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Abstract
We investigate how a reservoir modifies the quantum Brownian motion of a particle by
adopting a canonical quantization of the total system. Starting from a Lagrangian model
describing a harmonically bound particle linearly coupled to a continuum of oscillators,
we derive exact analytical solutions for the quantum correlations characterizing the sys-
tem’s dynamics. This approach enables a complete, with no approximations, treatment
of the quantum Brownian motion, including the late-time regime and the positivity of
the particle’s kinetic energy. The generality of our formalism allows it to be extended to
a broad class of coupling functions, offering a robust framework for exploring dissipative
quantum dynamics and energy conservation mechanisms in open quantum systems.

Key-words: Quantum Theory; Quantum Brownian Motion; Quantum Field Theory;
Mathematical Physics.
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1 INTRODUCTION

Since its first application to explain the black body radiation [1], quantum field
theory has been responsible for some of the most interesting and counterintuitive predic-
tions made by the scientific community, and it remains as a paradigm within the standard
model of elementary fields. Among the impressive hallmarks of quantum theory applied
to fields is the implementation of squeezed light in the LIGO detector [2], that culminated
in the first measurement of gravitational wave signals in 2016 [3]. Furthermore, quantum
fields are expected to have a prominent role in black hole physics through the (semiclas-
sical) mechanism of spontaneous Hawking radiation [4], that was also recently probed in
an analogue black hole [5].

Despite the numerous successful applications of quantum field theory, some prob-
lems of fundamental importance are still not fully addressed, specially in connection to
gravity. For instance, energy conservation dictates that black holes loose mass due to
Hawking radiation, and yet the question of how this energy extraction ends remains
unanswered. In general, the problem of determining how quantum fluctuations affect
their environment is convoluted and solutions valid only in certain regimes can be found.
For instance, recent findings include quantum corrections due to a black hole formation
[6] and a solution to the backreaction problem in a Bose-Einstein condensate [7].

Conversely, the random movement of a particle immersed in a fluid in thermal
equilibrium was first noticed by Robert Brown in 1827, when he was observing, utilizing
a microscope, pollen grains in the water, and became known as Brownian motion [8].
Accordingly with the kinetic theory [9], fluids are formed by molecules that move freely,
with a random pattern, and the collisions between these molecules are responsible for the
thermal equilibrium. Thus, if the fluid possesses an external particle, that we may call
as Brownian particle, those fluid molecules will collide with it, in the same manner that
they collide with themselves, thus implying a random movement that Robert Brown has
observed. Hence, the Brownian motion serves as probe to identify statistical fluctuations
occurring in a system that has reached equilibrium.

The so called stochastic field is the responsible for random movement of the Brow-
nian particles. In fact, tiny particles interacting with a finite temperature field display a
Brownian motion due to thermal fluctuations. However, in the same sense that a classical
stochastic field causes the random movement of a test particle, it is possible to expect a
Brownian motion from quantum fluctuation as well [10]. In fact, even with zero temper-
ature, where the thermal fluctuations are not present, quantum fields showcase vacuum
fluctuations [11]. Therefore, if the fluctuations are present even in the vacuum state, a
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tiny particle interacting with the given field exhibits a quantum Brownian motion [12].

In this line of reasoning, another phenomenon which is important to our analysis
and that can be studied only approximately is the quantum Brownian motion of [13],
in which charged test particles were shown to acquire velocity fluctuations due to their
interaction with a quantum field. Specifically, in the regime of non-relativistic dynamics, a
particle of mass 𝑚 and charge 𝑞 is released at 𝑡 = 0 and at a distance 𝑑 from a plane perfect
mirror. If the particle position does not vary appreciably, then its velocity undergoes
fluctuations analytically given by

∐︀𝑣2
�̃︀ =

𝑞2

𝜋2𝑚2
𝑡

32𝑑3 ln(2𝑑 + 𝑡
2𝑑 − 𝑡)

2
,

∐︀𝑣2
∏︁
̃︀ = 𝑞2

8𝜋2𝑚2 ⌊︀
𝑡

8𝑑3 ln(2𝑑 + 𝑡
2𝑑 − 𝑡)

2
− 𝑡2

𝑑2(𝑡2 − 4𝑑2)
}︀ ,

where 𝑣� and 𝑣∏︁ are the velocity components orthogonal and parallel to the mirror, re-
spectively, and units are such that 𝜀0 = ℎ̵ = 𝑐 = 1.

Apart from the divergences in the above formulas, whose sources are well-understood
(see, for instance, [14] and references therein), two features deserve mentioning. First, the
assumption on the particle movement being negligible forbids the analysis of the late-
time (ballistic) regime. Indeed, electromagnetic vacuum fluctuations lead to a diffusive
stochastic dynamics [15], showing that larger particle displacements become relevant as
time passes. Second, and more important, ∐︀𝑣2

∏︁
̃︀ < 0 for 𝑡 > 2𝑑. This kind of phenomenon,

where a classically positive definite quantity becomes negative upon quantization, is not
uncommon in quantum field theory, e.g., the electromagnetic energy density in the Casimir
effect, and it is usually called a subvacuum effect. However, for a particle’s velocity, one
always expects positive dispersions, as these are linked to uncertainties in measurements.
For the particular case of the quantum Brownian motion of [13], it is conjectured that,
once the test particle quantum features are taken into account, the overall velocity disper-
sion becomes a positive number and the effect of the mirror is to diminish the magnitude
of this number.

In this work we discuss how the quantum Brownian motion of a particle is modified
as it starts to interact with a reservoir. Specifically, we consider a Lagrangian model for a
particle under a harmonic potential and a reservoir modeled by a continuum of oscillators,
using for the latter the dielectric model of [16] as motivation, while the interaction term is
turned on at 𝑡0 = 0. By performing the canonical quantization of the system, two vacuum
states are defined, since we have two regimes, and related to each other by a Boguliubov
transformation (see section 2.3), and analytical expressions for the quantum correlations
are found. Therefore, the late-time regime and the positivity of the particle kinetic energy
can be fully addressed within our model, as no approximation is needed in determining
the quantum dynamics.
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It should be stressed that the damped harmonic oscillator is one of the most
studied systems of quantum optics and it serves as a paradigm for the description of
various systems in nature, and, in particular, for the study of the quantum Brownian
motion [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Included in the vast literature
on the subject, we cite, for instance, [30, 31], where a master equation for the density
operator was developed and analytical solutions were found, and [32], where the method
of Langevin equation is developed. For a recent account on the subject, see [33] and
references therein. Our approach follows a distinct path, to the extent that the total system
is quantized canonically. Although this procedure is in general involved, it is necessary
when one needs to have full control of the quantum correlations. For instance, as no
approximations are assumed, the quantum correlations are valid in general and problems
linked to approximations of the density operator are not present [34]. Furthermore, we
are interested in determining how the conservation of energy occurs in the system, which
can become convoluted or even impossible to address if reduced density operator and
Langevin methods are adopted. Throughout the analysis units are such that ℎ̵ = 1.

The reading of this work is intended to begin with Chapter 3, where the main prob-
lem is introduced. Chapter 2, titled Basic Concepts, provides a review and connection of
the theoretical foundations necessary to understand the work. It is therefore recommended
that the reader refer back to Chapter 2 as needed, since references to specific sections will
appear throughout the development of Chapter 3.
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2 BASICS CONCEPTS

2.1 Coherent States
Let us start this section by recalling a good example, the quantum harmonic

oscillator. A harmonic oscillator is an object that is subject to a quadratic potential
energy, which produces a restoring force against any displacement from equilibrium that
is proportional to the displacement [35]. The corresponding Hamiltonian is

H = 𝑃
2

2𝑚 +
𝑚𝜔2𝑄2

2 , (2.1)

where 𝑃 is the momentum, 𝑄 is the spatial position and 𝑚 is the mass. By (classically)
deriving the motion equations, one can easily verify that 𝜔 is the natural frequency of the
system.

2.1.1 Algebraic solution of the quantum harmonic oscillator

Since we are interested in the quantum harmonical oscillator, we promote the
variables 𝑃 and 𝑄 to operators 𝑃 and 𝑄̂ and impose a commutation relation between
them, namely

(︀𝑄̂, 𝑃 ⌋︀ = 𝑖ℎ̵, (2.2)

alongside with the self-adjointness of 𝑃 and 𝑄̂,

𝑃 = 𝑃 †, 𝑄̂ = 𝑄̂†. (2.3)

It is useful to introduce dimensionless operators as

𝑞 = (𝑚𝜔
ℎ̵

)
1⇑2
𝑄̂,

𝑝 = ( 1
𝑚𝜔ℎ̵

)
1⇑2
𝑃 ,

(2.4)

which satisfy (︀𝑞, 𝑝⌋︀ = 𝑖 such that the Hamiltonian can be written as

Ĥ = 1
2 ℎ̵𝜔(𝑝

2 + 𝑞2). (2.5)

Now, in order to solve algebraically, we introduce two more operators1:

𝑎 = 𝑞 + 𝑖𝑝⌋︂
2
,

𝑎† = 𝑞 − 𝑖𝑝⌋︂
2
.

(2.6)

1 From now on, when no ambiguity is presented, the hat above an operator will be omitted.
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These operators are not Hermitian, as seen by (2.3), and from the commutation relation
between 𝑞 and 𝑝, one easily sees that

(︀𝑎, 𝑎†⌋︀ = 1, (2.7)

and the Hamiltonian can be rewritten as

H = ℎ̵𝜔 (𝑎†𝑎 + 1
2) , (2.8)

and the problem of finding the eigenvalues of H is reduced to that of finding the spectrum
of 𝑁 ∶= 𝑎†𝑎, where 𝑁 is the number operator. Using the Lie identity, we obtain

(︀𝑁,𝑎⌋︀ = (︀𝑎†𝑎, 𝑎⌋︀ = 𝑎†
��

��*0
(︀𝑎, 𝑎⌋︀ + (︀𝑎†, 𝑎⌋︀𝑎 = −𝑎, (2.9)

and similarly (︀𝑁,𝑎†⌋︀ = 𝑎†. Now we are ready to calculate the spectrum of 𝑁 . Let 𝑁 ⋃︀𝜈̃︀ =
𝜈 ⋃︀𝜈̃︀, with ∐︀𝜈⋃︀𝜈̃︀ ≠ 0. Then, it follows that

𝑁𝑎 ⋃︀𝜈̃︀ = 𝑎(𝑁 − 1) ⋃︀𝜈̃︀ = (𝜈 − 1)𝑎 ⋃︀𝜈̃︀ , (2.10)

and hence 𝑎 ⋃︀𝜈̃︀ is an eigenvector of 𝑁 with eigenvalue (𝜈 − 1). Also, 𝜈 ≥ 0 because

∐︀𝜈⋃︀𝑎†𝑎⋃︀𝜈̃︀ = ∐︀𝜈⋃︀𝑁 ⋃︀𝜈̃︀ = 𝜈 ∐︀𝜈⋃︀𝜈̃︀ , (2.11)

and this norm cannot be negative. Thus, if 𝑎 ⋃︀0̃︀ ≠ 0, we would be able to construct negative
eigenvalues, which is not possible, and then 𝑎 ⋃︀0̃︀ = 0 is a logical necessity. Using the same
reasoning, we conclude that

𝑁𝑎† ⋃︀𝜈̃︀ = (𝜈 + 1)𝑎† ⋃︀𝜈̃︀ , (2.12)

and that the squared norm of 𝑎† ⋃︀𝜈̃︀ is

∐︀𝜈⋃︀𝑎𝑎†⋃︀𝜈̃︀ = ∐︀𝜈⋃︀(𝑁 + 1)⋃︀𝜈̃︀ = (𝜈 + 1) ∐︀𝜈⋃︀𝜈̃︀ , (2.13)

which never vanishes. By repeatedly applying 𝑎†, one can construct an unlimited sequence
of eigenvectors, each having an eigenvalue that is one unit greater than that of its pre-
decessor, and this sequence begins with 𝜈 = 0. Therefore, the spectrum of 𝑁 consists of
all non-negative integers 𝜈 = 𝑛. The orthonormal eigenvector of 𝑁 will be denoted as
⋃︀𝑛̃︀. We have already shown that 𝑎† ⋃︀𝑛̃︀ is proportional to ⋃︀𝑛 + 1̃︀. If 𝐶𝑛 is the constant of
proportionality, we may define it by the norm of this vector, which was calculated above:

⋃︀𝐶𝑛⋃︀2 = ∐︀𝑛⋃︀𝑎𝑎†⋃︀𝑛̃︀ = 𝑛 + 1 Ô⇒ ⋃︀𝐶𝑛⋃︀ =
⌈︂
(𝑛 + 1). (2.14)

The phase of ⋃︀𝑛 + 1̃︀ is arbitrary, and we choose so that 𝐶𝑛 is real and positive. From this
discussion, it follows from induction that

⋃︀𝑛̃︀ = (𝑎
†)𝑛 ⋃︀0̃︀⌋︂
𝑛!

. (2.15)
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From the considerations above and the orthogonality of eigenvectors, we obtain the matrix
elements of 𝑎†:

∐︀𝑛′⋃︀𝑎†⋃︀𝑛̃︀ =
⌈︂
(𝑛 + 1)𝛿𝑛′,𝑛+1. (2.16)

Because 𝑎 is the adjoint of 𝑎†, its matrix elements must be the transpose of (2.16):

∐︀𝑛′⋃︀𝑎⋃︀𝑛̃︀ =
⌋︂
𝑛𝛿𝑛′,𝑛−1. (2.17)

From here, we conclude that 𝑎 ⋃︀𝑛̃︀ =
⌋︂
𝑛 ⋃︀𝑛 − 1̃︀, if 𝑛 ≠ 0, and 𝑎 ⋃︀0̃︀ = 0, as we obtained

before. Finally, the eigenvector of the harmonic oscillator Hamiltonian are

H ⋃︀𝑛̃︀ = 𝐸𝑛 ⋃︀𝑛̃︀ , (2.18)

with 𝐸𝑛 = ℎ̵𝜔 (𝑛 + 1
2).

2.1.2 Definitions of coherent states

The coherent states are defined as eigenvectors of the operator 𝑎:

𝑎 ⋃︀𝜇̃︀ = 𝜇 ⋃︀𝜇̃︀ , (2.19)

where 𝜇 is a complex parameter. If we expand on the energy basis ⋃︀𝑛̃︀, ⋃︀𝜇̃︀ = ∑∞𝑛=0 𝑐𝑛 ⋃︀𝑛̃︀,
the coherent state can be reconstructed from the equation (2.19):

𝑎 ⋃︀𝜇̃︀ =
∞

∑
𝑛=0

𝑐𝑛

⌋︂
𝑛 ⋃︀𝑛 − 1̃︀ =

∞

∑
𝑛=0

𝜇𝑐𝑛 ⋃︀𝑛̃︀ . (2.20)

Comparing coefficients, we obtain a recursion relation 𝑐𝑛 = 𝜇
⌋︂

𝑛
𝑐𝑛−1, which by induction

leads to
𝑐𝑛 =

𝜇𝑛

⌋︂
𝑛!
𝑐0. (2.21)

This coefficient 𝑐0 can be determined from normalization by

1 =
∞

∑
𝑛=0

⋃︀𝑐𝑛⋃︀2 =
∞

∑
𝑛=0

⋃︀𝜇⋃︀2𝑛

𝑛! ⋃︀𝑐0⋃︀2 = e⋃︀𝜇⋃︀2 ⋃︀𝑐0⋃︀2. (2.22)

Finally,
⋃︀𝜇̃︀ = e−⋃︀𝜇⋃︀2⇑2

∞

∑
𝑛=0

𝜇𝑛

⌋︂
𝑛!

⋃︀𝑛̃︀ = e−⋃︀𝜇⋃︀2⇑2
∞

∑
𝑛=0

𝜇𝑛

⌋︂
𝑛!
(𝑎†)𝑛

⌋︂
𝑛!

⋃︀0̃︀ = e𝜇𝑎†−⋃︀𝜇⋃︀2⇑2 ⋃︀0̃︀ . (2.23)

As an example, we show that the distribution of the quanta number 𝑁 in a coherent
state follows a Poisson distribution with mean 𝑛̄ = ⋃︀𝜇⋃︀2. In fact, since 𝑁 ⋃︀𝑛̃︀ = 𝑛 ⋃︀𝑛̃︀, the
distribution (on the energy basis) defined as ∐︀𝜇⋃︀𝑁 ⋃︀𝜇̃︀

∐︀𝑛⋃︀𝑁 ⋃︀𝑛̃︀ is given by

∐︀𝜇⋃︀𝑁 ⋃︀𝜇̃︀
𝑛

= ⋃︀𝑐𝑛⋃︀2 = e−⋃︀𝜇⋃︀2 ⋃︀𝜇⋃︀
2𝑛

𝑛! . (2.24)
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2.1.3 Coordinate and momentum uncertainty

Let us calculate the coordinate uncertainty for a given coherent state 𝜇. First, if
𝜆 =

⌉︂
ℎ̵

𝑚𝜔 , then 𝑄 = 𝜆𝑞 and 𝑃 = ℎ̵
𝜆𝑝, so that

∐︀𝑄2̃︀ = ∐︀𝜇⋃︀𝑄2⋃︀𝜇̃︀ = 𝜆
2

2 ∐︀𝜇⋃︀(𝑎 + 𝑎†)2⋃︀𝜇̃︀ = 𝜆
2

2
)︀(𝜇 + 𝜇̄)2 + 1⌈︀ , (2.25)

where we used the definition of a coherent state and (︀𝑎, 𝑎†⌋︀ = 1. Similarly,

(∐︀𝜇⋃︀𝑄⋃︀𝜇̃︀)2 = 𝜆
2

2
(∐︀𝜇⋃︀𝑎 + 𝑎†⋃︀𝜇̃︀)2 = 𝜆

2

2 (𝜇 + 𝜇̄)2, (2.26)

such that
∐︀𝛿𝑄2̃︀ = ∐︀𝑄2̃︀ − ∐︀𝑄̃︀2 = 𝜆

2

2 =
ℎ̵

2𝑚𝜔. (2.27)

Proceeding in the same manner for ∐︀𝛿𝑃 2̃︀, we find that

∐︀𝛿𝑃 2̃︀ = ∐︀𝑃 2̃︀ − ∐︀𝑃 ̃︀2 = ℎ̵2

2𝜆2 =
ℎ̵𝑚𝜔

2 , (2.28)

and thus both (2.27) and (2.28) does not depend on 𝜇 and their product is
⌈︂
∐︀𝛿𝑄2̃︀ ∐︀𝛿𝑃 2̃︀ = ℎ̵2 , (2.29)

which is the lower bound of the Heisenberg uncertainty principle. We will see that coherent
states can be naturally generalized to a more generic class of states that minimizes the
uncertainty product.

2.2 Squeezed States
Of great importance for our analysis is the notion of a squeezed state, and it is

often omitted on undergraduate text books. Here, we will define a squeezed state from the
physical point of view and also from the mathematical one. The interpretation of such a
state is given since the beginning and, to conclude this section, we show how a squeezed
state arises naturally from a Hamiltonian that has a time dependence.

2.2.1 Definition of a squeezed state

Squeezed states can be introduced using the idea of coherent states. Like the latter,
they are closely related to the properties of 𝑎 and 𝑎†. As we saw above, coherent states
have the property of minimizing the dispersions 𝑞 and 𝑝. In order to understand a bit
more about this property and define the squeezed states, let us recall the proof of the
uncertainty relation 𝛿𝑞𝛿𝑝 ≥ ℎ̵

2 .

Given two hermitian operators 𝐴 and 𝐵, and any state ⋃︀𝜇̃︀, consider the quantity

𝐽(𝑎) = ∐︀𝜇⋃︀(𝛼𝐴 − 𝑖𝐵)(𝛼𝐴 + 𝑖𝐵)⋃︀𝜇̃︀ = ∐︀𝐴2̃︀𝛼2 + 𝛼 ∐︀𝑖(︀𝐴,𝐵⌋︀̃︀ + ∐︀𝐵2̃︀ , (2.30)
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which is the squared norm of (𝛼𝐴+𝑖𝐵) ⋃︀𝜇̃︀, and by definition it is a nonnegative quadratic
polynomial in 𝛼. Thus it does not have real roots besides zero possibly, and therefore its
discriminant is less or equal to 0. Hence

∐︀𝐴2̃︀ ∐︀𝐵2̃︀ ≥ 1
4 ⋃︀∐︀(︀𝐴,𝐵⌋︀̃︀⋃︀

2. (2.31)

Now, consider 𝐴 = 𝑞 and 𝐵 = 𝑝 = −𝑖ℎ̵𝜕𝑞, with (︀𝑞, 𝑝⌋︀ = 𝑖ℎ̵. Then ∐︀𝑞2̃︀ ∐︀𝑝2̃︀ ≥ 1
4 ℎ̵

2, and for a
state that ∐︀𝑞̃︀ = ∐︀𝑝̃︀ = 0, we conclude

∐︀𝛿𝑞2̃︀ ∐︀𝛿𝑝2̃︀ ≥ 1
4 ℎ̵

2, (2.32)

since ∐︀𝛿𝑋2̃︀ = ∐︀(𝑋 − ∐︀𝑋̃︀)2̃︀ = ∐︀𝑋2̃︀ − ∐︀𝑋̃︀2. The uncertainty relation for a more general
state ∐︀𝑞⋃︀𝜇̃︀ = 𝜇(𝑞) with nonzero ∐︀𝑞̃︀ and ∐︀𝑝̃︀ can be easily obtained. Let us write this more
general state as

𝜇(𝑞) = e𝑖 𝑝𝑞
ℎ̵ 𝜇̃(𝑞 − 𝑞), (2.33)

where the identification 𝑋̄ = ∐︀𝑋̃︀ was made and ∐︀(𝑞 − 𝑞)⋃︀𝜇̃̃︀ = 𝜇̃(𝑞 − 𝑞) is adequate. Thus,
since ∐︀(𝑞 − 𝑞)2̃︀𝜇 = ∐︀𝑞2̃︀𝜇̃ and ∐︀(𝑝 − 𝑝)2̃︀𝜇 = ∐︀𝑝2̃︀𝜇̃, we can write

∐︀𝛿𝑞2̃︀𝜇 ∐︀𝛿𝑝2̃︀𝜇 = ∐︀𝑞2̃︀𝜇̃ ∐︀𝑝2̃︀𝜇̃ ≥
1
4 ℎ̵

2, (2.34)

the uncertainty relation from an arbitrary state.

If there exists a state that satisfy 𝑞 = 𝑝 = 0, and if it minimizes the uncertainty
relation, there will be a unique root 𝛼0 of the equation 𝐽(𝛼0) = 0. We can find this state
as a function of 𝑎0 since it will be solution of

(𝛼0𝑞 + 𝑖𝑝)𝜇(𝑞) = 𝛼0𝑞𝜇(𝑞) + ℎ̵𝜇(𝑞)′ = 0. (2.35)

Solving this differential equation, we get 𝜇(𝑞) = 𝐶e−
𝛼0𝑞2

2ℎ̵ . Normalizing to one and remem-
bering the Gaussian integral, we get that 𝐶 = ( 𝑎0

ℎ̵𝜋
)1⇑4. These general states that minimize

∐︀𝛿𝑞2̃︀ ∐︀𝛿𝑝2̃︀ are called squeezed states, but minimizing the uncertainty is not the only prop-
erty of such states. In fact, a squeezed state also makes one of the uncertainties (∐︀𝛿𝑞2̃︀
or ∐︀𝛿𝑝2̃︀) lower than the threshold, at the same time that it maintains the uncertainty
product [36]. We will see more on that now.

2.2.2 Squeezed states and the operators 𝑎 and 𝑎†

Suppose we prepared a squeezed state (2.35) of a harmonic oscillator with 𝑞 = 𝑝 = 0,
and we want to know its time evolution. The simplest way is to rewrite the uncertainty
condition in (2.35) in terms of the annihilation (and creation) operators, since their dy-
namic is given in the Heisenberg picture as

𝑎(𝑡) =e𝑖H𝑡𝑎e−𝑖H𝑡 = e−𝑖𝜔𝑡𝑎,

𝑎†(𝑡) =e𝑖H𝑡𝑎†e−𝑖H𝑡 = e𝑖𝜔𝑡𝑎†.
(2.36)
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The last equation follows directly from the Heisenberg equation of motion:

d𝑎(𝑡)
d𝑡 = −

𝑖

ℎ̵
(︀𝑎,H⌋︀ = − 𝑖

ℎ̵
ℎ̵𝜔�����:𝑎

(︀𝑎, 𝑎†𝑎⌋︀ = −𝑖𝜔𝑎(𝑡). (2.37)

Using the relations for 𝑄 and 𝑃 in terms of 𝑎 and 𝑎†, we obtain

(𝛼𝑄 + 𝑖𝑃 )𝜇 = 0 Ô⇒ )︀(𝛼𝜆2 − 1)𝑎 + (𝛼𝜆2 + 1)𝑎†⌈︀𝜇 = 0 (2.38)

The time dependent state 𝜇(𝑡) = e−𝑖H𝑡𝜇 satisfies

e−𝑖H𝑡 )︀(𝛼𝜆2 − 1)𝑎 + (𝛼𝜆2 + 1)𝑎†⌈︀ e𝑖H𝑡𝜇(𝑡) =

)︀(𝛼𝜆2 − 1)𝑎(−𝑡) + (𝛼𝜆2 + 1)𝑎†(−𝑡)⌈︀𝜇(𝑡) =

)︀(𝛼𝜆2 − 1)e𝑖𝜔𝑡𝑎 + (𝛼𝜆2 + 1)e−𝑖𝜔𝑡𝑎†⌈︀𝜇(𝑡) = 0.

(2.39)

This equation has the same form of (2.37), but with time-independent 𝛼, which
allows us to write

𝜆2𝛼(𝑡) − 1
𝜆2𝛼(𝑡) + 1 =

𝜆2𝛼 − 1
𝜆2𝛼 + 1e2𝑖𝜔𝑡. (2.40)

Solving for 𝛼(𝑡) we get

𝛼(𝑡) = 𝜆2𝛼 cos(𝜔𝑡) − 𝑖 sin(𝜔𝑡)
𝜆2 (cos(𝜔𝑡) − 𝑖𝜆2𝛼 sin(𝜔𝑡)) . (2.41)

Thus, the wave packet remains Gaussian at all times, while its width oscillates. There is
another, more formal, definition of a squeezed state based on the squeeze operators.

Definition 1 A squeeze operator is a unitary operator which, when applied to the oscil-
lator vacuum state, produce a squeeze state

One example is
𝑈(𝜃) = exp )︀𝜃((𝑎)2 − (𝑎†)2)⇑2⌈︀. (2.42)

This operator has the following properties:

𝑈 †(𝜃)𝑎𝑈(𝜃) = cosh(𝜃)𝑎 − sinh(𝜃)𝑎†,

𝑈 †(𝜃)𝑎†𝑈(𝜃) = cosh(𝜃)𝑎† − sinh(𝜃)𝑎.
(2.43)

Proof: First, define the skew-hermitian 𝐴 ∶= (𝜃(𝑎†)2 − 𝜃𝑎2)⇑2, so that 𝑈 † = e𝐴. The left
hand side of the first equality is then e𝐴𝑎e−𝐴. Recalling the Campbell identity, which is a
specific case of the Baker–Campbell–Hausdorff formula:

e𝐴𝐵e−𝐴 =
∞

∑
𝑛=0

1
𝑛!(︀𝐴, (︀𝐴, . . . , (︀𝐴,)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

n times

𝐵⌋︀⋯⌋︀⌋︀, (2.44)

which is true for any pair of operators 𝐴 and 𝐵. As can be easily verified, we have

(︀𝐴,𝑎⌋︀ = −𝜃𝑎†,

(︀𝐴,𝑎†⌋︀ = −𝜃𝑎,
(2.45)
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and using these equalities, we have

(︀𝐴, (︀𝐴, . . . , (︀𝐴,
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

n times

𝐵⌋︀⋯⌋︀⌋︀ =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

𝜃𝑛𝑎, for n even,

−𝜃𝑛𝑎†, for n odd.
(2.46)

So we get

𝑈 †(𝜃)𝑎𝑈(𝜃) = 𝑎
∞

∑
𝑛=0

𝜃2𝑛

(2𝑛)! − 𝑎
†
∞

∑
𝑛=0

𝜃2𝑛+1

(2𝑛 + 1)! = cosh(𝜃)𝑎 − sinh(𝜃)𝑎†. (2.47)

The second equality follows in a similar way, and its valid to stress that 𝜃 may be promoted
to complex, and will have a similar relation, and all derivations follows.

We also have

𝑈 †(𝜃)𝑞𝑈(𝜃) = 𝑈 †(𝜃) 𝜆⌋︂
2
(𝑎 + 𝑎†)𝑈(𝜃) = e−𝜃𝑞,

𝑈 †(𝜃)𝑝𝑈(𝜃) = 𝑈 †(𝜃) 𝑖ℎ̵⌋︂
2𝜆

(𝑎 − 𝑎†)𝑈(𝜃) = e𝜃𝑝.

(2.48)

Now, we can prove that 𝑈(𝜃) is a squeeze operator. In fact, put 𝑈(𝜃) ⋃︀0̃︀ in (2.35). It is
easy to see that the following equation can be obtained

(e−𝜃𝜆⌋︂
2
− e𝜃ℎ̵

𝛼
⌋︂

2𝜆
)𝑎† ⋃︀0̃︀ = 0 Ô⇒ 𝛼𝜆2 = ℎ̵e2𝜃. (2.49)

Hence 𝑈(𝜃) is a squeeze operator with the given 𝜃.

2.2.3 Squeezed states from time evolution

A squeezed state rises naturally from the vacuum state provided that the harmonic
oscillator Hamiltonian is time dependent. In fact, consider the Schrödinger dynamic

𝑖ℎ̵𝜕𝑡𝜓 = H(𝑡)𝜓. (2.50)

and that this time dependence is on the frequency 𝜔(𝑡) and mass 𝑚(𝑡). Since we have a
time dependent Hamiltonian, we integrate it formally in the interval (︀0, 𝑡⌋︀, in the Riemann
sense:

𝜓(𝑡) = 𝑆(𝑡)𝜓0 = lim
𝑁→∞

∞

∏
𝑗=1

e− 𝑖
ℎ̵

H(𝑡𝑗)Δ𝑡𝜓0, (2.51)

with the ordinary partition.

Proposition 1 The evolving state in (2.51) is a squeezed state.

Proof: Define the quantity

𝐴(𝑡) = 𝑆(𝑡) (𝑃 (0)𝑞 −𝑄(0)𝑝)𝑆†(𝑡), (2.52)
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where 𝑃 (𝑡) and 𝑄(𝑡) are functions yet to be found and 𝑆(𝑡) is the same operator as in
(2.51). 𝑆(𝑡) is unitary, and can be easily seen if we submit it to the Schrödinger equation,
alongside with 𝑆†(𝑡). Thus, at all times

𝐴(𝑡)𝜓(𝑡) = 𝑆(𝑡) (𝑃 (0)𝑞 −𝑄(0)𝑝)𝑆†(𝑡)𝑆(𝑡)𝜓0 = 0, (2.53)

since 𝜓0 is a state of the harmonic oscillator and therefore is a squeezed state. Now, if we
submit 𝐴(𝑡) to the equation of motion, i.e.,

ℎ̵𝜕𝑡𝐴(𝑡) = 𝑖(︀𝐴0,H⌋︀ (2.54)

Since the H is quadratic in 𝑞 and 𝑝, if 𝐴(𝑡) is a polynomial of degree 𝑛 in 𝑞 and 𝑝, then
(︀𝐴,H⌋︀ is still of degree 𝑛. Thus, as (︀𝐴0,H⌋︀ starts as a linear function, it is natural to
suppose that 𝐴 will be linear in 𝑞 and 𝑝 as well, and we can write 𝐴(𝑡) = 𝑃 (𝑡)𝑞 −𝑄(𝑡)𝑝.
Using the equation of motion, we find

ℎ̵𝐴(𝑡) = 𝑖(︀(𝑃𝑞 −𝑄𝑝),( 𝑝
2

2𝑚 +
𝑚𝜔2

2 𝑞2)⌋︀ = −ℎ̵(𝑃
𝑚
𝑝 +𝑚𝜔2𝑄𝑞) , (2.55)

and since 𝜕𝑡𝐴(𝑡) = 𝑃̇ 𝑞 − 𝑄̇𝑝, we conclude

𝑄̇ = 𝑃 ⇑𝑚, 𝑃̇ = −𝑚𝜔2𝑄, (2.56)

which coincides with the classical Hamiltonian equations for the harmonic oscillator.
Thus, our supposition was correct and since 𝐴(𝑡)𝜓(𝑡) = 0 for all times, we put 𝛼(𝑡) =
−𝑖𝑃 (𝑡)⇑𝑄(𝑡) and 𝐴(𝑡)𝜓(𝑡) have the form of (2.35). ∎

2.3 Boguliubov Transformation
A Boguliubov transformation can be seen as an isomorphism between canonical

commutative (or anticomumtative) algebra. Physically, it is a linear transformation of
creation/annihilation operators that preserve the algebraic relations among them [37, 38].
Instead of going into mathematical details and things alike, let us write two examples:
one for the fermionic and other for the bosonic case.

2.3.1 Fermionic Case

Consider, for fermion operators, the Hamiltonian

H = 𝛼(𝑐†
1𝑐1 + 𝑐†

2𝑐2) + 𝛽(𝑐†
1𝑐

†
2 + 𝑐2𝑐1), (2.57)

which arises, for example, in the BCS theory of superconductivity [39]. Note that 𝛽 must
be real for the Hamiltonian to be hermitian.
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The fermionic Boguliubov transformation is

𝑐†
1 = 𝑢𝑑

†
1 + 𝑣𝑑2

𝑐†
2 = 𝑢𝑑

†
2 − 𝑣𝑑1,

(2.58)

where 𝑢, 𝑣 are real numbers since we restricted ourselves to real 𝛽, and called Boguliubov
coefficients. Now, we suppose that the relation of anticommutation (since we are working
with fermions) works on both sets of operators. Then, we have

{𝑐†
1, 𝑐1} = 𝑢2{𝑑†

1, 𝑑1} + 𝑣2{𝑑†
2, 𝑑2}, (2.59)

which implies 𝑢2 + 𝑣2 = 1, suggesting the parametrization 𝑢 = cos(𝜃) and 𝑣 = sin(𝜃). The
remaining step is to diagonalize the Hamiltonian. First, we write as

H = 1
2 (𝑐

†
1 𝑐2 𝑐†

2 𝑐1)

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝛼 𝛽 0 0
𝛽 −𝛼 0 0
0 0 𝛼 −𝛽
0 0 −𝛽 −𝛼

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝑐1

𝑐†
2

𝑐2

𝑐†
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

+ 𝛼, (2.60)

where the relation {𝑐𝑖, 𝑐
†
𝑖} = 1 was used. Now, consider the upper block

(𝑐†
1 𝑐2)

⎛
⎝
𝛼 𝛽

𝛽 −𝛼
⎞
⎠
⎛
⎝
𝑐1

𝑐†
2

⎞
⎠
, (2.61)

together with the Boguliubov transformation

⎛
⎝
𝑐1

𝑐†
2

⎞
⎠
=
⎛
⎝

cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

⎞
⎠
⎛
⎝
𝑑1

𝑑†
2

⎞
⎠
. (2.62)

Then, we have

⎛
⎝

cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

⎞
⎠
⎛
⎝
𝛼 𝛽

𝛽 −𝛼
⎞
⎠
⎛
⎝

cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

⎞
⎠
=

=
⎛
⎝
𝛼 cos(2𝜃) − 𝛽 sin(2𝜃) 𝛽 cos(2𝜃) + 𝛼 sin(2𝜃)
𝛽 cos(2𝜃) + 𝛼 sin(2𝜃) 𝛽 sin(2𝜃) − 𝛼 cos(2𝜃)

⎞
⎠
,

(2.63)

where the matrices (𝑑1 𝑑†
2) and alike were omitted. If we choose 𝜃 such that tan(2𝜃) = −𝛽

𝛼 ,
we will have cos(2𝜃) = 𝛼2

⌈︂
𝛼2+𝛽2 and (2.63) is equal to

⎛
⎝
𝛾 0
0 −𝛾

⎞
⎠
, (2.64)

where 𝛾 =
⌈︂
𝛼2 + 𝛽2. Including the other block of the Hamiltonian, we conclude

H = 𝛾(𝑑1𝑑
†
1 + 𝑑2𝑑

†
2) + 𝛼 − 𝛾 . (2.65)
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2.3.2 Bosonic Case

We use the same Hamiltonian, but the Boguliubov transformation reads as

𝑐†
1 = 𝑢𝑑

†
1 + 𝑣𝑑2

𝑐†
2 = 𝑢𝑑

†
2 + 𝑣𝑑1.

(2.66)

Note that the sign was chosen differently to ensure that the commutation relations for 𝑑1

and 𝑑2 imply the result (︀𝑐1, 𝑐2⌋︀ = 0. We also require

(︀𝑐1, 𝑐
†
1⌋︀ = 𝑢2(︀𝑑1, 𝑑

†
1⌋︀ − 𝑣2(︀𝑑2, 𝑑

†
2⌋︀ = 1 Ô⇒ 𝑢2 − 𝑣2 = 1, (2.67)

suggesting the parametrization 𝑢 = cosh(𝜃) and 𝑣 = sinh(𝜃). Now, we introduce the Hamil-
tonian matrix notation as before:

H = 1
2 (𝑐

†
1 𝑐2 𝑐†

2 𝑐1)

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝛼 𝛽 0 0
𝛽 𝛼 0 0
0 0 𝛼 𝛽

0 0 𝛽 𝛼

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝑐1

𝑐†
2

𝑐2

𝑐†
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

− 𝛼, (2.68)

where, for bosons, we used (︀𝑐𝑖, 𝑐
†
𝑖 ⌋︀=1. Again, focusing only on the 2x2 upper block and

using the Boguliubov transformation

⎛
⎝
𝑐1

𝑐†
2

⎞
⎠
=
⎛
⎝

cosh(𝜃) sinh(𝜃)
sinh(𝜃) cosh(𝜃)

⎞
⎠
⎛
⎝
𝑑1

𝑑†
2

⎞
⎠
, (2.69)

we get

⎛
⎝

cosh(𝜃) sinh(𝜃)
sinh(𝜃) cosh(𝜃)

⎞
⎠
⎛
⎝
𝛼 𝛽

𝛽 −𝛼
⎞
⎠
⎛
⎝

cosh(𝜃) sinh(𝜃)
sinh(𝜃) cosh(𝜃)

⎞
⎠
=

=
⎛
⎝
𝛼 cosh(2𝜃) + 𝛽 sinh(2𝜃) 𝛽 cosh(2𝜃) + 𝛼 sinh(2𝜃)
𝛽 cosh(2𝜃) + 𝛼 sinh(2𝜃) 𝛼 cosh(2𝜃) + 𝛽 sinh(2𝜃)

⎞
⎠
,

(2.70)

where (again) the matrices (𝑑1 𝑑†
2) and alike were omitted. If we choose 𝜃 such that

tanh(2𝜃) = −𝛽
𝛼 , we will have cos(2𝜃) = 𝛼2

⌈︂
𝛼2−𝛽2 and (2.70) is equal to

⎛
⎝
𝛾 0
0 𝛾

⎞
⎠
, (2.71)

where 𝛾 =
⌈︂
𝛼2 − 𝛽2. Note that 𝛼 > 𝛽, and if this is not the case, the Hamiltonian has not

a stable equilibrium, but instead represents a system at an unstable point. Including the
other block of the Hamiltonian, we conclude

H = 𝛾(𝑑†
1𝑑1 + 𝑑†

2𝑑2) − 𝛼 + 𝛾 . (2.72)
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2.4 Cauchy Theory
In this section, we want to stress two mathematical tools that were widely used in

this project: the residue theorem and the Sokhotski-Plemelj formula. The latter is often
not mentioned in standard quantum field theory books, although being of great use. We
start this section with some definitions and important formulas from complex analysis. It
is not our objective to be completely rigorous and/or mathematically formal, but some
level of serious argumentation will be used throughout this section.

2.4.1 Holomorphic and analytic functions

Let 𝐶 be a smooth curve2 in the complex plane. If 𝑓(𝑧) is continuous on C, then
the complex integral

∫
𝐶
𝑓(𝑧)d𝑧 (2.73)

can be defined and expressed in terms of real integrals. In fact, write

𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖(𝑥, 𝑦), d𝑧 = d𝑥 + 𝑖d𝑦 Ô⇒ (2.74)

Ô⇒ ∫
𝐶
𝑓(𝑧)d𝑧 = ∫

𝐶
(𝑢d𝑥 − 𝑣d𝑦) + 𝑖∫

𝐶
(𝑣d𝑥 + 𝑢d𝑦) (2.75)

and the integrals in the rhs are known to exist. Our next concept is the derivative of a
complex function:

Definition 2 Let 𝑓 ∶ 𝑈 ⊂ C→ C be a continuous functions, where 𝑈 is an open set of C.
We say that 𝑓 is holomorphic in 𝑧0 ∈ 𝑈 if the limit

𝑓 ′(𝑧0) = lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ

, (2.76)

exists. The complex number 𝑓 ′(𝑧0) is called derivative of 𝑓 in 𝑧0. If 𝑓 is holomorphic in
all points of 𝑈 , we say that 𝑓 is holomorphic in 𝑈 .

If we set 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), (2.76) can be written as

𝑓 ′(𝑧) = lim
(Δ𝑥,Δ𝑦)→(0,0)

(︀𝑢(𝑥 +Δ𝑥, 𝑦 +Δ𝑦) − 𝑢(𝑥, 𝑦)⌋︀ + 𝑖(︀𝑣(𝑥 +Δ𝑥, 𝑦 +Δ𝑦) − 𝑣(𝑥, 𝑦)⌋︀
Δ𝑥 + 𝑖Δ𝑦 . (2.77)

It should be clear that, in order to ensure the existence of the derivative, the rhs have the
same value for arbitrary Δ𝑧 → 0. If we set Δ𝑧 =Δ𝑥, then

𝑓 ′(𝑧) = 𝜕𝑢
𝜕𝑥
+ 𝑖𝜕𝑣
𝜕𝑥
. (2.78)

Alternatively, if we set Δ𝑧 = 𝑖Δ𝑦, we get

𝑓 ′(𝑧) = 𝜕𝑣
𝜕𝑦
− 𝑖𝜕𝑢
𝜕𝑦
, (2.79)

2 It can be a piecewise smooth curve. Just refer to the Riemann-Stieltjes integral
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and it naturally follows that
𝜕𝑢

𝜕𝑥
= 𝜕𝑣
𝜕𝑦
,

𝜕𝑢

𝜕𝑦
= −𝜕𝑣

𝜕𝑥
. (2.80)

These are the Cauchy-Riemann conditions, and they follow directly from the definition
of the derivative. The inverse theorem also holds:

Theorem 1 If 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) have continuous first partial derivatives satisfying
Cauchy-Riemann conditions in some neighborhood of 𝑧, then 𝑓(𝑧) = 𝑢+ 𝑖𝑣 is holomorphic
at 𝑧 [40] .

Now, one may ask about the existence of partial derivatives, given the way we
treated holomorphic functions. This calls for one more definition:

Definition 3 Let 𝑈 ⊂ C be an open set. We say that a function 𝑓 ∶ 𝑈 → C is analytic if,
for all 𝑧0 ∈ 𝑈 , there exists a power series with a convergence radius 𝜌 > 0 such that

𝑓(𝑧) =
∞

∑
𝑛=0

𝑎𝑛(𝑧0)(𝑧 − 𝑧0)𝑛 (2.81)

for all 𝑧 ∈ 𝑈 that satisfies ⋃︀𝑧 − 𝑧0⋃︀ < 𝜌.

In complex analysis, a holomorphic function is an analytic function, although they
are defined in different ways. That analytic functions are holomorphic can be verified by
definition, but the converse also holds true [41].

2.4.2 Cauchy theorem and other theorems

Integrals of analytic functions possess some very important properties, and (per-
haps) the most fundamental one is expressed by the Cauchy theorem:

Theorem 2 If 𝑓(𝑧) is analytic in a simply connected domain 𝐷, and 𝛾 is a (piecewise
smooth) simple closed curve in 𝐷, then

∮
𝛾
𝑓(𝑧)d𝑧 = 0. (2.82)

Proof:

We present a derivation based on the Stokes Theorem, and a general proof of this
important theorem can be found in any complex analysis book. First, recall that if 𝛾 is
a simple closed curve in a simply connected domain 𝐷 and if 𝑃 (𝑥, 𝑦) and 𝑄(𝑥, 𝑦) have
continuous first partial derivatives in 𝐷, then

∮
𝛾
(𝑃d𝑥 +𝑄d𝑦) = ∬

𝑆
(𝜕𝑄
𝜕𝑥
− 𝜕𝑃
𝜕𝑦

)d𝑆, (2.83)

where 𝑆 is the area bounded by 𝛾. One may recognize this as a special case of the
Stokes Theorem, called Green’s Theorem. Since 𝑓(𝑧) is analytic, the continuity of partial
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derivatives of 𝑢 and 𝑣 hold true, and the Green’s theorem therefore can be applied. And,
if we use Cauchy-Riemann conditions, the Cauchy theorem is proved. In fact,

∮
𝛾
(𝑢d𝑥 − 𝑣d𝑦) = ∬

𝑆
(𝜕𝑢
𝜕𝑦
− 𝜕𝑣
𝜕𝑥

)d𝑥d𝑦 = 0, (2.84)

∮
𝛾
(𝑣d𝑥 + 𝑢d𝑦) = ∬

𝑆
(𝜕𝑢
𝜕𝑥
− 𝜕𝑣
𝜕𝑦

)d𝑥d𝑦 = 0. (2.85)

∎

There is a converse of this theorem and it is called Morera theorem, which is valid
mentioning:

Theorem 3 Morera theorem: if 𝑓(𝑧) is continuous in a domain 𝐷 and if ∮ 𝑓(𝑧)d𝑧 = 0
for every simple closed path in 𝐷 with its interior also in 𝐷, then 𝑓(𝑧) is analytic in 𝐷.

The vanishing of a contour integral is closely related to the independence of path
of an integral. One last theorem that is very important to our analysis, and that I will
not prove, is the following:

Suppose that 𝑧0 is a fixed point. If the integral ∫
𝑧

𝑧0
𝑓(𝜉)d𝜉 is independent of the

integration path, then it must represent a function of 𝑧. Let us call it 𝐹 (𝑧). Then, this
function is a primitive function of 𝑓(𝑧), as follows from the fundamental theorem of
integral calculus: if 𝑓(𝑧) is analytic in a simply connected domain 𝐷, then the function

𝐹 (𝑧) = ∫
𝑧

𝑧0
𝑓(𝜉)d𝜉 (2.86)

is also analytic in 𝐷 and 𝑓(𝑧) = d
d𝑧𝐹 (𝑧).

The Cauchy theorem can be used in many forms, and the most basic one is the
Cauchy integral formula:

Proposition 2 (Cauchy Integral Formula) If 𝑓(𝑧) is analytic inside and on 𝛾 and if the
point 𝑧 = 𝑎 is in the interior of 𝛾, then

∮
𝑓(𝑧)d𝑧
𝑧 − 𝑎

= 2𝜋𝑖𝑓(𝑎). (2.87)

Proof:

Construct a circle 𝛾 about 𝑧 = 𝑎 with an arbitrary small radius 𝑟 such that this
circle is within 𝛾. Now, connect the two circles using two straight lines which do not
intersect themselves and leave the point 𝑎 out of the total closed loop, as can be seen in
figure 1:

Following this scheme, we find by the use of the Cauchy Integral Theorem

0 = −∫
𝛾

𝑓(𝑧)
𝑧 − 𝑎

d𝑧 + ∫
𝛾

𝑓(𝑧)
𝑧 − 𝑎

d𝑧, (2.88)
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Re

Im

𝑎

𝛾

𝛾

Figure 1 – Determination of the loop 𝛾

since the other terms come from the straight lines, which are obtained from one another
by just reversing the orientation, and the minus sign comes from the orientation that was
chosen for the interal in 𝛾. Then

∫
𝛾

𝑓(𝑧)
𝑧 − 𝑎

d𝑧 = ∫
𝛾

𝑓(𝑧)
𝑧 − 𝑎

d𝑧. (2.89)

The integral in the rhs can be easily evaluated by the parametrization 𝛾(𝜃) = 𝑎+ 𝑟e𝑖𝜃, 𝜃 ∈
(︀0,2𝜋⌋︀, because the inner circle was oriented counterclockwise. Thus

∫
𝛾

𝑓(𝑧)
𝑧 − 𝑎

d𝑧 = ∫
2𝜋

0
d𝜃𝑓(𝑎 + 𝑟e

𝑖𝜃)
𝑟e𝑖𝜃

𝑖𝑟e𝑖𝜃 = 𝑖∫
2𝜋

0
d𝜃𝑓(𝑎 + 𝑟e𝑖𝜃). (2.90)

For last, if we take the limit 𝑟 → 0 in the equation above, the proposition follows. ∎

The Cauchy integral formula shows a remarkable property of analytic functions:
if one knows the valued of a function in a closed contour, then the value at an arbitrary
point inside the contour can be known. To emphasize this, its common to find in the
literature the following representation:

𝑓(𝑧) = 1
2𝜋𝑖 ∮

𝑓(𝜉)d𝜉
𝜉 − 𝑧

. (2.91)

Since the Leibniz rule can be used, one can calculate the 𝑛−th derivative of a function by
a induction process:

d𝑛𝑓(𝑧)
d𝑧𝑛

= 𝑛!
2𝜋𝑖 ∮

𝑓(𝜉)d𝜉
(𝜉 − 𝑧)𝑛+1 . (2.92)

2.4.3 Laurent series

The so called Taylor series in real analysis is a very important concept, either
theoretically or practically speaking. In complex analysis, this theorem also holds [41],
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but other very crucial series expansion can be derived, and it plays a key role in the so
called Residue theorem (section 2.4.4):

Theorem 4 Every function f(z) analytic in an annulus

𝑅1 < ⋃︀𝑧 − 𝑧0⋃︀ < 𝑅2, (2.93)

can be expanded in a series of positive and negative powers of (𝑧 − 𝑧0), namely

𝑓(𝑧) =
∞

∑
𝑛=−∞

𝑐𝑛(𝑧 − 𝑧0)𝑛. (2.94)

This series is known as the Laurent series, it is unique for a given annulus, and

𝑐𝑛 =
1

2𝜋𝑖 ∮𝑐𝑖

𝑓(𝑧)d𝑧
(𝑧 − 𝑧0)𝑛+1 , (2.95)

where 𝑐𝑖 is a circle of radius 𝑅1 < 𝑟𝑖 < 𝑅2.

𝑟1

𝑟2

𝛾

𝑧0

Figure 2 – The radii 𝑟1 and 𝑟2 are such that 𝑅1 < 𝑟1 < 𝑟2 < 𝑅2. Thus, 𝑓 is analytic in the
region delimited by 𝛾.

Proof: Consider the Figure 2. Then, following the theorem notation we get

𝑓(𝑧) = 1
2𝜋𝑖 ∳𝑐2

𝑓(𝜉)d𝜉
𝜉 − 𝑧

+ 1
2𝜋𝑖 ∲𝑐1

𝑓(𝜉)d𝜉
(𝜉 − 𝑧)

. (2.96)

The first integral can be treated as

1
2𝜋𝑖 ∳𝑐2

𝑓(𝜉)d𝜉
𝜉 − 𝑧

= 1
2𝜋𝑖 ∳𝑐2

𝑓(𝜉)
𝜉 − 𝑧0 − 𝑧 + 𝑧0

d𝜉

= 1
2𝜋𝑖 ∳𝑐2

𝑓(𝜉)
𝜉 − 𝑧0

1
1 − (𝑧 − 𝑧0)⇑(𝜉 − 𝑧0)

d𝜉

=
∞

∑
𝑛=0

(𝑧 − 𝑧0)𝑛 1
2𝜋𝑖 ∳𝑐2

𝑓(𝜉)
(𝜉 − 𝑧0)𝑛+1 d𝜉,

(2.97)

whereas the second integral is treated by expanding 1⇑(𝜉−𝑧) in slightly different geometric
series:

1
𝜉 − 𝑧

= − 1
𝑧 − 𝑧0

1
1 − (𝜉 − 𝑧0)⇑(𝑧 − 𝑧0)

= −
∞

∑
𝑚=0

(𝜉 − 𝑧0)𝑚

(𝑧 − 𝑧0)𝑚+1 , (2.98)
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which is convergent by the ratio test. Then

1
2𝜋𝑖 ∲𝑐1

𝑓(𝜉)d𝜉
(𝜉 − 𝑧)

= − 1
2𝜋𝑖 ∳𝑐1

𝑓(𝜉)d𝜉
(𝜉 − 𝑧)

=
∞

∑
𝑚=0

1
(𝑧 − 𝑧0)𝑚+1

1
2𝜋𝑖 ∳𝑐1

𝑓(𝜉)(𝜉 − 𝑧0)𝑚d𝜉.
(2.99)

Replace 𝑚 by −(𝑛 + 1), with 𝑛 < 0, and rewrite the above equation as

1
2𝜋𝑖 ∲𝑐1

𝑓(𝜉)d𝜉
(𝜉 − 𝑧)

=
−∞

∑
𝑛=−1

(𝑧 − 𝑧0)𝑛 1
2𝜋𝑖 ∳𝑐1

𝑓(𝜉)
(𝜉 − 𝑧0)𝑛+1 d𝜉. (2.100)

Finally, the integrals in (2.97) and (2.99) may be just as well evaluated over a common
circle 𝑐, concentric with 𝑐1 and 𝑐2, lying inside the annulus.

To prove the uniqueness, assume that an expansion

𝑓(𝑧) =
∞

∑
𝑛=−∞

𝑐𝑛(𝑧 − 𝑧0)𝑛, (2.101)

exists and is valid in the annulus 𝑅1 < ⋃︀𝑧−𝑧0⋃︀ < 𝑅2. Choose an arbitrary integer 𝑘, multiply
both sides of this equation by (𝑧 − 𝑧0)−(𝑘+1) and integrate around a circle 𝑐 such that 𝑎 is
enclosed by this circle, inside the annulus3:

∮
𝑐

𝑓(𝑧)d𝑧
(𝑧 − 𝑧0)𝑘+1 =

∞

∑
𝑛=−∞

𝑐𝑛∮
𝑐

d𝑧
(𝑧 − 𝑧0)𝑘+1−𝑛

. (2.102)

All the integrals in the rhs will vanish except for 𝑛 = 𝑘. In fact, given the integral

𝐼 = ∮
d𝑧

(𝑧 − 𝑧0)𝑛
(2.103)

with the contour 𝑧 = 𝑧0 + 𝑟e𝑖𝜃, we have

𝐼 = ∫
𝜋

−𝜋
d𝜃𝑖𝑟1−𝑛e𝑖(1−𝑛)𝜃 = 𝑟

1−𝑛

1 − 𝑛e𝑖(1−𝑛)𝜃

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

𝜋

−𝜋

= 0, (2.104)

if 𝑛 ≠ 1, whose value is 2𝜋𝑖. Therefore

∮
𝑐

𝑓(𝑧)d𝑧
(𝑧 − 𝑧0)𝑘+1 = 𝑐𝑘2𝜋𝑖. (2.105)

∎

A good discussion about the meaning and differences of the Laurent and Taylor
series is presented by [40]: the part of the Laurent series consisting of positive powers of
(𝑧 −𝑎) is called the regular part, and the other part is the principal part. The regular part
reminds us of the the Taylor series, but it should be emphasized that the 𝑛th coefficient
cannot be associated, in general, with 𝑓 (𝑛)(𝑧0) because the latter may not exist.4
3 Therefore, the radius of this circle is limited.
4 Of course, if the principal part is identically zero, then 𝑓(𝑧) is analytic at 𝑧 = 𝑧0, and the Laurent

series is identical with the Taylor series.
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2.4.4 Zeros, singularities and the residue theorem

Let us start this section by recalling a simple definition: A point 𝑧 = 𝑧0 is called
a zero, or a root, of the function 𝑓(𝑧) if 𝑓(𝑧0) = 0. If 𝑓(𝑧) is analytic at 𝑧 = 𝑧0, the its
Taylor series

𝑓(𝑧) =
∞

∑
𝑛=0

𝑐𝑛(𝑧 − 𝑧0)𝑛, (2.106)

must have 𝑐0 = 0. Let 𝑐𝑚 be the first non-vanishing coefficient, then the zero is said to be
of order 𝑚. If 𝑚 = 1, is said to be a simple zero. In practical terms, the order of a zero
can be found by calculating

lim
𝑧→𝑧0

𝑓(𝑧)
(𝑧 − 𝑎)𝑛

, (2.107)

and the first 𝑛 for which this limit do not vanish will be the order, naturally.

If a function 𝑓(𝑧) is analytic in some neighborhood of 𝑧0, except at 𝑧0 itself, then it
is said to have an isolated singularity at this point. It is customary to distinguish isolated
singularities by the following types of behavior of 𝑓(𝑧):

• ⋃︀𝑓(𝑧)⋃︀ <𝑀 ∈ R, i.e, remains bounded when 𝑧 → 𝑧0;

• 𝑓(𝑧) is not bounded and ⋃︀𝑓(𝑧)⋃︀ approaches infinity;

• Neither of the two cases above; in plain terms, 𝑓(𝑧) oscillates.

Examples of these types are

1. 𝑓(𝑧) = sin(𝑧)⇑𝑧

2. 𝑓(𝑧) = 1⇑ sin(𝑧)

3. 𝑓(𝑧) = e1⇑𝑧

Now, let 𝑧0 be an isolated singularity. Let 𝛾 be a simple closed path surrounding
𝑧0. Then the integral

1
2𝜋𝑖 ∮𝛾

𝑓(𝑧)d𝑧 = 1
2𝜋𝑖∑𝑛

𝑐𝑛∮
𝛾
(𝑧 − 𝑧0)𝑛d𝑧 = 𝑐−1, (2.108)

is called the residue of 𝑓 at 𝑧0, i.e., the residue is the coefficient of the term 1⇑(𝑧 − 𝑧0)
appearing in the Laurent series of 𝑓 . Furthermore, a function 𝑓 ∶ 𝑈 ⊂ C→ C is said to be
meromorphic in 𝑢 if the set of singular points S is discrete. The residues of a function at
its isolated singularities find their application in the evaluation of integrals, complex or
real, and the basis of this statement is the
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Theorem 5 (The Residue Theorem) Let 𝑓(𝑧) ∶ 𝑈 ⊂ C → C be a meromorphic function,
and let 𝛾 be any simple closed curve oriented counterclockwise in 𝑈 that does not meet
any of 𝑓(𝑧) poles. Then

∮
𝛾
𝑓(𝑧)d𝑧 = 2𝜋𝑖 ∑

𝑧∈S𝛾

𝑅(𝑓, 𝑧), (2.109)

where S𝛾 is the set of singular points of 𝑓 that lie inside of the trace of 𝛾, and 𝑅(𝑓, 𝑧) is
the residue of 𝑓 at 𝑧

Proof:

Since the region delimited by 𝛾 is compact, there is only a finite number of residues
inside 𝛾. In figure 3, we have drawn a new contour, that also delimits a simple connected
region, but where 𝑓(𝑧) is analytic. We do that for each pole in S𝛾. Thus, if we let 𝑐𝑗

denotes the circle that closes the pole 𝑧𝑗, it follows from the Cauchy theorem that

0 = ∮
𝛾
𝑓(𝑧)d𝑧 = ∮

𝛾
𝑓(𝑧)d𝑧 − ∑

𝑧𝑗∈S𝛾

∮
𝑐𝑗

𝑓(𝑧)d𝑧, (2.110)

and using (2.108), we obtain the required result. See that although we have not explicitly
chosen an orientation for the new 𝛾, it should be clear that in either cases (the outer curve
clockwise or not), the signs on (2.110) will remain the same. ∎

𝛾

𝑧𝑖
𝑧𝑗

𝑧𝑘

Figure 3 – New contour integration that encircles the poles of 𝑓(𝑧).

2.4.5 The Sokhotski-Plemelj theorem

It is customary to encounter real integrands which have poles in the integration
contour. For instance, consider

∫
1

0

d𝑥
𝑥 − 𝑥0

. (2.111)



Chapter 2. BASICS CONCEPTS 29

If 𝑥0 ∉ (︀0,1⌋︀, this integral in well defined in the Riemann sense. However, if 𝑥0 ∈
(0,1), then this integral is not well defined in the Riemann sense. If such a problem
appears in physical problems, we need to state how it appeared and its interpretation,
and try to extract a finite value of it. One possibility is the Cauchy principal value:

Definition 4 If 𝑓(𝑥) is integrated over an interval (︀𝑎, 𝑏⌋︀ that contains a pole 𝑥0, we define
the principal value as

𝑃 ∫
𝑏

𝑎
𝑓(𝑥)d𝑥 = lim

𝛿→0+
(∫

𝑥0−𝛿

𝑎
𝑓(𝑥)d𝑥 + ∫

𝑏

𝑥0+𝛿
𝑓(𝑥)d𝑥) (2.112)

if such a limit exists. The letter 𝑃 in the left of the integral indicates a principal value.

One might ask if exists a connection between the Cauchy principal value and the
residue theorem, since both of them deals with singularities. The answer is an important
theorem, called Sokhotski-Plemelj theorem:

Theorem 6 Suppose 𝑓 is analytic in a neighborhood of 𝑥0 ∈R, then

lim
𝜖→0+∫

𝑏

𝑎

𝑓(𝑥)
𝑥 − 𝑥0 ∓ 𝑖𝜖

d𝑥 = 𝑃 ∫
𝑏

𝑎

𝑓(𝑥)
(𝑥 − 𝑥0)

d𝑥 ± 𝑖𝜋𝑓(𝑥0), (2.113)

or even
lim
𝜖→0+

1
𝑥 − 𝑥0 ∓ 𝑖𝜖

= 1
𝑥 − 𝑥0

± 𝑖𝜋𝛿(𝑥 − 𝑥0). (2.114)

Proof:

Define the two limiting processes

𝜑±(𝑥0) = lim
𝜖→0+∫

𝑏

𝑎

𝑓(𝑥)
𝑥 − 𝑥0 ∓ 𝑖𝜖

d𝑥. (2.115)

We start by analyzing 𝜑+(𝑥0). Since 𝑓(𝑥) is analytic in a ball of radius 𝑅 centered
in 𝑥0, let 0 < 𝛿 < 𝑅. Then

∫
𝑏

𝑎

𝑓(𝑥)
(𝑥 − 𝑥0 − 𝑖𝜖)

d𝑥 = ∫
𝛾𝛿

𝑓(𝑧)
𝑥0 − 𝑖𝜖

d𝑧 (2.116)

where 𝐶𝛿 is the contour shown in Figure 4.

Therefore, we may take 𝜖→ 0+ and we get

𝜑+(𝑥0) = ∫
𝛾𝛿

𝑓(𝑧)
𝑧 − 𝑥0

d𝑧, (2.117)

and since 𝜑+(𝑥0) is independent of 𝛿, we may write

𝜑+(𝑥0) = lim 𝛿 → 0+ (∫
𝑥0−𝛿

𝑎

𝑓(𝑥)
𝑥 − 𝑥0

d𝑥 + ∫
𝑏

𝑥0+𝛿

𝑓(𝑥)
𝑥 − 𝑥0

d𝑥 + ∫
𝐶𝛿

𝑓(𝑧)
𝑧 − 𝑥0

d𝑧)

= 𝑃 ∫
𝑏

𝑎

𝑓(𝑥)
𝑥 − 𝑥0

d𝑥 + lim
𝛿→0+∫𝐶𝛿

𝑓(𝑧)
𝑧 − 𝑥0

.

(2.118)
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𝑥0 − 𝛿

𝐶𝛿

𝑥

𝑥0 + 𝑖𝜖
𝑥0 + 𝛿 𝛾𝛿

Figure 4 – The contour 𝛾𝛿. Now, 𝜖 can be taken to zero alongise this path and the integral
will still exists.

But given that 𝑓(𝑧) is analytic in 𝑥0, we find that

𝑓(𝑧)
𝑧 − 𝑥0

= 1
𝑧 − 𝑥0

∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑥0)𝑛 =
∞

∑
𝑛=−1

𝑎𝑛(𝑧 − 𝑥0)𝑛, (2.119)

with 𝑎−1 = 𝑓(𝑥0). Thus, if we use 𝐶𝛿 = 𝑥0 + e𝑖𝜃, 𝜃 ∈ (︀𝜋,2𝜋⌋︀, we get

∫
𝐶𝛿

𝑓(𝑧)
𝑧 − 𝑥0

d𝑧 = 𝑖𝜋𝑓(𝑥0) + 2
∞

∑
𝑛=0

𝑎2𝑛𝛿2𝑛+1

2𝑛 + 1 . (2.120)

The first term is easily obtained, just substitute the analytic expansion for 𝑓(𝑧)⇑(𝑧 −𝑥0),
use the said parametrization and integrate for 𝑛 = −1. Now, the second term will read as

∞

∑
𝑛=0

𝑎𝑛∫
𝐶𝛿

d𝑧(𝑧 − 𝑥0)𝑛 =
∞

∑
𝑛=0

𝑖𝑎𝑛𝛿
𝑛+1∫

2𝜋

𝜋
d𝜃e𝑖𝜃(𝑛+1) =

= ∑
𝑛

𝑎𝑛𝛿𝑛+1

𝑛 + 1 (︀1 − cos((𝑛 + 1)𝜋)⌋︀,
(2.121)

which is 2 if 𝑛 is even and 0 otherwise. Thus,

lim
𝛿→0+∫𝐶𝛿

𝑓(𝑧)
𝑧 − 𝑥0

d𝑧 = 𝑖𝜋𝑓(𝑥0). (2.122)

Finally,
𝜑+(𝑥0) = 𝑃 ∫

𝑏

𝑎

𝑓(𝑥)
𝑥 − 𝑥0

d𝑥 + 𝑖𝜋𝑓(𝑥0), (2.123)

and as this hold true for any function 𝑓 , we may write

lim
𝜖→0+

1
𝑥 − 𝑥0 − 𝑖𝜖

= 1
𝑥 − 𝑥0

+ 𝑖𝜋𝛿(𝑥 − 𝑥0). (2.124)

A similar analysis for 𝜑−(𝑥0) concludes the theorem.

∎
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3 QUANTUM BROWNIAN MOTION

3.1 The Model Lagrangian
We consider a single non-relativistic particle of mass 𝑚 in a harmonic potential of

characteristic frequency 𝜔0 with Lagrangian

𝐿p =
𝑚

2 𝑥̇
2 − 𝑚𝜔

2
0

2 𝑥2, (3.1)

such that 𝑥 = 𝑥(𝑡) is the particle position, and hereafter a dot over a quantity means
time-derivative. We assume that this particle interacts with a reservoir modeled by a
continuum of oscillators labeled by 𝜈, 𝜈 > 0, with Lagrangian

𝐿R =
𝜇

2 ∫
∞

0
d𝜈 (𝑅̇2 − 𝜈2𝑅2) . (3.2)

The reservoir variables are such that 𝑅 = 𝑅(𝑡, 𝜈). We take the possibly time-
dependent interaction between the test oscillator and the reservoir to be mediated by

𝐿int = 𝑥∫
∞

0
d𝜈𝛽𝑅̇, (3.3)

where the coupling constant, 𝛽 = 𝛽(𝑡, 𝜈), is assumed to be different from zero for all
reservoir frequencies 𝜈. Also, 𝛽 is taken to satisfy 𝛽(𝑡,−𝜈) = 𝛽(𝑡, 𝜈). This type of coupling
is well-known and it is the essence, for instance, of the Hopfield dielectric model [16].
Hence, the total Lagrangian is

𝐿 = 𝐿p +𝐿R +𝐿int =
𝑚

2
(𝑥̇2 − 𝜔2

0𝑥
2) + 𝜇2 ∫

∞

0
d𝜈 (𝑅̇2 − 𝜈2𝑅2) + 𝑥∫

∞

0
d𝜈𝛽𝑅̇. (3.4)

Now, if a Lagrangian can be expressed as 𝐿(𝑡, 𝑥𝑖, 𝑥̇𝑖), then the Euler-Lagrange equations
read as

𝛿𝐿

𝛿𝑥𝑖

− d
d𝑡
𝛿𝐿

𝛿𝑥̇𝑖

= 0, (3.5)

where 𝛿𝐿
𝛿𝑥̇𝑖

is called conjugate momenta. Thus, applying these equations to the (3.4), we
get

𝜕𝐿

𝜕𝑥
= −𝑚𝜔2

0𝑥 + ∫
∞

0
d𝜈𝛽𝑅̇, 𝑝 ∶= 𝜕𝐿

𝜕𝑥̇
=𝑚𝑥̇, (3.6)

which implies
𝑥̈ + 𝜔2

0𝑥 =
1
𝑚 ∫

∞

0
d𝜈𝛽𝑅̇. (3.7)

Now, for the reservoir, we get

𝛿𝐿

𝛿𝑅
= −𝜇𝜈2𝑅, 𝑄 ∶= 𝛿𝐿

𝛿𝑅̇
= 𝜇𝑅̇ + 𝑥𝛽, (3.8)
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which permits us to conclude

𝑅̈ + 𝜈2𝑅 = − 1
𝜇

d
d𝑡(𝑥𝛽), (3.9)

and these are the equations of motion of the given system. We see that if 𝛽 ≠ 0, Eq. (3.7)
describes a harmonic oscillator driven by the external force 𝐹 = ∫

∞

0 d𝜈𝛽𝑅̇, which in turn
depends on the oscillator velocity 𝑣 = 𝑥̇ by means of Eq. (3.9). Therefore, the coupling
given by Eq. (3.3) models some sort of viscous medium for the oscillator under study.
Note also that this coupling is distinct from the coupling of [42, 43], but is included in
the generalized model of [44].

Notice that when the reservoir oscillators are quantized, the force 𝐹 undergoes
quantum fluctuations, giving rise to a sort of Quantum Brownian motion [45]. In order to
gain a deeper insight on how this occurs, let us consider the (weak coupling) limit where
𝛽 → 0, for which the R.H.S. of Eq. (3.7) approaches zero. In physical terms, this corre-
sponds to the case where the oscillator under study is a test particle that cannot interfere
with the reservoir in an appreciable manner. In this limit, the momentum canonically
conjugated to 𝑅 is

𝑄 = 𝜇𝑅̇ + 𝛽𝑥 ≈ 𝜇𝑅̇, (3.10)

and let us assume first that only the reservoir oscillators are quantized, i.e., an operator-
valued distribution for 𝑅(𝑡, 𝜈) subjected to the commutation relation

(︀𝑅(𝑡, 𝜈),𝑄(𝑡, 𝜈′)⌋︀ = 𝑖𝛿(𝜈 − 𝜈′) (3.11)

is known. Then the force 𝐹 is also an operator, since it is defined in terms of 𝑅, and we
find that Eq. (3.7) becomes a Langevin equation for 𝑥 leading to ∐︀(Δ𝑣)2̃︀ ≠ 0 by means of
the fluctuations of 𝐹 . Here, the expectation value is taken with respect to the reservoir
quantum state. This is precisely the regime considered in the quantum Brownian motion
of [13], where the force 𝐹 was sourced by Casimir stresses on a charged test particle.

In our model, though, we do not assume the weak coupling regime and we also
consider the particle’s own “quantumness.” Thus uncertainties in measuring the particle
velocity exist independently of the particle’s interaction with the reservoir. Therefore,
from the knowledge of ∐︀(Δ𝑣)2̃︀ as a function of time, one can, in principle, determine how
the interaction with the reservoir eventually affects the particle’s Brownian motion.

The considerations above are general and hold for arbitrary time-dependencies of
the coupling constant. Nevertheless, in our work we are interested in transient effects when
the particle’s interaction with the reservoir starts at a given time, say, 𝑡 = 0. Specifically, we
consider the case for which 𝛽 = 0 for 𝑡 < 0, henceforth called the non-interacting period, and
𝛽 assumes a time-independent value after 𝑡 > 0, the interacting regime. This assumption
has the advantage of leading to analytical solutions for the quantum correlations.
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3.2 Energy Conservation
The major advantage of adopting microscopic models, which are notoriously convo-

luted, over Langevin methods is the level of control over the conservation laws. Following
[46], we take the particle mechanical and kinetic energy as probes of the quantum fluc-
tuations on the system. To obtain the systems Hamiltonian, we first recall the conjugate
momenta:

𝑝 =𝑚𝑥̇,

𝑄 = 𝜇𝑅̇ + 𝑥𝛽,
(3.12)

since the variables 𝑥̇ and 𝑅̇ can be written in terms of 𝑝 and 𝑄, we may calculate the
Hamiltonian:

H = 𝑝𝑥̇ + ∫
∞

0
d𝜈𝑄𝑅̇ −𝐿

= 𝑝2

2𝑚 +
𝑚𝜔2

0
2 𝑥2 + 1

2𝜇 ∫
∞

0
d𝜈 (𝑄2 + 𝑥2𝛽2 + 𝜇2𝜈2𝑅2 − 2𝑥𝛽𝑄)

= 𝑝2

2𝑚 +𝑚𝜔
2
e𝑥

2 − 𝑥
𝜇 ∫

∞

0
d𝜈𝛽𝑄 + 1

2 ∫
∞

0
d𝜈 (𝑄

2

𝜇
+ 𝜇𝜈2𝑅2)

(3.13)

where the time-dependent “effective” frequency 𝜔e is defined by

𝜔2
e = 𝜔2

0 +
1
𝑚𝜇 ∫

∞

0
d𝜈𝛽2. (3.14)

We note that because the system is interacting there is some degree of freedom in in-
terpreting the particle’s energy, the effective frequency, the interaction energy, and the
reservoir energy, because only the full Hamiltonian, 𝐻, is unambiguously defined. The
quantity 𝜔e only coincides with the oscillator effective frequency in certain cases, where a
careful limit of the system parameters should be observed. We cite [47] for a recent study
of a particle in a time-dependent harmonic potential.

For our purposes, and because we work in the Heisenberg picture, it is instructive
to express the Hamiltonian in terms of velocities rather than momenta as in Eq. (3.13),
which will allow for the identification of how the particle mechanical energy changes as
the interaction is turned on. We find that

H = 𝑚2 𝑥̇
2 + 𝑚𝜔

2
0

2 𝑥2 + 1
2𝜇 ∫

∞

0
d𝜈𝛽2𝑥2 − 𝑥

𝜇 ∫
∞

0
d𝜈 (𝛽𝜇𝑅̇ + 𝑥𝛽2)+

+ 1
2 ∫

∞

0
d𝜈 (𝜇𝑅̇2 + 2𝑅̇𝑥𝛽 + 𝑥

2𝛽2

𝜇
+ 𝜈2𝜇𝑅2)

= 𝑚2 𝑥̇
2 + 𝑚𝜔

2
0

2 𝑥2

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
Hp

+ 𝜇2 ∫
∞

0
d𝜈 (𝑅̇2 + 𝜈2𝑅2)

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
HR

,

(3.15)

where the first two terms were identified as Hp, while the latter is HR. We note that 𝐻p

coincides with the particle’s energy before the interaction is turned on, at 𝑡 = 0. Let us
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analyze the conservation of energy. We know that

dHp

d𝑡 =𝑚𝑥̇𝑥̈ +𝑚𝜔
2
0𝑥𝑥̇,

dHR

d𝑡 = 𝜇∫
∞

0
d𝜈 (𝑅̇𝑅̈ + 𝜈2𝑅𝑅̇) . (3.16)

Using equation (3.7) and substituting in dHp
d𝑡 , we get

dHp

d𝑡 =𝑚𝑥̇(
1
𝑚 ∫

∞

0
d𝜈𝛽𝑅 − 𝜔2

0𝑥) +𝑚𝜔2
0𝑥𝑥̇ = 𝑥̇∫

∞

0
d𝜈𝛽𝑅̇. (3.17)

Writing (3.9) as
𝑅̈ = − 1

𝜇
𝛽̇𝑥 − 1

𝜇
𝛽𝑥̇ − 𝜈2𝑅, (3.18)

hence
dHR

d𝑡 = ∫
∞

0
d𝜈 (𝜇𝑅̇𝑅̈ + 𝜇𝜈2𝑅𝑅̇) =

= ∫
∞

0
d𝜈 (−𝛽̇𝑅̇𝑥 − 𝛽𝑥̇𝑅̇ − 𝜇𝜈2𝑅𝑅̇ + 𝜇𝜈2𝑅𝑅̇)

= ∫
∞

0
d𝜈 − (𝛽𝑥̇𝑅̇ + 𝛽̇𝑥𝑅̇).

(3.19)

Therefore,
d𝐻
d𝑡 = −𝑥∫

∞

0
d𝜈𝛽̇𝑅̇, (3.20)

and thus d𝐻⇑d𝑡 = 0 for 𝑡 ≠ 0, when 𝛽 is time-independent. Accordingly, changes in 𝐻p are
followed by changes in 𝐻R for 𝑡 ≠ 0 ensuring that 𝐻 remains constant. We will adopt the
observable 𝐻p as a measure of how the particle energy changes as it enters the interacting
regime.

In what follows, the quantization of this theory is worked out for all possible
choice of parameters in order to determine the fluctuations of 𝑥 and 𝑥̇, the probes of the
environment-induced Brownian motion on the particle. We are interested in studying how
∐︀𝐻p̃︀ changes as the interactions are turned on. We also discuss changes in ∐︀𝑇 ̃︀, where
𝑇 = 𝑚𝑣2⇑2 is the particle kinetic energy. It should be stressed that the identification of
the particle’s energy is one of the main strengths of the microscopic model over Langevin
equation methods, for which in general it is not possible to write down the system Hamil-
tonian and it is not always clear how to treat time-dependent scenarios. This is similar to
what occurs in discussing energy in effective models for polarization and magnetization
in electrodynamics [48].

3.3 Canonical Quantization
We work in the Heisenberg picture, for which quantization can be obtained from

the expansion of the quantities 𝑥 and 𝑅 in a complete set of mode functions followed by
imposition of the canonical commutation relations on the Fourier coefficients. Therefore,
we start by solving for the most general solution of the equations of motion.
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We define the two-component “field” Ψ, such that Ψ1 = Ψ1(𝑡) = 𝑥(𝑡) and Ψ2 =
Ψ2(𝑡, 𝜈) = 𝑅(𝑡, 𝜈). We note that 𝜈 plays the same coordinate role as 𝑡. With this definition,
Eqs. (3.7) and (3.9) combine into a single field equation for Ψ, which in turn implies the
following proposition

Proposition 3 Under equations (3.7) and (3.9), the following quantity is time-independent
for any two solutions of the field equation:

∐︀Ψ,Ψ′̃︀ = 𝑖⌊︀𝑚(Ψ∗1𝜕𝑡Ψ
′
1 −Ψ′

1𝜕𝑡Ψ∗1) + 𝜇∫
∞

0
d𝜈 (Ψ∗2𝜕𝑡Ψ

′
2 −Ψ′

2𝜕𝑡Ψ∗2)

− ∫
∞

0
d𝜈𝛽(Ψ∗1Ψ′

2 −Ψ′
1Ψ∗2)}︀, (3.21)

and therefore this is the defined sesquilinear form for our field. Being time inde-
pendent is fundamental since it assures that orthogonal modes in a given time 𝑡0 will
remain orthogonal.

Proof:

It is easier to look to the “old” motion equations using the given field notation. In
fact, we get

Ψ∗1 (𝜕2
𝑡 + 𝜔2

0)Ψ′1 = Ψ∗1
1
𝑚 ∫

∞

0
d𝜈𝛽Ψ̇′2

Ψ′1 (𝜕2
𝑡 + 𝜔2

0)Ψ∗1 = Ψ′1
1
𝑚 ∫

∞

0
d𝜈𝛽Ψ̇∗2,

(3.22)

and if we sum the two equations above, we get

𝜕

𝜕𝑡
𝑚 (Ψ∗1𝜕𝑡Ψ′1 −Ψ′1𝜕𝑡Ψ∗1) = ∫

∞

0
d𝜈𝛽 (Ψ∗1𝜕𝑡Ψ′2 −Ψ′1𝜕𝑡Ψ∗2) . (3.23)

The treatment for the (3.9) is the same and we obtain

− 𝜕
𝜕𝑡 ∫

∞

0
d𝜈𝜇 (Ψ∗2𝜕𝑡Ψ′2 −Ψ′2𝜕𝑡Ψ∗2) = ∫

∞

0
Ψ∗2𝜕𝑡(𝛽Ψ′1) −Ψ′2𝜕𝑡(𝛽Ψ∗1). (3.24)

If we write the second part of (3.23) as

𝜕

𝜕𝑡 ∫
∞

0
d𝜈𝛽Ψ∗1Ψ′2 − 𝛽Ψ′1Ψ∗2 + ∫

∞

0
Ψ∗2𝜕𝑡(𝛽Ψ′1) −Ψ′2𝜕𝑡(𝛽Ψ∗1), (3.25)

we recognize as the rhs of (3.24) and, after factorizing the global time derivative, we get

𝜕

𝜕𝑡
⌊︀𝑚 (Ψ∗1𝜕𝑡Ψ′1 −Ψ′1𝜕𝑡Ψ∗1) + 𝜇∫

∞

0
d𝜈 (Ψ∗2𝜕𝑡Ψ′2 −Ψ′2𝜕𝑡Ψ∗2)

− ∫
∞

0
d𝜈𝛽 (Ψ∗1Ψ′2 −Ψ∗2Ψ′1) }︀ = 0,

(3.26)

which concludes the proof. The imaginary unit 𝑖 in the formula comes from the following
observation: since this equation should work for every solution, it does so for a simple
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wave solution e−𝑖𝜔𝑡𝐶𝜔, where 𝐶𝜔 is a normalization constant. Putting this solution in the
above formula, we get a complex quantity, and hence the necessity of the imaginary unity.

∎

We can use this scalar product to find a complete set of positive norm field modes
{Ψ𝜔}, i.e., ∐︀Ψ𝜔,Ψ𝜔′̃︀ = 𝛿𝜔𝜔′ such that

Ψ = ∑
𝜔

(︀𝑎𝜔Ψ𝜔 + 𝑎∗𝜔Ψ∗𝜔⌋︀ , (3.27)

and 𝑎𝜔 = ∐︀Ψ𝜔,Ψ̃︀. We note that 𝜔 here is a generic index that might assume continuous
and/or discrete values. Also, it follows from Eq. (3.21) that if Ψ𝜔 is a positive norm
solution, then Ψ∗𝜔 has negative norm, and both positive and negative norm modes are
necessary to span the whole space of solutions. Finally, the Fourier coefficients 𝑎𝜔 are
time-independent and uniquely determined once Ψ, 𝜕𝑡Ψ are given in some initial instant
of time, i.e., we have a well-defined Cauchy problem.

As customary in any field theory, different sets of field modes lead to physically dis-
tinct physical vacua. In our model, a privileged choice can be made in the non-interacting
regime, for which the theory vacuum corresponds to all the oscillators in their fundamen-
tal states. Specifically, for 𝑡 < 0, we look for field modes indexed by their positive frequency
𝜔 such that Ψ𝜔 ∝ exp(−𝑖𝜔𝑡). These functions comprise a complete set of positive norm
field modes.

Indeed, the first obvious field mode is given 𝜔 = 𝜔0, with Ψ𝜔0,2 = 0, and

Ψ𝜔0,1(𝑡) =
1⌋︂

2𝜔0𝑚
e−𝑖𝜔0𝑡, (3.28)

which is already normalized: ∐︀Ψ𝜔0 ,Ψ𝜔0̃︀ = 1. The second family of mode functions corre-
spond to the case where only one reservoir oscillator is excited. If we denote by Φ𝜔 such
functions, then, for each 𝜔 > 0, we find Φ𝜔,1 = 0, and

Φ𝜔,2(𝑡, 𝜈) =
𝛿(𝜈 − 𝜔)⌋︂

2𝜈𝜇
e−𝑖𝜈𝑡. (3.29)

Therefore, for 𝑡 < 0, we find the general expression

Ψ = 𝑎𝜔0Ψ𝜔0 + 𝑎∗𝜔0Ψ∗𝜔0 + ∫
∞

0
d𝜔(𝑏𝜔Φ𝜔 + 𝑏∗𝜔Φ∗𝜔). (3.30)

In particular, because 𝑥 = Ψ1, we find for 𝑡 < 0 that

𝑥(𝑡) = 1⌋︂
2𝜔0𝑚

(𝑎𝜔0e−𝑖𝜔0𝑡 + 𝑎∗𝜔0e𝑖𝜔0𝑡). (3.31)

We observe that each mode function is a solution of the field equation. Thus, if
the evolution of Ψ𝜔0 and Φ𝜔 is known, Eq. (3.30) furnishes 𝑥 at all times. In order to find
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the evolution of Ψ𝜔0 , we note that if {Γ𝜔} is a complete set of positive norm field modes
in the interaction period, then, for 𝑡 > 0, we can write

Ψ𝜔0(𝑡) = ∫
∞

0
d𝜔(︀𝑐𝜔Γ𝜔(𝑡) + 𝑑∗𝜔Γ∗𝜔(𝑡)⌋︀, (3.32)

where 𝑐𝜔 = ∐︀Γ𝜔,Ψ𝜔0̃︀⋃︀𝑡→0+ , 𝑑∗𝜔 = −∐︀Γ∗𝜔,Ψ𝜔0̃︀⋃︀𝑡→0+ . Note that as the interacting period starts,
the second entry of Ψ𝜔0 , that vanishes in the non-interacting period, can be non-zero.
Similarly, we find that, for 𝑡 > 0,

Φ𝜔(𝑡) = ∫
∞

0
d𝜔′(︀𝑐𝜔,𝜔′Γ𝜔′(𝑡) + 𝑑∗𝜔,𝜔′Γ∗𝜔′(𝑡)⌋︀, (3.33)

and 𝑐𝜔,𝜔′ = ∐︀Γ𝜔′ ,Φ𝜔̃︀⋃︀𝑡→0+ , 𝑑∗𝜔,𝜔′ = −∐︀Γ∗𝜔′ ,Φ𝜔̃︀⋃︀𝑡→0+ .

The complete set {Γ𝜔} can be obtained as follows. By assuming a time-dependence
in the form Γ𝜔(𝑡) = exp(−𝑖𝜔𝑡)Γ0

𝜔 with 𝜔 > 0, we find that

(𝜔2
0 − 𝜔2)Γ0

𝜔,1 +
𝑖𝜔

𝑚 ∫
∞

0
d𝜈𝛽Γ0

𝜔,2 = 0, (3.34)

(𝜈2 − 𝜔2)Γ0
𝜔,2 −

𝑖𝜔

𝜇
𝛽Γ0

𝜔,1 = 0. (3.35)

Now, the general solution of Eq. (3.35) is

Γ0
𝜔,2(𝜈) =

𝑖𝜔

𝜈2 − 𝜔2
𝛽(𝜈)
𝜇

Γ0
𝜔,1 +𝐴𝜔𝛿(𝜈 − 𝜔), (3.36)

where 𝐴𝜔 is an arbitrary constant. Thus, Eq. (3.34) implies that

(𝜔2
0 − 𝜔2)Γ0

𝜔,1 +
𝑖𝜔

𝑚
(∫

∞

0
d𝜈 𝑖𝜔

𝜈2 − 𝜔2
𝛽2(𝜈)
𝜇

Γ0
𝜔,1 +𝐴𝜔 ∫

∞

0
d𝜈𝛽(𝜈)𝛿(𝜈 − 𝜔)) =

= ]︀𝜔2
0 − 𝜔2 − 𝜔2

𝑚𝜇 ∫
∞

0
d𝜈 𝛽

2(𝜈)
𝜈2 − 𝜔2 {︀
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𝜁𝑟(𝜔)

Γ0
𝜔,1 +

𝑖𝜔

𝑚
𝐴𝜔𝛽(𝜔) = 0, (3.37)

from where we conclude
𝐴𝜔 =

𝑖𝑚

𝜔𝛽(𝜔)
𝜁𝑟(𝜔)Γ0

𝜔,1. (3.38)

Although we used the Greek letter 𝜁 for this function, it should be stressed that this
definition has nothing to do with the Riemann zeta function. The subscript “𝑟” in the
definition is due to the following proposition:

Proposition 4 The defined function 𝜁𝑟(𝜔) is the real part of a complex function 𝜁(𝜔),
i.e., 𝜁𝑟(𝜔) = Re(︀𝜁(𝜔)⌋︀, and

𝜁(𝜔) = 𝜔2
0 − 𝜔2 − 𝜔

2𝑚𝜇 ∫
∞

−∞
d𝜈 𝛽2(𝜈)
𝜈 − 𝜔 + 𝑖𝜖

. (3.39)
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Here, 𝜖 > 0 is a small parameter to be taken to zero at the end of the calculations. Clearly,
when 𝜔 > 0,

𝜁𝑖(𝜔) = Im(︀𝜁(𝜔)⌋︀ = 𝜋𝜔𝛽
2(𝜔)

2𝑚𝜇 > 0. (3.40)

Proof:

First, we begin by separating the integral of 𝜁𝑟 in partial fractions:

1
𝜈2 − 𝜔2 = lim

𝜖→0

1
2𝜔 ( 1

𝜈 − 𝜔 + 𝑖𝜖
− 1
𝜈 + 𝜔 − 𝑖𝜖

) , (3.41)

then, its clear that

𝜁𝑟(𝜔) = Re(︀𝜁(𝜔)⌋︀ = Re ]︀𝜔2
0 − 𝜔2 − 𝜔

4𝑚𝜇 ∫
∞

0
d𝜈𝛽2(𝜈) ( 1

𝜈 − 𝜔 + 𝑖𝜖
− 1
𝜈 + 𝜔 − 𝑖𝜖

){︀ . (3.42)

Now, we may separate the integral in the sum and do the substitution 𝜈 → −𝜈, and using
that 𝛽(𝜈) is an even function, we finish the first part of the proposition. To verify the last
part, just remember the Sokhotski-Plemelj (see section 2.4.5):

lim
𝜖→0

1
𝑥 − 𝑥0 ± 𝑖𝜖

= 1
𝑥 − 𝑥0

∓ 𝑖𝜋𝛿(𝑥 − 𝑥0) Ô⇒ 𝜁𝑖(𝜔) = Im(︀𝜁(𝜔)⌋︀ = 𝜋𝜔𝛽
2(𝜔)

2𝑚𝜇 . (3.43)

∎

The quantity Γ0
𝜔,1 is a normalization constant, which can be determined through

the scalar product. In fact, since the scalar product was shown to be time independent,
we may just focus our analysis on the sole time independent term in ∐︀Γ𝜔,Γ𝜔′̃︀, since the
other terms will cancel out after some algebra. We obtain

∐︀Γ𝜔,Γ𝜔′̃︀ =
2𝜇𝑚2

𝜔𝛽2(𝜔)
⋃︀𝜁(𝑤)⋃︀2⋃︀Γ0

𝜔,1⋃︀2𝛿(𝜔 − 𝜔′), (3.44)

but we know that
𝜁𝑖(𝜔) =

𝜋𝜔𝛽2(𝜔)
2𝑚𝜇 Ô⇒ 2𝜇𝑚2

𝜔𝛽2(𝜔)
= 𝜋𝑚

𝜁𝑖(𝜔)
, (3.45)

hence
∐︀Γ𝜔,Γ𝜔′̃︀ = ⋂︀Γ0

𝜔,1⋂︀
2 𝑚𝜋⋃︀𝜁(𝜔)⋃︀2

𝜁𝑖(𝜔)
𝛿(𝜔 − 𝜔′), (3.46)

and thus

Γ0
𝜔,1 =

1⌋︂
𝑚𝜋

⌈︂
𝜁𝑖(𝜔)
𝜁(𝜔)

(3.47)

finishes the construction of the complete set of positive norm mode functions {Γ𝜔}.

We are ready to determine the Fourier coefficients in Eqs. (3.32) and (3.33). Taking

Ψ𝑤0 =
⎛
⎝

e−𝑖𝜔0𝑡
⌋︂

2𝜔0𝑚

0
⎞
⎠
, Φ𝜔 =

⎛
⎝

0
𝛿(𝜈−𝜔)e−𝑖𝜈𝑡

⌋︂
2𝜈𝜇

,

⎞
⎠

(3.48)
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and the previous relations, we find for 𝑐𝜔

𝑐𝜔 = ∐︀Γ𝜔,Ψ𝜔0̃︀⋃︀𝑡→0+ =
}︂

𝑚

2𝜔0
(𝜔0Γ∗𝜔,1 − 𝑖𝜕𝑡Γ∗𝜔,1)⋂︀𝑡=0 +

+ 𝑖𝜇∫
∞

0
d𝜈𝜕𝑡Ψ𝜔0,2Γ𝜔,2(𝜈)∗ + 𝑖∫

∞

0
𝛽(𝜈) e−𝑖𝜔0𝑡

⌋︂
2𝜔0𝑚

Γ𝜔,2(𝜈)∗.
(3.49)

From the motion equation (3.9), we obtain

Ψ̇𝜔0,2 = −
𝛽(𝜈)
𝜇

e−𝑖𝜔0𝑡

⌋︂
2𝜔0𝑚

, (3.50)

in such a way that when we plug it in the (3.49), it cancels out with the third term and
we get

𝑐𝜔 =
}︂

𝑚

2𝜔0
(𝜔0Γ∗𝜔,1 − 𝑖𝜕𝑡Γ∗𝜔,1)⋂︀𝑡=0 . (3.51)

This may seen odd at a first glance, since this term came from 𝜕𝑡Ψ𝜔0,2, and Ψ𝜔0,2 =
0. But the motion equation implies that the derivative is not, and can easily be seen from
integrating lim𝜖→0 ∫

𝜖

−𝜖 d𝑡. The coefficient 𝑑∗𝜔 is obtained in the same way, with the same
reasoning. For the coefficient 𝑐𝜔,𝜔′ = ∐︀Γ𝜔′ ,Φ𝜔̃︀⋃︀𝑡→0+ we have

𝑐𝜔,𝜔′ = 𝑖𝑚Γ∗𝜔′𝜕𝑡Φ𝜔,1 +
{︂

𝜇

2𝜔 ]︀(𝜔 − 𝑖𝜕𝑡)Γ∗𝜔′,2(𝑡, 𝜔) −
𝑖𝛽(𝜔)
𝜇

Γ∗𝜔′,1{︀⋀︀
𝑡=0
, (3.52)

but when we use the motion equation (3.7) for the first term and do the same procedure
as we did before, i.e., integrate lim𝜖→0 ∫

𝜖

−𝜖 d𝑡, we obtain zero. Thus,

𝑐𝜔,𝜔′ =
{︂

𝜇

2𝜔 ]︀(𝜔 − 𝑖𝜕𝑡)Γ∗𝜔′,2(𝑡, 𝜔) −
𝑖𝛽(𝜔)
𝜇

Γ∗𝜔′,1{︀⋀︀
𝑡=0
. (3.53)

Therefore, the various Fourier components appearing in Eqs. (3.32), (3.33) are
given by

𝑐𝜔 =
}︂

𝑚

2𝜔0
(𝜔0Γ∗𝜔,1 − 𝑖𝜕𝑡Γ∗𝜔,1)⋂︀𝑡=0 ,

𝑑∗𝜔 = −
}︂

𝑚

2𝜔0
(𝜔0Γ𝜔,1 − 𝑖𝜕𝑡Γ𝜔,1)⋃︀𝑡=0 ,

𝑐𝜔,𝜔′ =
{︂

𝜇

2𝜔 ]︀(𝜔 − 𝑖𝜕𝑡)Γ∗𝜔′,2(𝑡, 𝜔) −
𝑖𝛽(𝜔)
𝜇

Γ∗𝜔′,1{︀⋀︀
𝑡=0
,

𝑑∗𝜔,𝜔′ =
{︂

𝜇

2𝜔 ]︀(𝑖𝜕𝑡 − 𝜔)Γ𝜔′,2(𝑡, 𝜔) +
𝑖𝛽(𝜔)
𝜇

Γ𝜔′,1{︀⋀︀
𝑡=0
.

(3.54)

Finally, the quantization of the system is concluded by promoting the c-numbers
𝑎𝜔0 , 𝑏𝜔 of the expansion (3.30) to operators subjected to the commutation relations
(︀𝑎𝜔0 , 𝑏𝜔⌋︀ = 0, (︀𝑏𝜔, 𝑏𝜔′⌋︀ = 0, and

(︀𝑎𝜔0 , 𝑎
†
𝜔0⌋︀ = 1, (3.55)

(︀𝑏𝜔, 𝑏
†
𝜔′⌋︀ = 𝛿(𝜔 − 𝜔′). (3.56)
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Accordingly, the system vacuum state, ⋃︀0̃︀, defined by 𝑎𝜔0 ⋃︀0̃︀ = 𝑏𝜔 ⋃︀0̃︀ = 0 for all 𝜔 > 0,
corresponds to the case where all the oscillators are in their fundamental states before
the interaction is turned on.

We note that by plugging the mode expansions (3.32), (3.33) back into Eq. (3.30)
we find that, for 𝑡 > 0,

Ψ(𝑡) = ∫
∞

0
d𝜔 )︀𝛾𝜔Γ𝜔(𝑡) + 𝛾†

𝜔Γ∗𝜔(𝑡)⌈︀ , (3.57)

where the operators 𝛾𝜔 are related to the non-interacting creation operators via the Bo-
goliubov transformation (see section 2.3)

𝛾𝜔 = 𝑐𝜔𝑎𝜔0 + 𝑑𝜔𝑎
†
𝜔0 + ∫

∞

0
d𝜈 (𝑐𝜈,𝜔𝑏𝜈 + 𝑑𝜈,𝜔𝑏

†
𝜈) . (3.58)

A lengthy computation then reveals that the operators 𝛾𝜔 satisfy

(︀𝛾𝜔, 𝛾𝜔′⌋︀ = 0, (3.59)
)︀𝛾𝜔, 𝛾

†
𝜔′⌈︀ = 𝛿(𝜔 − 𝜔′). (3.60)

In fact, let us explicitly verify the first relation. Using (3.58) and the linearity of
the commutator, we get

(︀𝛾𝜔, 𝛾𝜔′⌋︀ = 𝑐𝜔𝑑𝜔′ − 𝑑𝜔𝑐𝜔′ + ∫ d𝜈(𝑐𝜈,𝜔𝑑𝜈,𝜔′ − 𝑑𝜈,𝜔𝑐𝜈,𝜔′). (3.61)

The first two terms can be computed easily using (3.54) and reduce to 1

𝑐𝜔𝑑𝜔′ − 𝑑𝜔𝑐𝜔′ = −𝑖𝑚(Γ∗𝜔,1
↔

𝜕𝑡Γ∗𝜔′,1) . (3.62)

The last two terms in the integrand can be written like

𝑐𝜈,𝜔𝑑𝜈,𝜔′ − 𝑑𝜈,𝜔𝑐𝜈,𝜔′ = −
𝜇

𝜈
(𝜈Γ∗𝜔,2𝑖𝜕𝑡Γ∗𝜔′,2 + 𝜈Γ∗𝜔,2𝑖

𝛽(𝜈)
𝜇

Γ∗𝜔′,1 − 𝑖𝜕𝑡Γ∗𝜔,2𝜈Γ∗𝜔′,2 − 𝑖
𝛽(𝜈)
𝜇

Γ∗𝜔,1𝜈Γ∗𝜔′,2)

= −𝑖 ]︀𝜇∫ d𝜈Γ∗𝜔,2
↔

𝜕𝑡Γ∗𝜔′,2 − ∫ d𝜈𝛽(𝜈) (Γ∗𝜔,1Γ∗𝜔′,2 − Γ∗𝜔′,1Γ∗𝜔,2){︀ ,

(3.63)

hence

(︀𝛾𝜔, 𝛾𝜔′⌋︀ = −𝑖 ]︀𝑚(Γ∗𝜔,1
↔

𝜕𝑡Γ∗𝜔′,1) + 𝜇∫ d𝜈Γ∗𝜔,2
↔

𝜕𝑡Γ∗𝜔′,2 − ∫ d𝜈𝛽(𝜈) (Γ∗𝜔,1Γ∗𝜔′,2 − Γ∗𝜔′,1Γ∗𝜔,2){︀

= −∐︀Γ𝜔,Γ∗𝜔′̃︀ = 0.
(3.64)

By the same procedure, one finds (︀𝛾𝜔, 𝛾∗𝜔′⌋︀ = ∐︀Γ𝜔,Γ𝜔′̃︀ = 𝛿(𝜔 − 𝜔′).

1 The notation 𝐴
↔

𝜕𝑡𝐵 means 𝐴𝜕𝑡𝐵 −𝐵𝜕𝑡𝐴.
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The commutation relations above are of great importance to our analysis. Indeed,
if the system under study were quantized already in the interacting period, one would
obtain the expansion (3.57) with the corresponding (instantaneous) vacuum state, ⋃︀0̃︀qp,
of the theory defined as 𝛾𝜔 ⋃︀0̃︀qp = 0 for all 𝜔. This choice of quasiparticle vacuum gives
rise to the well-known model explored in [45, 32]. In our case, however, ⋃︀0̃︀qp ≠ ⋃︀0̃︀, and
thus Eq. (3.58) is the Bogoliubov transformation relating the two quantum field repre-
sentations. We discuss the relation between the two vacua in the next section.

We finish this section with a remark regarding the canonical commutation relation
for the Heisenberg operator [see Eq. (3.57)]

𝑥(𝑡) = 1⌋︂
𝑚𝜋
∫
∞

0
d𝜔

⌈︂
𝜁𝑖(𝜔) ⌊︀𝛾𝜔

e−𝑖𝜔𝑡

𝜁(𝜔)
+𝐻.𝑐.}︀ . (3.65)

Thus it follows that

Proposition 5
(︀𝑥(𝑡), 𝑝(𝑡)⌋︀ = − 1

𝜋 ∫
∞

−∞
d𝜔 𝜔

𝜁(𝜔)
, (3.66)

where we used the definition 𝑝 =𝑚𝑥̇.

Proof:

In fact, let us see the product 𝑥(𝑡)𝑝(𝑡):

𝑥(𝑡)𝑝(𝑡) = 1
𝜋 ∫

∞

0
d𝜔d𝜔′

⌈︂
𝜁𝑖(𝜔)𝜁𝑖(𝜔′)

⎛
⎝
𝛾𝜔𝛾∗𝜔′𝑖𝜔

′e−𝑖(𝜔−𝜔′)𝑡

𝜁(𝜔)𝜁∗(𝜔′)
− 𝛾𝜔𝛾𝜔′𝑖𝜔′e−𝑖(𝜔+𝜔′)𝑡

𝜁(𝜔)𝜁(𝜔′)
+

+
𝛾∗𝜔𝛾

∗
𝜔′𝑖𝜔

′e𝑖(𝜔+𝜔′)𝑡

𝜁∗(𝜔)𝜁∗(𝜔′)
− 𝛾

∗
𝜔𝛾𝜔′𝑖𝜔′e−𝑖(𝜔′−𝜔)𝑡

𝜁∗(𝜔)𝜁(𝜔′)
⎞
⎠
.

(3.67)

Thus,

(︀𝑥, 𝑝⌋︀ = 1
𝜋 ∫

∞

0
d𝜔 ⋃︀𝜁𝑖(𝜔)⋃︀

⋃︀𝜁(𝜔)⋃︀2
2𝑖𝜔 = 1

𝜋 ∫
∞

0
𝜔 ( 1

𝜁∗(𝜔)
− 1
𝜁(𝜔)

)d𝜔. (3.68)

Now, we introduce a useful lemma:

Lemma 1 If 𝑓(𝑧) is a complex holomorphic function, the real component of 𝑓(𝑧) is even
and the imaginary part is odd, then 𝑓∗(𝑧) = 𝑓(−𝑧).

Making use of this lemma, we get

∫
∞

0
d𝜔 𝜔

𝜁∗(𝜔)
= −∫

0

−∞
d𝜔 𝜔

𝜁(𝜔)
. (3.69)

Formula (3.66) will be obtained if we prove that 𝜁 satisfies the hypothesis of our lemma.
The imaginary part is odd, as can be seen by (3.43).

We verify the real part by definition:

𝜁𝑟(−𝜔) = 𝜔2
0 − 𝜔2 + 𝜔

2𝑚𝜇 ∫
∞

−∞
d𝜈 𝛽

2(𝜈)
𝜈 + 𝜔

𝜈→−𝜈= 𝜔2
0 − 𝜔2 − 𝜔

2𝑚𝜇 ∫
∞

−∞
d𝜈 𝛽

2(𝜈)
𝜈 − 𝜔

= 𝜁𝑟(𝜔). (3.70)
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∎

We note that the function 𝜁(𝜔) defined in Eq. (3.39) is an analytic function in the
lower half complex 𝜔 plane. Furthermore, 𝜁(𝜔) ≠ 0 for all 𝜔 satisfying Im(𝜔) ≤ 0. This
can be seen as follows. If we write 𝜔 = 𝜔𝑟 − 𝑖𝜔𝑖, with 𝜔𝑖 > 0, we find that Im(︀𝜁(𝜔)⌋︀ = 0
only if 𝜔𝑟 = 0, whereas

𝜁(−𝑖𝜔𝑖) = 𝜔2
0 + 𝜔2

𝑖 (1 + 1
𝑚𝜇 ∫

∞

0
d𝜈 𝛽

2(𝜈)
𝜈2 + 𝜔2

𝑖

) , (3.71)

is always positive for 𝜔𝑖 > 0. We conclude from this that 1⇑𝜁(𝜔) is also analytic in the
lower half-plane. This can be used to evaluate the integral in Eq. (3.66) by closing the
integration contour in the lower half complex plane to obtain

(︀𝑥(𝑡), 𝑝(𝑡)⌋︀ = − 𝑖
𝜋

lim
𝑟→∞
∫

2𝜋

𝜋
d𝜃 𝑟

2e2𝑖𝜃

𝜁(𝑟e𝑖𝜃)
= 𝑖, (3.72)

where we used the property 𝜁(𝜔) → −𝜔2 for ⋃︀𝜔⋃︀ → ∞, which holds as long as 𝛽(𝜈) → 0 for
𝜈 →∞.

3.4 Two Point Correlation Function For An Exactly Solvable Case
We now turn our attention to the two-point function ∐︀𝑥(𝑡)𝑥(𝑡′)̃︀, which can be

used to calculate the oscillator quantities of interest here.

Proposition 6 Using the analytical properties of 1⇑𝜁(𝜔), the correlation function as-
sumes the form

∐︀𝑥(𝑡)𝑥(𝑡′)̃︀ = ∐︀𝑥(𝑡)𝑥(𝑡′)̃︀tr + ∐︀𝑥(𝑡)𝑥(𝑡′)̃︀qp, (3.73)

valid for 𝑡, 𝑡′ ≥ 0, where

∐︀𝑥(𝑡)𝑥(𝑡′)̃︀tr =
1

2𝜔0𝑚
{(︀(𝜔0 + 𝑖𝜕𝑡)𝐴(𝑡)⌋︀(︀(𝜔0 − 𝑖𝜕𝑡′)𝐴∗(𝑡′)⌋︀

+ 2𝜔0

𝜋 ∫
∞

0
d𝜔𝜁𝑖(𝜔)(︀𝑖𝐼𝜔(0)e−𝑖𝜔𝑡 − (𝜔 + 𝑖𝜕𝑡)𝐼𝜔(𝑡)⌋︀(︀𝑖𝐼𝜔(0)e𝑖𝜔𝑡′ − (𝜔 − 𝑖𝜕𝑡′)𝐼∗𝜔(𝑡′)⌋︀(︀, (3.74)

is the transient correlation and

∐︀𝑥(𝑡)𝑥(𝑡′)̃︀qp =
1
𝑚𝜋 ∫

∞

0
d𝜔 𝜁𝑖(𝜔)

⋃︀𝜁(𝜔)⋃︀2
e−𝑖𝜔Δ𝑡, (3.75)

is the two-point function with respect to the instantaneous quasiparticle vacuum state.
Here we defined the auxiliary functions

𝐴(𝑡) = 1
𝜋 ∫

∞

−∞
d𝜔 sin(𝜔𝑡)

𝜁(𝜔)
, (3.76)

𝐼𝜔(𝑡) =
1
𝜋 ∫

∞

−∞
d𝜔′ sin(𝜔′𝑡)

𝜁(𝜔′)(𝜔′2 − 𝜔2)
. (3.77)



Chapter 3. QUANTUM BROWNIAN MOTION 43

Proof:

From the equation (3.57), we take the expected value in the vacuum ⋃︀0̃︀qp:

∐︀Ψ(𝑡)Ψ(𝑡′)̃︀qp = ∫
∞

0
d𝜔Γ𝜔(𝑡)Γ∗𝜔(𝑡′) =

1
𝑚𝜋 ∫

∞

0
d𝜔e−𝑖𝜔𝑡 𝜁𝑖(𝜔)

⋃︀𝜁(𝜔)⋃︀2
, (3.78)

if we consider the case Ψ1(𝑡), which is our interest. Naturally, this expression must appear
if we take the expected value in the old vacuum ⋃︀0̃︀ with expression (3.30), and some other
additional terms, that the new vacuum does not “see”. This other expected value reads as

∐︀Ψ(𝑡)Ψ(𝑡′)̃︀ = Ψ𝜔0(𝑡)Ψ∗𝜔0(𝑡
′) + ∫

∞

0
d𝜔Φ𝜔(𝑡)Φ(𝑡′)∗. (3.79)

Let us examine possible representations of these products. We should look for a
representation that uses general characteristics of 𝜁(𝜔), in a way that the assertions that
we make remains valid for any even 𝛽(𝜈) functions. We know that

Ψ𝜔0,1(𝑡) = ∫
∞

0
d𝜔(︀𝑐𝜔Γ𝜔,1(𝑡) + 𝑑∗𝜔Γ∗𝜔,1(𝑡)⌋︀, (3.80)

and using (3.54), we get

Ψ𝜔0,1(𝑡) = ∫
∞

0
d𝜔

}︂
𝑚

2𝜔0
⋃︀Γ0

𝜔,1⋃︀2 )︀(𝜔0 + 𝜔)e−𝑖𝜔𝑡 − (𝜔0 − 𝜔)e𝑖𝜔𝑡⌈︀ . (3.81)

Using that

(𝜔0 + 𝜔)e−𝑖𝜔𝑡 − (𝜔0 − 𝜔)e𝑖𝜔𝑡 = 2𝜔𝑐𝑜𝑠(𝜔𝑡) − 2𝑖𝜔0 sin(𝜔𝑡) and

⋃︀Γ0
𝜔,1⋃︀2 =

1
𝑚𝜋

𝜁𝑖(𝜔)
⋃︀𝜁(𝜔)⋃︀2

= 1
2𝑖 (

1
𝜁∗(𝜔)

− 1
𝜁(𝜔)

) 1
𝑚𝜋

,
(3.82)

we get
Ψ𝜔0,1(𝑡) =

1
𝜋
⌋︂

2𝑚𝜔0
∫
∞

0
d𝜔 (1

𝜁
− 1
𝜁∗
) (𝑖𝜔 cos(𝜔𝑡) + 𝜔0 sin(𝜔𝑡)). (3.83)

Define the functions

𝐴1(𝑡) =
1
𝜋 ∫

∞

0
d𝜔 sin(𝜔𝑡)

𝜁(𝜔)
and 𝐴2(𝑡) = −

1
𝜋 ∫

∞

0
d𝜔 sin(𝜔𝑡)

𝜁∗(𝜔)
, (3.84)

and using the lemma 1, we have

𝐴2(𝑡) =
1
𝜋 ∫

0

−∞
d𝜔 sin(𝜔𝑡)

𝜁(𝜔)
, (3.85)

in such a way that

Ψ𝜔0,1(𝑡) =
1⌋︂

2𝑚𝜔0
(𝜔0 + 𝑖𝜕𝑡)𝐴(𝑡), where 𝐴 ∶= 1

𝜋 ∫
∞

−∞
d𝜔 sin(𝜔𝑡)

𝜁(𝜔)
. (3.86)
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Now, we analyze Φ𝜔,1(𝑡) = ∫
∞

0 d𝜔′(︀𝑐𝜔,𝜔′Γ𝜔′,1(𝑡) + 𝑑∗𝜔,𝜔′Γ∗𝜔′,1(𝑡)⌋︀. Using (3.54), we
have

𝑐𝜔,𝜔′Γ𝜔′,1 =
{︂

𝜇

2𝜔 ]︀(𝜔 + 𝜔′)Γ0∗
𝜔′,2(𝜔)Γ0

𝜔′,1 −
𝑖𝛽(𝜔)
𝜇

⋃︀Γ0
𝜔′,1⋃︀2{︀ e−𝑖𝜔′𝑡,

𝑑∗𝜔,𝜔′Γ∗𝜔′,1 = −
{︂

𝜇

2𝜔 ]︀(𝜔 − 𝜔′)Γ0
𝜔′,2(𝜔)Γ0∗

𝜔′,1 −
𝑖𝛽(𝜔)
𝜇

⋃︀Γ0
𝜔′,1⋃︀2{︀ e𝑖𝜔′𝑡,

(3.87)

but

Γ0∗
𝜔′,2(𝜔)Γ0

𝜔′,1 = −Γ0
𝜔′,2(𝜔)Γ0∗

𝜔′,1 = (
𝑖𝜔′

𝜔2 − 𝜔′2
𝛽(𝜔)
𝜇
+ 𝑖𝑚

𝜔′𝛽(𝜔′)
𝜁𝑟(𝜔′)𝛿(𝜔 − 𝜔′)) ⋃︀Γ0

𝜔′,1⋃︀2, (3.88)

hence

Φ𝜔,1(𝑡) = −
{︂

𝜇

2𝜔 ∫
∞

0
d𝜔′⋃︀Γ0

𝜔′,1⋃︀2
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
( 𝑖𝜔′

𝜔2 − 𝜔′2
𝛽(𝜔)
𝜇
+ 𝑖𝑚

𝜔′𝛽(𝜔′)
𝜁𝑟(𝜔′)𝛿(𝜔 − 𝜔′))×

× )︀(𝜔 + 𝜔′)e−𝑖𝜔′𝑡 + (𝜔 − 𝜔′)e𝑖𝜔′𝑡⌈︀ + 𝑖𝛽(𝜔)
𝜇

(e−𝑖𝜔′𝑡 − e𝑖𝜔′𝑡)
[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
.

(3.89)

Writing the exponential in sine and cosine functions, integrating the delta terms
and recalling the definition of ⋃︀Γ0

𝜔′,1⋃︀2 we have

Φ𝜔,1(𝑡) = −
{︂

𝜇

2𝜔
2𝑖

𝜋𝛽(𝜔)
𝜁𝑖(𝜔)
⋃︀𝜁(𝜔)⋃︀2

𝜁𝑟(𝜔)e−𝑖𝜔𝑡 +
⎛
⎝

{︂
𝜇

2𝜔
2𝑖𝜔
𝑚𝜋 ∫

∞

0
d𝜔′ 𝜁𝑖(𝜔′)

⋃︀𝜁(𝜔′)⋃︀2
𝜔′ cos(𝜔′𝑡)
𝜔′2 − 𝜔2

+
{︂

𝜇

2𝜔
2𝜔2

𝑚𝜋 ∫
∞

0
d𝜔′ 𝜁𝑖(𝜔′)

⋃︀𝜁(𝜔′)⋃︀2
sin(𝜔′𝑡)
𝜔′2 − 𝜔2

⎞
⎠
𝛽(𝜔)
𝜇

.

(3.90)

We may proceed as in the first case. First, write 𝜁𝑖(𝜔)
⋃︀𝜁(𝜔)⋃︀2 =

1
2𝑖 (

1
𝜁∗ −

1
𝜁 ) in the argument

of the integrals, and identify

𝐼1 =
1
𝜋 ∫

∞

0
d𝜔′ sin(𝜔′𝑡)

𝜁(𝜔′)(𝜔′2 − 𝜔2)
and 𝐼2 = −

1
𝜋 ∫

∞

0
d𝜔′ sin(𝜔′𝑡)

𝜁∗(𝜔′)(𝜔′2 − 𝜔2)
. (3.91)

Then, using lemma 1, we may write

Φ𝜔,1(𝑡) = −
2𝑖
𝜋

{︂
𝜇

2𝜔
𝜁𝑖(𝜔)
𝛽(𝜔)

⌊︀ 𝜁𝑟(𝜔)
⋃︀𝜁(𝜔)⋃︀2

e−𝑖𝜔𝑡 − (𝜔 + 𝑖𝜕𝑡)𝐼𝜔(𝑡)}︀ , (3.92)

where
𝐼𝜔(𝑡) ∶=

1
𝜋 ∫

∞

−∞
d𝜔′ sin(𝜔′𝑡)

𝜁(𝜔′)(𝜔′2 − 𝜔2)
. (3.93)

For last, we may note that

𝐼𝜔(0) =
1
𝜋 ∫

∞

−∞
d𝜔′ 𝜔′

𝜁(𝜔′)(𝜔′2 − 𝜔2)
= 1

2𝜋 (∫
∞

−∞
d𝜔′ 1

𝜁(𝜔′)(𝜔′ − 𝜔)
+ ∫

∞

−∞
d𝜔′ 1

𝜁(𝜔′)(𝜔′ + 𝜔)
) .

(3.94)
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By the Cauchy Theorem (see section 2.4), if a complex function 𝑓 is holomorphic,
we have

𝑓(𝑎) = 1
2𝜋𝑖 ∮

𝑓(𝑧)d𝑧
𝑧 − 𝑎

. (3.95)

We know that 𝜁(𝜔) is holomorphic in the lower half complex 𝜔 plane. Then, taking a
semi-circle contour integral in this plane, with clockwise orientation, we get

− 𝑖2
1

𝜁(𝜔)
= 1

2𝜋 ∫
∞

−∞
d𝜔′ 1

𝜁(𝜔′)(𝜔′ − 𝜔)
and − 𝑖2

1
𝜁∗(𝜔)

= 1
2𝜋 ∫

∞

−∞
d𝜔′ 1

𝜁(𝜔′)(𝜔′ + 𝜔)
.

(3.96)
Thus 𝐼𝜔(0) = −𝑖 𝜁𝑟(𝜔)

⋃︀𝜁(𝜔)⋃︀2 and, using that 𝛽(𝜔) =
⌉︂

2𝑚𝜇𝜁𝑖(𝜔)
𝜔𝜋 , we get

Φ𝜔,1(𝑡) = −
𝑖⌋︂

2𝑚𝜔0

}︂
2𝜔0

𝜋

⌈︂
𝜁𝑖(𝜔) )︀𝑖𝐼𝜔(0)e−𝑖𝜔𝑡 − (𝜔 + 𝑖𝜕𝑡)𝐼𝜔(𝑡)⌈︀ . (3.97)

∎

This proposition furnishes us with a natural way of understanding qualitatively the
two point function, but is very expensive when we need to compute and make numerical
analysis. There is a way, which we will see now, that is better from the computational
point of view:

Proposition 7 The transient two point function can be written as

∐︀𝑥(𝑡)𝑥(𝑡′)̃︀tr =
1

2𝜔0𝑚
{(︀(𝜔0 + 𝑖𝜕𝑡)𝐴(𝑡)⌋︀(︀(𝜔0 − 𝑖𝜕𝑡′)𝐴∗(𝑡′)⌋︀

+ 2𝜔0

𝜋 ∫
∞

0
d𝜔𝜁𝑖(𝜔)⌊︀

e−𝑖𝜔𝑡

𝜁∗(𝜔)
𝐵∗𝜔(𝑡′) +𝐵𝜔(𝑡)

e𝑖𝜔𝑡′

𝜁(𝜔)
+𝐵𝜔(𝑡)𝐵∗𝜔(𝑡′)}︀(︀, (3.98)

where
𝐵𝜔(𝑡) =

1
2𝜋𝑖 ∫

∞

−∞
d𝜔′ e𝑖𝜔′𝑡

𝜁(𝜔′)
1

𝜔′ + 𝜔 + 𝑖𝜖
. (3.99)

Proof:

It is enough to show that our defined function 𝐼𝜔(𝑡) can be written in terms of the
new function 𝐵𝜔(𝑡). First, consider

𝑖𝐼𝜔(0)e−𝑖𝜔𝑡 − (𝜔 + 𝑖𝜕𝑡)𝐼𝜔(𝑡) =
𝜁𝑟(𝜔)
⋃︀𝜁(𝜔)⋃︀2

e−𝑖𝜔𝑡 − 1
𝜋 ∫

∞

−∞
d𝜔′𝜔 sin(𝜔′𝑡) + 𝑖𝜔′ cos(𝜔′𝑡)

𝜁(𝜔′)(𝜔′2 − 𝜔2)
. (3.100)

The numerator of the integrand can be expressed as − 1
2𝑖
)︀(𝜔′ − 𝜔)e𝑖𝜔′𝑡 + (𝜔′ + 𝜔)e−𝑖𝜔′𝑡⌈︀,

then
⋅ ⋅ ⋅ = 𝜁𝑟(𝜔)

⋃︀𝜁(𝜔)⋃︀2
e−𝑖𝜔𝑡 + 1

2𝜋𝑖 ∫
∞

−∞
d𝜔′ 1

𝜁(𝜔′)
( e𝑖𝜔′𝑡

𝜔′ + 𝜔
+ e−𝑖𝜔′𝑡

𝜔′ − 𝜔
) . (3.101)

Since 𝜁(𝜔) is holomorphic in the lower half plane, the integral with the denominator 1
𝜔′−𝜔

will have just one pole, and the Cauchy theorem applies. The other integral should be
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treated with more caution, and we will use the Sokhotski-Plemelj theorem. Thus, making
a semi circle contour to the Cauchy theorem, we have

− e−𝑖𝜔𝑡

2𝜁(𝜔) =
1

2𝜋𝑖 ∫
∞

−∞
d𝜔′ e−𝑖𝜔′𝑡

𝜁(𝜔′)(𝜔′ − 𝜔)
, (3.102)

and the Sokhotski-Plemelj theorem

1
2𝜋𝑖 ∫

∞

−∞
d𝜔′ e𝑖𝜔′𝑡

𝜁(𝜔′)(𝜔′ + 𝜔)
= 1

2𝜋𝑖 ∫
∞

−∞
d𝜔′ ( e𝑖𝜔′𝑡

𝜁(𝜔′)(𝜔′ + 𝜔 + 𝑖𝜖)
+ 𝑖𝜋𝛿(𝜔′ + 𝜔))

= 1
2𝜋𝑖 ∫

∞

−∞
d𝜔′ e𝑖𝜔′𝑡

𝜁(𝜔′)(𝜔′ + 𝜔 + 𝑖𝜖)
+ 1

2
e−𝑖𝜔𝑡

𝜁∗(𝜔)
.

(3.103)

Thus, we have

. . . = 𝜁𝑟(𝜔)
⋃︀𝜁(𝜔)⋃︀2

e−𝑖𝜔𝑡 − e−𝑖𝜔𝑡

2 ( 1
𝜁(𝜔)

− 1
𝜁∗(𝜔)

)

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
+𝑖𝜁𝑖(𝜔)
⋃︀𝜁(𝜔)⋃︀2 e−𝑖𝜔𝑡

+ 1
2𝜋𝑖 ∫

∞

−∞
d𝜔′ e𝑖𝜔′𝑡

𝜁(𝜔′)(𝜔′ + 𝜔 + 𝑖𝜖)

= e−𝑖𝜔𝑡

𝜁∗(𝜔)
+𝐵𝜔(𝑡),

(3.104)

where the Cauchy principal value is understood.

∎

It is valid to notice that the term involving the product of 1
𝜁∗(𝜔)

1
𝜁(𝜔) is the static

part ∐︀𝑥(𝑡)𝑥(𝑡′)̃︀qp, and thus is excluded from the transient equation. In general, depending
on the coupling constant 𝛽(𝜈), the analytical properties of 1⇑𝜁(𝜔) in the upper half
complex plane can be convoluted. For instance, we note that for 𝛽(𝜈)2 ∝ Θ(𝜈2

0 − 𝜈2),
1⇑𝜁(𝜔) will have logarithmic dependence on 𝜔. An interesting scenario that can be exactly
integrated and produces a meromorphic 1⇑𝜁(𝜔) occurs when the coupling constant 𝛽 is
the combination of two Lorentzians:

𝛽2(𝜔0𝜂)
𝜔0

= 𝜎
2𝑚𝜇

𝜋
⌊︀ 𝜂0

(𝜂 − 𝜂𝑟)2 + 𝜂2
0
+ 𝜂0

(𝜂 + 𝜂𝑟)2 + 𝜂2
0
}︀ , (3.105)

which represents a coupling with maximum intensity at 𝜔0𝜂 = 𝜔0𝜂𝑟. Here 𝜎 is a dimen-
sionless constant that measures the magnitude of the interaction. Also, 𝜂0 → 0 implies

𝛽2(𝜔0𝜂)
𝜔0

→ 𝜎2𝑚𝜇 (︀𝛿(𝜂 − 𝜂𝑟) + 𝛿(𝜂 + 𝜂𝑟)⌋︀ . (3.106)

The corresponding oscillator effective squared frequency is [cf. Eq. (3.14)]

𝜔2
e = 𝜔2

0(1 + 𝜎2), (3.107)

and the 𝜁 function can be expressed as

𝜁(𝜔0𝜂)
𝜔2

0
= 1 − 𝜂2 + 𝜂𝜎2 𝜂 − 𝑖𝜂0

(𝜂 − 𝑖𝜂0)2 − 𝜂2
𝑟

. (3.108)
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In fact, from the (3.39), we know that

𝜁(𝜔0𝜂)
𝜔2

0
= 1 − 𝜂2 − 𝜂

2𝑚𝜇𝜔0
∫
∞

−∞
d𝜂′ 𝛽

2(𝜔0𝜂′)
𝜂′ − 𝜂 + 𝑖𝜖′

. (3.109)

Using (3.106), we get

𝜁(𝜔0𝜂)
𝜔2

0
= 1 − 𝜂2 − 𝜎

2𝜂

2𝜋 (𝐼1 + 𝐼2), (3.110)

where we defined

𝐼1(𝜂) = ∫
∞

−∞

d𝜂′
𝜂′ − 𝜂 + 𝑖𝜖′

𝜂0

(𝜂′ − 𝜂𝑟)2 + 𝜂2
0
, and 𝐼2(𝜂) = ∫

∞

−∞

d𝜂′
𝜂′ − 𝜂 + 𝑖𝜖′

𝜂0

(𝜂′ + 𝜂𝑟)2 + 𝜂2
0
.

(3.111)

If we find a closed form for one of the integrals above, the other will follow from
symmetry. So, let us analyze 𝐼1(𝜂). First, we use Sokhotski-Plemelj:

𝐼1 = 𝑃 ∫
∞

−∞

d𝜂′
𝜂′ − 𝜂

𝜂0

(𝜂′ − 𝜂𝑟)2 + 𝜂2
0
− 𝑖𝜋 𝜂0

(𝜂 − 𝜂𝑟)2 + 𝜂2
0
, (3.112)

using
𝑃 ∫

∞

−∞

d𝜂′
𝜂′ − 𝜂

𝜂0

(𝜂′ − 𝜂𝑟)2 + 𝜂2
0
= −𝜋 𝜂 − 𝜂𝑟

(𝜂 − 𝜂𝑟)2 + 𝜂2
0
, (3.113)

which we will show later on, we get

𝐼1 =
−𝜋

𝜂 + 𝑖𝜂0 − 𝜂𝑟

, (3.114)

and by the same means
𝐼2 =

−𝜋
𝜂 + 𝑖𝜂0 + 𝜂𝑟

. (3.115)

If we put these results in (3.110), we have (3.108). Now, we pay our debt:

Lemma 2 Let
𝐻(︀𝐿⌋︀(𝜂) ∶= 𝑃 ∫

∞

−∞

d𝜂′
𝜂′ − 𝜂

𝐿(𝜂′) (3.116)

be a functional in our function space2. If 𝐿(𝜂′) = 𝜂0
(𝜂′−𝜂𝑟)2+𝜂2

0
, we get

𝐻(︀𝐿⌋︀(𝜂) = −𝜋 𝜂 − 𝜂𝑟

(𝜂 − 𝜂𝑟)2 + 𝜂2
0
. (3.117)

Proof:

Separating into partial fractions, we get

𝐻(︀𝐿⌋︀(𝜂) = 1
2𝑖(𝐼+ − 𝐼−), where 𝐼±(𝜂) ∶= 𝑃 ∫

∞

−∞

d𝜂′
(𝜂′ − 𝜂𝑟 ∓ 𝑖𝜂0)(𝜂′ − 𝜂)

. (3.118)

2 One might recognize our defined functional as the Hilbert transformation [49].
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Thus, using partial fractions once more in the integrals above, we have

𝐼±(𝜂) =
1

𝜂 − 𝜂𝑟 ∓ 𝑖𝜂0���
���

��*0
𝑃 ∫

∞

−∞

d𝜂′
𝜂′ − 𝜂

− 1
𝜂 − 𝜂𝑟 ∓ 𝑖𝜂0

𝑃 ∫
∞

−∞

d𝜂′
𝜂′ − 𝜂𝑟 ∓ 𝑖𝜂0

, (3.119)

but
𝑃 ∫

𝑅

−𝑅

d𝜂′
𝜂′ − 𝑧

= ln 𝑅 − 𝑧
−𝑅 − 𝑧

= ln (−1), if 𝑅 →∞. (3.120)

However, this is a complex logarithm, and thus a multivalued function [41], and
will only be well defined if we select a branch. In fact, −1 = e±𝑖𝜋, then if Im(︀𝑧⌋︀ > 0, we
choose +𝜋 in the argument of the exponential; else, −𝜋. Hence

𝑃 ∫
𝑅

−𝑅

d𝜂′
𝜂′ − 𝑧

= 𝑖𝜋 sign(Im(︀𝑧⌋︀), (3.121)

and thus

𝐻(︀𝐿⌋︀(𝜂) = − 1
2𝑖 (

𝑖𝜋

𝜂 − 𝜂𝑟 − 𝑖𝜂0
+ 𝑖𝜋

𝜂 − 𝜂𝑟 + 𝑖𝜂0
) = −𝜋 𝜂 − 𝜂𝑟

(𝜂 − 𝜂𝑟)2 + 𝜂2
0
. (3.122)

∎

The advantage of the functional form of Eq. (3.108) is that 1⇑𝜁(𝜔) is a meromorphic
function with exactly four simple poles in the upper half plane, determined by the three
independent parameters 𝜎, 𝜂𝑟, 𝜂0. Furthermore, these poles are the zeros of 𝜁(𝜔0𝜂), which
are determined by a degree four polynomial equation in 𝜂. We let 𝜂𝑖, 𝑖 = 1,2,3,4, be
these complex roots, and ℛ𝜂𝑖

be the corresponding residue of 𝜔2
0⇑𝜁(𝜔0𝜂) at 𝜂𝑖. Also, the

reflection property 𝜁(𝜔)∗ = 𝜁(−𝜔) implies that −𝜂∗𝑖 is also a root with residue ℛ−𝜂∗𝑖 = −ℛ
∗
𝜂𝑖

.
These properties hold for any meromorphic 1⇑𝜁 with simple poles. For such functions,

𝜔2
0

𝜁(𝜔0𝜂)
= − 𝜔

2
0

2𝜋𝑖 ∫
∞

−∞

d𝜂′
𝜁(𝜔0𝜂′)(𝜂′ − 𝜂 + 𝑖𝜖)

= ∑
𝑖

ℛ𝜂𝑖

𝜂 − 𝜂𝑖

, (3.123)

which is a consequence of the Residue Theorem (see section 2.4.4) and can be used to
write the stationary two-point function (3.75) as

∐︀𝑥(𝑡)𝑥(𝑡′)̃︀qp =
−𝑖

𝜔0𝑚𝜋
∑
𝑗

ℛ𝜂𝑗
[︀ sin(𝜂𝑗𝜔0Δ𝑡)Si(𝜂𝑗𝜔0Δ𝑡)

+ cos(𝜂𝑗𝜔0Δ𝑡)Ci(𝜂𝑗𝜔0Δ𝑡) −
𝜋

2 sin(𝜂𝑗𝜔0Δ𝑡)⌉︀, (3.124)

where Si and Ci are the sine and cosine integral functions, defined as

Si(𝑧) = ∫
𝑧

0

sin(𝑡)
𝑡

d𝑡 = 𝜋2 − ∫
∞

𝑧

sin(𝑡)
𝑡

d𝑡, (3.125)

Ci(𝑧) = −∫
∞

𝑧

cos(𝑡)
𝑡

d𝑡. (3.126)
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Also, we set Δ𝑡 = 𝑡− 𝑡′ − 𝑖𝜖, where 𝜖 > 0 should be taken to zero later on, at the end of the
calculations. To prove this equation, write

∐︀𝑥(𝑡)𝑥(𝑡′)̃︀qp =
1

2𝑖𝜔0𝑚𝜋
∫
∞

0
d𝜂 ( 𝜔2

0
𝜁∗(𝜔0𝜂)

− 𝜔2
0

𝜁(𝜔0𝜂)
) e−𝑖𝜔0𝜂Δ𝑡. (3.127)

Since Δ𝑡 can be positive or negative, none of the integrals above can be set to zero
right away. In fact, if Δ𝑡 > 0, for example, then the integrand with 1

𝜁(𝜔) will be zero since
the contour, fixed by convergence, should be in the upper half plane, where 𝜁(𝜔) does not
have roots. Thus, using the reflection property

𝜔2
0

𝜁∗(𝜔0𝜂)
= 𝜔2

0
𝜁(−𝜔0𝜂)

= −∑
𝜂𝑖

ℛ𝜂𝑖

𝜂 + 𝜂𝑖

, (3.128)

we have
∐︀𝑥(𝑡)𝑥(𝑡′)̃︀qp = −

1
𝑖𝜔0𝑚𝜋

∑
𝜂𝑖

ℛ𝜂𝑖 ∫
∞

0
d𝜂 𝜂

𝜂2 − 𝜂2
𝑖

e−𝑖𝜔0𝜂Δ𝑡. (3.129)

If we use partial fractions and a suitable translation in the variables, we get [50]

∫
∞

0
d𝜂 𝜂

𝜂2 − 𝜂2
𝑖

e−𝑖𝜔0𝜂Δ𝑡 = −1
2(︀e

−𝑖𝜔0𝜂𝑖Δ𝑡E𝑖(𝑖𝜔0𝜂𝑖Δ𝑡) + e𝑖𝜔0𝜂𝑖Δ𝑡E𝑖(−𝑖𝜔0𝜂𝑖Δ𝑡)⌋︀, (3.130)

where E𝑖 is the exponential integral, defined by

E𝑖(𝑥) = −∫
∞

−𝑥
d𝑡e

−𝑡

𝑡
, (3.131)

and from the relations

Ci(𝑧) = 1
2(︀E𝑖(𝑖𝑥) +E𝑖(−𝑖𝑥)⌋︀

Si(𝑧) = 1
2𝑖(︀E𝑖(𝑖𝑥) −E𝑖(−𝑖𝑥)⌋︀ +

𝜋

2 ,
(3.132)

we conclude (3.124).

Finally, the transient part of the two-point function is exactly given by

∐︀𝑥(𝑡)𝑥(𝑡′)̃︀tr =
1

2𝜔0𝑚
∑
𝑘,𝑗

ℛ∗𝜂𝑘
ℛ𝜂𝑗
×
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
]︀(𝜂∗𝑘 + 1)(𝜂𝑗 + 1) − 𝜎

2

𝜋
𝐹𝑘𝑗(0){︀ e−𝑖𝜂∗𝑘𝜔0𝑡+𝑖𝜂𝑗𝜔0𝑡′

+ 𝜎
2

𝜋
)︀e𝑖𝜂𝑗𝜔0𝑡′𝐹𝑘𝑗(𝜔0𝑡) + e−𝑖𝜂∗𝑘𝜔0𝑡𝐹 ∗𝑗𝑘(𝜔0𝑡

′)⌈︀
[︀⌉︀⌉︀⌈︀⌉︀⌉︀⌊︀
, (3.133)

where the various auxiliary functions are defined as

𝑔(𝛼) ∶=e𝑖𝛼 ]︀𝑖𝜋2 +Ci(𝛼) − 𝑖Si(𝛼){︀ , (3.134)

𝐺𝑘𝑗(𝑐,𝛼) ∶=
𝑐𝑔(𝑐𝛼) + 𝜂∗𝑘𝑔(−𝜂∗𝑘𝛼)
(𝜂𝑗 − 𝜂∗𝑘)(𝜂∗𝑘 + 𝑐)

+ (𝜂𝑗 ↔ 𝜂∗𝑘), (3.135)

𝐹𝑘𝑗(𝛼) ∶=
𝑖

2(︀𝐺𝑘𝑗(−𝜂𝑟 − 𝑖𝜂0, 𝛼) +𝐺𝑘𝑗(𝜂𝑟 − 𝑖𝜂0, 𝛼)⌋︀

− (𝜂0↔ −𝜂0). (3.136)
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These equations are tricky to be seen, and some manipulation is needed. The best
way to tackle this derivation is to divide it by parts: first, let us analyze (𝑤0 + 𝑖𝜕𝑡)𝐴(𝑡) ∶

(1 + 𝑖

𝜔0
𝜕𝑡)

𝜔2
0

2𝜋𝑖 ∫
∞

−∞
d𝜂 e𝑖𝜔0𝜂𝑡

𝜁(𝜔0𝜂)
𝜂→−𝜂= (1 + 𝑖

𝜔0
𝜕𝑡)

𝜔2
0

2𝜋𝑖 ∫
∞

−∞
d𝜂 e−𝑖𝜔0𝜂𝑡

𝜁∗(𝜔0𝜂)
= ∑

𝑘

ℛ∗𝑘(𝜂∗𝑘 + 1)e−𝑖𝜔0𝜂∗𝑘𝑡.
(3.137)

One may note that we ignored one of the exponential in the first step. In fact,
this is due to the contour that we used. The exponential that was ignored had negative
argument, and would not converge in the lower half plane. Thus, if we choose a upper
semi circle, the function 𝜁(𝜔0𝜂) has no roots, and therefore the residue is zero.

For the other integrals, we use the following identity, which can be easily derived
just by using partial fractions and the special functions E𝑖(𝑖𝑥), Si(𝑧) and Ci(𝑧):

∫
∞

0
d𝜂 𝜂

(𝜂 − 𝑎)(𝜂 + 𝑏)
e−𝑖𝜂𝑡

𝜂 + 𝑐
= 1
(𝑎 + 𝑏)(𝑎 + 𝑐)

⌊︀𝑐 e𝑖𝑐𝑡 (−Ci(𝑐𝑡) − 𝑖𝜋2 + 𝑖Si(𝑐𝑡))+

+ 𝑎 e−𝑖𝑎𝑡 (−Ci(−𝑎𝑡) − 𝑖𝜋2 + 𝑖Si(−𝑎𝑡)) }︀+

+ 1
(𝑎 + 𝑏)(𝑏 − 𝑐)

⌊︀𝑐 e𝑖𝑐𝑡 (−Ci(𝑐𝑡) − 𝑖𝜋2 + 𝑖Si(𝑐𝑡))−

− 𝑏 e𝑖𝑏𝑡 (−Ci(𝑏𝑡) − 𝑖𝜋2 + 𝑖Si(𝑏𝑡)) }︀

= −𝑐𝑔(𝑐𝑡) + 𝑎𝑔(−𝑎𝑡)
(𝑎 + 𝑏)(𝑎 + 𝑐)

+ −𝑐𝑔(𝑐𝑡) − 𝑏𝑔(𝑏𝑡)
(𝑎 + 𝑏)(𝑏 − 𝑐)

.

(3.138)

Before we tackle the remaining integrals, let us analyze one more property of
𝜁(𝜔0𝜂) that will be useful when we deal with (3.99):

𝜔2
0

𝜁∗(𝜔0𝜂)
= 𝜔2

0
𝜁(−𝜔0𝜂)

= −𝜔
2
0

2𝜋𝑖 ∫
∞

−∞

d𝜂′
𝜁(𝜔0𝜂′)(𝜂′ + 𝜂 + 𝑖𝜖)

= ∑
𝑖

ℛ∗𝜂𝑖

𝜂 − 𝜂∗𝑖
, (3.139)

and, in the same way, one finds a similar relation for its conjugate:
𝜔2

0
𝜁(𝜔0𝜂)

= 𝜔2
0

𝜁∗(−𝜔0𝜂)
= 𝜔2

0
2𝜋𝑖 ∫

∞

−∞

d𝜂′
𝜁∗(𝜔0𝜂′)(𝜂′ + 𝜂 + 𝑖𝜖)

= ∑
𝑖

ℛ𝜂𝑖

𝜂 − 𝜂𝑖

, (3.140)

in such a way that

𝜔2
0𝐵𝜔0𝜂(𝑡) = ∑

𝑖

ℛ∗𝜂𝑖

𝜂 − 𝜂∗𝑖
e−𝑖𝜔0𝜂∗𝑖 𝑡

𝜔2
0𝐵
∗
𝜔0𝜂(𝑡) = ∑

𝑖

ℛ𝜂𝑖

𝜂 − 𝜂𝑖

e𝑖𝜔0𝜂𝑖𝑡.

(3.141)

Let us now analyze
2𝜔0

𝜋 ∫
∞

0
𝜁𝑖(𝜔)

e−𝑖𝜔𝑡
𝜁∗(𝜔)

𝐵∗𝜔(𝑡′). (3.142)
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By recalling the value of the imaginary part of 𝜁(𝜔):

𝜁𝑖(𝜔) =
𝜋𝜔𝛽2(𝜔)

2𝑚𝜇 , (3.143)

substituting 𝛽2(𝜔0𝜂), separating it by partial fractions and using the expressions that we
just derived, we have

⋅ ⋅ ⋅ = −𝜎
2

𝜋
∑
𝑖,𝑗

ℛ∗𝜂𝑖
ℛ𝜂𝑗

e𝑖𝜂𝑗𝜔0𝑡′ 1
2𝑖 ∫

∞

0
d𝜂 𝜂e−𝑖𝜂𝜔0𝑡

(𝜂 − 𝜂∗𝑖 )(𝜂 − 𝜂𝑗)
⎛
⎝

1
𝜂 − 𝜂𝑟 − 𝑖𝜂0

− 1
𝜂 − 𝜂𝑟 + 𝑖𝜂0

+

+ 1
𝜂 + 𝜂𝑟 − 𝑖𝜂0

− 1
𝜂 + 𝜂𝑟 + 𝑖𝜂0

⎞
⎠
.

(3.144)

In hands of (3.138) and our auxiliary functions (3.136), we get
2𝜔0

𝜋 ∫
∞

0
𝜁𝑖(𝜔)

e−𝑖𝜔𝑡
𝜁∗(𝜔)

𝐵∗𝜔(𝑡′) =
𝜎2

𝜋
∑
𝑖,𝑗

ℛ∗𝜂𝑖
ℛ𝜂𝑗

e𝑖𝜂𝑗𝜔0𝑡′𝐹𝑖𝑗(𝜂𝑟, 𝜂0, 𝜔0𝑡), (3.145)

and by the same reasoning
2𝜔0

𝜋 ∫
∞

0
𝜁𝑖(𝜔)

e𝑖𝜔𝑡′

𝜁(𝜔)
𝐵𝜔(𝑡) =

𝜎2

𝜋
∑
𝑖,𝑗

ℛ𝜂𝑖
ℛ∗𝜂𝑗

e−𝑖𝜂∗𝑗 𝜔0𝑡𝐹 ∗𝑖𝑗(𝜂𝑟, 𝜂0, 𝜔0𝑡
′). (3.146)

The last term follows from (3.141):
2𝜔0

𝜋 ∫
∞

0
d𝜔𝜁𝑖(𝜔)𝐵𝜔(𝑡)𝐵∗𝜔(𝑡′) =

𝜎2

𝜋
∑
𝑖,𝑗

ℛ∗𝜂𝑖
ℛ𝜂𝑗

e−𝑖𝜂∗𝑖 𝜔0𝑡+𝑖𝜂𝑗𝜔0𝑡′×

1
2𝑖 ∫

∞

0
d𝜂 𝜂

(𝜂 − 𝜂∗𝑖 )(𝜂 − 𝜂𝑗)
⎛
⎝

1
𝜂 − 𝜂𝑟 − 𝑖𝜂0

− 1
𝜂 − 𝜂𝑟 + 𝑖𝜂0

+

+ 1
𝜂 + 𝜂𝑟 − 𝑖𝜂0

− 1
𝜂 + 𝜂𝑟 + 𝑖𝜂0

⎞
⎠
= 𝜎

2

𝜋
∑
𝑖,𝑗

ℛ∗𝜂𝑖
ℛ𝜂𝑗

e−𝑖𝜂∗𝑖 𝜔0𝑡+𝑖𝜂𝑗𝜔0𝑡′𝐹𝑖𝑗(𝜂𝑟𝜂0,0),

(3.147)

which concludes our derivation.

Equations (3.124) and (3.133) represent one of the main results in our work. We
stress that although the damped harmonic oscillator is one of the most studied systems
in quantum optics, the above equations represent an exact solution for the Wightman
function in such systems, that can be used to unveil various quantum features of interest.

3.5 Quantum Brownian Motion
We are now able to discuss in detail the quantum Brownian motion. For defi-

niteness, we assume in this work that before the quench the particle and the reservoir
oscillators are in their fundamental state, at zero temperature. Accordingly, ∐︀𝑥̃︀ ≡ 0 and
∐︀𝑣̃︀ ≡ 0 throughout the system evolution. We are interested in determine how the oscillator
changes as it starts to interact with the environment. Thus, if ℰ0 is the particle energy at
𝑡 < 0, then Δℰ = ∐︀𝐻p̃︀ − ℰ0 probes how much the particle energy changed. Similarly, if 𝒯0

is the particle kinetic energy at 𝑡 < 0, Δ𝒯 = ∐︀𝑇 ̃︀ − 𝒯0 is the corresponding change due to
the reservoir.
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3.5.1 Late-time regime

The parameters 𝜂0, 𝜂𝑟 and 𝜎 determine how the particle achieves the late-time
regime, when transients effects already took place. According to Eq. (3.15), the change in
particle energy, on average, after the system reaches its equilibrium is Δℰasy = lim𝑡→∞Δℰ ,
which reads, with the aid of the correlation function (3.124),

Δℰasy =
𝑚

2 lim
𝑡′→𝑡

(𝜕𝑡𝜕𝑡′ + 𝜔2
0)∐︀𝑥(𝑡)𝑥(𝑡′)̃︀qp −

𝜔0

2

=𝜔0

2 ⌊︀−𝑖
𝜋
∑
𝑗

ℛ𝜂𝑗
(1 + 𝜂2

𝑗 ) ln(−𝑖𝜂𝑗) − 1}︀, (3.148)

whereas the change in the particle kinetic energy, Δ𝒯asy = lim𝑡→∞Δ𝒯 , reads

Δ𝒯asy =
𝜔0

2 ⌊︀−𝑖
𝜋
∑
𝑗

ℛ𝜂𝑗
𝜂2

𝑗 ln(−𝑖𝜂𝑗) −
1
2}︀. (3.149)

Figures 5 and 6 depict Δℰasy and Δ𝒯asy, respectively, as functions of 𝜂0 and 𝜂𝑟,
for a fixed 𝜎 = 1. Figure 5 shows that the particle energy always increases due to the
interaction with the reservoir and this effect is more pronounced for (𝜂0, 𝜂𝑟) ∼ (0,1), i.e.,
near the resonance [cf. Eq. (3.106)].

Figure 5 – Late-time behavior of the particle energy. Here it is assumed that 𝜎 = 1. Notice
that the particle energy gain is maximum near (𝜂0, 𝜂𝑟) ∼ (0,1), which corre-
sponds to a resonance with the reservoir oscillator of frequency 𝜈 = 𝜔0. Also,
note that the energy exchange is minimum for 𝜂0 = 𝜂𝑟 ∼ 0, the regime in which
the particle exchange energy only with the low energy reservoir oscillators.

Also, although it is fairly intuitive that the particle energy gain is maximum around
the resonance, Fig. 5 also reveals that the energy gain is minimum (for the parameter
window shown in the figure) near 𝜂0 = 𝜂𝑟 ∼ 0. We attribute this to the fact that in this
regime the particle is allowed to exchange energy mainly with the low energy reservoir
oscillators.
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Figure 6 – Late-time behavior of the particle kinetic energy, for 𝜎 = 1. Notice that, differ-
ently from the total energy, the particle kinetic energy is maximum at around
𝜂0 = 𝜂𝑟 ∼ 0, and it is insensitive to the resonance at 𝜂𝑟 = 1.

Figure 6 depicts the late-time behavior of the particle kinetic energy exchange.
Similarly to the total particle energy, the kinetic energy always increases due to the inter-
action with the reservoir. Moreover, interesting features are observed in sharp distinction
to the total energy: the particle kinetic energy is insensitive to the resonance at 𝜂𝑟 = 1
and it is maximum near 𝜂0 = 𝜂𝑟 ∼ 0, where the particle interacts mostly with low energy
reservoir oscillators.

3.5.2 Transient regime

We now consider the transient regime after the quantum quench. We start with
some remarks about the transient time duration as function of the parameters 𝜎, 𝜂0 and 𝜂𝑟.
Inspection of Eq. (3.133) shows that the relaxation times are determined by the imaginary
parts of the roots 𝜂𝑗, and these roots are solution of the degree four polynomial equation

(1 − 𝜂2)(︀(𝜂 − 𝑖𝜂0)2 − 𝜂2
𝑟⌋︀ + 𝜎2𝜂(𝜂 − 𝑖𝜂0) = 0. (3.150)

Moreover, the contribution of a given root 𝜂𝑗 to the transient correlation is modulated by
the residue ℛ𝜂𝑗

, and thus an interesting interplay between these quantities occur.

Proposition 8 For 𝜎 → 0 (weak coupling regime), the solutions of Eq. (3.150) read

𝜂 = ±1 + 𝜎
2

2
±1 − 𝑖𝜂0

(±1 − 𝑖𝜂0)2 − 𝜂2
𝑟

+𝒪(𝜎4), (3.151)

𝜂 = ±𝜂𝑟 + 𝑖𝜂0 +
𝜎2

2
±𝜂𝑟 + 𝑖𝜂0

(±𝜂𝑟 + 𝑖𝜂0)2 − 1 +𝒪(𝜎
4), (3.152)
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whereas for 𝜎 →∞ (strong coupling), we find

𝜂 = ±𝜎 + 𝑖𝜂0

2 +𝒪(𝜎
−1), (3.153)

𝜂 = 𝑖

𝜎2
𝜂2

0 + 𝜂2
𝑟

𝜂0
+𝒪(𝜎−3), (3.154)

𝜂 = 𝑖𝜂0 −
𝑖

𝜎2
𝜂2

𝑟(𝜂2
0 + 1)
𝜂0

+𝒪(𝜎−3). (3.155)

Proof:

We begin with 𝜎 → 0. The unperturbed equation, i.e., with 𝜎 = 0, is

(1 − 𝜂2)(︀(𝜂 − 𝑖𝜂0)2 − 𝜂2
𝑟⌋︀ = 0, (3.156)

which give us the four roots 𝜂 = ±1 and 𝜂 = 𝑖𝜂0 ± 𝜂𝑟. In order to look for perturbed roots,
we write 𝜂 = 𝜂(0) + 𝜎2𝜂(2) +𝑂(𝜎4). Let

𝑔(𝜂) = (1 − 𝜂2)(︀(𝜂 − 𝑖𝜂0)2 − 𝜂2
𝑟⌋︀ and ℎ(𝜂) = 𝜂(𝜂 − 𝑖𝜂0), (3.157)

such that our problem can be written as

𝑔(𝜂) + 𝜎2ℎ(𝜂) = 0. (3.158)

Expanding until order 𝜎2, we get

�����:0
𝑔(𝜂(0)) + 𝜎2𝜂(2)𝑔′(𝜂(0)) + 𝜎2ℎ(𝜂(0)) = 0 Ô⇒ 𝜂(2) = − ℎ(𝜂

(0))
𝑔′(𝜂(0))

. (3.159)

Thus, substituting the unperturbed roots, we have

𝜂(0) = ±1 Ô⇒ 𝜂(2) = ±1 − 𝑖𝜂0

2(︀(±1 − 𝑖𝜂0)2 − 𝜂2
𝑟⌋︀

𝜂(0) = 𝑖𝜂0 ± 𝜂𝑟 Ô⇒ 𝜂(2) = ±𝜂𝑟 + 𝑖𝜂0

2(︀(±𝜂𝑟 + 𝑖𝜂0)2 − 1⌋︀ .
(3.160)

For 𝜎 →∞, we could try to derive a general formula as we did for 𝜎 → 0, but this
would not be a good idea, since no convergence would be assured. It is better to look for
roots in order 𝜎 and 1

𝜎2 , i.e., do a Laurent series expansion (see section 2.4.3). Thus, let
us write 𝜂 = 𝑎𝜎 + 𝑏. If we substitute this in the original polynomial and collect 𝜎4 terms,
we end up with

𝜎4𝑎2(1 − 𝑎2) = 0 Ô⇒ 𝑎 = ±1, (3.161)

and collecting 𝜎3 terms
𝜎3𝑎(2𝑏 − 𝑖𝜂0) = 0 Ô⇒ 𝑏 = 𝑖𝜂0

2 . (3.162)

Lesser orders in sigma will give contributions of 𝑂(𝜎−1). These are called the large
roots. If we look for 𝜂 = 𝜂(0) + 𝜂(2)

𝜎2 +⋯, where 𝜂(0) are the roots of the dominant part, i.e.,

𝜂(𝜂 − 𝑖𝜂0)⋁︀
𝜂(0)
= 0 Ô⇒ 𝜂(0) = 0 and 𝜂(0) = 𝑖𝜂0. (3.163)
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Now, we just substitute in the polynom and collect 𝜎 terms:

𝜂(0) = 0 Ô⇒ (𝜂2
0 + 𝜂2

𝑟) + 𝑖𝜂0𝜂
(−2) = 0 ∴ 𝜂(−2) = 𝑖𝜂

2
0 + 𝜂2

𝑟

𝜂0

𝜂(0) = 𝑖𝜂0 Ô⇒ −𝜂2
𝑟(1 + 𝜂2

0) + 𝑖𝜂0𝜂
(−2) = 0 ∴ 𝜂(−2) = −𝑖𝜂

2
𝑟(1 + 𝜂2

0)
𝜂0

.

(3.164)

∎

Thus, these formulas can be used to determine the relaxation times in each of
the asymptotic regimes. For any 𝜎 > 0, the minimum among the imaginary parts of the
𝜂𝑗, when multiplied by 𝜔0, determines the system relaxation time. Figure 7 depicts the
imaginary parts of the roots for 𝜎 = 1.

Note that, in general, the relaxation time increases as 𝜂0 goes to zero. An example
of this behavior is depicted in Fig. 8 upper panel, for 𝜂𝑟 = 0, 𝜎 = 1. One can see from
the figure that as the interaction is turned on, the particle energy acquires a damped
oscillatory behavior as function of time, with a frequency determined by 𝜎. Figure 8
middle panel depicts the particle energy for the same 𝜂0 and 𝜂𝑟 parameters and for the
stronger coupling of 𝜎 = 5. Notice that both the frequency of the oscillations and their
magnitude increase as 𝜎 grows.

We also present in Fig. 8 bottom panel the particle energy as function of time
for several values of 𝜂𝑟 and for 𝜂0 = 0.5, 𝜎 = 1, from which one can see that 𝜂𝑟, which
determines the frequency of the reservoir oscillators that are in resonance with the particle,
also affects the oscillatory pattern.
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Figure 7 – Imaginary parts of the roots of Eq. (3.150) for 𝜎 = 1. The labels of the roots are
not relevant for our analysis. Note that as 𝜂0 → 0, the imaginary parts vanish,
meaning that the system takes longer to reach equilibrium for smaller 𝜂0.
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Figure 8 – Particle energy variation as function of time. Top panel: Particle energy for
𝜂𝑟 = 0 and 𝜎 = 1. Notice that the relaxation time decreases with 𝜂0 (for fixed 𝜎).
Middle panel: Particle energy for 𝜂𝑟 = 0 and 𝜎 = 5. Notice that the amplitude
and the frequency of the oscillations increase with 𝜎. Bottom panel: Particle
energy for 𝜂0 = 0.5 and 𝜎 = 1. The resonance parameter 𝜂𝑟 has a non-trivial
effect on the particle energy.

As a final application of the analytical correlations, we present in Fig. 9 how
the particle kinetic energy changes during the transient regime. Recall that in the semi-
classical quantum Brownian motion discussed in [13], the particle kinetic energy, which is
assumed to be initially zero, can actually become negative due to the quantum fluctuations
of an external field. In our model, which contain an analytical solution to the quantum
Brownian motion, the analogue effect is the diminishing of the particle’s initial (positive)
kinetic energy.



Chapter 3. QUANTUM BROWNIAN MOTION 58

Figure 9 – Particle kinetic energy variation as function of time, for 𝜂𝑟 = 𝜎 = 1 and several
values of 𝜂0. Notice that depending on the system parameters, the particle can
actually loose some of its initial kinetic energy, in analogy to the subvacuum
effect of [13].

Figure 9 shows a situation where this occurs, for 𝜂0 = 0.1, 𝜂𝑟 = 𝜎 = 1. For these
parameters, the particle, after interacting with the reservoir for some period of time,
actually looses part of its kinetic energy. We note that in this system this is a true quantum
effect, whose origin can be traced back to the phenomenon of quantum squeezing [51].
Indeed, note that the initial kinetic energy decreases if and only if ∐︀𝑝2̃︀ decreases, at the
expense of increasing ∐︀𝑥2̃︀ to ensure the validity of Heisenberg’s uncertainty relation.

We finish this section with a remark regarding the conservation of energy in this
system. Figure 8 shows that the particle, for the parameters considered in the plots, always
gain energy. There are two possible origins to this energy gain, namely, the particle can
extract energy from the reservoir and it can gain energy from the external agent that
turns the interaction on at 𝑡 = 0. Here, because the microscopic model is known, it is
possible to pinpoint exactly the source of the particle energy gain. Indeed, it follows from
Eq. (3.20) that the particle and the reservoir energies, ∐︀𝐻p̃︀ and ∐︀𝐻R̃︀, respectively, are
related through

d∐︀𝐻p̃︀
d𝑡 + d∐︀𝐻R̃︀

d𝑡 = −∫
∞

0
d𝜈𝛽̇∐︀𝑥𝑅̇̃︀. (3.165)

Therefore, because the rhs of the above equation is zero for 𝑡 ≠ 0 and 𝐻p is a continuous
function of time, it follows that the energy gained by the particle comes exclusively from
its interaction with the reservoir oscillators.
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4 Final Remarks

In this work we studied how a reservoir modifies the quantum Brownian motion
of a particle. By starting from a Lagrangian model for the total system, we were able to
quantize the system canonically and obtain analytical solutions for the quantum correla-
tions. The major results in our work are the analytical correlations and their application
to characterize the quantum Brownian motion of a particle.

A couple of important remarks are in order. We note that the linear coupling
between the particle and the reservoir is an important assumption in order to find an-
alytical solutions. In general, for non-linear couplings the system cannot be quantized
analytically and methods to find approximate solutions are necessary. For instance, for
the quantum Brownian motion of [13] the particle interacts non-linearly with the electric
field, and the assumption of negligible particle displacement was implemented in order to
find approximate solutions.

Also, we note that the reservoir model here implemented serves as an analogue
model to the electric field of [13], to the extent that it can simulate important features
like the subvacuum effect and gives information about the late-time regime. However,
this analogy is only qualitative, for the system of [13] is a Casimir-like system imprinting
velocity fluctuations onto a charged particle, for which, due to its complexity, still remains
not thoroughly studied.

We conclude this work with a remark regarding the generality of the two-point
function (3.73). The analysis of the quantum Brownian motion was perform for a particu-
lar type of interaction given by the two Lorentzians of Eq. (3.105), that leads to analytical
solutions. Nevertheless, the correlations (3.73) can be used to study quantum properties of
the particle for all types of couplings as long as 𝛽 → 0 when 𝜈 → 0, which is a consistency
condition for the function 𝜁 given in Eq. (3.39) to be well-defined for all 𝜔 > 0.
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