied to mitigate 

the assumed risk given the scenario of aging infrastructure in the energy transmission 

sector and the impracticality of replacing all depreciated assets from a regulatory 

perspective. 

The analyses presented in this thesis use the following technical information of 

the equipment as input data: voltage class, installation region (Regional), criticality, 

type, and age of transformers and reactors. The proposed methodology involves 

evaluating the predictive importance of each input categorical variable on the binary 

output – moisture below or above standardized values – in other words, how much 

each piece of information should be prioritized for an assessment of maintenance 

action direction. 

Figure 4.1 illustrates the flowchart of the proposed analysis methodology, which 

includes the collection and evaluation of equipment data and dielectric related tests, 

descriptive analysis of the data, and application of statistical metrics to assess the 

predictive importance of the variables.  
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Figure 4.1 – Flowchart of the proposed methodology [6]. 

It is important to highlight that the information used as inputs for the proposed 

method consists of asset registration data, simple data that is available for all 

equipment, meaning no additional investment is required for the application of the 

methodology. 
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The following subsections describe the case study using such metrics in 

prioritizing maintenance actions in power transformers and the application of these 

metrics in different areas. 

4.1. CASE STUDY OF APPLYING WOE AND IV TO ASSIST IN ASSET MANAGEMENT OF 

POWER TRANSFORMERS AND REACTORS 

This item presents the application of WoE and IV to assist in prioritizing 

maintenance actions in power transformers. Due to their similarity, reactors are also 

evaluated. As far as author’s knowledge, such metrics have not been applied for this 

purpose, which ensures the originality of the presented work.  

The method was applied in the ISA CTEEP park, electrical energy transmission 

company in Brazil, responsible for approximately 95% of the energy transmitted in the 

state of São Paulo and about 30% of all energy in Brazil. Therefore, the variable values 

are according to the park in question. However, it should be noted that the 

characteristics are general registration for all power transformer and reactor. 

4.1.1. VARIABLES AND THEIR RESPECTIVE CATEGORIES 

The variables and their respective categories considered in the methodology will 

be presented below. 

4.1.1.1. VOLTAGE CLASS 

The Brazilian Electricity Regulatory Agency (Agência Nacional de Energia 

Elétrica – ANEEL) establishes criteria for the composition of the Basic Grid (Rede 

Básica – RB) and Other Transmission Installations (Demais Instalações de 

Transmissão – DIT), according to the voltage class. The RB includes transmission 

installations with voltage equal to or greater than 230 kV.  

In this work, power transformers from the RB and DITs will be considered. As 

for the reactors in the ISA CTEEP park, they are installed in the RB due to the need 

for reactive compensation. Table 4.1 shows the voltage class ranges according to 

ABNT NBR 10576:2017 [8] and the respective voltage classes considered in each 

range in this work. 
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Table 4.1 – Ranges according to ABNT NBR 10576:2017 [8] and associated voltage classes [6]. 

Voltage class range (kV) Voltage class (kV) 

≤ 72.5 

22 kV 

34.5 kV 

69 kV 

> 72.5 and ≤ 145 
88 kV 

138 kV 

> 145 

230 kV 

345 kV 

440 kV 

500 kV 

4.1.1.2. INSTALLATION REGION (REGIONAL) 

The installation region variable, referred to as Regional, is classified as follows: 

Bauru (TB), Cabreúva (TC), São Paulo (TS), Taubaté (TT), and National Expansion 

(TE). The Bauru, Cabreúva, São Paulo, and Taubaté Regionals belong to the state of 

São Paulo, while the installations of the National Expansion Regional represent ISA 

CTEEP assets outside the state of São Paulo. Each of the Regionals has specificities 

that influence maintenance actions, such as climate, served loads, and logistics for 

service. Figure 4.2 illustrates the areas covered by each of the Regionals. 

 
(a)                                                                                           (b) 

Figure 4.2 – Representation of the areas of the Regionals (a) Bauru, Cabreúva, São Paulo, Taubaté 
and (b) National Expansion [6]. 
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4.1.1.3. CRITICALITY 

According to the internal procedure of the concessionaire, the qualification of 

criticality takes into account five impacts: 1) Safety Impact; 2) Systemic Impact; 3) 

Environmental Impact; 4) Financial Impact; and 5) Image Impact. This involves an 

assessment of the potential consequences associated with the occurrence of a failure, 

considering these five aspects. 

The Safety Impact measures the risk of exposure to individuals, taking into 

account the duration of people in the energized area and surroundings of the facilities, 

whether in preventive maintenance, corrective maintenance, outages, or failures. The 

level of exposure is measured through the frequency of attendance according to each 

locality. The risk of explosion is demonstrated on a scale according to the bay 

characterization. 

The Systemic Impact considers: a) Busbars, bays, and circuit breakers of the 

General Module; b) Topology; c) Difficulty of release; d) Strategic installation; e) Annual 

planning of electrical operation. The Environmental Impact considers: a) Oil 

containment system; b) PCB content; c) SF6 gas volume. 

The Financial Impact evaluates: a) Penalty cost; b) Replacement/repair cost; c) 

Attendance difficulty. And the Image Impact is valued through the perception factor by 

the distribution companies. 

In accordance with the above considerations, a value from 0 to 5 is assigned to 

each of the five impacts. 

Equation (3) represents the criticality model, with its respective weights, 

evaluated by bay, where CQ corresponds to the criticality qualification, ISa to the Safety 

Impact, IS to the Systemic Impact, IE to the Environmental Impact, IF to the Financial 

Impact, and II to the Image Impact.  

The model is specific to ISA CTEEP, however the criticality of assets is an 

assessment carried out by all energy transmission companies. 

𝐶𝑄 = 0.31 ∗ 𝐼𝑆𝑎 + 0.21 ∗ 𝐼𝑆 + 0.20 ∗ 𝐼𝐸 + 0.14 ∗ 𝐼𝐹 + 0.14 ∗ 𝐼𝐼                       (3) 

The final qualification is represented by A, B, and C, as shown in Table 4.2. 

Table 4.2 – Conversion of the score into qualitative classification [6]. 

Criticality Qualification Criticality Description 

≥ 3 A High criticality 
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Criticality Qualification Criticality Description 

< 3 e ≥ 2 B Medium criticality 

< 2 C Low criticality 

 

Table 4.3 shows, as an example, the calculation of CQ and their corresponding 

values of the parameters for three transformers. 

 

Table 4.3 – Example of calculation of CQ and their corresponding values of the parameters [6]. 

Impacts Weights TR1 138 kV TB TR2 88 kV TC TR3 69 kV TE 

ISa  0.31 5.00 4.25 3.50 

IS 0.21 3.12 3.61 0.39 

IE  0.20 2.67 1.00 1.00 

IF  0.14 1.40 3.50 2.00 

II 0.14 2.00 0.00 2.00 

CQ 3.21 2.77 1.93 

Criticality A B C 

 

4.1.1.4. TYPE 

The equipment will be classified by type as follows: power transformers, power 

autotransformers, and reactors, represented respectively by the abbreviations EQU-

TRAFOP, EQU-AUTOTR and EQU-REACTO. 

The windings of transformers with two or three windings are commonly referred 

to as primary, secondary, and tertiary windings. There are transformers that have only 

one winding, meaning the primary winding is connected to the secondary winding, so 

there is no insulation between them. These transformers are called autotransformers. 

In autotransformers, the primary and secondary windings are in contact. Each winding 

has at least three outputs, where electrical connections are made [76]. 

In view of the above, the Type variable takes into account structural differences 

regarding windings, considering the categories of transformers and autotransformers. 

In the case of reactors, the difference already involves the systemic function of the 

equipment. The methodology foresees the analysis of reactors based on their 

structural and testing similarity with transformers. 

Throughout the text, except when referring to the Type variable, transformers 

and autotransformers are referred to as power transformers (or simply transformers). 
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4.1.1.5. AGE 

According to the Asset Control Manual of the Electric Sector (Manual de 

Controle Patrimonial do Setor Elétrico – MCPSE) [77] developed by ANEEL, the 

regulatory service life, compatible with the depreciation period, of transformers is 35 

years.  

To consider this variable as categorical, four age ranges were considered: 

equipment up to 17 years old; between 17 and 35 years old; between 35 and 45 years 

old and from 45 years old. 

The equipment's age at the time of the sample was taken into account, in other 

words, to calculate the equipment's age, the year the oil sample was analyzed is 

subtracted from the year the equipment was built. 

4.1.1.6. MOISTURE IN THE OIL 

As presented in item 3.2.2, moisture is an important variable for the evaluation 

of the oil in power transformers and reactors. The water content is one of the properties 

assessed in the physicochemical tests of the oil and is passable to corrective action. 

The water samples presented in this study were measured in ppm and are 

considered as the output variable with binary valuation, that is, moisture below or above 

standardized values, according to the voltage class, as shown in Table 2.1. 

4.1.1.7. SUMMARY OF THE VARIABLES AND CATEGORIES 

The summary of the variables and categories considered in the analyses is shown 

in Table 4.4. Ranges were considered for the variables voltage class and age, and binary 

valuation was used for the output variable moisture in the oil. 

Table 4.4 – Summary of the variables and categories considered in the analyses. 

Variables Categories 

Voltage class range 

≤ 72.5 kV 

> 72.5 kV and ≤ 145 kV 

> 145 kV 

Installation region 
(Regional) 

TT 

TS 

TE 

TC 
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Variables Categories 

TB 

Criticality 

A 

B 

C 

Type 

EQU-TRAFOP 

EQU-AUTOTR 

EQU-REACTO 

Age range  

≤ 17 years 

> 17 years and < 35 years 

≥ 35 years and ≤ 45 years 

> 45 years 

Moisture in the oil 
≤ parameter 

> parameter 

4.1.2. PERFORMANCE OF CATEGORIES AND PREDICTIVE IMPORTANCE OF VARIABLES 

The proposed methodology was applied to a dataset consisting of 795 assets 

and nearly 10 thousand oil samples. Data processing and analysis were performed 

using Python, utilizing the Pandas and Matplotlib libraries. The Jupyter Lab interface 

was used for development. A data frame, named df, was created with the data. Figure 

4.3 shows the information from the df, followed by the listing of the registration data of 

the assets and the data related to the oil tests. 

 
Figure 4.3 – Information from the df. 

 

Registration data of the asset: 
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▪ id_equ: asset identification number; 

▪ description_equ: asset description; 

▪ criticality_equ: asset criticality; 

▪ voltage_class: asset voltage class; 

▪ type_equ: asset type; 

▪ regional: asset installation region; 

▪ year_construction: asset construction year. 

 

Data related to the oil tests: 

▪ date_analysis: date of oil analysis; 

▪ water_content: water content in oil; 

▪ maximum_parameter: maximum water content parameter, in accordance with 

ABNT NBR 10576:2017 [8]. 

 

Figure 4.4 shows the first and last lines of the df. 

 
Figure 4.4 – df with asset registration data and oil moisture test data. 

 

Based on moisture values (water_content) and parameters 

(maximum_parameter), the status_moisture was created as a binary valuation for the 

moisture output. Additionally, the data frame df_above was created containing the 

samples above the standardized values.  

Table 4.5 presents the sample and equipment values. Out of the total samples 

(9733), 8.26% (804 samples) are above the parameters and 91.74% (8929 samples) 



 

 

 

 

 

54 

are below the parameters; 23.90% of the assets (190 assets) have at least one sample 

with moisture above the threshold, while 76.10% (605 assets) do not have any sample 

above the parameters. 

Table 4.5 – Quantity of samples and equipment [6]. 

Data frame Quantity of samples Quantity of equipments 

df 9733 795 

df_above 804 190 

 

No specific methodology was used to identify inaccuracies. The missing of data 

for certain equipment was noted, and these samples were excluded from the sample 

universe. With the exception of these samples discarded due to missing data, the entire 

database provided by the power transmission company was considered, based on the 

hypothesis of data quality, since these are accepted by the company, which has its 

processes standardized by standards. 

From a statistical point of view, the samples should represent the dataset in a 

meaningful way. 

The good and bad samples shown in Equations (1) and (2) are related to the oil 

moisture status in Table 4.6. The good sample is the one in which the moisture content 

value is below the established limit (Table 2.1) and the bad sample is the sample in 

which the moisture content value is above the established limit (Table 2.1). Event 

represents a bad sample, that is, event is a sample which the moisture content value 

is above the established limit, and non-event represents a good sample, that is, non-

event is a sample which the moisture content value is below the established limit. The 

df_above is a data frame consisting of event data, in other words, data from bad 

samples.  

Table 4.6 – Status of oil moisture samples [6]. 

Oil moisture status 

Above parameter 1 Bad sample Event 

Below parameter 0 Good sample Non-event 

 

Using Equations (1) and (2), the WoE of each category and the IV of the 

variables were calculated. The results are presented in Table 4.7 and will be discussed 

in Chapter 5. 
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Table 4.7 – WoE of the categories and IV of the variables [6]. 

Variables Categories Total Event 
Non-
event 

% 
Event 

% Non-
event 

WoE 
% Event 
- %Non-

event 
IV 

Voltage 
class 
range 

≤ 72.5 kV 309 9 300 1.12% 3.36% -1.099 -2.24% 0.025 

> 72.5 kV and 
≤ 145 kV 

1536 34 1502 4.23% 16.82% -1.381 -12.59% 0.174 

> 145 kV 7888 761 7127 94.65% 79.82% 0.170 14.83% 0.025 

Voltage class range 0.224 

Installation 
region 

(Regional) 

TT 1781 93 1688 11.57% 18.90% -0.491 -7.34% 0.036 

TS 2865 440 2425 54.73% 27.16% 0.701 27.57% 0.193 

TE 144 3 141 0.37% 1.58% -1.443 -1.21% 0.017 

TC 2484 128 2356 15.92% 26.39% -0.505 -10.47% 0.053 

TB 2459 140 2319 17.41% 25.97% -0.400 -8.56% 0.034 

Installation region (Regional) 0.334 

Criticality 

A 2130 255 1875 31.72% 21.00% 0.412 10.72% 0.044 

B 5578 514 5064 63.93% 56.71% 0.120 7.22% 0.009 

C 2025 35 1990 4.35% 22.29% -1.633 -17.93% 0.293 

Criticality 0.346 

Type 

EQU-TRAFOP 7011 587 6424 73.01% 71.95% 0.015 1.06% 0.000 

EQU-AUTOTR 1065 43 1022 5.35% 11.45% -0.761 -6.10% 0.046 

EQU-REACTO 1657 174 1483 21.64% 16.61% 0.265 5.03% 0.013 

Type 0.060 

Age range 

≤ 17 years 3078 40 3038 4.98% 34.02% -1.923 -29.05% 0.558 

> 17 years and 
< 35 years 

2957 138 2819 17.16% 31.57% -0.609 -14.41% 0.088 

≥ 35 years and 
≤ 45 years 

2515 416 2099 51.74% 23.51% 0.789 28.23% 0.223 

> 45 years 1183 210 973 26.12% 10.90% 0.874 15.22% 0.133 

Age range 1.002 

  9733 804 8929   

4.2. COMPARATIVE ANALYSIS OF THE APPLICATION OF THE WOE AND IV METRICS IN 

PREDICTIVE MODELS OF DIFFERENT AREAS 

Below are presented applications of the WoE and IV metrics in predictive 

models from different areas. 

Zhou et al [78], Alsabhan et al [79], Miao et al [80], Niu et al [81], Yang et al [82], 

Zhang et al [83], Wang, Kang and Wang [84], Apu et al [85], Bhandari, Dhakal and 

Tsou [86], and Li et al [87] present methods to predict geological landslide risks, a 

problem that involves several variables and mainly affects mountainous areas, using 

IV. The metric is used to determine the predictive power of landslide-causing factors, 

and the prediction models categorize the levels of zones susceptible to landslides. 
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Zhou et al [78], Miao et al [80], Niu et al [81], Zhang et al [83], Wang, Kang and 

Wang [84], Li et al [87], and Yang et al [82] present cases from regions in China: the 

Three Gorges Reservoir region, in Hubei Province [78], [80], Shaanxi province, in the 

South [81], Sichuan province in the Southwest [83], Jiaxian County in Shaanxi province 

on the Loess Plateau [84], Taihe in the northwest of Anhui province [87], and the 

Western Tibetan Plateau [82]. 

Alsabhan et al [79] and Bhandari, Dhakal and Tsou [86] present cases from the 

Himalayan region – Himachal Pradesh, India [79] and Nepal [86] – and Apu et al [85] 

present a case from Khagrachari, Bangladesh. 

Variables such as slope [79], [81], [83], [85], [87], elevation [79], [83], vegetation 

[79], [83], [85], [87], soil type [79], [81], aspect [79], [83], curvature [79], [83], [87], 

precipitation [83], soil moisture [85], and relief [81], [85] are used in the studies. 

In addition to IV, the following methods are also used to develop the models: 

Frequency Ratio (FR) [79], [85], [86], Neural Networks [78], [80], [87], SVM [78], [80], 

Logistic Regression [78], [83], Random Forest [80], Decision Tree [83], and Kernel 

Extreme Learning Machine [84]. 

In the cases presented above [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], 

the application of the WoE and IV metrics aided in the formulation of strategies for 

preventing and controlling landslide-related disasters. 

Ghasemzadeh et al [88] present a geochemical model aimed at mineral 

exploration and use IV to quantify the importance of geochemical anomaly classes 

relative to mineral deposits. The proposed model makes geochemical data relevant 

information for mineral exploration strategies, standing out compared to models 

generated by Fuzzy operators. The authors state that the use of this statistical metric 

reveals spatial patterns of geochemical signals around mineral deposits, facilitating the 

exploration of undiscovered locations. The methodology was applied to a dataset from 

the Kerman province in Iran. 

Zhao, Yuan, and Chen [11] propose a model for managing air traffic flow and 

use IV to select and weigh relevant variables for prediction, such as air traffic delay at 

the departure airport and estimated flow at the first passing point. The authors 

implemented the method using SVM and Particle Swarm Optimization (PSO). The 

prediction accuracy of the IV-PSO-SVM model reached 96.4%, surpassing SVM and 

PSO-SVM by 13.5% and 9.1%, respectively, demonstrating that IV contributed to 
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selecting more relevant features for the desired prediction, which reflected in the 

model's forecast. The methodology was validated with data from airports and air 

passing points in China. 

Addis [89] proposes a study to map flood susceptibility in the Abay River basin 

in Ethiopia using the FR and IV metrics to identify flood-prone areas. The model initially 

predicted twelve flood conditioning factors, including slope, elevation, aspect, land use, 

curvature, distance from roads, distance from rivers, precipitation, lithology, and soil 

texture. The conditioning factors were integrated with training data to determine 

weights using both models, and susceptibility maps were reclassified into classes 

ranging from very low to very high. The FR and IV models proved effective in mapping 

flood susceptibility, and the resulting maps can be valuable for flood planning and 

mitigation decisions by local government. 
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5. RESULTS AND DISCUSSIONS 

The IV values of the variables are graphically represented in Figure 5.1. 

 
Figure 5.1 – IV of the variables. 

The age range variable presented IV > 0.50. The IV was calculated for different 

category ranges of this variable and in all cases the result was greater than 0.5. In this 

case, as shown in Table 2.4 [11], one must consider the authenticity of the variable. 

According to the ABNT NBR 10576:2017 [8], the main sources of moisture increase in 

transformer oil are atmospheric moisture ingress and solid insulation degradation. The 

age of assets influences both. Therefore, it is considered authentic and has strong 

predictive power. 

Table 5.1 describes the predictive values of the variables according to the IV 

value. 

Table 5.1 – Predictive value of the variables according to the IV. 

Variables Predictive value according to the IV 

Age range Strong 

Criticality Strong 

Installation region (Regional) Strong 

Voltage class range Medium 

Type Weak 

 

With the aim of prioritizing variables with the greatest impact on investment 

decisions for maintenance actions and determining the most significant variables for a 

predictive model, variables with weak and medium predictive value were disregarded.  

Table 5.2 presents the main information resulting from the analyses presented 

in this thesis: variables to be prioritized, and order of prioritization, in the evaluation of 

investments in maintenance, considering the moisture in the oil of power transformers 

and reactors, and which must be considered in a predictive model. 
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Table 5.2 – Variables to be prioritized in maintenance investment evaluation and which must be 
considered in a predictive model. 

N Variables 

1 Age range 

2 Criticality 

3 Installation region (Regional) 

 
The proposed methodology indicated the variables of age, criticality, and 

Regional as having the greatest predictive power. The degradation of solid insulation 

and the deterioration of the sealing are directly related to the age of transformers. 

Regional refers to the equipment's installation location, thus influenced by climate 

factors such as weather, temperature, and humidity. Criticality encompasses systemic 

impact as one of the qualifying factors. Systemic position is directly linked to 

operational conditions, such as load and operating cycles. In addition, the Regional 

variable also takes into account human aspects, management, processes, and people. 

The way maintenance is performed and the individuals carrying it out can also 

influence the moisture content in the oil.  

The degradation of solid insulation and the deterioration of the sealing in 

transformers and reactors significantly impact the water content in the oil. As the 

insulation of paper degrades, it releases moisture into the oil. Additionally, the 

deteriorated sealing loses efficiency, allowing moisture from the air to enter. 

Regarding climate conditions, the ambient temperature influences the oil's 

ability to retain water. Heat causes the paper’s ability to hold water to decrease, and 

the moisture present in the transformer’s solid insulation migrates to the oil, increasing 

the oil's capacity to retain water in solution. Thus, during periods of high temperatures 

or in warm climates, the oil's moisture content may increase. On the other hand, low 

temperatures reduce the oil’s ability to hold dissolved moisture, which can result in the 

formation of free water (water droplets) in the oil. Water is, therefore, highly detrimental 

to the dielectric. 

The relative humidity of the air is another climate factor that influences moisture 

in transformer oil. High air humidity can increase moisture in the oil. Transformers 

exposed to humid air, especially if there are sealing system failures, may allow ambient 

moisture to infiltrate the oil over time. 

In relation to operating conditions, high loads increase the transformer’s 



 

 

 

 

 

60 

operating temperature, which also brings about the aforementioned thermal effect. 

Load and unload cycles (turning the transformer on and off or fluctuations in the load), 

in turn, cause periodic temperature changes in the transformer. This cyclical process 

of moisture absorption and release over time can increase the oil’s moisture content. 

Therefore, it is concluded that the results obtained through IV are consistent. 

Regarding the WoE values, as described in item 4.1, a positive value indicates 

that the category increases the probability of the event occurring, while a negative 

value implies that the category decreases the probability of the event. In this case, the 

event refers to the sample having a moisture content above the parameters. In 

summary, the higher the WoE value, the greater the weight of evidence for samples 

exceeding the parameters. 

Figures 5.2, 5.3, and 5.4 graphically show the WoE values for each category of 

the variables with strong predictive power (highlighted in Table 5.2): age range, 

criticality, and Regional, respectively. 

 

Figure 5.2 – WoE values of the age range variable. 

 

Figure 5.3 – WoE values of the criticality variable. 
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Figure 5.4 – WoE values of the Regional variable. 

The categories over 35 years old show positive WoE values, meaning that, 

based on this dataset, assets with expired regulatory useful life tend to have more 

samples with moisture content in the oil above the parameters. 

Regarding the criticality variable, categories A and B have positive WoE values, 

with category A holding the greatest weight of evidence for events. For the Regional 

variable, only the TS Regional shows positive WoE values. 

The categories with the highest weight of the variables with the strong predictive 

power are related, that is, the older equipment is located in the TS Regional and 

represents the most critical assets responsible for transmitting electrical energy to the 

city of São Paulo and its metropolitan area. On the other hand, the categories with the 

lowest weight of these variables are from the newer assets (in the age range younger 

than 17 years), with lower criticality, and from the TE Regional. The concessions 

outside the state of São Paulo, from the TE Regional, are new installations acquired 

through transmission auctions, representing the newest assets of the Company. 

Therefore, it is concluded that the results obtained through WoE are consistent. 

To obtain an initial understanding of the data and identify patterns, trends and 

possible correlations, a preliminary descriptive analysis of the data was carried out. 

The main results are presented in the APPENDIX. It is worth highlighting that, through 

this preliminary analysis, it was possible to identify the initial patterns, however it was 

not possible to identify the variables with greater predictive power, an objective 

achieved with the use of WoE and IV metrics. 
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6. CONCLUSIONS 

It is concluded that the methodology using the WoE and IV metrics arrived at 

consistent results, considering factors that significantly influence the water content in 

the oil. 

The online treatment of oil, or in other words, treatment while the equipment is 

in operation, or the replacement of the oil load are the possible corrective actions, 

considering the water content in the oil, applied according to the parameters shown in 

Table 2.1. This prioritization is currently carried out at ISA CTEEP considering the tacit 

knowledge of experts. The acquisition cost of machines that perform online treatment 

is high, and for the installation of the machine or replacement of the oil, it is necessary 

to schedule the shutdown of the transformer or reactor, which incurs penalties for 

unavailability. Moreover, corrective activities, whether online treatment or oil 

replacement, involve aspects of safety and the environment. 

Information on which data should be prioritized also helps guide investments in 

preventive actions. Acting preventively, in turn, aims to minimize occurrences and 

failures, and consequently, the need for corrective actions that cause significant 

impacts. Through data analysis, the proposed methodology reveals trends and, in this 

way, provides information for decision-making, which minimizes corrective actions on 

the overall system. 

Therefore, from the perspective of applying the methodology to issues in the 

electrical sector, the analysis of the predictive importance of the variables to be 

evaluated constitutes an important contribution, especially considering large 

equipment parks, for directing preventive actions, in order to assess which categories 

should be prioritized in investment analysis. 

The existing maintenance practices in the Brazilian power transmission sector 

are, for the most part, periodic preventive maintenance, that is, time based preventive 

maintenance, and corrective maintenance. The proposed methodology helps 

determine preventive maintenance based on the condition of transformers, and it can 

also guide adjustments to the frequency of periodic preventive maintenance. 

From the perspective of added value through the innovative application of data 

analysis tools, assessing the predictive importance of a variable relative to the output 

before developing predictors can lead to better performing models. 
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An example of a possible application of the proposed methodology is in guiding 

investments in continuous online monitoring of transformers. Installing monitoring 

systems throughout the entire operating park is not feasible; therefore, an analysis 

should be conducted to prioritize this investment. The proposed approach directs 

which variables should be prioritized in this analysis and the category of the selected 

variables with the highest weight of evidence. 

Figure 6.1 illustrates a real case in the ISA CTEEP park of installation a 

continuous online oil monitoring system on a 39-year-old transformer, with criticality A, 

located in the TS Regional, the variables and categories indicated by the proposed 

methodology using IV and WoE metrics.  

 
(a)                                                                               (b) 

Figure 6.1 – Real case of (a) continuous online oil monitoring system installed on a (b) power 
transformer in operation, installed in an ISA CTEEP substation. 

 
Therefore, the company's actions are aligning with the results of the 

methodology, indicating that there is potential for implementation. 

The following presents the publications and possibilities for future work. 

6.1. PUBLICATIONS 

The scoping review carried out which was the basis for the original contribution 

of this thesis was published in the article "Emerging Trends in Power Transformer 
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Maintenance and Diagnostics: A Scoping Review of Asset Management 

Methodologies, Condition Assessment Techniques, and Oil Analysis" [5] in IEEE 

Access, as illustrated in Figure 6.2. 

 
Figure 6.2 – Article with the scope review of the thesis published in IEEE Access [5]. 

The methodology and results of the thesis are presented in the article “Data 

analysis methodology utilizing the statistical metrics Weight of Evidence (WoE) and 

Information Value (IV) to assist in asset management of power transformers” published 

in IEEE Access, as illustrated in Figure 6.3. 

 

Figure 6.3 – Article with the methodology and results of the thesis published in IEEE Access [6]. 
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Table 6.1 shows the articles published, accepted and submitted at congresses, 

during the doctorate, linked to failure analysis techniques and assessment of the 

condition of power transformers. 

Table 6.1 – Articles published, accepted and submitted at congresses. 

N Article title Congress 
Article 
status 

Congress 
location 

Month 
and year 

Authorship 

1 
Black-Box Modeling of 
Power Transformers at 
High Frequencies 

International 
Conference on 
Power Systems 

Transients 
(IPST) 

Published 
Perpignan, 

França 
June, 2019 Main author 

2 

Modelagem do 
Transformador de 
Potência em Altas 
Frequências através de 
Medições em Campo 

XXV Seminário 
Nacional de 
Produção e 

Transmissão de 
Energia Elétrica 

(SNPTEE) 

Published 
Belo 

Horizonte, 
MG 

November, 
2019 

Main author 

3 

Análise da Interação 
entre Equipamentos de 
Alta Tensão e Eventos 
Transitórios 
Eletromagnéticos de 
Altas Frequências do 
Sistema Elétrico 

XXV Seminário 
Nacional de 
Produção e 

Transmissão de 
Energia Elétrica 

(SNPTEE) 

Published 
Belo 

Horizonte, 
MG 

November, 
2020 

Main author 

4 

Aplicação de 
Tecnologias da 
Indústria 4.0 no 
Monitoramento Online 
de Ativos do Setor 
Elétrico 

36º CBMGA - 
Congresso 

Brasileiro de 
Manutenção e 

Gestão de 
Ativos 

Published Online 
October, 

2021 
Main author 

5 

A técnica de resposta 
em frequência aplicada 
ao diagnóstico de 
falhas e modelagem de 
transformadores 
auxiliando na gestão de 
ativos 

XXVI Seminário 
Nacional de 
Produção e 

Transmissão de 
Energia Elétrica 

(SNPTEE) 

Published 
Rio de 

Janeiro, RJ 
May, 2022 Main author 

6 

Análise do Estado de 
Transformadores de 
Potência a partir do 
Monitoramento Online 
da Condição Operativa 

X WORKSPOT- 
10° Workshop 
Internacional 

sobre 
Transformadore
s de Potência, 
Equipamentos, 
Subestações e 

Materiais 

Published 
Foz do 

Iguaçu, PR 
November, 

2022 
Main author 

7 

Análise sobre a 
priorização da 
manutenção de 
transformadores de 
potência pautada na 
condição e criticidade 
do ativo 

XIX Encontro 
Regional Ibero-
Americano do 

CIGRE (ERIAC) 

Published 
Foz do 

Iguaçu, PR 
May, 2023 Co-author 

8 

Análise dos dados de 
monitoramento da 
condição como 
prevenção de 
ocorrências 

XXVII Seminário 
Nacional de 
Produção e 

Transmissão de 
Energia Elétrica 

(SNPTEE) 

Published Brasília, DF 
November, 

2023 
Co-author 
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N Article title Congress 
Article 
status 

Congress 
location 

Month 
and year 

Authorship 

9 

Avaliação da condição 
de transformadores de 
potência baseado nas 
manutenções 
preventivas e avanços 
em relação ao 
monitoramento online 
contínuo  

XI WORKSPOT- 
11° Workshop 
Internacional 

sobre 
Transformadore
s de Potência, 
Equipamentos, 
Subestações e 

Materiais 

Accepted 
Rio de 

Janeiro, RJ 
November, 

2024 
Main author 

10 

Estruturação de 
arquitetura de rede e 
processos envolvendo 
o monitoramento online 
contínuo e análise da 
condição de ativos da 
ISA CTEEP  

XI WORKSPOT- 
11° Workshop 
Internacional 

sobre 
Transformadore
s de Potência, 
Equipamentos, 
Subestações e 

Materiais 

Accepted 
Rio de 

Janeiro, RJ 
November, 

2024 
Main author 

11 

Metodologia para 
qualificação da 
condição de 
transformadores de 
potência à óleo 
baseado em normas 
técnicas e análise 
estatística de dados 

XXVIII 
Seminário 

Nacional de 
Produção e 

Transmissão de 
Energia Elétrica 

(SNPTEE) 

Submitted Recife, PE 
October, 

2025 
Co-author 

12 

Importância da gestão 
de ativos no setor de 
transmissão de energia 
elétrica: implementação 
da ISO 55.001 na ISA 
CTEEP e os desafios 
da revisão 2024 

XXVIII 
Seminário 

Nacional de 
Produção e 

Transmissão de 
Energia Elétrica 

(SNPTEE) 

Submitted Recife, PE 
October, 

2025 
Co-author 

6.2. POSSIBILITIES FOR FUTURE WORK 

As possibilities for future work highlight the comparison with other variable 

selection methods, which consider predictive power. 

It is also suggested to consider other physical-chemical characteristics of the 

oil, besides moisture content, as, in this way, the maintenance actions to be evaluated 

and prioritized will take into account other properties for evaluating the transformers' 

dielectric. 

In addition to the physical-chemical properties of the oil, operational variables 

of the assets, such as oil and winding temperatures, voltage, and current, can provide 

important information for diagnostics. It is proposed to use data from these variables 

to correlate with the presented variables, as well as failure data of the assets. 

Also noteworthy as a possibility for future work is the development of a 

prediction model aiming to predict the oil sample results regarding moisture content. 
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The predictive model should be designed based on the variables identified as having 

the highest predictive power through the analysis using IV. These variables should be 

used as input variables in the model to predict the occurrence of increased moisture 

content in transformers and reactors oil.  
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APPENDIX – PRELIMINARY DESCRIPTIVE ANALYSIS 

As an initial phase of data exploration, a preliminary descriptive analysis was 

conducted to identify patterns, trends, and possible correlations among variables. 

Scatter plots and contingency tables were used to visualize and understand data 

relationships and distributions. To achieve this, the plot and crosstab commands from 

the Pandas and Matplotlib libraries were used, respectively. Both tools help evaluate 

the relationship between two variables, providing insights into how different categories 

relate to each other. 

Scatter plots 

The scatter plots are shown in Figures A.1 to A.5. Samples exceeding the 

parameter thresholds were plotted for each variable, considering the oil analysis date. 

 

Figure A.1 – Scatter plots classified by voltage class range and considering oil moisture samples 
above the parameters (in ppm). 
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Figure A.2 – Scatter plots classified by Regional and considering oil moisture samples above the 
parameters (in ppm) [5]. 

 

 

Figure A.3 – Scatter plots classified by criticality and considering oil moisture samples above the 
parameters (in ppm). 
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Figure A.4 – Scatter plots classified by type and considering oil moisture samples above the 
parameters (in ppm). 

 

 

Figure A.5 – Scatter plots classified by age range and considering oil moisture samples above the 
parameters (in ppm). 

 

These analyses illustrate the distribution of samples exceeding the parameter 

thresholds for each category of the variables, considering the analysis date. 

For the variables voltage class range and Regional, the categories with the 

highest number of samples above the parameters are, respectively, >145 kV and TS, 

the same categories indicated by the WoE calculation as having the greatest weight of 

evidence. However, for the variables criticality, type, and age range, the categories 
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with the highest number of samples above the parameters are, respectively, B, EQU-

TRAFOP, and 35 ≤ age ≤ 45, which are different from the categories indicated by the 

WoE calculation as having the greatest weight of evidence. 

This is because, according to Equation (1), WoE also considers the total number 

of samples above and below the parameters, not just scalar values, thus considering 

the complete data distribution and providing a more informative analysis. 

Contingency tables 

The contingency table is widely used for categorical data, presenting the 

frequency of occurrences of category combinations for two variables. Given that there 

are five categorical input variables, there are ten possible combinations. Tables A.1 to 

A.10 show the occurrence frequencies of the category combinations in percentage 

values, considering the entire dataset (df) and the dataset of samples above the 

thresholds (df_above). 

Table A.1 – Contingency table relating, in percentage values (%), the voltage class range and 
Regional variables of (a) df and (b) df_above. 

Regional 
TB TC TE TS TT 

Voltage class range 

≤ 72.5 kV 7.39 6.25 0.00 0.00 2.15 

> 72.5 kV and ≤ 145 kV 0.74 1.03 0.00 0.00 1.41 

> 145 kV 17.14 18.25 1.48 29.44 14.74 

(a) 

      
Regional 

TB TC TE TS TT 
Voltage class range 

≤ 72.5 kV 3.23 0.87 0.00 0.00 0.12 

> 72.5 kV and ≤ 145 kV 0.12 1.00 0.00 0.00 0.00 

> 145 kV 14.05 14.05 0.37 54.73 11.44 

(b) 

 

Table A.2 – Contingency table relating, in percentage values (%), the voltage class range and criticality 
variables of (a) df and (b) df_above. 

Criticality 
A B C 

Voltage class range 

≤ 72.5 kV 0.10 6.48 9.20 

> 72.5 kV and ≤ 145 kV 0.00 0.70 2.48 

> 145 kV 21.78 50.13 9.13 

(a) 

    
Criticality 

A B C 
Voltage class range 

≤ 72.5 kV 0.00 1.87 2.36 
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Criticality 
A B C 

Voltage class range 

> 72.5 kV and ≤ 145 kV 0.00 0.25 0.87 

> 145 kV 31.72 61.82 1.12 

(b) 
 

Table A.3 – Contingency table relating, in percentage values (%), the voltage class range and type 
variables of (a) df and (b) df_above. 

Type 
EQU-AUTOTR EQU-REACTO EQU-TRAFOP 

Voltage class range 

≤ 72.5 kV 2.17 0.00 13.61 

> 72.5 kV and ≤ 145 kV 0.00 0.00 3.17 

> 145 kV 8.77 17.02 55.25 

(a) 

    
Type 

EQU-AUTOTR EQU-REACTO EQU-TRAFOP 
Voltage class range 

≤ 72.5 kV 1.37 0.00 2.86 

> 72.5 kV and ≤ 145 kV 0.00 0.00 1.12 

> 145 kV 3.98 21.64 69.03 

(b) 
 

Table A.4 – Contingency table relating, in percentage values (%), the voltage class range and age 
range variables of (a) df and (b) df_above. 

Age range 
≤ 17 years 

> 17 years and 
< 35 years 

≥ 35 years and 
≤ 45 years 

> 45 years 
Voltage class range 

≤ 72.5 kV 0.58 1.00 0.80 0.80 

> 72.5 kV and ≤ 145 kV 2.83 5.30 5.02 2.63 

> 145 kV 28.22 24.08 20.01 8.72 

(a) 

     
Age range 

≤ 17 years 
> 17 years and 

< 35 years 
≥ 35 years and 

≤ 45 years 
> 45 years 

Voltage class range 

≤ 72.5 kV 0.00 0.50 0.50 0.12 

> 72.5 kV and ≤ 145 kV 0.25 1.74 1.87 0.37 

> 145 kV 4.73 14.93 49.38 25.62 

(b) 
 

Table A.5 – Contingency table relating, in percentage values (%), the Regional and criticality variables 
of (a) df and (b) df_above. 

Criticality 
A B C 

Regional 

TB 3.80 16.24 5.22 

TC 1.23 14.54 9.75 

TE 0.00 1.12 0.36 

TS 13.37 14.17 1.90 

TT 3.48 11.24 3.58 

(a) 
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Criticality 
A B C 

Regional 

TB 9.20 6.59 1.62 

TC 0.87 12.69 2.36 

TE 0.00 0.37 0.00 

TS 19.40 35.07 0.25 

TT 2.24 9.20 0.12 

(b) 
 

Table A.6 – Contingency table relating, in percentage values (%), the Regional and type variables of 
(a) df and (b) df_above. 

Type 
EQU-AUTOTR EQU-REACTO EQU-TRAFOP 

Regional 

TB 3.44 7.84 13.98 

TC 3.17 3.04 19.31 

TE 0.23 0.83 0.42 

TS 1.04 3.80 24.60 

TT 3.06 1.51 13.73 

(a) 

    
Criticality 

EQU-AUTOTR EQU-REACTO EQU-TRAFOP 
Regional 

TB 0.75 10.07 6.59 

TC 3.36 5.72 6.84 

TE 0.12 0.25 0.00 

TS 0.37 4.98 49.38 

TT 0.75 0.62 10.20 

(b) 

 
Table A.7 – Contingency table relating, in percentage values (%), the Regional and age range 

variables of (a) df and (b) df_above. 

Age range 
≤ 17 years 

> 17 years and 
< 35 years 

≥ 35 years and 
≤ 45 years 

> 45 years 
Regional 

TB 9.78 6.84 5.95 2.69 

TC 7.83 8.52 6.70 2.48 

TE 1.24 0.03 0.21 0.00 

TS 6.20 10.64 8.92 3.68 

TT 6.58 4.35 4.07 3.31 

(a) 

     
Age range 

≤ 17 years 
> 17 years and 

< 35 years 
≥ 35 years and 

≤ 45 years 
> 45 years 

Regional 

TB 1.00 4.60 9.45 2.36 

TC 1.00 3.36 8.96 2.61 

TE 0.37 0.00 0.00 0.00 

TS 1.49 6.97 29.73 16.54 

TT 1.12 2.24 3.61 4.60 

(b) 
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Table A.8 – Contingency table relating, in percentage values (%), the criticality and type variables of 
(a) df and (b) df_above. 

Type 
EQU-AUTOTR EQU-REACTO EQU-TRAFOP 

Criticality 

A 0.10 5.59 16.19 

B 8.11 9.71 39.49 

C 2.73 1.73 16.35 

(a) 

    
Type 

EQU-AUTOTR EQU-REACTO EQU-TRAFOP 
Criticality 

A 0.00 12.19 19.53 

B 3.86 9.33 50.75 

C 1.49 0.12 2.74 

(b) 
 

Table A.9 – Contingency table relating, in percentage values (%), the criticality and age range 
variables of (a) df and (b) df_above. 

Age range ≤ 17 
years 

> 17 years and 
< 35 years 

≥ 35 years and 
≤ 45 years 

> 45 years 
Criticality 

A 3.86 10.43 6.02 1.57 

B 19.47 14.18 15.71 7.95 

C 8.29 5.77 4.11 2.63 

(a) 

     
Age range ≤ 17 

years 
> 17 years and 

< 35 years 
≥ 35 years and 

≤ 45 years 
> 45 years 

Criticality 

A 0.87 7.09 19.53 4.23 

B 3.36 8.58 30.72 21.27 

C 0.75 1.49 1.49 0.62 

(b) 
  

Table A.10 – Contingency table relating, in percentage values (%), the criticality and age range 
variables of (a) df and (b) df_above. 

Age range 
≤ 17 years 

> 17 years and 
< 35 years 

≥ 35 years and 
≤ 45 years 

> 45 years 
Type 

EQU-AUTOTR 4.39 1.99 2.85 1.72 

EQU-REACTO 6.31 5.53 4.41 0.78 

EQU-TRAFOP 20.93 22.86 18.59 9.66 

(a) 

     
Age range 

≤ 17 years 
> 17 years and 

< 35 years 
≥ 35 years and 

≤ 45 years 
> 45 years 

Type 

EQU-AUTOTR 0.50 0.87 2.36 1.62 

EQU-REACTO 0.50 4.60 14.55 1.99 

EQU-TRAFOP 3.98 11.69 34.83 22.51 

(b) 
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Table A.11 presents the categories with the highest occurrence frequency for 

each combination of variables.  

Table A.11 – Categories with the highest frequency of occurrence for each combination of variables. 

Variables 

Combinations of categories with the highest frequency of 
occurrence 

df df_above 

Voltage class range and 
Regional 

> 145 kV and TS > 145 kV and TS 

Voltage class range and 
criticality 

> 145 kV and B > 145 kV and B 

Voltage class range and type > 145 kV and EQU-TRAFOP > 145 kV and EQU-TRAFOP 

Voltage class range and          
age range 

> 145 kV and ≤ 17 years 
> 145 kV and                               

≥ 35 years and ≤ 45 years 

Regional and criticality TB and B TS and B 

Regional and type TS and EQU-TRAFOP TS and EQU-TRAFOP 

Regional and age range 
TS and > 17 years and < 35 

years 
TS and ≥ 35 years and ≤ 45 

years 

Criticality and type B and EQU-TRAFOP B and EQU-TRAFOP 

Criticality and age range B and ≤ 17 years B and ≥ 35 years and ≤ 45 years 

Type and age range 
EQU-TRAFOP and                        

> 17 years and < 35 years 
EQU-TRAFOP and                             

≥ 35 years and ≤ 45 years 

 
These categories represent the largest number of samples, considering the 

entire dataset (df) and the dataset of samples above the parameters (df_above). 

Based on these analyses, an opportunity was identified to seek contribution 

through metrics that enable a more informative and assertive analysis of the predictive 

power of categorical variables. 


