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Abstract

This work explores the application of advanced concepts of algebra and algebraic

geometry to understand some attempts to solve the so-called Strassen Conjecture, which

consists of considering the union of two bilinear systems, each depending on different

variables, and determining whether the multiplicative complexity of this union is equal

to the sum of the multiplicative complexities of both systems. Our study relates these

bilinear systems and their multiplicative complexities to tensor spaces and their ranks,

respectively.

We will restrict our study to the case of three-factor tensor spaces, developing the

theoretical knowledge needed to support the current conclusions and establish new

research directions. It is common knowledge that the Conjecture is not true, however,

we will study some special cases in which the Conjecture holds, using concepts and

results relating to projective spaces, linear transformations and their properties.

Keywords: Tensors, projective spaces, linear transformations, multiplicative

complexity, Strassen’s Conjecture.





Resumo

O trabalho aprofunda na aplicação de conceitos avançados de álgebra e geometria

algébrica para entender algumas tentativas de resolver a chamada Conjectura de

Strassen, que consiste em considerar a união de dois sistemas bilineares, cada um deles

dependendo de variáveis diferentes, e determinar se a complexidade multiplicativa dessa

união é igual à soma das complexidades multiplicativas de ambos os sistemas. Nosso

estudo relaciona esses sistemas bilineares e suas complexidades multiplicativas com os

espaços de tensores e seus postos, respectivamente.

Restringiremos nosso estudo ao caso de espaços de tensores de três fatores,

desenvolvendo os conhecimentos teóricos necessários para apoiar as conclusões atuais e

estabelecer novos rumos de pesquisa. É de conhecimento geral que a Conjectura não é

verdadeira, no entanto, estudaremos alguns casos especiais nos quais a Conjectura vale,

usando conceitos e resultados relativos aos espaços projetivos, transformações lineares e

suas propriedades.

Palavras chaves: Tensores, espaços projetivos, transformações lineares, complexidade

multiplicativa, Conjectura de Strassen.
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Introduction

Man’s greatest asset is an inquisitive mind.

Isaac Asimov

One typical approach to solving mathematical problems is to seek the simplest solution.

However, a more advanced framework is required to tackle seemingly straightforward

issues. In this dissertation, we will get into the application of advanced algebra and

algebraic geometry concepts in attempting to solve a computational problem. Building on

this, we will explore the theoretical development needed to support the current conclusions

and set a path for future research.

The problem of multiplicative complexity of systems of bilinear forms, or in more collo-

quial terms, the fast multiplication of matrices has been a source of work for mathemati-

cians for more than 50 years, more specifically in Modern Computer Theory. In 1969,

Strassen presented an algorithm showing that the multiplication of 2× 2 matrices can be

done in fewer steps than had been possible up to that point. Four years later, Strassen

proposed the Direct Sum Conjecture, or Strassen Conjecture:

Considering the union of two systems of bilinear forms that depend on different

variables, can we say that the multiplicative complexity of this union is equal to the sum

of the multiplicative complexities of both systems?

Since then, efforts have been directed at reducing the number of multiplications needed

to multiply two order n matrices (complexity) further.

Now, given a system of bilinear forms, we could take a look at the set of zeros of the

system, which would lead us down the path of algebraic geometry (Chapter 2 provides

enough context). For now, we will study the correspondence obtained by reinterpreting

the problem in terms of the algebra of tensors. From this, a system of bilinear forms

becomes an arrangement of elements in the form

p =
∑
i∈I

ai ⊗ bi ⊗ ci,

1



Figure 1: Volker Strassen (1936 - )

where I is a finite set of indexes, and a = (ai), b = (bi), c = (ci) are vectors over a field K.

After describing the system, the next step is to give an equivalent of complexity in this

new language. In our case, it’s the tensor’s rank, which we will denote by R(p), where p is

a tensor. We define the rank of a tensor after some required context in the next chapter.

For now, we can think about the rank of a tensor as the rank of a matrix.

Definition 0.0.1. We call the union of two bilinear systems depending on different sets

of variables a direct sum. In the language of tensors, this means that if A = A′ ⊕ A′′,

B = B′ ⊕ B′′, C = C ′ ⊕ C ′′ are vector spaces and p′ ∈ A′ ⊗ B′ ⊗ C ′, p′′ ∈ A′′ ⊗ B′′ ⊗ C ′′,

then p′ ⊕ p′′ = p = p′ + p′′.

With this definition, we can rewrite the direct sum conjecture as follows:

Conjecture 0.0.1. Suppose that A = A′ ⊕ A′′, B = B′ ⊕ B′′, C = C ′ ⊕ C ′′, where all

A,B,C, . . . , B′′, C ′′ are finite-dimensional vector spaces over a field K. Let p ∈ A′ ⊗B′ ⊗
C ′, p′′ ∈ A′′ ⊗B′′ ⊗ C ′′ and p = p′ + p′′. Is the equality

R(p) = R(p′) +R(p′′)

satisfied?

Arrangement of Elements

Multilinear system ⇐⇒ p =
∑
i∈I

ai ⊗ bi ⊗ ci,

ai, bi, ci ∈ KI

Multiplicative complexity ⇐⇒ Rank

A positive answer to this problem was previously known as Strassen’s conjecture until

recent counterexamples were proposed by Shitov (See [18]). The latter are not very

explicit, and they are only known to exist asymptotically for very large tensor spaces.

2



We can then draw an analogy between direct sums of tensors and block diagonal

matrices in a multidimensional sense. Knowing that the rank of a block-diagonal matrix

is the sum of the ranks of its diagonal blocks, we can say that Strassen’s conjecture asks

an analog question for tensors.

After reading most of the available literature, we can say that using a tensor point of

view made it possible to do calculations, but including a geometric point of view became

fundamental in obtaining enough conditions for the conjecture to be satisfied. The main

goal of this work is to show how some results and techniques can be mixed to prove the

validity of Conjecture 0.0.1 in some cases.

We base our work mainly on the results and overviews from [6]. Going forward, all

of our spaces will be finite-dimensional, and K will be an arbitrary field unless otherwise

stated. We use V ∗ for the dual space associated with a vector space V , bold type for the

dimensions of the spaces, and ei ⊗ ej ⊗ ek = eijk.

Having dealt with the problem superficially, in Chapter 1 we will study the issues

relating to tensors and their ranks with more detail. Chapter 2 will be dedicated to

understanding the fundamentals of projective spaces and their connection with border

rank.

Chapter 3 will be dedicated to exploring the relationship between the rank of a ten-

sor and the rank of a subspace of a tensor product and establishing the first theorems

concerning the additivity of the tensor rank. We also recall the concepts of minimal de-

composition, projection, and conciseness to get inequalities related to this additivity. In

the final part of this chapter, we study the Substitution method and go towards algebraic

geometry to explore the concept of hook-shaped space and how in the event of a rank-one

matrix we can guarantee additivity.

In Chapter 4 we will decompose our tensor space into smaller subspaces that allow us

to get the main results of [6] on the additivity of the rank by using projections and their

images. The main results of this chapter will be Theorem 4.3.1, Theorem 4.3.2, Theorem

4.3.3, and the following corollary:

Corollary 0.0.1. (Theorem 4.16, [6]) If K = C, p′ ∈ A′ ⊗ B′ ⊗ C ′, p′′ ∈ A′′ ⊗ B′′ ⊗ C ′′,

and R(p′′) ≤ 6, then independently of p′, the additivity of the rank holds.

The final chapter 5 will be about the additivity cases for the border rank of tensors

belonging to product spaces of low dimensions. More specifically, we conclude the follow-

ing:

3



Theorem 0.0.1. Let p ∈ A′ ⊗B′ ⊗ C ′ and p′′ ∈ A′′ ⊗B′′ ⊗ C ′′ be concise tensors, with

c′ + c′′ ≤ b′ + b′′ ≤ a′ + a′′ ≤ 4.

Then the additivity of the border rank holds:

R(p) = R(p′) +R(p′′).

4



Chapter 1

Additivity of tensor rank:

preliminary concepts

In this first chapter, we start studying tensors, their algebraic properties, and their rela-

tionship to our interests. We will skip some of the basic tensor-related concepts of abstract

algebra, in particular the construction of the tensor product and its universal property.

The reader can find this explained in detail in Sections 10.4 and 11.5 of [7].

Also, we recall that V is a vector space that can be identified with Kn using one basis

ei, i = 1, . . . , n (n being the dimension of V ) and there is an isomorphism of GL(V ) in

the group of invertible matrices n× n. Throughout this work, we will seamlessly use the

fact that every linear transformation has an associated matrix, among other typical linear

algebra concepts.

1.1 Tensor products

We present some general aspects of the tensor products and introduce some notation.

Notation 1.1.1. Let us denote by V ∗⊗W the vector space of the linear functions V → W .

Thus, V ⊗W denotes the linear functions V ∗ → W .

Considering the previous notation, the space V ∗⊗W can be seen in four different ways:

1. As the space of linear functions V → W ,

2. as the space of linear functions W ∗ → V (considering the isomorphism of the trans-

pose),

3. as the dual space of V ⊗W ∗,

4. as the space of bilinear functions V ×W ∗ → K.

5



If we fix a basis and represent f ∈ V ∗ ⊗W as a matrix X = (xij), the first action is to

multiply it by a column vector v 7−→ Xv. The second is direct multiplication by a row

vector β 7−→ βX, the third is to take a matrix n×m Y = (yij), and do the following:

Y = (yij) 7−→
∑
i,j

xijy
i
j,

and the fourth is given by

(v, β) 7−→
∑
i,j

xijviβj.

Definition 1.1.1. Let V1, . . . , Vk be vector spaces. The function

f : V1 × V2 × · · · × Vk → K (1.1)

is multi-linear if it is linear in each factor Vℓ, ℓ ∈ {1,· · · , k}. We call the tensor

product of the spaces V ∗
1 , V

∗
2 , . . . , V

∗
k the space of multi-linear functions of the form (1.1),

and denote it by V ∗
1 ⊗ V ∗

2 ⊗ · · · ⊗ V ∗
k . The integer k is called the order of a tensor

p ∈ V ∗
1 ⊗ V ∗

2 ⊗ · · · ⊗ V ∗
k . The sequence of numbers (v1, . . . ,vk), where vj = dim(Vj), is

called the sequence of dimensions of p. The definition does not change much if instead

of K we consider a vector space W in (1.1). We will define V ∗
1 ⊗ V ∗

2 ⊗ · · · ⊗ V ∗
k ⊗W as

the space of multilinear functions

f : V1 ×· · · × Vk → W .

Notation 1.1.2. We consider the space V1⊗· · ·⊗Vn. Let’s denote Vĵ = V1⊗· · ·⊗Vj−1⊗
Vj+1⊗· · ·⊗Vn. Given p ∈ V1⊗· · ·⊗Vn, we write p(V ∗

j ) ⊂ Vĵ for the image of the natural

linear application V ∗
j → Vĵ. Let’s also denote V ⊗k := V ⊗ · · · ⊗ V︸ ︷︷ ︸

k−times

.

For a better understanding on the tensor product, let us consider vector spaces A,B,C,

each with bases ai, bj, ck, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , ℓ, and let p ∈ A⊗ B ⊗ C.

So, in terms of bases, we have that

p =
∑
i,j,k

pi,j,kai ⊗ bj ⊗ ck.

It is then possible to form a rectangular solid arrangement of size m×n× ℓ whose entries

will be the coefficients pi,j,k. This solid can be decomposed into slices. Consider the

collection of m matrices of size n × ℓ: (p1,j,k), . . . , (pm,j,k), which will be the horizontal

slices. Similarly, we can consider the n matrices of size m × ℓ (pi,1,k), . . . , (pi,n,k), which

will be called side slices, or the collection of ℓ matrices of size m × n, which we will call

front slices. In the case where two indices are fixed, we call the resulting vector a fiber.

6



1.2 The rank of a tensor

In this section, we will define the rank of a tensor and give some examples of tensors we

will use repeatedly. Given α1 ∈ V ∗
1 , α2 ∈ V ∗

2 , . . . , αk ∈ V ∗
k , we define an element

α1 ⊗ · · · ⊗ αk ∈ V ∗
1 ⊗ V ∗

2 ⊗· · · ⊗ V ∗
k

by

α1 ⊗ · · · ⊗ αk(v1, . . . , vk) = α1(v1)· · ·αk(vk) (1.2)

Definition 1.2.1. An element of V ∗
1 ⊗ V ∗

2 ⊗ · · · ⊗ V ∗
k is said to have rank 1 (or be

simple, decomposable) if it can be written in the form (1.2). In general, we define the

rank of a tensor p ∈ V1 ⊗ · · · ⊗ Vk, which we denote by R(p), as the minimum number r

such that p =
r∑

u=1

Zu, where each Zu is a simple tensor.

It is important to emphasize that the base field of the vector spaces to be treated

is of paramount importance since the rank of a tensor could change if the entries of

a decomposable tensor are taken from an extension of a field K, as we will see in the

following example:

Example 1.2.1. [3] Let A,B be vector spaces over a non-algebraically closed field K ,

and bases {x1, . . . , xn}, {y1, . . . , yn}, n ≥ 2, let c be a non-zero scalar of K, and let M be

the subspace of A⊗B generated by the elements

u =
n∑

i=1

xi ⊗ yi and v =
n∑

i=1

xi ⊗ yi+1 + cxn ⊗ y1.

A general element αu+ βv of M , has the matrix representation

α β . . . 0 0
...

. . . . . .
...

...
. . . β

...

0 0 . . . α β

cβ 0 . . . 0 α


Lets suppose that α, β ̸= 0. The determinant of this matrix is αn − (−β)nc. Therefore, if

we consider c as an element of K which is not an n-th power, all the nonzero elements of

M will have rank n, and therefore R(M) = n, but it could decrease to n−1 if we consider

an extension from K to K(c1/n). It will be smaller than n because the determinant is zero,

but it will also be greater or equal to n − 1 by looking at the smallest (n − 1) × (n − 1)

minor in the top left corner.

7



It will be handy to study the following three tensors, which are special because they are

invariant under the action of GL(V ), which means they commute with the action of the

group of changes of bases: tensor contraction, matrix multiplication, and the transposition

of a tensor.

1. Contraction of tensors: Let’s consider the bilinear function

⋊⋉: (V1 ⊗ · · · ⊗ Vk)× (V ∗
k ⊗B1 ⊗ · · · ⊗Bm) → V1 ⊗ · · · ⊗ Vk−1 ⊗B1 ⊗ · · · ⊗Bm

(v1 ⊗ · · · ⊗ vk, α⊗ b1 ⊗ · · · ⊗ bm) 7−→ α(vk)v1 ⊗ · · · ⊗ vk−1 ⊗ b1 ⊗ · · · ⊗ bm

The function⋊⋉∈ ((V1⊗· · ·⊗Vk)×(V ∗
k ⊗U1⊗· · ·⊗Um))

∗⊗(V1⊗· · ·⊗Vk−1⊗U1⊗· · ·⊗Um)

is called a contraction.

Observation 1.2.1. If p ∈ V1 ⊗ · · · ⊗ Vk and s ∈ B1 ⊗ · · · ⊗Bm, and for some fixed

i, j there is an association Vi ≃ B∗
j , we can contract p⊗ s, and we get an element of

Vî ⊗Bĵ, which is called the modal product (i, j) of p and s.

2. The multiplication of matrices as a tensor: Let A,B,C be vector spaces of di-

mensions m,n, ℓ and consider the matrix multiplication operator Mm,n,ℓ. Remember

that every matrix has an associated linear transformation, so the product of matrices

can be seen as a composition of linear transformations. Thus, we have a composition

of a linear transformation of A into B (∈ A∗⊗B), with one of B into C (∈ B∗⊗C),

obtaining a transformation of A into C (∈ A∗ ⊗C). Let V1 = A∗ ⊗B, V2 = B∗ ⊗C,

and V3 = A∗ ⊗ C, so Mm,n,ℓ ∈ V ∗
1 ⊗ V ∗

2 ⊗ V3. As we have seen, we can define Mm,n,ℓ

on the simple elements and linearly extend the definition to obtain the definition of

the tensor for all of the space. On a simple element, we have

Mm,n,ℓ : (A
∗ ⊗B)× (B∗ ⊗ C) −→ A∗ ⊗ C,

(α⊗ b)× (β ⊗ c) 7−→ β(b)α⊗ c
(1.3)

As a tensor,

Mm,n,ℓ ∈ (A∗ ⊗B)∗ ⊗ (B∗ ⊗ C)∗ ⊗ (A∗ ⊗ C) = A⊗B∗ ⊗B ⊗ C∗ ⊗ A∗ ⊗ C

It is then possible to see Mm,n,ℓ as any of the three contractions:

A∗ ⊗B ×B∗ ⊗ C → A∗ ⊗ C,

A⊗ C∗ ×B∗ ⊗ C → A⊗B∗ or

A⊗ C∗ × A∗ ⊗B → C∗ ⊗B

In the case where A = B = C, we have a symmetry by the action of the group S3 of

permutations of three elements.

8



3. Transposition of tensors: Now we consider the function

σ : V ⊗ V −→ V ⊗ V (1.4)

a⊗ b 7−→ b⊗ a

Note that σ ∈ V ∗⊗V ∗⊗V ⊗V = End(V ⊗V ), and it is an invariant tensor relative

to the action of GL(V ).

Observation 1.2.2. Now that we have mentioned GL(V ), we can also recall the following

action: consider the group GL(V ), and its action on a simple tensor, that is, let g ∈
GL(V ) and v1 ⊗ v2 ⊗ · · · ⊗ vn ∈ V ⊗n of rank 1, be defined by

g · (v1 ⊗ v2 ⊗ · · · ⊗ vn) = (g · v1)⊗ (g · v2)⊗ · · · ⊗ (g · vn).

The defined action can be extended linearly to obtain an action in V ⊗n. Similarly, one

can define the action of GL(V1)×GL(V2)× · · · ×GL(Vk) on V1, . . . , Vk.

1.3 The Strassen Algorithm

The algorithm that Strassen presented in 1969 consists of constructing, given two matrices

A =

[
a11 a12

a21 a22

]
and B =

[
b11 b12

b21 b22

]
the matrix C = AB,

C =

[
c11 c12

c21 c22

]
using 7 multiplications and 4 sums:

MULTIPLICATIVE STEPS

m1 = (a11 + a22) · (b11 + b22)

m2 = (a21 + a22) · b11
m3 = a11 · (b12 − b22)

m4 = a22 · (−b11 + b21)

m5 = (a11 + a12) · b22
m6 = (−a11 + a21) · (b11 + b12)

m7 = (a12 − a22) · (b21 + b22)

SUMS

c11 = m1 +m4 −m5 +m7

c12 = m2 +m4

9



c21 = m3 +m5

c22 = m1 +m3 −m2 +m6

Now let’s write this process in the language of tensors: Let V1, V2, V3 be Vi = M2×2 for

all i = 1, 2, 3. We use for V1, V2, V3 the canonical bases (aij), (b
i
j), (c

i
j) of matrices whose

entries are 1 in the entry (i, j) and 0 elsewhere. So the standard algorithm can look like

this

M2,2,2 = a11 ⊗ b11 ⊗ c11 + a12 ⊗ b21 ⊗ c11 + a21 ⊗ b11 ⊗ c21 + a22 ⊗ b21 ⊗ c21

+a11 ⊗ b12 ⊗ c12 + a12 ⊗ b22 ⊗ c12 + a21 ⊗ b12 ⊗ c22 + a22 ⊗ b22 ⊗ c22

The Strassen Algorithm can be written as:

M2,2,2 = (a11 + a22)⊗ (b11 + b22)⊗ (c11 + c22) + (a21 + a22)⊗ b11 ⊗ (c21 − c22)

+a11 ⊗ (b12 − b22)⊗ (c12 + c22) + a22 ⊗ (−b11 + b21)⊗ (c21 + c11) + (a11 + a12)⊗ b22 ⊗ (−c11 + c12)

+(−a11 + a21)⊗ (b11 + b12)⊗ c22 + (a12 − a22)⊗ (b21 + b22)⊗ c11.

The number of simple tensors in the tensor expression will be the number of multiplications

required to develop the algorithm. So the rank gives an lower bound on the number

of multiplications required to apply the corresponding bilinear function using the best

possible algorithm.

1.4 Alternating and symmetric tensors

We will use the σ application as in (1.4) to define the spaces of symmetric and alternating

tensors. These spaces will allow us to make an algebraic decomposition (in terms of direct

sums) of a tensor product. Consider the function σ : V ∗⊗V ∗ → V ∗⊗V ∗. We also consider

V ⊗2 = V ⊗ V with basis {vi ⊗ vj, 1 ≤ i, j ≤ n}. The subspaces

S2V := ⟨{vi ⊗ vj + vj ⊗ vi : 1 ≤ i, j ≤ n}⟩ = ⟨{v ⊗ v : v ∈ V }⟩
= {X ∈ V ⊗ V : X ◦ σ = X},

Λ2V := ⟨{vi ⊗ vj − vj ⊗ vi : 1 ≤ i, j ≤ n}⟩
= ⟨{v ⊗ w − w ⊗ v : v, w ∈ V }⟩
= {X ∈ V ⊗ V : X ◦ σ = −X}

are, respectively, the symmetric and alternating tensors of V ⊗2. Note that if p ∈ S2V

and g ∈ GL(V ), then g · p ∈ S2V and the same occurs if p ∈ Λ2V . So S2V and Λ2V

are invariant under linear-coordinate changes. From two vectors in V , we can define the

vectors

v1v2 :=
1

2
(v1 ⊗ v2 + v2 ⊗ v1) ∈ S2V and

v1 ∧ v2 :=
1

2
(v1 ⊗ v2 − v2 ⊗ v1) ∈ Λ2V .
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Let’s consider the function

πS : V ⊗n −→ V ⊗n

v1 ⊗ · · · ⊗ vn 7−→ 1

n!

∑
γ∈Sn

vγ(1) ⊗ vγ(2) ⊗ · · · ⊗ vγ(n),

where Sn denotes the group of permutations of n elements. We define

SnV = πS(V
⊗n)

the n-th symmetric power of V , and

S•V =
⊕
n

SnV

the symmetric algebra of V , where αβ := πS(α⊗ β) for α ∈ SsV and β ∈ StV .

By changing the space from V to V ∗, we get what is known as the space of symmetric

n-linear forms on V , but we can also see this as the space of homogeneous polynomials

of degree n on V . Given a multilinear form Q, the function x 7−→ Q(x, . . . , x) is a poly-

nomial function of degree k. The process of passing from a homogeneous polynomial to a

symmetric multilinear form is called polarization. For example, if Q is a homogeneous

polynomial of degree 2 over V , then the bilinear form Q is defined by the equation

Q(x, y) =
1

2
[Q(x+ y)−Q(x)−Q(y)]

In general, the polarization identity is given by the equation

Q(x1, . . . , xk) =
1

n!

∑
I⊂Jn,I ̸=∅

(−1)n−|I|Q

(∑
i∈I

xi

)
(1.5)

where Jn = {1, . . . , n}. Since when we talk about Q and Q, we are only dealing with two

interpretations for the same equation, we are not making any distinction between them.

We can see the space of antisymmetric (or alternating) k-tensors as the image ΛkV of

the following map

πΛ : V ⊗n −→ V ⊗n

v1 ⊗· · · ⊗ vn 7−→ v1 ∧· · · ∧ vn :=
1

n!

∑
σ∈Sn

(sgn(σ))vσ(1) ⊗· · · ⊗ vσ(n), (1.6)

where sgn(σ) = ±1 is the sign of the permutation σ. Note that if n = 2, this definition

agrees with the previous definition of Λ2V . In general,

ΛnV = {X ∈ V ⊗n : X ◦ σ = sgn(σ)X, for all σ ∈ Sn}

11



Observation 1.4.1. The properties of SnV and ΛnV can be studied in Section 11.5 of

[7]. There, it is proved that the space of alternating tensors is an algebra, and they called

this algebra of alternating tensors the exterior algebra. For our purposes, it is enough

to remark that

1. Λ1V = S1V = V .

2. The product SsV × StV −→ Ss+tV , where SnV is the space of homogeneous polyno-

mials over V ∗, corresponds to the product of polynomials.

It is straightforward to verify that the contraction

V ∗ × V ⊗n −→ V ⊗n−1

(α, v1 ⊗ · · · ⊗ vn) 7−→ α(v1)(v2 ⊗ · · · ⊗ vn)

preserves the subspaces of symmetric and alternating tensors.

Let f : V −→ W be a linear transformation. It induces the function

f⊗n : V ⊗n −→ W⊗n

v1 ⊗ · · · ⊗ vn 7−→ f⊗n(v1 ⊗ · · · ⊗ vn) = f(v1)⊗ · · · ⊗ f(vn).

f⊗n can be restricted to obtain the induced functions

f∧n : ΛnV −→ ΛnW and f •n : SnV −→ SnW .

Now let’s look at symmetric tensors: Let Sn be the symmetry group of n elements. We

can define an action of Sn on V ⊗n. For v1, . . . , vn ∈ V ,

σ(v1 ⊗ · · · ⊗ vn) = vσ(1) ⊗ · · · ⊗ vσ(n)

We can linearly extend and redefine the symmetric tensors:

SnV = {p ∈ V ⊗n : σ · p = p for all σ ∈ Sn}

In summary, SnV is the subspace of V ⊗n whose elements are invariant by the action of

Sn.

Now we will consider homogeneous polynomials in the space of matrices n × m and

how they are affected when changing the bases of Kn and Km. Let V = A × B, where

A,B are vector spaces. The idea is to obtain an invariant description (under the change

of bases), which will provide the explicit expression of these polynomials later on. The

following will be to study the quadratic case.

Example 1.4.1. In the case A = B, we know that every M ∈ A⊗2 can be uniquely written

as the sum of two matrices:

M = M1 +M2,
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where M1 is symmetric and M2 is antisymmetric. In fact, it is enough to take

M1 =
1
2
(M +MT ) and M2 =

1
2
(M −MT ).

Example 1.4.2. We have V = A ⊗ B, the goal will be to find a decomposition for both

S2(A ⊗ B) and Λ2(A ⊗ B). Now we move on to S2(A ⊗ B). If we take α ∈ S2A and

β ∈ S2B, α⊗ β is defined by

α⊗ β(x1 ⊗ y1, x2 ⊗ y2) = α(x1, x2)β(y1, y2),

where xj ∈ A∗, yj ∈ B∗. The fact that α and β are symmetric guarantees that

α⊗ β(x1 ⊗ y1, x2 ⊗ y2) = α⊗ β(x2 ⊗ y2, x1 ⊗ y1),

so α⊗ β ∈ S2(A⊗B).

On the other hand, if p ∈ S2A ⊗ S2B, then for all g ∈ G = GL(A) × GL(B), g · p ∈
S2A ⊗ S2B. We then have that S2A ⊗ S2B is an invariant subspace of S2(A ⊗ B) over

G. Now let’s study the dimensions:

dimS2V =

(
ab+ 1

2

)
=

(ab+ 1)ab

2

dim(S2A⊗ S2B) =

(
a+ 1

2

)(
b+ 1

2

)
=

(ab+ a+ b+ 1)ab

4

We still don’t have all the possible elements of S2V . We then consider α ∈ Λ2A, β ∈ Λ2B

and define

α⊗ β(x1 ⊗ y1, x2 ⊗ y2) = α(x1, x2)β(y2, y1)

= (−α(x1, x2))(−β(y1, y2)) = α⊗ β(x1 ⊗ y1, x2 ⊗ y2).

So α⊗ β ∈ S2(A⊗B) and extending the function linearly, we get an inclusion

Λ2A⊗ Λ2B ⊂ S2(A⊗B).

To conclude the decomposition, we note that dim(Λ2A⊗Λ2B) =
(ab− a− b+ 1)ab

4
, hence

dim(Λ2A⊗ Λ2B) + dim(S2A⊗ S2B) = S2(A⊗B)

and therefore

S2(A⊗B) = (Λ2A⊗ Λ2B)⊕ (S2A⊗ S2B)

is a decomposition of S2(A⊗B). Using a similar idea, one can show that

Λ2(A⊗B) = (Λ2A⊗ S2B)⊕ (S2A⊗ Λ2B).
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1.5 Generalities on tensor rank

Now that we have seen some relations of polynomials with matrices and tensors, let’s

begin studying a characterization of tensor rank in terms of matrices. We will consider,

as in Section 1.1, tensors as functions A∗ −→ B ⊗ C, and see some elementary results,

such as:

Theorem 1.5.1. (Thm. 3.1.1.1, [12]) Let p ∈ A⊗B ⊗C. Then the tensor rank R(p) is

the number of rank-one matrices needed to span a space containing p(A∗) ⊂ B ⊗ C.

Proof. If p is a rank r tensor, then there exists an expression of the form

p =
r∑

i=1

ai ⊗ bi ⊗ ci,

where the vectors ai need not to be linearly independent, and the same happens with the

bi, ci. We have

p(A∗) ⊂ ⟨b1 ⊗ c1, b2 ⊗ c2, . . . , br ⊗ cr⟩

and then the number of rank-one matrices needed to span p(A∗) ⊂ B⊗C is at most R(p).

On the other hand, if p(A∗) is spanned by rank-one elements, let’s say b1⊗ c1, . . . , br ⊗ cr,

we consider the basis of A∗, a1, . . . , aa, and the dual basis a1, . . . , aa (a basis for A). We

obtain some constants xij such that

p(ai) =
r∑

j=1

xijbj ⊗ cj.

Rewriting p, we have

p =
∑
j,i

ai ⊗ (xijbj ⊗ cj) =
r∑

j=1

(∑
i

xijai

)
⊗ bj ⊗ cj

and R(p) is at most the number of rank-one matrices needed to span p(A∗).

Proposition 1.5.1. (Corollary 3.1.2.1, [12]) Let a ≥ b ≥ c. Then if p ∈ A ⊗ B ⊗ C,

R(p) ≤ bc. In other words, if p ∈ Ka1 ⊗Ka2 ⊗Ka3, then R(p) ≤ min{a1a2, a1a3, a2a3}.

Theorem 1.5.2. (Thm. 3.1.3.1, [12]) Let n > 2 and let p ∈ A1 ⊗· · · ⊗ An have rank r.

Assume p ∈ A′
1 ⊗· · · ⊗ A′

n, where A′
j ⊂ Aj, and that there exists at least one j such that

the inclusion A′
j ⊂ Aj is proper. Then any expression for p of the form

p =

µ∑
i=1

u1
i ⊗· · · ⊗ un

i

with some us
j /∈ A′

s has µ > r.
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Proof. We will complete the spaces At considering a complement A′′
t such that At = A′

t ⊕

A′′
t . We put ut

j = ut′
j +ut′′

j , where u
t′
j ∈ A′

t, and ut′′
j ∈ A′′

t . We can write p =

µ∑
i=1

u1′
i ⊗· · ·⊗un′

i

so the terms with double prime involved must cancel (remember that p has no entries in

any of the A
′′
j ). As R(p) = r, µ ≥ r. Let’s assume µ = r and that without lost of generality

exists j0 ∈ {1, . . . , n}, such that u1′′
j0

̸= 0 (this can be assumed since A1 = A′
1⊕A′′

1). Then

the term

r∑
j=1

u1′′
j ⊗ (u2′

j ⊗· · · ⊗ un′
j ) = 0,

but all the terms (u2′
j ⊗· · · ⊗ un′

j ) must be linearly independent in A′
2 ⊗· · · ⊗A′

n, because

if not, this would contradict the minimality of r. This implies that the u1′′
j must all be

zero, a contradiction because at least one of the inclusions A′
j ⊂ Aj is proper.

Definition 1.5.1. A tensor p has border rank (or edge rank) r if it is a limit of

tensors of rank r but is not a limit of tensors of rank s for any s < r. Let’s denote R(p)

the border rank of p.

Observation 1.5.1. The rank of a tensor and its border rank are not equal in general.

In fact, R(p) ≥ R(p) for every tensor p.

Example 1.5.1. (Sec. 2.4.5, [12]) We choose the canonical basis {ei}i=1,2 for A,B and

C, where A = B = C = C2. Let p = e1⊗ e1⊗ e1+ e1⊗ e1⊗ e2+ e1⊗ e2⊗ e1+ e2⊗ e1⊗ e1

be a tensor and define

y(t) =
1

t
[(t− 1)e1 ⊗ e1 ⊗ e1 + (e1 + te2)⊗ (e1 + te2)⊗ (e1 + te2)]

=
1

t

[
t(e111 + e112 + e121 + e211) + t2(e122 + e212 + e221) + t3e222

]
= e111 + e112 + e121 + e211 + t(e122 + e212 + e221) + t2e222

= p+ t(e122 + e212 + e221) + t2e222.

By taking the limit t → 0, we have

lim
t→0

y(t) = p.

As R(y(t)) = 2 for all t ̸= 0, we conclude by definition that R(p) ≤ 2. Note that R(p) = 3

by Theorem 1.5.1, as the rank-one matrices needed to span a space containing p(A∗) are[
1 1

0 0

]
,

[
0 0

1 0

]
, and

[
1 0

0 0

]
.

The last thing we say about p is that its border rank can not be 1 because a sequence pj of

rank-one tensors such that lim
j→∞

pj = p would imply that R(p) = 1, a contradiction.
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Definition 1.5.2. Let Aj, j ∈ {1, . . . , n} and V vector spaces over C, and consider a

Euclidean structure that induces Euclidean structures and measures on the spaces A1 ⊗
· · · ⊗ An and SnV . Then any r such that the set of tensors having rank r has a positive

measure is known as a typical rank. We could also consider typical rank as the number

r such that the set of tensors of rank r has a nonempty interior in the topology induced

by the linear structure.

Example 1.5.2. For tensors in C2⊗C2⊗C2, we know that their typical rank is 2 (check

Equation 5.1 in Section 5 of [9]). We would like to point out that the context and the

notation in [9] will only be clear after reading the next chapter.

This typical rank we just defined is not the same as the rank for a tensor. Note that in

Example 1.5.1 we saw that p has rank 3 but p lives in a space with typical rank 2, again

by [9]. The last two definitions in this chapter will be recalled mostly in the last part of

this work, which is dedicated to studying cases of affirmative answers for the following

question:

Conjecture 1.5.1. Suppose that A = A′ ⊕ A′′, B = B′ ⊕ B′′, C = C ′ ⊕ C ′′, where all

A,B,C, . . . , B′′, C ′′ are finite-dimensional vector spaces over C. Let p ∈ A′⊗B′⊗C ′ and

p′′ ∈ A′′ ⊗B′′ ⊗ C ′′ be p = p′ + p′′. Is the equality

R(p) = R(p′) +R(p′′)

satisfied?

If we want to be more accurate regarding the dimensions of sets that are more com-

plicated than vector spaces, we would need to study some of the fundamental results on

projective spaces. That would be the purpose of the next chapter.
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Chapter 2

Projective space

This chapter’s main goal is to expose the concepts needed to understand the space of

tensors of rank one as a projective variety. For this, we will discuss some generalities

on affine and projective varieties to show how the minors of a given matrix will provide

equations that define the Segre variety. We need to start from the fundamentals: the

concept of affine plane.

2.1 The affine plane

Definition 2.1.1. An affine plane is a set Π endowed with a collection L of subsets of

Π (called lines), whose elements (called points) satisfy the following axioms:

1. Given two points P,Q ∈ Π, there is a unique line containing P and Q.

2. Given a line ℓ and a point P /∈ ℓ, there is a unique line m such that P ∈ m and

ℓ ∩m = ∅. .

3. There are three non-colinear points, which means they do not belong to the same line.

Notation 2.1.1. We will denote the affine plane Π, along with the collection of lines L
for (Π,L). Sometimes we will refer to (Π,L) as Π, without specifying the collection of

lines.

Definition 2.1.2. Let Π an affine plane. Two lines ℓ,m ∈ Π are called parallels if they

are the same line or if they don’t have any common points.

Example 2.1.1. The set R2 = {(x, y) : x, y ∈ R}, along with the collection of lines

ℓ = {(x, y) ∈ R2 : ax+ by+ c = 0, a, b, c ∈ R, (a, b, c) ̸= (0, 0, 0)} is an affine plane, called

the real affine plane. It is easy to verify the axioms:

1. Given P = (p1, p2), Q = (q1, q2), where P ̸= Q, the only line passing through them

is the line with equation
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(q2 − p2)x+ (p1 − q1)y + (p2 − q2)p1 + (q1 − p1)p2 = 0.

2. Given P = (p1, p2) and ℓ with equation ax + by + c = 0, where a or b are nonzero,

such that P /∈ ℓ, the only parallel to ℓ passing by P is the line with equation ax +

by − ap1 − bp2 = 0.

3. (0, 0), (1, 0) and (0, 1) are non-colinears points.

Example 2.1.2. In general, if K is a field, the set

K2 = {(x, y) : x, y ∈ K}

along with the lines of equation ax + by + c = 0, a, b, c ∈ K, and (a, b, c) ̸= (0, 0, 0) is an

affine plane, called the affine K-plane.

Now, let Π be the Euclidean plane. If we assume the Euclidean line is in bijective

correspondence with the real numbers, then choosing two lines ℓ and m which intersect

in a single point O, we can establish a coordinate system, that is, a bijection between Π

and R2.

The point O determines two semi-lines in ℓ and m, and choosing a point (distinct from

O) in each one of them, we set the bijections

x : m −→ R and y : ℓ −→ R.

O

SΠ P = (Q,S)

Q

ℓ

m

From this, we can associate each point P /∈ ℓ∪m with the vertices of the parallelogram

determined by P and O, with sides parallel to ℓ and m (considering the parallels to ℓ and

m passing through P ). We call Q and S the final points of those sides. Then we have

φℓ,m : Π −→ R2

P 7−→ φℓ,m(P ) = (x(Q), y(S))

is a bijection between Π and R2, which depends on the choices of ℓ and m. Given two

lines ℓ′ and m′ such that ℓ′ ∩ m′ = {O′}, we can establish the function of change of

coordinates: Let’s assume O′ ∈ ℓ′ and ℓ has direction (a, b), and m′ has direction (c, d).

Let (x0, y0) = φℓ′,m′(P ) the coordinates of O′ on the system given by ℓ′ and m′. Then
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ϕℓ,m(P ) =

[
a c

b d

]
φℓ′,m′(P )−

(
x0

y0

)
The previous discussion can be summarized in the following result:

Theorem 2.1.1. (Prop. 1.15, [15]) Let (Π,L) an affine plane, and let φ : Π −→ ζ a

bijection. Then if φ(L) = {φ(ℓ) : ℓ ∈ L} denotes the collection of images of lines of Π,

then (ζ, φ(L)) is an affine plane.

Definition 2.1.3. Let (Π,L) and (Π′,L′) be two affine planes. An isomorphism between

Π and Π′ is a bijection φ : Π −→ Π′ such that φ(L) = L′. When we have the case Π = Π′

in the previous definition, we call φ an automorphism.

We denote the set of all automorphisms of Π as Aut(Π) and also point out that an

automorphism is an isomorphism that takes co-linear points in co-linear points, as we

comment in the next observation.

Observation 2.1.1. Consider φ : Π −→ Π an automorphism. Then

1. For every pair of lines ℓ,m ⊂ Π, we have

φ(ℓ ∩m) = φ(ℓ) ∩ φ(m).

2. For every P,Q ∈ Π, P ̸= Q, φ(PQ) = φ(P )φ(Q).

We could elaborate more on the properties of the automorphisms, but we would restrict

to mention the following:

Proposition 2.1.1. Let Aut(Π) be the set of automorphisms of the affine plane Π. Then

Aut(Π) is a group, with identity element Id : Π −→ Π.

Proof. The identity is an automorphism. If we take φ, ε ∈ Aut(Π), we also have φ ◦ ε is

also an automorphism. As φ ∈ Aut(Π) is such that φ(L) = L, we have L = φ−1(φ(L)) =
φ−1(L), so φ−1 is also an automorphism. This concludes the proof.

We are going to talk about a special subgroup of Aut(Π), the dilations of Π.

Definition 2.1.4. A dilation of the affine plane Π is an automorphism γ : Π −→ Π

such that PQ∥γ(P )γ(Q), being P ̸= Q. We denote the set of all dilations of Π by Dil(Π).

Example 2.1.3. Fix (p1, p2) ∈ R2. Every linear transformation of the form

R2 −→ R2

(x, y) 7−→ (x+ p1, y + p2)

is a dilation of R2.
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Example 2.1.4. Fix λ ∈ R. Every linear transformation of the form

R2 −→ R2

(x, y) 7−→ (λx, λy)

is a dilation of R2.

Proposition 2.1.2. Let Π be an affine plane. Then Dil(Π) ⊂ Aut(Π) is a subgroup.

Proof. It is clear that Id ∈ Dil(Π). If γ, θ ∈ Dil(Π), then PQ∥γ(P )γ(Q) and PQ∥θ(P )θ(Q).

That way,

PQ∥γ(P )γ(Q)∥θ(γ(P ))θ(γ(Q)) = (θ ◦ γ(P ))(θ ◦ γ(Q).)

This tells us θ ◦ γ ∈ Dil(Π). The fact that

PQ = γ(γ−1(P ))γ(γ−1(Q))∥γ−1(P )γ−1(Q)

gives us γ−1 ∈ Dil(Π), and we have proved our proposition.

2.2 Affine varieties

For this part, we state some definitions and results needed to study border rank. We also

study some examples related to the definitions we present. Our main references will be

Chapter 1 of [10] and we support some of the arguments in Chapter 7 of [2]. We will leave

some of the results without proof for brevity reasons.

We define the affine n-space over K, denoted An
k or simply An, to be the set of all n-

tuples of elements of K. An element P ∈ An will be called a point and if P = (a1, . . . , an)

with ai ∈ K, then ai will be called the coordinates of P .

Now consider the ring A = K[x1, . . . , xn] of polynomials in n variables over the field K.

Since K is infinite, the elements of A can be viewed as functions from the affine n-space

to K by defining f(P ) = f(a1, . . . , an), where f ∈ A and P ∈ An (see Theorem 29.18 of

[8]). If f is a polynomial we can talk about the set of zeros of f ,

Z(f) = {P ∈ An : f(P ) = 0}.

More generally, for any T ⊂ A, we define

Z(T ) = {P ∈ An : f(P ) = 0 for all f ∈ T}.

Note that if I is the ideal of A generated by T , then Z(T ) = Z(I). Now, remember that A

is a Noetherian ring (Theorem 7.5 of [2]), and by definition any ideal is finitely generated,

so there exist f1, . . . , fr ∈ A such that Z(T ) is the set of zeros of f1, . . . , fr.
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Definition 2.2.1. A subset Y of An is an affine algebraic set if there exists a subset

T ⊂ A such that Y = Z(T ).

Proposition 2.2.1. (Prop. 1.1, [10]) The union of two algebraic sets is an algebraic set.

The intersection of any family of algebraic sets is also an algebraic set. The empty set

and the whole space are algebraic sets.

Definition 2.2.2. We define the Zariski topology on An by taking the closed subsets

to be the algebraic sets. This is a topology, as the previous proposition confirms that the

axioms for a topology are fulfilled.

Example 2.2.1. Consider the space A1 with Zariski’s topology, and A = K[x], K alge-

braically closed. We know that in particular, A is a principal ideal domain, then every

algebraic set is the set of zeros of a single polynomial. Moreover, since K is algebraically

closed, any f ∈ A has the form

f = c(x− a1)· · · (x− an)

with c, a1, . . . , an ∈ K, so Z(f) = {a1, . . . , an}. Therefore any proper algebraic subset of

A1 is a finite set.

Definition 2.2.3. A nonempty subset Y of a topological space X is irreducible if it

cannot be expressed as the union Y = Y1 ∪ Y2 of two proper subsets, each one of which is

closed in Y . The empty set is not considered to be irreducible.

Proposition 2.2.2. (Cor. 1.4, [10]) An affine algebraic set is irreducible if and only if

its ideal is a prime ideal.

Example 2.2.2. Let f be an irreducible polynomial in K[x, y]. Then f generates a prime

ideal in A because A is a unique factorization domain. By Proposition 2.2.2, Y = Z(f)

is irreducible. We call this zero set the affine curve defined by equation f(x, y) = 0. If

f has degree d, we say that Y is a curve of degree d.

Example 2.2.3. Let Y = Z(x2−yz, xz−x). We claim that Y is not irreducible. Indeed,

Y is by definition the set of common zeros of x2 − yz and xz − x = x(z − 1). Note that

this is equivalent to saying that every point of Y is in the set of common zeros of x2 − yz

and x, or in the set of common zeros of x2 − yz and z − 1. So we have that

Y = Z(x2 − yz, x) ∪ Z(x2 − yz, z − 1)

Now, to be a zero of x means x = 0, so a point in Z(x2−yz, x) turns out to be in Z(yz, x).

Again, to be a point in Z(yz, x) means that this point must be a common zero of z and x,

or a common zero of y and x. So Z(yz, x) = Z(y, x) ∪ Z(z, x).

Summarizing, we can write Y as
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Y = Z(y, x) ∪ Z(z, x) ∪ Z(x2 − yz, z − 1)

which is a union of irreducible closed sets in Zariski’s topology. The irreducibility is

granted for Z(y, x) and Z(z, x) by Proposition 2.2.2 as (y, x) and (z, x) are prime ideals of

K[x, y, z] (remember that K[x, y, z]/(x, y) ≃ K[z] and K[x, y, z]/(z, x) ≃ K[y] are domains)

and for Z(x2−yz, z−1) by Example 2.2.2, since Z(x2−yz, z−1) = Z(x2−y) and x2−y

is irreducible.

Definition 2.2.4. An affine algebraic variety (or simply affine variety) is an irre-

ducible closed subset of An (with the induced topology).

Definition 2.2.5. For any subset Y ⊆ An, let us define the ideal of Y in A by

I(Y ) = {f ∈ A : f(P ) = 0 for all P ∈ Y }.

Underlying this definition is the existence of functions

Z : p ⊂ A 7−→ Z(p) = Y

and

I : Y ⊂ An 7−→ I(Y ).

These functions have the following properties:

Proposition 2.2.3. (Prop. 1.2, [10])

a) If T1 ⊂ T2 are subsets of A, then Z(T1) ⊇ Z(T2).

b) If Y1 ⊆ Y2 are subsets of An, then I(Y1) ⊇ I(Y2).

c) For any two subsets Y1, Y2 of An, we have that I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

d) For any subset Y ⊂ An, Z(I(Y )) = Y , the closure of Y .

Example 2.2.4. Consider the variety {(0, 0)} consisting of the origin in K2 . Then its

ideal I({(0, 0)}) consists of all polynomials that vanish at origin. We claim that

I({(0, 0)}) = ⟨x, y⟩.

It is clear that any polynomial of the form

A(x, y)x+B(x, y)y

vanishes at the origin. On the other side, let

f =
∑
i,j

aijx
iyj

such that f(0, 0) = 0. Then every term of the sum is zero, in particular a00 = 0 = f(0, 0)

and
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f = a00 +

(∑
i,j>0

(ai0x
i−1 + aijx

i−1yj)

)
x+

(∑
j>0

a0jy
j−1

)
y ∈ ⟨x, y⟩.

Example 2.2.5. An is irreducible since it corresponds to the zero ideal in A, which is

prime.

Definition 2.2.6. A topological space X is called Noetherian if it satisfies the descend-

ing chain condition for closed subsets: for any sequence Y1 ⊇ Y2 ⊇ · · · of closed subsets,

there is an integer r such that Yr = Yr+1 = · · ·.

Example 2.2.6. An is a Noetherian topological space. Indeed, if

Y1 ⊇ Y2 ⊇· · ·

is a descending chain of closed subsets, then

I(Y1) ⊆ I(Y2) ⊆· · ·

is an ascending chain of ideals in A = K[x1, . . . , xn]. Since A is Noetherian as a ring,

this chain is stationary. Moreover, for each i, Yi = Z(I(Yi)), so the chain of the Yi’s is

also stationary.

The importance of being Noetherian is that we can guarantee an expression of every

algebraic set in An as a union of varieties no one containing another.

Proposition 2.2.4. (Prop. 1.5, [10]) In a Noetherian topological space X, every nonempty

closed subset Y can be expressed as a finite union Y =
r⋃

i=1

Yi of irreducible closed subsets

Yi. If we require that Yi ⊉ Yj for i ̸= j then the Yi’s are uniquely determined, and we call

the Yi’s the irreducible components of Y .

Definition 2.2.7. If X is a topological space, we define the dimension of X (denoted

dimX) to be the supremum of all integers n such that there exists a chain

Z0 ⊂ Z1 ⊂· · · ⊂ Zn

of distinct irreducible closed subsets of X. We define the dimension of an affine or quasi-

affine variety to be its dimension as a topological space.

Proposition 2.2.5. (Prop. 1.9, [10]) The dimension of An is n.

Proposition 2.2.6. (Prop. 1.10, [10]) If Y is an affine variety, then dimY = dimY .

Proposition 2.2.7. A variety Y in An has dimension n− 1 if and only if it is the zero

set Z(f) of a single nonconstant irreducible polynomial f ∈ A = K[x1, . . . , xn].
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2.3 Projective varieties

To get a wide overview (along with additional results) of our study, we would need to

take advantage of the invariance under tensor rescalings of the properties we discussed

in Chapter 1, so we consider a different perspective through an equivalence relation that

allows us to quotient our space V and obtain a set of lines through the origin in V .

Definition 2.3.1. Let V be a vector space of dimension v. We define the projective

space associated to V , which we denote PV = Pv−1, as the set whose points [v] ∈ PV are

equivalence classes of nonzero elements v ∈ V , where [v] = [w] if and only if there exists

a nonzero λ ∈ K such that v = λw.

Underlying the previous definition is the existence of a function

π : V \ {0} −→ PV
v 7−→ [v]

We call π the projection map of V . This new space PV will inherit some aspects of the

linear structure on V . For instance, if U ⊂ V is a linear subspace, then PU ⊂ PV is called

a linear subspace.

Also, for any two different points in PV , say [x] and [y], there exists a line, which we

are denoting P1
xy that contains [x] and [y]. For every point (x0, x1, . . . , xn) ∈ Cn+1 \ {0}

we denote its equivalence class in Pn by (x0 : x1 : · · · : xn). We will call these coordinates

the homogeneous coordinates.

If we go back to V , we can see this line as the result of applying the projection map

to a bi-dimensional plane in V containing the origin and x, y ∈ V . When we look at P2

we see that any two distinct lines will intersect at a point.

Definition 2.3.2. Let Y ⊂ PV , and consider Ŷ := π−1(Y ), the inverse image of Y by π.

We call Ŷ the affine cone over Z. If X ⊂ V and we want to go back to PV through π,

we call π(X) the projectivization of X and we denote it by PX.

When working with projective spaces, we may need to clarify certain details: In the

projective case, we need to make the polynomial ring S = K[x0, . . . , xn] into a graded

ring by taking Sd to be the set of all linear combinations of monomials of total degree d

in x0, . . . , xn. So we get an expression for S in the form

S =
⊕
d≥0

Sd,

with

Sd · Se ⊆ Sd+e,
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and every element of Sd is an homogeneous element of degree d. The fact that S is a direct

sum implies every element of S can be written uniquely as a finite sum of homogeneous

elements.

In Pn, we cannot use f ∈ S to define a function because the lack of uniqueness of the

homogeneous coordinates. However, if f is a homogeneous polynomial of degree d, then

f(λa0, . . . , λan) = λdf(a0, . . . , an),

and the property of being zero or not will depend on the equivalence class of (a0, . . . , an).

So, the best we have is a function

Pn −→ {0, 1}

defined by f(P ) = 0 if f(a0, . . . , an) = 0 and f(P ) = 1 if f(a0, . . . , an) ̸= 0. From this,

we can define the zeros of a homogeneous polynomial f as the set of P ∈ Pn such that

f(P ) = 0. We can extend this idea to define the set of zeros for a collection of polynomials

W and derive some results.

Definition 2.3.3. Let π : V \{0} −→ PV be the projection map and consider a collection

W of homogeneous polynomials in V . Let Z(W ) the set of common zeros of W , that is,

Z(W ) = {z ∈ V : P (z) = 0 for all P ∈ W}.

We say X is an projective algebraic variety if X = π(Z(W )) ⊂ PV for some W .

Definition 2.3.4. For a subset Y ⊂ PV , define

I(Y ) := {P ∈ S•V ∗ : P |Ŷ≡ 0}

as the ideal associated to Y .

Definition 2.3.5. Let X ⊂ PV and Y ⊂ PV be two varieties. We say X and Y are

projectively equivalent if there exist linear maps

f : V −→ W and g : W −→ V

such that f(X̂) = Ŷ and g(Ŷ ) = X̂.

Definition 2.3.6. We say that a collection of homogeneous polynomials P1, . . . , Pr ∈
S•V ∗ cuts out X in a set-theoretical sense if the set of common zeros of the polyno-

mials P1, . . . , Pr is the set of points of X. We also define the notion of a generator set for

the ideal of X as a set of polynomials P1, . . . , Pr such that every P ∈ I(X) can be written

in the form

P = q1P1 +· · ·+ qrPr

for some polynomials qj ∈ S•V ∗.
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Observation 2.3.1. This set of generators of the ideal of a variety has equations with

the lowest possible degree. As a matter of example, take the line x = 0 in C2, that is the

set of pairs in the form (0, y) ∈ C2. Note that this line is cut out in a set-theoretical sense

by the homogeneous polynomial x2 = 0, but the ideal is generated by x = 0 (the lowest

possible degree). From this, we have in particular that the generators of the ideal cut out

X set-theoretically.

Definition 2.3.7. A variety X ⊂ PV is said to be reducible if there exist varieties

Y, Z ̸= X such that X = Y ∪ Z. In terms of ideals, this means that there exist nontrivial

ideals IY , IZ such that IZ ∩ IY = IX . Otherwise, we say X is irreducible.

Example 2.3.1. Let W be the zero set of equation xyz = 0. As W is the union of

{x = 0}, {y = 0}, and {z = 0}, W is reducible.

Theorem 2.3.1. (Th. 1.15, [14]) Let Y ⊂ Pn be a projective algebraic set. Then Y is

irreducible if and only if I(Y ) is prime.

Proof. Suppose Y is irreducible. Let f, g ∈ I(Y ). Then Z(f) and Z(g) are projective

algebraic sets, so Y can be expressed as

Y = (Y ∩ Z(f)) ∪ (Y ∩ Z(g)).

As Y is irreducible, Y = Y ∩ Z(f) or Y = Y ∩ Z(g). But this implies that f ∈ I(Y )

or g ∈ I(Y ) and therefore I(Y ) is prime. The other direction is analog to the proof for

affine varieties. See Corollary 1.4 of [10].

Example 2.3.2. Consider the set Ω of points satisfying the equation x2 + y2 + z2 = 0.

The polynomial is irreducible, so I(x2 + y2 + z2) is a prime ideal and by Theorem 2.3.1,

Ω is irreducible.

Now let’s focus on examples of varieties more related to our study. We will begin by

studying the rank-one matrices, that is, two-factor tensors. Let (ai) and (bs) be bases of

A and B, respectively, and (ai ⊗ bs) the induced basis of A ⊗ B. We also consider the

dual space of A ⊗ B, A∗ ⊗ B∗ and its basis (αi ⊗ βs). We can identify ai ⊗ bs with the

matrix having a 1 in the (i, s)-entry and zero elsewhere.

Now consider the following quadratic polynomial on A∗ ⊗ B∗, (the space of a × b

matrices) with coordinates xi,s, that is,

X =
∑
i,s

xi,sαi ⊗ βs

corresponds to the matrix whose (i, s)-entry is xi,s, so we define

Pjk|tu(X) := xj,txk,u − xk,txj,u.

26



Note that Pjk|tu is the two by two minor (jk|tu). In terms of tensors, we have

Pjk|tu = (aj ⊗ bt)(ak ⊗ bu)− (ak ⊗ bt)(aj ⊗ bu)

=
1

2
[aj ⊗ bt ⊗ ak ⊗ bu + ak ⊗ bu ⊗ aj ⊗ bt − ak ⊗ bt ⊗ aj ⊗ bu − aj ⊗ bu ⊗ ak ⊗ bt]

and as we know that A⊗B ⊗A⊗B ≃ A⊗A⊗B ⊗B, we can rearrange the expression,

getting

Pjk|tu =
1

2
[aj ⊗ ak ⊗ bt ⊗ bu + ak ⊗ aj ⊗ bu ⊗ bt − ak ⊗ aj ⊗ bt ⊗ bu − aj ⊗ ak ⊗ bu ⊗ bt]

=
1

2
(aj ⊗ ak − ak ⊗ aj)(bt ⊗ bu) +

1

2
(ak ⊗ aj − aj ⊗ ak)(bu ⊗ bt)

= (aj ∧ ak)⊗ bt ⊗ bu + (ak ∧ aj)⊗ bu ⊗ bt

= (aj ∧ ak)⊗ bt ⊗ bu − (aj ∧ ak)⊗ bu ⊗ bt

= (aj ∧ ak)⊗ (bt ⊗ bu − bu ⊗ bt) = 2(aj ∧ ak)⊗
1

2
(bt ⊗ bu − bu ⊗ bt)

= 2(aj ∧ ak)⊗ (bt ∧ bu).

From this, we conclude that a two-by-two minor, expressed as a tensor in S2(A ⊗ B) is

an element of Λ2A⊗ Λ2B ⊂ S2(A⊗B). Note that the zero set of the two by two minors

Pjk|tu is the set of a×b matrices such that every Pjk|tu is zero, that is, the set of rank-one

matrices.

Definition 2.3.8. Define the two-factor Segre variety Seg(PA× PB) to be the zero

set of the ideal generated by the two by two minors as in the previous discussion.

Observation 2.3.2. The rank of a tensor p does not depend on the nonzero rescalings of

p. From this, we can think about the rank as a function of the projective space

P(A1 ⊗ · · · ⊗ An) −→ N
p 7−→ R(p)

The set of rank-one tensors is isomorphic to PA1×PA2×· · ·×PAn in P(A1⊗· · ·⊗An).

Its embedding in the tensor space is also called the Segre variety:

Seg = SegA1,A2,...,Ad
:= PA1 × PA2 ×· · · × PAd ⊂ P(A1 ⊗ A2 ⊗· · · ⊗ Ad).

Let Aj be vector spaces and let V = A1 ⊗A2 ⊗· · · ⊗An. We define the n-factor Segre

variety to be the image of the map

Seg : PA1 × PA2 ×· · · × PAn −→ PV
([v1], . . . , [vn]) 7−→ [v1 ⊗ v2 ⊗· · · ⊗ vn].

This map is called the Segre embedding. To show that Seg(PA1×PA2×· · ·×PAn) ⊂ PV
is a variety, we will see it as the set of common zeros of Λ2A∗

j ⊗ Λ2A∗
ĵ
, for 1 ≤ j ≤ n,

where

Aĵ = A1 ⊗· · · ⊗ Aj−1 ⊗ Aj+1 ⊗· · · ⊗ An.
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As we did in the two-factor case, note that the zero set of Λ2A∗
1 ⊗ Λ2A∗

1̂
is

Seg(PA1 × P(A2 ⊗· · · ⊗ An)),

that is, the tensors of the form a1 ⊗ M1, where a1 ∈ A1 and M1 ∈ A2 ⊗· · · ⊗ An. The

second fact is that the zero set of Λ2A∗
2⊗Λ2A∗

2̂
is Seg(PA2×PA∗

2̂
). So the set of common

zeros of Λ2A∗
1 ⊗ Λ2A∗

1̂
and Λ2A∗

2 ⊗ Λ2A∗
2̂
is

Seg(PA1 × PA2 × P(A3 ⊗· · · ⊗ An)).

Doing this recursively, we obtain that Seg(PA1 × PA2 ×· · · × PAn) is the set of rank-one

matrices of A1 ⊗· · · ⊗ An, and we denote it by σ̂1 ⊂ A1 ⊗· · · ⊗ An.

From our previous discussion regarding projective spaces, we can introduce the follow-

ing notation and definitions:

Notation 2.3.1. Let V a linear subspace of A1 ⊗ · · · ⊗ An, then

VSeg := PV ∩ SegA1,A2,...,An.

VSeg is (up to projectivization) the set of rank-one tensors in V .

Definition 2.3.9. For p ∈ A1 ⊗ · · · ⊗ An, define R(p), the border rank of p, to be

the minimal r such that ⟨p⟩ ∈ σr(SegA1,...,An), and ⟨p⟩ is the underlying point of p in the

projective space. We will say R(p) = 0 if and only if p = 0.

It can be proven that this definition of border rank coincides with our previous Defini-

tion 1.5.1. The last result we state is related to intersections of varieties and we will use

it in the end of the next chapter:

Theorem 2.3.2. (Ch.1, Sec.7 Th.7.2 [10])(Projective Dimension Theorem) Let Y, Z be

varieties of dimensions r, s in Pn. Then every irreducible component of Y ∩ Z has a

dimension greater or equal than r + s− n. Furthermore, if r + s− n ≥ 0, then Y ∩ Z is

nonempty.
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Chapter 3

First additivity results

Now we begin the study of the central problem of our work: the additivity of the tensor

rank, discussed in Chapter 1. More specifically, we will approach the following question:

Question 3.0.1. Suppose A = A′ ⊕ A′′, B = B′ ⊕ B′′, C = C ′ ⊕ C ′′ where all A, . . . , C ′′

are finite dimensional vector spaces over a field K. Choose p′ ∈ A′ ⊗ B′ ⊗ C ′ and p′′ ∈
A′′ ⊗B′′ ⊗ C ′′ and let p = p′ + p′′. Does the following equality hold

R(p) = R(p′) +R(p′′)? (3.1)

Regarding Question 3.0.1, the answer for the case where one of the vector spaces

A′, A′′, B′, B′′, C ′, C ′′ is at most two dimensional, is that (3.1) holds. This conclusion is

known as the Ja’Ja’-Takche theorem ([11]). We will see several recent approaches to this

question. In [6], Buczynski, Postinghel, and Rupniewski worked with a variety of cases,

more specifically, spaces involved in the tensor product with dimensions less or equal to

4. To address all of those cases, there was a mixture of perspectives and techniques that

we will address in the remainder of this work. The main results for this chapter will be:

Theorem 3.0.1. Let p1 ∈ A1 ⊗ B1 ⊗ C1 and p2 ∈ A2 ⊗ B2 ⊗ C2 be such that R(p1) can

be determined by the substitution method. Then Strassen’s additivity conjecture holds for

p1 ⊕ p2, that is, R(p1 ⊕ p2) = R(p1) +R(p2).

Theorem 3.0.2. Suppose W ′′ ⊂ ⟨x⟩ ⊗ C ′′ + B′′ ⊗ ⟨y⟩ and W ′ ⊂ B′ ⊗ C ′ is an arbitrary

subspace. Then the additivity of the rank holds for W ′ ⊕W ′′.

Theorem 3.0.3. Suppose K is an algebraically closed field, W ′′ ⊂ ⟨x⟩ ⊗ C ′′ + B′′ ⊗ K2,

and W ′ ⊂ B′ ⊗ C ′ is an arbitrary subspace. Then the additivity of the rank holds for

W ′ ⊕W ′′.

We first study a couple of results that show how the rank is independent of the choice

of the vector spaces involved and explain the slice technique.
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Lemma 3.0.4. (Lemma 2.7, [6]) Let be p ∈ A′
1⊗A′

2⊗· · ·⊗A′
n for some linear subspaces

A′
i ⊂ Ai. Then R(p) (respectively under the condition K = C, R(p)) measured as the rank

(respectively, the border rank) in A′
1⊗· · ·⊗A′

n is equal to the rank (resp. the border rank)

measured in A1 ⊗ · · · ⊗ An.

Proof. The reader can check the proof for rank on Theorem 1.5.2.

Lemma 3.0.5. (Lemma 2.8, [6]) Suppose p ∈ A′ ⊗ B ⊗ C for a linear subspace A′ ⊂ A,

and that we have an expression for p ∈ ⟨s1, . . . , sr⟩, where si = ai ⊗ bi ⊗ ci are simple

tensors. Then

r ≥ R(p) + dim⟨a1, . . . , ar⟩ − dimA′.

Proof. Note that we can replace A with a smaller subspace if needed. Set d = dimA −
dimA′. We reorder the simple tensors si in such a way that the first d of the ai’s are L.I.

and ⟨A′ ⊔ {a1, . . . , ad}⟩ = A. Let A′′ = ⟨a1, . . . , ad⟩ so that A = A′ ⊕A′′ and consider the

quotient map

π : A −→ A/A′′.

We also consider the composition

A′ i−→ A
π−→ A/A′′ ≃ A′,

which is an isomorphism and denote it by ϕ. We can tensorize ϕ by IdB ⊗ IdC and along

with a minor abuse of notation, set

π : A⊗B ⊗ C −→ (A/A′′)⊗B ⊗ C and

ϕ : A′ ⊗B ⊗ C −→ A′ ⊗B ⊗ C.

We obtain

ϕ(p) = π(p) ∈ π(⟨a1 ⊗ b1 ⊗ c1, . . . , ar ⊗ br ⊗ cr⟩)
= ⟨π(a1)⊗ b1 ⊗ c1, . . . , π(ar)⊗ br ⊗ cr⟩

= ⟨π(ad+1)⊗ bd+1 ⊗ cd+1, . . . , π(ar)⊗ br ⊗ cr⟩

Now we take ϕ−1 to get a presentation of p as a linear combination of (r − d) simple

tensors, that is, R(p) ≤ r − d, as we wanted.

3.1 Slice technique and conciseness

Now we will define the conciseness of tensors to replace the calculation of the rank of

three-way tensors with the rank calculation for linear spaces of matrices. For every tensor

p ∈ A1 ⊗ · · · ⊗ An there exists a linear map

p : A∗
1 −→ A2 ⊗ · · · ⊗ An.
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Definition 3.1.1. The tensor p ∈ A1 ⊗· · · ⊗ An is called concise if each map

p : A∗
i −→ A1 ⊗· · · ⊗ Ai−1 ⊗ Ai+1 ⊗· · · ⊗ An

is injective.

Example 3.1.1. Let A⊗B ⊗C ≃ C3 ⊗C2 ⊗C2 with respective basis (ai), (bj), (ck), and

p ∈ A⊗B ⊗ C be the following tensor:

p : A∗ −→ B ⊗ C

a1 7−→ b1 ⊗ c1

a2 7−→ b1 ⊗ c1 − b2 ⊗ c2

a3 7−→ b2 ⊗ c2

Note that p as defined is not injective because

p(−a∗1 + a∗2 − a∗3) = 0,

so Ker(p) ̸= 0 and p is not concise, but rewriting p we have

p = a1 ⊗ b1 ⊗ c1 + a2 ⊗ (b1 ⊗ c1 − b2 ⊗ c2) + a3 ⊗ b2 ⊗ c2

= (a1 + a2)⊗ (b1 ⊗ c1) + (−a2 + a3)⊗ (b2 ⊗ c2),

and therefore p = p̃ ∈ Ã ⊗ B ⊗ C, where Ã = ⟨a1 + a2,−a2 + a3⟩ ⊊ A is concise. Note

that we decreased A to get a concise tensor from a non-concise one. This process can be

done in general.

Observation 3.1.1. When p is not concise, we can change p for another concise one by

decreasing the size of some of the spaces involved in the tensor product.

Proposition 3.1.1. (pp. 69, Section 3.1, [12]) If p ∈ A1 ⊗ · · · ⊗ An is concise, then

R(p) ≥ max{ai}.

We assume p being concise, and therefore consider W = p(A∗
1) ⊂ A2 ⊗ · · · ⊗ An. Choose

a basis B of A∗
1, and consider p(B). By the injectivity, we have a basis for W . We call the

elements of this basis the slices of p. The key detail is that we can uniquely determine

p from W (up to an action of GL(A1)). This implies that W will capture the geometric

information about p, particularly, its rank and border rank. We can rephrase our rank

definition in terms of linear subspaces.

Definition 3.1.2. We define the rank of a linear subspace W (denoted R(W )) of a prod-

uct tensor space as the minimal number r, such that there exist simple tensors s1, . . . , sr

with W ⊂ ⟨s1, . . . , sr⟩.

Lemma 3.1.1. (Lemma 2.9, [6]) Lets assume p ∈ A1 ⊗ · · · ⊗ An to be concise and

W = p(A∗
1) as above. Then for simple tensors s1, . . . , sr ∈ A2 ⊗ · · · ⊗ An there exist
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vectors ai ∈ Ai for i = 1, . . . , r such that p = a1 ⊗ s1 + · · · + ar ⊗ sr if and only if

W ⊂ ⟨s1, . . . , sr⟩. Moreover, R(p) = R(W ) and if K = C R(p) = R(W ).

Proof. See Theorem 2.5 of [5].

We can also replace A1 with any of the Ai to define slices as images p(A∗
i ). Now we

can use our previous lemmas to prove a statement for higher dimensional subspaces of

the tensor space. We consider the case n = 2, as it is our main interest.

Example 3.1.2. Let

p = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1 + e3 ⊗ e2 ⊗ e2

and consider its associated subspace, where a, b, c ∈ C

W =

[
a b

b c

]
.

Note that dim(W ) = 3, and it can be proved that R(W ) = 4, but R(M) ≤ 2 for all

M ∈ W , where R(M) is the usual rank from linear algebra of the matrix M .

Lemma 3.1.2. (Prop. 2.10, [6]) Suppose W ⊂ B′⊗C ′ for some linear subspaces B′ ⊂ B,

C ′ ⊂ C.

i) The numbers R(W ) and R(W ), measured as the rank and border rank of W in B′⊗C ′,

are equal to the rank and border rank of W in B ⊗ C (for the border rank, we set

K = C).

ii) Moreover, if we have an expression W ⊂ ⟨s1, . . . , sr⟩ where si = bi ⊗ ci are simple

tensors, then

r ≥ R(W ) + dim⟨b1, . . . , br⟩ − dimB′.

Proof. i) Let k = R(W ) measured in B′ ⊗ C ′. Then there exist u1 = b1 ⊗ c1, . . . , uk =

bk ⊗ ck ∈ B′ ⊗ C ′ such that W ⊂ ⟨u1, . . . , uk⟩. Consider A = Kk and

p = e1 ⊗ b1 ⊗ c1 + · · ·+ ek ⊗ bk ⊗ ck ∈ A⊗B′ ⊗ C ′.

Then W = p(A∗).

By Lemma 3.0.4 the rank and border rank of p is the same measured in A⊗B′ ⊗C ′

or A⊗B ⊗ C. Using Lemma 3.1.1 twice we get:

(a) R(p) = R(W ) in A⊗B′ ⊗ C ′ and B′ ⊗ C ′.

(b) R(p) = R(W ) in A⊗B ⊗ C and B ⊗ C.

Moreover, R(W ) = R(p) in A⊗B′ ⊗ C ′, B′ ⊗ C ′, A⊗B ⊗ C, and B ⊗ C.
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ii) As in i), we consider p ∈ A ⊗ B′ ⊗ C ′ such that W = p(A∗) ⊂ ⟨s1, . . . , sr⟩, where
si = bi ⊗ ci are simple tensors. We are now under the hypothesis of Lemma 3.1.1, so

we get R(p) = R(W ) and by Lemma 3.0.5 applied to B′,

r ≥ R(p) + dim⟨b1, . . . , br⟩ − dimB′ = R(W ) + dim⟨b1, . . . , br⟩ − dimB′

as we wanted.

To conclude this section, we will give another definition of conciseness for a tensor and

a linear subspace. We can check that the definitions are equivalent, but we will use our

definitions depending on what we need to deduce.

Definition 3.1.3. Let p ∈ A1 ⊗ · · · ⊗ An be a tensor or let W ⊂ A1 ⊗ · · · ⊗ An be a

linear subspace. We say that p or W is A1-concise if for all linear subspaces V ⊂ A1, if

p ∈ V ⊗ A2 ⊗ · · · ⊗ An (respectively, W ⊂ V ⊗ · · · ⊗ An) then V = A1. Analogously, we

define Ai-concise tensors and spaces for i = 2, . . . , n. We say p or W is concise if it is

Ai-concise for all i ∈ {1, . . . , n}.

Notation 3.1.1. Let A′, A′′, B′, B′′, C ′, C ′′ be vector spaces over K with dimensions, re-

spectively, a′, a′′, b′, b′′, c′, c′′. Suppose A = A′ ⊕ A′′, B = B′ ⊕ B′′, C = C ′ ⊕ C ′′,

a = dimA = a′ + a′′, b = dimB = b′ + b′′, and c = dimC = c′ + c′′

We will approach the two-way tensors in B ⊗ C as matrices in Mb×c. For this, we

choose bases for B and C, but we will refrain from naming the bases explicitly. In this

section we will consider any element w ∈ Mb×c ≃ B⊗C as a (b′ + b′′, c′ + c′′) partitioned

matrix. So when we have a matrix w ∈ Mb×c, we will think of a matrix with four blocks

of size b′ × c′,b′ × c′′,b′′ × c′, and b′′ × c′′, respectively.

To complete our conventions, we need to introduce another notation:

Notation 3.1.2. As in Notation 1.1, a tensor p ∈ A ⊗ B ⊗ C can be seen as a linear

map p : A∗ −→ B ⊗ C; we denote by W := p(A∗), the image of A∗ in the space of

matrices B ⊗ C. Similarly, if p = p′ + p′′ ∈ (A′ ⊕ A′′) ⊗ (B′ ⊕ B′′) ⊗ (C ′ ⊕ C ′′) is such

that p′ ∈ A′ ⊗ B′ ⊗ C ′ and p′′ ∈ A′′ ⊗ B′′ ⊗ C ′′, we set W ′ := p′(A′∗) ⊂ B′ ⊗ C ′ and

W ′′ := p′′(A′′∗) ⊂ B′′ ⊗ C ′′. In such a situation, we will say that p = p′ ⊕ p′′ is a direct

sum tensor.

From above, we obtain the following direct sum decomposition:

W = W ′ ⊕W ′′ ⊂ (B′ ⊗ C ′)⊕ (B′′ ⊗ C ′′)

and there exists an induced matrix partition of size (b′ + b′′, c′ + c′′) on every matrix

w ∈ W such that
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w =

(
w′ 0

0 w′′

)
where w′ ∈ W ′ and w′′ ∈ W ′′ and the two 0’s denote zero matrices of size b′ × c′′ and

b′′ × c′, respectively.

Proposition 3.1.2. (Prop. 3.3, [6]) Suppose that p and W are as in the notation above.

Then R(p) = R(p′) +R(p′′) if and only if R(W ) = R(W ′) +R(W ′′).

Proof. Immediate from Lemma 3.1.1.

3.2 Projections and decompositions

We explore decomposition aspects regarding direct sums. Our goal will be to exploit the

concept of decomposition for the spaces involved to be able to analyze its rank and border

rank. The concepts of projections and conciseness play a central role. We will mostly

focus on useful inequalities, and explore additivity of the rank by giving conditions to the

spaces in the decomposition.

Definition 3.2.1. We define a minimal decomposition V for a subspace W ⊂ B⊗C

such that

1. dimV = R(W ),

2. PW = ⟨VSeg⟩, and

3. W ⊂ V .

Example 3.2.1. Let W = ⟨Idn⟩. Note that dim(W ) = 1, R(W ) = n. A minimal

decomposition for W is the space

V = ⟨eii, i = 1, . . . , n⟩,

where eii is the n × n matrix with a 1 in the entry (i, i) and 0 elsewhere. We know that

dim(V ) = n = R(W ), PW = ⟨VSeg⟩ (as all of V ’s generators have rank 1), and W ⊂ V .

Now consider W̃ = ⟨Idr⟩ + ⟨Ids⟩ ⊃ W , where r + s = n. Then the same V is also

a minimal decomposition for W̃ and W̃ has the same rank as W , but dim(W̃ ) = 2 and

dim(W ) = 1.

Notation 3.2.1. Under Notation 3.1.1, let πC′ denote the projection

πC′ : C −→ C ′′

whose kernel is C ′. We can also tensorize πC′ by IdB ⊗ IdA and keep the notation πC′:
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πC′ : B ⊗ C −→ B ⊗ C ′′ and πC′ : A⊗B ⊗ C −→ A⊗B ⊗ C ′′

with kernels, respectively, B⊗C ′ and A⊗B⊗C ′. From the projection we obtain a subspace

of C,B ⊗ C, or A⊗B ⊗ C, in such a way we can compose the projections, for instance

πC′πB′′ : B ⊗ C −→ B′ ⊗ C ′′ or

πC′πB′′ : A⊗B ⊗ C −→ A⊗B′ ⊗ C ′′.

We also choose E ′ ⊂ B′ (respectively E ′′ ⊂ B′′) as the minimal vector subspace such that

πC′(V ) (respectively πC′′(V )) is contained in (E ′⊕B′′)⊗C ′′ (respectively (B′⊕E ′′)⊗C ′).

If we swap the roles of B and C, we can define F ′ ⊂ C ′ and F ′′ ⊂ C ′′ analogously. We

denote the dimensions of the subspaces E ′, E ′′, F ′, F ′′ by e′, e′′, f ′, and f ′′.

We also recall the following result on linear algebra:

Theorem 3.2.1. Let π : X −→ Y a linear projection with Im(π) = Y ⊂ X and Z =

Ker(π) ⊂ X. Let’s consider T ⊂ X with T = ⟨t1, . . . , tr, t1, . . . , tr⟩, where dimT = r + r,

t1, . . . , tr ∈ Y and t1, . . . , tr ∈ Z. Then

π(T ) = ⟨t1, . . . , tr⟩ and dim(π(T )) = r.

Now we take a look at the differences R(W ′)− dim(W ′) and R(W ′′)− dim(W ′′). We

will informally refer to these numbers as the gaps. If the gaps are large, that means the

spaces E ′, E ′′, F ′, F ′′ could be large too, in particular, they can coincide with B′, B′′, C ′,

and C ′′, respectively. These spaces give us an idea of how far a minimal decomposition V

of a direct sum W = W ′ ⊕W ′′ is from being a direct sum of decompositions of W ′ and

W ′′. Finally, we present the results for this section.

Lemma 3.2.2. (Lemma 3.5, [6]) In Notation 3.2.1 with W = W ′ ⊕ W ′′ ⊂ B ⊗ C, the

following inequalities hold:

R(W ′) + e′′ ≤ R(W )− dim(W ′′), R(W ′′) + e′ ≤ R(W )− dim(W ′),

R(W ′) + f ′′ ≤ R(W )− dim(W ′′), R(W ′′) + f ′ ≤ R(W )− dim(W ′).

We can assume W ′ is concise, as Lemma 3.1.2 guarantees there are no changes on

R(W ′) or R(W ) if we choose the minimal subspace B′, and the minimal decomposition

V ⊂ B ⊗C of W ′ ⊕W ′′ cannot involve any tensor from outside of the minimal subspace.

Proof. Since every bi ⊗ ci is in Im(πC′′), and the rest of the generators are in Ker(πC′′),

we have

πC′′(V ) = ⟨b1 ⊗ c1, . . . , br ⊗ cr⟩,

where r = dimπC′′(V ) (here we are using Theorem 3.2.1). We also know πC′′(W ′⊕W ′′) =

πC′′(W ′)⊕πC′′(W ′′) = W ′⊕πC′′(W ′′) ⊂ (B′⊕B′′)⊗C ′ ⊂ πC′′(V ), so W ′ ⊂ πC′′(V ). Now

we claim that B′ ⊕ E ′′ = ⟨b1, . . . , br⟩. To prove this, note that
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1. W ′ is concise,

2. W ′ ⊂ πC′′(V ) = ⟨b1⊗ c1, . . . , br ⊗ cr⟩ ⊂ (B′⊕E ′′)⊗C ′ (by the definition of E ′′), and

3. W ′ ⊂ V ∩ (B′ ⊗ C ′).

From the definition of conciseness, we have ⟨b1 ⊗ c1, . . . , br ⊗ cr⟩ = (B′ ⊕ E ′′) ⊗ C ′, so

the inclusions B′ ⊂ ⟨b1, . . . , br⟩, E ′′ ⊂ ⟨b1, . . . , br⟩, and ⟨b1, . . . , br⟩ ⊂ B′ ⊕E ′′ are granted.

We can change the notation si = bi ⊗ ci, for i = 1, . . . , r, to get W ′ ⊂ ⟨s1, . . . , sr⟩ and by

Lemma 3.1.2.ii), we deduce

r = dim(πC′′(V )) ≥ R(W ′) + dim⟨b1, . . . , br⟩︸ ︷︷ ︸
b′+e′′

−b′ = R(W ′) + e′′. (3.2)

Since V contains W ′′ and πC′′(W ′′) ⊂ πC′′(B′′ ⊗ C ′′) = πC′′(B′′)⊗ πC′′(C ′′) = πC′′(B′′)⊗
{0} = {0}, we get W ′′ ⊂ Ker(πC′′), and the rank-nulity theorem gives us

r = dimπC′′(V ) ≤ dimV − dimW ′′ (1)
= R(W )− dimW ′′.

Combining these two last inequalities, we prove the first inequality of the lemma. The

others follow using the same idea by swapping B and C or ′ and ′′.

Rephrasing the inequalities of Lemma 3.2.2, we obtain

Corollary 3.2.1. (Cor. 3.6, [6]) If R(W ) < R(W ′) +R(W ′′), then

e′′ < R(W ′′)− dim(W ′′), e′ < R(W ′)− dim(W ′),

f ′′ < R(W ′′)− dim(W ′′), f ′ < R(W ′)− dim(W ′).

This immediately recovers the known case of additivity of the rank, when the gap is

equal to zero, that is, if R(W ′) = dim(W ′), then R(W ) = R(W ′)+R(W ′′) (as e′ ≥ 0). In

addition, it implies that if one of the gaps is equal to 1, for instance, R(W ′) = dim(W ′)+1,

then either the additivity of the rank holds or both E ′ and F ′ are trivial vector spaces.

The latter assertion cannot occur without additivity of the rank. We end the section with

a clarifying example.

Example 3.2.2. Under Notation 3.1.1, we consider A = C5, A′ = C3, A′′ = C2, B = C4,

B′ = C2 = B′′, C = C4, and C ′ = C2 = C ′′. We fix bases for A,B,C and consider

A⊗B ⊗ C = (A′ ⊕ A′′)⊗ (B′ ⊕B′′)⊗ (C ′ ⊕ C ′′)

and

p = (e3 + e1)⊗ (e1 + 2e3)⊗ (e2 − e4)

= e3 ⊗ e1 ⊗ e2 + 2e3 ⊗ e3 ⊗ e2 − e3 ⊗ e1 ⊗ e4 − 2e3 ⊗ e3 ⊗ e4

+e1 ⊗ e1 ⊗ e2 − e1 ⊗ e1 ⊗ e4 + 2e1 ⊗ e3 ⊗ e2 − 2e1 ⊗ e3 ⊗ e4
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Now we take

πC′ : A⊗B ⊗ C −→ A⊗B ⊗ C ′′

πB′′ : A⊗B ⊗ C −→ A⊗B′ ⊗ C

πA′′ : A⊗B ⊗ C −→ A′ ⊗B ⊗ C

and compute

πA′′πB′′πC′(p) = πA′′πB′′((e3 + e1)⊗ (e1 + 2e3)⊗ (−e4))

= πA′′((e3 + e1)⊗ e1 ⊗ (−e4)) = −(e3 + e1)⊗ e1 ⊗ e4 ∈ A′ ⊗B′ ⊗ C ′′.

In addition,

W1 = p(A∗) = ⟨(e1 + 2e3)⊗ (e2 − e4)⟩ ⊂ B ⊗ C, and

W2 = p(B∗) = ⟨(e3 + e1)⊗ (e2 − e4)⟩ ⊂ A′ ⊗ C.

3.3 The substitution method

In this section, we use the previous results and adopt another perspective to get results

on the additivity of the rank. We explore the substitution method, also known as the

Alexeev–Forbes–Tsimerman method for bounding tensor rank, and show additivity of the

rank for what we will define as hook-shaped spaces using an algorithm mainly consisting

of the recursive use of three lemmas.

We need to clarify the following: Having fixed a basis for a vector space A, let’s say

{a1, . . . , aa}, and I ⊂ {1, . . . , a}, define ⟨ai : i ∈ I⟩⊥ := ⟨ai : i ∈ Ic⟩. For example, a⊥1 will

denote the subspace ⟨a2, . . . , aa⟩. The symbol ⊥ is just a way to simplify the notation,

we never assume our vector spaces as spaces with an inner product.

Proposition 3.3.1. (Prop. 3.1, [13]) Fix a basis a1, . . . , aa of A. Write

p =
a∑

i=1

aj ⊗mj,

where mj ∈ B ⊗ C for j = 1, . . . , a. Let R(p) = r > 0 and m1 ̸= 0. Then there exist

constants λ2, . . . , λa, such that the tensor

p̃ :=
a∑

j=2

aj ⊗ (mj − λjm1) ∈ a⊥1 ⊗B ⊗ C

has rank at most r − 1. Moreover, if R(m1) = 1, then for any choice of (λ2, . . . , λa) we

have R(p̃) ≥ r − 1.
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Proof. By the first part of Lemma 3.1.1, there exist rank-one tensors sµ ∈ B ⊗ C, µ ∈
{1, . . . , r} and scalars xµj such that

mj =
r∑

µ=1

xµjsµ. (3.3)

As m1 ̸= 0, we can assume without loss of generality that x11 ̸= 0. More specifically, we

have

m1 = x11s1 +· · ·+ xr1sr

m2 = x12s1 +· · ·+ xr2sr
...

ma = x1as1 +· · ·+ xrasr

and we can see this as

m = XS,

where

X =


x11 · · · xr1

...
...

x1a · · · xra


a×r

and S =


s1
...

sr


r×1

Now let’s consider

q = a1 ⊗m1 + λ2a2 ⊗m1 +· · ·+ λaaa ⊗m1

and

p̃ = p− q =
a∑

j=2

aj ⊗ (mj − λjm1) =
a∑

j=2

aj ⊗ m̃j

Now let’s take a look at m̃j:

m̃j = mj − λjm1 = (x1j − λjx11)s1 + (x2j − λjx21)s2 +· · ·

so we have x1j − λjx11 = 0 if and only if λj =
x1j

x11

, and this is always possible because

x11 ̸= 0. Choose the λj’s in the way we just mentioned and consider W = p̃(A∗). By the

final part of Lemma 3.1.1, R(p̃) = R(W̃ ) = R(⟨m̃2, m̃3, . . . , m̃a⟩) ≤ R(⟨s2, . . . , sr⟩) = r−1,

as R(si) = 1 for all 2 ≤ i ≤ r. Note that in the last inequality of this paragraph, we

obtain R(p̃) ≤ r − 1 and the ≤ means that is possible to get a coefficient of a particular

sj be zero when considering m̃j = mj − λjm1.

In the case that R(m1) = 1, m1 = x11s1, so we can ensure that only the coefficient

corresponding to s1 is vanished and from this follows that R(m̃j) = R(mj) − 1 for all

j ≥ 2 and
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R(p̃) = r − 1 for all j ≥ 2.

Proposition 3.3.1 can be carried out by following these consecutive steps:

1. Identify A, choose a basis {aj} of A and consider bases {βs} and {γt} of B∗ and C∗

respectively, and represent p as a matrix M with entries that are linear combinations

of the ai: Ms,t = p(βs ⊗ γt).

2. Choose a subset of b′ columns and c′ rows of M .

3. Inductively, for elements of the chosen columns (resp. rows) remove the nonzero u-th

column (resp. row) and add to all other columns (resp. rows) the u-th column (resp.

row) times an arbitrary coefficient λ, regarding the aj as formal variables. This step

is to ensure that each time only nonzero columns or rows are removed.

4. Set all aj that appeared in any of the selected rows or columns to zero, obtaining a

matrix M ′. Notice that M ′ does not depend on the choice of λ.

5. The rank of p is at least b′ plus c′ plus the rank of the tensor corresponding to M ′.

The above steps can be iterated, interchanging the roles of A,B, and C.

Example 3.3.1. Let

p(A∗) =



x1 0 0 0 0 0 0 0

0 x1 0 0 0 0 0 0

0 0 x1 0 0 0 0 0

0 0 0 x1 0 0 0 0

x2 0 0 0 x1 0 0 0

0 x2 0 0 0 x1 0 0

x3 0 x2 0 0 0 x1 0

x4 x3 0 x2 0 0 0 x1


Then R(p) ≥ 15. Indeed, in the first iteration of the method, choose the first four rows

and last four columns. One obtains a 4 × 4 matrix M ′ and the associated tensor p′, so

R(p) ≥ 8 +R(p′). Iterating the method twice yields R(p) ≥ 8 + 4 + 2 + 1 = 15.

Theorem 3.3.1. (Thm. 4.1, [13]) Let p1 ∈ A1 ⊗ B1 ⊗ C1 and p2 ∈ A2 ⊗ B2 ⊗ C2 be

such that R(p1) can be determined by the substitution method. Then Strassen’s additivity

conjecture holds for p1 ⊕ p2, that is, R(p1 ⊕ p2) = R(p1) +R(p2).

Proof. With each iteration of the substitution method, p1 is modified to a tensor of lower

rank living in a smaller space and o2 is unchanged. After all applications, p1 has been

modified to zero and p2 is still unchanged.
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Other examples can be found in [13]. This article suggests that if a′ ≤ 2, then the

rank of p′ can be computed by the substitution method. To show that the substitution

method can calculate the rank of p ∈ K2 ⊗B′ ⊗C ′, one needs to use the normal forms of

such tensors and understand all of the cases, which turns out to be very demanding. We

now rephrase Proposition 3.3.1 in terms of geometric and algebraic scopes to resume the

discussion on hook-shaped spaces. We will see the same proposition in a coordinate-free

manner, as well as linear spaces of tensors.

Proposition 3.3.2. (Prop. 3.10, [6]) Let p ∈ A⊗B⊗C, R(p) = r > 0, and pick α ∈ A∗

such that p(α) ∈ B⊗C is nonzero. Consider two hyperplanes in A: the linear hyperplane

α⊥ = (α = 0) and the affine hyperplane (α = 1). For any a ∈ (α = 1) denote

p̃a := p− a⊗ p(α) ∈ α⊥ ⊗B ⊗ C.

Then

1. there exists a choice of a ∈ (α = 1) such that R(p̃a) ≤ r − 1;

2. if in addition, R(p(α)) = 1, then for any choice of a ∈ (α = 1) we have R(p̃a) ≥ r− 1.

Proposition 3.3.3. (Prop. 3.11, [6]) Suppose W ⊂ B⊗C is a linear subspace, R(W ) =

r. Assume w ∈ W is a nonzero element. Then

1. there exists a choice of a complementary subspace W̃ ⊂ W such that W̃ ⊕ ⟨w⟩ = W

and R(W̃ ) ≤ r − 1, and

2. if in addition R(w) = 1, then for any choice of the complementary subspace such that

W̃ ⊕ ⟨w⟩ = W we have R(W̃ ) ≥ r − 1.

3.4 Hook-shaped spaces

We will now explore another technique for obtaining lower bounds on rank. The term

“hook-shaped” spaces arises from the observation that, with the right choice of basis, the

non-zero coordinates resemble a hook ⌜ in the top left corner of the matrix. The integers

(e, f) indicate the width of the hook’s arms. Below, we will present the formal definition

along with a brief example.

Definition 3.4.1. For nonnegative integers e, f , we say that a linear subspace W ⊂ B⊗C

is (e, f)-hook shaped, if W ⊂ Ke ⊗ C + B ⊗ Kf for some choices of linear subspaces

Ke ⊂ B and Kf ⊂ C.

Example 3.4.1. A (1, 2)-hook shaped subspace of K4⊗K4 has the only following possibly

nonzero entries in some coordinates:
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
∗ ∗ ∗ ∗
∗ ∗ 0 0

∗ ∗ 0 0

∗ ∗ 0 0


Proposition 3.3.2 will be useful to prove the additivity of the rank for tensorial product

of vector spaces if one of them is (1, 2)-hook shaped. We start by proving a series of

lemmas that we use along the proof of the additivity of the rank in the case where one

of the subspaces is (1, 1)-hook shaped. We will work with a sequence of tensors p0, p1, . . .

in the space A⊗ B ⊗ C, which are not necessarily direct sums. Nevertheless, for each i,

we write p′i = πA′′πB′′πC′′(pi) (that is, the “corner” of pi relative to A′, B′, and C ′). We

define p′′i in the same way.

Lemma 3.4.1. (Lemma 3.13, [6]) Suppose W ′ ⊂ A′ ⊗B′ ⊗C ′ and W ′′ ⊂ A′′ ⊗B′′ ⊗C ′′

are two subspaces. Let r′′ = R(W ′′) and suppose that there exists a sequence of tensors

p0, p1, . . . , pr′′ ∈ A⊗B ⊗ C satisfying the following:

1. p0 = p is such that p(A∗) = W = W ′ ⊕W ′′ (where W,W ′, and W ′′ are associated to

p, p′, and p′′),

2. p′i+1 = p′i for every 0 ≤ i < r′′,

3. R(p′′i+1) ≥ R(p′′i )− 1 for every 0 ≤ i < r′′, and

4. R(pi+1) ≤ R(pi)− 1 for every 0 ≤ i < r′′,

then the additivity of the rank holds for W ′⊕W ′′ and for each i < r′′ we must have p′′i ̸= 0.

Proof. From (4) we have that

R(p0)− 1 ≥ R(p1) and R(p1)− 1 ≥ R(p2)

that means

R(p0) ≥ R(p1) + 1 and R(p1) ≥ R(p2) + 1

Combining these two inequalities we obtain

R(p0) ≥ R(p1) + 1 ≥ R(p2) + 2

We recursively use the same idea to get

R(p0) ≥ R(pr′′) + r′′

so we have

R(W ′) +R(W ′′) = R(p′r′′) + r′′ ≤ R(pr′′) + r′′ ≤ R(p0) = R(W ).

The other inequality always holds. From (3) we conclude p′′i ̸= 0.
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Lemma 3.4.2 tells us how to construct a single step in the sequence above.

Lemma 3.4.2. (Lemma. 3.14, [6]) Suppose Σ ⊂ A⊗B ⊗C is a linear subspace, pi ∈ Σ

is a tensor, and γ ∈ (C ′′)∗ is such that

1. R(p′′i (γ)) = 1,

2. γ preserves Σ, that is, Σ(γ)⊗ C ⊂ Σ, where Σ(γ) = {t(γ) : t ∈ Σ} ⊂ A⊗B, and

3. Σ(γ) does not have entries in A′ ⊗B′, that is πA′′πB′′(Σ(γ)) = 0.

Consider γ⊥ ⊂ C. Then there exists

pi+1 ∈ Σ ∩ A⊗B ⊗ γ⊥

that satisfies

i) p′i+1 = p′i,

ii) R(p′′i+1) ≥ R(p′′i )− 1 and

iii) R(pi+1) ≤ R(pi)− 1

(for this fixed i).

Proof. For each c ∈ γ = 1, set

(p̃i)c = pi − pi(γ)⊗ c ∈ A⊗B ⊗ γ⊥

as in Proposition 3.3.2 with the roles of A and B⊗C changed by C and A⊗B. Choosing

c properly, we will pick pi+1 among the (p̃i)c. By Proposition 3.3.2.1, there exists a choice

of c such that pi+1 = (p̃i)c has rank less than R(pi), that is, (iii) holds. On the other

hand, since γ is in (C ′′)∗, we have

p′′i+1 = (p̃i
′′)c′′ = p′′i − p′′i (γ)⊗ c′′,

where c = c′ + c′′ with c′ ∈ C ′ and c′′ ∈ C ′′. By Proposition 3.3.2.2, as R(p′′i (γ)) = 1

by hypothesis, also (ii) is satisfied. Property (i) follows as Σ(γ) (in particular pi(γ)) has

no entries in A′ ⊗ B′ ⊗ C ′. Finally, pi+1 ∈ Σ because γ preserves Σ and Σ is a linear

subspace.

Observation 3.4.1. Note that in general is not true that every γ ∈ (C ′′)∗ we choose is

preserving a previously chosen subspace Σ. Let’s consider A ⊗ B ⊗ C, with A′ = A′′ =

B′ = B′′ = C ′ = C ′′ = C2 and take Σ = ⟨e111, e121, e222, e333, e344⟩ ⊂ A ⊗ B ⊗ C. Pick

γ = e∗4 ∈ (C ′′)∗. Now we look at Σ(γ) obtained by applying the corresponding generators

of Σ to γ, that is

Σ(γ) = {t(γ) : t ∈ Σ} = ⟨e34⟩ ⊂ A⊗B.
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Now we tensorize by C,

Σ(γ)⊗ C = ⟨e341, e342, e343, e344⟩ ̸⊂ Σ.

This shows that γ has to be carefully chosen for the process described in Lemma 3.4.2

to be valid.

Lemma 3.4.3. (Lemma 3.15, [6]) Suppose W ′′ ⊂ B′′⊗C ′′ is a (1, f)-hook shaped space for

some integer f and W ′ ⊂ B′⊗C ′ is arbitrary. Fix K1 ⊂ B′′ and Kf ⊂ C ′′ as in Definition

3.4.1 for W ′′. Then there exists a sequence of tensors p0, p1, . . . , pk ∈ A⊗B⊗C for some

k that satisfies the properties of Lemma 3.4.1 and in addition p′′k ∈ A′′ ⊗B′′ ⊗Kf and for

every i we have pi ∈ (A′ ⊗B′ ⊗ C ′)⊕ (A′′ ⊗ (B′′ ⊗Kf +K1 ⊗ C)). In particular,

1. p′′i ((A
′′)∗) is a (1, f)-hook shaped space for every i < k,

2. p′′k((A
′′)∗) is a (0, f)-hook shaped space, and

3. every pi is on the form pi = (p′i ⊕ p′′i ) + qi where qi ∈ A′′ ⊗K1 ⊗ C ′ ⊂ A′′ ⊗B′′ ⊗ C ′.

Proof. We construct the sequence pi by a recursive application of Lemma 3.4.2. By

hypothesis, p′′i ∈ A′′ ⊗ B ⊗ Kf + A′′ ⊗ ⟨x⟩ ⊗ C for some choice of x ∈ B′′ and a fixed

Kf ⊂ C ′′. We let Σ = A′ ⊗B′ ⊗ C ′ ⊕ A′′ ⊗ ((B′′ ⊗Kf ) + ⟨x⟩ ⊗ C).

Now define p0 corresponding to W ′ ⊕ W ′′ by (1) of Lemma 3.4.1. Suppose we have

already constructed p0, . . . , pi and that p′′i is not yet contained in A′′ ⊗ B′′ ⊗ Kf . Then

there exists a hyperplane γ⊥ = (γ = 0) ⊂ C for some γ ∈ (C ′′)∗ ⊂ C∗ such that Kf ⊂ γ⊥,

but p′′i /∈ A′′ ⊗ B′′ ⊗ γ⊥. Equivalently, p′′i (γ) ̸= 0 and p′′i (γ) ⊂ A′′ ⊗ ⟨x⟩. In particular,

R(p′′i (γ)) = 1 and Σ(γ) ⊂ A′′ ⊗ ⟨x⟩. That means γ preserves Σ as in Lemma 3.4.2 and

Σ(γ) has no entries in A′⊗B′⊗C ′. Thus we construct pi+1 using Lemma 3.4.2. Note that

the dimension of the third factor of the tensor space containing p′′i+1 is being gradually

reduced, so we will eventually arrive at the case p′′i+1 ∈ A′′ ⊗B′′ ⊗Kf , as we wanted.

Example 3.4.2. We have already discussed how the pi’s are being chosen. Now we study

a concrete example of the existence of this hyperplane γ⊥. Set A⊗B⊗C as in Observation

3.4.1, f = 1 and

Σ = A′ ⊗B′ ⊗ C ′ ⊕ A′′ ⊗ (B′′ ⊗ ⟨e3⟩+ ⟨e4⟩ ⊗ C)

Rewriting Σ we have

Σ = ⟨e111, e112, e121, e122, e211, e212, e221, e222⟩ ⊕ (⟨e333, e343, e433, e443⟩+
⟨e341, e342, e343, e344, e441, e442, e443, e444⟩)

In this case, we take γ = e∗4 ∈ (C ′′)∗. Note that Σ(γ) = ⟨e34, e44⟩ = A′′ ⊗ ⟨e4⟩, and then

tensorizing by C, we get
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W′

f
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p = p0

−→
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p2

W′

−→· · ·−→

· · · −→

pk−2

W′

−→

W′

pk−1

−→

pk

W′

Figure 3.1: A representation of the subspaces W ′ and W ′′ (the (e, f)-hook shaped space), where p = p0
as in Lemma 3.4.1.1, and the first k steps of the sequence, granted by Lemma 3.4.3. At each stage, the
rank of one of the hook’s sides is decreasing.

Σ(γ)⊗ C = ⟨e341, e342, e343, e344, e441, e442, e443, e444⟩ ⊂ Σ,

as we expected.

Proposition 3.4.1. (Prop. 3.12, [6]) Suppose W ′′ ⊂ B′′ ⊗ C ′′ is (1, 1)-hook shaped and

W ′ ⊂ B′⊗C ′ is an arbitrary subspace. Then the additivity of the rank holds for W ′⊕W ′′.

Proof. The idea of the proof is to construct a sequence pi as in Lemma 3.4.1, using Lemmas

3.4.2 and 3.4.3.

The initial elements p0, . . . , pk of the sequence are given by Lemma 3.4.3. By this

lemma and the fact that W ′′ is a (1, 1)-hook shaped space, then by definition W ′′ ⊂
K⊗ C ′′ +B′′ ⊗K, so we have in particular

p′′i = πA′πB′πC′(pi) ∈ A′′ ⊗B′′ ⊗ ⟨y⟩+ A′′ ⊗ ⟨x⟩ ⊗ C ′′

for every i < k and some choices of x ∈ B′′ and y ∈ C ′′ and as pk is a (0, 1)-hook shaped

space, then

pk ∈ A′ ⊗B′ ⊗ C ′ ⊕ A′′ ⊗B′′ ⊗ ⟨y⟩.

In the reminder of the proof, we use Lemma 3.4.2 with Σ = A′⊗B′⊗C ′⊕A′′⊗B⊗(C ′⊕⟨y⟩),
and verify conditions (1)-(3) of the Lemma. Suppose we have constructed pk+1, . . . , pj for

some j ≥ k satisfying (2)-(4) of Lemma 3.4.1 such that

pj ∈ Σ.
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This implies p′′j ∈ A′′ ⊗ B′′ ⊗ ⟨y⟩. If p′′j = 0 then by Lemma 3.4.1 we are done, as

j = r′′. Suppose p′′j ̸= 0, then there exists β ∈ (B′′)∗ ⊂ B∗ such that p′′j (β) ̸= 0. Also,

p′′j (β) ∈ A′′ ⊗ ⟨y⟩, so R(p′′j (β)) = 1.

We have checked the first condition to use Lemma 3.4.2. Let’s check the second con-

dition. Now consider t ∈ Σ fixed but arbitrary. Note that t =
∑
i

ti, where

ti = a′i ⊗ b′i ⊗ c′i + a′′i ⊗ b′∗i ⊗ c′∗i + â′′i ⊗ b̂′′i ⊗ ĉ′i + ã′′i ⊗ b̃′i ⊗ y + ȧ′′i ⊗ ḃ′′i ⊗ y,

and a′i ∈ A′, a′′i , â
′′
i , ã

′′
i , ȧ

′′
i ∈ A′′, b̂′′i , ḃ

′′
i ∈ B′′, b′∗i , b

′
i, b̃

′
i ∈ B′, and c′∗i , c

′
i, ĉ

′
i ∈ C ′. As β is

a linear transformation, it is enough to check the preservation for ti as above, and by

the linearity we can conclude β preserves Σ. When calculating ti(β), we note that all

summand that has an element from B′ in its second factor goes to zero, and we have

contractions in the ones whose second factor lies in B′′, that is,

ti(β) = β(̂b′′i )â
′′
i ⊗ ĉ′i + β(ḃ′′i )ȧ

′′
i ⊗ y ∈ A′′ ⊗ (C ′ + ⟨y⟩), (3.4)

so we checked Σ(β)⊗B ⊂ Σ, and β preserves Σ.

The third condition is satisfied since Σ(β) does not have entries in A′⊗C ′ by equation

(3.4). Then pj+1 is produced by Lemma 3.4.2 and we stop after having pr′′ constructed

(condition (4) grants the end of the process), proving the additivity of the rank for W ′ ⊕
W ′′.

To complete our discussion on hook-shaped spaces we will see an analog of the previ-

ous proposition on (1, 1)-hook-shaped spaces concerning (1, 2)-hook-shaped spaces. We

slightly modify our hypothesis regarding the base field, as we cannot go forward with-

out an algebraically closed field. The following lemma guarantees the key condition to

construct the desired sequence to prove additivity for hook-shaped spaces of bigger di-

mensions.

Lemma 3.4.4. (Lemma 3.16, [6]) Suppose K is an algebraically closed field (of any

characteristic) and p ∈ A⊗B ⊗K2, p ̸= 0. Then at least one of the following occurs:

1. there exists a rank-one matrix in p(A∗) ⊂ B ⊗K2 or

2. for any x ∈ B there exists a rank-one matrix in p(x⊥) ⊂ A⊗K2, where x⊥ ⊂ B∗ is

the hyperplane defined by x.

Proof. Without loss of generality, we may suppose p is concise. We can just replace A

and B with smaller spaces if needed. Then we have the following two cases:

1. dimA ≥ dimB: Consider the linear variety L = P(p(A∗)) and the Segre variety

X = Seg(P(B) × P(K2)), both contained in the projective space P(B ⊗ K2). They
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have dimensions dim(L) = dim(A)−1 (as p is concise), dim(X) = 2+dim(B)−2 =

dim(B), and dim(P(B ⊗K2)) = 2dimB − 1. Now,

dim(P(p(A∗))) + dim(Seg(P(B)× P(K2))) = dimA− 1 + dimB ≥ 2dimB − 1.

By Theorem 2.3.2, we obtain

P(p(A∗)) ∩ Seg(P(B)× P(K2) ̸= ∅.

2. dimA < dimB: In this case, we take a look at p(B∗). Again, as p is concise, Let

x ∈ B. Then L = P(p(x⊥)) has dimension dim(B)− 2, X = Seg(P(A)× P(K2) has

dimension equal to dim(A) and dim(P(A ⊗ K2)) = 2dimA − 1. Then, using that

dimA+ 1 ≤ dimB, we get

dim(X) + dim(L) = dimA+ dimB − 2 ≥ 2dimA− 1 = dim(P(A⊗K2)).

That means by Theorem 2.3.2, that P(p(B∗)) ∩ Seg(P(A)× P(K2) ̸= ∅.

Proposition 3.4.2. (Prop. 3.17, [6]) Suppose K is an algebraically closed field, W ′′ ⊂
B′′ ⊗ C ′′ is a (1, 2)-hook shaped space, and W ′ ⊂ B′ ⊗ C ′ is an arbitrary subspace. Then

the additivity of the rank holds for W ′ ⊕W ′′.

Proof. We want a sequence p0, . . . , pr′′ ∈ A ⊗ B ⊗ C with properties (1)-(4) of Lemma

3.4.1, and the initial elements p0, . . . , pk are constructed in such a way that pk ∈ A′⊗B′⊗
C ′ ⊕ A′′ ⊗ (⟨x⟩ ⊗ C ′′ ⊕ B′′ ⊗ K2). Here x ∈ B′′ is such that W ′′ ⊂ ⟨x⟩ ⊗ C ′′ + B′′ ⊗ K2.

We can clean the part of the hook of size 1 as in Proposition 3.4.1.

Now we work with the remaining space of b′′ × 2 matrices. We cannot use the same

ideas as in Proposition 3.4.1 for p′′i because the process could leave some wreck in the

other parts of the tensor, so we need to control the wreck in such a way it does not affect

p′i (remember condition 2).

Note that what is left to do is not just the Strassen’s additivity of the rank in the

case c′′ = 2 since pk may have already non-trivial entries in another block, the one

corresponding to A′′ ⊗ B′′ ⊗ C ′ (the small tensor qk in the statement of Lemma 3.4.3).

In other words, for the case of (1, 1)-hook shaped spaces, we already know there is no

wreck because the edge of the hook we are not dealing with has already rank one. In the

(1, 2)-case, we need to ensure a rank-one tensor to continue with the next term of the

sequence (whose existence is granted by Lemma 3.4.2).

We set Σ = A′ ⊗ B′ ⊗ C ′ ⊕ A ⊗ (B ⊗ K2 ⊕ ⟨x⟩ ⊗ C ′). To construct pj+1 we use

Lemma 3.4.4. Thus either there exists α ∈ (A′′)∗ such that R(p′′j (α)) = 1, or there exists
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β ∈ x⊥ ⊂ (B′′)∗ such that R(p′′j (β)) = 1. In both cases, we apply Lemma 3.4.2 with the

roles of A and C swapped or the roles of B and C swapped (verify the conditions). We stop

after constructing pr′′ , so the desired sequence exists and this proves the statement.

In general, if we have the case of a (1, f)-hook shaped space, we can guarantee the

existence of the rank-one matrix necessary to construct the sequence in Lemma 3.4.1 by

setting Z = P(B ⊗ Kf ), X = Seg(P(B) × P(Kf )) and L = P(p(A∗)), where dim(Z) =

fb − 1, dim(X) = (b − 1) + (f − 1) = b + f − 2, and dim(L) = a − 1. Using Theorem

2.3.2, we will get additivity of the tensor rank if we guarantee that

dim(X) + dim(L) = a+ b+ f ≥ dim(Z) = fb+ 2.
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Chapter 4

Additivity of the tensor rank for

small tensors

In the previous chapter we concluded that if we wanted to prove the additivity of the rank,

we could start by constructing a sequence of tensors satisfying some special conditions.

In every step of the sequence, finding a rank-one matrix in one of the subspaces W ′′ or W ′

became fundamental to guarantee that the next element of the sequence exists. We will

establish this formally, by proving that in the event of a rank-one matrix in one of the

linear spaces, we have two possibilities: the additivity of the rank holds or there exists a

“smaller” example where the additivity of the rank fails.

4.1 Combinatorial study of the decomposition

Recalling Notation 3.2.1, we now explore a combinatorial splitting of the decomposition

by distinguishing seven types of rank-one matrix in a given vector space V :

Lemma 4.1.1. (Lemma 4.1, [6]) Every element of V ⊂ B⊗C lies in one of the following

subspaces of B ⊗ C:

i) B′ ⊗ C ′, B′′ ⊗ C ′′ (Prime, Bis),

ii) E ′ ⊗ (C ′ ⊕ F ′′), E ′′ ⊗ (F ′ ⊕ C ′′) (HL, HR),

(B′ ⊕ E ′′)⊗ F ′, (E ′ ⊕B′′)⊗ F ′′ (VL,VR),

iii) (E ′ ⊕ E ′′)⊗ (F ′ ⊕ F ′′) (Mix).

Proof. Let b ⊗ c ∈ VSeg a rank-one matrix. We set b = b′ + b′′, c = c′ + c′′, where

b′ ∈ B′, b′′ ∈ B′′, c′ ∈ C ′, c′′ ∈ C ′′. We take the projections

πB′(b⊗ c) = b′′ ⊗ c ∈ B′′ ⊗ (F ′ ⊕ C ′′) (4.1)
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πB′′(b⊗ c) = b′ ⊗ c ∈ B′ ⊗ (C ′ ⊕ F ′′) (4.2)

πC′(b⊗ c) = b⊗ c′′ ∈ (E ′ ⊕B′′)⊗ C ′′ (4.3)

πC′′(b⊗ c) = b⊗ c′ ∈ (B′ ⊕ E ′′)⊗ C ′ (4.4)

As b⊗c is a rank-one matrix, (b′, b′′) ̸= (0, 0) ̸= (c′, c′′). Now we study the following cases:

1. If b′, b′′, c′, c′′ ̸= 0, then b⊗ c ∈ (E ′ ⊕ E ′′)⊗ (F ′ ⊕ F ′′) (Mix case). This is because if

for instance c′ ̸= 0, we must have by (4.4) that b′′ ∈ E ′′, and if c′′ ̸= 0, (4.3) gives us

b′ ∈ E ′. If we use the same argument for b′ ̸= 0 and b′′ ̸= 0, we realize we are in the

Mix case.

2. If b′, b′′ ̸= 0 and c′ = 0, then b⊗ c = b⊗ c′′ ∈ (E ′ ⊕B′′)⊗ F ′′ (VR case).

3. If b′, b′′ ̸= 0 and c′′ = 0, then b⊗ c = b⊗ c′ ∈ (B′ ⊕ E ′′)⊗ F ′′ (VL case).

4. If b′ = 0, then we have two subcases:

(a) c′ = 0 and therefore b⊗ c = b′′ ⊗ c′′ ∈ B′′ ⊗ C ′′ (Bis case).

(b) c′ ̸= 0 and with this b⊗ c = b′′ ⊗ c ∈ E ′′ ⊗ (F ′ ⊕ C ′′) (HR case).

5. If b′′ = 0, again we have two subcases:

(a) c′′ = 0 and therefore b⊗ c = b′ ⊗ c′ ∈ B′ ⊗ C ′ (Prime case).

(b) c′′ ̸= 0 and with this b⊗ c = b′ ⊗ c ∈ E ′ ⊗ (C ′ ⊕ F ′′) (HL case).

This concludes the proof.

Observation 4.1.1. Note that the spaces Prime and Bis are contained in the original

direct summands, so they can be easily manipulated. It gets complex when we look at the

HR,HL, V R, V L, and Mix subspaces because they stick out of the original summands in

one particular direction (in the case of V R, V L,HR,HL) or all directions (Mix case).

The other consideration is that the subspaces generally do not have an empty intersection.

Notation 4.1.1. We choose a basis B of V with the following conditions:

1. B consists of rank-one matrices only;

2. B = Prime⊔Bis⊔HL⊔HR⊔V L⊔V R⊔Mix, where every element of this disjoint

union is a finite set of rank-one matrices of the respective type.

3. B has as many elements of Prime and Bis as possible, under the first two conditions.

4. B has as many elements of HL,HR, V L, and V R as possible, under the previous

conditions.
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We set prime,bis,vl,vr,hl,hr,mix as the dimension of the corresponding subspaces.

The choice of B does not need to be unique, but we fix one going forward. We also note

that the numbers prime,bis,mix we just defined are uniquely determined by V , and that

is because of the way we choose our basis, but there may be some non-uniqueness between

hl,hr,vl, and vr.

Throughout this chapter, we will see how this manner of choosing our simple ten-

sor generator set allows us to deduce some inequalities concerning the additivity of the

rank. After the preliminary discussion, we ended up with seven nonnegative integers

(prime,bis, . . . ,mix) for each decomposition.

Proposition 4.1.1. (Prop. 4.3, [6]) The following inequalities hold:

i) prime+ hl+ vl+min{mix, e′f ′} ≥ R(W ′);

ii) bis+ hr+ vr+min{e′′f ′′,mix} ≥ R(W ′′);

iii) prime+ hl+ vl+min{mix+ hr, (e′ + e′′)f ′} ≥ R(W ′) + e′′;

iv) prime+ hl+ vl+min{mix+ vr, (f ′ + f ′′)e′} ≥ R(W ′) + f ′′;

v) bis+ hr+ vr+min{mix+ hl, (e′ + e′′)f ′′} ≥ R(W ′′) + e′;

vi) bis+ hr+ vr+min{mix+ vl, (f ′ + f ′′)e′′} ≥ R(W ′′) + f ′.

Proof. To prove the inequalities we work along with the projections to ensure the spaces

involved contain the W ′,W ′′, E ′, E ′′, F ′, and F ′′ in the respective cases.

We consider πB′′πC′′ . From the above notation we have πB′′πC′′(B) span πB′′πC′′(V ),

and it contains W ′ (remember that W ′⊕W ′′ ⊂ V and therefore W ′ ⊂ πB′′πC′′(V )). From

this we have that

dim(πB′′πC′′(V )) ≥ R(W ′).

We also know that the elements of the basis whose components lie in B′′ and C ′′ are in the

kernel of the composition, so the surviving elements will be the ones from Prime,Mix, V L,

and HL. This gives us

prime+ hl+ vl+mix ≥ dim(πB′′πC′′(V )) ≥ R(W ′).

Consider πB′′πC′′(Mix) = πB′′πC′′((E ′ ⊕ E ′′)⊗ (F ′ ⊕ F ′′)). It is contained in E ′ ⊗ F ′, so

at most e′f ′ linearly independent matrices can be picked up to span πB′′πC′′(V ). We then

obtain

prime+ hl+ vl+ e′f ′ ≥ dim(πB′′πC′′(V )) ≥ R(W ′)
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Combining these two inequalities we get i). To show ii) we use a similar argument,

changing πB′′πB′′ by πC′πB′ , W ′ by W ′′, Prime by Bis, hl by hr, vl by vr, e′ by e′′, and

f ′ by f ′′.

Now we prove iii). We can assume W ′ is concise. In the proof of Lemma 3.2.2 we got

dim(πC′′(V )) = R(W )− dim(W ′′) ≥ R(W ′) + e′′ (3.2)

As πC′′ kills all matrices from Bis and V R, we get

prime+ hl+ vl+ hr+mix ≥ dim(πC′′(V )) ≥ R(W ′) + e′′

Note that πC′′(HR ∪Mix) ⊂ (E ′ ⊕E ′′)⊗ F ′, so we can replace hr+mix by (e′ + e′′)f ′,

proving iii). The remaining inequalities are analogous to the proved ones swapping the

roles of B,C, ′ and ′′.

Proposition 4.1.2. (Prop. 4.4, [6]) If one among E ′, E ′′, F ′ or F ′′ is zero, then

R(W ) = R(W ′) +R(W ′′).

Proof. Let’s assume without loss of generality that E ′ = {0}, so e′ = 0. Due to the way

we chose the elements of B, any candidate to become a member of HL, would be first

elected to Prime, in a similar way V R is consumed by Bis and Mix is consumed by HR.

So hl = vr = mix = 0 and

R(W ) = prime+ bis+ hr+ vl.

and when we sum the inequalities 4.1.1.i and 4.1.1.ii of Proposition 4.1.1, we have

R(W ′) +R(W ′′) ≤ (prime+ hr) + (vl+ bis) = R(W ),

as we wanted.

Corollary 4.1.1. (Cor. 4.5, [6]) Assume that the additivity of the rank fails for W ′ and

W ′′, that is,

d = R(W ′) +R(W ′′)−R(W ′ ⊕W ′′) > 0.

Then the following inequalities hold:

a) mix ≥ d ≥ 1.

b) hl+ hr+mix ≥ e′ + e′′ + d ≥ 3.

c) vl+ vr+mix ≥ f ′ + f ′′ + d ≥ 3.

Proof. We consider the inequalities i) and ii) from Proposition 4.1.1 and their sum
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prime+ hl+ vl+mix ≥ R(W ′)

bis+ hr+ vr+mix ≥ R(W ′′)

bis+ hr+ vr+ prime+ hl+ vl+ 2mix ≥ R(W ′′) +R(W ′)

The way we chose our basis B gives us bis+ hr+ vr+ prime+ hl+ vl+mix = R(W ),

so we have

R(W ) +mix ≥ R(W ′′) +R(W ′)

which implies

mix ≥ R(W ′) +R(W ′′)−R(W ′ ⊕W ′′) = d,

as we wanted. Using a similar idea, we can prove b) starting from inequalities 4.1.1.iii)

and 4.1.1.v): We sum the two inequalities

prime+ hl+ vl+mix+ hr ≥ R(W ′) + e′′

bis+ hr+ vr+mix+ hl ≥ R(W ′′) + e′

to get

bis+ hr+ vr+ prime+ hl+ vl+ 2mix+ hl+ hr ≥ R(W ′) +R(W ′′) + e′ + e′′

and from this

R(W ) + hl+ hr+mix ≥ R(W ′) +R(W ′′) + e′ + e′′,

hl+ hr+mix ≥ R(W ′) +R(W ′′)−R(W ) + e′ + e′′ = d+ e′ + e′′

and as the additivity fails, d > 0 and e′ and e′′ are non-zero by Proposition 4.1.2, so

hl+ hr+mix ≥ d+ e′ + e′′ ≥ 3.

For c) we use 4.1.1.iv), 4.1.1.vi) and again Proposition 4.1.2.

Example 4.1.1. We can take a look at the following subspace W ⊂ C4 ⊗ C4 seen as a

matrix composed by four 2×2 blocks, which we can associate to a tensor p ∈ C6⊗C4⊗C4:

W =


a b b 0

c f f d

c f f d

0 e e f


Here we can see that the 2 × 2 right bottom corner should be Bis, but is generated by

elements of HL (the e’s), Mix (the f ′s), and V R (the d’s). So bis = 0. V L is the

subspace corresponding to the c’s and Prime is composed by the a in the left top corner.

From this, we conclude that

prime = vl = vr = hl = hr = mix = 1 and bis = 0.
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4.2 Repletion and Digestion

Definition 4.2.1. Consider a pair of linear spaces W ′ ⊂ B′ ⊗ C ′ and W ′′ ⊂ B′′ ⊗ C ′′

with a fixed minimal decomposition V = ⟨VSeg⟩ ⊂ B ⊗ C and Prime, . . . ,Mix as defined

above. We say (W ′,W ′′) is replete if Prime ⊂ W ′ and Bis ⊂ W ′′.

For any fixed W ′,W ′′ (and V ) we also denote the repletion of (W ′,W ′′) as (RW ′,R W ′′),

where

RW ′ := W ′ + ⟨Prime⟩, RW ′′ := W ′′ + ⟨Bis⟩,
and RW :=R W ′ ⊕R W ′′.

Proposition 4.2.1. (Prop 4.8, [6]) For any (W ′,W ′′), we have

R(W ′) ≤ R(RW ′) ≤ R(W ′) + (dim(RW ′)− dimW ′),

R(W ′′) ≤ R(RW ′′) ≤ R(W ′′) + (dim(RW ′′)− dimW ′′),

R(RW ) = R(W ).

In particular, if the additivity of the rank fails for (W ′,W ′′), then it also fails for (RW ′,RW ′′).

Moreover,

i) V is a minimal decomposition of RW ; in particular, the same distinguished basis

Prime ⊔Bis ⊔ · · · ⊔Mix

works for both W and RW ;

ii) (RW ′,RW ′′) is a replete pair;

iii) the gaps R(RW ′)− dim(RW ′),R(RW ′′)− dim(RW ′′) and R(RW )− dim(RW ) are at

most (respectively) R(W ′)− dim(W ′), R(W ′′)− dim(W ′′) and R(W )− dim(W ).

Proof. Since RW ′′ ⊃ W ′′, the inequality R(W ′′) ≤ R(RW ′′) comes right away. Also, we

have that RW ′′ is spanned by W ′′ and dim(RW ′′) − dim(W ′′) additional matrices that

are chosen out of Prime (rank-one matrices); That means

R(RW ′′) ≤ R(W ′′) + dim(RW ′′)− dim(W ′′).

The inequality regarding W ′ is analogous. In addition, since V is a decomposition of RW

we have RW ⊂ V , so R(RW ) ≤ dim(V ) = R(W ), and as RW ⊃ W , R(W ) ≤ R(RW ),

that way we have R(W ) = R(RW ).

From this we conclude V is also a minimal decomposition for RW , and the same basis

works for both W and its repletion. From the inequalities we just showed, we obtain

iii).
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Lemma 4.2.1. (Lemma 4.9, [6]) If R(W ′) + e′′ = R(W ) − dimW ′′, then W ′′ =R W ′′.

Analogous statements are true for the other equalities coming from replacing ≤ by = in

Lemma 3.2.2.

Proof. By Lemma 3.2.2 applied to RW =R W ′ ⊕R W ′′ and by the previous proposition

we have

R(RW )− e′′ ≥ R(RW ′) + dim(RW ′′) ≥ R(W ′) + dim(W ′′) = R(W )− e′′ = R(RW )− e′′

and the inequalities are in fact equalities. We also have that dim(RW ′′) = dim(W ′′), and

as W ′′ ⊂R W ′′ we get that W ′′ and its repletion are equal.

Now we consider the complement of ⟨Prime⟩ in W ′ and ⟨Bis⟩ in W ′′, where (W ′,W ′′)

is a replete pair.

Definition 4.2.2. Suppose S ′ and S ′′ denote the following linear subspaces:

S ′ = ⟨Bis ⊔HR ⊔HL ⊔ V R ⊔ V L ⊔Mix⟩ ∩W ′ (4.5)

S ′′ = ⟨Prime ⊔HR ⊔HL ⊔ V R ⊔ V L ⊔Mix⟩ ∩W ′′. (4.6)

We call (S ′, S ′′) the digested version of (W ′,W ′′).

Lemma 4.2.2. (Lemma 4.11, [6]) If (W ′,W ′′) is replete, then W ′ = ⟨Prime⟩ ⊕ S ′ and

W ′′ = ⟨Bis⟩ ⊕ S ′′.

Proof. Note that ⟨Prime⟩ and S ′ are contained inW ′, so ⟨Prime⟩+S ′ ⊂ W ′. As ⟨Prime⟩,
⟨Bis⟩, ⟨HR⟩, ⟨HL⟩, ⟨V L⟩, ⟨V R⟩, and ⟨Mix⟩ are all linearly independent, and span V , if

we consider S ′ + ⟨Prime⟩ we are adding more elements than the needed to span W ′ (if

we want exactly W ′, we would need to add ⟨Prime⟩ ∩W ′).

That means W ′ ⊂ S ′+ ⟨Prime⟩ and therefore W ′ = S ′+ ⟨Prime⟩. We also know that

S ′ ∩ ⟨Prime⟩ = {0} because they are linearly independent. Then, W ′ = S ′ ⊕ ⟨Prime⟩.
The result for W ′′ is analogous.

Showing the additivity of the rank can be done in the following sense: If the additivity

of the rank does not hold for (W ′,W ′′), then it also does not hold for (S ′, S ′′). Suppose

(W ′,W ′′) is replete, define S ′ and S ′′ as above and set S = S ′⊕S ′′. Lemma 4.2.2 gives us

W = S ⊕ ⟨Prime,Bis⟩, (4.7)

so we must have

R(W ) ≤ R(S) + prime+ bis

which is the same that
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R(W )− prime− bis ≤ R(S).

Again, by (4.7), we have S ⊂ ⟨HR,HL, V R, V L,Mix⟩, so

R(S) ≤ hl+ hr+ vl+ vr+mix = R(W )− prime− bis,

so we have R(S) = R(W )− prime− bis = hl+ hr+ vl+ vr+mix. Besides,

1. ⟨HR,HL, V R, V L,Mix⟩ ⊂ B ⊗ C,

2. dim(⟨HR,HL, V R, V L,Mix⟩) = R(S),

3. P(⟨HR,HL, V R, V L,Mix⟩) = ⟨HR,HL, V R, V L,Mix⟩Seg, as the elements of B are

rank-one matrices, and

4. S ′ ⊕ S ′′ = S ⊂ ⟨HR,HL, V R, V L,Mix⟩,

that means ⟨HR,HL, V R, V L,Mix⟩ is a minimal decomposition of S = S ′ ⊕ S ′′ (see

Definition 3.2.1). For this minimal decomposition there is no tensor of type Prime or

Bis, so the pair (S ′, S ′′) is vacuously replete by definition. In addition, if S ′ contains a

rank-one matrix, our choice of B would force this rank-one matrix to be in the span of

Prime, a contradiction.

Let’s analyze the additivity of the rank. Suppose that R(S) = R(S ′) +R(S ′′). Then

R(W ) = R(S) + prime+ bis = (R(S ′) + prime) + (R(S ′′) + bis) ≥ R(W ′) +R(W ′′)

so we conclude R(W ) = R(W ′) +R(W ′′). The previous discussion can be summarized in

the following lemma:

Lemma 4.2.3. (Lemma 4.12, [6]) Suppose (W ′,W ′′) is replete, define S ′ and S ′′ as above

and let S = S ′ ⊕ S ′′. Then

i) R(S) = R(W )−prime−bis = hl+hr+vl+vr+mix, and the space ⟨HR,HL, V R, V L,Mix⟩
determines a minimal decomposition of S. In particular (S ′, S ′′) is replete and both

spaces S ′ and S ′′ contain no rank-one matrices.

ii) If the additivity of the rank R(S) = R(S ′) +R(S ′′) holds for S, then it also holds for

W , that is, R(W ) = R(W ′) +R(W ′′).

To end this section, we recall our results on additivity of the rank for (1, f)-hook shaped

spaces and combine with the ones for repletion and digestion to get the next corollary:

Corollary 4.2.1. (Cor. 4.13, [6]) Suppose that W = W ′ ⊕W ′′ is as in Notation 3.1.2,

and e′′, f ′′ as in Notation 3.2.1. If

i) K is an arbitrary field, e′′ ≤ 1 and f ′′ ≤ 1, or
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ii) K is an algebraically closed field, e′′ ≤ 1 and f ′′ ≤ 2

then the additivity of the rank R(W ) = R(W ′) +R(W ′′) holds.

Proof. By Proposition 4.2.1 and Lemma 4.2.3, we can assume W is replete and equal to

its digested version. Then Bis = ∅ and therefore we must have

W ′′ ⊂ E ′′ ⊗ C ′′ +B′′ ⊗ F ′′.

In particular, W ′′ is either a (1, 1)-hook shaped space or a (1, 2)-hook shaped space. From

Propositions 3.4.1 and 3.4.2 we deduce the corollary.

Observation 4.2.1. Note that we have another proof of the additivity of the rank for the

cases we studied in Section 3.4, that is, the (1,1) and (1,2) hook-shaped spaces. It might

seem that our result on (1,1)-hook shaped spaces turns out to be irrelevant, but our first

result on (1,2)-hook shaped spaces involves ideas from algebraic geometry, this forces us to

work under the hypothesis of K being algebraically closed (see the end of the Introduction).

4.3 Three Main Theorems

We summarize our study of the tensor rank’s additivity through the following results:

Theorem 4.3.1. (Thm. 4.14, [6]) Let K an arbitrary field base, and let p′ ∈ A′⊗B′⊗C ′

any tensor, p′′ ∈ A′′ ⊗B′′ ⊗ C ′′ is a concise tensor, and R(p′′) ≤ a′′ + 2. Then

R(p′ ⊕ p′′) = R(p′) +R(p′′).

If we swap the roles of A and ′ with B,C and ′′, respectively, we get analogous results.

Proof. The concision of p′′ implies W ′′ = p′′(A′′∗) has dimension a′′. Corollary 4.2.1.i)

gives us the additivity in the case e′ ≤ 1 and f ′ ≤ 1, so we can assume e′′ ≥ 2 or f ′′ ≥ 2.

Let’s say that e′′ ≥ 2. Then by hypothesis R(p′′) − dim(W ′′) ≤ a′′ + 2 − a′′ = 2 ≤ e′′.

That is,

R(p′′)− dim(W ′′) ≤ e′′.

By Corollary 3.2.1 the additivity must hold.

The next two theorems will be applications of Theorem 4.3.1 along with results from

[19] and [11].

Theorem 4.3.2. (Thm. 4.15, [6]) Suppose the base field is K = C or R, and assume

p′ ∈ A′ ⊗B′ ⊗C ′ is any tensor, while p′′ ∈ A′′ ⊗K3 ⊗K3 is concise for any A′′ such that

a′′ < 3. Then the additivity of the rank holds: R(p′ ⊕ p′′) = R(p′) +R(p′′).
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Proof. By Theorem 6 of [19], as K = R or C we have that R(p′′) ≤ a′′ + 2 and from

Theorem 4.3.1 the claim is proved.

Theorem 4.3.3. (Thm. 4.16, [6]) Suppose the base field K is such that the maximal rank

of a tensor in K3 ⊗K3 ⊗K3 is at most 5. Assume R(p′′) ≤ 6. Then independently of p′,

the additivity of the rank holds.

Proof. Without loss of generality, we may assume p′′ is concise in A′′ ⊗ B′′ ⊗ C ′′. If any

of a′′,b′′ or c′′ is at most 2, the claim follows by Ja’Ja’-Takche Theorem ([11]).

If any of a′′,b′′ or c′′ is at least 4, say a′′ ≥ 4, then since R(p′′) ≤ 6 we have R(p′′) ≤
a′′ + 2, and therefore the result follows by Theorem 4.3.1.

The remaining case a′′ = b′′ = c′′ = 3 is granted by our assumption on the field, again

using Theorem 4.3.1.

Corollary 4.3.1. (Theorem 4.16, [6]) If K is an algebraically closed field of characteristic

̸= 2 or R (in particular, if K = C), p′ ∈ A′⊗B′⊗C ′, p′′ ∈ A′′⊗B′′⊗C ′′, and R(p′′) ≤ 6,

then independently of p′, the additivity of the rank holds.

The reader can check Theorem 5.1 of [4], where Hu and Bremner prove that the

condition of the maximal rank of K3 ⊗K3 ⊗K3 being 5 holds for K = C.

Example 4.3.1. Suppose A′ = A′′ = C4, B′ = B′′ = C4 and C ′ = C ′′ = C3. Suppose

that both p′ ∈ A′ ⊗B′ ⊗C ′ and p′′ ∈ A′′ ⊗B′′ ⊗C ′′ are tensors of rank 7, p′′ being concise

(p′′ ∈ Ã′′ ⊗ B′′ ⊗ C ′′ with dim(Ã′′) < 3), and that the additivity of the rank fails for

p = p′ ⊕ p′′. Then R(p) = 13.

To prove this, note that we cannot have only one of the tensors being concise, because

if that is the case, we would have additivity of the tensor rank by Theorem 4.3.2. So we

will assume that both of the tensors are concise. Corollary 3.2.1 gives us e′ < R(W ′′) −
dim(W ′′) = 7− 4 = 3, which is the same as e′ ≤ 2. The same argument works for e′′, f ′,

and f ′′. If one of them is strictly less than 2, then Corollary 4.2.1.ii is contradicted. From

this we have e′ = e′′ = f ′ = f ′′ = 2.

We also have R(W ) < R(W ′) + R(W ′′) = 14, that is, R(W ) ≤ 13, but from Lemma

3.2.2 we have

R(W ′) + e′′ ≤ R(W )− dim(W ′′),

so 13 = 7 + 2 + 4 ≤ R(W ) and we have R(W ) = 13.
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Chapter 5

Additivity of the tensor border rank

In this chapter, we will study the additivity of the border rank restricted to the base field

C. The main question would be, if given

p′ ∈ A′ ⊗B′ ⊗ C ′ and p′′ ∈ A′′ ⊗B′′ ⊗ C ′′

with 4 ≥ a′ + a′′ ≥ b′ + b′′ ≥ c′ + c′′, which conditions allow us to guarantee that

R(p′ ⊕ p′′) = R(p′) +R(p′′)?

In general, the answer is negative; in fact, there exist examples for which R(p′ ⊕ p′′) <

R(p′) + R(p′′). Schönhage [17] proposed a family of counterexamples amongst which the

smallest is

R(µ(2, 1, 3)) = 6, R(µ(1, 2, 1)) = 2, R(µ(2, 1, 3)⊕ µ(1, 2, 1)) = 7,

where µ(a, b, c) is a general tensor in Ka⊗Kb⊗Kc (see also Section 11.2.2 of[12]). Another

interesting question is what is the smallest counterexample to the additivity of the border

rank? The example of Schönhage lives in C2+2 ⊗ C3+2 ⊗ C6+1, that is, it requires using

a seven dimensional vector space. Here we show that if all three spaces A,B,C have

dimensions at most 4, then it is impossible to find a counterexample to the additivity of

the border rank.

5.1 The variety of tensors of border rank at most r

We recall sections 5.1 and 5.2 of [12] to understand the variety of tensors of border rank

at most r as a secant variety (more specifically, the r-th secant variety of the Segre variety

of tensors of border rank one). We will explore the meaning of this phrase throughout

this section.

Let σ≤r ⊂ P(A1 ⊗· · · ⊗An) denote the projectivization of the set of tensors of rank at

most r. Define σr := σ≤r, where the closure is the Zariski’s closure. Then a tensor p has

border rank r, that is, R(p) = r if and only if [p] ∈ σr and [p] /∈ σr−1.
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Consider a curve (i.e., a one-dimensional variety) C ⊂ PV and q ∈ PV a fixed point.

We define

J(q, C) =
⋃

x∈C, x ̸=q

P1
xq

as the closure of the set of points lying on all lines containing q and a point of C. We can

call in this case J(q, C) the cone over C with vertex q.

q

C

Figure 5.1: The cone over C with vertex q.

Observation 5.1.1. The need of taking closure is just to guarantee that the case q ∈ C

also includes the points on the tangent line to C at q. We can think of the tangent line

as the limit of secant lines P1
qxj

, where (xj)j∈N is a sequence of points such that xj → q as

j → ∞.

We define J(q, Z) in a similar way for Z ⊂ PV , where dim(Z) is an arbitrary positive

integer. This previous discussion gives us the idea of dim(J(q, Z)) = dim(Z) + 1. This

intuition is correct, except for the case where Z is a linear space and q ∈ Z.

Observation 5.1.2. When we talk about a cone in the affine space, we are talking about

a set lying in the vector space V (see Definition 2.3.2). A projective variety which can be

seen as a cone J(q,X) is a set lying in the projective space PV , so they are not the same

thing.

We can extrapolate our definition of J(q, Z) to get a definition of J(Y, Z), considering

this last set as the closure of the union of the cones J(q, Z), that is

Definition 5.1.1. We call

J(Y, Z) =
⋃
q∈Y

J(q, Z) =
⋃
z∈Z

J(Y, z) =
⋃

q∈Y, z∈Z, q ̸=z

P1
xy
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the join of two varieties Y, Z ⊂ PV . In the case Y = Z, we define σ(Y ) = σ2(Y ) :=

J(Y, Y ), the secant variety of Y . The variety σ2(Y ) contains all points of all secant

and tangent lines to Y . This allows us to generalize the definition.

Definition 5.1.2. The join of k varieties X1, . . . , Xk ⊂ PV is defined to be

J(X1, . . . , Xk) = J(X1, J(X2, . . . , Xk)).

In the case X1 = X2 = · · · = Xk = Y , we define the k-th secant variety of Y as

σk(Y ) = J(Y, . . . , Y ),

the join of k copies of Y .

Now we state two theorems that allow us to conclude that the Zariski and Euclidean

closure for our case of study agree.

Theorem 5.1.1. (Th.5.1.1.4.,[12]) Joins and secant varieties of irreducible varieties are

irreducible.

Theorem 5.1.2. If V is a Zariski closed subset of the affine space Cn, then V is closed

in the Euclidean topology.

Proof. It is enough to prove the result for a basic of Zarisky’s topology, as every closed

subset is the intersection of basic sets. Let Uf = {x ∈ Cn : f(x) = 0}, where f is a

polynomial in C[x1, . . . , xn]. We know that Uf by definition is a closed subset. But as

f is continuous as a function Cn −→ C, Uf = f−1(0) is a closed subset of Euclidean

topology.

The projective version of this theorem is also true.

Theorem 5.1.3. If V is a Zariski closed subset of the projective space Pn, then V is

closed in the Euclidean topology.

Theorem 5.1.4. A variety X is irreducible if and only if every Zariski open subset of X

is dense.

Proof. (⇒) Suppose X is irreducible and there exists a Zariski open subset U of X such

that U ̸= X. Then (U)c ⊂ X is a Zariski open subset of X such that (U)c ̸= X (because

no element of U lies in (U)c). But then (U)c ∪ U ⊃ ((U)c ∪ U = X = X. This implies X

is reducible, an absurd.

(⇐) Now suppose every open Zariski subset U of X is dense, that is, U = X, and

suppose Y, Z ⊂ X is a pair of closed subvarieties such that Y ∪ Z = X. We can assume

without loss of generality that Y ∩ Z = ∅. Then Y c is an open Zariski subset of X and

by hypothesis Y c = X = Z. Then Y = ∅ and Z = X, proving X is irreducible.
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Corollary 5.1.1. The definitions of σr in terms of limits and Zariski closure agree.

Proof. Call the closure of a set by taking limits the “Euclidean closure”, and the closure

by taking the common zeros of the polynomial vanishing on the set the “Zariski closure”.

As we already stablished in Theorem 5.1.3, any Zariski closed subset is an Euclidian closet

subset. Now, if Z is an irreducible variety, we know by the previous theorem that U = Z,

in both closure senses. To complete the proof, it is enough to consider Z = σr(X) and U

the set of elements of rank at most r in X, that is,

U =
⋃

x1,x2,...,xr∈X

P(⟨x1, . . . , xr⟩)

Now, we begin to study our results on the additivity of the border rank. Let’s start

by taking concise tensors p′ ∈ A′ ⊗ B′ ⊗ C ′ and p′′ ∈ A′′ ⊗ B′′ ⊗ C ′′ with R(p′) ≤ a′ and

R(p′′) ≤ a′′ (the conciseness implies R(p′) = a′ and R(p′′) = a′′). Since p′ and p′′ are

concise, the linear maps

p′ : (A′)∗ −→ B′ ⊗ C ′ and p′′ : (A′′)∗ −→ B′′ ⊗ C ′′

are injective. From this

p : (A)∗ −→ B ⊗ C

is also injective and

R(p) ≥ dim(p(A)∗) = dim(p′(A′)∗) + dim(p′′(A′′)∗) = R(p′) +R(p′′).

The other inequality always holds. From the previous discussion, we conclude the follow-

ing lemma:

Lemma 5.1.5. (Lemma 5.1, [6]) Consider concise tensors p′ ∈ A′ ⊗ B′ ⊗ C ′ and p′′ ∈
A′′ ⊗ B′′ ⊗ C ′′ with R(p′) ≤ a′ and R(p′′) ≤ a′′ (Proposition 3.1.1 implies R(p′) = a′ and

R(p′′) = a′′). Let p = p′ ⊕ p′′. Then the additivity of the border rank holds.

Corollary 5.1.2. (Corollary 5.2, [6]) Suppose that (a′,b′, c′) and (a′′,b′′, c′′) fall into

one of the following cases:

1. (a, b, 1), (a, 1, c), (a, b, 2), with a ≥ b ≥ 2,

2. (a, 2, c), with a ≥ c ≥ 2, and

3. (a, b, c), with a ≥ bc.

Then for any concise tensors p′ ∈ A′ ⊗ B′ ⊗ C ′ and p′′ ∈ A′′ ⊗ B′′ ⊗ C ′′ the additivity of

the border rank R(p) = R(p′) +R(p′′) is satisfied.

62



The reader might think the fact that we included analog cases such as (a, b, 2) and

(a, 2, c) is weird; we cannot change the order of the factors because we would like to

guarantee that a′ + a′′ ≥ b′ +b′′ ≥ c′ + c′′. Once this condition holds, there is no way we

could choose the order of the factors in each block.

Proof. Let q ∈ Ca ⊗Cb ⊗Cc be a concise tensor with a ≥ b and c = 1. This q is going to

play the role of p′ or p′′ depending on the case.

As q is concise, the border rank is R(q) ≥ a by Proposition 3.1.1 Using Observation

1.5.1 we know that R(q) ≥ R(q). By Proposition 1.5.1, R(q) ≤ b. Putting together the

three inequalities above,

a ≤ R(q) ≤ R(q) ≤ b

a ≤ b

a = b

Therefore, the only concise tensors in the case (a, b, 1) with a ≥ b are in the form (a, a, 1).

Now consider the case (a, 1, c). Using last part of Proposition 1.5.1 and the same

arguments as the previous case we get

max{a, c} ≤ R(q) ≤ R(q) ≤ min{a, c}
a = c

More generally, using the same ideas, if q ∈ Ca1 ⊗ Ca2 ⊗ Ca3 is concise, then

max{a1, a2, a3} ≤ R(q) ≤ R(q) ≤ min{a1a2, a1a3, a2a3} (5.1)

max{a1, a2, a3} ≤ min{a1a2, a1a3, a2a3}. (5.2)

Case (a, b, 2) with a ≥ b ≥ 2:

a ≤ 2b

Case (a, 2, c) with a ≥ c ≥ 2:

a ≤ 2c

Case (a, b, c) with bc ≤ a:

bc ≤ a ≤ R(q) ≤ R(q) ≤ min{ab, ac, bc} ≤ bc, (5.3)

Therefore all the inequalities in Equation 5.3 are in fact equalities and a = bc. The

remaining cases are:

I. (a, a, 1), (a, 1, a),
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II. (a, b, 2) with 2 ≤ b ≤ a ≤ 2b,

III. (a, 2, c) with 2 ≤ c ≤ a ≤ 2c,

IV. (bc, b, c)

Now we prove that in each of the cases I-IV we have R(q) = a. After we prove that,

the result follows from Lemma 5.1.5.

We now prove R(q) = a in the case (a, a, 1): From Equation 5.1, we get R(q) = a since

a = b forces the inequalities to be equalities. The case (a, 1, a) is similar and R(q) = a.

Now let q ∈ Ca⊗Ca⊗C2. It corresponds to a two-dimensional subspace W = q(C2∗) ⊂
Ca ⊗ Ca of squared matrices.

By subsection 3.8.2 of [12] or by the discussion before Lemma 5.6 of [5] in an open

(and dense) Zariski’s set of Ca ⊗ Ca we have

W = {sId+ tF, s, t ∈ C},

where F is a diagonal matrix. Such subspace W has rank a as in Example 3.2.1, then

R(q) = a for q ∈ Ca ⊗ Ca ⊗ C2 general.

Now, as a general tensor of Ca ⊗ Ca ⊗ C2 has rank a, then the border rank of any

tensor in Ca ⊗ Ca ⊗ C2 is less or equal than a, where every Zariski’s open is dense (by

Theorems 5.1.1 and 5.1.4) and therefore every tensor living there can be aproximated by

generic tensors. From this, we prove that R(q) ≤ a, and R(q) = a, for q ∈ Ca⊗Ca⊗C2.

After proving R(p) = a for the auxiliar case (a, a, 2), we work with the case (a, b, 2)

with 2 ≤ b ≤ a ≤ 2b. If q ∈ Ca ⊗ Cb ⊗C2 is concise, then considering q ∈ Ca ⊗ Ca ⊗ C2,

q is still concise and by the auxiliar case (a, a, 2) its border rank is a. Case (a, 2, c) is

analogous.

For the case (bc, b, c) the border rank is bc by the same argument in the case (a, a, 1).

Remember that the inequalities in Equation (5.3) are equalities. This concludes the

proof.

The main objective of this chapter is to proof additivity of the border rank for all the

cases a,b, c ≤ 4, that is,

Theorem 5.1.6. Let p′ ∈ A′ ⊗B′ ⊗ C ′ and p′′ ∈ A′′ ⊗B′′ ⊗ C ′′ be concise tensors, with

c′ + c′′ ≤ b′ + b′′ ≤ a′ + a′′ ≤ 4.

Then the additivity of the border rank holds:

R(p) = R(p′) +R(p′′)
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(a′,b′, c′) (a′′,b′′, c′′)
(1, 1, 1) (1, 1, 1)
(2, 2, 2) (1, 1, 1)
(2, 2, 1) (1, 1, 2)
(2, 1, 2) (1, 2, 1)
(2, 1, 1) (1, 2, 2)
(2, 2, 1) (1, 1, 1)
(2, 1, 1) (1, 2, 1)
(2, 1, 1) (1, 1, 1)
(3, 3, 3) (1, 1, 1)
(3, 3, 2) (1, 1, 2)

Table 5.1: Some cases with a,b, c ≤ 4.

(a′,b′, c′) (a′′,b′′, c′′)
(3, 3, 3) (1, 1, 1)
(2, 3, 3) (2, 1, 1)
(2, 3, 2) (2, 1, 2)
(2, 2, 3) (2, 2, 1)
(2, 3, 2) (2, 1, 1)

Table 5.2: Cases after using the Corollary 5.1.2.

Proof. We can assume that (a′,b′, c′) ≥ (a′′,b′′, c′′) (with respect to the lexicographic

order). Satisfying this condition, we have 47 pairs of triples. Some of them are listed on

Table 5.1. With the help of Lemma 5.1.5 and Corollary 5.1.2, it remains the cases listed

in Table 5.2.

Note that in Table 5.2 there are two isomorphic cases, the third and the fourth, it is

enough to permute the second and the third factor. Besides, the second and the last cases

in Table 5.2 have no concise tensors (recall Equation (5.2)).

After changing the order of the factors, to finish the proof of the current Theorem, it

remains to prove the cases (3 + 1, 2 + 2, 2 + 2) and (3 + 1, 3 + 1, 3 + 1). This will follow

from Propositions 5.3.1 and 5.4.1.

Definition 5.1.3. Let p, q ∈ A⊗B ⊗ C be two tensors. We say that p is more degen-

erated than q if p ∈ GL(A)×GL(B)×GL(C) · q.

We stress here that GL(A)×GL(B)×GL(C) · q denotes the closure of the orbit of

the extended usual action of the group GL(V ) on a vector of V , more specifically

(GL(A)×GL(B)×GL(C))× (A⊗B ⊗ C) −→ A⊗B ⊗ C

((M1,M2,M3), q) 7−→ M1πB⊕C(q)⊗M2πA⊕C(q)⊗M3πA⊕B(q),

where πB⊕C , πA⊕C , and πA⊕B are the projections with kernel B ⊕ C, A⊕ C and A⊕ B,

respectively.

Lemma 5.1.7. If p, q are tensors and p is more degenerated than q, then R(p) ≤ R(q).
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Proof. Let r = R(q). Then q = lim
n→∞

pn, where the pn’s are tensors of rank less or equal

than r. As p is more degenerated than q, then p ∈ GL(A)×GL(B)×GL(C) · q. Note

that

p ∈ GL(A)×GL(B)×GL(C) · q = GL(A)×GL(B)×GL(C) · lim
n→∞

pn

= lim
n→∞

GL(A)×GL(B)×GL(C) · pn = lim
n→∞

qn

where each qn has rank at most r, therefore R(p) ≤ r.

Example 5.1.1. Let

p = a1 ⊗ b1 ⊗ c1 + a2 ⊗ (b2 ⊗ c1 + b1 ⊗ c2) + a3 ⊗ b2 ⊗ c2 ∈ C3 ⊗ C2 ⊗ C2.

We claim that p is more degenerated than the tensor

q = a1 ⊗ b1 ⊗ c1 + a2 ⊗ b1 ⊗ c2 + a3 ⊗ b2 ⊗ c1.

To prove this, we check the definition. Consider the respective action

(GL3 ×GL2 ×GL2)× (C3 ⊗ C2 ⊗ C2) −→ C3 ⊗ C2 ⊗ C2

(M1,M2,M3, t1 ⊗ t2 ⊗ t3) 7−→ M1t1 ⊗M2t2 ⊗M3t3.

Now, p and q can be seen as A∗ −→ B ⊗ C linear transformations defined by

p : A∗ −→ B ⊗ C

a∗1 7−→ b1 ⊗ c1,

a∗2 7−→ b2 ⊗ c1 + b1 ⊗ c2,

a∗3 7−→ b2 ⊗ c2,

q : A∗ −→ B ⊗ C

a∗1 7−→ b1 ⊗ c1,

a∗2 7−→ b1 ⊗ c2,

a∗3 7−→ b2 ⊗ c1.

Note that p(a∗1) = q(a∗1), so in this case the action is the trivial one. The required action

to get p(a∗2) from q(a∗2) is to take the associated matrix and add the transposed. As the

identity and the linear transformation that consists on taking the transposed of a matrix

are linear and invertible, we can conclude that the action is invertible and therefore, p(a∗2)

belongs to the orbit of q(a∗2). The last action will consist on elementary rows and columns

operations, again invertible. This proves that p ∈ GL3 ×GL2 ×GL2 · q.

Lemma 5.1.8. (Lemma 5.6, [6]) Suppose p′ ∈ A′ ⊗ B′ ⊗ C ′ is an arbitrary tensor and

p′′, q′′ ∈ A′′ ⊗ B′′ ⊗ C ′′ are such that R(p′′) = R(q′′) and p′′ is more degenerated than q′′.

If the additivity of the border rank holds for p′ ⊕ p′′, then it also holds for p′ ⊕ q′′.
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Proof. Since p′′ is more degenerated than q′′, p′ ⊕ p′′ is more degenerated than p′ ⊕ q′′.

Then, by Lemma 5.1.7 we have

R(p′ ⊕ q′′) ≥ R(p′ ⊕ p′′) = R(p′) +R(p′′) = R(p′) +R(q′′).

The other inequality always holds.

5.2 Strassen’s equations of secant varieties

Saying that a tensor is or is not of a given border rank is often the same as saying that

the tensor satisfies the corresponding secant variety equations. In the small cases we are

considering, studying one type of these equations will be enough. We will set b = c, so

we are considering B ⊗ C as a space of square matrices. Let fb be the map

fb : (B ⊗ C)×3 −→ B ⊗ C

(x, y, z) 7−→ xadj(y)z − zadj(y)x

where adj(y) denotes the adjoint matrix of y. Now consider a tensor p =
a∑

i=1

ai ⊗ wi,

where wi ∈ W := p(A∗) ⊂ B ⊗ C for i ∈ {1, . . . , a} are b × c matrices and {a1, . . . , aa}
is a basis of A.

Proposition 5.2.1. (Prop. 5.7, [6]) Let p ∈ A⊗B ⊗ C be a tensor.

i) Suppose a = b = c = 3. Then R(p) ≤ 3 if and only if f3(x, y, z) = 0 for every

x, y, z ∈ W .

ii) Suppose a = b = c and R(p) ≤ a. Then fa(x, y, z) = 0 for every x, y, z ∈ W .

So one way to determine if a tensor p has border rank at most a (in the case a = b = c),

is to check that every triple (x, y, z) lies in the kernel of fa. Another way comes from the

following discussion:

Consider the tensor p : B∗ −→ A⊗ C, and the contraction operator

p̂A : A⊗B∗ −→ Λ2A⊗ C

obtained as a composition of

IdA ⊗ p : A⊗B∗ −→ A⊗2 ⊗ C

and

π∧ ⊗ IdC : A⊗2 ⊗ C −→ Λ2A⊗ C,

with π∧ defined as in equation (1.6).
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Proposition 5.2.2. (Prop. 5.8, [6]) Assume 3 ≤ a ≤ b, c. If R(p) ≤ r, then rank(p̂A) ≤
r(a− 1).

Now, let’s think a bit more about this p̂A function. Suppose a = b = c = 3, and

choose basis for A,B,C. We write

p = b1 ⊗ w1 + b2 ⊗ w2 + b3 ⊗ w3,

wi =
3∑

j=1

aj ⊗ cji,

cji =
3∑

ℓ=1

λjiℓcℓ

Considering p as a linear transformation

p : B∗ −→ A⊗ C,

b∗i 7−→
3∑

j=1

aj ⊗ cji

we get

p̂A : A⊗B∗ −→ Λ2A⊗ C

ak ⊗ b∗i 7−→
3∑

j=1

(ak ∧ aj)⊗ cji.

Calculating the associated matrix of this linear transformation, we get

M(p̂A) =

(
3∑

j=1

(a1 ∧ aj)⊗ cj1 · · ·
3∑

j=1

(a3 ∧ aj)⊗ cj3

)
,

where every
3∑

j=1

(ai ∧ aj)⊗ cij is a 9× 1 matrix. In terms of the basis (we list the basis in

this particular order to make easy for the reader to identify the images of the ak ⊗ b∗i )

a1 ⊗ b∗1, a1 ⊗ b∗2, a1 ⊗ b∗3, a2 ⊗ b∗1, a2 ⊗ b∗2, a2 ⊗ b∗3, a3 ⊗ b∗1, a3 ⊗ b∗2, a3 ⊗ b∗3 for A⊗B∗

and

(a2 ∧ a3)⊗ c1, (a2 ∧ a3)⊗ c2, (a2 ∧ a3)⊗ c3, (a1 ∧ a3)⊗ c1, (a1 ∧ a3)⊗ c2, (a1 ∧ a3)⊗
c3, (a1 ∧ a2)⊗ c1, (a1 ∧ a2)⊗ c2, (a1 ∧ a2)⊗ c3 for Λ2A⊗ C

we have

p̂A(a1 ⊗ b∗1) =
3∑

j=1

(a1 ∧ aj)⊗ cj1,

= (a1 ∧ a2)⊗ c21 + (a1 ∧ a3)⊗ c31

(remember that a1 ∧ a1 = 0). We know that c21 and c31 can be expressed in terms of the

basis {c1, c2, c3} of C, therefore
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c21 =
3∑

ℓ=1

λ21ℓcℓ and c31 =
3∑

ℓ=1

λ31ℓcℓ.

So

(a1 ∧ a2)⊗ c21 = (a1 ∧ a2)⊗

(
3∑

ℓ=1

λ21ℓcℓ

)
=
∑
ℓ=1

λ21ℓ((a1 ∧ a2)⊗ cℓ)

and

(a1 ∧ a3)⊗ c31 = (a1 ∧ a3)⊗

(
3∑

ℓ=1

λ31ℓcℓ

)
=

3∑
ℓ=1

λ31ℓ((a1 ∧ a3)⊗ cℓ),

and from this

p̂A(a1 ⊗ b∗1) =
∑
ℓ=1

λ21ℓ((a1 ∧ a2)⊗ cℓ) +
3∑

ℓ=1

λ31ℓ((a1 ∧ a3)⊗ cℓ).

Since the order we listed the basis is: (a2∧a3)⊗c1, (a2∧a3)⊗c2, (a2∧a3)⊗c3, (a1∧a3)⊗c1,

(a1 ∧ a3)⊗ c2, (a1 ∧ a3)⊗ c3, (a1 ∧ a2)⊗ c1, (a1 ∧ a2)⊗ c2, (a1 ∧ a2)⊗ c3, the coordinates of

p̂A(a1 ⊗ b∗1) in the basis are

(0, 0, 0, λ311, λ312, λ313, λ211, λ212, λ213).

Using the same process to calculate p̂A(a1 ⊗ b∗2) and p̂A(a1 ⊗ b∗3) we get the coordinates

for them in the basis ordered as above:

(0, 0, 0, λ321, λ322, λ323, λ221, λ222, λ223)

and

(0, 0, 0, λ331, λ332, λ333, λ231, λ232, λ233)

respectively. Following this process, the matrix ends up being

M(p̂A) =



0 0 0 −λ311 −λ321 −λ331 −λ211 −λ221 −λ231

0 0 0 −λ312 −λ322 −λ332 −λ212 −λ222 −λ232

0 0 0 −λ313 −λ323 −λ333 −λ213 −λ223 −λ233

λ311 λ321 λ331 0 0 0 −λ111 −λ121 −λ131

λ312 λ322 λ332 0 0 0 −λ112 −λ122 −λ132

λ313 λ323 λ333 0 0 0 −λ113 −λ123 −λ133

λ211 λ221 λ231 λ111 λ121 λ131 0 0 0

λ212 λ222 λ232 λ112 λ122 λ132 0 0 0

λ213 λ223 λ233 λ113 λ123 λ133 0 0 0



M(p̂A) =

 0 w3 −w2

−w3 0 w1

w2 −w1 0


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Proposition 5.2.3. (Prop. 5.9, [6]) If a = b = c = 3, the degree nine equation

det(p̂A) = 0

defines the variety σ4(PA× PB × PC) ⊂ P(A⊗B ⊗ C).

For a = 4 and p =
4∑

i=1

ai⊗wi ∈ A⊗B⊗C with wi ∈ B⊗C, then the matrix representation

of p̂A in block matrices is the 4b× 6c partitioned matrix (we just need to follow the same

reasoning as above):

M4(w1, . . . , w4) =


0 w3 −w2 w4 0 0

−w3 0 w1 0 −w4 0

w2 w1 0 0 0 w4

0 0 0 −w1 w2 −w3


5.3 Case (3 + 1, 2 + 2, 2 + 2)

Proposition 5.3.1. (Prop. 5.10, [6]) For any p′ ∈ C3 ⊗C2 ⊗C2 and p′′ ∈ C1 ⊗C2 ⊗C2

the additivity of the border rank holds.

Proof. We can assume p′′ is concise since p′′ is just a matrix. From this, R(p′′) = R(p′′) = 2.

If p′ is not concise, then we grant additivity of the border rank by Corollary 5.1.2. The

case (3, 2, 2) is a particular case of case (a, b, 2) with 2 ≤ b ≤ a ≤ 2b discussed in the proof

of Corollary 5.1.2. In that situation we concluded that R(p′) = R(p′) = a = 3. We write

p′ = a1 ⊗ w1 + a2 ⊗ w2 + a3 ⊗ w3, and

p′′ = a4 ⊗ w4,

where w1, w2, and w3 are 2 × 2 matrices and as p′′ is concise, w4 is an invertible 2 × 2

matrix.

We now use Lemma 5.1.8 and Table 10.3.1 of [12] and choose a tensor that is more

degenerated than p′. This more degenerated tensor has the form a1⊗w′
1+a2⊗w′

2+a3⊗w′
3,

where

w′
1 =

(
1 0

0 0

)
, w′

2 =

(
0 1

0 0

)
, w′

3 =

(
0 0

1 0

)
.

Being that said, p would have the following form:

p =
4∑

i=1

ai ⊗ wi,

where wi are the following 2 + 2× 2 + 2 partitioned matrices
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wi =

(
w′

i 0

0 0

)
, i = 1, 2, 3 and w4 =

(
0 0

0 w′′
4

)
Now we are going to use Proposition 5.2.2 to show additivity of the border rank in this

case. Recall the contraction operator p̂A, defined above. As R(p) ≤ R(p′) +R(p′′) always

holds, we want to prove the other inequality, that would be

R(p) ≥ R(p′) +R(p′′) = 3 + b′′ = 3 + 2 = 5.

To do this, by Proposition 5.2.2, it is enough to show that rank(p̂A) > r(a−1) = 3r, from

this we would have R(p) > r = 4 which implies R(p) ≥ 5 and we conclude additivity.

So in this case, r = 4. In other words, the additivity of the border rank in this case is

reduced to prove rank(p̂A) > 12. We consider the associated matrix for p̂A:

M4(w1, w2, w3, w4) =


0 w3 −w2 w4 0 0

−w3 0 w1 0 −w4 0

w2 w1 0 0 0 w4

0 0 0 −w1 w2 −w3

.

With all we know so far about wi, the matrix M4(w1, w2, w3, w4) can be transformed by

swapping rows and columns into the following (6+3b′′+2+b′′, 6+3b′′+2+2+2+3b′′) =

(6 + 6 + 2 + 2, 6 + 6 + 2 + 2 + 2 + 6) partitioned matrix
M3(w

′
1, w

′
2, w

′
3) 0 0 0 0 0

0 N 0 0 0 0

0 0 −w′
1 w′

2 −w′
3 0

0 0 0 0 0 0

,

where

N =

 w′′
4 0 0

0 w′′
4 0

0 0 w′′
4


is a 6× 6 invertible matrix (note that w′′

4 is invertible) and

M3(w
′
1, w

′
2, w

′
3) =



0 0 0 0 0 −1

0 0 1 0 0 0

0 0 0 0 1 0

−1 0 0 0 0 0

0 1 −1 0 0 0

0 0 0 0 0 0


has rank 5, N has rank 3b′′ = 6 and the block corresponding to(

−w′
1 w′

2 w′
3

)
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has rank 2. So M4(w1, w2, w3, w4) has rank equal to 5 + 2 + 3b′′ = 5 + 2 + 6, then

rank(p̂A) = 13 > 12 and we have proved the additivity of the border rank in this case.

5.4 Case (3 + 1, 3 + b′′, 3 + c′′)

Proposition 5.4.1. (Prop. 5.11, [6]) For any p′ ∈ C3 ⊗ C3 ⊗ C3 concise, and any

p′′ ∈ C1 ⊗B′′ ⊗ C ′′, we have that R(p) = R(p′)⊕R(p′′).

Proof. By the proof of Corollary 5.1.2, b′′ = c′′ and R(p′′) = R(p′′) .

Now, we have p′ ∈ C3 ⊗ C3 ⊗ C3, that means its projectivization p̂′ lies in X =

Seg(P2 × P2 × P2) ⊂ P26. Now, by the last part of the proof of Lemma 3.16 of [1],

we know dim(σ4(X)) = 25. In addition, by Proposition 1.2.2 of [16], as σ4(X) is a

hypersurface of P26, dim(σ5(X)) = 26, and this implies the maximum border rank for a

tensor in C3 ⊗ C3 ⊗ C3 is 5. That is, R(p′) ≤ 5.

To prove the border rank additivity, we will need to prove it in the two subcases:

R(p′) = 4 and R(p′) = 5. Before doing that, we choose a basis {a1, a2, a3} of C3, {a4} a

basis for C. We have then

p′ = a1 ⊗ w′
1 + a2 ⊗ w′

2 + a3 ⊗ w′
3

where w′
1, w

′
2, w

′
3 ∈ W ′ := p((C3)∗) ⊂ C3 ⊗C3 are 3× 3 matrices. We write p in a similar

way

p = a1 ⊗ w1 + a2 ⊗ w2 + a3 ⊗ w3 + a4 ⊗ w4

where w1, w2, w3, w4 ∈ W := p(A∗) ⊂ B ⊗ C are 3 + b′′ × 3 + b′′ partitioned matrices:

wi =

[
w′

i 0

0 0

]
, i = 1, 2, 3, and wi =

[
0 0

0 w′′
4

]
,

where w′′
4 is a b′′ × b′′ invertible matrix. We are now ready to analyze our two cases:

1. R(p′) = 4. By contradiction, suppose that R(p′) = 4 but the additivity is not

satisfied. Then R(p) ≤ R(p′) + R(p′′) − 1 = 3 + b′′. Using Proposition 5.2.1.ii), we

obtain

fb′′+3(x
′, y′ + y′′, z′) = x′adj(y′ + y′′)z′ − z′adj(y′ + y′′)x′ = 0,

where x′, y′, z′ ∈ W ′ = p((A′)∗) and 0 ̸= y′′ ∈ W ′′ = p′′((A′′)∗). Note that

adj(y′ + y′′) = adj

([
y′ 0

0 y′′

])
=

[
det(y′′)adj(y′) 0

0 det(y′)adj(y′′)

]

and therefore we have

72



[
x′ 0

0 0

]
adj(y′ + y′′)

[
z′ 0

0 0

]

=

[
x′ 0

0 0

][
det(y′′)adj(y′) 0

0 det(y′)adj(y′′)

][
z′ 0

0 0

]

=

[
det(y′′)x′adj(y′)z′ 0

0 0

]
.

Since p′′ is concise, det(y′′) ̸= 0. As fb′′+3(x
′, y′ + y′′, z′) is zero, we must have that[

x′ 0

0 0

]
adj(y′ + y′′)

[
z′ 0

0 0

]
=

[
z′ 0

0 0

]
adj(y′ + y′′)

[
x′ 0

0 0

]
[

det(y′′)x′adj(y′)z′ 0

0 0

]
=

[
det(y′′)z′adj(y′)x′ 0

0 0

]
,

and this implies x′adj(y′)z′ − z′adj(y′)x′ = 0 = f3(x
′, y′, z′), then by Proposition

5.2.1.i) we conclude R(p′) ≤ 3, a contradiction.

2. R(p′) = 5. For this case, consider the projection

π : A⊗B ⊗ C −→ A′ ⊗B ⊗ C

ai 7−→ ai, for i = 1, 2, 3,

a4 7−→ a1 + a2 + a3.

Consider p = π(p) ∈ A′ ⊗B ⊗ C. We obtain the following expression for p:

p = a1 ⊗ w1 + a2 ⊗ w2 + a3 ⊗ w3,

where

wi =

[
w′

i 0

0 w′′
4

]
for i = 1, 2, 3.

Now, consider p as a linear transformation

p : B∗ −→ A′ ⊗ C

and construct the map

p̂A′ : A′ ⊗B∗ −→ Λ2A′ ⊗ C.

Consider its associated matrix
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M3(w1, w2, w3) =

 0 w3 −w2

−w3 0 w1

w2 −w1 0



=



0 0 w′
3 0 −w′

2 0

0 0 0 w′′
4 0 −w′′

4

−w′
3 0 0 0 w′

1 0

0 −w′′
4 0 0 0 w′′

4

w′
2 0 −w′

1 0 0 0

0 w′′
4 0 −w′′

4 0 0


.

Now, by swapping rows and columns appropriately, we obtain

0 w′
3 −w′

2 0 0 0

−w′
3 0 w′

1 0 0 0

w′
2 −w′

1 0 0 0 0

0 0 0 0 w′′
4 −w′′

4

0 0 0 −w′′
4 0 w′′

4

0 0 0 w′′
4 −w′′

4 0


=

[
p̂′A′ 0

0 M3(w
′′
4 , w

′′
4 , w

′′
4)

]
.

Since p′ is concise, p̂′A′ has rank 9, as it is and invertible 9× 9 matrix. On the other

hand, M3(w
′′
4 , w

′′
4 , w

′′
4) has rank 2b′′ since w′′

4 has rank b′′. So

rank(p̂A′) = 9 + 2b′′ > 8 + 2b′′ = (4 + b′′)(3− 1) = (r − 1)(a− 1),

and by Proposition 5.2.2, R(p) ≥ 5+b′′ = R(p′)+R(p′′). Note that in the calculation

of rank(p̂A′), we have no tensor or associated subspace, we are talking about the

rank of the associated matrix to the linear transformation p̂A′ . So we are not using

additivity of the tensor rank. To conclude the proof, remember that p = π(p), so

R(p) ≥ R(p). The other inequality always holds.
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