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Abstract
The emerging mobile communication systems towards an unprecedented evolution in
terms of flexibility, data rate, and latency, enabling wireless networks to support ap-
plications that are typically backed by wired technologies. The next generation of mobile
communication is already being discussed by the scientific community, standardization
institutes, and players in the mobile communication market. The foreseen scenarios are
already beginning to be outlined, anticipating that they might be even harder to achieve
considering the expected increase in flexibility while supporting conflicting requirements
across several applications in different verticals, besides higher data rates, broader cov-
erage, wider frequency bands, and extreme low latency. It is clear that future mobile
networks cannot rely on a single radio access network to meet all these demands. Dif-
ferent approaches are needed to address all requirements, but SM (Spatial Multiplexing)-
MIMO (Multiple-Input Multiple-Output) schemes represent a key technology for most
future wireless systems. SM-MIMO can provide the necessary bandwidth, reducing the
frame duration and increasing the robustness for data with a very short life span. Fur-
thermore, integrating SM-MIMO systems with advanced detection schemes, that leverage
both diversity and multiplexing gains, can substantially boost throughput and extend
coverage area. Usually, MIMO schemes are combined with OFDM (Orthogonal Frequency
Division Multiplexing) to deal with double-dispersive channels, assuming that the channel
coherence time is larger than the duration of the OFDM block and the channel coherence
bandwidth is larger than the subcarrier bandwidth. However, OFDM presents limitations
that could hinder its applications in future mobile systems. High OOB (Out-of-Band)
emissions, low flexibility in terms of parameterization, and low spectral and energy ef-
ficiencies for channels with large delay profiles are some examples of these restrictions.
In this sense, GFDM (Generalized Frequency Division Multiplexing) can be considered a
feasible alternative. However, a challenge arises when considering non-orthogonal MIMO-
GFDM since conventional linear detectors exhibit higher complexity and inferior perfor-
mance compared to MIMO-OFDM systems. Consequently, there is a compelling need
to explore non-conventional detectors that simultaneously reduce complexity while aim-
ing for performance enhancement. For this end, this thesis reviews fundamental concepts
in linear estimation and detection techniques, providing a straightforward algorithmic
description that enables complexity comparison and performance simulation. This work
adapts the low complexity and low latency iterative MMSE (Minimum Mean Squared Er-
ror)-PIC (Parallel Interference Cancelation) introduced in [1], designing and simulating
its performance in a practical 6G (Sixth Generation) transceiver for the eRAC (Enhanced
Remote Area Communications) scenario, a challenging task assuming a non-orthogonal
GFDM waveform. The final results, presented in this work, show that MIMO-GFDM is
an interesting approach to deal with very contrasting and challenging requirements in



mobile networks. As a result, the pragmatic assessment of theoretical concepts, validated
through simulations, is interesting to the scientific community, as it demonstrates the
potential improvements that the adoption of a new technology can achieve. Furthermore,
this work provides a versatile computational model, which is an essential tool and also a
reliable reference for hardware development and performance evaluation.

Key-words: SM-MIMO, linear estimation, detection, interference cancelation, non-ortho-
gonal waveform, GFDM.



Resumo
Os sistemas de comunicação móvel emergentes estão evoluindo de forma sem preceden-
tes em termos de flexibilidade, taxa de dados e latência, permitindo que as redes sem
fio suportem aplicações que normalmente são sustentadas por tecnologias cabeadas. A
próxima geração de comunicação móvel já está sendo discutida pela comunidade cien-
tífica, institutos de padronização e pelos atores do mercado de comunicação móvel. Os
cenários previstos já estão começando a ser delineados, antecipando que podem ser ainda
mais difíceis de alcançar, considerando o aumento esperado na flexibilidade, enquanto
suportam requisitos conflitantes em várias aplicações e em diferentes setores, além de ta-
xas de dados mais altas, maior cobertura, bandas de frequência mais amplas e latência
extremamente baixa. É claro que as futuras redes móveis não podem depender de uma
única rede de acesso sem fio para satisfazer a todas essas demandas. Abordagens dife-
rentes são necessárias para atender a todos os requisitos, mas os esquemas SM-MIMO
representam uma tecnologia chave para a maioria dos futuros sistemas sem fio. O SM-
MIMO pode fornecer a vazão necessária, reduzindo a duração do quadro e aumentando
a robustez para informações com uma vida útil muito curta. Além disso, integrar siste-
mas SM-MIMO com esquemas de detecção avançados, que aproveitam tanto o ganho de
diversidade quanto o de multiplexação, pode aumentar substancialmente a taxa de trans-
ferência e estender a cobertura da rede móvel. Normalmente, os esquemas MIMO são
combinados com OFDM para lidar com canais duplamente dispersivos, assumindo que o
tempo de coerência do canal é maior que a duração do bloco OFDM e a largura de banda
de coerência do canal é maior que a largura de banda de uma subportadora. No entanto,
o OFDM apresenta limitações que podem dificultar suas aplicações em sistemas móveis
futuros. Altas emissões fora da banda, baixa flexibilidade em termos de parametrização e
baixa eficiência espectral e energética para canais com longos perfis de atraso são alguns
exemplos dessas restrições. Nesse sentido, o GFDM pode ser considerado uma alternativa
viável. Entretanto, há um grande desafio ao uso do MIMO GFDM não ortogonal uma vez
que os detectores lineares convencionais apresentam maior complexidade e desempenho
inferior em comparação com os sistemas MIMO OFDM. Como resultado, há uma necessi-
dade premente de explorar detectores não convencionais que reduzam a complexidade ao
mesmo tempo em que buscam melhorias de desempenho. Para esse fim, esta tese revisa
conceitos fundamentais sobre técnicas de estimação linear e detecção, fornecendo uma
descrição algorítmica direta que permite a comparação de complexidade e simulação de
desempenho. Este trabalho adapta o MMSE-PIC iterativo de baixa complexidade e baixa
latência introduzido em [1], projetando e simulando seu desempenho em um transceptor
6G prático para o cenário eRAC, uma tarefa desafiadora assumindo que a forma de onda
GFDM não é ortogonal. Os resultados finais apresentados neste trabalho mostram que o
MIMO-GFDM é uma abordagem interessante para lidar com os requisitos contrastantes e



desafiadores das futuras redes móveis. Logo, a avaliação pragmática de conceitos teóricos,
validada por meio de simulações, é de interesse da comunidade acadêmica, pois demonstra
as potenciais melhorias que a adoção de uma nova tecnologia pode alcançar. Além disso,
esta tese fornece um modelo computacional versátil, uma ferramenta essencial, e também
uma referência confiável, para o desenvolvimento de hardware e avaliação de desempenho.
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Ḡ Extended generic modulation matrix
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1 Introduction

Mobile communications networks have revolutionized the way the society com-
municates and, nowadays, cell phones and smartphones are essential items in modern
routines. A few decades ago, before the advent of mobile cellular networks, we used to
make phone calls directed to places, not towards people. Phone calls were conditioned and
restricted to places once the presence of the intended interlocutor at the called location
was a requirement to establish a conversation. During the 1980s, this reality began to
change with the deployment of the first mobile communication system. Although offering
costly subscription and limited coverage, supporting only voice traffic and based on inse-
cure analog frequency modulation scheme, while employing clumsy and inefficient mobile
devices, the 1G (First Generation) [2] was indeed a disruptive technology, triggering a
revolution in the way we communicate.

In the 90’s, the 2G (Second Generation) [3] increased the system capacity due
to voice digitalization, voice compression and digital communication techniques, which
significantly increased the spectrum and energy efficiencies. Moreover, it introduced a
new text based communication service, named SMS (Short Message Service) [4]. Next,
the 3G (Third Generation) [5] and the 4G (Fourth Generation) [6] were deployed, in
2000 and 2010, respectively. Both of them were developed to provide higher user capacity,
worldwide roaming and support to an increasing demand for mobile broadband Internet
access, this last one being effectively addressed with the consolidation of the 4G [7]. During
the last decade, the scientific community discussed and planned the 5G (Fifth Generation)
[8] to go beyond high data rates and larger user capacity. The 5G was conceived to expand
the mobile network and also to create new business opportunities, where four use case
scenarios were considered [9]: eMBB (Enhanced Mobile Broadband), mainly characterized
by high throughput connections up to 10 Gbps; eRAC, for wide coverage in remote and
rural areas; the URLLC (Ultra-Reliable and Low Latency Communications), offering low
latency and high reliability communication mainly for Industry 4.0 [10] and V2V (Vehicle-
to-Vehicle) [11]; and the mMTC (Massive Machine Type Communications), encompassing
a massive number of connected devices as envisioned by the IoT (Internet of Things)
[12, 13] concept.

Since the 1G, cellular networks have evolved in terms of coverage and user capacity.
By the end of 2021, according to [14], the mobile communication network reached a record
of 110 subscriptions per 100 inhabitants, equivalent to 8.662 billion devices worldwide. In
order to sustain the competitive edge of mobile networks, the industry and the scientific
community have already initiated to envisage what could be the next 6G [15], anticipating
improvements that should surpass the forthcoming difficulties that the current generation
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Figure 1 – Evolution of Mobile Networks from 1G to upcoming 6G [16].

may face, besides, of course, keeping the constant evolution history along the successive
generations. Figure 1 summarizes the key aspects introduced by each generation of mobile
networks.

Aligned with these premises, Section 1.1 briefly presents the main technical aspects
related to each mobile network generation. Next, on section 1.2, a short review on MIMO
[17] techniques is described, followed by a brief introduction to GFDM [18] as a 6G
waveform candidate. Section 1.4 shows the related works, while the main contribution of
this thesis is described in section 1.5, highlighting a prominent technique, not adopted
in the current 5G, that might become a requirement in future wireless networks, the SM
of NO (Non Orthogonal) waveforms [19, 20]. Section 1.6 describes the structure of this
work, while Section 1.7 presents the notations used in the next chapters and Section 1.8
brings the main concepts to evaluate the complexity of the algorithms discussed in this
thesis.

1.1 Mobile Communication Systems

In this section, a brief description of the key technical aspects of each mobile
generation is presented [21, 22].

The 1G, more specifically the AMPS (Advanced Mobile Phone System), was de-
signed to operate within the band between 800 to 900 MHz, with two sub-bands of 12.5
MHz, divided in 416 channels of 30 kHz each, where 21 of them were used for control and
the remaining 395 channels were used for analog voice transmission employing frequency
modulation. The multi-user access technology was FDMA (Frequency Division Multiple
Access), allocating a pair of channels per calling. Known limitations of the 1G were in-
secure communication, unsupported roaming between similar systems, limited number of



Chapter 1. Introduction 22

users, cell coverage and high power consumption of the handheld devices.

The 2G inaugurated the digital communication era in mobile networks and over-
come several restrictions of the 1G. The main multi-user access technologies were CDMA
(Coded Division Multiple Access) and TDMA (Time Division Multiple Access), with the
first used in IS-95 networks [23] and the second being used in GSM (Global System for
Mobile) [24] and IS-136 networks [25]. The assigned frequency operation bands were 900
and 1800 MHz. The channel bandwidth in the IS-95 systems was 1.25MHz, supporting
up to 64 users per resource and a maximum data rate of 8 kbps for voice transmission. In
GSM, a 200 kHz channel supported up to 8 users per available resource. IS-136 employed
30 kHz channels, which were shared by up to 6 users. The maximum data rates for voice
and data transmission were 13 kbps and 64 kbps, respectively. Both mentioned systems
offer secure communication through encrypted encoding, roaming support and multime-
dia data transmission services as SMS. In order to offer higher data rates and provide
rudimentary internet access, the GPRS (General Packet Radio Service), known as 2.5G,
and the EDGE (Enhanced Data GSM Evolution), called 2.75G, both supporting packet
switching, were introduced and successfully deployed as evolved transition technologies
that coexisted with the 3G during the 2000s.

In the beginning of the 21st century, the 3G was launched with the challenging task
of defining a common framework under which all different 2G available networks could
evolve and satisfy market demands for global roaming, service portability and multime-
dia. In this sense, the ITU (International Telecommunication Union) formulated a plan
to implement a global frequency band in the 2000 MHz range, seeking to support a single
and ubiquitous wireless communication standard for all countries throughout the world,
known as IMT (International Mobile Telephone) 2000 standard. The main multi-user ac-
cess technologies used were TDMA, FDMA and W-CDMA (Wideband Coded Division
Multiple Access), achieving higher network capacity through improved spectral efficiency.
The maximum data rates were increased up to 3.6 Mbps and later extended to 8 Mbps.
Moreover, a layered network architecture allowed operators to offer a wider range of more
advanced services for the users, such as video conference service, broadband wireless data,
enhanced audio and video streaming. After the introduction of 3G mobile communication
system, smartphones became popular across the globe. Specific applications were deve-
loped for smartphones which handles multimedia chat, email, video calls, games, social
media, GPS (Global Positioning System) assisted location tracking, navigation and maps.

The 4G is an enhanced version of the 3G networks, whose requirements were
defined by the ITU according to the IMT Advanced specification [26]. The 4G LTE
(Long-Term Evolution) [27] was developed by the academic community and R&D insti-
tutes, headed by the 3GPP (3rd Generation Partnership Project) work groups. The main
features of LTE are the IP (Internet Protocol)-based architecture [28], OFDMA (Ortho-
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gonal Frequency Division Multiple Access) [29] supporting TDD (Time-Division Duplex)
or FDD (Frequency-Division Duplex), SM-MIMO in the uplink and downlink, different
modulation and channel coding schemes, besides improved resource allocation based on
achievable link capacity. The LTE increased the system user capacity and throughput
to 100 Mbps in high mobility scenarios, at speeds around 60 km/h, and up to 1 Gbps
in FWA (Fixed Wireless Access). The last LTE release, named Advanced Pro, achieves
downlink rates up to 3 Gbps. High definition streaming and low latency game experience
are realities in 4G. The LTE is now the most popular mobile network technology off all
times and should coexist with the 5G along the forthcoming years while being gradually
replaced.

5G technology is expected to expand mobile network connectivity, enhancing user
experiences and creating new verticals to serve industries and agribusinesses through
innovative operational modes, targeting B2B (Business-to-Business) markets. The requi-
rements of IMT 2020 [30] embraces a diverse variety of use case scenarios, such as high
downlink data rates up to 20 Gbps with peak spectral efficiency of 30 bps/Hz, latency
as low as 1 ms and high connection density, up to 1.000.000 devices/km2 [31]. The key
technologies in the scope of the mobile network companies encompass usage of frequency
bands above 28 GHz, massive MIMO antenna arrays at the base station, beam forming
MIMO [32], more efficient scheduling and interference management [33].

The 5G technology has recently begun to be deployed in smaller cities, following its
initial roll-out in capitals and highly populated centers. Nonetheless, in face of its scope,
there is still many challenges to bring broadband connectivity to the rural and remote
regions. Particularly in Brazil, a big digital gap between urban and rural areas remains.
The urban sector have a typical coverage around 65% while the rural penetration is just
34% [34]. In order to meet this demand, the 5G-RANGE (Remote Area Access Network
for the 5th Generation) project, a Brazil-Europe bilateral project, was proposed to pro-
vide reliable long-range and cost-effective connection in these regions. It also incorporates
a cognitive engine allowing local and rural operators to exploit vacant TV channels, also
known as TVWS (TV White Space), as secondary network in an opportunistic appro-
ach [35]. As a result, a practical transceiver, encompassing frame structure and support
for diversity MIMO was designed and evaluated in real field operation [36], opening op-
portunities for new solutions and operating modes for future mobile networks [37].

The academic community and the industry have jointly started the discussions
around the requirements and definitions of 6G networks [38]. Up to now, the main goal is
to go beyond increasing mobile environment capacity, aiming to improve human quality of
life in several aspects, inspired by the United Nations Sustainable Development Goals [39].
The 6G will require new enabling technologies to provide cloud-based architecture and
flexible networks of networks, integration of AI (Artificial Intelligence) algorithms into the
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RAN (Radio Access Network) for enhanced network performance, virtual world connecti-
vity, extremely high capacity and data rate as well as highly accurate joint communication
and sensing. Some of these advancements in wireless communications are quantum tech-
nologies, satellite communication, visual light communication, higher carrier frequencies
in the upper mmWave (millimeter Wave) band (100-300 GHz), RIS (Reconfigurable Intel-
ligent Surfaces) [40] and SM-MIMO systems employing NO waveforms [1, 41]. This last
one might become a feasible requirement since SM-MIMO and NO-GFDM, jointly, could
lead to a system capacity improvement, benefited by higher spectral efficiency with low
OOB emission, besides harvesting multiplexing and extra diversity gain at the same time.
These achievements are essential for a mobile network designed for remote areas since low
OOB emissions are mandatory for coexistence with legacy technologies, higher data rates
are needed, for example, to cover the requirements for imaging and real-time positioning
in agribusiness, and robustness is a requirement for increasing coverage and reliability.

In [1], Matthé et al. propose an ingenious low complexity and low latency paral-
lel detection scheme employing NO-GFDM, where the aforementioned multiplexing and
diversity gains are demonstrated through simulations. Nevertheless, a practical imple-
mentation and evaluation of this scheme, considering a real hardware and its inherently
impairments, are still pending. In this context, the present work aims to contribute with a
flexible simulation model that formulates the intricate concepts involving this resourceful
detection technique. The resulting set of algorithms is an essential reference design for
enabling hardware implementation and experimental analysis of this innovative detection
scheme across different applications. The system parametrization to be used in real world
application is also another important challenge that is addressed by this thesis.

1.2 MIMO Communication Techniques

A fundamental aspect for any modern wireless communication system is the use of
multi-antennas techniques in order to improve the communications performance by either
combating or exploiting multipath scattering of the communication channel [17]. Indeed,
the MIMO integration has become a crucial requirement for every emerging waveform,
since recent wireless systems are commonly adopting MIMO support as a standard feature.
Among them, there are the WLAN (wireless Local Area Network), with IEEE 802.11be,
also known as WiFi (Wireless Fidelity) 7 [42], DTV (Digital Television) ATSC 3.0 [43]
and newly standards as LTE Railway [44] and 5G NR (New Radio) [45]. Undoubtedly,
MIMO schemes play a central role for most recent wireless systems as it might bring
significant improvements on link reliability or spectral efficiency.

MIMO techniques that attempts to improve link reliability are designed to har-
vest diversity gain, making use of some sort of diverseness resource, i.e. time-frequency
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diversity, polarization diversity and spatial diversity, while transmitting replicas of the
same information through independent fading channels. As the channels are indepen-
dent, it is unlikely that a severe fading affects all of them simultaneously, yielding to
an improvement on link robustness after properly combining the received replicas. Time
and frequency diversity explore temporal and spectral dynamic of the wireless channel,
transmitting the information replicas in distinct time or frequency resources, implying a
proportional reduction on gross data rate. On the other hand, spatial diversity allows to
make use of independent fading channels without the penalty on data rate, at the cost
of a more complex receiving scheme in order to coherently combine the received replicas.
Different MIMO techniques exploiting spatial diversity jointly with time or frequency
diversity are amply available in literature being, among them, the notorious Alamouti
STC (Space Time Code) [46] and its cyclic-prefixed block variations [47, 48], restrained
to a pair of transmitting antennas and capable to achieve full diversity gain with low
complexity at the receiver.

Another class of MIMO techniques, known as SM-MIMO, aims to improve the
spectral efficiency of a wireless communication system, achieving multiplexing gain by
transmitting distinct data streams over the same time and frequency resources, resulting
in a data rate improvement, without increasing the required bandwidth. This assumption
is true since the receiver is able to correctly decouple and retrieve the transmitted infor-
mation. The multiplexing gain is proportional to the number of transmitting antennas if
the number of receiving antennas at least matches the number of transmitting antennas,
while the involved complexity follows, in general, a non-linear growth rate. Considering
sub-optimal or even optimal-achievable receivers, the computational cost is polynomial
in average and, in the case of an optimal receiver, i.e. ML (Maximum Likelihood), the
complexity grows exponentially with the number of transmitting antennas.

Since these topics are widely studied, the number of different techniques available
in the literature can be overwhelming. Hence, this thesis focuses in a practical SM-MIMO
implementation, considering NO waveforms, more specifically the GFDM, in order to
evaluate the theoretical results presented in [1] but adapted to fulfill the requirements of
the eRAC scenario in 6G networks.

1.3 GFDM as a 6G Waveform Candidate

The GFDM was initially introduced in 2009 [18] as a new waveform employing
multiple NO sub-carriers. During the initial studies related to the 5G in the last decade,
GFDM was appointed as an alternative for the implementation of the PHY (Physical
Layer) [49] thanks to its flexibility and low spurious emission. Although GFDM was not
chosen as the primary waveform for 5G, it retains valuable features and demonstrates
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superior performance in certain aspects [50, 51], particularly in terms of low OOB emis-
sions. These attributes make GFDM a viable alternative in ongoing discussions about
the potential 6G network among the scientific community, standardization institutes and
industry stakeholders.

As stated in Section 1.1, the emerging 5G is driving mobile communication sys-
tems towards an unprecedented evolution in terms of flexibility, data rate and latency,
enabling wireless networks to support applications that are typically backed by wired te-
chnologies. The scenarios for the 6G are even harder to achieve considering the foreseen
increase in flexibility, while supporting conflicting requirements for several applications in
different verticals, besides higher data rates, higher coverage, higher frequency bands and
extreme low latency. It is clear that future mobile networks cannot rely on a single radio
access network to fulfill all these requirements. Different approaches are needed to address
all requirements, but SM-MIMO schemes are a key technology for all future broadband
wireless systems. For example, in the agribusiness scenario, high data rates are necessary
to transmit multi-spectral videos in infrared, ultraviolet and visible light in real time
from drone to the cloud. In industry 4.0, very low latency is necessary for controlling ro-
bots and synchronizing autonomous actions with humans on the plant floor. SM-MIMO
can provide the necessary bandwidth, reducing the frame duration and increasing the
robustness for data with a very short life span. SM-MIMO systems with detection sche-
mes that can harvest diversity and multiplexing gains can improve the throughput and
increase coverage. In this sense, GFDM can be considered as a feasible alternative, parti-
cularly where OFDM waveforms might experience unfavorable conditions. For example,
dynamic spectrum allocation of vacant channels requires low OOB emission, dictated by
critical emission masks in order to achieve precise energy sensing. On low latency applica-
tions, the GFDM exhibit smaller CP (Cyclic Prefix) overhead and, consequently, a better
block efficiency. Moreover, prototype pulse format and its ROF (Roll-off Factor) allows
to control ISI (Inter-Symbol Interference) and ICI (Inter-carrier Interference), seeking to
harvest extra diversity gain when compared with orthogonal waveforms. These are the
main advantages that might justify the GFDM as a feasible waveform candidate for 6G
networks.

1.4 Motivation and Related Works

Providing broadband connectivity and support for IoT devices in remote and rural
areas presents a significant challenge for countries like Brazil, characterized by expansive
territories and sparse population distribution. Overcoming these challenges would yield
substantial social and economic benefits. However, current 5G networks face difficulties
in meeting the communication requirements in remote regions due to limited coverage
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range, high costs associated with frequency spectrum licenses, and expensive equipment,
installation, operation, and maintenance [52]. To address these challenges, the Brazil-
Europe bilateral cooperation project has developed the 5G-RANGE transceiver, aimed at
providing connectivity in remote and rural areas [35]. This network opportunistically uses
idle UHF (Ultra High Frequency) channels in remote regions to establish connectivity,
employing TV channels in a secondary manner through cognitive radio. This approach
allows local providers to offer Internet access services without the need for spectrum
licenses.

The TVWS approach provides the necessary conditions to achieve long-range and
high data capacity in remote areas once it intends to use vacant TV channels, a valuable
resource commonly available in these regions. This requirement indicates that SM-MIMO
is an ideal solution compared to mMIMO (massive MIMO) [53], CFmMIMO (cell-free
massive MIMO) [54], and RIS [40]. mMIMO and CFmMIMO present impractical as-
pects at sub-1 GHz frequencies due to large antenna sizes, mutual coupling issues, and
the fact that channel hardening is used primarily to improve reliability through diversity
gain. The CFmMIMO also faces challenges such as complex spectrum management and
high deployment costs. Although innovative, RIS encounters difficulties with large ele-
ment sizes, mutual coupling issues, and regulatory constraints, particularly in dynamic
environments. In summary, considering the constraints imposed by TVWS operation and
the challenges presented by other prominent technologies, SM-MIMO emerges as a more
practical solution.

The 5G-RANGE network was designed to operate in TVWS regime and employs
the GFDM waveform [55] in its PHY core, offering greater flexibility compared to OFDM,
which is commonly used in current wireless communication standards. GFDM enables
the selection of a shaping filter for each subcarrier, effectively restricting OOB emissions
and eliminating the need for a RF (Radio Frequency) filter in the transmitter, thereby
ensuring spectral agility. Consequently, if a primary user begins using a channel occupied
by a secondary network, the latter can detect the incumbent’s presence and switch the
operating frequency without requiring human intervention. Furthermore, the PHY of this
access network incorporates a robust error correction code, coupled with a hybrid MIMO
scheme [17, 56], providing spatial diversity for users in challenging channel conditions and
SM for users in favorable situations. As a result, this access network can cover larger areas
than those designed for operation in urban centers.

Despite significant progress, several challenges remain to ensure effective connec-
tivity in remote and rural areas through the proposed network. One primary obstacle is
the development of high-performance, low-complexity MIMO detection scheme. In the
current 5G-RANGE transceiver version, the GFDM waveform supports only orthogonal
pulses, which restricts the reduction in OOB emission. Moreover, the SM-MIMO detec-
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tor relies on the ZF (Zero-Forcing) technique, where performance is strongly influenced
by noise enhancement and by the rank of the channel matrix between the transmitting
and receiving antennas [57]. Frequently, in many scenarios, the propagation environment
introduces strong correlation among multipaths, leading to lower-rank channel matrices
and consequent degradation in system performance. Furthermore, linear MIMO detectors
are unable to capture signal diversity and exhibit low performance when NO pulses are
employed. To fully exploit the flexibility of the communication system designed for the
eRAC scenario, it is essential to implement a nonlinear MIMO detector that offers both
high performance and low complexity. In this context, a comprehensive analysis of the
estimation and detection algorithms for the next generations of mobile communications is
crucial [58, 59]. Within the NO-GFDM-SM-MIMO framework, the MMSE-PIC detector,
proposed in [1], stands out for addressing the detection challenge through an ingenious
factorization of the system in the frequency domain. Its primary objective is to simultane-
ously exploit multiplexing and diversity gains, thereby enabling an affordable low-latency,
and low-complexity implementation [60, 61]. Nevertheless, a systematic method to facto-
rize and organize problems of any dimension remains an unsolved challenge.

1.5 Contributions

Aiming to continue the 5G-RANGE evolutionary trajectory and align with the
academic discussions surrounding 6G mobile networks, this thesis proposes the use of
SM-MIMO technique combined with the NO-GFDM waveform, to achieve higher spec-
tral efficiency and high robustness with low OOB emission. This approach also enables the
harnessing of multiplexing and additional diversity gain while employing a low-complexity
MMSE-PIC detector [1]. The objective is to implement, through simulations, a real 6G
transceiver capable of addressing the bottleneck challenges in various applications within
the eRAC scenario. These achievements are crucial for mobile networks designed for re-
mote areas, where low OOB emissions are imperative for coexistence with legacy techno-
logies, higher data rates are necessary to fulfill the requirements for imaging and real-time
positioning in agribusiness applications, where robustness is essential for enhancing co-
verage and reliability. Indeed, practical evaluation of theoretic concepts proven correct
through computational simulation, are valuable in the sense that these results are essen-
tial for the selection, implementation and advancement of any new innovative technologies,
including RIS [40], and novel waveforms [51].

Specifically, the main contributions of this work are:

• introduction of a generic and simplified linear model to describe the digital MIMO
communication PHY and, afterwards, the basic concepts involving the GFDM wa-
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veform;

• recapitulation of fundamental concepts on linear estimation and detection techni-
ques, widely employed along this thesis;

• proposal of a reduced complexity SD (Sphere Detector) based on ATM (Affine
Transform Modulation);

• a comprehensive review of the intricate theory behind the SM-MIMO MMSE-PIC
algorithm, suitable, but not restricted, to detect multiple data streams transmit-
ted by NO waveforms, accompanied by an extended block diagram of the entire
detection process;

• mathematical deduction of the system’s permutation matrices, crucial to factorize
the problem order, where relies the algorithm complexity reduction;

• review of recent procedures in order to adapt the 5G-RANGE radio to support NO
GFDM waveform, which involves the application of IFPI (Interference Free Pilot
Insertion), as described in [62], and the LLPD (Low-Density Parity-Check (LDPC)-
like Polar Decoder) based on [63];

• simulation of the low complexity and low latency MMSE-PIC detector, aiming to
provide a valuable reference design for a future practical evaluation of the NO-
GFDM-SM-MIMO transceiver implementation;

• detailed overview of the simulation parameters, intended to support readers who
wish to replicate the results;

• analysis of FER (Frame Error Rate) performance compared to optimal ML detector
curves, approximated from a GAD (Genie-Aided Detector).

• graphical analysis of the algorithm convergence behavior, a valuable method to
optimize the number of required PIC iterations.

The research on mobile communication techniques, including novel and recent
waveforms, continues to gather the attention of the scientific community, seeking to in-
vestigate and propose solutions for the challenging requirements and constant evolution
of forthcoming wireless systems. In this extent, practical evaluation of theoretic concepts,
proven correct through computational simulation, are indeed valuable in the sense that
experimental results are essential for selecting new technologies and serve as a guide for
further improvements and implementation approaches.
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1.6 About this Thesis

Chapter 2 reviews the background concepts involving the GFDM system, including
waveform generation and its key characteristics. It revisits the main GFDM demodulation
methods, analyzing the advantages and drawbacks compared to the established OFDM,
based on their SER (Symbol Error Rate) performance across different channels.

In Chapter 3, a simplified generic model to linearly describe the MIMO communi-
cation PHY is described, more specifically, the SM-MIMO multi-resource baseband equi-
valent model, considering a dispersive and FSC (Frequency-Selective Channel). Moreover,
it describes the factorization of an orthogonal system and explain why a NO waveform ty-
pically requires a full system solution. This challenge is the motivation behind the original
proposal of a mathematical expression to decompose the entire system into independent
sub-problems.

Chapter 4 covers the fundamentals on linear estimation, including the classical
estimators like LMMSE (Linear Minimum Mean Square Error), STPD (Steepest-Descent)
and CWCU (Component-Wise Conditionally Unbiased)-LMMSE, among others.

Chapter 5 recapitulates relevant detection algorithms, such as MLD (Maximum
Likelihood Detector), SD and the SIC (Successive Interference Cancelation).

Chapter 6 dedicates a special attention to the resourceful MMSE-PIC detector,
proposed in [1], designed to solve the NO-SM-MIMO-GFDM detection problem through
an ingenious system factorization in the FD (Frequency Domain). This chapter is supple-
mented with detailed block diagrams and algorithms, aiming to establish a safe guidance
for practical implementation. To prove the correctness of the method, the results from
the aforementioned reference were reproduced, along with a complexity comparison.

Chapter 7 focuses on adapting the MMSE-PIC detector to serve as the receiver
PHY core in the Brazil 6G project. This project aims to deploy an innovative transceiver
to meet the requirements of rural and remote areas [35], an usual scenario in countries with
continental dimensions. The propose relies on the use of recent channel coding and pilot
insertion techniques to support the parameters adopted in the transceiver proposal, mainly
based on 5G-RANGE radio numerology. This chapter further presents the evaluation
of the designed detector within the NO-SM-MIMO-GFDM transceiver, comparing the
resulting FER with the ML lower bound performance.

Finally, Chapter 8 summarizes the achievements of this work and propose future
research opportunities in this topic.
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1.7 Notation

Matrices and vectors are written in boldface uppercase and arrowed lowercase as X
and x⃗, respectively. Matrix element indexing, row or column sectioning, as also as vector
indexing, is made through subscript indexes or enclosed by square brackets. A random
variable observation is represented as a lowercase 𝑥𝑖 or by 𝑥[𝑖]. The notation E{·} is the
expected value of a given random entity. The exponent (·)H is the transpose and conjugate
(Hermitian) operator while (·)T means only transposition. The mean and the covariance
of a given random vector, e.g. x⃗, are defined as �⃗�x⃗ = E{x⃗} and Σx⃗ = E{x⃗x⃗H} − �⃗�x⃗�⃗�

H
x⃗ ,

respectively. The operator diag(·) gives the diagonal of a square matrix or, when the
argument is a vector, it returns a square matrix whose diagonal is populated with the
vector elements. The operators ∘ and ⊘ are the element-wise multiplication and division,
respectively. The Frobenius norm of a generic matrix A is defined by ‖A‖2 ≜

∑︀
𝑖,𝑗 | 𝐴𝑖𝑗 |2,

with 𝐴𝑖𝑗 being the elements of such matrix. The operation ⌈𝑥⌉2 denotes the smallest power-
of-two that is greater than or equal to 𝑥. The set of binary, real and complex numbers
are denoted by B𝑝×𝑞, R𝑝×𝑞 and C𝑝×𝑞, respectively, where 𝑝 and 𝑞 are the dimension size
of the numerical structure.

1.8 Definitions on Complexity Evaluation

Before delving into the specifics of linear estimation and detection schemes, it
is necessary to first provide a brief review of the foundational principles of complexity
analysis. This review aims to establish a clear framework for evaluating and comparing the
efficiency and performance of various techniques and algorithms, ensuring that subsequent
analyses are both thorough and equitable.

Table 1 summarizes the amount of FLOPs (Float-Point Operations) demanded
on common matrix algebra [64], optimized algorithms for banded matrices [65] and the
implicit HQR (Householder QR Factorization) [66]. In this context, �⃗� ∈ C𝑝×1 and �⃗� ∈
C𝑞×1 are generic vectors, 𭟋 ∈ C𝑞×𝑝, Ψ ∈ C𝑞×𝑝 and Φ ∈ C𝑝×𝑠 are arbitrary matrices, while
Ω ∈ C𝑝×𝑝 is a diagonal matrix, Λ ∈ C𝑝×𝑝 is a positive definite matrix and Π ∈ C𝑞×𝑞 is
a band-diagonal matrix, with single-side bandwidth 𝑠 such that 𝑞=𝑧𝑠. For the HQR, we
consider Γ ∈ C𝑝×𝑞 with 𝑝 ≥ 𝑞. The FLOP account for the CFLOP (Complex Float-Point
Operation) in [64] considers that a complex summation consists of only 2 FLOPs (2 real
summations), a complex multiplication requires 6 FLOPs (4 real multiplications and 2
real summations), a complex square takes 3 FLOPs (2 real multiplications and 1 real
summation), a complex square root [67] demands 10 FLOPs (2 real multiplications, 2 real
divisions, 3 real summations and 3 real square roots) and a complex division takes 11
FLOPs (6 real multiplications, 2 real divisions and 3 real summations).
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Table 1 – Common matrix algebra computational complexity.

Index Description Notation FLOPs
1 Matrix-Vector Prod. Ψ𝑞×𝑝�⃗�𝑝×1 8𝑞𝑝− 2𝑞

2 Matrix-Matrix Prod. Ψ𝑞×𝑝Φ𝑝×𝑠 8𝑞𝑝𝑠− 2𝑞𝑠

3 Matrix-Diagonal Prod. Ψ𝑞×𝑝Ω𝑝×𝑝 6𝑞𝑝

4 Matrix Inversion (Λ𝑝×𝑝)−1 4𝑝3 + 8𝑝2 + 10𝑝

5 Banded Matrix-Vector Prod. Π𝑞×𝑞
|𝑞=𝑧𝑠�⃗�

𝑞×1 8𝑠2𝑧 − 2𝑠𝑧

6 Banded Matrix-Matrix Prod. Π𝑞×𝑞
|𝑞=𝑧𝑠𭟋𝑞×𝑝 8𝑝𝑠2𝑧 − 2𝑝𝑠𝑧

7 Banded Gram Matrix (Π𝑞×𝑞
|𝑞=𝑧𝑠)H(Π𝑞×𝑞

|𝑞=𝑧𝑠) 8𝑠3𝑧 − 2𝑠2𝑧

8 Banded LU factorization LU = LU(Π𝑞×𝑞
|𝑞=𝑧𝑠) 32𝑠3𝑧 − 16𝑠2𝑧

9 Banded Linear System Solution 𭟋𝑞×𝑝 = (Π𝑞×𝑞
|𝑞=𝑧𝑠)−1Ψ𝑞×𝑝 48𝑠2𝑧𝑝− 24𝑠𝑧𝑝

10 𝑝-Point DFT �⃗�𝑝×1
f = F𝑝�⃗�

𝑝×1 𝑝 log(𝑝)
11 HQR factorization QR = HQR(Γ𝑝×𝑞) 2𝑞2𝑝− 2𝑞3/3

Additionally, Table 2 presents some useful finite sum identities [68], which are
widely applied in the complexity formulation of the investigated techniques.

Table 2 – Useful finite sum identities.

Index Expression Identity
1 ∑︀𝑞

𝑝=1 𝑐 𝑞𝑐

2 ∑︀𝑞
𝑝=ℓ 𝑐 𝑐(𝑞 − ℓ + 1)

3 ∑︀𝑞
𝑝=1 𝑝 𝑞(𝑞+1)

2

4 ∑︀𝑞
𝑝=1 𝑝2 𝑞(𝑞+1)(2𝑞+1)

6

5 ∑︀𝑞
𝑝=ℓ 𝑝

∑︀𝑞
𝑝=1 𝑝−∑︀ℓ−1

𝑝=1 𝑝 = 𝑞(𝑞+1)−ℓ(ℓ−1)
2

Finite sum identities are mathematical expressions that give exact solutions for
the sum of a sequence of terms. These identities are especially useful in fields like compu-
ter science, physics, and engineering, as they simplify complex summations and help in
analyzing algorithms.
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2 GFDM Background

GFDM is a flexible multicarrier modulation scheme capable of generating modu-
lated block symbols with variable duration independently of the subcarrier spacing [55].
Basically, GFDM employs filters circularly shifted in the time and frequency domains
for spectral formatting of individual subcarriers, responsible for transporting the data
symbols in subsequent instants of time. Different from OFDM, where for each block one
subcarrier carries only one data symbol, each subcarrier of GFDM symbol can carry
multiples data symbols, resulting in multiple subsymbols within the GFDM block.

This section presents a brief introduction, mainly based on [69], regarding the
GFDM waveform generation and detection processes, as well as an analysis of its more
relevant characteristics.

2.1 GFDM Waveform

GFDM can described as multicarrier modulation scheme where each subcarrier
transports data symbols at successive instants of time, named subsymbols. Each GFDM
block carries up to 𝑁 data symbols, with 𝑁=𝑀𝐾, where 𝑀 and 𝐾 denotes, respectively,
the number of available subsymbols and subcarriers. In this sense, the data symbols, deno-
ted by 𝑑𝑘,𝑚, with 𝑘 = 0, 1, · · · , 𝐾 − 1 being the subcarrier index and 𝑚 = 0, 1, · · · , 𝑀 − 1
the subsymbol index, are all organized in a time-frequency grid as illustrated by Figure
2.

Each subcarrier is then filtered according to a prototype pulse g⃗𝑘,𝑚, shifted both
in time and frequency, whose elements are given by

g⃗𝑘,𝑚[𝑛] = g⃗[⟨𝑛−𝑚𝐾⟩𝑁 ]𝑒j 2𝜋
𝐾

𝑘𝑛, (2.1)

where 𝑛 = 0, 1, · · · , 𝑁 − 1 is the sample index of the resulting pulse. The operator ⟨𝐶⟩𝐷
represents the module operation or the remainder of the division of 𝐶 by 𝐷.

Circular convolution is employed to modulate the prototype pulse according to
the corresponding data symbol, hence, the GFDM block symbol is self-contained in 𝑁

samples length and expressed by [69]

x⃗[𝑛] =
𝐾−1∑︁
𝑘=0

𝑀−1∑︁
𝑚=0

𝑑𝑘,𝑚𝛿[⟨𝑛−𝑚𝐾⟩𝑁 ] ⊛ g⃗[𝑛]𝑒j 2𝜋
𝐾

𝑘𝑛

=
𝐾−1∑︁
𝑘=0

𝑀−1∑︁
𝑚=0

𝑑𝑘,𝑚g⃗𝑘,𝑚[𝑛], (2.2)
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Figure 2 – GFDM block structure [70] and applicable terminology.

where the operator ⊛ denotes circular convolution and 𝛿[𝑛] is the discrete Dirac impulse
function. This review admits a single-input and single-output system and omits any an-
tenna sub-scripted index for notation simplicity.

In order to protect the 𝑀 subsymbols from IBI (Inter-Block Interference) intro-
duced by the dispersive communication channel, a CP is appended to the GFDM block.
It is worth to highlight the improved frame efficiency of the GFDM where an unique CP
protects the entire symbol containing 𝑀×𝐾 resources and, on the contrary, the OFDM
requires one CP per 𝐾×1 symbol block. It is also worth to mention that choosing a RC
(Raised Cosine) prototype pulse with 𝛼=0 and 𝑀=1, the resulting GFDM waveform is
identical to OFDM.

Assuming perfect synchronization and CSIR (Channel State Information at the
Receiver), after the CP removal, the received signal is

y⃗[𝑛] = x⃗[𝑛] ⊛ h⃗[𝑛] + w⃗[𝑛]. (2.3)

Note that the circular convolution in (2.3) occurs upon 𝑁 samples of the effective GFDM
symbol and still benefits from FDE (Frequency-Domain Equalization), which can be per-
formed by

^⃗y = ℱ−1
𝑁

(︁
ℱ𝑁(y⃗)⊘ℱ𝑁(h⃗)

)︁
, (2.4)

where ⊘ is the element-wise division operator, h⃗ is the equivalent base band CIR (Channel
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Impulse Response) while ℱ𝑁 and ℱ−1
𝑁 represents, respectively, the 𝑁 -point DFT (Discrete

Fourier Transform) and IDFT (Inverse Discrete Fourier Transform).

After equalization, the transmitted symbols can be retrieved employing a receiving
prototype pulse, v⃗, properly shifted in time and frequency [69], yielding to

𝑑𝑘,𝑚 =
𝑁−1∑︁
𝑛=0

^⃗y[𝑛]v⃗[⟨𝑛−𝑚𝐾⟩𝑁 ]𝑒−𝑗 2𝜋𝑘𝑛
𝐾

=
𝑁−1∑︁
𝑛=0

^⃗y[𝑛]v⃗𝑘,𝑚[𝑛]. (2.5)

The transmitting prototype pulse used to filter the subcarriers can be designed
to achieve specific goals [71], such as low self-interference and low OOB emission. In
general, g⃗[𝑛] results in a set of non-orthogonal filters that introduce IBI and ICI, hence,
the receiver needs to handle the system self-interference. In the next section, an useful
matrix notation for the GFDM system is presented, besides a brief description on the
design of linear demodulators and its characteristics.

2.2 Matrix Notation

The GFDM modulation and demodulation processes can be easily represented
through matrix operations, which is convenient to design linear demodulators. The data
block grid, illustrated by Figure 2 and organized in a structure of 𝐾×𝑀 elements, can
be arranged in a vector d⃗ containing 𝑁 elements, grouped by subsymbols,

d⃗ = vec

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
𝑑0,0 . . . 𝑑0,𝑀−1

𝑑1,0 . . . 𝑑1,𝑀−1
...

. . .
...

𝑑𝐾−1,0 . . . 𝑑𝐾−1,𝑀−1

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ =
[︁
𝑑0,0 . . . 𝑑𝐾−1,0 . . . 𝑑0,𝑀−1 . . . 𝑑𝐾−1,𝑀−1

]︁𝑇
.

(2.6)

All shifted versions of g⃗ can also be organized in a generic modulation matrix G.
Thus, grouping the columns by subsymbols, results

G =
[︁
g⃗0,0 . . . g⃗𝐾−1,0 . . . g⃗0,𝑀−1 . . . g⃗𝐾−1,𝑀−1

]︁
. (2.7)

In systems employing 𝑁on active resources out of a total available 𝑁 , (2.6) and (2.7) must
be adjusted to remove the corresponding 𝑁off=𝑁 -𝑁on elements from d⃗ and the related
𝑁off columns of G.

Figure 3 shows the structure of the modulation matrix for a given RRC (Root
Raised Cosine) prototype filter. Each column of G is a shifted time-frequency version of
the prototype pulse.
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Figure 3 – Structure of the modulation matrix G for 𝑀 = 5, 𝐾 = 4, RRC filter with
𝛼 = 0.5.

The GFDM transmission symbol can now be obtained by

x⃗ = Gd⃗. (2.8)

Again, prior to transmission in a dispersive channel, the GFDM symbol is protected by a
CP in such manner that, considering perfect synchronization and CSIR, after CP removal,
the received symbol is

y⃗ = Hx⃗ + w⃗. (2.9)

Here, H is the circulant channel matrix H̊. The received signal in the FD is

y⃗f =F𝑁 y⃗ = F𝑁Hx⃗ + F𝑁w⃗

=F𝑁HFH
𝑁F𝑁 x⃗ + w⃗f

=F𝑁HFH
𝑁 x⃗f + w⃗f, (2.10)

where F𝑁 is a 𝑁 -point DFT matrix, y⃗f, x⃗f and w⃗f are, respectively, the received signal, the
transmitted symbol and the noise signal, all in the frequency domain. Note that F𝑁HFH

results in a diagonal matrix containing the CFR (Channel Frequency Response). Applying
the FDE yields to

^⃗yf =
(︁
F𝑁HFH

𝑁

)︁−1
y⃗f = x⃗f + (F𝑁HFH

𝑁)−1w⃗f. (2.11)

The received and equalized signal, in the TD (Time Domain) is given by

^⃗y =FH
𝑁

^⃗yf = FH
𝑁 x⃗f + FH

𝑁(F𝑁HFH
𝑁)−1w⃗f

=x⃗ + FH
𝑁(F𝑁HFH

𝑁)−1F𝑁w⃗. (2.12)
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Accordingly, the estimated data symbol vector can be retrieved from (2.12) consi-
dering a generic demodulation matrix V. Thus,

^⃗d =V^⃗y = Vx⃗ + VFH
𝑁(F𝑁HFH

𝑁)−1F𝑁w⃗

=VGd⃗ + VFH
𝑁(F𝑁HFH

𝑁)−1F𝑁w⃗. (2.13)

Different demodulation matrices can be used to recover the transmitted data sym-
bols. A trivial solution to (2.13) is to find V s.t. VG=I𝑁 , resulting, in this case, in the
ZF solution

VZF = G−1. (2.14)

The ZF demodulator eliminates the self-interference introduced by non-orthogonal
transmission filters. The disadvantage of this approach resides in the fact that the fre-
quency response of the ZF receiving filter spreads over the adjacent subcarriers, which
means that the noise outside the range of interest is collected, as shown in Figure 4, re-
sulting in noise power enhancement and performance degradation when the transmission
filter is non-orthogonal.

Another possibility for the demodulation matrix resides in the MF (Matched Fil-
ter) approach, defined as

VMF = GH, (2.15)

The MF demodulation matrix maximizes the SNR (Signal-to-Noise Ratio) once its fre-
quency response matches the corresponding subcarrier band. In this case, noise enhance-
ment is avoided. However, the MF demodulator exhibits a loss on performance caused by
the system self-interference, when the matrix product VMFG is non-diagonal, imposing
an error floor on SER due to IBI and ICI among the demodulated data symbols [72].
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Figure 4 – Receiving prototype impulse response and frequency response.

Finally, the MMSE demodulator presents a trade-off between the noise enhance-
ment and self-interference mitigation. When the CNR (Carrier to Noise Ratio) is low,
this demodulator behaves similarly to the MF, reducing the influence of the noise over
the demodulated data symbols. For high CNR conditions, the MMSE approaches the ZF
demodulator, eliminating the self-interference. Assuming 𝐸s = E{d⃗d⃗

H
} = I𝑁 , the MMSE

demodulation matrix is given by

VMMSE =
(︁
𝜎2

w⃗I𝑁 + GHHHHG
)︁−1

GHHH, (2.16)



Chapter 2. GFDM Background 38

where 𝜎2
w⃗ is the noise variance of the AWGN (Additive White Gaussian Noise).

It is worth to point out that VMMSE equalizes and demodulates the received vector
y⃗ simultaneously once the equivalent channel matrix is already considered in (2.16). Thus,
the prior equalization of the received signal is not necessary when the MMSE demodula-
tion is employed. Note that the MMSE is a biased estimator. Hence, it is necessary to scale
the amplitude of the demodulated symbols considering the main diagonal of VMMSEG (see
Section 4.1). The main drawback of the MMSE demodulator relies on its increased com-
plexity related to noise variance estimation and demodulation matrix update whenever
the CIR or the AWGN variance changes.

2.3 Out of Band Emission

The subcarrier filtering employed in the GFDM generation can reduce the OOB
emission when compared to OFDM, as illustrated by the PSD (Power Spectrum Density)
depicted in Figure 5.
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Figure 5 – PSD comparison between GFDM and OFDM. Common parameters are
𝐾 = 128 and 𝐾on = 75. Additional GFDM parameters are 𝑀 = 7 employing
a RC filter with 𝛼 = 0.5.

Nevertheless, the abrupt transition at the edge between consecutive GFDM blocks,
shown in Figure 6, imposes a severe limit to the potential OOB reduction.

A concise reduction on OOB emission can be achieved employing a guard subsym-
bol between block boundaries or by applying a windowing for each GFDM block. These
two approaches are described in the following sections.
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Figure 6 – Abrupt transitions at the boundaries of the GFDM block.

2.4 GS-GFDM

In order to further reduce the GFDM OOB emission, it is necessary to avoid
abrupt transitions at the block boundaries introduced by usual rectangular window edges.
Retrieving the circular nature of the subsymbols in time domain, it is possible to employ
a simple approach to reduce the discontinuities between adjacent blocks. As illustrated
by Figure 6, the first subsymbol contains the most significant abrupt transition.

Turning off the first subsymbol introduces a guard subsymbol that smooths the
transition between consecutive blocks. This technique is named GS (Guard-Symbol)-
GFDM, whose main characteristics are illustrated by Figure 7. The PSD is depicted
by Figure 7a and the signal in TD that emphasizies the boundaries of two consecutive
GFDM symbols is detailed by Figure 7b.

Appending a CP would reintroduce discontinuities between consecutive GFDM
blocks. A possible solution to avoid this problem is to also turn-off the last subsymbol
besides adopting 𝑁CP=𝐾. The drawback of this approach relies in the lower spectrum
efficiency, which can be evaluated by

𝜂GS = 𝑀 − 2
𝑀

𝑀𝐾

𝑀𝐾 + 𝐾

𝑁

𝑁 + 𝑁CP
= 𝑀 − 2

𝑀 + 1
𝑁

𝑁 + 𝑁CP
. (2.17)

From (2.17), we conclude that this approach becomes interesting for scenarios
where 𝑀 is large.
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(a) PSD comparison between GS-GFDM and
OFDM.
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Figure 7 – GS-GFDM signal and spectrum.

2.5 W-GFDM

The W-GFDM (Windowed-GFDM ) technique employs a time window over CP
and CS (Cyclic Suffix) to smooth the transitions between block symbols as shown in
Figure 8.

Effective GFDM symbolCP CS

Time Window

𝑁

𝑁CP + 𝑁 + 𝑁CS

𝑁CP 𝑁CS

𝑁𝜛 𝐿 𝑁𝜛

Figure 8 – W-GFDM symbol in the time domain.

It is important to note that the CP must cover the channel length and the window
length. The CP length is chosen in order to obtain 𝑁CP=𝑁𝜛+𝐿 and the CS with size
𝑁CS=𝑁𝜛, where 𝑁𝜛 is the length of the time window transition. The CS is a copy of the
first 𝑁CS samples of the effective GFDM symbol, appended to its end, as presented in
Figure 8. The time window is defined by

𝜛[𝑛] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜛rise[𝑛] if 0 ≤ 𝑛 < 𝑁𝜛

1 if 𝑁𝜛 ≤ 𝑛 ≤ 𝑁CP + 𝑁

𝜛fall[𝑛] if 𝑁CP + 𝑁 < 𝑛 < 𝑁CP + 𝑁 + 𝑁𝜛

, (2.18)

where 𝜛rise and 𝜛fall are the rising and falling time window transitions, respectively.
The ramp-up and ramp-down segments can assume different shapes. The most common
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options are linear, cosine, RC or 4th order RC [55]. Figure 9 shows the PSD achieved by
the W-GFDM employing linear and RC windowing with 32 samples each. It is clear that
the OOB emission varies according to the ramp-up and ramp-down format. Sequences
that introduces few inflection points in its derivative presents low OOB emission.

The W-GFDM can be used to reduce the OOB emission and still achieve a high
spectral efficiency, even for 𝑀 assuming small values. The loss on system spectrum effici-
ency caused by the introduction of windowing transition and the CP can be obtained by

𝜂𝜛 = 𝑁

𝑁 + 𝑁CP + 2𝑁𝜛

. (2.19)

Once 𝑁CP is defined according to the CIR spread, this parameter affects the spec-
tral efficiency of both GS-GFDM and W-GFDM. As the length of the rising and falling
time window sequences are smaller than the effective GFDM symbol, 𝜂𝜛 is typically gre-
ater than 𝜂GS. From Figures 7a and 9, we can conclude that both techniques reduces the
OOB emission when compared to OFDM with the W-GFDM standing as a promising
solution for systems with high spectral efficiency and low OOB emission.
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Figure 9 – PSD comparison between OFDM and W-GFDM employing linear and RC
time windows.

2.6 Analysis of GFDM Symbol Error Rate Performance

NO waveforms are affected by ICI and IBI, thus, they must be considered at the
receiver in the system design. In this section, the GFDM SER performance is simulated
assuming different channel models for the ZF, MF and MMSE demodulators. Table 3
describes the parameters used in the Monte Carlo simulation while Table 4 summarizes
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each channel model. Three models are considered: 1) AWGN channel; 2) FSC, whose
equivalent base band CIR is 16 samples long, varying linearly from 0 to -10 dB and; 3)
TVC (Time-Variant Channel), which is a block fading channel given by a normal complex
scaling factor.

Table 3 – Parameters for the GFDM SER simulation.

Parameter GFDM OFDM
Mapping 4-QAM 4-QAM

Prototype filter RC Rectangular
Roll-off factor (𝛼) 0 and 0.9 0
Subcarriers (𝐾) 64 64
Subsymbols (𝑀) 9 1

Cyclic Prefix (𝑁CP) 16 16

Table 4 – Channel models for the GFDM SER simulation.

Channel Model Impulse Response
AWGN h⃗AWGN = [1]

FSC h⃗FSC = (10− 2
3 𝑖)𝑇

𝑖=0,··· ,15
TVC h⃗TVC = [ℎ], ℎ ∼ 𝒞𝒩 (0, 1)

2.6.1 GFDM SER in AWGN Channel

The GFDM SER performance depends on the chosen demodulator used to retrieve
the transmitted data symbols. A theoretical reference for the symbol error probability can
be obtained assuming the ZF demodulator. In this case, the self-interference is elimina-
ted during the demodulation process. However, due to the frequency response shape of
the reception pulse, the noise out of the interested band is collected yielding to a noise
enhancement. We can define a NEF (Noise Enhancement Factor) as

𝜉 =
𝑁−1∑︁
𝑛=0
|v⃗ZF[𝑛]|2, (2.20)

where v⃗ZF is the reception prototype filter considering the ZF demodulator, whose symbol
error probability is

𝑝AWGN(𝑒) = 2
(︂

𝜄− 1
𝜄

)︂
erfc( 2
√

𝜚)−
(︂

𝜄− 1
𝜄

)︂
erfc2( 2

√
𝜚), (2.21)

with 𝜄 = 2
√

2𝜇, 𝜇 is the number of bits per data symbol and

𝜚 = 3𝑅T

2(𝜄2 − 1) ·
𝐸s

𝜉𝑁0
, (2.22)

s.t. 𝐸s is the average constellation energy, 𝑁0 is the AWGN spectrum density and

𝑅T = 𝑁

𝑁CP + 𝑁 + 𝑁CS
(2.23)
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represents the equivalent SNR reduction caused by introducing the CP and the CS.

The performance loss caused by the NEF depends on the chosen transmission
prototype filter. Typically, as higher the system self-interference to be eliminated, more
accentuated is the NEF. This means that, when the RC filter is employed, a high roll-off
factor results in a higher NEF. Figure 10 compares the performance of different linear
demodulators, taking the OFDM SER as a reference. Figures 10a and 10b illustrate the
SER for 𝛼=0 and 𝛼=0.9, in this order.
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Figure 10 – GFDM SER performance in AWGN channel. (a) RC filter with 𝛼=0. (b) RC
filter with 𝛼=0.9.

Figure 10a shows that the GFDM outperforms the OFDM by a more efficient
CP usage. Also, the three demodulators present the same performance, since the RC
filter with 𝛼=0 is the Dirichlet pulse, resulting in an orthogonal GFDM. In Figure 10b,
the self-interference imposes a high error floor when the MF demodulator is used. The
NEF reduces the ZF performance while the MMSE demodulator results in a trad-off
between the ZF and the MF. For low SNR, the MMSE demodulator behaves similarly to
the MF, reducing the NEF effects. For high SNR values, the MMSE approaches the ZF
performance, eliminating the self-interference.

2.6.2 GFDM SER performance in FSC

In frequency selective channels, the effects of the NEF depends on both frequency
responses of the prototype reception filter and the channel, which means that the SER
for each subcarrier may differ among themselves. Thus, the symbol error probability of
the GFDM considering the FSC can be obtained as an average approximated by [69]

𝑝FSC(𝑒) = 2
(︂

𝜄− 1
𝜄𝐾

)︂𝐾−1∑︁
𝑘=0

erfc( 2
√

𝜚𝑘)− 1
𝐾

(︂
𝜄− 1

𝜄

)︂2 𝐾−1∑︁
𝑘=0

erfc2( 2
√

𝜚𝑘), (2.24)
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where

𝜚𝑘 = 3𝑅T

2(𝜄2 − 1) ·
𝐸s

𝜉𝑘𝑁0
(2.25)

and

𝜉𝑘 = 1
𝑁

𝑁−1∑︁
𝑛=0

⃒⃒⃒⃒
⃒ v⃗f𝑘,0 [−𝑛]

h⃗f[𝑛]

⃒⃒⃒⃒
⃒
2

, (2.26)

with v⃗f𝑘,0 [𝑛] being the frequency response of the receiving prototype pulse for the 𝑘th
subcarrier of the first subsymbol and 𝜉𝑘 is the corresponding NEF at that subcarrier. The
selective channel frequency response is h⃗f = diag(F𝑁H̊FH

𝑁), with H̊ as a circular convo-
lution matrix obtained from h⃗FSC. It is worth to highlight that the noise enhancement is
the same for all subsymbols, however, the channel selective frequency response yields to
different NEF according to the pulse position in the frequency domain. Figure 11 shows
the SER performance of the GFDM system for the FSC described in Table 4.
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Figure 11 – GFDM SER performance in FSC. (a) RC filter with 𝛼=0. (b) RC filter with
𝛼=0.9.

As depicted in Figure 11a, all demodulators performs equally when the transmis-
sion pulse is orthogonal. Again, GFDM overperforms OFDM due to more efficient CP
usage. Figure 11b reveals that both IBI and ICI severally impact the MF demodulator
performance, resulting in a pronounced error floor. As expected, the ZF demodulator pre-
sents a performance degradation caused by the NEF in comparison with the orthogonal
case. Finally, the MMSE minimizes the impact of the NEF for low SNR scenarios.

2.6.3 GFDM SER performance in TVC

The theoretical SER performance of the GFDM in a TVC considering the ZF
demodulator can be obtained assuming that the channel coherence time is greater than
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one block symbol period. In this case, the symbol error probability is given by [69]

𝑝TVC(𝑒) = 2
(︂

𝜄− 1
𝜄

)︂(︃
1− 2

√︃
𝜚

1 + 𝜚

)︃
−
(︂

𝜄− 1
𝜄

)︂2 [︃
1− 4

𝜋
2

√︃
𝜚

1 + 𝜚
arctan

(︃
2

√︃
1 + 𝜚

𝜚

)︃]︃
, (2.27)

where

𝜚 = 3𝑅T

𝜄2 − 1
𝐸s

𝜉𝑁0
. (2.28)

Figure 12 shows the GFDM SER performance assuming the TVC described in
Table 4, for the presented linear demodulators. Once again, the OFDM theoretical curve
is taken as a reference.
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Figure 12 – GFDM SER performance in TVC. (a) RC filter with 𝛼=0. (b) RC filter with
𝛼=0.9.

A similar behavior is observed in relation to the previous discussed channels. All
linear demodulators present the same performance when the prototype pulse is ortho-
gonal, as shown in Figure 12a, where the left deviation of the GFDM w.r.t the OFDM
occurs because of the more efficient CP. When the pulse is non-orthogonal, the MMSE
outperforms the MF demodulator, which presents an error floor, and also surpass the ZF
demodulator, whose performance is reduced due to the NEF.

2.7 Summary

This chapter introduces the fundamentals regarding the GFDM waveform design,
matrix notation and different linear demodulators. A brief analysis on OOB emission and
SER comparison w.r.t. OFDM were also conducted. GFDM presents some disadvanta-
ges when compared to OFDM such as self interference, which may requires additional
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interference cancellation techniques [73]; and a more careful management of symbol syn-
chronization to avoid performance degradation [74]. These characteristics might result in
higher processing complexity, especially for resource-constrained devices. On the other
hand, GFDM also offers several advantages over OFDM, including improved spectral
efficiency, better interference mitigation, and greater flexibility in adapting to varying
channel conditions. These benefits make GFDM a promising candidate for future wire-
less communication systems, particularly in scenarios requiring high data rates and low
latency.
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3 System model for the MIMO communica-
tion PHY

This chapter introduces the concept of a multicarrier digital MIMO communica-
tion PHY, represented by a linear model, widely used along this thesis. In a broad sense,
a digital communication PHY is responsible for: a) adapting the digital information to a
waveform that is transmitted to one or more receivers through a communication channel,
and; b) for retrieving the information on the receiver side from the distorted and noisy
version of the transmitted signal. Both transmitter and receiver are designed based on
the communication channel characteristics, such as noise and fading statistics, average
scattering pattern, coherence time, coherence bandwidth and the impairments introduced
by the transmitter’s and receiver’s RF front-end, among others. Specifically for a modern
mobile communication system, the PHY must deal with double-dispersive MIMO chan-
nels, where each path between one transmitting and one receiving antenna is modeled as
a time-variant and time-dispersive impulse response.

We consider an arrangement employing 𝑁T transmitting antennas and 𝑁R recei-
ving antennas as a generalization of the mobile communication system, since it also embra-
ces more simplified structures, e.g., the usual single-input single-output when 𝑁R=𝑁T=1.
It is worth to mention that, assuming a SM-MIMO case, when 𝑁R=𝑁T≥ 2, IAI (Inter-
Antenna Interference) takes place once each receiving antenna collects signals from more
than one transmitting antenna. In this case, the detection method should be carefully
chosen taking into account the trade-off between performance and complexity. Figure 13
illustrates a simplified wireless communication system assuming this scenario.
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Figure 13 – Simplified block diagram of a generic MIMO communication system.

At the transmitter side, the bit encoding block receives the data bit sequence
and protects them by applying different coding techniques such as randomization, FEC
(Forward Error Correction) and interleaving, aiming to increase the system robustness
against the adverse effects of the mobile channel. The resulting coded bits are then fed
to the waveform modulator block, where different techniques may be used, e.g., symbol
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modulation and multicarrier techniques, as GFDM, leading to specific waveforms, tailored
for mobile MIMO channels. The MIMO channel introduces time and frequency fading,
combining the transmitted signals at each receiving antenna. The AWGN block represents
the thermal noise added at each receiver. On the receiver side, the waveform demodulation
block is responsible for performing the time and frequency synchronization, waveform
demodulation, antenna decoupling and symbol to bit recovery, while the bit decoding
block is responsible for correcting the errors that might be introduced by the channel.
The recovered binary sequence is delivered for the data sink (user application).

It is worth to clarify that, despite of its importance in the communication research
field, the availability of studies involving channel coding techniques are widely available in
literature and this subject is beyond the scope of this work. This work exploits algorithms
available in [75, 76, 77], such as PCs (Polar Codes), CCs (Convolutional Codes) and APP
(A-Posteriori Probability) decoding for performance evaluation, when needed.

Next section describes the matricial representation of the MIMO channel consi-
dering a CP protected multicarrier scheme, one of the most popular solution for the air
interface in mobile communication systems.

3.1 Generic MIMO Linear Model

Consider that a multi-resource modulation scheme, where the term resource, here,
refers to an allocated time and/or frequency interval, which is used to transmit 𝑁T parallel
streams containing 𝑁on=𝑀on𝐾on complex data symbols per block, where 𝑀on and 𝐾on are,
respectively, the number of active time and frequency resources out of a total available 𝑀

and 𝐾, in the same order. Each stream, defined as d⃗𝑗 ∈ C𝑁on×1, is mapped into 𝑁on active
resources of a block symbol with 𝑁 samples length. Let x⃗𝑗 ∈ C𝑁on×1 be the modulated
signal in time domain, transmitted by the 𝑗th transmitting antenna, with 𝑗 = 1, 2, ...,𝑁T

and 𝑁on≤𝑁 . Assuming a generic modulation matrix G ∈ C𝑁×𝑁on , the modulation process
for an individual transmitter as the linear transformation of the 𝑗th data stream is given
by

x⃗𝑗 = Gd⃗𝑗. (3.1)

Note that each element of d⃗𝑗 is obtained by mapping a set of 𝜇 = log2(𝑀c) bits into
a corresponding data symbol from a finite set of 𝑀c distinct elements, arranged in a
complex plane that employs the normalised sine and cosine functions as orthonormal
bases. Vertically stacking the complex data streams in d⃗ ∈ C𝑁T𝑁on×1 and defining an
extended generic modulation matrix Ḡ ∈ C𝑁T𝑁×𝑁T𝑁on as

Ḡ = I𝑁T ⊗G, (3.2)
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where I𝑁T is an identity matrix with dimension 𝑁T and the operator ⊗ represents the
Kronecker product, allows to define the modulated signal for the overall system x⃗ ∈
C𝑁T𝑁×1 given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x⃗1
...

x⃗𝑗

...

x⃗𝑁T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

x⃗

=

⎡⎢⎢⎢⎢⎢⎢⎣
G 0 . . . 0
0 G . . . 0
...

...
. . .

...

0 0 . . . G

⎤⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

Ḡ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d⃗1
...

d⃗𝑗

...

d⃗𝑁T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

d⃗

. (3.3)

Where the equivalent baseband CIR between the 𝑗th transmitting antenna and the
𝑖th receiving antenna is considered being a finite discrete sequence of 𝐿 taps represented
by h⃗𝑖,𝑗 ∈ C𝐿×1, with 𝑖 = 1, 2, ...,𝑁R. Thus, in order to protect the transmission signal from
the dispersive effects of the channel, the last 𝑁CP samples of each x⃗𝑗 is appended to its
beginning as a CP with 𝑁CP≥𝐿-1. Then, the transmission signal is obtained by vertically
stacking all CP protected symbols.

Assuming perfect synchronization, CSIR and after CP removal, y⃗𝑖 ∈ C𝑁×1 is the
received block symbol at 𝑖th receiving antenna and y⃗ represents all received signals,
vertically stacked and described by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y⃗1
...

y⃗𝑖

...

y⃗𝑁R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

y⃗

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̊1,1 . . . H̊1,𝑗 . . . H̊1,𝑁T

...
. . .

...
. . .

...

H̊𝑖,1 . . . H̊𝑖,𝑗 . . . H̊𝑖,𝑁T

...
. . .

...
. . .

...

H̊𝑁R,1 . . . H̊𝑁R,𝑗 . . . H̊𝑁R,𝑁T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

H

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x⃗1
...

x⃗𝑗

...

x⃗𝑁T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

x⃗

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w⃗1
...

w⃗𝑗

...

w⃗𝑁R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

w⃗

, (3.4)

where H ∈ C𝑁R𝑁×𝑁T𝑁 is a structured linear transformation matrix whose elements, deno-
ted by the sub-scripted H̊𝑖,𝑗 ∈ C𝑁×𝑁 entries, are the equivalent circulant matrix obtained
from the CIR between the 𝑗th and 𝑖th transmitting-receiving antennas, respectively. The
vector w⃗ ∈ C𝑁R𝑁×1 represents the AWGN for all receiving antennas, vertically stacked.
Equation (3.4) is the generic form of the MIMO linear model, widely used in the linear
estimation and detection processes. Inserting (3.3) into (3.4) allows one to rewrite

y⃗ = H̃d⃗ + w⃗, (3.5)

where H̃ ∈ C𝑁R𝑁×𝑁T𝑁on encompass both transform matrices: the generic modulation
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matrix and the circular convolution channel matrix, whose structure is given by

H̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H̊1,1G . . . H̊1,𝑗G . . . H̊1,𝑁TG
...

. . .
...

. . .
...

H̊𝑖,1G . . . H̊𝑖,𝑗G . . . H̊𝑖,𝑁TG
...

. . .
...

. . .
...

H̊𝑁R,1G . . . H̊𝑁R,𝑗G . . . H̊𝑁R,𝑁TG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= HḠ. (3.6)

Next section provides a detailed analysis of the system transform matrix H̃ and its facto-
rization. This approach aims to reduce complexity by dividing it into smaller subsystems,
applicable to both orthogonal and NO cases.

3.2 SM-MIMO Factorization

System factorization is a crucial step in any solution algorithm, as it simplifies
complexity by breaking it down into smaller, independent problems. This approach is
particularly useful in numerical linear algebra and parallel computing. The resulting sub-
problems can be individually manipulated and processed simultaneously, enhancing com-
putational efficiency. The following subsections discuss two types of block factorization:
the orthogonal case, widely used in systems such as OFDM, and an original proposal for
the non-orthogonal case, suitable for the GFDM waveform. The system parameters for
both cases are given by Table 5.

Parameter Orthogonal Non-orthogonal
𝑁T = 𝑁R 2 2

𝑀 1 3
𝐾 = 𝐾on 12 4
𝑁 = 𝑁on 12 12

𝛼 0 1
pulse RC RC

𝑁CP ≥ 𝐿− 1 𝐿 = 3 𝐿 = 3

Table 5 – Parameters for the SM-MIMO factorization example.

3.2.1 Orthogonal Multicarrier SM-MIMO Factorization

Prior to start the analysis of the NO-SM-MIMO, it is essential to clearly unders-
tand the orthogonal case and how it can be factorized into smaller subsystems, making
the solution of this problem more tractable while enlightening the path on solving more
complex arrangements.
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As mentioned in Section 2.2, GFDM can be parameterized to obtain an orthogonal
multicarrier scheme. Defining 𝑀 unitary and g⃗ as a RC pulse with 𝛼=0, leads to an OFDM
system. Retrieving the generic modulation matrix G, we assume G = FH

𝐾on , 𝑀=1 and
𝐾on active subcarriers, resulting in 𝑁=𝑁on=𝐾on. In order to graphically visualize such
orthogonal SM-MIMO, consider the noiseless case from (3.5). This example assumes the
orthogonal case parameters from Table 5: 𝑁T=𝑁R=2, 𝑀=1, 𝐾=𝐾on=12, RC pulse with
𝛼=0, 𝑁CP≥𝐿-1, 𝐿=3 samples and h⃗∼ 𝒞𝒩 (0⃗, I𝐿), resulting in a dispersive channel with
coherence time greater than one block symbol period. In fact, solving the proposed system
in the TD would involve a costly full matrix inversion, as illustrated in Figure 14 by the
color map graph, relative to the magnitude of H̃.

y⃗ H̃ d⃗

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 14 – Transform matrix structure for the orthogonal multicarrier MIMO system in
the TD.

Recalling (3.2) and (3.6) into (3.5), it is advantageous to demodulate the orthogo-
nal multicarrier MIMO in the FD, thus

y⃗f =(I𝑁R ⊗ F𝐾)H(I𝑁T ⊗G)d⃗
= (I𝑁R ⊗ F𝐾)H(I𝑁T ⊗ FH

𝐾)⏟  ⏞  
Hf

d⃗. (3.7)

Here, Hf ∈ C𝑁R𝑁×𝑁T𝑁on results in a very especial structured matrix containing the equi-
valent CFR in the main diagonals of each 𝑁R×𝑁T sub-matrices with dimension 𝑁×𝑁on.
This concept can be visualized in Figure 15.

The resulting y⃗f allows to further define the orthogonal received signal for each
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y⃗f Hf d⃗

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 15 – Transform matrix structure for the orthogonal multicarrier MIMO system in
FD.

subcarrier considering all transmitting and receiving antennas. Hence,⎡⎢⎢⎢⎢⎣
y⃗f1 [𝑘]

...

y⃗f𝑁R
[𝑘]

⎤⎥⎥⎥⎥⎦
⏟  ⏞  

y⃗f[𝑘]

=

⎡⎢⎢⎢⎢⎣
Hf1,1 [𝑘] . . . Hf1,𝑁T

[𝑘]
...

. . .
...

Hf𝑁R,1 [𝑘] . . . Hf𝑁R,𝑁T
[𝑘]

⎤⎥⎥⎥⎥⎦
⏟  ⏞  

Hf[𝑘]

⎡⎢⎢⎢⎢⎣
d⃗1[𝑘]

...

d⃗𝑁T [𝑘]

⎤⎥⎥⎥⎥⎦
⏟  ⏞  

d⃗[𝑘]

.

where the elements of the corresponding 𝑁R ×𝑁T matrix structure Hf[𝑘] are the equiva-
lent flat Rayleigh channel between each antenna pair at the 𝑘th subcarrier. Suppressing
the subcarrier index, for notation simplicity, yields to a noiseless factorized linear mo-
del representation of the orthogonal multicarrier SM-MIMO for an arbitrary subcarrier,
holding a great potential for parallel computation.

It is clear that, thanks to the structure of Hf, the orthogonal multicarrier detection
problem can be divided into 𝐾on subsystems with dimension 𝑁R ×𝑁T. With the help of
specific permutation matrices, designed to group coincident resources from each antenna
close next to each other, the system can be reorganized to hold its individual subsystems
in a more convenient structure for storage and parallel computation. In this sense, the
elements of such permutation matrices, named PR and PT, are defined by

𝑃R𝑝,𝑞 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 for 𝑝 = 0, · · · , 𝑁R𝑁 − 1 and

𝑞 =
⟨

𝑝𝑁 +
⟨

𝑀(𝑝𝑁−⟨𝑝𝑁⟩𝑁R𝑁)
𝑁R𝑁

⟩
𝑁

⟩
𝑁R𝑁

+ 𝑝−⟨𝑝⟩𝑁R𝐾

𝑁R𝐾
,

0 otherwise,

(3.8)
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and

𝑃T𝑝,𝑞 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 for 𝑝 = 0, · · · , 𝑁T𝑁on − 1 and

𝑞 =
⟨

𝑝𝑁on +
⟨

𝑀(𝑝𝑁on−⟨𝑝𝑁on⟩𝑁T𝑁on)
𝑁T𝑁on

⟩
𝑁on

⟩
𝑁T𝑁on

+ 𝑝−⟨𝑝⟩𝑁T𝐾on
𝑁T𝐾on

,

0 otherwise,

(3.9)

where PR ∈ B𝑁R𝑁×𝑁R𝑁 and PT ∈ B𝑁T𝑁on×𝑁T𝑁on are, respectively, the permutation matri-
ces applied in the receiving and transmitting side of the system. Moreover, these matrices
have useful properties, e.g., they are orthonormal and left multiplying a given matrix
permutes its rows while right multiplication by its transpose yields to column permuta-
tion. Note that PT can also be obtained considering all active subcarriers then resized
to 𝑁T𝑁on when 𝐾on < 𝐾 by removing specific rows and columns, corresponding to the
inactive subcarriers position. For the example described in Table 5, the resulting non-zero
column indexes are

𝑞 = [0, 12, 1, 13, 2, 14, 3, 15, 4, 16, 5, 17, 6, 18, 7, 19, 8, 20, 9, 21, 10, 22, 11, 23]T.

Applying these permutation matrices in the received signal y⃗f allows for collecting
and reorganizing each factorized subsystem, as illustrated in Figure 16, which brings
advantages in practical implementation aspects, such as parallel solving and system order
reduction by resource disabling, i.e. when 𝐾on<𝐾.

PRy⃗f PRHfPT
T PTd⃗

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 16 – Reorganized structure of the orthogonal multicarrier MIMO system factori-
zation.

In general, for linear estimators employing matrix inversion, the expected comple-
xity order is 𝐾on𝑁T

3. It is easy to note that, for high order MIMO applications, where
dozens or even hundreds of antennas are used, not only solving the entire system may
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requires prohibitive computational cost but also other challenging aspects arise, e.g. high
signaling coordination on MIMO channel estimation, considering each transmitting an-
tenna.

3.2.2 Non-Orthogonal Multicarrier MIMO Factorization

In this section, we describe the NO waveform SM-MIMO factorization concepts
proposed in [1]. We follow a similar approach to that used in Section 3.2.1, contributing
with a formal mathematical representation to decompose the system. Additionally, we
provide visual analysis based on a given example.

Retrieving the definitions for the GFDM from Section 2.2, we parameterize the
system to obtain a NO multicarrier waveform with 𝑀 > 1 employing a prototype pulse
with non-orthogonal characteristics in both time and frequency domains. To better un-
derstand such system, we consider, again, the noiseless case from (3.5). From Table 5
𝑁T=𝑁R=2, CP≥𝐿-1, 𝐿=3 samples and h⃗∼ 𝒞𝒩 (0⃗, I𝐿), while choosing RC pulse with
𝛼=1, 𝑀=3 and 𝐾=𝐾on=4 (leading to 𝑁=12, the same number of resources used in the
orthogonal case), results in a simple example of a NO-SM-MIMO system based on GFDM,
graphically represented in the TD by Figure 17.

y⃗ H̃ d⃗

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 17 – Transform matrix structure for the non-orthogonal multicarrier MIMO sys-
tem in the TD.

It is obvious that a solution in the TD involves an undesired and even prohibitive
𝑁R𝑁 ×𝑁T𝑁on matrix inversion for the entire transformation matrix H̃. Similarly to the
orthogonal case, it is advantageous to represent this system in the frequency domain.
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Thus, recalling (3.6) and (3.5), we can redefine y⃗f for the NO waveform as

y⃗f =(I𝑁R ⊗ F𝑁)HḠd⃗

=
H

(I𝑁R ⊗ F𝑁)HḠŪH⏟  ⏞  
Hf

Ūd⃗⏟ ⏞ 
d⃗f

. (3.10)

Here, Ū ∈ C𝑁T𝑁on×𝑁T𝑁on is a specific orthonormal matrix, designed to organize the ele-
ments of d⃗ in groups of subcarriers followed by an 𝑀 -point DFT operation over each
subcarrier group. The matrix Ū is given by

Ū = {I𝑁T ⊗ [(I𝐾on ⊗ F𝑀)P]}, (3.11)

where F𝑀 is an 𝑀 -point DFT matrix and P ∈ B𝑁on×𝑁on is an orthonormal data permuta-
tion matrix, responsible for reorganizing the data symbols in groups of subcarriers. Figure
18 exemplifies the relationship between d⃗ and d⃗f and the aspect of the data transform
matrix Ū.

d⃗f Ū d⃗

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 18 – Example of a discrete data transform employing the extended matrix Ū,
responsible for reorganizing the data sequence and domain conversion.

The elements of P are obtained as

𝑃𝑝,𝑞 =

⎧⎪⎨⎪⎩ 1 for 𝑝 = 0, · · · , 𝑁on − 1, 𝑚 = ⟨𝑝⟩𝑀 and 𝑞 = ⟨𝑝−𝑚⟩𝑁on
𝑀

+ 𝑚𝐾on,

0 otherwise.
(3.12)

Left multiplying a general matrix by P leads to row permutation, equivalent to grouping
data symbols by subcarrier. Right multiplying a general matrix by P transpose implies
in column permutation or grouping by subsymbols. For the parameters used as example
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in Table 5, the permutation matrix is given by

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

The resulting structure of (3.10) can be visualized in Figure 19, showing a color
map grid relative to the magnitude of the respective elements in y⃗f, Hf and d⃗f.

y⃗f Hf d⃗f

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 19 – Transform matrix structure for the non-orthogonal system in FD.

Analyzing Figure 19, there is a well structured arrangement. Following the same
approach from Section 3.2.1, applying the permutation matrices defined in (3.8) and (3.9)
reorganizes the system structure in a more practical way, aiming for storage and parallel
computation. For the parameters presented in Table 5, the non-zero columns indexes of
PR and PT are

𝑞 = [0, 12, 3, 15, 6, 18, 9, 21, 1, 13, 4, 16, 7, 19, 10, 22, 2, 14, 5, 17, 8, 20, 11, 23]T.

Once again, left multiplying y⃗f by the receiver side permutation matrix PR leads
to a structure depicted in Figure 20. This operation allows for reorganizing the factori-
zed system into 𝑀 subsystems with 𝑁T𝐾on unknowns, whose transformation matrix has
dimension 𝑁R𝐾 ×𝑁T𝐾on each, mainly given by a band-diagonal matrix.

The MF demodulation of the factorized system is illustrated by Figure 21, stan-
ding out the Gram matrix (PRHfPT

T)H(PRHfPT
T), containing 𝑀 square band-diagonal

sub-matrices with dimension (𝑁T𝐾on) and full bandwidth length 2𝑁T. Ideally, the Gram
matrix contains 𝑛u = 𝑛l = 2𝑁T−1 nonzero upper and lower diagonals, respectively. On the
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PRy⃗f PRHfPT
T PTd⃗f

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 20 – Reorganized structure of the NO multicarrier MIMO system factorization.

(PRHfPT
T)HPRyf (PRHfPT

T)H(PRHfPT
T) PTd⃗f

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 21 – MF demodulation for the factorized non-orthogonal multicarrier MIMO sys-
tem.

contrary, it is possible to approximate the Gram matrix to this ending by annulling non-
zero off-band-diagonals. As also stated in Chapter 2, the MF solution (PRHfPT

T)H(PRy⃗f)
is unable to deal with the intrinsic system interference.

Recalling the ZF solution, which, in this specific noiseless example case, coincides
with the MMSE approach, it precisely recovers the permuted FD data PTd⃗f, shown in
Figure 22. At a first glance, solving each system would require at least a full subsystem
matrix inversion, on the order of (𝑁T𝐾on)3, which remains undesirable and insufficient
for a reasonable complexity reduction.

It is notable that the factorization procedure proposed in [1] indeed results in a new
system representation, more adapted for storage and parallel computation with a great
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PTd⃗f [(PRHfPT
T)H(PRHfPT

T)]−1 (PRHfPT
T)HPRyf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 22 – ZF demodulation for the factorized non-orthogonal multicarrier MIMO sys-
tem.

potential to achieve a substantial complexity reduction when employing a NO waveform
based on GFDM. In [78], an algorithm is proposed to estimate the diagonal of an inverse
matrix without explicitly calculating this inverse by exploring its band-diagonal structure
[60]. Without going into details here, it is possible to reduce the complexity from cubic
order on dimension to linear in number of active subcarriers, and cubic only on the single-
side bandwidth length of the band-diagonal matrix. It would be more effective to address
this subject in the next chapter.

3.3 GFDM Factorized SM-MIMO Model

This section explains how each factorized sub-system can be constructed using the
introduced permutation matrices and proper indexation. This process results in indepen-
dent and reduced problems that are well-suited for parallel computing. Resembling the
system in the form of (3.5), reproduced here for convenience,

y⃗ =H̃d⃗ + w⃗ = HḠd⃗ + w⃗, (3.13)

which describes the linear relation between the received signal y⃗ and the transmitted
data sequence d⃗, where H̃ is a 𝑁R𝑁×𝑁T𝑁on transform matrix. Last sections demonstrate
graphical examples of the factorization procedure based on [1], illustrated by Figures 16
and 20. Although slightly different, both cases can be represented by

PRy⃗f =PRHfPT
TPTd⃗f + PRw⃗f, (3.14)

where the received signal in FD equals to

PRy⃗f =PR (I𝑁R ⊗ F𝑁) y⃗, (3.15)
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the entire system transformation matrix, also in FD, expands to

PRHfPT
T =PR (I𝑁R ⊗ F𝑁) HḠŪHPT

T

=PR (I𝑁R ⊗ F𝑁) H (I𝑁T ⊗G) {I𝑁T ⊗ [(I𝐾on ⊗ F𝑀) P]}H PT
T, (3.16)

the transmitted information and the receiver additive noise, both in FD, are respectively
given by

PTd⃗f =PTŪd⃗ = PT {I𝑁T ⊗ [(I𝐾on ⊗ F𝑀) P]} d⃗, (3.17)

and

PRw⃗f =PR (I𝑁R ⊗ F𝑁) w⃗. (3.18)

With the help of suitable row and column indexes

p⃗ = [𝑚𝑁R𝐾 + 1 : (𝑚 + 1)𝑁R𝐾] and q⃗ = [𝑚𝑁T𝐾on + 1 : (𝑚 + 1)𝑁T𝐾on], (3.19)

equation (3.14) can be rewritten as 𝑀 linear subsystems, each one carrying 𝑁T𝐾on data
symbols amid system-interference and additive noise, explicit given by

y⃗s[𝑚] =(PRy⃗f)[p⃗], (3.20)
Hs[𝑚] =(PRHfPT

T)[p⃗, q⃗] (3.21)
d⃗s[𝑚] =(PTŪd⃗)[q⃗] (3.22)
w⃗s[𝑚] =(PRw⃗f)[p⃗]. (3.23)

Omitting all indexes for notation simplicity, the GFDM linear subsystem repre-
sentation is given by

y⃗s = Hsd⃗s + w⃗s, (3.24)

where subscript (s) refers to the corresponding factorized subsystems in the frequency
domain s.t. y⃗s ∈ C𝑁R𝐾×1 being the observable vector and Hs ∈ C𝑁R𝐾×𝑁T𝐾on being the
equivalent system transform matrix, including MIMO channel and multi-resource modu-
lation. For the discrete random vector d⃗, built from a finite alphabet 𝒞 ∈ C𝑀c×1, with 𝑀c

distinct members, it is reasonable to assume d⃗s ∈ C𝑁T𝐾on×1 being a continuous gaussian
random vector after the FD analysis of the corresponding 𝑚th subsymbol. The AWGN is
represented by w⃗s ∈ C𝑁R𝐾×1. The original data sequence can be obtained performing

^⃗d = ŪHPT
T[^⃗ds0 ; . . . ; ^⃗ds𝑚 ; . . . ; ^⃗ds𝑀−1 ]. (3.25)
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3.3.1 Generic Factorized Linear Model

In order to obtain a generic factorized linear model in FD, we can rewrite (3.24)
from the subsystem perspective while omitting the subscript (s), yielding to

y⃗ = Hd⃗ + w⃗. (3.26)

The dimensions of the subsystem can be generally defined as shown in Table 6. For
𝑀 = 1, the system can be decomposed according to subsection 3.2.1, when the GFDM is
parameterized to mimic the OFDM. On other cases, it is necessary to proceed according
to 3.2.2. This approach simplifies the description of the linear estimation process and
detection techniques, allowing for an analysis of complexity that is independent of the
waveform nature, whether orthogonal or not.

It is worth mentioning that, if the elements of d⃗ are continuous Gaussian RVs
(Random Variables) in the factorized domain, it might be necessary to employ suitable
linear transformations for domain conversion, from discrete to factorized domain and vice-
versa. These transforms are useful when the estimation or detection method depends solely
on discrete data sequence from the constellation set 𝒞. This is a common requirement for
lattice-based detectors since they are exclusively built as a finite lattice whose nodes
are discrete hypotheses. In such cases, it is possible to incorporate the domain conversion
transform into H. For example, when the factorization occurs in FD, it might be necessary
to incorporate F𝑞 into H in order to accept discrete data sequences in TD as input
argument.

Table 6 – Generic factorized subsystem dimension as a function of parameter 𝑀 .

subsystem dimension
Parameter 𝑀=1 𝑀>1 Generic

y⃗ 𝑁R×1 𝑁R𝐾×1 𝑝×1
H 𝑁R×𝑁T 𝑁R𝐾×𝑁T𝐾on 𝑝×𝑞

d⃗ 𝑁T×1 𝑁T𝐾on×1 𝑞×1
w⃗ 𝑁R×1 𝑁R𝐾×1 𝑝×1

#subsystems 𝐾on 𝑀 𝑠

Following chapters will repeatedly reference this model. Note that, in order to
benefit from system factorization, we must be able to estimate or detect all discrete
information sequences in any domain, preferably in a parallel approach.

3.4 Summary

This chapter presented the MIMO principlesemploying a linear model through a
transformation matrix encompassing the MIMO transmission channel and a generic mo-
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dulation matrix, in line with the GFDM proposal. Further, we described the SM-MIMO
system factorization for the orthogonal and NO GFDM waveforms, which can be consi-
dered as a key requirement to succeed on the practical implementation of a SM-MIMO-
GFDM system. Next chapters review linear estimation and detection techniques suitable
for retrieving the transmitted data, aiming to achieve both diversity and multiplexing
gains when employing the NO GFDM waveform.
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4 Fundamentals on Linear Estimation

Within digital communications, the estimation process requires selecting a hy-
pothesis from an infinite set of possibilities, based on specific predefined criteria. Channel
estimation serves as a prime example in communication systems, where the receiver must
estimate the channel impulse response or frequency response, aiming to minimize the
MSE (Mean Squared Error). This chapter examines data linear estimation algorithms,
discussing their derivations and estimated complexity based on the definitions presented
in Section 1.8. These estimators are useful for data recovering when multiple transmit and
receive antennas are employed to achieve SM gain. They work by estimating the channel
state information CSI (Channel State Information), which is essential for decoding the
received signals accurately. This process involves complex algorithms that can handle the
interference and noise present in the communication channel. Although the estimation
techniques are widely used in CSI recovery, only data estimation problem is addressed,
making several assumptions about the MIMO transmission channel: it is considered to
be an uncorrelated frequency-selective and time-variant channel, perfectly known by the
receiver, and the coherence time is larger than the symbol block length. Additionally, it
is assumed perfect time and frequency synchronization among the transmitters and recei-
vers. This chapter concludes with an analysis of the energy efficiency and complexity of
the reviewed estimators.

4.1 Linear Estimation Function

As presented in Chapter 3, the digital communication system admits different
linear representations depending on the analysis domain and the structure under investi-
gation. From the estimator perspective, few parameters are sufficient to describe a certain
linear system in the form of (3.4): an observable random vector y⃗ ∈ C𝑝×1, a known linear
transformation matrix H ∈ C𝑝×𝑞 and the non-observable random vector x⃗ ∈ C𝑞×1, whose
elements are assumed to be continuous Gaussian random variables, for which an estimate
is desired amid the presence of the noise vector w⃗ ∈ C𝑝×1. Hence, considering the generic
description above, the linear system used along this section is

y⃗ = Hx⃗ + w⃗. (4.1)

Following a similar notation as in [1], the estimation function Θ is given by

(�⃗�p
x⃗, Σp

x⃗) = Θ
[︁
y⃗ = Hx⃗ + w⃗, 𝒞𝒩 (�⃗�a

x⃗, Σa
x⃗) , 𝒞𝒩

(︁
0⃗, Σa

w⃗

)︁]︁
(4.2)
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where �⃗�x⃗ ∈ C𝑞×1, Σx⃗ ∈ C𝑞×𝑞 and Σw⃗ ∈ C𝑝×𝑝 are, respectively, the expected value and the
covariance of the corresponding subscripted random data, while the superscripts a and p
means a-priory and posterior information, in this order. The parameter Σx⃗ can also be
interpreted as the uncertainty on the expected value of x⃗.

In function (4.2), three input arguments are utilized. The first argument represents
the linear system model, while the second and third describe the prior distribution cha-
racteristics of the non-observable data vector and the additive noise process, respectively.
The output arguments are the posterior or the refined expectation and covariance of the
estimated data. The estimate can also be represented as a linear equalizer

�⃗�x⃗ = Wy⃗ + z⃗, (4.3)

where W and z⃗ are, respectively, the coefficient matrix and an offset vector, properly
designed to achieve MMSE for given constraints. The dimension of involved parameters
are implicit obtained by the input arguments parser and stored in the integer variables,
i.e. 𝑝 and 𝑞. Figure 23 illustrates a block diagram representation of (4.2) where different
estimation techniques are identified according to Θ function subscript.

Θ·
(�⃗�, H, Σa

�⃗�)

(�⃗�a
�⃗�, Σa

�⃗�)

�⃗�p
�⃗�

Σp
�⃗�

Figure 23 – Linear estimator function block.

Following sections intend to present different techniques to estimate the transmit-
ted data taking each subsystem from the factorized structure, described in Section 3.2.2,
as the input argument for the linear model.

4.2 LMMSE Estimator

The LMMSE [79, 59] refers to a simplified implementation of the classic MMSE
estimator, constrained to be linear, yielding to sub-optimal performance. Basically, this
estimator seeks to minimize the MSE E{(x⃗− �⃗�x⃗)(x⃗− �⃗�x⃗)H} of the estimate in (4.3) for
the linear system given by (4.1). Addressing (4.2), Θl is obtained performing

�⃗�p
x⃗ =Σa

x⃗HH
(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
(y⃗−H�⃗�a

x⃗) + �⃗�a
x⃗ (4.4)

and

Σp
x⃗ =Σa

x⃗ −Σa
x⃗HH

(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
HΣa

x⃗. (4.5)
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A complete derivation of these expressions is available in Appendix A. The LMMSE
estimator is globally unbiased once E{�⃗�p

x⃗} = E{x⃗}, where the global attribute indicates
that the unbiasedness condition only occurs for the whole observations of x⃗ w.r.t. the true
parameter value �⃗�x⃗.

Algorithm 1 LMMSE
1: Σa

x⃗HH

2: (HΣa
x⃗HH + Σa

w⃗)−1

3: (y⃗−H�⃗�a
x⃗)

4: �⃗�p
x⃗ = Σa

x⃗HH
(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
(y⃗−H�⃗�a

x⃗) + �⃗�a
x⃗

5: Σp
x⃗ = Σa

x⃗ −Σa
x⃗HH

(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
(Σa

x⃗HH)H

Return: (�⃗�p
x⃗, Σp

x⃗)

With the help of Table 1, it is possible to evaluate the associated computational
complexity in Algorithm 1, in terms of FLOPs, which is given by

𝒪l(4𝑝3 + 24𝑝2𝑞 + 16𝑞2𝑝 + 8𝑝2 + 10𝑝𝑞 + 10𝑝). (4.6)

The LMMSE complexity is mainly dictated by the 𝑝 × 𝑝 matrix inversion with cubic
complexity order on 𝑝.

4.3 Steepest Descent Estimator

The STPD is an iterative procedure that can be applied to LMMSE and other
estimators, not limited solely to MMSE performance criteria. In particular, applying the
STPD procedure to linear estimation problem may allows, under certain convergence
conditions, to reduce its overall complexity once no matrix inversion is necessary. As a
result, the STPD scheme can achieve the same MSE performance as the LMMSE. Consider
the STPD linear estimate in the form of (4.3). The coefficient matrix W ∈ C𝑞×𝑝 can be
approximated in a interactive fashion by

W𝑡 =W𝑡−1 + 𝛿
[︁
Σa

x⃗HH −W𝑡−1
(︁
HΣa

x⃗HH + Σa
w⃗

)︁]︁
, (4.7)

where 𝑡 is an iteration index and 𝛿 is the step-size parameter with an important role
on algorithm convergence. This is a crucial parameter and should be chosen carefully or
designed to ensure a reasonable trade-off between convergence speed and stability [80]. It
is important to notice that the STPD performs successive step searches in the opposite
gradient direction for all random variables at once, possible leading to small misdirection
perturbation, impacting the convergence behavior. The STPD estimator function Θstpd

is evaluated at iteration 𝑡 by

�⃗�p
x⃗ =W𝑡(y⃗𝑡 −H�⃗�a

x⃗) + �⃗�a
x⃗, (4.8)

Σp
x⃗ =Σa

x⃗ −
[︁
(Σa

x⃗HHWH
𝑡 )H + Σa

x⃗HHWH
𝑡

]︁
+ W𝑡

(︁
HΣa

x⃗HH + Σa
w⃗

)︁
WH

𝑡 . (4.9)
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As W𝑡 converges, (4.9) approaches the final LMMSE. It is worth to mention that
(4.8) do not employ matrix inversion. Instead, a certain amount of iterations must be
considered to achieve convergence. Furthermore, prior knowledge of the signal statistics
are required and, at 𝑡=0, W−1 might be initialized as a null matrix. The derivation of
(4.7), (4.8) and (4.9) is described in Appendix B. Algorithm 2 summarizes the STPD
estimator.

Algorithm 2 STPD
Initialize:

1: W−1 = 0
2: 𝑡 = 0

Update Statistics:
3: Σa

x⃗HH

4: (HΣa
x⃗HH + Σa

w⃗)
Iterate:

5: W𝑡 = W𝑡−1 + 𝛿
[︁
Σa

x⃗HH −W𝑡−1
(︁
HΣa

x⃗HH + Σa
w⃗

)︁]︁
% complexity: 8𝑝2𝑞 + 2𝑝𝑞 + 2

Estimate:
6: Σa

x⃗HHWH
𝑡

7: �⃗�p
x⃗ = W𝑡(y⃗𝑡 −H�⃗�a

x⃗) + �⃗�a
x⃗

8: Σp
x⃗ = Σa

x⃗ −
[︁
(Σa

x⃗HHWH
𝑡 )H + Σa

x⃗HHWH
𝑡

]︁
+ W𝑡

(︁
HΣa

x⃗HH + Σa
w⃗

)︁
WH

𝑡

9: 𝑡 = 𝑡 + 1
Return: (�⃗�p

x⃗, Σp
x⃗)

Algorithm 2 is partitioned in four segments, enabling the optimization of execution
complexity. For instance, if the statistics remain unchanged, it is more efficient to iterate
through only line 5 before estimation. On the other hand, if intermediary estimates are
needed while a-priory information may vary, an option is to execute the entire algorithm
except the initialization. The overall complexity for Algorithm 2, considering non-sparse
transform matrices and 𝑡 iterations, is given by

𝒪s
(︁
16𝑝2𝑞 + 24𝑞2𝑝 + 2𝑞2 + 12𝑝𝑞 + 𝑡(8𝑝2𝑞 + 2𝑞𝑝 + 2)

)︁
. (4.10)

Notice that 𝒪s refers to the computational effort per iteration. If we only consider the
steps necessary for expectation estimate of �⃗�p

x⃗ and not its associated variance Σp
x⃗, the com-

plexity is more restrained than LMMSE. For both parameters estimation, STPD is even
more complex, which reduces the appeal to use this estimator. Commonly, when 𝑝 = 𝑞,
the complexity is still cubic on system dimension, which is insufficient for computational
savings.

Both LMMSE and STPD result in biased estimation since the effective channel
matrix after filtering, i.e. Σa

x⃗HH
(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
H, from (4.5), does not have a unit

diagonal. Next section briefly analyzes an unbiased LMMSE estimator known as CWCU-
LMMSE.
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4.4 CWCU-LMMSE Estimator

The CWCU-LMMSE is a constrained linear and conditionally unbiased version of
MMSE estimator, where the conditional expectation of each estimated component �̂� is
individually forced to be equivalent to its associated indirect observable random variable
𝑥 [59]. As the CWCU-LMMSE performs unbiased estimation, it can not outperform the
LMMSE estimator in a MSE criteria, since it seeks to minimize the estimation error under
the additional constraint E{�̂�|𝑥} = 𝑥. The corresponding estimator function Θc is

�⃗�p
x⃗ =�⃗� ∘HH

(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
(y⃗−H�⃗�a

x⃗) + �⃗�a
x⃗, (4.11)

diag (Σp
x⃗) =�⃗� − diag (Σa

x⃗) , (4.12)

where, in the context of Section 4.1, �⃗� ∈ R𝑞×1 is a weighting vector given by

�⃗� =1⃗⊘ diag
(︂

HH
(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
H
)︂

. (4.13)

A detailed derivation of these expressions is available in Appendix C. Equation (4.11)
is closed related to LMMSE estimator in (4.4), except by the weighting vector product
instead of a matrix-matrix multiplication. Moreover, the estimate variance (4.12) is ob-
tained with less operations. Hence, the CWCU-LMMSE procedure can be complemented
by including (4.13) according to Algorithm 3.

Algorithm 3 CWCU-LMMSE
1: Σa

x⃗HH

2: (HΣa
x⃗HH + Σa

w⃗)−1

3: (y⃗−H�⃗�a
x⃗)

4: �⃗� = 1⃗⊘ diag
(︂

HH
(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
H
)︂

5: �⃗�p
x⃗ = �⃗� ∘HH

(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
(y⃗−H�⃗�a

x⃗) + �⃗�a
x⃗

6: diag (Σp
x⃗) = �⃗� − diag (Σa

x⃗)
Return: (�⃗�p

x⃗, Σp
x⃗)

The resulting complexity executing Algorithm 3 is

𝒪c

(︂
4𝑝3 + 16𝑝2𝑞 + 8𝑞2𝑝 + 8𝑝2 + 14𝑝𝑞 + 10𝑝 + 4𝑞

)︂
, (4.14)

again, mainly dictated by the 𝑝 × 𝑝 matrix inversion with cubic complexity order on 𝑝

and other matrices product.

4.4.1 Low Complexity CWCU-LMMSE Estimator

In order to avoid redundant computations, the CWCU-LMMSE estimator can
be modified, as referenced in [61], computing the Gram matrix HHH ∈ C𝑞×𝑞 and the
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matched-filter output y⃗MF = HHy⃗ prior to iterative detection. In every iteration, the
estimation is performed based only on the previous computation of these parameters,
which roughly halves the number of complex multiplications. The resulting low-complexity
Θlc estimator is obtained rewriting (4.11) and (4.13), yielding to

�⃗�p
x⃗ =�⃗� ∘

(︁
HHHΣa

x⃗ + Σa
w⃗

)︁−1 (︁
HHy⃗−HHH�⃗�a

x⃗

)︁
+ �⃗�a

x⃗ (4.15)

and

�⃗� =1⃗⊘ diag
(︂(︁

HHHΣa
x⃗ + Σa

w⃗

)︁−1
HHH

)︂
, (4.16)

while reusing (4.12) to obtain the estimate variance. This procedure is summarized in
Algorithm 4.

Algorithm 4 Low Complexity CWCU-LMMSE
Initialize:

1: HHH
2: y⃗MF = HHy⃗
3: Σa

w⃗ = 𝜎2
w⃗I

4: �⃗�a
x⃗ = 0⃗, Σa

x⃗ = I, Σp
x⃗ = I

Iterate:
5: (HHHΣa

x⃗ + Σa
w⃗)−1

6: (y⃗MF −HHH�⃗�a
x⃗)

7: �⃗� = 1⃗⊘ diag
(︂(︁

HHHΣa
x⃗ + Σa

w⃗

)︁−1
HHH

)︂
8: �⃗�p

x⃗ = �⃗� ∘
(︁
HHHΣa

x⃗ + Σa
w⃗

)︁−1 (︁
y⃗MF −HHH�⃗�a

x⃗

)︁
+ �⃗�a

x⃗
9: diag (Σp

x⃗) = �⃗� − diag (Σa
x⃗)

Return: (�⃗�p
x⃗, Σp

x⃗)

Algorithm 4 is an interesting option for the orthogonal detection case, depending
on system order, where the PIC procedure is decomposed into 𝐾on subsystems with non-
sparse transform matrices of dimension 𝑁R ×𝑁T. The Algorithm 4 complexity is

𝒪lc

(︂
12𝑞3 + 30𝑞2 + 14𝑞

)︂
. (4.17)

Next subsection briefly reviews an approximation for the CWCU-LMMSE estimator ex-
ploiting band-diagonal systems with noticeable complexity reduction.

4.4.2 Band-diagonal Low Complexity CWCU-LMMSE Estimator

In [60], the authors propose an algorithm that can exploit the structure of a band-
diagonal transform matrix H ∈ C𝑝×𝑞 for an iterative implementation of a CWCU-LMMSE
estimator with reduced complexity, denominated here as Θlcl. Hence, assuming Σx⃗ strictly
diagonal, the estimate outputs are given by

�⃗�p
x⃗ =𝜉 ⊘ �⃗� + �⃗�a

x⃗, (4.18)
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diag (Σp
x⃗) =1⃗⊘ �⃗� − diag (Σa

x⃗) , (4.19)

where

𝜉 =W−1
(︁
y⃗MF −HHH�⃗�a

x⃗

)︁
, (4.20)

�⃗� =diag
(︁
W−1HHH

)︁
, (4.21)

with

y⃗MF =HHy⃗ = HHHx⃗ + HHw⃗, (4.22)

W =HHHΣa
x⃗ + 𝜎2

w⃗I𝑞 (4.23)

and HHH ∈ C𝑞×𝑞 being a square band-diagonal Gram matrix with dimension 𝑞 = 𝑧𝑠,
single-side bandwidth 𝑠 and 2𝑠− 1 upper and lower diagonals. The noise variance can be
obtained by 𝜎2

w⃗ = tr(Σa
w⃗)/𝑝.

Instead of directly inverting (4.23) to obtain (4.18) and (4.19), it is preferable to
define two linear systems,

W𝜉 =y⃗MF −HHH�⃗�a
x⃗ (4.24)

and

Wϒ =HHHM, (4.25)

where M ∈ R𝑞×2⌈𝑠⌉2 is an arbitrary real matrix, i.e. M = ℋT[1 : 𝑞, 1 : ⌈2𝑠⌉2], or the first 𝑞

rows and first ⌈2𝑠⌉2 columns of the transposed Hadamard matrix ℋ with dimension ⌈𝑞⌉2,
s.t. the off-diagonal elements of MMT are zero where W−1HHH is non-zero [60, 78].

Then, solving the banded linear systems (4.24) and (4.25) employing specific op-
timized algorithms [65, Functions zgbtrf, zgbtrs], leads to

�⃗� ≈ (M ∘ϒ)1⃗⊘ (M ∘M)1⃗. (4.26)

Algorithm 5 summarizes the low complexity CWCU-LMMSE procedure when the
transform matrix is banded. Note that, at first interaction, in case of a-priory information
is not available, line 8 initializes these parameters. Without entering in details now, the
idea behind this algorithm is refining estimates after soft demodulation and decoding.
Soft bits are then mapped into soft symbols and fed back as a-priory information for
next interaction. This recursive behavior takes place as much as necessary in a tentative
to approach a required BER (Bit Error Rate) target. This concept is known as iterative
detection and it is addressed with further details in Chapter 6.
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Algorithm 5 Band-diagonal Low Complexity CWCU-LMMSE
Initialize:

1: HHH
2: 𝜎2

w⃗ = tr(Σa
w⃗)/𝑝

3: ℋ = Hadamard(⌈𝑞⌉2)
4: M = ℋT[1 : 𝑞, 1 : ⌈2𝑠⌉2]
5: HHHM
6: (M ∘M)1⃗
7: y⃗MF = HHy⃗
8: �⃗�a

x⃗ = 0⃗, Σa
x⃗ = I, Σp

x⃗ = I
Iterate:

9: W = HHHΣa
x⃗ + 𝜎2

w⃗I𝑞

10: LU = LU(W) % zgbtrf function

11: 𝜉 = LU−1
(︁
y⃗MF −HHH�⃗�a

x⃗

)︁
% solve (4.24) via zgbtrs function

12: ϒ = LU−1HHHM % solve (4.25) via zgbtrs function
13: �⃗� ≈ (M ∘ϒ)1⃗⊘ (M ∘M)1⃗
14: �⃗�p

x⃗ = 𝜉 ⊘ �⃗� + �⃗�a
x⃗

15: diag (Σp
x⃗) = 1⃗⊘ �⃗� − diag (Σa

x⃗)
Return: (�⃗�p

x⃗, Σp
x⃗)

Only initialization process counts 8𝑠3𝑧 + 2𝑠2𝑧(4⌈2𝑠⌉2 + 3)− 2𝑠𝑧⌈2𝑠⌉2 + 1 FLOPs
while the overall complexity on every iteration of Algorithm 5 is given by

𝒪lcl

(︂
32𝑠3𝑧 + 56𝑠2𝑧⌈2𝑠⌉2 − 42𝑠𝑧⌈2𝑠⌉2 + 48𝑠2𝑧 − 9𝑠𝑧

)︂
, (4.27)

mainly governed by lines 10 to 12, with cubic complexity order only on 𝑠, though limited
to a band-diagonal linear system.

Next subsection shortly revisits a low complexity CWCU-LMMSE approximation
based on CG (Conjugate Gradient) with applications in time-to-frequency conversion
estimates and vice-versa.

4.4.3 CG-based Low Complexity CWCU-LMMSE Estimator

According to [60], an algorithm suitable for a specific application of interest is
resorted to. Recall from Section 3.2 that the system factorization takes place in the fre-
quency domain. Therefore, it is essential to execute efficient conversions between the
time and frequency domains, especially when employing iterative detection methods. In
this sense, assuming H = F𝑞 for the specific case of time-domain data estimation based
on frequency-domain observation, where H holds the normalized unitary property s.t.
HHH = I and HH = H−1, allows to rewrite (4.11) and (4.13) as

�⃗�p
x⃗ =�⃗� ∘

(︁
Σa

x⃗ + HHΣa
w⃗H

)︁−1 (︁
HHy⃗− �⃗�a

x⃗

)︁
+ �⃗�a

x⃗, (4.28)
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and

�⃗� =1⃗⊘ diag
(︂(︁

Σa
x⃗ + HHΣa

w⃗H
)︁−1

)︂
. (4.29)

The central idea of the algorithm is to avoid the matrix inversion in (4.28) by
estimating

^⃗x =A−1b⃗ =
(︁
Σa

x⃗ + HHΣa
w⃗H

)︁−1 (︁
HHy⃗− �⃗�a

x⃗

)︁
, (4.30)

for the linear model Ax⃗ = b⃗, with the right-hand side b⃗ = (HHy⃗− �⃗�a
x⃗) when A is a highly

structured matrix by being the sum of a positive definite diagonal and a circulant matrix.
This is exactly the case when H is a 𝑞-point DFT kind matrix and Σ parameters are
approximately diagonal in (4.30). To this end, CG is considered for the estimator function
Θcg. This iterative procedure is capable to converge in a finite number of iterations with
relative low complexity [81]. The solution is refined interactively and the step-search is
performed in the conjugate direction with a movement towards the best solution [79].
As the CG method requires an initial starting point to determine the step size and the
direction prior to update the solution, [60] suggests using the following approximation

diag
(︁
A−1

)︁
≈ 1⃗⊘ diag

(︁
Σa

x⃗ + 1
𝑞
tr (Σa

w⃗) I
)︁

. (4.31)

Algorithm 6 describes the CG procedure adopting usual nomenclature identifica-
tion for the local variables. With exception of the initialization steps, targeted to address
(4.30) under the aforementioned assumptions, this algorithm can be used to solve general
system of equations when A is a positive-definite matrix. In line 5, the starting point is
defined following the approximation in (4.31), allowing to initialize the residual error and
the search direction at line 6, in this order. In iterative section, line 9 updates the step-size
s.t. the residual error be orthogonal w.r.t. current searching line and immediately refines
the solution. The residual error is updated at line 11. In CG, each new residual error is
made orthogonal to all previous residual and search directions. If the resulting error is
greater than or equal to the MSE target and not all search directions have been iterated,
lines 13 and 14 ideally ensure that current and next search directions are conjugate or
A-orthogonal [81]. On the contrary, CG has already achieved convergence and low com-
plexity CWCU-LMMSE is obtained executing steps 19 to 21. This avoids a division by
zero after convergence, when the residual error approaches zero. The overall complexity
on Algorithm 6, considering 𝑡 iterations, is

𝒪cg

(︂
20𝑞2 + 11𝑞 + 2𝑞 log(𝑞) + 𝑡(16𝑞2 + 37𝑞 − 1) + 1

)︂
. (4.32)

Further details on applications of the CG-based and the band-diagonal low com-
plexity CWCU-LMMSE estimators are available in Chapter 6.
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Algorithm 6 CG-based Low Complexity CWCU-LMMSE
Initialize:

1: Σp
x⃗ = I

2: A = (Σa
x⃗ + HHΣa

w⃗H)
3: b⃗ = HHy⃗− �⃗�a

x⃗
4: diag (A−1) ≈ 1⃗⊘ diag

(︁
Σa

x⃗ + 1
𝑞
tr (Σa

w⃗) I
)︁

5: ^⃗x0 = diag (A−1) ∘ b⃗
6: r⃗0 = b⃗−A^⃗x0, d⃗0 = r⃗0
7: 𝑡 = 0, 𝑒 = MSE target

Iterate:
9: 𝛼𝑡 = r⃗H

𝑡 r⃗𝑡

d⃗H
𝑡 Ad⃗𝑡

10: ^⃗x𝑡+1 = x⃗𝑡 + 𝛼𝑡d⃗𝑡

11: r⃗𝑡+1 = r⃗𝑡 − 𝛼𝑡Ad⃗𝑡

12: if
(︂

r⃗H
𝑡+1r⃗𝑡+1

𝑞
≥ 𝑒

)︂
and (𝑡 < 𝑞 − 1) then

13: 𝛽𝑡 = r⃗H
𝑡+1r⃗𝑡+1

r⃗H
𝑡 r⃗𝑡

14: d⃗𝑡+1 = r⃗𝑡+1 + 𝛽𝑡d⃗𝑡

15: 𝑡 = 𝑡 + 1
16: else
17: break
18: end if
Estimate:
19: �⃗� = 1⃗⊘ diag (A−1)
20: �⃗�p

x⃗ = �⃗�a
x⃗ + �⃗� ∘ ^⃗x𝑡+1

21: diag (Σp
x⃗) = �⃗� − diag (Σa

w⃗)
Return: (�⃗�p

x⃗, Σp
x⃗)

4.5 Maximum a Posteriori Estimator

The MAP (Maximum a Posteriori) estimator is an useful approach to incorporate
prior information into the data estimation problem. The MAP estimator is based on
posterior probability maximization and it is close related to MAP hypothesis testing [82].
Although the MAP estimator could, in some cases, result in optimum estimates, like
the MSE, it can be cumbersome (or even prohibited) to determine the exactly posterior
probability function. In general, the MAP estimate of the RV X⃗ given the observation
Y⃗ = y⃗ is

�⃗�p
x⃗ = argmax

x⃗
𝑓X⃗|Y⃗(x⃗ | y⃗), (4.33)

where 𝑓X⃗|Y⃗(x⃗ | y⃗) is the conditional distribution function of X⃗ given Y⃗ = y⃗.

Retrieving the definition of the iid (independent and identically distributed) com-
plex Gaussian random vectors x⃗ and y⃗ from section 4.1, connected through the linear
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model in (4.1), the a-priory cross covariance can be described in terms of the independent
RV as

Σa
x⃗y⃗ = Σa

x⃗HH = (Σa
y⃗x⃗)H. (4.34)

Similarly, the expectancy and covariance are given by

�⃗�a
y⃗ =H�⃗�a

x⃗, (4.35)
Σa

y⃗ =HΣa
x⃗HH + Σa

w⃗. (4.36)

These matrices are, in general, part of the linear estimation solution and are also
present in the associated error covariance matrix of the estimator, a common parameter
used in performance analysis. The conditional PDF (Probability Density Function) is given
by the bi-variate complex Gaussian distribution [83] as

𝑓X⃗|Y⃗(x⃗ | y⃗) =𝜋−1det (Σ)−1 exp
[︁
− (x⃗− �̃�)H Σ−1 (x⃗− �̃�)

]︁
(4.37)

where det(·) is the determinant operator,

Σ = Σa
x⃗ −Σa

x⃗y⃗(Σa
y⃗)−1Σa

y⃗x⃗ (4.38)

and

�̃� = �⃗�a
x⃗ + Σa

x⃗y⃗(Σa
y⃗)−1 (y⃗− �⃗�a

x⃗) . (4.39)

Analyzing (4.37), it is clear that its maximum probability occurs when its exponent
is null, hence, when x⃗ = �̃�. This condition yields to

�⃗�p
x⃗ = �⃗�a

x⃗ + Σa
x⃗y⃗(Σa

y⃗)−1
(︁
y⃗− �⃗�a

y⃗

)︁
. (4.40)

Finally, replacing (4.34), (4.35) and (4.36) in (4.40) leads to

�⃗�p
x⃗ =�⃗�a

x⃗ + Σa
x⃗HH

(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1 (︁
y⃗−H�⃗�a

y⃗

)︁
, (4.41)

which, in this specific case, resolves to the LMMSE estimator in (4.4) and the estimation
procedure describe in algorithm 1. Hence, its computational complexity is equivalent to
(4.6),

𝒪map(4𝑝3 + 24𝑝2𝑞 + 16𝑞2𝑝 + 8𝑝2 + 10𝑝𝑞 + 10𝑝), (4.42)

while the error covariance matrix corresponds to (4.5) and is given by

Σp
x⃗ =Σa

x⃗ −Σa
x⃗HH

(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
HΣa

x⃗. (4.43)
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4.6 Bayesian Cramer-Rao Bound

The BCRB (Bayesian Cramer-Rao Bound) defines a physical lower bound for
MSE performance, which is helpful to classify whether a given estimator attains or not
this criteria. Since all our information is embodied in the observed data and, eventually,
in our prior knowledge about the unknown parameter, the estimation accuracy depends
directly on its PDFs [84]. The BCRB is defined as a lower bound for the MSE matrix and
it is related to the inverse of the BFIM (Bayesian Fisher Information Matrix) ℐB [85] by

EBCRB ≥ ℐ−1
B , (4.44)

where the matrix inequality means that EBCRB − ℐ−1
B is a non-negative definite matrix.

The elements of ℐB, whose row and column indexes are given by the subscripts 𝑝 and 𝑞,
respectively, are obtained by

[ℐB]𝑝,𝑞 =− E
{︃

𝜕2 ln 𝑓y⃗|x⃗

𝜕𝑥𝑝𝜕𝑥𝑞

}︃
− E

{︃
𝜕2 ln 𝑓x⃗

𝜕𝑥𝑝𝜕𝑥𝑞

}︃
. (4.45)

From the linear model in (4.1), replacing the corresponding PDFs

𝑓y⃗|x⃗ =𝜋−1det (Σw⃗)−1 exp
[︁
− (y⃗−Hx⃗)H Σ−1

w⃗ (y⃗−Hx⃗)
]︁

(4.46)

and

𝑓x⃗ =𝜋−1det (Σx⃗)−1 exp
[︁
− (x⃗− �⃗�x⃗)H Σ−1

x⃗ (x⃗− �⃗�x⃗)
]︁

(4.47)

in (4.45), allows to define the BCRB as

EBCRB =
(︁
Σ−1

x⃗ + HHΣ−1
w⃗ H

)︁−1
. (4.48)

4.7 Analysis on Linear Estimators

To showcase the properties of the linear estimators under investigation, we present
a numerical example. The objective is to assess and compare the resulting MSE in esti-
mating four distinct random variables, each corresponding to a specific scenario. These
scenarios have been carefully selected to facilitate a clear visualization of their distinct
biases. In this sense, it is sufficient to analyze the LMMSE estimator and its unbiased
version CWCU-LMMSE. The analysis is complemented by a complexity comparison for
all presented estimators as a function of their respective cost sensitive parameters.

Consider a linear system as in (4.1) with 𝑝=𝑞=4. The elements of H, x⃗ and
w⃗ are mutually independent, w⃗ ∼ 𝒞𝒩 (0⃗, Σw⃗), for diag(Σw⃗) = [0.01, 0.01, 0.05, 0.05],
x⃗ = {𝑒j𝜋/4, 𝑒j3𝜋/4, 𝑒j5𝜋/4, 𝑒j7𝜋/4}+ 𝑒j(2𝜙−1)𝜋/4, with variance Σx⃗ = I and 𝜙 = 1, . . . , 𝑞 is a
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discrete random variable with uniform distribution. Here, x⃗ was defined in order to po-
sition each random variable on different quadrants of a complex plane for an easy visual
identification regarding on biasedness property of each estimator. The proposed transfor-
mation matrix H = diag([1, 0.5, 1, 0.5]) was built in order to allow the investigation of the
MSE in some specific cases, varying from unitary transform coefficient and lower noise
energy to low scaling factor with high noise variance. Table 7 outlines the proposed cases
of study.

Table 7 – Proposed cases for the estimation analysis.

Case Scaling Factor Noise Energy Known rv Est. rv
1 High Low 𝑦1 �̂�1

2 Low Low 𝑦2 �̂�2

3 High High 𝑦3 �̂�3

4 Low High 𝑦4 �̂�4

The LMMSE and CWCU-LMMSE estimators were simulated for the proposed
cases following the instructions presented in Algorithms 1 and 3. Table 8 summarizes
the most relevant results for the performance analysis of the estimators considered in this
example. Columns 2, 3 and 4 present the diagonal components of the obtained equalization
matrix W, the offset vector 𝑧 and the diagonal elements of the resulting MSE matrix Σp

x⃗,
respectively. Each element corresponds, from left to right, to the proposed cases 1 to 4,
in this order.

Table 8 – Linear estimation example summary.

Estimator diag(W) z⃗ diag(Σp
x⃗)

LMMSE [0.99, 1.92, 0.95, 1.67] [0.01 + 0.01j,−0.05 + 0.05j,−0.07− 0.07j, 0.24− 0.24j]T [0.01, 0.04, 0.05, 0.17]

CWCU-LMMSE [1.00, 2.00, 1.00, 2.00] [0.00 + 0.00j, 0.00 + 0.00j, 0.00 + 0.00j, 0.00 + 0.00j]T [0.01, 0.04, 0.05, 0.20]

Figures 24a and 24b illustrate intensity charts of the relative frequencies for each
estimates in the complex plane. High incidence values are marked in red, while low oc-
currences are plotted in blue. The × markers indicate possible values assumed by the
unknown vector x⃗. In the top right quadrant, the intensity color plot for the random
variable 𝑥1 is shown, corresponding to the proposed case 1 from Table 7 and, in coun-
terclockwise direction, the remaining quadrants illustrate the resulting estimation of 𝑥2,
𝑥3 and 𝑥4, respectively, related to cases 2, 3 and 4, in this order. Figures 24a and 24b
reproduce, respectively, the results for the LMMSE and CWCU-LMMSE estimators.

For the case 1, where the scaling factor equals one and the SNR is high, all esti-
mators perform equally in terms of the MSE. This result is also observed for cases 2 (low
scaling factor and high SNR) and case 3 (high scaling factor and low SNR). For case 4,



Chapter 4. Fundamentals on Linear Estimation 75

(a) LMMSE. (b) CWCU-LMMSE.

Figure 24 – Intensity chart for the complex random variables estimation.
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Figure 25 – MSE versus BCRB for the investigated linear estimators.

with low scaling factor and low SNR, the MSE increases in relation to other cases. In this
situation, one can observe that the LMMSE estimator, whose restriction relies only on
the linearity constraint, achieve the smallest MSE. The CWCU-LMMSE estimator can-
not outperform the LMMSE estimator in a MSE sense since it has additional constraints.
However, the CWCU-LMMSE estimator features its inherent conditional unbiased pro-
perty, which is evidenced for study case 4 according to Figure 24b. The CWCU-LMMSE
has its estimates centered around the true random variable events, since this estimator
holds the unbiased constraint. In contrast, the LMMSE introduce a small bias towards
the prior mean, avoiding noise enhancement while attaining the MMSE.

Another form to evaluate the performance of these estimators is comparing their
MSE against the BCRB. Figure 25 illustrates this comparison for different values of a
scalar channel gain and noise variance.

As expected, the CWCU-LMMSE does not attain the BCRB and shows low per-
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Figure 26 – FLOP counting for the presented linear estimators.

formance in terms of MSE under intense noise enhancement (high noise variance and low
channel gain). Although the LMMSE estimator attains the BCRB and are considered
optimal in a Bayesian sense, this does not necessarily means that the resulting BER on
detection applications would be minimized. Actually, in this case, the CWCU-LMMSE
have an improved performance since this estimator better fits the equalized data to the
constellation grid prior the detection [58].

The complexity comparison is performed considering the computational cost of
each presented estimator and its low complex variances. It is also considered a linear
system in the form of (4.1), whose transform matrix H has dimension 𝑝×𝑞, with 𝑝=𝑞=𝑧𝑠,
𝑠={1,...,6} and 𝑧=4, holding the special features required by each estimator function.

In Figure 26, we have the FLOPs accounting as function of system dimension
𝑞. For iterative methods, a single iteration cost is considered. Figure 26 confirms that
estimating both expectation and variance parameters using the STPD is inefficient once
its complexity 𝒪s is dominated by additional inter-matrix products. Both 𝒪l and 𝒪c,
respectively the LMMSE and its CWCU unbiased version, follow the aforementioned
cubic complexity growth with system dimension, although the CWCU being more efficient
as this method replaces some matrix operations by a real weighting vector. The low
complexity procedures indeed achieve a noticeable economy in terms of FLOPs when
compared to their reference estimators. The Band-diagonal Low Complexity LMMSE,
given by 𝒪lcl, achieves a quasi-linear in 𝑞 computational cost. The CG-based CWCU-
LMMSE presents an efficient complexity 𝒪cg for time-frequency conversion estimation
assuming that both a-priory and posterior covariance matrices are diagonal. Its is worth
to mention that the complexity reduction only takes place if the number of required
iterations are kept low. Fortunately, according to [1], no more than a few iterations are
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necessary to achieve proper results.

4.8 Summary

This section reviewed established linear estimation methods, highlighting the po-
pular LMMSE and the STPD estimators. Focusing on digital communication, particularly
the linear estimation of a discrete RV from a finite set of symbols in a mapping constella-
tion, the CWCU-LMMSE and its low-complexity variants were detailed. These methods
are fundamental for reducing the computational cost of NO GFDM detection to levels
comparable to OFDM. Next chapter introduces effective detection techniques for data
recovery in the system described by (3.5) and its equivalent factorized subsystems. Most
of these detectors are based on the estimation concepts discussed here and reviewed in
[58].
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5 Detection Techniques

The detection procedure involves making a decision from a countably finite set
of hypotheses based on an established criterion. Another interesting example in digital
communication system is discrete data detection. In this case, the detector must choose
one of the 𝑀c possible data symbols from a discrete sample space (or constellation)
using either the maximum likelihood or minimum distance criteria [86]. Since these topics
are widely studied, the number of different techniques available in the literature can
be overwhelming. This chapter compiles a list of recent studies and reviews for those
interested, as detailed below.

An extensive survey on detection algorithms related to massive MIMO can be
found in [87], where well-known linear detectors, including linear equalizers and suitable
iterative methods as alternatives to avoid matrix inversion, are characterized according
to its performance and complexity profiles. This reference also chronologically lists per-
tinent publications on MIMO subject. Similarly, in [79], low complexity linear detectors
employing different numerical solutions for the large matrix inversion problem are evalu-
ated, comparing its respective estimated computational cost and resource utilization in a
system level deployment.

An accessible overview encompassing the state-of-the-art solutions to the detection
problem is available in [88]. Prominent linear equalizers and detectors are investigated in
[89], presenting BER performance analysis and computational complexity comparison un-
der the assumption of different channel correlation scenarios. In [90], the SD is examined,
presenting the respective complexity in terms of the number of visited nodes, culminating
in the definition of lower and upper bounds for the computational cost given the channel
matrix dimension, constellation size and SNR.

This chapter focuses on a critical task of mobile communication PHY, encom-
passing detection and non-linear estimator schemes designed to overcome the limitations
of linear estimators in specific applications, such as SM-MIMO [91]. The remainder of
this chapter describes a detection model for the factorized SM-MIMO system and revi-
ews classical detection processes, including their derivations and estimated complexities.
It concludes with a performance analysis and a comparison of these complexities. This
review starts describing the MLD, taking it as a reference for performance and comple-
xity analysis. In order to overcome the prohibitive computational cost on realizing the
ML procedure, the so called GAD is considered. In sequence, the SD and interference-
cancellation-based detectors are formally addressed, including the ordered SIC and PIC.
Finally, under the conditions of a hypothetical scenario, this chapter evaluates and com-
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pares these detection schemes, taking the ML lower bound as a reference.

From this point forward, whenever possible and without loss of generality, the ge-
neric linear subsystem model from (3.26) is considered, whose dimension is parameterized
according with Table 6. However, the full system model in (3.13) can also be adopted,
with necessary adjustments to the system dimensions. It is also assumed that d⃗ obeys an
equiprobable discrete distribution of the elements in 𝒞.

5.1 Maximum Likelihood Detector

As presented in Chapter 3, the detection task at the receiver is basically a deci-
sion process applied on the received signal in order to recover the transmitted message.
Assuming a linear system in the form of (3.26), under the common assumption that all
code words from 𝒞 are equiprobable, the ML criteria seeks to minimize the ED (Euclidean
Distance) between the observed signal and a given hypothesis [92], thus

^⃗dML = argmin
d⃗𝜅

‖y⃗−Hd⃗𝜅‖2, (5.1)

where d⃗𝜅 ∈ 𝒞𝑞 is the 𝜅th data sequence hypothesis and 𝜅 = 1, . . . , 𝑀c
𝑞, which contains all

possible cross combinations of the elements in 𝒞, taken 𝑞 at a time. In general, finding the
optimal solution requires an exhaustive search over all 𝑀c

𝑞 hypotheses [93], yielding to a
𝑞-exponential order problem. Each hypothesis contains 𝑞 discrete symbols and the MLD
can be seen as a lattice structure consisting of 𝑞𝑀c

𝑞 nodes. When the elements of d⃗ are
continuous Gaussian RVs representing a linear transformation of a discrete data symbol
sequence, it is essential to incorporate this transformation matrix into H. This ensures
that the hypotheses under test are formed only by combinations of the elements from
the set 𝒞. The Algorithm 7 summarizes the ML detection procedure whose complexity is
mainly dictated by the squared ED computation of each hypothesis at line 3.

Algorithm 7 Maximum Likelihood Detector

Result: ^⃗dML

1: 𝜌2 =∞
2: for 𝜅← 1 to 𝑀 𝑞

c do
3: 𝜚2

𝜅 = ‖y⃗−Hd⃗𝜅‖2

4: if 𝜚2
𝜅 < 𝜌2 then

5: 𝜌2 = 𝜚2
𝜅

6: ^⃗dML = d⃗𝜅

7: end if
8: end for
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In Algorithm 7, 𝜚2
𝜅 is the squared ED of the 𝜅th hypothesis. The complexity of

computing this algorithm is

𝒪ML(𝑀 𝑞
c (8𝑝𝑞 + 3𝑝 + 2)). (5.2)

Given an alphabet with 𝑀c=16 distinct elements and 𝑞=8, the ML detector needs
to verify a total of 4.29× 109 hypotheses in order to retrieve the transmitted data symbol
sequence. Although optimal, ML detection often results in prohibitive complexity [93].
The energy efficiency of ML detection is commonly used as a benchmark for evaluating
alternative detectors. However, the computational effort required for simulations might be
impractical. To overcome this challenge, we can consider employing a hypothetical GAD.

5.1.1 Genie-aided Detector

The GAD access additional transmission side information carried to the detector
through a non-dispersive and unitary gain parallel channel, representing the genie [94]. In
the receiver side, upon decision of the transmitted data, the ED 𝜚R between the detected
information ^⃗d and received signal y⃗ is compared with the ED 𝜚T of the transmitted data
d⃗ and y⃗. If 𝜚R < 𝜚T, an optimal MLD would also detect the wrong data sequence, leading
to a frame error. On the contrary, when 𝜚R ≥ 𝜚T, it is assumed that the MLD would
have found the correct data sequence and the detector under analysis not, accumulating
a frame error. This procedure overestimates the MLD performance yielding to a lower
bound on ML detection [1]. The validity of this bound is a direct consequence of the
fact that any composite hypothesis test cannot perform better than the corresponding
perfect measurement test [95]. Algorithm 8 is used to evaluate the MLD FER lower
bound employing a GAD.

Algorithm 8 Genie-Aided Detector
Initialize:

1: total_frames = 0;
2: frame_error = 0;

For each iteration results: FERML

3: total_frames = total_frames + 1;
4: 𝜚R = |y⃗−H^⃗d|
5: 𝜚T = |y⃗−Hd⃗|
6: if 𝜚R < 𝜚T then
7: frame_error = frame_error + 1;
8: end if
9: FERML = frame_error

total_frames

Following sections present reduced complexity alternatives for the ML detection,
some of them at the expense of sub-optimal performance.
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5.2 Sphere Detector

The SD [96] is an algorithm to address the non deterministic polynomial-time
hard integer least squares problem, able to achieve optimal MLD performance with an
average polynomial complexity [97]. The principle of SD is to reduce the exhaustive search
procedure over all possible code words carried out by the MLD. This is accomplished
restricting the search only on hypothesis where the distance from one possible code word
are within a predefined radius of a high-dimensional sphere, where each hypothesis can be
seen as a path with sequentially interconnected nodes in a finite tree structure. Whenever
a path segment reaches a cumulative distance that exceeds the sphere radius, this segment
and all subsequent nodes are discarded, yielding to a variable complexity reduction [88].

In this way, depending only on the radius parameter 𝜌, a trade off between perfor-
mance and complexity can be trimmed. If 𝜌 is chosen sufficiently high and kept constant,
all paths might be checked and the SD behaves just like the MLD. If 𝜌 is too small, this
can result in non eligible paths. In this situation, the procedure can be repeated with an
increased radius. A practical approach is to initialize 𝜌 = ∞ or based on a code word
given by a low complexity technique [98], e.g. the ZF or MMSE detectors [99] and update
the radius whenever a better hypothesis is found during the search procedure. Just like
in the MLD method, when the elements of d⃗ are continuous Gaussian RVs resulting from
the linear transformation of a discrete data symbol sequence, it is crucial to integrate
this transformation matrix into H. This guarantees that the hypotheses being tested are
composed exclusively by the elements from the set 𝒞.

We start introducing the HQR factorization [100] expressed as QR = HQR(H) for
the full-rank matrix H, where Q ∈ C𝑝×𝑝 is an orthonormal matrix and R ∈ C𝑝×𝑞 is an
upper-triangular matrix. Left multipthe received vector from (3.26) by QH yields tolying

˜⃗y = QH(QRd⃗ + w⃗) = Rd⃗ + ˜⃗w. (5.3)

Since Q is orthonormal, the noise distribution of (5.3) is still AWGN and the detection
problem is equivalent to (5.1), including d⃗𝜅 definition. Thus, the SD procedure yields to

^⃗dSD = argmin
d⃗𝜅

‖˜⃗y−Rd⃗𝜅‖2, (5.4)

which can be addressed through a node-sequence search algorithm [101]. This structure
resembles a spanning tree, with a root node located at the top layer ℓ = 𝑞, spanning to
𝑀c nodes in the immediately next layer ℓ = 𝑞 − 1. In this way, each node from an upper
layer connects to 𝑀c nodes in subsequent beneath layer. Each layer connection or path
section is defined here as a segment. A series of segments connecting a root node to one
of the 𝑀c

𝑞 nodes at the final layer ℓ = 1 forms one distinct path among 𝑀c
𝑞 possibilities.

The total amount of nodes 𝜏 in a certain spanning tree structure has a close relation with
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the SD complexity and is expressed by

𝜏 =
𝑞∑︁

ℓ=1
𝑀 ℓ

c . (5.5)

The SD executes a top-down search along the tree while computes the squared node
distance 𝜚2

ℓ at layer ℓ under analysis. Thus,

𝜚2
ℓ =

⃒⃒⃒⃒
⃒𝑦ℓ −

𝑞∑︁
𝑙=ℓ

Rℓ,𝑙d⃗𝜅𝑙

⃒⃒⃒⃒
⃒
2

, (5.6)

where ℓ = 𝑞, . . . , 1 is the layer index and d⃗𝜅𝑙
is the 𝑙th element of the 𝜅th hypothesis, chosen

from the set 𝒞. The scalar Rℓ,𝑝 is one element of matrix R and ˜⃗yℓ is the corresponding ℓth
element of same vector. When 𝜚2

ℓ > 𝜌2, subsequent layers are pruned, leading the algorithm
to move on next segment direction or beginning a new path search. It is worth to mention
that, in order to avoid the square root in (5.6), this comparison can be evaluated over the
squared distances.

Algorithm 9 describes the SD mechanism to find ^⃗dSD employing a recursive func-
tion SD(ℓ) along the tree search task. For simplicity, the algorithm initializes the parame-
ter 𝜌2 =∞. Here, the variable 𝑠 = 1, . . . , 𝑀c is the segment or constellation symbol index
for each node hypothesis test. It is also assumed that, when necessary, some parameters
are global accessible inside the algorithm environment.

Algorithm 9 Sphere Detector

Result: ^⃗dSD

1: QR = HQR(H)
2: ˜⃗y = QHy⃗
3: 𝜌2 =∞
4: ℓ = 𝑞
5: function SD(ℓ)
6: for 𝑠← 1 to 𝑀c do
7: d⃗𝜅ℓ

= 𝒞𝑠

8: 𝜚2
ℓ =

⃒⃒⃒
𝑦ℓ −

∑︀𝑞
𝑙=ℓ Rℓ,𝑙d⃗𝜅𝑙

⃒⃒⃒2
9: if (∑︀𝑞

𝑙=ℓ 𝜚2
𝑙 < 𝜌2) then

10: if (ℓ == 1) then
11: ^⃗dSD = d⃗𝜅

12: 𝜌2 = ∑︀𝑞
𝑙=1 𝜚2

𝑙

13: else
14: SD(ℓ− 1)
15: end if
16: end if
17: end for
18: end function

The task of finding an exact expression for the complexity of the SD is not trivial
once it depends not only on the transmission channel matrix dimension but also on the
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sphere radius, which is, in turn, a function of the SNR. Indeed, the SD FLOPs account
is a random variable with expected polynomial complexity. In the worst case scenario,
it can reach exponential complexity [97]. Considering the worst case, where all nodes of
every segment are visited, the resulting complexity is given by

𝒪SD = 𝒪HQR +𝒪˜⃗y + 𝑀 𝑞
c

𝑞∑︁
ℓ=1
𝒪node(ℓ), (5.7)

where 𝒪HQR is the complexity of the HQR factorization at line 1 of Algorithm 9, given by
Table 1, and the second term refers to the matrix-vector product in line 2. The last term
in (5.7) represents the complexity of the recursive function SD(ℓ), with 𝑀c

𝑞 segments in
the spanning tree structure. The complexity of one node inspection at layer ℓ is given by

𝒪node(ℓ) =
𝑞∑︁

𝑙=ℓ

8(𝑞 − 𝑙) + 11. (5.8)

With the aid of the identities given in Table 2, (5.8) and (5.7) can be solved yielding
to a complexity upper bound for the SD algorithm given by

max(𝒪SD) =2𝑞2(3𝑝− 𝑞)
3 + 2𝑝(4𝑝− 1) + 𝑀 𝑞

c (8𝑞3 + 33𝑞2 + 25𝑞)
6 , (5.9)

where the last term is the predominant computational cost associated with the recursive
SD(ℓ) function. Thus

𝒪SD

⎛⎝𝑀 𝑞
c (8𝑞3 + 33𝑞2 + 25𝑞)

6

⎞⎠. (5.10)

At a first glance, the worst case scenario for the SD algorithm exhibits higher
complexity when compared with the MLD. This happens due the fact that every visited
node requires the computation of the squared partial distances 𝜚2

ℓ . However, as the SD
is able to reduce its complexity to a polynomial degree, thanks to its segment pruning
behavior based on partial distances, in practice, the SD complexity is smaller than the
MLD, specially at high SNR. Indeed, the MLD exhibits an exponential complexity since
all hypotheses are always evaluated.

There are also some slight variants of the SD algorithm that seeks to achieve a
reduced [102] or even fixed complexity [88] at the cost of sub-optimal performance. In
[103], some suitable approximations and simplifications are admitted, leading to imple-
mentations with affordable complexities. Next subsection introduces an ED computation
based on affine transform modulation. It shows a reasonable potential to improve the
efficiency on practical SD hardware implementation.

5.2.1 Low Complexity SD-ATM

This subsection proposes a reduced complexity and widely compliant SD algo-
rithm, suitable to low constellation orders and intermediary SM-MIMO, which is the case
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of future networks of autonomous and power restrained devices, e.g., IoT applications.
The proposed scheme is capable of achieving the ML performance in terms of BER with
practical advantages in hardware synthesis implementation of the SD [104].

To this end, the ATM concept is considered in order to describe a sequence of
QAM (Quadrature Amplitude Modulation) symbols as the AT (Affine Transform) of its
corresponding bit labels. In this way, the received vector can be seen as a linear transfor-
mation of the transmitted binary information plus the receiver noise [105]. The complexity
reduction relies on a subtle simplification in the cost dominant inner function of every SD
algorithm, the ED computation at each visited node of the tree search structure.

The proposed detection scheme takes advantage on computing each hypothesis ED
over groups of bits per symbol, sparing at least one complex multiplication since one of
the involved operators is binary. In this sense, when the binary coefficient assumes the
digit zero, the result is null, otherwise, when the coefficient is unitary, the result is the
proper value of the second operator. Assuming a hardware synthesis, we can exploit the
knowledge that one of the operators is binary and replace the complex inner product in
the extensively accessed core of the SD algorithm by multiplexers and adders. Hence, this
proposal reduces the demanded resources in FPGA (Field Programmable Gate Array)
devices, requiring a smaller silicon area and improving the maximum operation frequency
when considering the SD-ATM implementation.

Usually, there is no linear function, or, to be more precise, a vector scaling factor
that could address the bit sequence mapping to the transmitted signal, once the bit-
to-QAM is a non-linear operation. Nevertheless, an AT can, with some restrictions, be
employed in this task when the real and imaginary parts vary linearly with the correspon-
ding bit labeling. The ATM operates on the input data bit vector b⃗ ∈ B𝜇𝑞×1, vertically
stacked with the least significant bit first, performing scaling and translation functions to
obtain a sequence of data symbols d⃗ ∈ C𝑞×1 given in general form by

d⃗ = Tb⃗ + z⃗, (5.11)

where T ∈ C𝑞×𝜇𝑞 is a sparse matrix, z⃗ ∈ C𝑞×1 is a complex vector and 𝑞 is the number of
data resources in a factorized SM-MIMO subsystem, similar to (3.26). The parameters T
and z⃗ are defined according to the chosen constellation set, thereby

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2I, for 𝑀c = 2,

2(S1 − S0j), for 𝑀c = 4,

4S2 + 2S1 − 2S0j, for 𝑀 (bin)
c = 8,

4S2 + 2S1 + (2S1 − 4S0)j, for 𝑀 (non-rect)
c = 8,

(5.12)
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and

z⃗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1⃗, for 𝑀c = 2,

(−1 + 1j)1⃗, for 𝑀c = 4,

(−3 + 1j)1⃗, for 𝑀c = 8,

(5.13)

where the superscripts (bin) identifies a rectangular constellation with binary mapping,
while the superscript (non-rect) characterizes a non-rectangular constellation with gray
mapping. If the superscript is omitted, gray mapping is considered. Here, S𝜄 is a sparse
binary matrix with dimension 𝑞 × 𝜇𝑞 for 𝜄 = 0, · · · , 𝜇 − 1, containing an unique unitary
entry per row and zeros elsewhere, given by

S𝜄[ℓ, 𝑠] =

⎧⎪⎨⎪⎩ 1 at 𝑠 = 𝜇(ℓ− 1) + 𝜄 + 1, for ℓ = 1, · · · , 𝑞,

0 otherwise.
(5.14)

For example, considering 𝑞=3, 𝜇=2 and 𝜄=0, the corresponding bit 0 selection
matrix is S0 =

(︁ 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

)︁
. If desired, constellation energy normalization can also be

performed dividing (5.12) and (5.13) by
√︁

||𝒞||2
𝑀c

. Figure 27 illustrates the normalized cons-
tellations for 𝑀c = {2, 4, 8} according to the definitions in (5.12) and (5.13).
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Figure 27 – Normalized Affine Transform constellations according to (5.12) and (5.13).

The complexity associated with the SD procedure given by Algorithm 9 is mainly
ruled by the recursive SD(ℓ) function and the internal ED computation at line 8. It is
expected that the overall SD complexity can be significantly reduced if the ED compu-
tation, intensively accessed by the recursive function, could be simplified. This can be
achieved by exploiting the ATM. Replacing (5.11) in (3.26) yields to

y⃗ = Hz⃗ + HTb⃗ + w⃗. (5.15)

Defining y⃗′ = y⃗−H𝑧, yields to a linear function of the transmitted bit sequence

y⃗′ = HTb⃗ + w⃗, (5.16)
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Again, employing the HQR factorization of H, then, left multiplying (5.16) by QH while
replacing H=QR, allows one to define R̊ = RT, with R̊ ∈ C𝑞×𝜇𝑞, leading to

˜⃗y = QH(QRTb⃗ + w⃗) = R̊b⃗ + ˜⃗w. (5.17)

Since Q is orthonormal, the noise distribution of (5.17) is still AWGN and the detection
problem is equivalent to (5.3). Hence, the SD-ATM procedure performs

^⃗bSD-ATM = argmin
b⃗𝜅

‖˜⃗y−Rb⃗𝜅‖2, (5.18)

where b⃗𝜅 = ℳ−1(d⃗𝜅), for 𝜅 = 1, . . . , 𝑀c
𝑞, ℳ−1 is a function that performs QAM-to-

bits demapping, taking d⃗𝜅 as argument and resulting b⃗𝜅 as the binary representation of
one possible transmitted symbol sequence from the set 𝒞𝑞. As R̊ still holds its triangular
structure, (5.18) can be addressed through a node-sequence search algorithm. Note that
R̊, with elements R̊ℓ,𝑙, has (𝑞 + 1 − ℓ)𝜇 non-zero entries at ℓth row, with ℓ=1,...,𝑞 and
𝑙=1,...,𝜇𝑞, meaning that 𝜇-tuple bits are jointly detected along the searching procedure.
The notation R̊ℓ,𝑙|b⃗𝜅𝑙

=1 represents the elements of the product R̊b⃗𝜅 whose corresponding
coefficient b⃗𝜅𝑙

is non-zero.

Algorithm 10 synthesizes the proposed detector, where 𝒞[𝑠] is the 𝑠th QAM symbol
from the constellation set 𝒞.

Algorithm 10 Sphere Detector based on ATM

Result: ^⃗bsd

1: QR = HQR(H)
2: ˜⃗y = QH(y⃗−Hz⃗)
3: R̊ = RT
4: 𝜌2 =∞
5: ℓ = 𝑞
6: function SD(ℓ)
7: for 𝑠← 1 to 𝑀c do
8: b⃗𝜅𝜇(ℓ−1)+1:𝜇ℓ

=ℳ−1(𝒞[𝑠])

9: 𝜚2
ℓ =

⃒⃒⃒⃒
⃒⃒𝑦ℓ −

𝜇𝑞∑︁
𝑙=𝜇(ℓ−1)+1

R̊ℓ,𝑙|b⃗𝜅𝑙
=1

⃒⃒⃒⃒
⃒⃒
2

10: if (∑︀𝑞
𝑙=ℓ 𝜚2

𝑙 < 𝜌2) then
11: if (ℓ == 1) then
12: ^⃗bSD-ATM = b⃗𝜅

13: 𝜌2 = ∑︀𝑞
𝑙=1 𝜚2

𝑙

14: else
15: SD(ℓ− 1)
16: end if
17: end if
18: end for
19: end function
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The Algorithm 10 complexity is mainly dictated by the inner recursive function
SD(ℓ), dominated by the ED computation at line 9, followed by the layer distance summa-
tion at line 10, a common step in both conventional and proposed SD algorithms. Hence,
the investigation of the node complexity based only on line 9 is sufficient for comparison.
Assuming the worst case scenario, where the tree search structure is entirely explored,
the complexity follows (5.7) while the computational cost comprising one node inspection
at layer ℓ is given by

𝒪node(ℓ) =
𝑞∑︁

𝑙=ℓ

2𝜇(𝑞 − 𝑙) + 3, (5.19)

with the aid of some useful summation identities from Table 2, (5.19) can solved, appro-
ximating the complexity upper bound for Algorithm 10 by

𝒪SD-ATM

⎛⎝𝑀 𝑞
c (2𝜇𝑞3 + (6𝜇 + 9)𝑞2 + (4𝜇 + 9)𝑞)

6

⎞⎠. (5.20)

A complexity comparison can be evaluated taking the second derivative of the
ratio between (5.20) and (5.10) w.r.t. 𝑞, leading to

𝜖𝜇 = 𝜕2(𝒪SD-ATM/𝒪SD)
𝜕2𝑞

= 2𝜇

8 . (5.21)

For 𝜖𝜇 < 1, this implies that 1 ≤ 𝜇 < 4, constraining 𝑀c for the constellation sets with
2, 4 or 8 symbols, where a corresponding theoretical complexity reduction down to 25%,
50% and 75% are expected for the proposed algorithm, taking the conventional SD as a
reference. Following subsection summarizes the performance and complexity comparison
between the conventional SD and the proposed SD-ATM.

5.2.2 Comparison of the SD Algorithms

In [104], a multi-user uplink scenario employing intermediary order SM-MIMO
system with 𝑁R=𝑁T=4 and 𝜇={1, 2, 3} is considered. From Table 6, each factorized
orthogonal subsystem has dimension 𝑝×𝑞 s.t. 𝑝=𝑞=𝑁T. The BER performance and de-
tection complexity of a single transmission resource in a CP-OFDM system is evaluated,
assuming perfect synchronization and CSIR. The simulation parameters are given in Table
9.

Figure 28 illustrates the resulting BER Monte Carlo simulation, taking a conven-
tional gray mapping SD as a reference. It is clear that the proposed SD-ATM algorithm
presents no measurable performance loss compared to the conventional SD when 𝜇=1 and
2, while attaining the ML. In these cases, the SD-ATM allows gray mapping constellati-
ons. For 𝜇=3, we have two distinct results. When the proposed algorithm, for the same
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Table 9 – Parameters used in SD simulation.

Parameter Symbol Value
CIR length 𝐿 16 samples
CP length 𝑁CP 𝐿

𝑘th subcarrier frequency response H[𝑘] 𝒞𝒩 (0𝑝×𝑞, 1𝑝×𝑞)
Number of subcarriers 𝐾 64 subcarriers
bit-symbol energy ratio 𝐸b/𝐸s (𝐾 + 𝑁CP)/𝜇𝐾

rectangular 8-QAM symbol disposal of the reference but employing binary mapping, a
constant performance loss of approximately 0.3 dB is observed. On the contrary, for the
SD-ATM employing a custom non-rectangular constellation with gray mapping, as illus-
trated by Figure 27, no performance loss is observed and both algorithms achieves the
MLD BER.
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Figure 28 – SD comparison of the SM-MIMO BER performance in FSC.

Figure 29 presents a simplified block diagram of the inner product required by
the ED computation for both analyzed algorithms. The proposed structure is targeted to
a balanced optimization on area and speed. The inner product for the conventional SD
requires an input stage employing parallel multipliers to implement the complex product
between the elements of R and ˜⃗d. For the proposed SD-ATM algorithm, it requires only
the sequential accumulator stage once the product between the complex entries of R̊ by
the binary coefficients of b⃗𝜅 can be replaced by a common 2:1 multiplexer that selects
between a null result, for b⃗𝜅𝑙

= 0 or the current input entry R̊ℓ,𝑙 when b⃗𝜅𝑙
= 1, reducing

the complexity on the ED computation as stated in subsection 5.2.1. This is exactly the
central point of the proposed algorithm and where relies the main contribution in [104].

In order to analyze and compare the concept illustrated in Figure 29, a functio-
nal simulation of the inner product for both algorithms was synthesized and evaluated,
employing a HDL (Hardware Description Language) with two different numerical repre-
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Figure 29 – Block diagram of the inner product in the ED computation for the conventi-
onal and proposed SD algorithms.

sentations: an FXP18 (18-bit Signed Fixed Point) and the IEEE 754 32-bit FP (Float
Point). It considers an Intel FPGA from the family Cyclone V, more specifically the
5CSEMA6F31. Table 10 relates the resource allocation usage for each synthesized entity
in terms of the number of ALMs (Adaptive Logic Modules), ALUTs (Adaptive Look-up Ta-
bles), DLRs (Dedicated Logic Registers) and DSPs (Digital Signal Processings). Moreover,
the maximum achievable operational frequency Fmax and the number of required clock
periods to process the inner product operation were also obtained. These results allows
to define the practical complexity reduction �̂�𝜇 as the weighted average of the so called
area and latency parameters. Analyzing the obtained results for both fixed and float point
approaches, when 𝜇=1, 2 and 3, taking the theoretical complexity reduction estimates gi-
ven by (5.21) as a reference, allows one to confirm that the proposed SD algorithm based
on ATM close achieves the theoretical reduction gain for the FP implementation and are
indeed capable to even surpass in almost two times the foreseen complexity reduction for
the FXP18. In FXP18 approach, area and latency are both improved at the same time.
On the other hand, in the FP implementation, only the theoretical foreseen area reduction
occurs once the latency related on FP multiplication and addition are quite similar.

Table 10 – Estimated resource utilization of the inner product in the SD-ATM ED com-
putation considering an Intel Cyclone V FPGA 5CSEMA6F31C7.

Inner product entities
Area parameters Latency parameters 𝜖𝜇 = 1

2
(∑︀ area×Latency/Fmax)SD-ATM
(∑︀ area×Latency/Fmax)conv. SD

ALMs ALUTs DLRs DSPs Fmax [MHz] Latency [Tclk] 𝜇 = 1 𝜇 = 2 𝜇 = 3
Rd⃗𝜅 FXP18 (conv. SD) 677.5 (1.62%) 1182 (1.41%) 261 (0.22%) 0 (0%) 77.975 4(𝑞 − ℓ + 1)

0.158 0.268 0.378
R̊b⃗𝜅 FXP18 (SD-ATM) 45.0 (0.11%) 44 (0.05%) 116 (0.01%) 0 (0%) 177.465 2𝜇(𝑞 − ℓ + 1)

Rd⃗𝜅 FP (conv. SD) 1310.0 (3.12%) 2032 (2.42%) 1014 (0.87%) 4 (3.57%) 71.925 10(𝑞 − ℓ + 1)
0.390 0.571 0.752

R̊b⃗𝜅 FP (SD-ATM) 567.5 (1.35%) 876 (1.05%) 377 (0.32%) 0 (0%) 79.430 4𝜇(𝑞 − ℓ + 1)

These results demonstrate that the complexity of the cost dominant function in
the SD reduces to 39%, 57% and 75%, in the FP case, for 𝜇=1, 2 and 3, respectively,
when employing the SD-ATM approach. In the FXP18 case, a complexity reduction of
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approximately 6 times (16%), 4 times (27%) and 3 times (38%) is observed, in comparison
with the regular ED computation of the conventional SD. This happens because, in fixed
point arithmetic, adders are, in general, less expensive than multipliers, from the hard-
ware implementation perspective and are, often, capable of achieving higher operational
frequencies. These results suggest that the proposed SD algorithm employing the ATM is
a suitable detection scheme for low order modulation systems.

The following section focuses on SIC technique, aiming to reduce even further the
detection problem complexity and improve the energy efficiency.

5.3 MMSE-SIC Detector

The MMSE-SIC is a non-linear estimator that attempts to improve interference
cancellation in applications such as SM-MIMO, i.e. BLAST (Bell Laboratories Layer
Space-Time) variances [17].

Basically, this method makes partial decisions w.r.t. the transmitted data sequence,
then, it performs successive interference cancellation based on already decided symbols
along the remaining information detection. Here, the well known sorted SIC [106] is consi-
dered. This method starts reorganizing the factorized subsystem from (3.26) in ascending
order of SNR, permuting the rows of received sequence y⃗ and the full-rank transform ma-
trix H. Afterwards, starting from the last row, which holds the symbol with highest SNR,
decides by the most likely transmitted information at layer ℓ through ML criterion. The
estimated symbol from layer ℓ=𝑞 is then used to remove its interference in the foregone
layer ℓ=𝑞-1, prior to ML detection. This procedure is repeated until all layers have been
processed. Finally, original ordering is reestablished undoing the initial sort operation.
The idea to reorganize the system according to the estimated signal quality is a tentative
to avoid error propagation, a possibility that might occur case the SIC algorithm starts
at an arbitrary low SNR resource [107]. Underneath the common assumption that the
constellation alphabet 𝒞 is zero mean with normalized energy and w⃗ is AWGN, the es-
timated SNR after equalization is (𝜎2

w⃗‖HHH‖)−1. Hereafter, assuming y⃗ and H already
sorted according to SNR, the SIC at the ℓth layer performs interference cancellation then
equalization through

^⃗d =HH
1:ℓ

(︁
H1:ℓHH

1:ℓ + Σw⃗
)︁−1

⎛⎝y⃗−
𝑞∑︁

ℓ+1

^⃗dsicℓ+1Hℓ+1

⎞⎠ , (5.22)

followed by ML detection
^⃗dsicℓ

= argmin |^⃗dℓ1⃗− 𝒞|2. (5.23)

In (5.22), ^⃗d is the transmitted data estimate obtained from the received vector y⃗, after
interference removal from upper layers, followed by equalization considering the first ℓ



Chapter 5. Detection Techniques 91

columns of H. The interference cancellation depends on lower layers decision, once it
employs the already detected symbols for ℓ<𝑞. Algorithm 11 is proposed for MMSE-SIC
implementation.

Algorithm 11 MMSE-SIC Detector

Result: ^⃗dsic

1: for ℓ← 𝑞 to 1 do
2: if (ℓ == 𝑞) then
3: ^⃗d1:ℓ = HH

1:ℓ

(︁
H1:ℓHH

1:ℓ + Σw⃗
)︁−1

y⃗
4: else
5: ^⃗d1:ℓ = HH

1:ℓ

(︁
H1:ℓHH

1:ℓ + Σw⃗
)︁−1

(︂
y⃗−∑︀𝑞

ℓ+1
^⃗dsicℓ+1Hℓ+1

)︂
6: end if
7: ^⃗dsicℓ

= argmin |^⃗dℓ1⃗− 𝒞|2
8: end for

Analyzing algorithm 11 and applying the summation identities from Table 2 for the
variable matrix size computations along all 𝑞-layer iterations, the estimated complexity
for the MMSE-SIC is

𝒪sic

(︂
4𝑝3𝑞 + 2𝑝2𝑞2 + 8𝑝2𝑞 + 4𝑝𝑞2 + 2𝑝2 + 6𝑝𝑞 + 10𝑀c − 𝑞2 − 𝑞

)︂
. (5.24)

Similar to ML-based algorithms, the MMSE-SIC also requires a system in the form
of (3.26), but relating the observed signal and a discrete random vector through a known
linear transformation. Unlike the exponential complexity in MLD and exponential upper
bound in the case of SD, this interference cancellation method exhibits cubic complexity
in the system order due to successive matrix inversions. The SNR-ordered SIC, although
more robust than simple SIC, it is still affected by error propagation, resulting in sub-
optimal performance.

5.4 MMSE-PIC Detector

Differently from SIC, where data symbols are individually detected removing the
interference caused by already decided symbols, the PIC estimates all data elements sha-
ring the same radio resource jointly. The PIC performs a detection on the 𝑗th element 𝑑𝑗

of d⃗ assuming that all its other elements, denoted by d⃗
C𝑗
, are interfering terms. Retrieving

(3.26) allows to rewrite

y⃗ = H𝑗𝑑𝑗 + H
C𝑗
d⃗
C𝑗
+ w⃗, (5.25)
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where H𝑗 is the 𝑗th column of H while H
C𝑗

is H removing the 𝑗th column. Then, the PIC
yields the signal ˜⃗y𝑗 given by

˜⃗y𝑗 =y⃗−H
C𝑗
�⃗�d⃗

C𝑗
= H𝑗𝑑𝑗 + H

C𝑗
(d⃗

C𝑗
− �⃗�d⃗

C𝑗
) + w⃗⏟  ⏞  

˜⃗w𝑗

, (5.26)

with �⃗�d⃗
C𝑗

denoting the vector of expectancies �⃗�d⃗ removing its 𝑗th element, ˜⃗w𝑗 models
the noise-plus-interference, with variance HΣa

d⃗HH + 𝜎2I. Based on (5.26), all 𝑗 = 1 . . . 𝑞

elements can be estimated and detect in parallel, employing independent linear estimation
processes, whose, in general, require 𝑞× 𝑞 matrix inversions for each 𝑑𝑗, normally yielding
to cubic complexity order. In [60], the authors demonstrate that this process is equivalent
to a single linear estimation exploring a-priory knowledge about d⃗.

Resembling the LMMSE estimator from Section 4.2, the expected value and vari-
ance of d⃗ can be estimated by

�⃗�p
d⃗ =Σa

d⃗HH
(︁
HΣa

d⃗HH + Σa
w⃗

)︁−1 (︁
y⃗−H�⃗�a

d⃗

)︁
+ �⃗�a

d⃗ (5.27)

and

Σp
d⃗ =Σa

d⃗ −Σa
d⃗HH

(︁
HΣa

d⃗HH + Σa
w⃗

)︁−1
HΣa

d⃗. (5.28)

where �⃗�p
d⃗ can be used solely for hard demodulation, employing, for example, the ML

criteria, or in conjunction with Σp
d⃗ in soft demodulation. If �⃗�p

d⃗ is Gaussian in the factorized
domain, it is necessary to estimate the equivalents of (5.27) and (5.28) in the discrete
domain, as described in Section 3.3.

Algorithm 12 describes a subsystem hard detection method assuming that d⃗ is
a discrete sequence of symbols in the factorized domain. Line 6 performs the minimum
distance hard detection of the estimated data sequence in the discrete domain. The term
1⃗𝒞T results in a 𝑞 ×𝑀c matrix and the minimum argument operator is taken along its
row direction.

Algorithm 12 MMSE PIC
1: Σa

d⃗HH

2: (HΣa
d⃗HH + Σa

w⃗)−1

3: (y⃗−H�⃗�a
d⃗)

4: �⃗�p
d⃗ = Σa

d⃗HH
(︁
HΣa

d⃗HH + Σa
w⃗

)︁−1 (︁
y⃗−H�⃗�a

d⃗

)︁
+ �⃗�a

d⃗

5: Σp
d⃗ = Σa

d⃗ −Σa
d⃗HH

(︁
HΣa

d⃗HH + Σa
w⃗

)︁−1
(Σa

d⃗HH)H

6: ^⃗dpic = argmin |�⃗�p
d⃗ − 1⃗𝒞T|2

Return: (�⃗�p
d⃗, Σp

d⃗,
^⃗dpic)
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The associated computational complexity in Algorithm 12 is approximately the
same as the LMMSE estimation, and it is given by

𝒪l(4𝑝3 + 24𝑝2𝑞 + 16𝑞2𝑝 + 8𝑝2 + 10𝑝𝑞 + 10𝑝). (5.29)

It is mainly dictated by the 𝑝× 𝑝 matrix inversion with cubic complexity order on 𝑝.

5.5 Detectors Comparison

This section explores an orthogonal 𝑁T × 𝑁R SM-MIMO digital communication
system. The analysis relies on the model described in Section 3.3, which offers a framework
for representing factorized and independent subsystems. By examining this model, it is
possible to compare and contrast different detectors, highlighting their strengths and
weaknesses in the context of SM-MIMO systems. This analysis adopts 𝑁T = 𝑁R = 4
antennas for both the transmitter and receiver, such that 𝑁T different data streams are
transmitted simultaneously. Furthermore, no channel coding neither any kind of precoding
are used. The system uses a 16-QAM to map bits into symbols, which are transmitted
through a time-varying and frequency selective channel employing an orthogonal multicar-
rier scheme, i.e. CP protected OFDM. Assuming a symbol length with 𝐾 = 64 samples,
a CP with 𝑁CP = 16 samples, which is larger than the maximum channel delay profile. In
this case, the channel coherence bandwidth is wider than the bandwidth of a subcarrier
and the channel frequency response can be considered to be a flat Rayleigh channel per
subcarrier. It is also assumed perfect synchronization and CSIR. The simulation parame-
ters are the same given in Table 9.

Figure 30 illustrates some selected energy efficiency Monte Carlo simulation results.
It relates the BER versus the 𝐸b/𝑁0 ratio for some of the main presented estimation and
detection techniques so far. The MMSE process, which involves LMMSE equalization,
is applied to the received and demodulated symbols. This method is appropriate here
because the system model is linear.

The CWCU-LMMSE method applies diagonal weighting to the LMMSE equali-
zation matrix, as shown in Section 4.4. Immediately after equalization, ML detection is
used to identify the most probable transmitted sequence. This example uses the LMMSE
equalization matrix to estimate the SNR in the MMSE-SIC, as described in Algorithm
11. Additionally, it serves as the estimator for the MMSE-PIC, as outlined in Algorithm
12. Alongside these detectors, the results for the classical SD, detailed in Algorithm 9,
is also included. The MLD, described in Algorithm 7, has also been implemented as a
benchmark for the techniques considered in this analysis.

The detector based on CWCU-LMMSE estimation shows a slight improvement in
the BER performance when compared with the corresponding LMMSE, which employs
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Figure 30 – Monte Carlo simulation of an uncoded 16-QAM employing a 4×4 SM-MIMO-
OFDM in time-varying and frequency selective channel.

an equalization matrix with unweighted diagonal. This small improvement is a result of
a better fitting of the CWCU-LMMSE equalized signal on the constellation grid prior to
detection. This characteristic holds for the Rayleigh flat-fading channel, where the symbols
after CWCU-LMMSE equalization remains unbiased, while the symbols equalized by the
LMMSE tends to introduce a small bias towards the expected value of the discrete RV
set, which, for a symmetric equiprobable QAM constellation, is zero. On the other hand,
for AWGN channel, both equalizers performs equally in terms of BER [108].

The SD achieves a performance that is equivalent to the one observed for the MLD
and over performing all previous detectors. Figure 31 analyzes the SD complexity for the
proposed example in terms of the average number of visited nodes at each layer. Notice
that this parameters is not so dependent on the SNR as the average amount of visited no-
des slight decays with the 𝐸b/𝑁0. Furthermore, bottom layers are more commonly visited
once the tree search structure exponentially expands towards the underneath layers.

The average complexity in FLOPs is obtained from the average number of visited
nodes and (5.8). This is an important parameter once it allows to compare the upper
bound of the SD complexity, given by (5.10), its average computational cost, and the
MLD complexity given by (5.2). This behavior can be seen graphically in Figure 32, that
brings the complexity growth, in log scale, of the presented detection methods, in terms
of FLOPs counting as a function of the constellation size 𝑀c, while assuming 𝑁T=𝑁R.
Among the presented detectors, the MMSE-SIC and the MMSE-PIC have the lowest and
restrained computational cost since (5.24) and (5.29) follow a cubic expansion rate with
the number of receive antennas. Analyzing (5.10) and (5.2), an exponential growth in the
worst case scenario for both SD and MLD can be inferred. The average complexity of SD
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Figure 31 – SD complexity analysis for the simulated parameters.
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for the proposed example is also marked, confirming that, in average, the SD achieves
the MLD performance at an smaller complexity (approximately 4x 𝒪osic in this example),
although it can still reach exponential computational cost.

It is evident that both SD and MLD algorithms, while optimal in terms of BER
performance compared with the SIC approach, exhibit prohibitive complexity as the mo-
dulation order or the number of antennas increases. This is particularly true for high-order
communication systems, such as massive MIMO [87]. In such cases, it is important to con-
sider various solutions, which may include slight variations of classical methods mentioned
earlier in this chapter, as well as new proposals that may arise.



Chapter 5. Detection Techniques 96

5.6 Summary

This chapter explored detection methods aiming to retrieve all the information
simultaneously transmitted in a SM-MIMO application. These methods may require in-
tricate detection procedures to manage the intrinsic system interference that arises when
employing multiple antennas. These detectors are described in details, supported by prac-
tical algorithms and complexity order expressions. While some detectors, such as MLD
and SD, are optimal, they are impractical for implementation due to their high compu-
tational cost. Other alternatives, such as the SNR-ordered SIC and the PIC, although
feasible in terms of complexity, remain sub-optimal. The subjects covered in this chapter
are original contributions from this thesis which have been published in [58] and [104]. The
following chapter details a low-complexity and low-latency iterative PIC method capable
of achieving optimal performance even for NO waveforms [1].
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6 Iterative MMSE-PIC Detector

Non-orthogonal waveforms pose challenges for data separation and diversity gain,
once any previous equalization results in homogeneous flat channel at subcarriers before
detection. The use of ML detectors for optimal performance in such situations is often in-
tricate and impractical, involving the comparison of the received signal in the time domain
with all possible waveforms transmitted over the radio channel. To address the challen-
ges introduced by NO waveforms, achieving data separation, ICI and ISI mitigation, as
well as diversity harvesting, the reception process can be carried out through iterative
PIC techniques.

This chapter provides a detailed description of the iterative MMSE-PIC algorithm,
supported by a comprehensive block diagram that visualizes the information flow during
detection. The entire process is divided into smaller, easily comprehensible parts, each
described algorithmically.

6.1 Fundamentals on Iterative MMSE-PIC

In [1], Matthé et al. proposes a low complexity and low latency iterative MMSE-
PIC, suitable for, but not restrained to, NO-GFDM detection in SM-MIMO applications,
aiming for harvesting multiplexing and diversity gains simultaneously. The complexity
reduction relies on the equivalence between a PIC process and a single LMMSE esti-
mation with a-priory knowledge about system parameters [60]. Most important, under
the assumption that both inputs and outputs are continuous gaussian random variables,
linear estimators becomes an interesting enabler to iterative detection by providing es-
timates and uncertainties for SISO (Soft-Input, Soft-Output) demapping and decoding
operations. This assumption is crucial in order to employ factorized systems in the form
of (3.24), allowing to explore low complexity estimation methods based on their specific
band structured matrices.

Figure 33 illustrates the block diagram for the proposed iterative SISO MMSE-
PIC detector. Its entry point considers, under the premise of perfect synchronization and
CSIR, the received signal vector y⃗, after CP removal, the equivalent MIMO channel, as H̃,
and the corresponding AWGN variance 𝜎2

w⃗. On sequence, the linear system represented
by (3.5) is factorized into 𝑀 subsystems with dimension 𝑁T𝐾on×𝑁T𝐾on, according to
(3.14) and related equations. Each resulting subsystem at sample-frequency domain refers
to (3.24), where an estimate on the expectation and variance of d⃗s is desired. These para-
meters are estimated with the help of function Θlcl and the available a-priory information
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�⃗�a
d⃗s

and Σ⃗
a
d⃗s . Initially, when no a-priory information is available, these parameters are

initialized as a null and unitary vectors, respectively. Note that the uncertainty parame-
ter Σ⃗ is represented by a vector once the involved covariance matrices are approximately
forced to be diagonal. Then, the resulting posterior estimates �⃗�p

d⃗s
and Σ⃗

p
d⃗s are reorganized

into 𝑁T𝐾on subsystems of size 𝑀×𝑀 , used in the sample-frequency to data-time domain
estimation employing the function Θcg. Following this operation, properly concatenation
and permutation yields to posterior estimate on the expected transmitted data �⃗�p

d⃗ and
its variance Σ⃗

p
d⃗.

Optionally, interleaving symbols and/or bits might be considered in order to im-
prove the robustness against burst errors. In case of random interleaving had been consi-
dered in the transmitter side, identified by ∏︀, the corresponding de-interleaving function,
denoted as ∏︀−1, must also be considered prior to symbol de-mapping or channel decoding.
Afterwards, the same random interleaver operation is performed in the feedback direction.
The interleaving is an efficient option in order to improve the correction capacity. If the
noise coming into channel decoding is highly correlated, then the convolutional decoder,
commonly designed with a short constraint length, is more likely to make a decoding error
than if the noise was independent. Since channel decoders are affected by burst errors,
the interleaver spreads these errors out, allowing the decoders to operate with relative
independent noise from bit to bit [86].

Soft demapping function ℳ−1
soft performs individual bit probability estimation for

each data symbol, constrained by the constellation set 𝒞. Assuming uncorrelated noise and
dismissing the necessity of previous knowledge about the bit sequence, the approximated
LLRs (Log-Likelihood Ratios) are efficiently obtained with negligible impact on the overall
detection performance [1, 61] by

�⃗�p
e𝑠,𝑏

= 1
(Σ⃗p

d⃗
)𝑠

⎛⎝min
⃒⃒⃒
(�⃗�p

d⃗)𝑠 − 𝒞(0)
𝑏

⃒⃒⃒2
−min

⃒⃒⃒
(�⃗�p

d⃗)𝑠 − 𝒞(1)
𝑏

⃒⃒⃒2⎞⎠ (6.1)

where �⃗�
p
e ∈ R𝜇𝑁T𝑁on×1 is the approximated extrinsic LLR vector with 𝒞(0)

𝑏 and 𝒞(1)
𝑏 being

the subsets of constellation symbols whose 𝑏th bit is 0 or 1, respectively. It is worth to
mention that diverse LLRs sequences are required when considering SM-MIMO systems
employing frame structures that carry out integer multiples of a codeword, simultaneously
transmitted by 𝑁T antennas in 𝑁s block symbols per frame. Thus, after properly gathering
and organizing each codeword, soft decoding is the last procedure on every outer PIC
iteration.

Soft channel decoding is responsible for recovering the transmitted bit information
from demapper estimates, obeying the code constraints. Usually, soft decoding applies al-
gorithms able to exactly compute or approximate the APP of the information bits or,
more generally, a reliability measure about each information bit. Hence, soft decoding
results decoded LLRs, required in order to output re-encoded LLRs �⃗�

a
i for a next ite-
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Figure 33 – Iterative MMSE-PIC detector block diagram for SM-MIMO empoying NO-GFDM.
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ration or by taking a final hard bit decision b⃗PIC. According to [1], convolutional codes
performed better among the analyzed coding techniques, therefore, max-log BCJR (Bahl-
Cocke-Jelinek-Raviv) algorithm [109] is also considered as an optimal achievable decoding
technique in order to obtain the LLRs for the PIC feedback.

In turbo decoding, both decoders have to be fed with information not originating
from themselves in order to improve the correctness of its decisions, corresponding to
the so called extrinsic LLRs [110]. As adopted in [61], using the intrinsic a-priory LLRs
in the feedback computation of soft symbols instead of extrinsic ones leads, in general,
to significantly better error-rate performance of the SISO MMSE-PIC algorithm. In the
same manner, the intrinsic a-priory LLRs is considered along this work. Thus, the intrinsic
information gained during codeword domain processing, denoted by �⃗�

a
i , is soft modulated

according to [1, 61]. Defining the 𝑏th bit of the 𝑠th constellation symbol by b⃗𝑠,𝑏 ∈ {0, 1}
with probabilities 𝒫 [b⃗𝑠,𝑏 = 1] = [1 + exp(�⃗�

a
i )]−1 and 𝒫 [b⃗𝑠,𝑏 = 0] = 1− 𝒫 [b⃗𝑠,𝑏 = 1], the

mean and variance of the a-priory constellation symbols are updated performing

(�⃗�a
d⃗)𝑠 =

∑︁
𝑑∈𝒞

∏︁
𝑏

𝒫 [b⃗𝑠,𝑏 =ℳ−1(𝑑)]𝑑 (6.2)

and

(Σ⃗a
d⃗)𝑠 =

∑︁
𝑑∈𝒞

∏︁
𝑏

𝒫 [b⃗𝑠,𝑏 =ℳ−1(𝑑)]‖𝑑− (�⃗�a
d⃗)𝑠‖2. (6.3)

The a-priory probabilities in (6.2) and (6.3) can be obtained by [111]

𝒫 [b⃗𝑠,𝑏 = {0, 1}] = 1
2

[︂
1 + (2b⃗𝑠,𝑏 − 1)tanh

(︂1
2 �⃗�a

i [𝜇𝑠 + 𝑏]
)︂]︂

, (6.4)

which shows numerically stability w.r.t. �⃗�
a
i and can be efficiently implemented in hardware

through look-up tables [61].

In the sequence, �⃗�a
d⃗ and Σ⃗

a
d⃗ are conveniently grouped by subcarriers through left

multiplication by the augmented permutation matrix P̄ = I𝑁T ⊗ P and factorized into
𝑀 subsystems for time to frequency estimation, leading to a-priory estimates on sample-
frequency domain, denoted by �⃗�a

d⃗s
and Σ⃗

a
d⃗s . This encloses the iterative MMSE-PIC outer

loop, allowing to start a new iteration considering the a-priory information gained from
soft decoding. Along successive iterations, both demapper and decoder procedures self
benefit from exchanged refined information between each other. Algorithm 13 presents a
detailed task list necessary to implement the iterative detector for 𝑡o outer iterations.

In Algorithm 13, except by the processes in lines 9, 10 and 11, where (de)interleave,
soft (de)map and decode operations are executed one codeword per transmitting antenna,
all other procedures are processed in a block-by-block fashion, for all 𝑁s block-symbols in
a frame. Lines 5, 8 and 14 perform element concatenation and permutation, referring to
blocks 3, 6 and 12 in Figure 33, respectively. Soft demapping and mapping functions, from
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Algorithm 13 Iterative MMSE-PIC Detector
1: Algorithm 13.1: Initialize MMSE-PIC Detector
2: Algorithm 13.2: Factorize into 𝑀 subsystems 𝑁T𝐾on ×𝑁T𝐾on % Block 1
3: for 1 to 𝑡o do
4: Algorithm 13.3: Estimate data in FD % Block 2
5: Algorithm 13.4: Concatenate and permute data in FD % Block 3
6: Algorithm 13.5: Factorize into 𝑁T𝐾on subsystems 𝑀 ×𝑀 % Block 4

7: Algorithm 13.6: Estimate TD data from FD % Block 5
8: Algorithm 13.7: Concatenate and permute data in TD % Block 6
9: Algorithm 13.8: De-interleaving and soft de-mapping % Block 7

10: Algorithm 13.9: Soft decoding % Block 8
11: Algorithm 13.10: Interleaving and Soft mapping % Block 9

12: Algorithm 13.11: Factorize into 𝑁T𝐾on subsystems 𝑀 ×𝑀 % Block 10

13: Algorithm 13.12: Estimate FD data from TD % Block 11

14: Algorithm 13.13: Concatenate and permute data in FD % Block 12

15: Algorithm 13.14: Factorize into 𝑀 subsystems 𝑁T𝐾on ×𝑁T𝐾on % Block 13
16: end for
Return: b⃗PIC

Algorithm 13.1 Initialize MMSE-PIC Detector
1: PRy⃗f = PR (I𝑁R ⊗ F𝑁) y⃗
2: PRHfPT

T = PR (I𝑁R ⊗ F𝑁) H̃ŪHPT
T

3: �⃗�a
d⃗s

= �⃗�a
d⃗ = 0⃗

4: Σ⃗a
d⃗s

= Σ⃗a
d⃗ = 1⃗

5: �⃗�a
e = �⃗�p

e = 0⃗
Return

Algorithm 13.2 Factorize PRy⃗f and PRHfPT
T into 𝑀 subsystems (y⃗s, Hs, Σa

w⃗s
)[𝑚]

1: for 𝑚 = 0 to 𝑀 − 1 do
2: p⃗ = [𝑚𝑁R𝐾 + 1 : (𝑚 + 1)𝑁R𝐾]
3: q⃗ = [𝑚𝑁T𝐾on + 1 : (𝑚 + 1)𝑁T𝐾on]
4: y⃗s[𝑚] = (PRy⃗f)[p⃗]
5: Hs[𝑚] = (PRHfPT

T)[p⃗, q⃗]
6: Σa

w⃗s
[𝑚] = 𝜎2

w⃗I𝑁T𝐾on

7: end for
Return: 𝑀 subsystems (y⃗s, Hs, Σa

w⃗s
)[𝑚]

Algorithm 13.3 Estimate data in FD
1: for all 𝑚 do % 𝑀 parallel instances, suppressed indexes
2: (�⃗�p

d⃗s
, Σ⃗p

d⃗s
) = Θlcl

[︁
(y⃗s = Hsd⃗s + w⃗s), 𝒞𝒩 (�⃗�a

d⃗s
, Σa

d⃗s
), 𝒞𝒩 (0⃗, Σa

w⃗s
)
]︁

3: end for
Return
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Algorithm 13.4 Concatenate and permute data in FD
1: PT

T�⃗�
p
d⃗s

= PT
T[�⃗�p

d⃗s
[0]; . . . ; �⃗�p

d⃗s
[𝑚]; . . . ; �⃗�p

d⃗s
[𝑀 − 1]]

2: PT
TΣ⃗p

d⃗s
= PT

T[Σ⃗p
d⃗s

[0]; . . . ; Σ⃗p
d⃗s

[𝑚]; . . . ; Σ⃗p
d⃗s

[𝑀 − 1]]
Return

Algorithm 13.5 Factorize PT
T�⃗�

p
d⃗s

and PT
TΣ⃗p

d⃗s
into 𝑁T𝐾on subsystems (�⃗�p

d⃗s
, Σ⃗p

d⃗s
)[𝑗, 𝑘]

1: for 𝑗 = 1 to 𝑁T do
2: for 𝑘 = 0 to 𝐾on − 1 do
3: q⃗ = [𝑘𝑀 + (𝑗 − 1)𝑁on : (𝑘 + 1)𝑀 + (𝑗 − 1)𝑁on − 1]
4: �⃗�p

d⃗s
[𝑗, 𝑘] = (PT

T�⃗�
p
d⃗s

)[q⃗]
5: Σ⃗p

d⃗s
[𝑗, 𝑘] = (PT

TΣ⃗p
d⃗s

)[q⃗]
6: end for
7: end for

Return: 𝑁T𝐾on subsystems (�⃗�p
d⃗s

, Σ⃗p
d⃗s

)[𝑗, 𝑘]

Algorithm 13.6 Estimate TD data from FD
1: for all 𝑗, 𝑘 do % 𝑁T𝐾on parallel instances, suppressed indexes
2: (�⃗�p

d⃗, Σ⃗p
d⃗) = Θcg

[︁
(d⃗s = F𝑀 d⃗ + �⃗�2

d⃗s
I𝑀), 𝒞𝒩 (�⃗�a

d⃗, Σ⃗a
d⃗), 𝒞𝒩 (�⃗�a

d⃗s
, Σa

d⃗s
)
]︁

3: end for
Return

Algorithm 13.7 Concatenate and permute data in TD
1: �⃗�p

d⃗ = P̄T[�⃗�p
d⃗[0, 0]; . . . ; �⃗�p

d⃗[𝑗, 𝑘]; . . . ; �⃗�p
d⃗[𝑁T − 1, 𝐾on − 1]]

2: Σ⃗p
d⃗ = P̄T[Σ⃗p

d⃗[0, 0]; . . . ; Σ⃗p
d⃗[𝑗, 𝑘]; . . . ; Σ⃗p

d⃗[𝑁T − 1, 𝐾on − 1]]
Return

Algorithm 13.8 De-interleaving and soft de-mapping
1: function ∏︀−1

2: deinterleaved[permutation_indexes] = interleaved[linear_indexes]
3: end function
4: function ℳ−1

soft % according to (6.1)
5: 𝑁d = length(�⃗�)
6: 𝑀c = length(𝒞)
7: 𝒞2 = binary(1 : 𝑀c)
8: for 𝑠← 1 to 𝑁d do
9: for 𝑏← 1 to 𝜇 do

10: idx = 𝜇(𝑠− 1) + 𝑏

11: �⃗�[idx] = − 1
Σ⃗[𝑠] [min(|�⃗�[𝑠]− 𝒞[𝒞2[𝑏] = 0]|2)−min(|�⃗�[𝑠]− 𝒞[𝒞2[𝑏] = 1])|2)]

12: end for
13: end for
14: end function
15: �⃗�p

e = ∏︀−1
bit{ℳ−1

soft[
∏︀−1

sym(�⃗�p
d⃗),∏︀−1

sym(Σ⃗p
d⃗)]}

Return
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Algorithm 13.9 Soft channel decoding
1: if 𝑟 > 1/2 then
2: De-puncturing(�⃗�p

e )
3: end if
4: (�⃗�a

i , b⃗PIC) = BCJR(�⃗�p
e ) % Soft decoding according to [109]

5: if 𝑟 > 1/2 then
6: Puncturing(�⃗�a

i )
7: end if

Return

Algorithm 13.10 Interleaving and soft mapping
1: function ∏︀
2: interleaved[linear_indexes] = deinterleaved[permutation_indexes]
3: end function
4: function ℳsoft % according to (6.2) and (6.3)
5: 𝑁d = length(�⃗�)/𝜇
6: 𝑀c = length(𝒞)
7: 𝒞2 = binary(1 : 𝑀c)
8: for 𝑠← 1 to 𝑁d do
9: 𝑖𝑑𝑥 = 𝜇(𝑠− 1) + 1 : 𝜇

10: 𝒫 = 1
2

[︁
1 + (2𝒞2 − 1) ∘ tanh

(︁
1
2 1⃗(�⃗�a

i [𝑖𝑑𝑥])T
)︁]︁

11: �⃗�[𝑠] = 𝒫T𝒞
12: Σ⃗[𝑠] = 𝒫T|𝒞 − �⃗�[𝑠]|2
13: end for
14: end function
Return

Algorithm 13.11 Factorize P̄�⃗�a
d⃗ and P̄Σ⃗a

d⃗ into 𝑁T𝐾on subsystems (�⃗�a
d⃗, Σ⃗a

d⃗)[𝑗, 𝑘]
1: for 𝑗 = 1 to 𝑁T do
2: for 𝑘 = 0 to 𝐾on − 1 do
3: q⃗ = [𝑘𝑀 + (𝑗 − 1)𝑁on : (𝑘 + 1)𝑀 + (𝑗 − 1)𝑁on − 1]
4: �⃗�a

d⃗[𝑗, 𝑘] = (P̄�⃗�a
d⃗)[q⃗]

5: Σ⃗a
d⃗[𝑗, 𝑘] = (P̄Σ⃗a

d⃗)[q⃗]
6: end for
7: end for

Return: 𝑁T𝐾on subsystems (�⃗�a
d⃗, Σ⃗a

d⃗)[𝑗, 𝑘]

Algorithm 13.12 Estimate FD data from TD
1: for all 𝑗, 𝑘 do % 𝑁T𝐾on parallel instances, suppressed indexes
2: (�⃗�a

d⃗s
, Σ⃗a

d⃗s
) = Θcg

[︁
(d⃗ = FH

𝑀 d⃗s + �⃗�2
d⃗I𝑀), 𝒞𝒩 (�⃗�p

d⃗s
, Σ⃗p

d⃗s
), 𝒞𝒩 (�⃗�a

d⃗, Σa
d⃗)
]︁

3: end for
Return
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Algorithm 13.13 Concatenate and permute data in FD
1: PT�⃗�

a
d⃗s

= PT[�⃗�a
d⃗s

[0]; . . . ; �⃗�a
d⃗s

[𝑚]; . . . ; �⃗�a
d⃗s

[𝑀 − 1]]
2: PTΣ⃗a

d⃗s
= PT[Σ⃗a

d⃗s
[0]; . . . ; Σ⃗a

d⃗s
[𝑚]; . . . ; Σ⃗a

d⃗s
[𝑀 − 1]]

Return

Algorithm 13.14 Factorize PT�⃗�
a
d⃗s

and PTΣ⃗a
d⃗s

into 𝑀 subsystems (�⃗�a
d⃗s

, Σ⃗a
d⃗s

)[𝑚]

1: for 𝑚 = 0 to 𝑀 − 1 do
2: q⃗ = [𝑚𝑁T𝐾on + 1 : (𝑚 + 1)𝑁T𝐾on]
3: �⃗�a

d⃗s
[𝑚] = (PT�⃗�

a
d⃗s

)[q⃗]
4: Σ⃗a

d⃗s
[𝑚] = (PTΣ⃗a

d⃗s
)[q⃗]

5: end for
Return: 𝑀 subsystems (�⃗�a

d⃗s
, Σ⃗a

d⃗s
)[𝑚]

lines 9 and 11, assign for blocks 7 and 9. Algorithm 13.2 corresponds to block number
1 in the diagram of Figure 33. It performs system factorization in the FD. Algorithms
13.2, 13.5, 13.11 and 13.14 comprehend the factorization procedures identified as block
numbers 1, 4, 10 and 13, in this order.

With respect to computational effort comparison, it is reasonable to consider the
estimation processes at lines 1, 4, 7 and 13, detaining the majority of overall complexity
on executing Algorithm 13. Since demapping and decoding are, in general, common tasks
in every digital communication system, it is sufficient to express the MMSE-PIC detector
complexity by

𝒪PIC

(︂
𝑁R𝒪(ℱ𝑁) + 𝑡o(𝑀𝒪lcl + 2𝑁T𝐾on𝒪cg)

)︂
, (6.5)

where the first term is the dominant cost in the initialization step, corresponding to the
transformation of the received TD signal to the FD in Algorithm 13.1, assuming that CFR
estimate is already available. The second term comprehends 𝑡o PIC iterations with three
internal linear estimation stages, lines 4, 7 and 13 in Algorithm 13. The first estimation
stage employs 𝑀 parallel instances of the function Θlcl to solve each 𝑁T𝐾on×𝑁T𝐾on band
diagonal system with single-side bandwidth 𝑁T. From (4.27), the complexity involved on
refining the sample-frequency domain signal is

𝒪lcl

(︂
32𝑁3

T𝐾on + 56𝑁2
T𝐾on⌈2𝑁T⌉2 + 48𝑁2

T𝐾on − 42𝑁T𝐾on⌈2𝑁T⌉2 − 9𝑁T𝐾on

)︂
.

(6.6)
Second and third stages perform time-frequency conversion s.t. each stage employs 𝑁T𝐾on

parallel instances of the estimator function Θcg. Here, the linear transform refers to 𝑀 -
point DFT matrices. Retrieving (4.32) and considering up to 𝑀 iterations in the CG
algorithm, which, according to [1], close achieves the exactly solution, has a computational
cost given by

𝒪cg

(︂
16𝑀3 + 57𝑀2 + 10𝑀 + 2𝑀 log(𝑀) + 1

)︂
. (6.7)



Chapter 6. Iterative MMSE-PIC Detector 105

In [1], the author presents the complexity of both OFDM and GFDM in Big-𝒪
notation, restrained to highest order terms only, disregarding their coefficients. Hence,
replacing �̃�lcl ≈ 𝑁3

T𝐾on and �̃�cg ≈𝑀3 in (6.5) allows one to write

𝒪GFDM

(︂
𝑁R𝑀𝐾 log(𝑀𝐾) + 𝑡o𝑁

3
T𝑀𝐾on + 𝑡o2𝑁T𝑀2𝐾on

)︂
, (6.8)

which is the dominant complexity order of the MMSE-PIC detector, considering the
NO-GFDM. Just for comparison purpose, and still referring to [1], the equivalent com-
putational order applying the straight-forward implementation of the SISO MMSE-PIC
demapping operation for OFDM with symbol length 𝑀𝐾, allocating 𝑀𝐾on active sub-
carriers, is approximately given by

𝒪OFDM

(︂
𝑁R𝑀𝐾 log(𝑀𝐾) + 𝑡o𝑁

3
T𝑀𝐾on

)︂
. (6.9)

Comparing (6.8) and (6.9), both systems exhibit similar order of complexity. Moreover,
the MMSE-PIC offers linear computational cost w.r.t. the number of active subcarriers
𝐾on. By supporting a solution over the factorized system, in the sample-frequency domain,
it also admits high-level pipeline and parallel processing.

6.2 Analysis on Iterative MMSE-PIC Detection Technique

This section presents the results obtained by a Monte Carlo simulation conside-
ring solely the aforementioned iterative MMSE-PIC method, which, according to [58], is
the most prominent detection technique for the SM-MIMO application in terms of per-
formance and complexity. The main motivation for this section is to reproduce the final
results from [1] as a reference, to validate the accuracy of this work’s interpretation. This
step is essential before conducting a deeper analysis in a different scenario or any practical
implementation.

The reference simulation considers a 4×4 MIMO system under practical LTE ETU
(Extended Typical Urban) channel model defined by 3GPP, with a maximum delay spread
of 5 µs. Table 11 shows the PDP (Power Delay Profile) and its equivalent base band nearest
discrete time indexes, for a sampling frequency of 𝑓s = 23.04 MHz. Coincident indexes
have their average power 𝜎2

𝑙 summed. Every simulated CIR between any transmitting and
receiving antennas are normalized by

√︁∑︀𝐿−1
𝑙=0 |ℎ𝑖,𝑗[𝑙]|2.

Table 11 – Power delay profile of 3GPP ETU channel.
𝜏𝑙 [𝜂s] 0 50 120 200 230 500 1600 2300 5000

round(𝑓𝑠𝜏𝑙) 0 1 3 5 5 12 37 53 115
𝜎2

𝑙 [dB] -1.0 -1.0 -1.0 0.0 0.0 0.0 -3.0 -5.0 -7.0

In [1], the frame structure is briefly described. To complete the set of simulation
parameters, this work proposes a practical frame structure that includes pilot-symbol
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Table 12 – Simulation parameters.

Description Symbol/Parameter Value
Number of antennas [𝑁T, 𝑁R] [4, 4]

Bits per symbol and coding rate [𝜇, 𝑟] [4, 1/2]
Channel coding {Convolutional; BCJR} {7, [171, 133]; Log-MAP}

Code-word length 𝑁c 1008
Channel model {PDP, CSIR} {ETU, Perfect}

Blocks per frame [#Preambles, #Data] [1, 7]
Allocated subcarriers [𝐾on, 𝐾] [3, 128]
Allocated subsymbols [𝑀on, 𝑀 ] [12, 12]

Prototype filter and roll-off {𝑔, 𝛼} {RC, 1}
CP and time-window samples [𝑁cp, 𝑁𝜛] [384, 16]
Block and frame duration [µs] [𝑇B, 𝑇F] [84.7, 931.4]
Block and frame efficiency [dB] [𝜂B, 𝜂F] [-1.04, -0.58]

SNR 1/𝜎2
�⃗� 𝜇𝑟𝐸b/𝑁0

preambles for joint synchronization and channel estimation purposes [112, 113], where all
antennas simultaneously transmit orthogonal sequences. Figure 34 depicts the proposed
arrangement, where 𝑁t is the total number of samples including the CP and windowing.
The frame length in samples is given by 𝑁f. Following the preamble, 𝑁s = 7 data blocks
are transmitted, carrying 𝑁T codewords of 1008 bits after coding rate 1/2 convolutional
encoding. Data QAM symbol modulation with 𝜇 = 4 bits per symbol are transmitted
by each resource element. The channel decoder employs SISO log-MAP BCJR algorithm
[109]. In order to meet the low OOB emission, a ramp-up and ramp-down RC time-window
is used. To mitigate IBI, the CP duration is 16.7 µs.

Orthogonal Preambles Data Blocks

Tx 1 CP Preamble 1 CS

Tx 𝑁T CP Preamble 𝑁T CS

...
...

...
...

CP Block 1,1 CS . . . CP Block 1,𝑁s CS

CP Block 𝑁T,1 CS . . . CP Block 𝑁T,𝑁s CS
𝑁𝜛

𝑁t

𝑁cp 𝑁 𝑁𝜛 𝑁𝜛 𝑁cp 𝑁 𝑁𝜛

𝑁t

𝑁f = 𝑁T(𝑁s + 1)

Figure 34 – Proposed frame structure for the SM-MIMO system with iterative MMSE-
PIC detection.

Table 12 summarizes the simulated parameters, where the bandwidth of a single
GFDM subcarrier equals a PRB (Physical Resource Block) of an LTE system.

The relation between symbol and bit energy can be obtained from

𝐸s

𝑁0
= 𝜇𝑟

𝐸b

𝑁0
(6.10)
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and the corresponding SNR, considering the proposed frame structure, is given by

SNR = 𝐸s

𝑁0
𝑁T

𝑅b

𝐵
= 𝜇𝑟

𝐸b

𝑁0

𝑁𝑁s

𝑁f
, (6.11)

where 𝑟 is the channel coding rate, 𝑅b is the useful bit rate in bits/s, 𝐵 = 𝐾on𝑓s is the
occupied bandwidth, 𝑁f = 𝑁t(𝑁s + 1) and the equivalent base band noise variance is
𝜎2

w⃗ = 𝑁0.

Figure 35 presents the BER and the FER curves of the simulated system. The BER
curves represents a 1x1 system used to demonstrate the exactness of noise calibration by
comparing the orthogonal case, when 𝛼 = 0, with theoretical curves assuming AWGN
and flat Rayleigh channels. In the same figure, the FER curve is plotted against the
reference curve from [1], showing the preciseness of the MMSE-PIC interpretation for NO
waveforms, which simulates the reception of 3 allocated PRB, simultaneously transmitted
by 𝑁T = 4 antennas over an ETU channel, assuming constant CIR during the frame
period.

0 2 4 6 8 10 12 14

10−4

10−3

10−2

10−1

100

Eb/N0 dB

BE
R

,F
ER

Theo. Uncoded AWGN
Sim. Uncoded AWGN
Theo. Uncoded Rayleigh
Sim. Uncoded Rayleigh
Ref. coded MMSE-PIC
Sim. coded MMSE-PIC

Figure 35 – Uncoded BER of a 1x1 system over AWGN and flat Rayleigh channels besides
coded FER of a 4x4 SM-MIMO-NO-GFDM employing the iterative MMSE-
PIC detector.

Allocating all 83 available PRB results in an occupied BW (Bandwidth) of 15 MHz
and a gross bit rate of 120 Mbps, equivalent to a total throughput of approximately 60
Mbps considering the channel coding rate 𝑟 = 1/2. In terms of coverage, the CP protection
ensures links up to 30 km. These results show that the iterative MMSE-PIC algorithm
is indeed a prominent tool capable of achieving the ML lower bound with affordable
complexity and low latency. Further improvements might be achieved by improving the
efficiency of the coding technique, while a new numerology for the frame structure can
also be proposed to improve the coverage.
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Table 13 presents a computational cost comparison by summarizing the complexity
order taking the principal terms from (5.2), (5.20), (5.24), (6.8) and (6.9), assuming that
both OFDM and GFDM have the same number of active resources. It is important to
highlight the property of OFDM factorization in the frequency domain, which results in
𝐾on subsystems with dimension 𝑁R×𝑁T. The expressions have been adjusted accordingly
to this scenario.

Table 13 – Complexity order summary for OFDM and NO-GFDM detection.

Detector
OFDM NO-GFDM

System Order Complexity System Order Complexity

MLD
𝐾on

Subsystems

𝑁R×𝑁T

𝑁R𝐾log(𝐾)+𝐾on𝑀𝑁T
c 𝑀

Subsystems

𝑁R𝐾×𝑁T𝐾on

𝑁R𝑁 log(𝑁)+𝑀𝑀𝑁T𝐾on
c

SD

MMSE-SIC 𝑁R𝐾log(𝐾)+𝑁3
T𝐾on 𝑁R𝑁 log(𝑁)+𝑀𝑁3

R𝐾3𝑁T𝐾on

MMSE-PIC 𝑁R𝐾log(𝐾)+𝑡o𝑁
3
T𝐾on 𝑁R𝑁 log(𝑁)+𝑡o𝑁

3
T𝑁on+2𝑡o𝑀𝑁T𝑁on

An exponential complexity order in 𝑁T for the OFDM and 𝑁T𝐾on for GFDM
is characteristic in MLD and it is an upper bound for the SD, making this detectors
prohibitive for NO detection, despite of achieving optimal performance. The MMSE-SIC
detector presents the smallest cost for OFDM detection but pays a high penalty in terms
of BER performance. For the NO-GFDM, the SIC detector follows a quartic complexity
growth assuming 𝑁R=𝑁T and 𝑁=𝑁on, which, besides poor performance, makes it unat-
tractive. The iterative MMSE-PIC shows an affordable complexity for both multicarrier
modulations, being linear w.r.t. the number of active resources while offering potential
to close approach the ML performance. The complexity difference between OFDM and
NO-GFDM is a quasi-linear increment caused by the additive term 2𝑡o𝑀𝑁T𝑁on. These
facts makes the iterative MMSE-PIC a natural choice for the SM-MIMO implementation
employing the NO-GFDM.

6.3 Summary

This chapter provides a comprehensive explanation of the iterative MMSE-PIC
detector, focusing on NO waveforms as an advanced technique to simultaneously achieve
multiplexing and diversity gains. It also examines the frame structure and evaluates the
detection performance in terms of energy efficiency, throughput, and cell coverage. By re-
producing the FER simulation results from [1], it validates the algorithm’s interpretation,
which is a crucial step before future hardware implementation. This advanced detector
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demonstrated near-optimal performance with manageable complexity, making it suitable
for SM-MIMO applications including NO waveforms. The topics addressed in this chapter
were published in [114]. Next chapter will explore practical aspects and the challenges to
adapt the iterative MMSE-PIC detector to meet the requirements of remote areas in the
Brazil 6G Project.



110

7 Low-Complexity 6G Transceiver for Re-
mote Areas

Foreseen application scenarios for 6G networks are already under discussion, in-
dicating that achieving the expected increase in flexibility of use cases may present even
greater challenges. It is evident that future mobile networks cannot rely solely on a sin-
gle radio access infrastructure. Instead, they will require the incorporation of enabling
technologies to address several scenarios and supporting contrasting requirements. By in-
tegrating SM-MIMO schemes with detection schemes capable of leveraging diversity and
multiplexing gains, alongside NO waveforms like GFDM, there is significant potential to
enhance data transmission rates and expand coverage. These are essential features for
some applications envisioned for 6G, mainly in remote and rural areas.

This chapter outlines the eRAC scenario and provides an overview of the proposed
6G transceiver in the TVWS regime, detailing the parameters used in the simulation,
with the aim of providing a valuable reference point for future practical evaluation of
the proposed transceiver implementation. Performance analysis is performed using Monte
Carlo simulations to assess this communication system, designed to offer robust, long-
range, and cost-effective connectivity in remote areas.

7.1 Remote and Rural Areas Use Case Scenario

The conservative standardization process of 5G-NR (5G New Radio) has limited
the application potential of 5G networks across various verticals [115]. Sectors crucial to
the social and economic development of Brazil, as well as other countries—such as agribu-
siness, logistics, and mining—require connectivity in remote and rural areas, a challenge
not easily addressed by 5G-NR. Particularly in Brazil, a significant digital gap persists
between urban and rural areas, with urban coverage at approximately 65%, contrasting
with only 34% at rural areas [34]. Remote areas are characterized by low population
density and limited services, including restricted Internet access and a scarcity of basic
facilities like schools, health centers, and supermarkets. On the other hand, solutions tailo-
red for remote scenarios drive innovation, offering resources such as automated machinery,
production traceability, transport logistics, IoT connectivity, remote maintenance, lives-
tock monitoring, and other intelligent agricultural services. These solutions also help in
reducing digital exclusion in specific communities. This objective aligns with the United
Nations’ sustainable development goals, aiming to establish resilient infrastructures for
inclusive and sustainable industrialization, while promoting global innovation through
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Figure 36 – Envisioned wireless backhaul scenario connecting interest remote areas.

universal Internet access [116]. This emphasizes the need for communication capabilities
in remote areas, in which a 6G radio access network must achieve comprehensive coverage
in such regions.

Due to conflicting requirements in 6G networks, a single numerology cannot effici-
ently accommodate all possible demands. Both 5G-NR and 5G-RANGE proposed frames
supporting multiple numerologies to cover a large set of use cases, a strategy that will
be probably adopted by 6G networks. Particularly, as outlined in [35], the requirements
for wireless backhaul and local high-quality connections are met with numerology num-
ber 0. This involves facilitating data transport between the core network and specific
small cells located in remote areas as illustrates by Fig. 36, a scenario considered here
to the proposed transceiver implementation. The wireless backhaul approach holds value
for extending coverage to remote regions, like tourist destinations, schools, industrial or
agricultural facilities, remote railway stations and mining areas.

The proposed scenario primarily operates the radio access network in the 700 MHz
band or below, aiming for extensive coverage with cells of 50 km radius. This strategy
leverages TV transmission infrastructure, such as towers and frequency channels, for im-
plementing wireless backhaul in remote areas, where TV coverage is robust and underused,
defining it as a TVWS system. By installing the 6G transceiver BSs (Base Stations) on
TV towers, LoS (line-of-sight) links can be established using idle UHF channels directed
towards small remote locations. In these areas, other BSs cells are situated in rural zones.
This link operates transparently, connecting small cells to the central network infrastruc-
ture, enabling mobile users to connect to these remote BSs. To exploit channel vacancies
in the TVWS regime, typically with a bandwidth between 6 to 8 MHz, where aggre-
gating multiple channels is not always feasible, high spectral efficiency becomes crucial.
High-order modulation may need high transmission power to maintain long-distance cove-
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rage. Thus, employing SM-MIMO schemes with a moderate number of antennas in both
transmitters and receivers proves viable. Also, ensuring low OOB emission is essential to
ensure coexistence with incumbents, a feature that is guaranteed by GFDM. Extended
link range creates multiple propagation paths, complicating the communication channel
and requiring efficient detectors like the iterative MMSE-PIC. Regarding user experience
KPIs (key performance indicators), each remote BS in the wireless backhaul scenario ty-
pically covers a small area with low UE (User Equipment) density. It must ensure a high
throughput connection of 100 Mbps, utilizing three to four TV channels, equivalent to
approximately 24 MHz. The wireless backhaul channel typically exhibits a long-range and
doubly dispersive profile [117].

7.2 Implementation Characteristics

The 6G transceiver is largely based on 5G-RANGE frame structure, specifically the
numerology number 0, with slightly modifications in PHY to support NO waveforms and
SISO decoding [37, 35]. The NO-GFDM symbols are protected from the dispersive trans-
mission channel by an additional CP and CS, incorporating a ramp-up and ramp-down
RC windowing to meet the required low OOB emission. The system’s non-orthogonality
occurs with a non-zero 𝛼 roll-off factor for the adopted transmission filter, introducing
intentional self-interference in the form of controlled ICI, where a suitable detector can
benefit from extra frequency diversity. In the transmitter, an orthogonal IFPI approach,
as in [62], is used to allocate reference pilot symbols from each transmitting antenna in
non-coincident specific bins, far from the interference of data subcarriers as much as pos-
sible. This allows settled frequency domain channel estimation methods to be applied by
the receiver.

Regarding channel coding, the same PC used in 5G-RANGE is also adopted.
However, a countermeasure is needed to address the fact that polar decoding is essen-
tially a hard-output process [75]. Moreover, recent CA-SCL (Cyclic Redundancy Check
(CRC)-Aided Successive Cancelation List (SCL)) polar decoding still cannot generate soft
estimates of the codeword bits [63], which are fundamental for iterative cancellation du-
ring the exchange of soft information between the demapper and decoder. To overcome
this problem, a LLPD is used to generate re-encoded LLRs for the iterative detection
method presented in Chapter 6, illustrated in Fig. 33. Basically, de-mapped LLRs are
hard decoded by the CA-SCL polar algorithm, which maintains a list of the most pro-
bable codewords throughout the process. The most promising decoded information is
re-encoded to update the initial LLRs sign. These updated LLRs are then processed by
an LDPC (Low-Density Parity-Check) decoding algorithm, employing a sparse parity-
check matrix derived from the polar generator matrix [118]. This process produces soft
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codewords for subsequent iterations. As an alternative to polar FEC, CC and a BCJR
decoders [109] are also considered. According to [1], this combination performes better
than LDPC for short-length codewords in a similar schema.

An integer number of codewords carrying 2048 bits are transmitted per sub-frame,
depending on the amount of allocated RBs (Resource Blocks). Eventually, bit stuffing is
used to exactly fit coded bit sequences in the available REs (Resource Elements). Bit in-
terleaving is also implemented to spread the information across time, frequency, and space
resources, which is an essential feature to improve the robustness against burst errors.

Fig. 37a illustrates the frame structure in time domain jointly with the time-
frequency grid in Fig. 37b, detailing the content of the first available RBs. The resource
allocation among UEs occurs every 4.6 ms sub-frame period, comprehending two conse-
cutive GFDM block symbols with 𝐾 = 16384 and 𝑀 = 4 for 𝑓s = 30.72 MHz sampling
frequency. The fragmented spectrum allocation, required for TVWS operation, is achieved
by selecting integer number of RBs, each one equivalent to 𝐾on = 96 subcarriers or 180
kHz bandwidth. In total, up to 𝑁RB = 132 or 23.76 MHz can be continuously allocated. In
this case, the simulated transceiver achieves up to 72.6 Mbps and 145.2 Mbps throughput
for the 2× 2 and 4× 4 SM-MIMO systems, respectively.

Fig. 37c allows to visualize the disposal of the IFPI technique alongside data sub-
carriers for different values of the filter roll-off parameter. For unitary 𝛼, the inserted
pilot pair suffers interference from surrounding data subcarriers and should be avoided.
Conversely, for 𝛼 ≤ 0.9, these interference decays rapidly as illustrated. Since the over-
sampled rate in frequency domain is governed by the number of subsymbols and, in order
to achieve interference free insertion, the number of orthogonal pilots inserted at each
GFDM reserved pilot subcarrier is limited to a single pair, once the proposed application
defines 𝑀 = 4.

Table 14 provides a summary of the key parameters of the radio frame used in the
implementation of the proposed 6G transceiver evaluated in this chapter. In view of system
dimension, the use of sparse matrices in the frequency domain becomes imperative, as it
leads to memory storage saving and speeds up the permutation process through direct
index arithmetic operations.

7.3 Performance evaluation

Two scenarios are analyzed in this section, a 2×2 and a 4×4 SM-MIMO, comparing
the performance of the MMSE-PIC detector with PC and CC FECs. It considers 𝑁RB = 4
allocated resource blocks, simultaneously transmitted by 𝑁T = {2, 4} antennas. It is also
assumed CDL (Clustered Delay Line) channel model D [117, 119] with perfect CSIR during
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Sub-frame

Tx 1

Tx 𝑁T

CP Symbol Block 1,1 CS CP Symbol Block 1,2 CS
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Figure 37 – (a): Frame structure in time domain; (b): Time-frequency resource allocation;
(c): Orthogonal IFPI for the RC filter with different values of 𝛼.

the sub-frame periods. The CDL-D model is characterized by the LoS case, considered in
eRAC scenario from Section 7.1, where the arrival angles and delay profile are specified
in [120]. The equivalent base band CIR between the 𝑗th transmit antenna and the 𝑖th
receiving antenna, h⃗𝑖,𝑗, is obtained by resampling the delay profile of CDL-D model with
𝑓s = 30.72 MHz, resulting in 𝐿 = 40 discrete taps, where each element represents the
average gain of the corresponding tap, following a Rayleigh distribution. The channel is
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Table 14 – 6G transceiver frame parameters.

Parameter Description Value
𝑀 , 𝐾 Available subsymbols and subcarriers 4, 16384
𝑁 Available resources (symbol length) 65536
𝐾(RB)

on Active subcarriers per RB 96
𝐾off Inactive subcarriers (guard band) 3712
𝑁 (pilot)

on , 𝑁 (data)
on Active resources per RB 96, 672

BWRB RB bandwidth [kHz] 180
𝑁RBmax Maximum available RBs 132
𝑁cp, 𝑁cs=𝑁w CP and CS length [samples] 3584, 768
𝑁t Total symbol length 70656
𝑓s Sampling frequency [MHz] 30.72
𝑇sf Sub-frame period [ms] 4.6
𝑅s Symbol rate (all RBs) [MSps] 19.28
OBW Occupied BW (all RBs) [MHz] 23.76

normalized by its squared root energy. In all cases, each active data RE carries 𝜇 = 4 bits
per symbol, mapped in a 16-QAM constellation. Channel code rate is 𝑟 = 1/2 for the CC
FEC, which employs the generator polynomial [133, 171]8 and encodes 1023 bits per sub-
frame. For the PC, the rate is 𝑟 ≈ 1/2, where 16-bit CRC (Cyclic Redundancy Check)
is appended to 1024 uncoded bits and produces 2048 coded bits. At the receiver, the
CA-SCL LLPD uses a list size of 16, and the LDPC decoder is limited to 200 iterations.
Tables 15, 16 and 17 detail the adopted parameters for the simulations.

Table 15 – 6G transceiver simulation parameters.

Parameter Description Value
𝑁RB number of resource blocks 4
𝑁RE number of resource elements 2688
𝜇 bits per symbol 4
𝑟 FEC rate 𝐾FEC/𝑁FEC
𝑁cb number of coded bits 10752
𝑡o number of PIC iterations 10
𝑡 number of CG iterations 4
𝑓s sampling frequency [MHz] 30.72
OBW occupied bandwidth [kHz] 720
ℎ⃗𝑖,𝑗 equivalent base band channel CDL-D
𝐿 number of taps 40
ℎnorm channel power normalization ℎ⃗H

𝑖,𝑗ℎ⃗𝑖,𝑗

𝜎2 noise variance 1/(𝜇𝑟𝐸b/𝑁0)
�⃗� prototype pulse RC FD
𝛼 roll-off factor 0.5

Fig. 38a illustrates the FER performance of the simulated 2 × 2 system, compa-
ring the 5G-RANGE transceiver and the proposed 6G transceiver. For a fair performance
comparison, both systems were configured with an orthogonal GFDM waveform (i.e.,
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Table 16 – 6G transceiver FEC simulation parameters.

Parameter Description Polar Conv.
𝐾FEC input message length 1040 1023
𝑁FEC output message length 2048 2046
𝑁cw number of codewords 5 5
𝑁sb number of stuff bits 512 522
𝑁ub number of uncoded bits 5120 5115
CC Chanel coding 16-bit CA [133, 171]8
CD Chanel decoding CA-SCL-LLPD BCJR

Table 17 – 6G transceiver SM-MIMO simulation parameters.

Parameter Description 2× 2 4× 4
𝑅b throughput [Mbps] 2.22 4.44
𝜂 spectral efficiency 3.089 6.167
SNRdB − (𝐸b/𝑁0)dB SNR to 𝐸b/𝑁0 ratio 5.11 8.12

𝛼 = 0) and hard Polar decoding in a non-iterative detection setup, as employed by the
5G-RANGE transceiver. In the same figure, we also compare the proposed transceiver
operating in the NO format, with 𝛼 = 0.5, arbitrarily chosen, and with iterative MMSE-
PIC detection for two different SISO decoding approaches, the CA-SCL LLPD and the
BCJR decoder. This comparison enables the analysis of both PC and CC performance.
The curve obtained using a GAD serves as a ML lower bound reference. The CC outper-
forms the PC, but exhibits poor performance compared with the GAD. This happens as
a result of the insufficient diversity of the 2× 2 system.

Fig. 38b plots the 4×4 FER performance with the corresponding GAD. In both 2x2
and 4x4 cases, the CC, although less powerful, performs better than PC in the context
of iterative detection. The GAD curves are derived from the detector using the BCJR
decoder. This is because the distance of the detected codeword using PC is consistently
greater than the distance between the transmitted and received signals, resulting in no
frame errors by GAD. It is observed that the transceiver with the iterative MMSE-PIC
detector with BCJR exhibits a FER closer to the ML lower bound compared to the
polar-based detector. This behavior is more pronounced in the 4× 4 SM-MIMO system,
primarily due to the additional spatial diversity from the increased number of antennas
and partly due to the wider spread range of bit interleaving. It should be mentioned that,
despite increased system interference according to the number of transmitting antennas,
iterative MMSE-PIC is capable of addressing the entire system while harvesting diversity
and multiplexing gains.

Figure 38c analyzes the convergence behavior of iterative detectors in a 4× 4 sys-
tem, specifically comparing PC and CC performances along successive iterations. This
analysis helps determine the optimal number of iterations based on estimated SNR. Se-
lecting the optimal number of iterations is a critical task for minimizing computational
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costs and latency in the PIC algorithm. Notably, while PC shows diminishing returns
beyond 4 iterations, whereas CC consistently improves FER up to 8 iterations.

In Fig. 38d, the MMSE-PIC complexity expressions were evaluated, demonstrating
a cubic growth in complexity with the number of antennas, while keeping a linear behavior
with respect to the number of active REs, given by 𝑁on. Additionally, a linear increase
in complexity with the number of iterations is observed. In all cases, the detection cost
of GFDM is comparable to OFDM, attesting the low-complexity characteristic of the
proposed method.
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Figure 38 – (a): FER comparison of 5G-RANGE and iterative MMSE-PIC detector for
a 2x2 SM-MIMO application in CDL-D channel; (b): FER results for the
augmented 4x4 SM-MIMO system and (c): corresponding iterative MMSE-
PIC convergence behavioral; (d): Low complexity detection aspect of GFDM,
comparable to OFDM.

The FER performance of this scheme were evaluated and compared with the ML
lower bound from a GAD, considering the involved aspects for the proposed frame struc-
ture. The preliminary simulation results presented herein demonstrate that the transceiver
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offers a feasible approach to address the highly diverse and challenging requirements of
emerging 6G mobile networks.

7.4 Summary

This chapter details the proposed low complexity 6G transceiver based on NO-
GFDM-SM-MIMO and the iterative interference cancelation technique for the eRAC sce-
nario. Recent advances were used to support NO-GFDM waveforms within the radio frame
based on adopted 5G-RANGE, employing IFPI and SISO LLPD.

The FER results were obtained through Monte Carlo simulations of the iterative
MMSE-PIC detector, suitable for the wireless backhaul scenario described in Section 7.1.
The radio frame follows the numerology number zero from 5G-RANGE, adapted to sup-
port NO waveforms. This set of parameters imposes several challenges to practical imple-
mentation using a NO waveform. Countermeasures to overcome these challenges required
different advanced techniques. Among them, it is possible to highlight the strictly sparse
representation of the entire system, the usage of IFPI for timing recovery and CFR esti-
mation, and SISO decoding employing LLPD. This chapter is based on [121] and supports
[122].
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8 Conclusion

Across all generations of mobile communications, the constant technological evolu-
tion is evident. Over the last few decades, each successive generation has supported higher
data rates, lower latency, wider coverage, and an increased number of users. Recently, mo-
bile communications have expanded into various scenarios, each with specific and often
conflicting requirements. Consequently, flexibility has become a crucial characteristic in
designing different radio solutions to meet all these requisites.

The eRAC scenario is critically important, especially for countries with vast con-
tinental areas, like Brazil. It aims to promote economic growth and social transformation
in isolated regions by improving infrastructure and connectivity. The main requirements
for the eRAC are high data rate, long range and low OOB emission. Improved spectral
efficiency supports wireless backhaul operation, granting high data rates for users. Low
spurious emission ensures compliance with opportunistic vacancy channel usage, a com-
mon situation in isolated areas. Long range links are supported by the diversity gain of
the MIMO system and by the high efficiency of the CP use presented in GFDM.

In this context, GFDM stands out as a strong candidate to address diverse scena-
rios due to its ability to jointly offer the necessary flexibility and low OOB. To achieve the
required spectral efficiency, SM-MIMO employing NO waveform and iterative MMSE-PIC
detection, as introduced in [1], can closely approach optimal performance.

With the aid of detailed algorithms and the factorization expressions proposed in
this thesis, the process of adapting the iterative MMSE-PIC to address the eRAC scena-
rio becomes more structured and precise. This adaptation not only results in a feasible
reference model for practical implementation but also enhances the overall efficiency and
performance of mobile communications in isolated regions, effectively meeting the high
data rate, high robustness and low OOB emission requirements.

To this end, this thesis introduced a generic linear model for digital MIMO com-
munication PHY, along with the fundamental concepts of GFDM waveforms. Following
this, established linear estimation and detection techniques were revisited, building the
necessary background to exploit the iterative MMSE-PIC algorithm. This work provided
comprehensive insights into its intricate theory and practical implementation, complete
with detailed block diagrams and corresponding algorithms. Understanding the deduc-
tion of permutation matrices is crucial for grasping the concept of algorithmic complexity
reduction. By leveraging recent advancements, such as IFPI and SISO LLPD, the NO-
GFDM waveform was successfully adapted for use within the adopted 5G-RANGE-based
radio frame. This structured approach ensures a robust framework for practical deploy-
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ment across diverse and challenging scenarios, particularly in the eRAC case.

The simulation of the proposed low-complexity, low-latency iterative MMSE-PIC
detector offers a benchmark for future practical evaluations of NO-GFDM-SM-MIMO
transceiver implementations, serving as a reference design for future deployment. Detailed
parameters are provided to support the results and serve as a guide for reproduction. The
FER performance analysis, taking the GAD ML lower bound as a common reference,
allowed settling CC as the best option for the iterative detection. Furthermore, a useful
graphical analysis of the algorithm convergence is presented to optimize the number of
PIC iterations required for efficient detection.

Finally, in terms of requirements for remote and rural areas, the proposed scheme
adheres to the TVWS regime by adopting the same proven radio frame from 5G-RANGE.
In terms of transmission capacity, the simulated transceiver achieves up to 72.6 Mbps and
145.2 Mbps throughput for 2× 2 and 4× 4 SM-MIMO systems, respectively, considering
the allocation of all 132 available RBs, equivalent to 24 MHz.

Future research in this area includes the following possibilities.

• impact analysis of real channel estimation on FER performance;

• new numerology in order to support a higher number of antennas, improving diver-
sity and spectral efficiency;

• study the possibility to apply the iterative MMSE-PIC detection in mMIMO em-
ploying NO-GFDM;

• design of an intellectual property library in hardware description language to spee-
dup the linear system solution, i.e., exploiting band diagonal matrices;

• evaluation of real deployments based on this study using FPGA or SDRs (Software-
Defined Radios).
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Appendix A: LMMSE Derivation

Consider the scalar case for the estimator in (4.3) assuming 𝑞 = 1

𝜇p
𝑥𝑗

= W⃗H
𝑗 y⃗ + 𝑧𝑗 (A.1)

where 𝜇p
𝑥𝑗

is a random variable dependent on the random vector y⃗, scaled by the weighting
vector W⃗𝑗 ∈ C𝑝×1, and on a constant coefficient 𝑧𝑗. The sub-index 𝑗 = 1 . . . 𝑞 is an element
index for the random vector x⃗l. Then the equivalent MSE expression for the scalar case
is

𝐸𝑗 = E{
(︁
𝑥𝑗 − 𝜇p

𝑥𝑗

)︁ (︁
𝑥𝑗 − 𝜇p

𝑥𝑗

)︁H
}. (A.2)

Introducing (A.1) in (A.2) and expanding the product of differences

𝐸𝑗 =E{𝑥𝑗𝑥𝑗
H} − E{𝑥𝑗y⃗H}W⃗𝑗 − E{𝑥𝑗}𝑧H

𝑗

− W⃗H
𝑗 E{y⃗𝑥H

𝑗 } − 𝑧𝑗E{𝑥H
𝑗 }+ W⃗H

𝑗 E{y⃗y⃗H}W⃗𝑗

+ W⃗H
𝑗 E{y⃗}𝑧H

𝑗 + 𝑧𝑗E{y⃗H}W⃗𝑗 + 𝑧𝑗𝑧
H
𝑗 (A.3)

then applying the Complex Gradient rules [80] to the partial derivative of Σp
𝑗 with respect

to W⃗𝑗 and 𝑧𝑗 leads to

𝜕Σp
𝑗

𝜕W⃗𝑗

=− E{𝑥𝑗y⃗H}+ W⃗H
𝑗 E{y⃗y⃗H}+ 𝑧𝑗E{y⃗H} = 0 (A.4)

𝜕Σp
𝑗

𝜕𝑧𝑗

=− E{𝑥H
𝑗 }+ E{y⃗H}W⃗𝑗 + 𝑧H

𝑗 = 0 (A.5)

Solving for W⃗𝑗 and 𝑧𝑗, results in

W⃗𝑗 =
(︁
E{y⃗y⃗H} − E{y⃗}E{y⃗H}

)︁−1 (︁
E{y⃗𝑥H

𝑗 } − E{y⃗}E{𝑥H
𝑗 }
)︁

(A.6)

and

𝑧𝑗 = E{𝑥𝑗} − W⃗H
𝑗 E{y⃗}. (A.7)

Employing the generic definitions for the mean and covariance, presented in Section 4.5,
(A.6) and (A.7) can be rewritten as

W⃗𝑗 = Σ−1
y⃗ Σy⃗𝑥𝑗

(A.8)
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and

𝑧𝑗 = 𝜇a
𝑥𝑗
−Σ𝑥𝑗 y⃗Σ−1

y⃗ �⃗�y⃗. (A.9)

Applying (A.8) and (A.9) into (A.1) and (A.3) results in

𝜇p
𝑥𝑗

= 𝜇a
𝑥𝑗

+
(︁
Σ𝑥𝑗 y⃗Σ−1

y⃗

)︁
(y⃗− �⃗�y⃗) (A.10)

Σp
𝑥𝑗

= Σa
𝑥𝑗
−Σ𝑥𝑗 y⃗Σ−1

y⃗ Σy⃗𝑥𝑗
(A.11)

From (A.10) and (A.11), it is possible to generalize the complex LMMSE estimator for
the vector case (𝑞 > 1) and its correspondent error co-variance matrix as

�⃗�p
x⃗ = �⃗�a

x⃗ +
(︁
Σx⃗y⃗Σ−1

y⃗

)︁
(y⃗− �⃗�𝑦) , (A.12)

Σp
x⃗ = Σa

x⃗ −Σx⃗y⃗Σ−1
y⃗ Σy⃗x⃗, (A.13)

where Σy⃗ and Σa
x⃗ are auto co-variance matrices and Σx⃗y⃗ = ΣH

y⃗x⃗ is the cross co-variance
between x⃗ and y⃗. Note that (A.11), for 𝑗 = 1 . . . 𝑞, are the diagonal elements of (A.13).
These parameters can be rewritten in terms of the known linear transformation matrix H
and the a-priori statistics of x⃗, whose elements are mutually independent and uncorrelated
with the disturbance vector w⃗. Then,

Σx⃗y⃗ =E{x⃗y⃗H} − E{x⃗}E{y⃗H}

=E{x⃗ (Hx⃗ + w⃗)H} − E{x⃗}E{(Hx⃗ + w⃗)H}

=Σa
x⃗HH, (A.14)

Σy⃗ =E{y⃗y⃗H} − E{y⃗}E{y⃗H}

=HE{x⃗x⃗H}HH + E{w⃗w⃗} −HE{x⃗}E{x⃗H}HH

=HΣa
x⃗HH + Σa

w⃗ (A.15)

and

�⃗�y⃗ = H�⃗�a
x⃗. (A.16)

Applying (A.14), (A.15) and (A.16) into (A.12) and (A.13), the final LMMSE expression
is obtained as

�⃗�p
x⃗ =�⃗�a

x⃗ + Σa
x⃗HH

(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
(y⃗−H�⃗�a

x⃗) (A.17)
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with co-variance error matrix given by

Σp
x⃗ =Σa

x⃗ −Σa
x⃗HH

(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
HΣa

x⃗. (A.18)

In order to express (4.4) in the same form presented in (4.3), the estimator coefficient
matrix W and the offset vector z⃗ are defined by

W = Σa
x⃗HH

(︁
HΣa

x⃗HH + Σa
w⃗

)︁−1
, (A.19)

and

z⃗ = �⃗�a
x⃗ −WH�⃗�a

x⃗, (A.20)

where W = [W⃗H
1 , . . . , W⃗H

𝑞 ] and z⃗ = [𝑧1, . . . , 𝑧𝑞]T.
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Appendix B: STPD Derivation

In the STPD method, an iterative procedure is proposed in order to search for the
optimal coefficient matrix W that allows to solve the estimation problem by minimizing
the mean squared error. This procedure starts from an initial guess for W𝑡−1 and improves
it in a recursive fashion until eventually converging to the optimal solution, e.g. the
LMMSE closed-form solution presented in (A.19). Consider the following expression,

W𝑡 = W𝑡−1 + 𝛿ϒ, (B.1)

where ϒ is a complex update direction matrix with dimension 𝑞 × 𝑝, whose elements are
scaled by the real positive scalar 𝛿. These parameters must be properly chosen to ensure
the convergence of W𝑡 to the optimal LMMSE. The rule for selecting 𝛿 and ϒ is to impose
that a cost function, in this case the MMSE, to monotonically decrease along iterations.

Retrieving the LMMSE linear estimator in (4.3) and the closed-form solution for
the independent term (A.20), allows to define

�⃗�p
x⃗ = Wy⃗ + z⃗, (B.2)

z⃗ = E{x⃗} −WHE{x⃗}, (B.3)

and express a quadratic cost function dependent on the coefficient matrix W as follows

E =E{(x⃗− �⃗�p
x⃗)(x⃗− �⃗�p

x⃗)H}

= E{x⃗x⃗H}⏟  ⏞  
1

−E{x⃗x⃗H}HHWH⏟  ⏞  
2

−E{x⃗}E{x⃗}H⏟  ⏞  
3

+E{x⃗}E{x⃗}HHHWH⏟  ⏞  
4

−WHE{x⃗x⃗H}⏟  ⏞  
5

+WHE{x⃗x⃗H}HHWH⏟  ⏞  
6

+WHE{x⃗}E{x⃗}H⏟  ⏞  
7

−WHE{x⃗}E{x⃗}HHHWH⏟  ⏞  
8

+WE{w⃗w⃗H}WH⏟  ⏞  
9

−E{x⃗}E{x⃗}H⏟  ⏞  
10

+WHE{x⃗}E{x⃗}H⏟  ⏞  
11

+E{x⃗}E{x⃗}HHHWH⏟  ⏞  
12

−WHE{x⃗}E{x⃗}HHHWH⏟  ⏞  
13

+E{x⃗}E{x⃗}H⏟  ⏞  
14

−E{x⃗}E{x⃗}HHHWH⏟  ⏞  
15

−WHE{x⃗}E{x⃗}H⏟  ⏞  
16

+WHE{x⃗}E{x⃗}HHHWH⏟  ⏞  
17

.

(B.4)

Analyzing the expression above and enumerating its terms from left to right shows that
the pair of terms 1 and 3 equals to Σa

x⃗. The pair of terms 2 and 4 jointly are equivalent
to −Σa

x⃗HHWH. The pair of terms 5 and 7, together, are equivalent to −WHΣa
x⃗ and the
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terms 6 and 8 corresponds to WHΣa
x⃗HHWH. The 9th term is equal to WΣa

w⃗WH while
the pair of terms, 10 and 14, 11 and 16, 12 and 15, 13 and 17, cancels each other. Then
all remaining terms together yields to

E =Σa
x⃗ −Σa

x⃗HHWH −WHΣa
x⃗ + WHΣa

x⃗HHWH + WΣa
w⃗WH, (B.5)

whose derivative with respect to W is given by

∇WE =
(︁
HΣa

x⃗HH + Σa
w⃗

)︁
WH −HΣa

x⃗. (B.6)

Evaluating (B.5) for iteration 𝑡 and inserting W𝑡 from (B.1) leads to

E𝑡 =Σa
x⃗ −Σa

x⃗HH
(︁
WH

𝑡−1 + ϒH𝛿H
)︁
− (W𝑡−1 + 𝛿ϒ) HΣa

x⃗

+ (W𝑡−1 + 𝛿ϒ) HΣa
x⃗HH

(︁
WH

𝑡−1 + ϒH𝛿H
)︁

+ (W𝑡−1 + 𝛿ϒ) Σa
w⃗

(︁
WH

𝑡−1 + ϒH𝛿H
)︁

= Σa
x⃗⏟ ⏞ 

1

−Σa
x⃗HHWH

𝑡−1⏟  ⏞  
2

−Σa
x⃗HHϒH𝛿H⏟  ⏞  

3

−W𝑡−1HΣa
x⃗⏟  ⏞  

4

−𝛿ϒHΣa
x⃗⏟  ⏞  

5

+W𝑡−1HΣa
x⃗HHWH

𝑡−1⏟  ⏞  
6

+W𝑡−1HΣa
x⃗HHϒH𝛿H⏟  ⏞  

7

+𝛿ϒHΣa
x⃗HHWH

𝑡−1⏟  ⏞  
8

+𝛿ϒHΣa
x⃗HHϒH𝛿H⏟  ⏞  
9

+W𝑡−1Σa
w⃗WH

𝑡−1⏟  ⏞  
10

+W𝑡−1Σa
w⃗ϒH𝛿H⏟  ⏞  

11

+𝛿ϒΣa
w⃗WH

𝑡−1⏟  ⏞  
12

+𝛿ϒΣa
w⃗ϒH𝛿H⏟  ⏞  

13

. (B.7)

Equation (B.7) can be rewritten taken into account that terms 1, 2, 4, and 6
equals to E𝑡−1. Terms 5, 8 and 12 are equivalent to 𝛿ϒ∇W𝑡−1E𝑡−1 as well as terms 3,
7 and 11 equals to (∇W𝑡−1E𝑡−1)HϒH𝛿H. The remaining terms, 9 and 13, together, are
𝛿ϒ(HΣa

x⃗HH + Σa
w⃗)ϒH𝛿H. Thus,

E𝑡 =E𝑡−1 + 2𝛿ℜ
(︁
ϒ∇W𝑡−1E𝑡−1

)︁
+ 𝛿2ϒ

(︁
HΣa

x⃗HH + Σa
w⃗

)︁
ϒH. (B.8)

One condition to meet the monotonically decreasing behavior of the cost function
in (B.8) is to ensure that E𝑡 < E𝑡−1, where the matrix inequality means that E𝑡−1 − E𝑡

is a non-negative definite matrix.

Since 𝛿2ϒ
(︁
HΣa

x⃗HH + Σa
w⃗

)︁
ϒH is positive definite matrix for all nonzero ϒ, as(︁

HΣa
x⃗HH + Σa

w⃗

)︁
is a non-negative definite matrix, the update direction matrix ϒ must

satisfy

ℜ
(︁
ϒ∇W𝑡−1E𝑡−1

)︁
< 0. (B.9)

This condition will guarantee that the second term in (B.8) is strictly negative
and the choice of ϒ relies on whether ∇W𝑡−1E𝑡−1 is zero or not. If the gradient vector
is zero, then W𝑡−1 already coincides with the optimal solution, the recursion attained its
purpose and ϒ should also be zero. On the other hand, if the gradient vector at W𝑡−1 is
nonzero, there are many choices that satisfies (B.9), e.g., all ϒ = −B(∇W𝑡−1E𝑡−1)H, for
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any positive-definite matrix B. This choice also results ϒ = 0 whenever ∇W𝑡−1E𝑡−1 = 0,
otherwise, the product ϒ∇W𝑡−1E𝑡−1 is negative real-valued and evaluates to

ϒ∇W𝑡−1E𝑡−1 =−B
(︁
∇W𝑡−1E𝑡−1

)︁H
∇W𝑡−1E𝑡−1. (B.10)

A common choice is to define B = I which leads to the update direction matrix

ϒ =−
(︁
∇W𝑡−1E𝑡−1

)︁H
= Σa

x⃗HH −W𝑡−1
(︁
HΣa

x⃗HH + Σa
w⃗

)︁
. (B.11)

Note that when W𝑡−1 achieves the optimal solution from (A.19), then ϒ = 0. Inserting
this specific choice for ϒ in (B.1) yields to the final recursion

W𝑡 =W𝑡−1 + 𝛿
[︁
Σa

x⃗HH −W𝑡−1
(︁
HΣa

x⃗HH + Σa
w⃗

)︁]︁
. (B.12)

Note that W𝑡 is updated towards the opposite direction of the conjugate gradient of
the cost function by the scaled direction matrix ϒ. The choice of the scale or step-size
parameter 𝛿 is crucial and, if not chosen carefully, it can drives to undesirable results. As
a rule, this parameter should be kept small (<< 1), ensuring convergence and, to speed
up the process, optimal step-size calculation should be employed.
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Appendix C: CWCU LMMSE Derivation

Consider the 𝑗th component of the estimator

𝜇p
𝑥𝑗

= W⃗H
𝑗 y⃗ + 𝑧𝑗 (C.1)

where W⃗H
𝑗 denotes the 𝑗th row of an estimator coefficient matrix. The conditional mean

of 𝜇p
𝑥𝑗

can be written as

E{𝜇p
𝑥𝑗
| 𝑥𝑗} =E{W⃗H

𝑗 y⃗ + 𝑧𝑗} = W⃗H
𝑗 E{y⃗ | 𝑥𝑗}+ 𝑧𝑗. (C.2)

The CWCU-LMMSE constraint in (C.2) can be satisfied for all 𝑥𝑗 when the conditional
mean E{𝜇p

𝑥𝑗
| 𝑥𝑗} is a linear function of 𝑥𝑗. This condition occurs, e.g., when x⃗ and y⃗ are

jointly complex Gaussian. In this case, the conditional mean E{y⃗ | 𝑥𝑗} can be obtained
from the jointly Gaussian PDF [82] by

E{y⃗ | 𝑥𝑗} = E{y⃗}+ Σy⃗𝑥𝑗
(𝑥𝑗 − E{𝑥𝑗})(𝜎2

𝑥𝑗
)−1. (C.3)

Replacing (C.3) in (C.2) yields to

E{𝜇p
𝑥𝑗
| 𝑥𝑗} =W⃗H

𝑗 E{y⃗}+ W⃗H
𝑗 Σy⃗𝑥𝑗

𝑥𝑗 − W⃗H
𝑗 Σy⃗𝑥𝑗

(𝜎2
𝑥𝑗

)−1E{𝑥𝑗}+ 𝑧𝑗. (C.4)

Then, from (C.4), the conditions to fulfill the CWCU-LMMSE constraint are

W⃗H
𝑗 Σy⃗𝑥𝑗

(𝜎2
𝑥𝑗

)−1 = 1 (C.5)

and

E{𝑥𝑗} − W⃗H
𝑗 E{y⃗} = 𝑧𝑗. (C.6)

Inserting (C.1) and (C.6) into the MSE function E𝑗 = E{(𝑥𝑗 − 𝜇p
𝑥𝑗

)(𝑥𝑗 − 𝜇p
𝑥𝑗

)H} leads to

E𝑗 = W⃗H
𝑗 E{y⃗y⃗H}W⃗𝑗⏟  ⏞  

1

+W⃗H
𝑗 E{y⃗}E{𝑥𝑗}H⏟  ⏞  

2

−W⃗H
𝑗 E{y⃗}E{y⃗}HW⃗𝑗⏟  ⏞  

3

−W⃗H
𝑗 E{y⃗𝑥H

𝑗 }⏟  ⏞  
4

+E{𝑥𝑗}E{y⃗}HW⃗𝑗⏟  ⏞  
5

+E{𝑥𝑗}E{𝑥𝑗}H⏟  ⏞  
6

−E{𝑥𝑗}E{y⃗}HW⃗𝑗⏟  ⏞  
7

−E{𝑥𝑗}E{𝑥𝑗}H⏟  ⏞  
8

−W⃗H
𝑗 E{y⃗}E{y⃗}HW⃗𝑗⏟  ⏞  

9

−W⃗H
𝑗 E{y⃗}E{𝑥𝑗}H⏟  ⏞  

10

+W⃗H
𝑗 E{y⃗}E{𝑦}HW⃗𝑗⏟  ⏞  

11

+W⃗H
𝑗 E{y⃗}E{𝑥𝑗}H⏟  ⏞  

12

−E{𝑥𝑗y⃗H}W⃗𝑗⏟  ⏞  
1

3−E{𝑥𝑗}E{𝑥𝑗}H⏟  ⏞  
14

+E{𝑥𝑗}E{y⃗}HW⃗𝑗⏟  ⏞  
15

+E{𝑥𝑗𝑥H
𝑗 }⏟  ⏞  

16

. (C.7)
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From (C.7), we conclude that the pair of terms 1 and 3, together, are equivalent
to W⃗H

𝑗 Σy⃗W⃗𝑗. The pair of terms 2 and 4 jointly are equivalent to −W⃗H
𝑗 Σy⃗𝑥𝑗

. The pairs of
terms 5 and 7, 6 and 8, 9 and 11, 10 and 12, cancels each other. The 13th term together
with the 15th are equivalent to −Σ𝑥𝑗 y⃗W⃗𝑗 while the 14th term combined with the 16th one
yield to Σa

𝑥𝑗
. Thus the expanded MSE function simplifies as

E𝑗 = W⃗H
𝑗 Σy⃗W⃗𝑗 − W⃗H

𝑗 Σy⃗𝑥𝑗
−Σ𝑥𝑗 y⃗W⃗𝑗 + Σa

𝑥𝑗
. (C.8)

From the constraint stated by (C.5), which establishes that W⃗H
𝑗 Σy⃗𝑥𝑗

= 𝜎2
𝑥𝑗

and also the
fact that Σa

𝑥𝑗
= 𝜎2

𝑥𝑗
, the final MSE cost function for the CWCU-LMMSE estimator is

E𝑗 = W⃗H
𝑗 Σy⃗W⃗𝑗 − 𝜎2

𝑥𝑗
. (C.9)

The solution for W⃗𝑗 can be obtained minimizing (C.9), which leads to the following
constrained optimization problem

argmin
W⃗𝑗

(︁
W⃗H

𝑗 Σy⃗W⃗𝑗 − 𝜎2
𝑥𝑗

)︁
,

s.t. W⃗H
𝑗 Σy⃗𝑥𝑗

= 𝜎2
𝑥𝑗

. This optimization problem can be addressed through the Lagrange
multiplier method performing

ℒ
(︁
W⃗H

𝑗 Σy⃗W⃗𝑗 − 𝜎2
𝑥𝑗

, W⃗H
𝑗 Σy⃗𝑥𝑗

− 𝜎2
𝑥𝑗

)︁
=

𝜕(W⃗H
𝑗 Σy⃗W⃗𝑗 − 𝜎2

𝑥𝑗
)

W⃗𝑗

− 𝜐
𝜕(W⃗H

𝑗 Σy⃗𝑥𝑗
− 𝜎2

𝑥𝑗
)

W⃗𝑗

=W⃗H
𝑗 Σy⃗ − 𝜐Σ𝑥𝑗 y⃗ = 0.

Then, a linear system can be written as⎧⎪⎨⎪⎩�⃗� H
𝑗 Σy⃗ = 𝜐Σ𝑥𝑗 y⃗ (a)

�⃗� H
𝑗 Σy⃗𝑥𝑗

= 𝜎2
𝑥𝑗

(b).
(C.10)

Multiplying both sides of (C.10b) by Σ𝑥𝑗 y⃗ and isolating W⃗H
𝑗 yields to

W⃗H
𝑗 = 𝜎2

𝑥𝑗
Σ𝑥𝑗 y⃗

(︁
Σy⃗𝑥𝑗

Σ𝑥𝑗 y⃗
)︁−1

, (C.11)

which is inserted in (C.10a) leading to

𝜎2
𝑥𝑗

Σ𝑥𝑗 y⃗
(︁
Σy⃗𝑥𝑗

Σ𝑥𝑗 y⃗
)︁−1

Σy⃗ = 𝜐Σ𝑥𝑗 y⃗

𝜎2
𝑥𝑗

Σ𝑥𝑗 y⃗ = 𝜐Σ𝑥𝑗 y⃗

[︂(︁
Σy⃗𝑥𝑗

Σ𝑥𝑗 y⃗
)︁−1

Σy⃗

]︂−1

𝜎2
𝑥𝑗

Σ𝑥𝑗 y⃗ = 𝜐Σ𝑥𝑗 y⃗Σ−1
y⃗ Σy⃗𝑥𝑗

Σ𝑥𝑗 y⃗

𝜐 =
𝜎2

𝑥𝑗

Σ𝑥𝑗 y⃗Σ−1
y⃗ Σy⃗𝑥𝑗

. (C.12)
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Replacing (C.12) into (C.10a) and applying the Hermitian operator on both sides yields
to

W⃗𝑗 =
𝜎2

𝑥𝑗

Σ𝑥𝑗 y⃗Σ−1
y⃗ Σy⃗𝑥𝑗

Σ−1
y⃗ Σy⃗𝑥𝑗

. (C.13)

Recalling from (A.8) that W⃗𝑗 = Σ−1
y⃗ Σy⃗𝑥𝑗

, and also considering the 𝑗th row of (4.34) and
the definition of (4.36), (C.13) can be rewritten as

W⃗𝑗 =
𝜎2

𝑥𝑗

Σ𝑥𝑗 x⃗HH(HΣa
x⃗HH + Σa

w⃗)−1HΣx⃗𝑥𝑗

W⃗𝑗LMMSE , (C.14)

which, retrieving from (C.13) and (C.14), finally allows to define the CWCU-LMMSE
estimator in terms of its coefficient matrix Wc =

[︁
W⃗1, W⃗2, . . . , W⃗𝑞

]︁H
as

W =Σa
x⃗

[︁
Σx⃗y⃗Σ−1

y⃗ Σy⃗x⃗
]︁−1

WLMMSE

=Σa
x⃗

[︁
Σa

x⃗HH(HΣa
x⃗HH + Σa

w⃗)−1HΣa
x⃗

]︁−1
Σa

x⃗HH(HΣa
x⃗HH + Σa

w⃗)−1 (C.15)

and, from the constraint on (C.6), the offset vector as

z⃗ =𝜇a
x⃗ −W�⃗�y⃗ (C.16)

=𝜇x⃗ −WH𝜇a
x⃗. (C.17)

Retrieving the definition on (4.3), the CWCU-LMMSE estimator can be written as

�⃗�p
x⃗ =W (y⃗−H𝜇x⃗) + 𝜇x⃗

=Σa
x⃗

[︁
Σa

x⃗HH(HΣa
x⃗HH + Σa

w⃗)−1HΣa
x⃗

]︁−1
Σa

x⃗HH(HΣa
x⃗HH + Σa

w⃗)−1 (y⃗−H𝜇x⃗) + 𝜇x⃗

(C.18)

The error co-variance matrix of the CWCU-LMMSE estimator, which corresponds to the
minimum MSE, can be derived inserting (4.3) into E = E{(x⃗− �⃗�p

x⃗)(x⃗− �⃗�p
x⃗)H}, leading

to

E =E{(x⃗−Wy⃗− z⃗)(x⃗−Wy⃗− z⃗)H}

=E{x⃗x⃗H} − E{x⃗y⃗H}WH − E{x⃗}z⃗H −WE{y⃗x⃗H}+ WE{y⃗y⃗H}WH

+ WE{y⃗}z⃗H − z⃗E{x⃗H}+ z⃗E{y⃗H}WH + z⃗z⃗H (C.19)

Inserting (C.16) into (C.19) yields

E = E{x⃗x⃗H}⏟  ⏞  
1

−E{x⃗y⃗H}WH⏟  ⏞  
2

−E{x⃗}E{x⃗}H⏟  ⏞  
3

+E{x⃗}E{y⃗}HWH⏟  ⏞  
4

−WE{y⃗x⃗H}⏟  ⏞  
5

+WE{y⃗y⃗H}WH⏟  ⏞  
6

+WE{y⃗}E{x⃗}H⏟  ⏞  
7

−WE{y⃗}E{y⃗}HWH⏟  ⏞  
8

−E{x⃗}E{x⃗H}⏟  ⏞  
9

+WE{y⃗}E{x⃗H}⏟  ⏞  
10

+E{x⃗}E{y⃗H}WH⏟  ⏞  
11

−WE{y⃗}E{y⃗H}WH⏟  ⏞  
12

+E{x⃗}E{x⃗}H⏟  ⏞  
13

−E{x⃗}E{y⃗H}WH⏟  ⏞  
14

−WE{y⃗}E{x⃗H}⏟  ⏞  
15

+WE{y⃗}E{y⃗H}WH⏟  ⏞  
16

. (C.20)
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Note that in (C.20), enumerating the terms from left to right in ascending order, the pair
of terms, 9 and 13, 11 and 14, 10 and 15, 12 and 16, cancels each other. Furthermore, the
remaining terms can be combined, where the 1st and 3rd terms are equivalent to Σa

x⃗, the
2nd and 4th together is −Σx⃗y⃗WH, the 5th and 7th corresponds to −WΣy⃗x⃗ and the 6th and
8th terms are identical to WΣy⃗WH. Hence

E = Σa
x⃗ −Σx⃗y⃗WH −WΣy⃗x⃗ + WΣy⃗WH, (C.21)

which is similar to the vector representation in (C.8), except that (C.21) extends for the
matricial case. Replacing (C.15) in (C.21) finally leads to

E =Σa
x⃗

(︁
Σx⃗y⃗Σ−1

y⃗ Σy⃗x⃗
)︁

Σa
x⃗ −Σa

x⃗

[︁
HH(HΣa

x⃗HH + Σa
w⃗)−1H

]︁−1
−Σa

x⃗. (C.22)
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