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Resumo

A literatura apresenta uma escassez de resultados com efeitos combinados de vibracao
induzida por vértices (VIV) e rugosidade superficial para o controle da forca de arrasto
de corpos rombudos. Neste contexto, o presente trabalho contribui para a literatura com
resultados numéricos de efeito de rugosidade superficial sobre VIV de um cilindro circular
unico. A estrutura cilindrica € for¢ada a vibrar na mesma direcao do escoamento incidente.
A técnica numérica utiliza uma descricdo puramente lagrangiana através do Método de
Vértices Discretos (MVD) com modelo de rugosidade superficial. Resultados anteriores
publicados na literatura tém reportado que modelo de rugosidade bidimensional € bem mais
sensivel do que simples modelagem de turbuléncia bidimensional para capturar fendmenos
da hidrodinamica ndo linear com diferentes aplicacdes em problemas de engenharia. Os
resultados numéricos apresentados neste trabalho consideram uma amplitude adimensional
de A/D = 0,13 (sendo D o didmetro externo do cilindro) com varia¢ao da frequéncia
adimensional de oscilacdo na faixa 0,04 < f, < 0,80. Estes valores sdo escolhidos
para comparacgao com resultados experimentais quando possivel. Trés alturas médias de
rugosidade relativa foram escolhidas: £/D = 0,001, 0,0045 e 0,007. Os casos de testes
sem modelo de rugosidade superficial, quando comparados com dados experimentais,
capturaram dois modos antissimétricos badsicos conhecidos como Al e AIV, e também
modo caético. O modo simétrico com coalescéncia também foi capturado. Estes modos
indicam que a frequéncia de emissdo de vortices, retirada da curva de oscilagdo no tempo
do coeficiente de arrasto, se encontra sincronizada com a frequéncia forcada de vibragdo
estrutural para nimero de Reynolds de 100.000. Em determinados ensaios realizados com
o modelo de rugosidade superficial, verificou-se uma dessincronizagdo entre a frequéncia
forcada e a frequéncia de desprendimento de vortices, acompanhada de variacdes expres-
sivas no coeficiente de arrasto. Esses efeitos configuram a principal contribuicao deste

estudo, evidenciando a influéncia da rugosidade na dindmica do escoamento.

Palavras-chave: aerodindmica de corpo rombudo, simulagdo de grandes escalas (LES),

modelo de rugosidade, regime de lock-in, dinamica lagrangiana.



Abstract

In the literature, there is scarcity of tests with combined effects of vortex-induced vibrations
(VIV) and rough surface to control drag force behaviour of bluff bodies. In this context, the
present work contributes to the limited studies on the surface roughness effects into the VIV
of a single circular cylinder. The body is forced to oscillate with respect to the free stream.
The numerical approach utilizes a purely Lagrangian description through the Discrete
Vortex Method (DVM) with surface roughness model. Previous works in the literature
have also demonstrated that two-dimensional roughness model is more sensitive than a
single turbulence modeling to capture nonlinear multi-physics phenomenon with a variety
of applications in different engineering areas. In the present results, the dimensionless
oscillation amplitude was fixed at A/D = 0.13 (D is the outer cylinder diameter) and the
body oscillation frequency varied in the range 0.04 < fy < 0.80. These values were
chosen to compare with experimental data, when possible. Three relative roughness sizes
were chosen, i.e. ¢/D = 0.001,0.0045 and 0.007. The test cases with no roughness
effects, when compared to the experimental data, captured two basic antisymmetrical
modes, namely modes Al and AIV, and also the chaotic mode. The symmetric mode
with coalescence was captured. Those modes indicate that the vortex shedding frequency,
obtained from the time history curve of the drag coefficient force, is synchronized with
the body oscillation frequency at a fixed Reynolds number of 100,000. In certain tests
involving the surface roughness model, a desynchronization between the forced and vortex
shedding frequencies was observed, and significant drag force variations, representing the

main contribution of this study.

Keywords: bluff body aerodynamics, large-eddy simulation (LES), roughness model, drag

force, lock-in regime, lagrangian dynamics.
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1 Introducao

1.1 Motivacoes

O estudo do escoamento de fluidos ao redor de corpos rombudos tem sido foco de
pesquisa devido a sua relevancia para aplicagdes em problemas de engenharia. Um dos
fendmenos mais importantes associados a esse tipo de escoamento € o desprendimento
de estruturas vorticosas, que ocorre de forma periddica e pode induzir vibragdes em
uma estrutura cilindrica. Essas Vibra¢gdes Induzidas por Vortices (VIV) sdo uma fonte
significativa de problemas em diversas areas da engenharia, como em projetos de dutos
submarinos, risers, cabos de ancoragem, estruturas offshore e equipamentos industriais,
por causarem esforcos ciclicos que podem levar a fadiga e falhas estruturais.

O entendimento aprofundado das VIV € essencial para garantir a confiabilidade e
seguranca dessas estruturas, especialmente em ambientes desafiadores como o offshore,
onde as condi¢des de escoamento sdo complexas e os custos de manutencao e reparo sao
elevados. Além disso, as vibracdes induzidas pelo desprendimento de vortices apresentam
aspectos dinamicos interessantes, como a ocorréncia do fendmeno conhecido como lock-
in, que consiste na sincronizacdo da frequéncia de desprendimento de voértices com a
frequéncia natural da estrutura, amplificando as oscilacdes e os esfor¢os envolvidos.

Embora existam diversos estudos experimentais e numéricos focados em VIV, a maior
parte deles concentra-se em condi¢des de baixo a moderado nimero de Reynolds ou em
estruturas com movimentos livres restritos a poucos graus de liberdade, considerando
predominantemente a vibracdo transversal. Por outro lado, em situacdes praticas, como
em dutos e cabos rigidos submetidos a vibragdes forcadas in-line, muitas vezes em altos
nimeros de Reynolds, os mecanismos envolvidos ainda ndo sao totalmente compreendidos.
Adicionalmente, as condicdes reais de superficie, incluindo rugosidade, podem alterar
substancialmente a resposta do escoamento e das vibragdes induzidas, porém sdo pouco
exploradas em simulagdes numéricas.

Dessa forma, ha uma clara necessidade de desenvolvimento de técnicas numeéricas
para ampliar o conhecimento dos mecanismos que regem as vibragdes induzidas por
vortices em corpos rombudos, especialmente considerando a influéncia da rugosidade
superficial e de vibragcdes forcadas in-line em regimes de ntimero de Reynolds elevados. A
consideracdo do efeito rugoso € essencial para andlises que envolvem vibrag¢des induzidas
por vdrtices, especialmente em corpos rombudos, pois a rugosidade superficial modifica o
comportamento da camada limite e interfere na dindmica do desprendimento de vortices.

Isso pode alterar tanto a intensidade dos carregamentos fluidodindmicos atuantes quanto a
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frequéncia de emissao de vortices, afetando a resposta vibratéria do sistema. Ignorar esse
efeito pode levar a previsdes imprecisas, sobretudo em aplica¢des envolvendo nimero de

Reynolds elevado.

1.2 Objetivos

Este trabalho tem como objetivo principal o estudo de VIV em um corpo rombudo
representado por um cilindro circular bidimensional que sofre vibragdes for¢adas na
direcdo do escoamento incidente (in-line), em condi¢des de alto nimero de Reynolds.
Para representar de forma mais realista o escoamento, € incorporado um modelo de
rugosidade superficial, permitindo avaliar como as imperfei¢des da superficie afetam o
padrao de desprendimento de vortices e o comportamento das vibragdes induzidas. Assim,

0s objetivos especificos sado:

* Desenvolver e validar um modelo numérico baseado no Método de Vortices Dis-
cretos (MVD) que incorpore o efeito da rugosidade superficial para simular com
maior fidelidade o comportamento do escoamento e das vibragdes induzidas em

altas condi¢des de Reynolds.

* Investigar os regimes de desprendimento de estruturas vorticosas e suas interagdes
com as vibracgdes forcadas in-line, considerando os efeitos da rugosidade superficial

na modulagdo desses fendmenos.

* Mapear a regido de ocorréncia do fendmeno de lock-in e caracterizar os modos
de desprendimento de vértices, avaliando a influéncia conjunta da vibracdo e da

rugosidade na resposta hidrodinamica.

* Fornecer andlises detalhadas que contribuam para o aprimoramento do entendimento
dos mecanismos fisicos associados a vibragcdo e a rugosidade, visando futuras

aplicacdes em engenharia envolvendo corpos rombudos.

1.3 Metodologia

Para alcancar os objetivos propostos, este trabalho utiliza uma abordagem numérica
baseada no Método de Vortices Discretos (MVD), uma técnica lagrangiana que modela
0 escoamento viscoso ao redor do corpo por meio de vortices discretos de Lamb. Esses
vortices sdo gerados na superficie do cilindro e sdo advectados e difundidos conforme al-

goritmos especificos, permitindo simular com precisao a evolu¢ao do escoamento, mesmo
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em regimes de alto nimero de Reynolds. O avancgo temporal € realizado por esquemas nu-
méricos explicitos, garantindo efici€éncia computacional, potencializada pela paralelizacao
via OpenMP em linguagem FORTRAN.

As condi¢des de contorno sélidas sdo representadas pelo Método dos Painéis, que
utiliza painéis de fontes com densidade constante para impor a impermeabilidade. Ja a
condi¢do de ndo deslizamento € satisfeita através do desprendimento de vortices discretos
de Lamb, sendo imposta via Método de Vértices Discretos com modelo de camada
limite. O solo € tratado numericamente por meio de uma condi¢cdo de movimento relativo,
eliminando a geracdo de vortices discretos na sua superficie. Um modelo de rugosidade
superficial altera a intensidade dos vértices gerados, simulando o aumento da transferéncia
de quantidade de movimento proximo as superficies rugosas, o que impacta diretamente a
separacdo da camada limite e o padrdo de desprendimento dos vortices.

O modelo também contempla a vibracao forcada in-line do cilindro, imposta como um
movimento oscilatério na dire¢do do escoamento incidente, com frequéncia e amplitude
controladas. Essa abordagem permite analisar o impacto da oscilagdo sobre o desprendi-
mento de vortices e as for¢as hidrodinamicas atuantes, influenciando a resposta dindmica
do sistema fluido-estrutura.

A modelagem da turbuléncia € realizada pelo método de avanco randomico, que
incorpora um coeficiente de viscosidade turbulento para representar os efeitos das escalas
submalha. As cargas fluidodinamicas sao obtidas a partir da distribuicao de pressdo sobre
a superficie do corpo, calculada por uma formulagdo integral baseada em uma equacdo de
Poisson, considerando a contribui¢do de todos os vortices discretos presentes na esteira
viscosa. A integracdo dessas pressdes resulta nas forgas de arrasto de forma e sustentacao,
possibilitando uma avaliacdo detalhada dos carregamentos fluidodindmicos ao longo da

simulacao.

1.4 Estrutura do Trabalho

Este trabalho esta estruturado da seguinte forma:

* No Capitulo 2, apresenta-se uma revisao bibliogrifica detalhada sobre Vibracdes
Induzidas por Vértices, métodos numéricos aplicados ao problema e estudos relacio-

nados a influéncia da rugosidade superficial.

* O Capitulo 3 expde o modelo matematico do problema, incluindo as equacdes gover-

nantes, condicdes de contorno e a adimensionaliza¢do para ganho de generalidade.
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O Capitulo 4 descreve o Método de Vértices Discretos, suas bases tedricas e as
adaptacoes realizadas para incorporar a modelagem de turbuléncia, o modelo de

rugosidade e vibragdo forcada.

No Capitulo 5 sdo apresentados e discutidos os resultados numéricos obtidos, com
andlises detalhadas dos regimes de desprendimento, carregamentos fluidodinamicos

atuantes e efeitos da rugosidade.

O Capitulo 6 traz as conclusdes principais, contribuicoes do trabalho e sugestdes

para pesquisas futuras.

Os Apéndices A e B incluem informagdes complementares, como detalhes da imple-
mentacdo computacional, parametros de simulacdo e demonstracdes matematicas

relevantes.



2 Revisao Bibliografica

Este capitulo apresenta uma revisao bibliografica sobre o mecanismo de formacao e
desprendimento de vortices em corpos rombudos, especialmente cilindros circulares, e suas
consequéncias na geragao de vibragdes induzidas por vortices. Sdo abordados os principais
conceitos e estudos relacionados a influéncia da rugosidade superficial na transi¢do do
escoamento e no padrao de desprendimento dos vortices. Também € apresentado o Método
do Vértice Discreto, utilizado para a modelagem numérica do comportamento dos vortices
na esteira e suas interagdes com o corpo, com destaque para a capacidade dessa metodologia

em capturar fendmenos fluidodindmicos relevantes para o acoplamento fluido—estrutura.

2.1 O Mecanismo de Formagao de Vortices

No estudo da aerodinamica de geometrias encontradas na engenharia, ¢ comum
classificd-las em corpos rombudos e corpos esbeltos. Um corpo rombudo € aquele que,
quando sujeito a uma corrente de fluido, apresenta uma considerdavel propor¢do de sua
superficie submersa exposta ao fendmeno da separacdo do escoamento. Ja nos corpos
esbeltos, como aerof6lios em baixos angulos de incidéncia, a separagdo do escoamento
apresenta-se reduzida, resultando em uma esteira mais fina a jusante do corpo. Por outro
lado, nos corpos rombudos, como um cilindro circular, o escoamento sofre separacao da
camada limite, formando uma esteira espessa a jusante.

A separacdo da camada limite ocorre quando o escoamento ao redor de um corpo
encontra uma regido com gradiente de pressdo adverso. Nessa situagdo, as particulas do
fluido comecam a perder energia cinética, o que compromete sua capacidade de vencer o
gradiente de pressdo. Como consequéncia, formam-se duas camadas de cisalhamento, que
podem se enrolar em torno delas mesmas devido a instabilidade do escoamento, resultando
na formagao da esteira viscosa.

Segundo Gerrard [1], a estrutura vorticosa cresce ganhando circulacdo oriunda da
camada cisalhante a qual esta conectada. Quando esta estrutura vorticosa esta suficiente-
mente intensa, ele atrai a camada limite cisalhante oposta com circulagdo oposta e seguem

um dos seguintes caminhos:

(a) Fundir-se com a estrutura vorticosa que estd se formando no lado oposto da esteira,

(b) Mover-se em direcdo a camada cisalhante oposta e cortar a alimentacdo da estrutura

vorticosa liberando-a para a esteira viscosa,
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(c) Voltar na direcdo da regido da esteira préxima ao corpo e iniciar uma nova estrutura

vorticosa no lado oposto.

A Figura 2.1 ilustra esses mecanismos associados a formagao de vértices, exemplifi-

cando os caminhos (a), (b) e (c).

Figura 2.1 — Mecanismo de formacao de vortices. (Reproduzida de Gerrard [1]).

E comum na literatura chamar de vértices as estruturas vorticosas contrarrotativas; o
que também ¢é adotado neste trabalho.

A compreensao da separagdo da camada limite e da formacdo de estruturas vorticosas
€ essencial para a andlise de corpos rombudos. Entre os fatores que influenciam esses
fendomenos, destaca-se o nimero de Reynolds, cuja variagdo altera o regime do escoamento
e a dinamica da esteira.

A secdo seguinte aborda o escoamento ao redor de um cilindro circular estacionério,
com foco na influéncia desse nimero adimensional sobre os principais comportamentos

do escoamento.

2.2 0O escoamento ao redor de um cilindro circular es-
tacionario

O escoamento ao redor de um cilindro estaciondrio estd fortemente condicionado pelo
ndmero de Reynolds, pardmetro adimensional que expressa a razio entre as forcas inerciais
e viscosas do escoamento (Re = UD /v, onde U, D e v sdo respectivamente, a velocidade
do escoamento incidente, o diametro do cilindro circular e o coeficiente de viscosidade
cinemadtica). Esse nimero adimensional € fundamental para caracterizar os diferentes
regimes de escoamento, influenciando diretamente fendmenos como separacdo da camada
limite, formagdo de vortices e transi¢des entre regimes laminar, transicional e turbulento.

Quando o nimero de Reynolds € baixo (Re < 1), o escoamento é aproximadamente
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simétrico e ndo ha o fenomeno da separacido da camada limite. Este tipo de escoamento é

chamado de creeping flow, visto na Figura 2.2.

Figura 2.2 — Escoamento ao redor de um cilindro estaciondrio para Re < 1. (Reproduzida
de Van Dyke [2]).

O aumento das forgas estd relacionado a separagdo da camada limite. Dessa forma,
para nimeros de Reynolds na faixa de 5 a 40, ocorre a formacao de vortices estaciondrios,
conhecidos como vortices de Fopll, que se estabelecem a jusante do cilindro, como

mostrado na Figura 2.3.

Re=13 Re=26

Figura 2.3 — Escoamento ao redor de um cilindro estaciondrio para 5 < Re < 40, for-
mando vdrtices estaciondrios. (Reproduzida de Van Dyke [2]).

Com ntiimero de Reynolds em torno de 90, os pontos de separa¢do tornam-se instdveis,
ocorrendo desprendimento alternado de voértices contrarrotativos, caracterizando a esteira
de Von Kédrmén, como ilustra a Figura 2.4. Nessa faixa, o arrasto de forma representa
cerca de 98% do arrasto total. A for¢a de arrasto de forma aparece nas estruturas quando

se identifica a forma rombuda com separacdo da camada limite hidrodinamica.
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Figura 2.4 — Escoamento ao redor de um cilindro estaciondrio para Re = 140. (Reprodu-
zida de Van Dyke [2]).

Para valores de Reynolds abaixo de 200, a esteira permanece laminar; entretanto,
ao se ultrapassar esse limite, torna-se instdvel e irregular. Acima de Re = 200, os
efeitos tridimensionais passam a desempenhar um papel relevante, mesmo em cilindros
circulares com alta razdo de aspecto. No regime subcritico, correspondente ao intervalo
300 < Re < 3-10°, a camada limite sobre o cilindro permanece laminar, apesar da esteira
de vértices ser totalmente turbulenta, ilustrado na Figura 2.5. Nesse intervalo, o nimero de
Strouhal mantém-se praticamente constante em torno de 0,2, como mostra a Figura 2.6. O
numero de Strouhal, adimensional, representa a frequéncia de desprendimento de vortices
(St = fU/D), onde f, U e D sdo respectivamente, a frequéncia de desprendimento de
pares de estruturas vorticosas contrarrotativas, a velocidade do escoamento incidente e o
diametro do cilindro circular. A frequéncia de Strouhal, obtida a partir da série temporal do

coeficiente de sustentacdo, reflete diretamente a dindmica do desprendimento de vortices.

Figura 2.5 — Escoamento ao redor de um cilindro estaciondrio para Re = 10.000. (Repro-
duzida de Van Dyke [2]).
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Figura 2.6 — Varia¢do do nimero de Strouhal em func¢ido do nimero de Reynolds. (Repro-
duzida de Sumer & Fredsge [3]).

A medida que o nimero de Reynolds aumenta, a transicdo para o regime turbulento
ocorre na camada limite. Para 3 - 10° < Re < 3,5 - 10° o escoamento é caracterizado
pela transicdo da camada limite para o regime turbulento em apenas um dos lados do
cilindro, enquanto o lado oposto permanece laminar, ocorrendo alternancia entre os lados.
Essa assimetria no escoamento resulta em um coeficiente médio de sustentacio diferente
de zero. Além disso, observa-se um aumento abrupto no numero de Strouhal, que salta
de aproximadamente 0,2 para cerca de 0,45. No regime supercritico, 3,5 - 10° < Re <
1,5 - 10%, ambos os lados do cilindro apresentam camada limite turbulenta; no entanto,
persiste uma regido laminar entre o ponto de estagnacao e o ponto de transi¢do para a
turbuléncia. O nimero de Strouhal mantém-se em torno de 0,45 por uma ampla faixa deste
regime, passando a decrescer gradualmente a medida que o nimero de Reynolds aumenta.
Para Re > 4,5 - 10° o escoamento é conhecido como transcritico; é caracterizado pela
presenca de uma camada limite totalmente turbulenta ao longo da superficie do cilindro.
Essa condicao restabelece o desprendimento regular de vértices, resultando em valores
do nimero de Strouhal que variam entre 0,25 e 0,30. Com o escoamento ao redor de
um cilindro estaciondrio ja caracterizado, passa-se a andlise de uma configuragdo mais
complexa: o cilindro circular oscilando com um grau de liberdade, permitindo investigar

os efeitos sobre o campo de velocidades e a interac@o fluido-estrutura.
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2.3 Escoamento ao Redor de um Cilindro Circular Os-
cilando com um Grau de Liberdade

Em diversos sistemas mecénicos, as oscilacdes podem manifestar-se de diferentes
formas, sendo uma delas a Vibragao Induzida pelo Escoamento (VIE). Esse fendmeno
ocorre quando um fluido em movimento interage com uma estrutura, gerando forgas
aerodindmicas ou hidrodinamicas que provocam oscila¢cdes na mesma. Vibragdes Induzidas
por Vértices (VIV) € um caso particular de VIE. Tal fendmeno € identificado quando a
frequéncia de oscilagdo do corpo aproxima-se da frequéncia de geracdo e desprendimento

de vortices.

O fendmeno de VIV pode ser analisado por meio de duas abordagens principais, de
acordo com Thomson [4]: a livre e a forcada. A oscilagdo livre ocorre naturalmente, ou
seja, a frequéncia de desprendimento de vortices e a frequéncia natural sdo as mesmas.
Este modelo de vibracdo estrutural € constituido por molas ajustiveis e por um sistema de
amortecimento (base eldstica) de forma a permitir a movimentagao do corpo na direcao
transversal e/ou na mesma dire¢do do escoamento incidente. Por outro lado, a oscilagdo
forcada ocorre para velocidades e amplitudes que sdo impostas e controladas indepen-
dente da velocidade do fluido. Pode ser utilizado um tinel de vento ou de um canal de

recirculacdo de dgua.

Conforme mostrado por Parkinson [5] hd prés e contras a cada uma dessas abordagens.
Para a oscilacao livre é possivel que o experimentalista obtenha evidéncias diretas das
interacdes nao lineares, que ocorrem entre excitacio e resposta. Entretanto, o nimero de
parametros a serem medidos € maior do que no caso de vibragdo forcada. J4 no caso de
oscilacao forcada a grande vantagem estd no fato de ser possivel controlar rigorosamente,
a frequéncia e amplitude de oscilacdo. Assim, a observacdo de um certo modo de despren-
dimento de vortices € mais simples neste caso. Contudo, como desvantagem, tem-se o
fato de algumas das caracteristicas observadas em problemas praticos de VIV ndo serem

reproduzidas.

Bishop & Hassan [6] analisaram, experimentalmente, o impacto das oscilagdes de
um corpo na formacdo de vortices. Em seus estudos, investigaram a influéncia das
forgas atuantes em um cilindro quando este € submetido a oscilagdes for¢adas na dire¢ao
transversal ao escoamento. Descobriram que quando a frequéncia de oscilagdo f do
cilindro aproxima-se da frequénca de Strouhal, f; , a frequéncia f e a frequéncia de
oscilacao do coeficiente de sustenta¢do tornam-se sincronizadas. Ademais, apontaram a
variacao brusca do angulo de fase ¢ entre a forca transversal e o deslocamento do corpo
que ocorre quando a frequéncia de oscilagdo varia em torno da frequéncia de geracao de

vértices. Junto com esta varia¢ao ocorre um repentino aumento da amplitude do coeficiente
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de sustentacdo.

Com o objetivo de determinar a regido de sincronizagdo, também conhecida como
fronteira de lock-in, Koopman [7] concluiu que a sincronizacdo ocorre quando a amplitude
de oscilagdo ultrapassa um determinado valor limite. Dessa forma, o regime de lock-in pode
ser influenciado por duas condic¢des principais: a amplitude e a frequéncia de oscilagdo do
Ccorpo.

Com as regides de sincronizacdo ja mapeadas por Koopman [7], Williamson &
Roshko [8] realizaram uma série de experimentos com um cilindro oscilando transversal-
mente. O nimero de Reynolds dos experimentos estava no intervalo entre 300 e 1000.
Foram varridas uma ampla faixa de amplitudes entre 0,2 < A/D < 5 e frequéncias de
oscilagdo entre 1/3 < f, < 5. Dessa forma, identificou-se, experimentalmente, uma série
de regimes de sincronizagdo, os quais foram classificados com base na quantidade de
vortices gerados e desprendidos em cada ciclo de oscilagdo. A Figura 2.7 representa tais

regimes de desprendimento de vortices para um nimero de Reynolds baixo, Re = 392.
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Figura 2.7 — Regimes de desprendimento de vortices sobre um cilindro circular oscilando
na direcdo transversal ao escoamento incidente.(Adaptada de Williamson &
Roshko[8]).

Os diferentes padroes de desprendimento de vortices foram observados. Dentre eles,
destacam-se tré€s: modo 25, 2P e P 4+ S. Como pode-se observar na Figura 2.7, o modo
25 ¢é caracterizado por dois vortices de circulagdo oposta sendo desprendidos a cada ciclo
de oscilacdo. Ja 0o modo 2P, dois pares de vortices sao gerados e desprendidos a cada ciclo
de oscilagdo. Por fim, no modo P + S, um voértice mais um par de vértices de circulagdo
oposta sdo desprendidos a cada ciclo de oscilacdo. O fendomeno de Histerese foi uma
das principais contribui¢des do trabalho de Williamson & Roshko [8]. Esse fendmeno
foi identificado na transicdo do modo 2.5 para o modo 2P e vice-versa. Tal transicdo é
acompanhada por uma descontinuidade no angulo de fase. Valores elevados do angulo de

fase (aproximadamente entre 160° e 180°), assim como de amplitude, estdo associados ao
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modo 2P. Por outro lado, o modo 2S5 estd relacionado a valores de angulo de fase de 0°
a 90°. Os experimentos foram conduzidos em um tanque equipado com uma plataforma
rebocada, que continha um sistema de oscila¢do controlada do cilindro, permitindo o ajuste
da amplitude e da frequéncia. Para a visuzalizacdo do fendmeno, utilizou-se particulas de
aluminio na superficie.

Meneghini & Bearman [9] apresentaram resultados de simula¢des numéricas do esco-
amento ao redor de um cilindro submetido a uma oscilacdo senoidal for¢ada na direcao
transversal. Para a realizacdo das simula¢des, foi empregado o método dos vértices discre-
tos, incluindo difusdo viscosa, conforme descrito pelos autores. O nimero de Reynolds
destas simulagdes foi de 200, com amplitudes A/ D inferiores a 0,6. Para determinar a
fronteira de sincronizag@o, os autores realizaram simulac¢des variando a frequéncia f/ f;
entre 0,7 e 1,15 e amplitude A/D ntre 0,025 e 0,6. A geragdo e o desprendimento de
vortices sdo caracterizados como sincronizados quando a frequéncia do coeficiente de
sustentacdo C; coincide com a frequéncia de oscilacdo do cilindro. Nesse intervalo ocorre
a fronteira de sincronizagdo primadria e dois vortices com circulagdes opostas sdo despren-
didos a cada ciclo. Este resultado estd de acordo com aquele observado experimentalmente
de Williamson & Roshko [8].

Ademais, as séries temporais dos coeficientes de forca constituiram resultados funda-
mentais no estudo de Meneghini & Bearman [9] para a adequada interpretagdo do fendmeno
de lock-in. A Figura 2.8 ilustra um caso em que a frequéncia f/ f; foi mantida constante
em 0,75, enquanto a aplitude foi variada em quatro valores distintos: A/D = 0, 25; 0, 30;
0,45 e 0, 60, correspondendo, respectivamente, aos casos (a), (b), (c) e (d). O fendmeno de
batimento € observado para o caso em que f/f; =0,75e A/D = 0,25. Com o aumento
da frequéncia de oscilagcdo, o batimento desaparece, resultando em um comportamento
mais regular tanto da forca de sustentacdo quanto da forca de arrasto. A andlise dos
resultados apesentados nas Figuras 2.8 permite concluir que quando a amplitude estd se
aproximando da amplitude de sincronizacdo, as cargas fluidodindmicas sdo claramente
inconstantes e randomicas. Somente para a amplitude A/D = 0, 60 observa-se novamente

um padrdo regular na sustentagao.
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Figura 2.8 — Séries temporais dos coeficientes de forca. (Reproduzida de Meneghini &
Bearman [9])

Embora as vibragdes transversais tenham sido amplamente estudadas devido a sua
predominéncia em diversas configuracdes de escoamento, as vibragdes in-line também
merecem atengdo, especialmente por sua ocorréncia em situagdes praticas de engenharia.
Um exemplo marcante foi observado em 1968, durante a constru¢cao do Immingham QOil
Terminal, na costa leste da Inglaterra, quando o fendmeno chamou pela primeira vez a

atencao da comunidade cientifica.

Ongoren & Rockwell [10] realizaram um estudo experimental em um canal de recircu-
lagdo de dgua considerando um nimero de Reynolds igual a 855. O objetivo principal do
estudo foi identificar a sincronizacio entre a geracdo e desprendimento de vértices com o
movimento de um cilindro circular submetido a uma oscilacdo forcada, considerando dife-
rentes angulos de oscilacdo o em relagdo a corrente incidente. A amplitude de oscilagdo do
experimento foi de A = 0, 13D, em que D ¢ o didmetro do cilindro. A faixa de excita¢do
do cilindro foi 0,5 < fy/fs < 4,0, em que f, é a frequéncia de oscilagdo do corpo e f
¢ a frequéncia de emissdo de vortices correspondente ao cilindro estaciondrio. Assim,
Ongoren & Rockwell [10] observaram dois grupos bésicos de emissdo de vortices, sendo
eles: modo simétrico e modo antissimétrico. No modo simétrico, Modo S (Figura 2.9),
ocorre o desprendimento simultdneo de uma estrutura vorticosa em cada lado do cilindro
no decorrer de um unico periodo 7' de oscilagdo, como mostrado na Figura. O modo
antissimétrico é dididivo em quatro ramificacdes: Modo A — I, Modo A — 11, Modo
A—1IITe ModoA—1IV.O Modo A — I (Figura 2.10) assemelha-se ao modo cldssico
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de Vén Karman, no qual ocorre o desprendimento alternado de estruturas vorticosas con-
trarrotativas. O Modo A — I (Figura 2.11), embora semelhante ao Modo A — I, requer
dois periodos de oscilacao para a formacao do par de vértices antissimétrico. O Modo
A — I11 (Figura 2.12) também demanda dois periodos de oscilagdo para se completar e
€ caracterizado pelo desprendimento de um par de estruturas vorticosas de um lado do
cilindro, seguido pelo desprendimento de uma tnica estrutura do lado oposto. Por fim, o
Modo A — IV (Figura 2.13), assim como os anteriores, exige dois periodos de oscilacio;
contudo, nesse caso, um par de estruturas vorticosas contrarrotativas se desprende de cada

lado do cilindro.
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Figura 2.9 — Modo Simétrico de emissdo de vortices para oscilagdo in-line de um cilindro
circular. (Reproduzida de Ongoren & Rockwell [10].)
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Figura 2.10 — Modo Antissimétrico A-I de emissao de vortices para oscilacao in-line de
um cilindro circular. (Reproduzida de Ongoren & Rockwell [10]).

O O

Figura 2.11 — Modo Antissimétrico A-II de emissdo de vortices para oscilagio in-line de
um cilindro circular. (Reproduzida de Ongoren & Rockwell [10]).
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Figura 2.12 — Modo Antissimétrico A-III de emissao de vortices para oscilagdo in-line de
um cilindro circular. (Reproduzida de Ongoren & Rockwell [10]).
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Figura 2.13 — Modo Antissimétrico A-IV de emissao de vortices para oscilagdo in-line de
um cilindro circular. (Reproduzida de Ongoren & Rockwell [10]).

Yokoi & Kamemoto [11] investigaram o fendmeno de desprendimento de vortices
ao redor de um cilindro circular sujeito a oscilacdes forcadas na direcdo do escoamento
uniforme. O experimento ocorreu em um canal de recirculagdo de dgua para uma faixa
de Reynolds variando entre 260 < Re < 2460. Os resultados indicaram que a frequéncia
de desprendimento dos vértices (fs) tende a ser um mdltiplo (n = 0,5;1;2;3;...) da
frequéncia de oscila¢ao do cilindro ( fj), quando o fendmeno de lock-in ocorria. Os autores
categorizaram distindos padrdes de desprendimento de vortices por meio da técnica de
visualizagdo por iluminacao a laser. O primeiro padrao classificado pelos autores foi o
padriao "A", conforme ilustrado na Figura 2.14. Nesse regime os vortices sdo desprendidos
alternadamente, de maneira semelhante ao desprendimento cldssico de Von Karman,
porém com um intervalo de tempo varidvel. Essa variacdo temporal provoca uma distor¢ao
na estrutura dos vértices na esteira. Dessa forma, para esse padrdo, a frequéncia de
desprendimento dos vértices corresponde a um multiplo inteiro da frequéncia de oscilagio
do cilindro, ou seja, fo/fs = n, onde n = 2, 3. A Figura 2.15 apresenta o padrdo "B", no
qual os vértices sao desprendidos simetricamente de ambos os lados do cilindro, resultando
no estado de lock-in unitério, definido por: fy/fs = 1. O padrao "C", por sua vez, descreve
um regime em que um par de vortices sdo gerados pelo cilindro oscilante, porém ndo
formam uma esteira organizada, como mostra a Figura 2.16. Esses padrdes refletem
comportamentos distintos do escoamento ao redor do cilindro, evidenciando a diversidade

das interagdes entre a oscilacao do cilindro e a dindmica do desprendimento de voértices.
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Figura 2.14 — Padrao "A"de desprendimento de vortices com Re = 490. (Reproduzida de
Yokoi & Kamemoto [11]).

Figura 2.15 — Padrao "B"de desprendimento de vortices com Re = 490. (Reproduzida de
Yokoi & Kamemoto [11]).

Figura 2.16 — Padrao "C"de desprendimento de vortices com Re = 490. (Reproduzida de
Yokoi & Kamemoto [11]).

Diante da necesidade de realizar simulagdes com maior aplicabilidade a engenharia,
especialmente com nimeros de Reynolds elevados, Silva Siqueira [12] conduziu simu-
lagdes numéricas em um regime de alto nimero de Reynolds (Re = 10°). Este estudo
demonstrou a viabilidade do Método de Vértices Discretos na modelagem de fendmenos
de vibragao forcada, aproximando-os das condi¢des reais encontradas em problemas de
engenharia, especialmente em regimes com nimeros de Reynolds elevados. O algoritmo
desenvolvido foi inicialmente validado para um cilindro circular estaciondrio antes de ser

empregado na andlise de um cilindro oscilante na dire¢do do escoamento (in-line). Os
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resultados obtidos apresentaram boa concordancia com dados experimentais. As principais
discrepancias podem ser atribuidas as limita¢gdes da formula¢do bidimensional utilizada,
que, embora adequada para reproduzir as caracteristicas globais do escoamento, pode nao
capturar todos os regimes de formacao de vértices que ocorrem em nimeros de Reynolds
elevados (Re ~ 10°), particularmente em condi¢des de lock-in.

Nesse estudo, foram realizadas simulagdes com amplitude de oscilagdo A = 0,13, a
mesma utilizada no trabalho de Ongoren & Rockwell [10], e A = 0,5. A frequéncia de
oscila¢@o nesse estudo variou no intervalo 0,1 < fy/fs < 4. Por outro lado, no trabalho
de Ongoren & Rockwell [10], a frequéncia de oscilagdo do cilindro variou no intervalo
0,5 < fo/fs < 4. O cédigo computacional desenvolvido neste estudo demonstrou
a capacidade de reproduzir o modo simétrico S e os modos antissimétricos A — [ e
A —1V.O Modo S (Figura 2.17) foi claramente observado para amplitudes de oscilagdo
A = 0,13 quando fy/fs = 2 e para A = 0,5 no intervalo 1 < fy/fs < 2, enquanto
Ongoren & Rockwell [10] identificaram esses modos para fy/fs = 3 e fo/fs = 4. O
ModoA — I (Figura 2.18) ocorreu para fy/ fs = 0, 2, diferindo dos resultados de Ongoren
& Rockwell [10], que observaram esse modo para fy/fs = 0,5. O ModoA — IV (Figura
2.19) foi identificado para fyo/f; = 1,8, valor ligeiramente superior ao relatado por
Ongoren & Rockwell [10], que o verificaram para f,/fs = 1,7. Um caso especial foi o
caso com fo/fs = 0,4. A esteira do instante final da simulagdo apresenta uma tendéncia
ao modo antissimétrico A-I, mas em determinado intervalo de tempo da simulacdo é
observado o modo de desprendimento antissimétrico A-II1, sendo considerado um modo
de competigdo (Figura 2.20). O modo de sincronizacdo antissimétrico A — I ndo foi

encontrado nas simulacdes numéricas.

Figura 2.17 — Modo simétrico da estrutura de vortices na esteira do cilindro circular osci-
lando in-line com Re = 10°. (Reproduzida de Silva Siqueira [12]).
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Figura 2.18 — Modo antissimétrico A-I da estrutura de vortices na esteira do cilindro
circular oscilando in-line com Re = 10°. (Reproduzida de Silva Siqueira

[12]).

Figura 2.19 — Modo antissimétrico A-IV da estrutura de vdrtices na esteira do cilindro
circular oscilando in-line com Re = 10°. (Reproduzida de Silva Siqueira

[12]).
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Figura 2.20 — Competi¢do entre o0 modo antissimétrico A-I e AIlIl da estrutura de vortices
na esteira do cilindro circular oscilando in-line com Re = 10°. (Reproduzida
de Silva Siqueira [12]).

A partir do trabalho de Silva Siqueira [12], Martins [13] conduziu simula¢des numéricas
também em regime de alto nimero de Reynolds (Re = 10°). No entanto, sua principal
contribui¢do consiste na ado¢ao de um referencial inercial, diferente do trabalho de Silva
Siqueira [12], que utilizou um referencial ndo inercial fixado ao cilindro. O Modo S foi
observado para amplitudes de oscilagdo A = 0,13 quando fo/fs = 1,7e fo/fs = 2. O
ModoA — I ocorreu para fo/fs = 0,2¢ fo/fs = 0,4. O ModoA — IV foi identificado
para fo/f, = 1,0.

No estudo experimental conduzido por Hu et al. [14], foram investigadas oscilagdes

in-line na faixa de nimero de Reynolds entre 360 e 460, considerando amplitudes eleva-
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das de oscilagdo (0,2 < A/D < 1,0) e variagdes significativas da razdo de frequéncia
(0 < fo/fs < 6,85). Os resultados sugerem que baixos valores de Reynolds favorecem a
coeréncia dos modos de escoamento, e, sob condi¢des bastante especificas, os modos si-
métricos podem ser subdivididos em trés categorias distintas, cada uma delas apresentando
dois subtipos. Além da identificacdo de um terceiro modo simétrico, 0s autores propuseram
a existéncia de um novo modo caracterizado por comportamento cadtico, denominado
modo C, também com dois subtipos. A Figura 2.21 resume os principais modos associados

a vibragoes in-line identificados até o momento na literatura.

Figura 2.21 — Possiveis modos da esteira vorticosa para oscilacdo puramente in-line. (Re-
produzida de Hu et al. [14]).

2.4 Supressao do Desprendimento de Vértices e Con-
trole da Esteira

A supressao do desprendimento de vortices tem sido amplamente investigada devido
a sua relevancia em diversas aplicacdes de engenharia, principalmente no controle de
escoamentos ao redor de corpos imersos. Nesse contexto, Rashidi ef al. [15] exploraram
técnicas ativas e passivas para o controle de desprendimentos de vértices. Métodos ativos
necessitam energia externa para modificar o escoamento. Esses métodos podem ser
classificados em dois subgrupos: controle da camada limite e controle da esteira. No
contexto do controle da camada limite, destacam-se: métodos elétricos, métodos através
do uso de um campo magnético e métodos pelo uso de efeitos térmicos. J4 os métodos de
controle da esteira, destacam-se: métodos de controle por feedback e métodos de geragao
de um escoamento secundario.

Os métodos de controle passivos baseiam-se em modificacdes geométricas do corpo,
influenciando diretamente o mecanismo de formagao e desprendimento de vortices. Dentre

eles, destaca-se o método por rugosidade superficial, que constitui o objeto de estudo desta
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dissertacdo. Segundo Rashidi et al. [15], os efeitos da rugosidade na camada limite ocorrem
por meio de dois mecanismos: a antecipagdo da transi¢do para um regime turbulento devido
a presenca de irregularidades na superficie do corpo e a alteracdo do perfil de velocidades
na camada limite turbulenta. A vibracao induzida por vértices em corpos rombudos é um
fendmeno relevante na engenharia. Portanto, o controle do desprendimento de vértices por
meio da rugosidade superficial desempenha um papel fundamental em diversas aplicagdes,
especialmente em estruturas offshore, como pilares de plataformas, dutos submarinos e

risers.

Nikuradse [16] foi o pioneiro na identificacido de que os efeitos da rugosidade perma-
necem confinados a uma fina camada pr6xima a superficie. A rugosidade relativa, £/ D,
¢ um parametro adimensional que quantifica a influéncia das irregularidades superficiais
no escoamento de um fluido sobre uma superficie. E definida pela razio entre a altura
média das protuberncias e saliéncias que formam a superficie (¢) e um comprimento

caracteristico (D).

Achenbach Heinecke [17] estudaram o comportamento do nimero de Strouhal em
fun¢do do niimero de Reynolds para um cilindro circular rugoso. O efeito da rugosidade
relativa sobre o nimero de Strouhal evidencia que o aumento desse parametro provoca
uma antecipagdo dos regimes do escoamento. Os regimes de escoamento de um cilindro
liso também ocorrem em superficies rugosas, porém, o ponto de separa¢ido do escoamento
no cilindro rugoso ocorre em angulos menores devido ao aumento da espessura da camada
limite, reduzindo a troca de quantidade de movimento Sumer Fredsge [3]. O regime
transcritico se estreita com o aumento da rugosidade, elevando o coeficiente de arrasto
médio, enquanto em baixos nimeros de Reynolds, como no regime subcritico, a rugosidade

ndo impacta esse coeficiente.

Fage & Warsap [18] observaram que o aumento da rugosidade relativa (¢ /D) antecipa
a crise do arrasto para menores nimeros de Reynolds. O coeficiente de arrasto médio
varia menos em cilindros rugosos, reduzindo de 1,4 para 1,1 (¢/D = 30 - 10_3), enquanto
em cilindros lisos cai de 1,4 para 0,5. Essa diferenca deve-se a posi¢cao do ponto de
separagdo, localizada em 140° para cilindros lisos e 115° para cilindros rugosos no regime

supercritico.

Gao et al. [19] realizaram estudos experimentais sobre os efeitos da rugosidade superfi-
cial na resposta a vibracdo induzida por voértices em um cilindro circular, considerando
um intervalo de numero de Reynolds entre 25.000 e 180.000. Os resultados indicaram
que o coeficiente de arrasto nos cilindros rugosos apresenta uma reducao abrupta para
baixos valores de rugosidade superficial. Entretanto, a medida que a rugosidade aumenta,
o arrasto cresce rapidamente, atingindo seu valor maximo quando £/D = 0,00843. Além

disso, concluiram que o inicio do fendmeno de lock-in para o cilindro liso ocorre para
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uma velocidade reduzida mais alta do que para cilindros rugosos, mas com uma regiao de
lock-in mais ampla. A velocidade reduzida € um parametro adimensional definido como
a razdo entre a velocidade do escoamento livre e o produto do didmetro do cilindro pela
frequéncia natural nas oscilacdes livres ou pela frequéncia de excitacdo nas oscilacdes
forgadas.

Estudos anteriores focaram em rugosidades /D inferiores a 3%, demonstrando que
tais condi¢Oes alteram a separacdo do escoamento e podem reduzir o coeficiente de
arrasto. Assim, Chenlin Sun et al. [20] estudaram a influéncia de rugosidades elevadas no
escoamento ao redor de cilindros circulares. Este estudo investiga cilindros com /D entre
5% e 20%, mostrando que, para /D > 15%, a rugosidade altera a dindmica da esteira e
reduz a regido de formacdo de vortices, com implicacdes para o controle de vibracgdes e
estruturas em escoamentos turbulentos.

Han et al. [21] estudaram a influéncia da rugosidade superficial dos risers mariti-
mos, decorrente da adsor¢cao de organismos marinhos ao longo do tempo de operacao,
concluindo que exerce influéncia significativa sobre o campo de escoamento na esteira e,
consequentemente, sobre as caracteristicas dindmicas da vibragdo induzida por vortices
(VIV). Utilizando métodos acoplados de dindmica dos fluidos computacional (CFD) o
estudo propds um modelo numérico que incorpora a variacao de tensdo com a vibragao
estrutural, além de uma modifica¢do no gradiente de velocidade em paredes rugosas. Os
resultados indicam que, na faixa de Reynolds entre 2,52 - 10* e 1, 26 - 10° e velocidade re-
duzida entre 1,35 e 6,74; risers com superficie rugosa apresentam redu¢do na amplitude de
vibracdo na dire¢dao do escoamento, efeito que se intensifica com o aumento da rugosidade

e da velocidade do fluxo.

2.5 0O Método de Vértices Discretos

De forma geral, a Dindmica dos Fluidos Computacional(CFD) utiliza duas aborda-
gens principais para a solu¢do de problemas de engenharia: a abordagem euleriana e a
abordagem lagrangiana. Na formulacao euleriana, o escoamento € descrito a partir de
pontos fixos no espacgo, focando na variacao temporal das propriedades do fluido nesses
locais. Por outro lado, a abordagem lagrangiana consiste em acompanhar o movimento
individual das particulas fluidas, permitindo uma andlise mais detalhada das trajetdrias e
dos mecanismos de transporte envolvidos no escoamento. Entre os métodos lagrangianos
destaca-se o Método de Vortices Discretos (MVD), ferramenta utilizada neste trabalho.

No caso do MVD a grandeza discretizada é o campo de vorticidades, representada
por uma nuvem de vortices discretos de Lamb (Panton [22]). Assim, o método permite a

simulac@o dos mecanismos de geracdo, convecgao e difusdo da vorticidade no escoamento,
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viabilizando, consequentemente, o cdlculo das cargas aerodindmicas que atuam sobre a
superficie do corpo em oscilacdo. O MVD teve um avanco significativo a partir do trabalho
de Chorin [23]. O autor propds um algoritmo de separa¢do da parte viscosa da Equacdo do
Transporte da Vorticidade (ETV). Neste algoritmo os efeitos da adveccdo e da difusdo da
vorticidade podem ser resolvidos separadamente e os resultados convergem para a ETV

para pequenos valores de incremento de tempo (At).

A representacdo da camada limite nesta abordagem € obtida por meio da geracdo de
vortices discretos de Lamb sobre a superficie do corpo. Para modelar essa superficie,
emprega-se o Método de Painéis, utilizando uma distribui¢do de singularidades do tipo
fontes com densidade uniforme (Katz & Plotkin [24]). Esta técnica permite cancelar a
componente normal (condi¢cao de contorno de Neumann) da velocidade total induzida
sobre cada ponto de controle localizado no centro de cada painel, impondo, assim, a
condicao de impenetrabilidade. Com a geragdo dos vortices discretos, torna-se necessario
implementar modelos numéricos de advecc¢ao para permitir o deslocamento desses vortices
discretos ao longo do tempo. No entanto, antes dessa etapa, € fundamental determinar o
campo de velocidades. Sabe-se que a vorticidade € definida por w = V X u, €, ao integrar
o campo de vorticidades, determina-se o campo de velocidades, u, definindo a Lei de
Biot-Savart. Com isso, € possivel aplicar esquemas de adveccao da nuvem de vortices,
como, por exemplo, o esquema de avango de Euler de primeira ordem (Ferziger [25])
para os vortices discretos marcharem no tempo. E importante destacar que o cdlculo da
interagdo vortice-vortice, descrito pela Lei de Biot-Savart, apresenta alta complexidade
numérica, uma vez que requer N2 opera¢des do processador para N vortices discretos

presentes na nuvem.

A difusao da vorticidade foi simulada através do método de avanco randémico, e a
condi¢do de escorregamento nulo sobre o corpo foi imposta pela criagdo de novos vortices,
conforme proposto por Chorin [23] e Lewis [26]. O método € de simples implementacdo e
rapida execugdo; no entanto, possui uma taxa de baixa convergéncia (1/ V/N), sendo N o
nimero total de vortices discretos presentes na nuvem. Essa limitacdo motivou a busca
por alternativas que pudessem aprimorar a eficiéncia na inclusdo dos efeitos da difusao
viscosa. Nesse contexto, outros métodos se destacam na incorporacado desses efeitos nos
calculos do Método de Vortices Discretos (MVD), como o Método do Crescimento do
Raio do Nucleo do Vértice Modificado e o Método da Velocidade de Difusdo.

O Método do Crescimento do Raio do Nucleo do Vértice foi inicialmente proposto
por Leonard [27] e aplicado com éxito por Kamemoto [28]. No entanto, Greengard [29]
demonstrou que esse método ndao convergia para as equagdes de Navier-Stokes (N-S). Em
resposta, Rossi [30] introduziu corre¢des ao método, permitindo que o raio do nticleo dos

vortices discretos se expandisse até atingir um valor maximo. Apds alcancar este valor



44 Capitulo 2. Revisdo Bibliogrdfica

critico, os vortices passavam por um processo de particdo, gerando quatro novos vortices,
cujos raios podiam novamente se expandir. Todavia, esse método apresenta a desvantagem
significativa de que, a0 aumentar o niimero de vortices discretos na nuvem, as simulacdes
numéricas tornam-se ainda mais onerosas em termos de tempo computacional. O Método
da Velocidade de Difusao foi inicialmente desenvolvido por Ogami & Akamatsu [31] com o
objetivo de simular a difusdo viscosa da vorticidade, introduzindo uma velocidade adicional
no processo advecg¢ao, associada ao movimento difusivo. Essa velocidade adicional esta
vinculada ao coeficiente de viscosidade cinemdtica do fluido e ao gradiente do campo de

vorticidades.

Kamemoto [28] realizaram uma revisdo do MVD, ressaltando a relevincia do desen-
volvimento de modelos de turbuléncia para métodos baseados na formulacido Lagrangiana.
Nesse contexto, Alcantara Pereira et al. [32] apresentaram um estudo focado em simu-
lagcdes numéricas mais detalhadas que considerassem aspectos turbulentos. Entre suas
principais contribuicdes, destacam-se a proposta de um modelo submalha de turbuléncia
baseado na Fun¢do Estrutura de Velocidade de Segunda Ordem, adaptada ao MVD, além
do desenvolvimento e implementacio de um algoritmo para incorporar a modelagem turbu-
lenta no método. Para isso, foi necessario realizar ajustes para escoamentos bidimensionais,
mesmo reconhecendo que a turbuléncia é essencialmente um fendmeno tridimensional.
Posteriormente, Bimbato [33] modificou a abordagem proposta por Alcantara Pereira e?
al.[32], e demonstrou que, quando associada ao modelo de rugosidade desenvolvido, é pos-
sivel simular escoamentos bidimensionais ao redor de corpos rombudos hidraulicamente

rugosos com um nivel de precisdo bastante satisfatorio.

De modo geral, a formulacao lagrangiana baseada no campo de vorticidades apresenta
diversas vantagens na simulacdo de escoamentos viscosos. Primeiramente, permite uma
visualizacdo mais clara dos fendmenos, sobretudo em escoamentos com altos nimeros
de Reynolds. Além disso, ao aplicar o operador rotacional nas equagdes de N-S, o
termo de pressao € eliminado, simplificando o modelo. J& o uso do operador divergente
possibilita o cédlculo dos carregamentos fluidodinamicos atuantes por meio de uma equagao
de Poisson para a pressdo (Shintani & Akamatsu [34]). Outra vantagem relevante € que, em
simulacdes bidimensionais, a equagao de transporte da vorticidade se reduz a uma equacgado
escalar, dispensando a resoluc¢iao do termo advectivo nao linear. Por fim, no Método de
Vértices Discretos, as condicdes de contorno em regides afastadas de superficies sélidas
sdo automaticamente satisfeitas, uma vez que a influéncia do corpo e da nuvem de vértices

ndo se propaga para essas areas.

Nesse contexto, a experiéncia adquirida em dois trabalhos publicados anteriormente
pelo autor, desenvolvidos no dmbito da Universidade Federal de Itajubd (UNIFEI), foi

essencial para o amadurecimento técnico e conceitual deste estudo. O primeiro trabalho,
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apresentado em congresso (Chiaradia et al. [35]), teve como foco a implementagdo e
avaliacao de diferentes esquemas de adveccdo para particulas de vorticidade e temperatura
em uma formulacao lagrangiana, simulando a interag¢do entre vortices de ponta de asa de
uma aeronave e uma superficie aquecida. Nesse estudo, foi considerado o acoplamento
entre os campos de vorticidade e temperatura por meio do nimero de Richardson, e o alto
custo computacional do modelo foi tratado com paralelizagdo em Fortran/OpenMP. Ja
o segundo trabalho, publicado em revista cientifica (Chiaradia et al. [36]), propds uma
metodologia numérica para simulagdes bidimensionais de escoamentos incompressiveis e
ndo permanentes com convecgao mista, utilizando um modelo de Large-Eddy Simulation
(LES) acoplado a equacido de energia, considerando os efeitos de empuxo via aproximagao
de Boussinesq. Esses estudos forneceram uma base sélida para o presente trabalho,
especialmente no que se refere a descricao lagrangiana da vorticidade, ao tratamento das
interacdes térmicas e ao uso de estratégias computacionais eficientes para simulagdes de
alta complexidade.

Mais recentemente, um terceiro trabalho, do qual o autor é o primeiro autor, foi aceito
para apresentacao e publicacio nos anais do Congresso Brasileiro de Engenharia Mecanica.
Esse estudo combina a formulagdo lagrangiana do Método de Vértices Discretos com um
modelo de vibracdo forcada, a teoria de LES e um modelo de rugosidade para resolver a
equacao de transporte da vorticidade. Os resultados indicam que o modo antissimétrico
A-I de formacao de vértices é corretamente capturado no caso do cilindro liso, e que a
rugosidade superficial interfere de forma mais significativa para € /d = 0,0070, dificultando
a sincronizacdo entre as frequéncias de formacao de vortices e de oscilacao do corpo. Além
disso, um quarto trabalho, atualmente em fase final de redacdo para publicacdo em revista
cientifica, apresentard parte dos resultados desenvolvidos nesta Dissertacao de Mestrado,

com foco na andlise da vibragdo forcada in-line de um cilindro circular rugoso.



3 Formulacao Geral do Problema

Neste capitulo, apresenta-se a geometria do problema estudado: um cilindro bidi-
mensional sujeito a vibragcdo for¢ada na direcdo do escoamento incidente. O cilindro
estd posicionado a uma distancia g do chdo, o qual € considerado um referencial inercial,
suficientemente grande para evitar influéncia significativa do efeito solo. Essa configuracao
possibilita reproduzir de maneira realista 0 comportamento do escoamento proximo a
parede, assim como estudar a interac¢ao fluido-estrutura em regimes de vibragcao forcada. A
geometria definida constitui a base para as simulacdes numéricas realizadas neste trabalho,
permitindo investigar os efeitos combinados da vibrag@o do cilindro e da rugosidade super-
ficial sobre a evolucdo da nuvem de vortices discretos e os carregamentos fluidodindmicos

atuantes.

3.1 Geometria do Problema e Definicoes

A Figura 3.1 apresenta o sistema de coordenadas fixo zoy. O cilindro circular encontra-
se imerso em uma regiao semi-infinita completamente ocupada por um fluido em escoa-
mento uniforme de intensidade U,. Esse cilindro possui didmetro D e estd posicionado a

uma distancia g do solo.

e Vortice Discreto

Figura 3.1 — Geometia do problema e defini¢des importantes
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Na Figura 3.1 sdo definidos:

* U, é a velocidade do escoamento incidente, paralela ao solo;

e D € o diametro do cilindro circular;

* g € a distancia do corpo ao solo;

* Sy é o contorno que define o cilindro circular;

* S, € o contorno que define o solo;

* S+ € o contorno a grandes distancias do cilindro circular e do solo;

* (2 € o dominio fluido, cujo contorno € definido por S = S, U Sg U S5

* Y corresponde a um ponto arbitrdrio da superficie do cilindro circular em oscilagdo.

Com o objetivo de analisar a intera¢ao entre o escoamento € 0 movimento do corpo,
considera-se que o cilindro sofre uma oscilagdo harmodnica na direcdo do escoamento
incidente, conforme expressa a Equacdo 3.1. A velocidade do corpo oscilante, observada a
partir de um referencial inercial, € dada pela Equacdo 3.2. A uma distancia suficientemente
grande do corpo, o fluido apresenta componentes de velocidade uniformes, sendo u = Uy,

na direcdo do escoamento e v = 0 na dire¢do transversal.

Tose(t) = Asin(27 fot) 3.1)

uosc(t) = :tosc = 27TAf0 COS(27TfOt) (32)

onde A e f, representam, respectivamente, a amplitude e a frequéncia da oscilagio longitu-

dinal imposta ao corpo.

A Figura 3.2 ilustra um ciclo completo de oscilagdo forcada do cilindro, considerando
a vibracao forcada in-line, representado pelos pontos A, B, C, D e E. Os pontos A, C e
E correspondem a passagem do cilindro pela posi¢do de equilibrio. Ja os pontos B e D
indicam as amplitudes maximas da oscila¢do, sendo B no sentido oposto ao escoamento e

D no mesmo sentido do escoamento.
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Figura 3.2 — Oscilacdo do cilindro ao longo do eixo z

3.2 Hipdteses Simplificadoras

Para a formulacdo matematica do problema, estabelecem-se algumas hipdteses simplifi-

cadoras, as quais dizem respeito a geometria do problema, as propriedades termodinamicas

do fluido e as propriedades do escoamento. Essas hip6teses visam tornar vidvel a anélise do

escoamento em regime transiente, o qual se desenvolve a partir do fendmeno de separacio

da camada limite na superficie do corpo e da formacdo da esteira de vortices.

Hi: O escoamento é bidimensional, isto é, ele se realiza no plano (z,y) e a regido

fluida é semi-infinita, estendendo-se até a regido S;

H,: Escoamento incidente paralelo ao solo, ou seja, angulo de incidéncia nulo
(a=10°;

Hj: Fluido newtoniano e com propriedades termodindmicas constantes (massa

especifica p e coeficiente de viscosidade dinamica p);

Hj: Considera-se um escoamento incompressivel, em que os efeitos da compres-
sibilidade sdo desprezados. Isso implica que as velocidades caracteristicas do
escoamento sdo significativamente inferiores a velocidade do som no meio, de modo

que o nimero de Mach € assumido bem inferior a 0,3 (Ma < 0, 3);

Hj: O escoamento € considerado isotérmico, assumindo-se a auséncia de gradientes

de temperatura entre o fluido em movimento e as fronteiras solidas;
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* Hg: Forga do campo gravitacional desprezada.

As hipéteses simplificadoras permitem representar o desenvolvimento da camada limite,
sua separagdo e a formacgdo da esteira viscosa. A dindmica do escoamento ¢ regida pela
equagdo da continuidade e pelas equagdes de N-S, que representam, respectivamente, o
Principio da Conservacao da Massa (PCM) e o Principio da Conservagdo da Quantidade de
Movimento Linear (PCQML). Na superficie do corpo, aplica-se a condi¢do de aderéncia,

composta pelas condi¢des de impenetrabilidade e de escorregamento nulo.

3.3 Equacotes Governantes e Condi¢des de Contorno

As equagdes do movimento descrevem os principais fendmenos fisicos que governam
o comportamento do escoamento. Considerando as hipéteses simplificadoras adotadas, o
Principio da Conservacdo da Massa (PCM) e o Principio da Conservacao da Quantidade
de Movimento Linear (PCQML) sdo representados, em notacdo vetorial, pela equacdo da
continuidade (Equagdo 3.3) e pelas equagdes de Navier—Stokes (Equacdo 3.4), respectiva-

mente.
V-u=0 3.3)

Ou +u-Vu= —lvp +vVu (3.4)
ot P

onde u = (u,v) é o vetor velocidade do fluido, p representa o campo de pressdes, p é a

massa especifica e v € o coeficiente de viscosidade cinematica.

As condi¢des de contorno sobre a superficie do corpo, denotada por Sy, e sobre o
solo, denotada por S,. A condi¢do de impenetrabilidade sobre S e S, € representada pela

Equacdo 3.5. A condi¢do de escorregamento-nulo sobre S, € representada pela Equagao
3.6.

u'n—V-n=0 3.5)

uTt—V-t=0 (3.6)
sendo n e T, respectivamente, os vetores unitarios normal e tangencial as superficies Sj e

S, em cada ponto e o vetor V refere-se a velocidade da superficie do corpo.

Para longas distancias do corpo, em S, , assume-se que o escoamento em estudo tende

a tornar-se igual ao escoamento nao perturbado, representado pela Equacgao 3.7.
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lu| = Us (3.7)

3.4 Escoamentos Turbulentos

Grande parte dos escoamentos observados em aplicagdes prdticas de engenharia é
turbulento, tornando imprescindivel a compreensdo e andlise dos mecanismos fisicos
envolvidos. Esses escoamentos apresentam um amplo espectro de escalas interagindo
de forma nao linear: as grandes escalas sdo determinadas pela geometria, enquanto as
pequenas, associadas as escalas de Kolmogorov e a viscosidade molecular, dissipam
energia e concentram maior vorticidade. Nessas pequenas escalas ocorrem as frequéncias
mais altas, enquanto as grandes escalas concentram mais energia. Com o aumento do
numero de Reynolds, a complexidade do escoamento se intensifica, dificultando a solucao
direta das equagdes governantes e exigindo o uso de métodos aproximados para sua
simulacao.

Entre as principais técnicas destacam-se: Simulagdo Numérica Direta (DNS), que
resolve todas as escalas do escoamento por meio de malhas extremamente finas e pequenos
incrementos temporais, demandando elevado custo computacional e sendo vidvel apenas
para baixos nimeros de Reynolds; Simulagao via Equacdes Médias de Reynolds (RANS),
que aplica a decomposi¢do de Reynolds para separar componentes médias e flutuantes,
resultando nas tensdes de Reynolds, cuja modelagem € necessaria para fechar o sistema de
equacodes; e Simulacao de Grandes Escalas (LES), que emprega filtragem espacial para
separar escalas, resolvendo explicitamente as maiores, influenciadas pela geometria, e
modelando as menores, homogéneas e isotropicas, para representar seus efeitos sobre o

escoamento.

3.4.1 Filtragem das Equagdes Governantes

A Simulacao LES € empregada com o objetivo de separar as diferentes escalas do
escoamento. Os fendmenos de maior relevancia ocorrem nas macroescalas (Lesieur &
Meétais [37]), cuja dindmica pode ser representada por um nimero significativo de vortices
discretos. As microescalas, por sua vez, devem ser modeladas. No processo de filtragem,
as equacdes governantes sdo submetidas a um operador de filtro passa baixo, permitindo
a separacdo entre as componentes de grandes escalas (F(x, t)), e aquelas associadas as

submalhas (F”(x, t)), represetadas na Equacéo 3.8.

F(x,t) = F(x,t) + F'(x,t) (3.8)
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A parte filtrada é dada pela Equacdo 3.9.

F@j%iAF&—%QGWMy (3.9)

onde a fun¢io G representa um filtro passa baixo.

As equagdes governantes consideradas para o processo de filtragem sdo as Equacdes 3.3
e 3.4. Com o intuito de favorecer o tratamento algébrico e a manipulacio das expressoes
matemadticas, tais equagdes serdo reescritas em notacao indicial. As respectivas formas

filtradas sdo apresentadas a seguir, representadas pelas Equacoes 3.10 e 3.11.

ou;

9z, 0 (3.10)
ou; 0 ~ 10p 0 ou; 0u;
ot * oz (@) = p Ox; * 0z [V (8@ * 8@)1 @11

A filtragem das equagdes resulta em um termo nao linear (7;@;). Para solucionar o
sistema faz-se necessario decompor as escalas, utilizando a Equacgao 3.8. Assim, define-se

a Equacdo 3.12.

Dessa forma, definem-se a seguir alguns tensores relevantes para esta andlise, conforme

expressoes apresentadas nas equagdes subsequentes.

Lij = wu; — uu; (3.13)
Tij = U (3.15)

onde as Equagdes 3.13, 3.14 e 3.15 correspondem, respectivamente, ao tensor de Leonard,
ao tensor cruzado e ao tensor de Reynolds submalha.

Portanto, a Equacao 3.12 torna-se a Equacao 3.16:

A resolucao da Equacdo 3.16 requer a modelagem do tensor de Reynolds submalha
(737), que representa o transporte turbulento entre as escalas resolvidas e ndo resolvidas.

Como essas flutuagdes ndo sdo capturadas pelo nimero de vortices discretos utilizado,
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esse termo deve ser modelado. Silveira Neto et al. [38] demonstraram que, para esquemas
convectivos de até terceira ordem, como o de primeira ordem de Euler adotado neste

trabalho, os tensores de Leonard e cruzado podem ser desprezados.

3.4.2 Modelagem da Turbuléncia

Neste trabalho, a modelagem da turbuléncia baseia-se no conceito do coeficiente
de viscosidade turbulenta, ;. Essa grandeza € responsavel pelo transporte de energia
entre as escalas maiores e menores do escoamento. De acordo com Boussinesq [39], a
parte anisotropica do tensor de Reynolds submalha, 7;;, € proporcional ao tensor taxa de
deformagio do campo de velocidades filtrado, S;;. No modelo proposto por Smagorinsky

[40], esse tensor de deformacao € definido pela Equagao 3.17.
== 3.17
) 2<axj+axi> S

A relacdo entre este tensor e o tensor de Reynolds sub malha é expressa pela Equagdo
3.18.

N

Tij = _2VtSij (318)

Substituindo a Equagdo 3.18 na Equagao 3.11 tem-se a Equagao 3.19:

Assim, o coeficiente de viscosidade turbulenta (v;) deve ser determinado e, quando

necessario, pode ser somado ao coeficiente de viscosidade molecular (v). Para estimar 1/,

Smagorinsky [40] prop0s a seguinte formulacao, representada pela Equacao 3.20:

vy = (Csprl)® = /25,355 (3.20)

onde Cspy = 0,18 e [ = \/AxAy, sendo Az e Ay a largura e a altura da malha, respecti-

vamente.

O modelo proposto por Smagorinsky [40] é inadequado para ser combinado com o
Meétodo de Vértices Discretos, por depender de uma malha e utilizar a taxa de deformacao
(derivadas), o que dificulta sua implementacdo em um método puramente lagrangiano.

Chollet e Lesieur [41] argumentam que, em regides com baixa atividade turbulenta,
a modelagem submalha é desnecessdria, enquanto nas zonas onde se identificam escalas
submalha, é fundamental dissipar as manifestagcdes locais da turbuléncia. Nessas regides,

os fendmenos podem ser considerados aproximadamente homogéneos e isotropicos. Com
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base nessas observacgdes, os autores propdem o uso do espectro local de energia cinética,
E.(K,t), para definir o coeficiente de viscosidade turbulenta, representada pela Equacéo
3.21.

2 =3 [F(K.t
l/t<Kc7t) = §0k2 (I{)

onde ', = 1,4 ¢é a constante de Kolmogorov e K. é o nimero de onda de corte.

(3.21)

Com base em uma relacdo apresentada por Batchelor [42], Métais & Lesieur [37]
determinaram o espectro local de energia cinética, F.(K, t), utilizando o modelo da fungio

estrutura de segunda ordem da velocidade, F',, calculada pela Equagio 3.22.

— 2

Fy(x, A1) = |[u(x+1,7) —u(x+r,t)H” . (3.22)
ri=

Nesta definicdo, é importante observar que o operador “média” € aplicado entre as

velocidades U(x + r, t), calculadas sobre pontos da superficie de uma esfera com o centro

em x e raio |[r|| = A, e a velocidade u(x,t), calculada sobre o ponto do escoamento

definido por x, onde se deseja determinar a atividade turbulenta.

A funcdo estrutura de velocidade de segunda ordem € utilizada para calcular o coefici-

ente de viscosidade turbulenta, como mostra a Equagao 3.23.

v (x, A t) = 0,105 C, 22 Ay/Fy (x, A t) (3.23)

Uma das principais vantagens dessa formulacdo, especialmente em sua aplica¢do con-
junta com o Método de Vértices Discretos, reside no fato de que a fungdo estrutura de
velocidade de segunda ordem se baseia diretamente nas flutuacdes locais de velocidade, ou
seja, nas diferencas entre velocidades em pontos vizinhos do escoamento. Essa caracteris-
tica € particularmente compativel com a natureza lagrangiana do método, pois dispensa
o uso de derivadas espaciais, facilitando sua implementa¢do numérica em métodos que
operam com particulas ou elementos discretos no espago. Na secdo 4.2 serd explicada a

adaptacgdo deste calculo para o MVD lagrangiano bidimensional.

3.4.3 Adimensionalizacdo do Problema

A adimensionalizacdo das equacdes governantes e das condi¢des de contorno € uma
etapa essencial na formulacdo do problema, uma vez que promove maior generalidade a
apresenta¢do da solucdo do modelo. Esse procedimento permite evidenciar as relacdes de

dependéncia entre as varidveis envolvidas e orientar a forma como devem ser associadas.
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O primeiro passo consiste na definicdo das grandezas representativas do fendmeno inves-
tigado. Neste trabalho, assim como ocorre comumente em problemas da Mecanica dos

Fluidos, adota-se que:

» Comprimento caracteristico (b): Adota-se o didmetro do cilindro (D).

* Velocidade caracteristica (U): Adota-se a velocidade do escoamento néo perturbado

(Uso)-
* Tempo caracteristico (t): t =

b
77

Com a utilizagdo das grandezas caracteristicas, as equagdes € suas condi¢des de

contorno podem ser adimensionalizadas. As grandezas adimensionalizadas tornam-se:

* x* = #: Coordenada na diregdo do eixo .
* y* = ¥: Coordenada na dire¢do do eixo y.
* g* = {: Distancia entre o cilindro € o solo.
o At* = %: Incremento temporal.

77+ Componente do vetor velocidade na dire¢do do eixo .
* v* = {: Componente do vetor velocidade na diregéo do eixo y.
e pf = p%: Pressao.

* w* = tw: Mddulo do vetor vorticidade.

o [ = %: Intensidade de vortice discreto de Lamb.

* 0y = % Raio do nicleo viscoso do vortice discreto de Lamb.

o AF = %: Amplitude de oscilacdo do movimento harmonico.

* fi =1 fo: Frequéncia de oscila¢cdo do movimento harmdnico.

* Ty, = 2<: Fungdo da posi¢do do movimento harmonico na diregdo .
* Uy, = & Fungdo da velocidade do movimento harmonico na diregao .

e V= %: Velocidade reduzida do corpo.

e St= b{}: Numero de Strouhal: frequéncia de emissdo de estruturas vorticosas em

modo adimensional.
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* Re = ”TUI’: Nuamero de Reynolds.
* V* = bV: Operador Nabla.

e V*2 = b2V?2: Operador Laplaciano.

O significado de algumas grandezas adimensionais, acima apresentadas, sera melhor
entendido durante a apresentacdo do Capitulo 4. O asterisco (*), que denota grandeza
admensionalizada, € omitido a partir deste item por comodidade de digitagc@o e apresentacio

das equacoes.

3.4.4 A Equacéao do Transporte da Vorticidade

Sendo a vorticidade w definida como o rotacional do campo de velocidades do fluido,
ou seja, w = V X u, a Equagdo 3.4 pode ser reformulada por meio da aplicacdo do
operador rotacional. Considerando-se a conservacdo da massa, a hipdtese de escoamento
incompressivel e a utilizacdo de identidades vetoriais apropriadas, obtém-se a Equagao
3.24.

ow 1 +) w2
at‘i‘(U'V)W—(W'V)u—F(Re—FVt)Vw (3.24)
onde:
* Vi
v = (3.25)

O primeiro termo do lado esquerdo da Equacao 3.24 representa a variacdo local da
vorticidade, o segundo termo representa o transporte convectivo da vorticidade, o primeiro
termo do lado direito representa a deformacdo dos tubos de vorticidade e o segundo
termo do lado direito representa os efeitos difusivos da vorticidade. Os dois primeiros
termos do lado esquerdo podem ser agrupados em uma derivada substancial, e, para o caso
bidimensional, o termo relativo a deformacgao dos tubos de vorticidade € nulo, obtendo-se,
assim, a forma lagrangiana da Equa¢ao de Transporte da Vorticidade (ETV) bidimensional,

que pode ser expressa em sua forma escalar conforme apresentado na Equacdo 3.26.

Dw 0w 1 9

2 G- Vo= — * w 3.26

Dt~ o Ve <Re+yt>vw (5:20)
Chorin [23] introduziu o chamado Viscous Splitting Algorithm, ou Algoritmo de

Separagdo da Parte Viscosa, aplicado a Equacdo 3.26. Esse método baseia-se na suposi¢ao

de que, dentro de um mesmo incremento temporal At, os processos de conveccio e difusio
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da vorticidade podem ser tratados separadamente, sendo a difusdo considerada, de forma
aproximada, como independente da convecgao.

Essa aproximacdo permite uma significativa simplificacdo na implementagao numérica
do MVD, desde que as posicdes e intensidades dos vortices discretos estejam previamente
conhecidas.

Dessa forma, o fendmeno de convecgdo da vorticidade € descrito pela Equacao 3.27.

0w

=t @-Vw=0 (3.27)

J4 o fendmeno associado a difusdo da vorticidade € governado pela Equacdo 3.28.

0w /1
8—‘2’ = (Re + u;*) Vi (3.28)

No cerne do algoritmo proposto por Chorin, os processos de convecg¢do e difusdao sdao
realizados de forma sucessiva dentro de um mesmo intervalo de tempo At¢. No limite
em que At — 0, a solucdo obtida converge para a Equacdo 3.26. Observa-se que, em
sua forma bidimensional, a Equa¢do de Transporte da Vorticidade (ETV) assume uma
natureza escalar, o que simplifica consideravelmente sua resolucao numérica. Além disso,
ao aplicar o operador rotacional as equacdes de N-S, o termo de pressdo € naturalmente
eliminado do sistema. No entanto, caso seja necessario recuperd-lo, € possivel aplicar o
operador divergente as equacdes de N-S, o que resulta na formulacdo de uma equagdo de
Poisson para a pressdo, conforme apresentado por Shintani & Akamatsu [34], como serd

apresentado na secdo 4.
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4 Método de Solucao: O Método de
Vortices Discreto (MVD)

Este capitulo apresenta o modelo hidrodindmico adotado para a solu¢do numérica
do problema formulado no capitulo anterior. O Método de Vértices Discretos (MVD)
fundamenta o desenvolvimento tedrico e matemético aqui descrito, visando a determinacgao
dos carregamentos fluidodindmicos associados a geracdo e ao desprendimento de vortices
ao longo da superficie de um corpo oscilante. Esse procedimento permite analisar a
sincronizacdo entre a frequéncia de vibragdo forcada in-line da estrutura e a frequéncia

natural de emissdo de vortices.

4.1 O Campo de Velocidades do Escoamento

A obtencdo do campo de velocidades € realizada em trés etapas distintas:

* Influéncia do escoamento incidente: o escoamento que incide sobre o sistema gera
uma induc¢do de velocidade na nuvem de vortices discretos. Esta etapa caracteriza-se

pela sua simplicidade de implementacio;

* Influéncia das fronteiras solidas: as superficies sélidas presentes no dominio do
problema também promovem inducdo de velocidade sobre a nuvem de vortices
discretos. No contexto deste estudo, tais efeitos sdo atribuidos ao corpo e ao solo,
sendo modelados por meio do Método dos Painéis de fontes(condicao de contorno

de Neumann);

* Cada vortice discreto exerce, em todos os instantes da simula¢cdo numérica, uma
inducgdo de velocidade sobre os demais vortices da nuvem. Destaca-se, nesse con-
texto, o elevado custo computacional inerente a aplicacdo da Lei de Biot-Savart para
o célculo dessas interacdes. A avaliagdo do campo de velocidades para uma nuvem
composta por N vértices discretos requer um niimero de operacdes da ordem de N2.
Em func¢do dessa alta demanda computacional, o cdlculo das velocidades induzidas
pelas interacdes vortice-vortice € implementado por meio de processamento paralelo,

utilizando OpenMP em Fortran.
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4.1.1 A Contribuicdo do Escoamento Incidente

O escoamento incidente é considerado uniforme, com intensidade U, e direcdo paralela
ao solo. Na forma adimensional e em termos de componentes, suas expressoes sao dadas

pela Equacdo 4.1.
Uso = Uso COSx = cosax = 1, Voo = U Sinax = sina = 0 “4.1)

4.1.2 A Contribuicdo das Fronteiras Sélidas (Método dos Painéis)

Para a determinac¢do da contribuicao das fronteiras s6lidas no campo de velocidades
do escoamento, faz-se inicialmente necessaria a representacdo adequada dessas fronteiras.
Para esse fim, adotou-se o método de painéis planos com densidade de fonte uniforme e
constante. Tal abordagem é amplamente empregada na discretiza¢do de contornos sélidos,
especialmente quando se busca garantir a satisfacdo da condi¢do de impermeabilidade, isto
¢, a anulacdo da componente normal da velocidade sobre as superficies sélidas.

No presente estudo, o problema envolve duas fronteiras distintas: o cilindro, que
caracteriza um contorno fechado, e o solo, que corresponde a um contorno aberto. Dessa
forma, a formulacdo adotada deve contemplar condi¢des de contorno que sejam vélidas para
ambos os tipos de fronteira. Nesse contexto, a condi¢do de contorno de Neumann revela-
se adequada, pois permite satisfazer simultaneamente as exigéncias impostas tanto pelo
contorno fechado quanto pelo aberto, assegurando o correto tratamento das singularidades
associadas a cada fronteira.

Considera-se um sistema de coordenadas fixo em um painel, conforme ilustrado na
Figura 4.1. Esse sistema de coordenadas € utilizado para descrever a posicdo de pontos
no dominio do escoamento, bem como para expressar matematicamente as contribui¢des
aerodinamicas resultantes da presenca de distribui¢des de singularidades sobre o painel.
As componentes da velocidade induzida no ponto W (z, y), localizado em uma posi¢ao
arbitraria do plano, nas direcdes x e y, sdo geradas pela presenca de uma distribuicao de
fontes de densidade constante o(x), disposta ao longo de uma superficie que se estende no
intervalo de comprimento x5 —x;. A partir dessa configuracio, € possivel calcular, por meio
de integragdo ao longo da superficie, as contribui¢des para as componentes da velocidade
induzida no ponto de interesse. As expressoes resultantes para essas componentes nas

direcdes z e y sdo fornecidas, respectivamente, pelas Equacoes 4.2 e 4.3.
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Yok

X X

2

c(X)=constante

Figura 4.1 — Velocidade induzida no ponto W (z, y) por uma distribui¢do de fontes com
densidade constante, o(x), ao longo de uma superficie de comprimento
(x2 — 7). (Reproduzida de Bimbato [33]).

o(z) /12 (x — o)
u = dx 4.2
21 Jur (2 —20)® — (¥ — ¥o)? " @2
o(z) /x (¥ — %)
v = dx (4.3)
2r Ju (o= w0l —(y—w)*
Resolvendo-se as duas integrais acima, obtém-se as Equagdes 4.4 e 4.5, respectiva-
mente.
2 Ty
o(x
V= 2()(92 — 91) (45)
T
onde:
0; = arctan ( i ) ,i=1,2 (4.6)
r — T
ri=/(x — ;)2 +y%i=1,2 4.7)

A inducdo de velocidades na direcdo de x para y — 0* de um painel sobre ele mesmo
¢ dada pela Equagdo 4.8. (Katz & Plotkin [24])

T2 — 1 o2 _, 0@
v< 5 ,0>_12 (4.8)

Os componentes da velocidade induzida por um painel com fontes de densidade

uniforme sao determinadas pelas Equacdes 4.4 e 4.5, sendo inicialmente calculadas em
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um referencial local, orientado segundo a geometria do préprio painel. Em seguida, esses
componentes sdo projetados na dire¢cao normal ao ponto de controle, a fim de satisfazer a
condi¢do de impenetrabilidade do escoamento.

A distribuicao uniforme de fontes em cada painel gera um campo de velocidade
radial, o qual é decomposto em componentes normal e tangencial, de modo a viabilizar
a aplicacdo das condi¢des de contorno. Quando esse procedimento € estendido aos M
painéis que compdem os contornos do corpo e do solo, obtém-se um sistema linear de
equacdes algébricas, cuja forma matricial representa a condi¢ao de contorno de Neumann,
conforme apresentado na Equacdo 4.9. Uma formulacdo alternativa desse sistema € dada

pela Equacdo 4.10, sendo a densidade uniforme de fontes a varidvel incognita.

05 Ky -+ - Ky o1 RHSS;

Koy 05 -+ v Koyl | o9 RHSS,
K31 Kz - -+ K3y o3 o = RHSS; 4.9)

Kyn Kpyo - -+ 05| oM RHSS
[COUPS]{SIGMA} = {RHSS) (4.10)

onde:

* [COUPS] ¢ a matriz de influéncia das fontes. K;; € um elemento da matriz [COUPS|
que representa a velocidade normal induzida no ponto de controle do painel ¢ por

uma distribuicao uniforme de fontes sobre o painel j;

» {SIGMA} ¢ o vetor inc6gnita do problema, cujos elementos o; representam a densi-

dade uniforme de fontes sobre o painel j;

* {RHSS} é o vetor coluna do lado direito da equagdo matricial, com M elementos.
Ele representa a velocidade normal total induzida no ponto de controle do painel ¢
em decorréncia da contribui¢do do escoamento incidente e da nuvem de vortices

discretos.

Neste trabalho, considerando duas geometrias distintas, o solo, que representa o
referencial inercial, e o cilindro oscilante, torna-se necessario aplicar corretamente as
condigdes associadas ao vetor do lado direito do sistema {RHSS}, assegurando a devida
atribuic@o das contribuicdes correspondentes a cada uma das geometrias.

O célculo do vetor coluna do lado direito associado as fontes, para o ponto de controle

do painel plano genérico ¢, pertencente ao solo, € realizado conforme a Equacgao 4.11:
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N
RHSS = u sin(th;) — vy cos(th;) + Z wik sin(th;) — v cos(thy) 4.11)
k=1

Para os pontos de controle localizados nos painéis do corpo oscilante, o calculo do
vetor {RHSS} incorpora a contribui¢do da velocidade de oscilagdo do corpo. Assim, sua

formulacao é dada pela Equacao 4.12:
N
RHSS = (Uoo + Uopse) sin(th;) — veo cos(th;) Z i sin(th;) — v cos(th;)) (4.12)
k=1

sendo:

* Uy € Vo, 08 componentes do vetor velocidade do escoamento nio perturbado;

* Uesc, @ componente da velocidade de oscilagio longitudinal do corpo (veja a Equacdo
3.2);

th;, o angulo correspondente ao painel do ponto de controle ;

* u; 1 € v; ), 0s componentes da velocidade total induzida pela nuvem de vortices

discretos (com k£ = 1, ..., N) no ponto de controle ;.

4.1.3 A Contribuicdo da Nuvem de Vértices Discretos (Lei de Biot
Savart)

A determinacdo do campo de velocidades gerado pela nuvem de vortices discretos é
realizada com base na Lei de Biot-Savart. A etapa mais custosa em termos computacionais
corresponde ao calculo das interagdes entre os vortices na regido fluida (interacao vortice-
voértice), uma vez que o nimero de operagdes cresce proporcionalmente ao quadrado do
numero total /N de vértices discretos no dominio.

As componentes nas direcdes = e y da velocidade total induzida no vértice discreto £,
devido a influéncia dos demais vortices discretos, sdo determinadas pelas Equacdes 4.13 e

4.14 respectivamente.

N
ury = > ;U (4.13)
=1

N
vey = TV, (4.14)
=1
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onde Uy, ;€ Wi ; representam, respectivamente, as componentes das velocidades induzidas
nas direcdes x e y no vortice discreto arbitrdrio k, devido a influéncia do vértice discreto j,

conforme expresso nas Equacoes 4.15 e 4.16.

1 Y — Yj [ ( T )
Uy = — 1 —exp|——5> (4.15)
e o (e — )2 + (ke — )2 | P T,
v ! L R ( 0, ) (4.16)
L = — — exX —_ .
T o PR AR EN S W

onde 0., representa o raio do nicleo do vortice discreto de Lamb, modificado em fungéo

do modelo de rugosidade, cujo detalhamento serd apresentado em secdes posteriores.

4.2 Modelagem da Turbuléncia

No contexto da modelagem de escoamentos turbulentos, destaca-se a proposta de
Meétais & Lesieur [37], segundo a qual os fendmenos que se manifestam nas microescalas
podem ser representados por meio de um coeficiente de viscosidade turbulenta, v;. A
determinacdo deste coeficiente depende de uma fungdo estrutura de velocidade de segunda

ordem, Fy, apresentada na Equacdo 4.17.

r;(t)

A introdugdo da viscosidade turbulenta é fundamental, pois permite incorporar os

— 1 N 2 [ Opec %
Fou(t) = 5 22 e, (s ) = s, (e + 1, 8)| ( - ) (4.17)
j=1

efeitos da transferéncia de energia entre as grandes e pequenas escalas diretamente na
modelagem do escoamento. Considerando-se o problema adimensionalizado, Alcantara Pe-
reira et al. [32] propuseram duas adaptacdes fundamentais para viabilizar a implementacdo

deste modelo de turbuléncia no presente trabalho:

* As velocidades devem ser avaliadas em uma coroa circular compreendida entre
0s raios Tiy = 0,100, € rexx = sm - 0g,, conforme ilustrado na Figura 4.2 (a).
O pardmetro o, representa o raio do nicleo do vortice de Lamb, modificado
pelo modelo de rugosidade, o qual serd detalhado na Se¢do 4.3. Para determinar
o parametro sm, Bimbato [33] realizou um estudo estatistico considerando uma
esteira composta por 300.000 vértices discretos de Lamb. Com o raio interno
fixado, adotou-se 61 valores distintos de sm. Para cada valor, contou-se o nimero
de vortices no interior da coroa circular ao redor de cada vértice da esteira, dividiu-
se pelo respectiva drea da coroa e calculou-se a média (V/A.). A Figura 4.3
apresenta esses valores médios em fungdo do raio externo da coroa, evidenciando

um comportamento assintético que fundamenta a escolha do parametro sm. Esse
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procedimento estabelece que, em simulacdes numéricas, ndo € adequado aplicar o
modelo de turbuléncia em todos os vértices discretos nem apenas em alguns poucos,

conforme apontado por Alcantara Pereira et al. [32].

* Para o cdlculo da fun¢do estrutura de velocidade de segunda ordem, as velocidades
devem ser obtidas nas posicdes dos vortices discretos vizinhos ao vortice em andlise,

conforme ilustra a Figura 4.2 (b).

_ - Vartice
- . e T~ discreto k

_ Vértice
- disereto |

(a) (b)

Figura 4.2 — Adaptacao do modelo de turbuléncia ao Método de Vortices Discre-
tos.(Reproduzida de Bimbato [33]).
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Figura 4.3 — Valores médios em fung¢do do raio externo da coroa circular definida ao redor
de cada vértice discreto. (Reproduzida de Bimbato [33]).

Ap6s o célculo da fungdo estrutura de velocidade de segunda ordem para cada vortice
discreto da nuvem, essa funcdo é empregada para determinar o coeficiente de viscosidade

turbulenta associado a cada vortice discreto que compde a referida nuvem, através da
Equacio 4.18.

=3 —
vy, (1) = 0,105C2 00,1/ Fan(t) (4.18)

onde Cj, é a constante de Kolmogorov (Cy, = 1,4).

Por fim, o coeficiente de viscosidade turbulenta deve ser adicionado ao coeficiente

de viscosidade molecular e considera-se um nimero de Reynolds modificado, conforme
mostrado na Equacgdo 4.19.

U D

Re., (t) = m

(4.19)

4.3 Geracgao da Vorticidade e Modelo de Rugosidade

A vorticidade é uma grandeza fisica fundamental na mecénica dos fluidos, desempe-
nhando papel central na descri¢do de diversos fendmenos fluidodinamicos. Sua geracdo
ocorre em decorréncia da interagdo do escoamento viscoso com a superficie do corpo, o
que promove o desenvolvimento da camada limite hidrodindmica. Tal fendmeno resulta

dos efeitos viscosos associados a aderéncia do fluido a fronteira sélida, gerando um perfil
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de velocidades caracterizado pela rotagcdo das particulas fluidas. A separacdo da camada
limite, por sua vez, ocorre exclusivamente na presenca de um gradiente de pressdo adverso.

Neste trabalho, a geracdo de vorticidade € realizada a cada incremento temporal da
simulagd@o numérica, com o propdsito de anular a componente tangencial da velocidade na
superficie do corpo. Para isso, sdo posicionados vértices discretos de Lamb de forma que
cada um tangencie o ponto de controle correspondente a cada painel plano que representa
a superficie do corpo. A Figura 4.4 apresenta um exemplo ilustrativo da geragdo de
quatro vortices discretos posicionados sobre os pontos de controle correspondentes a
quatro painéis planos que discretizam a superficie de um cilindro. Ressalta-se que nao sao
gerados vortices discretos no solo, uma vez que essa regido € modelada com uma técnica

de moving ground (Bimbato et al. [43]).
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Figura 4.4 — Geragdo de vortices discretos de Lamb sobre fronteiras hidraulicamente lisas.
(Reproduzida de Bimbato [33]).

onde:

* C01, €09, CO3 € cO4 representam os pontos de controle dos painéis 1, 2, 3 e 4 respecti-

vamente;

* eps’ corresponde a distincia do ponto de controle ao ponto de desprendimento de

cada vortice discreto de Lamb;

* pshed], psheds;, pshed; e pshed), indicam os pontos de desprendimento dos vértices

discretos de Lamb associados aos painéis 1, 2, 3 e 4, respectivamente;
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¢ oy denota o raio do nucleo dos vortices discretos de Lamb.

O modelo de rugosidade desenvolvido por Bimbato [33] parte do pressuposto de
que a rugosidade da superficie sélida pode induzir o desenvolvimento da turbuléncia no
escoamento. Para quantificar a atividade turbulenta nos pontos de desprendimento dos
vortices discretos associados a cada painel, emprega-se uma adaptagdo da funcdo estrutura
de velocidade de segunda ordem. Essa funcao € calculada a partir das velocidades avaliadas
em pontos distribuidos sobre uma semicircunferéncia de raio b = 2 — eps’, cujo centro é

o ponto de desprendimento do vortice discreto do painel 7, representado na Figura 4.5.

NR=21
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P

Figura 4.5 — Efeito da rugosidade sobre fronteiras solidas. (Reproduzida de Bimbato [33]).

Esse procedimento permite modificar, a cada instante da simulag@o, o raio do nicleo do
vortice discreto recém-gerado, ao considerar a influéncia de um coeficiente de viscosidade
turbulenta que afeta o nimero de Reynolds local. Esse coeficiente é determinado a partir
da funcao estrutura de velocidade de segunda ordem, que reflete a média das diferencas de
velocidade entre o ponto de geragdo do vortice e os pontos proximos, denominados pontos
rugosos. Para garantir uma média representativa das flutuagdes locais, utilizam-se neste
trabalho VR = 21 pontos rugosos distribuidos ao redor de cada ponto de geragao.

Portanto, a funcao de estrutura de velocidade, considerando-se a influéncia da rugosi-

dade, € definida pela Equacéo 4.20.

L 1 NR
Fa(t) = 53 S g (x4, 1) — ag (x5 + b, 1)]2 (14 ¢), (4.20)
w=1

onde:

* u, denota a velocidade total nos pontos considerados e N IR € o numero de pontos

rugosos distribuidos ao longo da semicircunferéncia;
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* O raio b representa a distancia entre o ponto de andlise, correspondente ao ponto de
desprendimento do painel ¢ (identificado como pshed; na Figura 4.5), e os pontos w

situados sobre a semicircunferéncia;

* O fator (1 + ) representa uma inje¢do adicional de quantidade de movimento
na camada limite laminar, atuando como um mecanismo que intensifica a energia
cinética local na fun¢do estrutura de velocidade. Essa modificacdo modela os efeitos
da rugosidade superficial sobre o escoamento, estimulando a transicao da camada

limite do regime laminar para o turbulento.

A partir dessa func¢do, calcula-se o coeficiente de viscosidade turbulenta associado ao
ponto de desprendimento dos vortices discretos de cada painel ¢, como mostra a Equacao
4.21.

v, (1) = 0,105C; 20, \/Fa. (1) 4.21)

onde: oy, € oraio do nicleo do voértice discreto, k, posicionado no ponto de desprendimento
do painel 7, de maneira a tangenciar o ponto de controle deste painel.

Como o coeficiente de viscosidade turbulenta deve ser somado ao coeficiente de
viscosidade molecular, o nimero de Reynolds € ajustado localmente, ou seja, ocorre
apenas nos pontos de desprendimento dos vortices discretos onde os efeitos da rugosidade

sdo relevantes. como mostra a Equagado 4.22.

UD
V‘i‘l/ti(t)’

Dado que o raio do nucleo dos vortices € funcdo do nimero de Reynolds, o qual é

Reg,(t) = (4.22)

modificado pelo coeficiente de viscosidade turbulenta, impde-se a necessidade de ajustar
esse raio, de modo a incorporar adequadamente os efeitos da rugosidade no processo de

geragdo dos vortices. Assim a Equacdo 4.23 representa esse efeito.

At (t
O, (1) = 4,48364, | == (1 n Uty“) X (4.23)

Como cada vortice discreto de Lamb deve tangenciar o ponto de controle do painel
que o origina, a posi¢ao de desprendimento desses vortices precisa ser ajustada. Assim, a
cada instante da simulagdo numérica, os vortices sdo desprendidos em posi¢des distintas,
determinadas pela rugosidade da superficie e pelo correspondente efeito turbulento. A
Figura 4.6 ilustra esse processo de geracao de vortices de Lamb nas proximidades da

superficie discretizada de um corpo com parede hidraulicamente rugosa.
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~. cO GO pshed;(t)

b ;-
pshed, (t) . ¥,
ZNEN Qv e

2, &

Figura 4.6 — Geracdo de vortices discretos de Lamb sobre fronteiras hidraulicamente rugo-
sas. (Reproduzida de Bimbato [33]).

onde:

* €01, €0y, CO3 € COo4 representam os pontos de controle dos painéis 1, 2, 3 e 4 respecti-

vamente;
* eps, (f),eps,(t), epss(t) e eps,(t) sdo as distancias de geragdo dos vortices discretos;

* pshed, (), pshed,(t), pshed,(t) e pshed,(¢) indicam os pontos de desprendimento
dos vortices discretos de Lamb associados aos painéis 1, 2, 3 e 4, respectivamente;

® 00cys O0cy, O0cs € Opc, SA0 0s valores do raio do nucleo dos vortices discretos de Lamb

gerados nos painéis 1, 2, 3 e 4 respectivamente.

De forma analoga a constru¢do da equacdo matricial associada as fontes, determina-se

a matriz de influéncia responsavel pela geracao dos novos vortices discretos.
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Ki1(t)  Kia(t) Ky (t) I RHSV;,
Ko (t)  Kalt) Ko (t) I'y RHSV,
[COUPV|{GAMMA} = {RHSV} (4.25)

onde:

* K;; é um elemento da matriz [COUPV], o qual representa a velocidade tangencial

induzida pelo vortice discreto de Lamb posicionado no ponto de desprendimento j,

sobre o ponto de controle do painel 7;

{GAMMA} ¢ o vetor incégnita do problema, cujos elementos I'; representam a

intensidade do vortice discreto posicionado no ponto de desprendimento j;

{RHSV} ¢ o vetor coluna do lado direito da equac@o matricial, com A/ elementos.

Este € a soma da velocidade do escoamento incidente e da velocidade induzida por

cada um dos vértices discretos da nuvem sobre o ponto de controle do painel 7, todas

decompostas na direcdo tangencial ao painel plano.

O célculo do vetor coluna lado direito vortices para o ponto de controle do painel plano

genérico 7, pertencente ao cilindro circular, € calculado como:

N
RHSV = — (s + Ugse) COS(th;) — Voo sin(th;) + Z —u;  cos(th;) — v g sin(th;) (4.26)

sendo:

k=1

U € Voo, 08 componentes do vetor velocidade do escoamento ndo perturbado;

Uose, @ componente da velocidade de oscilagdo longitudinal do corpo (veja a Equagao

3.2);

th;, o angulo correspondente ao painel do ponto de controle i;

u; ) € v;, 0s componentes da velocidade total induzida pela nuvem de vortices

discretos (com k£ = 1, ..., N) no ponto de controle :.
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4.4 Carregamentos Fluidodindmicos Atuantes

Uma vez representadas e tratadas adequadamente as fronteiras sélidas, torna-se possivel
determinar as cargas hidrodindmicas que atuam sobre o corpo imerso no escoamento. No
caso do escoamento ao redor de um cilindro circular, essas cargas resultantes sobre
a superficie do corpo tém duas origens principais: a atuacdo da pressdo estitica e a
contribui¢do da tensdo cisalhante. A integracdo da tensdo que atua sobre a superficie de um
corpo, frequentemente referida como carga fluidodinamica distribuida, resulta nas cargas
fluidodinamicas integradas, expressas pelas forcas e momentos fluidodinamicos.

Neste trabalho, emprega-se a formulagdo integral de Shintani & Akamatsu [34] para
determinar o valor da pressdo em um ponto genérico, ¢, do dominio fluido. Essa formulacio
requer apenas o conhecimento do campo de velocidades e do campo de vorticidade, sendo

a equacdo integral correspondente apresentada na Equacdo 4.27.

Re Js
onde: G corresponde a solucdo fundamental da equacdo de Laplace, enquanto Y representa

HYi—/S.YVGVndS—//QVGi-(uxw)dQ—1/:(VG1-><w)-ndS 27)

o trabalho especifico e,

" 1, em {2 (no dominio do escoamento)

0,5, em S. (sobre a superficie do corpo)
As integrais presentes na Equacado 4.27 sao avaliadas numericamente. A deducao
completa da equagdo utilizada para determinar o valor da pressdo no ponto 7, encontra-se

no trabalho de Ricci [44], sendo sua forma final apresentada na Equacdo 4.28.

1 nl‘($ - 371) + ny(?/ yz) 1 U(x - :UZ) - u(y - ?/z)
YdS=—-| — w d§)
(x — )+ (y —y:)? Q27 (v —x;)? + (y — 4i)?
_L ' 1 ny@ - xz) - nm(Z/ yz)
Re Js. 2n (& — ;)2 + (y — u;)?

HY+/

wdSs,

(4.28)
A Equacio 4.28 pode ser discretizada e resolvida numericamente por meio da Equacdo
4.29.

1M$,._i (Y — y; 1 N —wi(y; — Y
HYZ*—i-onJ(% $3+ny3(yj Qy)ASjY}——ZU i) — u;(y; ?JQ)Fj
2m i (zj— )+ (v — wi) 21 3 z) + (Y5 — vi)

J#i

1 Eong(x — ;) — ng(y — wi)
+ YJ 2 x) 7 AS
2mRe 2= (0, — 2 ¥ (3 — )

i
(4.29)
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A Equacdo 4.29 pode ser resolvida similarmente ao Método de Painéis, no qual o
primeiro termo € organizado em uma matriz de influéncia da pressdo, denotada por A,,
enquanto os dois somatdrios restantes sdo reunidos em um vetor coluna no segundo
membro, denominado L,. Assim, obtém-se a formulacdo discretizada expressa na Equacao
4.30. Logo, a formulacdo discretizada, quando aplicada aos M painéis que compdem a

discretiza¢do da superficie do corpo, resulta na forma matricial da pressdo, expressa na

Equacao 4.31.
1 & 1y — @) — uyy; — )
—» Ap; Y, = — D2 U+ Ad; g (4.30)
o & P " o Jz—; o (- jzl o
[A{Y} = {La} (4.31)

Dessa forma, ao resolver a equacdo matricial para a pressao, ou seja, ao determinar os
valores do vetor incégnita { Y} para os M painéis, é possivel obter os valores do coeficiente

de pressdo associados a cada segmento reto da superficie, representado pela Equagao 4.32.

C, =2Yi+1 (4.32)

As forgas hidrodindmicas sobre o corpo sdo determinadas por meio da integracao
da pressao ao longo de sua superficie. A forca de arrasto corresponde a componente da
forca atuando na direcdo do escoamento incidente, enquanto a forca de sustentacao esta
associada a componente normal a essa dire¢do. Considerando as contribui¢des de cada um

dos M painéis, as forcas totais de arrasto e sustentacao podem ser expressas como:

M
D = Z — Poo)AS; sin(thy,) (4.33)
J=1
M
L= =3"(pj — Psc) AS; cos(thy) (4.34)
j=1

onde p; € a pressdo no ponto de controle do painel j, p,, € a pressao de referéncia, AS; é
o comprimento do painel j, e th,; € o Angulo de orientacdo do painel plano j.

Por fim, a adimensionalizagdo das EquacOes 4.33 e 4.34 permite a obten¢do dos
coeficientes de arrasto e sustentacdo, respectivamente. Esses coeficientes sao determinados

a partir da contribuicdo de todos os M painéis, resultando nas seguintes expressoes:

M M
CD = Z 2(]93 - poo)ASJ sin(thpj) = Z CP AS] Sin(thpj) (435)
Jj=1 Jj=1

M
Cr ==Y _2(pj — Poc)AS; cos(thy;) = =Y Cp AS; cos(thy;) (4.36)

Jj=1 Jj=1
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4.5 A Adveccao da Nuvem de Vortices Discretos

Para determinar a velocidade total induzida em um vortice discreto arbitrario k, é ne-
cessdrio somar as contribuicdes provenientes do escoamento incidente (conforme expresso
na Equacao 4.1), das fronteiras sélidas (conforme as Equacdes 4.4 e 4.5) e da prépria
nuvem de vortices discretos (conforme as Equacgdes 4.13 e 4.14). Dessa forma, uma vez
determinado o campo de velocidades, a posi¢ao de cada vortice discreto em cada passo
temporal € definido pela Equacgdo 4.37.

ddth = uy(xg, t) (4.37)

Assim, uma vez determinado o campo de velocidades, a posicao de cada vortice
discreto pode ser atualizada numericamente a cada incremento de tempo ¢ durante a
etapa advectiva, por meio de diferentes métodos de integracdo. Neste estudo, o avango
advectivo é realizado utilizando o método explicito de Euler de primeira ordem, conforme

apresentado na Equacao 4.38 (Ferziger [25]).

xi(t + At) = x5.(t) + up(xy, t) At (4.38)

onde x;, representa o vetor posi¢do do vortice discreto arbitrdrio k£ no instante de tempo ¢ e

uy(xy, t) corresponde a velocidade total induzida no vértice k.

4.6 A Difusao da Vorticidade

A difusido da vorticidade constitui o principal mecanismo de incorporacdo dos efeitos
viscosos no escoamento. Na Equagdo 4.39, essa influéncia estd implicitamente representada
por meio do nimero de Reynolds, que relaciona as forgas inerciais as forcas viscosas do
escoamento.

%; = (ée + V;> Vo (4.39)

Com a adogdo do modelo de turbuléncia implementado neste trabalho, a viscosidade
efetiva do escoamento passa a ser composta pela soma da viscosidade molecular (v) e
da viscosidade turbulenta (1)), esta dltima responsdvel por representar a transferéncia de
energia das grandes para as pequenas escalas do escoamento.

Com o nimero de Reynolds jé ajustado para refletir as caracteristicas de um escoamento
turbulento, a solu¢do da equagao de difusdo € obtida por meio de um esquema puramente
Lagrangiano, baseado no Método de Avango Randdmico (Chorin [23]). Trata-se de uma

técnica de natureza probabilistica, que modela a difusdo das propriedades do fluido a partir
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da introducao de deslocamentos aleatérios compativeis com os efeitos viscosos presentes
no escoamento.

Esta técnica possibilita a cada vértice da nuvem um avanco randémico definido por
Z, = (x4,y4). Considere um vortice discreto k pertencente a nuvem, localizado na
posicdo xj, no instante ¢. O avanco deste vortice, nas direcdes radial e angular, € descrito,

respectivamente, pelas seguintes Equagdes 4.40 e 4.41.

Ary = \/4At (;@ + u:> In (;) (4.40)

A, = 27Q (4.41)

onde P e Q representam numeros randomicos entre 0 e 1. Nota-se que a inclusdo do
nimero de Reynolds modificado na Equacao 4.40 evidencia a consideragao dos efeitos
viscosos e turbulentos durante a etapa de difusdo da vorticidade.

Dessa forma, a difusdo de um vértice discreto k£ da nuvem, apés um incremento de
tempo At resulta em um deslocamento na dire¢cdo x e um deslocamento na direg¢do v,

dados respectivamente pelas Equacdes 4.42 e 4.43.

x4, = Arycos Af (4.42)

Ya, = Argsin A (4.43)

Portanto, a conveccdo dos vortices discretos presentes na nuvem incorpora as contri-
buicdes tanto da adveccao quanto da difusdo, resultando no deslocamento total desses
elementos. Assim, as equagdes que descrevem, respectivamente, o avango dos vortices nas

componentes x € y, sdo expressas pelas Equacdes 4.44 e 4.45.

zp(t + At) = a4, (t) + up(t) At + 24, (4.44)

Ye(t + At) = yi(t) + vi(t) At + ya, (4.45)



5 Analise de Resultados

Neste capitulo, os resultados numéricos sao apresentados para o caso de um cilindro

com sec¢do circular, nas configuragdes liso e rugoso, oscilando na direcao in-line. A

apresentacdo desses resultados tem como principais objetivos:

Estabelecer e validar os parametros numéricos varidveis empregados nas simulacoes

utilizando o algoritmo do Método de Vértices Discretos (MVD);

Calcular as séries temporais dos coeficientes de forca e do coeficiente de pressao,
com o objetivo de permitir uma andlise fisica do regime de formacgdo de vortices a
partir da superficie do corpo, e investigar o efeito da rugosidade no comportamento

dos carregamentos fluidodinadmicos ao longo do tempo;

Avaliar o fendmeno de lock-in, verificando se o efeito simulado de rugosidade €
capaz de suprimir ou modificar esse acoplamento entre a frequéncia de oscilagao do

corpo e a frequéncia de desprendimento de vortices;

Identificar o padrdo de esteira formado a jusante do corpo e classificar os modos de
desprendimento de vortices com base em comparac¢des com resultados experimentais

disponiveis na literatura.

Os parametros fisicos e numéricos necessarios para a andlise dos resultados sdo:

(a)

(b)

(c)

Nimero de Reynolds (Re): Neste trabalho, adotou-se Re = 10° para todas as
simulagdes, considerando a faixa de interesse pratico associada a altos ndimeros
de Reynolds. A escolha desse regime visa demonstrar a capacidade do Método de
Vértices Discretos (MVD) em simular escoamentos nao permanentes, utilizando o

Meétodo de Avanco Randdomico para tratar a difusdo da vorticidade de forma eficiente.

Angulo de ataque para o escoamento incidente («): O &ngulo de ataque («) do
escoamento incidente é considerado igual a zero para as simula¢des numéricas

envolvendo o cilindro circular.

Amplitude de oscilagdo in-line do corpo (A): Para a andlise comparativa com 0s
resultados apresentados por Ongoren & Rockwell para Re = 855, foi adotada
uma amplitude A = 0, 13. Essa escolha visa permitir a avaliacdo do comporta-
mento do sistema sob condi¢des semelhantes as utilizadas no estudo de referéncia,

possibilitando uma comparacao mais precisa dos resultados numéricos obtidos.
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(d)

(e)

®

€3]

(h)

®

G

Freqiiéncia de oscilagdo in-line do corpo (fy): A freqiiéncia de oscilagdo do corpo
assume diferentes valores para que se identifique o fendmeno da sincronizagdo
entre a freqiiéncia de emissdo de vortices do corpo oscilando f, e a freqiiéncia
de oscilagdo do corpo fy. As frequéncias de oscilagdo adotadas, ja devidamente
adimensionalizadas foram: fo = 0,04, fo = 0,2, fo = 0,34, fo =0,4¢e fy =0, 8.

Rugosidade relativa (¢/D): Nas simulagdes numéricas realizadas, foram conside-
rados quatro valores de alturas médias de rugosidade relativa para a superficie do
cilindro. Os valores adotados foram ¢/D = 0,0;e/D = 0,001;e/D = 0,0045 e
e/D = 0,007. Esses pardmetros permitem avaliar de forma sistematica os efeitos

da rugosidade na dinamica do escoamento e na interagdo fluido-estrutura.

Nidmero de painéis planos no cilindro (M): A superficie do cilindro circular é
discretizada em M = 300 painéis planos de comprimento uniforme, sobre os
quais sdo distribuidas fontes de densidade constante para representar o campo de

escoamento.

Nimero de médulos do solo (N M): O solo é dividido em N M = 10 médulos de

igual comprimento.

Numero de painéis em cada médulo do solo (N P): Cada mddulo do solo é discreti-

zado com N P = 20 painéis planos.

Incremento de tempo (At): Nas simulagdes numéricas, adota-se um incremento
de tempo fixo de At = 0,05, compativel com a precisdo do esquema de avango
temporal de primeira ordem de Euler utilizado na advec¢do e difusdo da nuvem de

vortices discretos.

Raio do Nicleo do Vértice de Lamb (0): Adotando-se Re = 105 e At = 0,05

tem-se para o cilindro circular o valor de oy = 0, 001.



76 Capitulo 5. Andlise de Resultados

5.1 Cilindro Circular Estacionario

Como etapa preliminar a andlise do cilindro oscilante, realizou-se a simulacdo numérica
de um escoamento ao redor de um cilindro circular estaciondrio, posicionado a uma
distancia vertical g = 1000 acima do solo. Este caso, amplamente estudado na literatura, €
comparado com os resultados experimentais de Blevins [45] com £+10% de incerteza.

A Figura 5.1 apresenta as séries temporais dos coeficientes de for¢as para um escoa-
mento com Re = 10°. Observa-se a presenga de um transiente numérico até aproximada-
mente um tempo ¢ = 15. Apds esse transiente, os coeficientes de arrasto de forma (pressao)
e sustentacdo passam a oscilar de forma mais regular, indicando o estabelecimento de um
comportamento periddico dos carregamentos fluidodindmicos atuantes.

Com o objetivo de calcular os valores médios dos coeficientes de arrasto (Cy) e
sustentacdo (C;), bem como descrever o mecanismo de formacéo de vértices conforme
proposto por Gerrard [1], foi realizada uma analise mais detalhada da evolucao temporal
dessas grandezas. A partir dos dados apresentados anteriormente, considerou-se o intervalo
entre t = 20 at = 50, periodo no qual a simulagdo ndo encontra-se no transiente
numérico. Esse recorte, ilustrado na Figura 5.2, permitiu o célculo dos valores médios dos
carregamentos fluidodinamicos atuantes, além da identificacdo dos pontos caracteristicos
P, Q, R, S e T, com base na curva do coeficiente de sustentacdo. Esses pontos representam
diferentes fases do processo de desprendimento de vértices, possibilitando uma andlise

fisica mais precisa do fendmeno.

2
\

Forgas Aerodinamicas [ - ]

—— Coeficiente de Arrasto
— — — Coeficiente de Sustentagdo

2 | | | |
0 10 20 30 40 50

Tempo [ -]

Figura 5.1 — Séries temporais dos coeficientes de forcas para o cilindro circular estacionario
(M = 300, At = 0,05,00 = 0,001, Re = 10°).
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Forgas Aerodinamicas [ - |

—— Coeficiente de Arrasto
— — — Coeficiente de Sustentagdo

> | | I R
20 25 30 35 40 45 50

Tempo [ -]

Figura 5.2 — Séries temporais dos coeficientes de forcas para o cilindro circular estacionario
(M = 300, At = 0,05,00 = 0,001, Re = 10°).

Os valores obtidos para o coeficiente de arrasto e o nimero de Strouhal na simulacao
numérica apresentaram boa concordincia com os dados experimentais reportados por
Blevins [45], mesmo considerando-se uma abordagem bidimensional, conforme indicado
na Tabela 1. Nesta configuragdo, o coeficiente de arrasto de forma representa mais de 98%
do coeficiente de arrasto total, motivo pelo qual o coeficiente de arrasto de atrito (viscoso)
nao foi considerado separadamente. Além disso, ressalta-se que o nimero de Strouhal
tende a apresentar baixa sensibilidade a auséncia de efeitos tridimensionais, o que justifica

a adoc@o de uma abordagem bidimensional para esta anélise.

Tabela 1 — Valores médios do coeficiente de arrasto e do nimero de Strouhal para um
cilindro circular estaciondrio.

Caso (Re = 10°) Cy St
Blevins (1984) 1,2+£10% 0,19+ 10%
Presente Simulacdo 1,21 0,20

A determinacdo da frequéncia dominante associada ao nimero de Strouhal foi realizada
a partir da andlise do sinal temporal do coeficiente de sustentag¢do (C}). Para isso, utilizou-
se a ferramenta OriginPro, aplicando-se a Transformada Répida de Fourier (FFT) sobre
a série temporal. Essa técnica permitiu identificar os picos de energia no dominio da
frequéncia, sendo selecionada a frequéncia correspondente ao pico mais representativo, a

qual define o valor do nimero de Strouhal para o regime analisado.
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A Figura 5.3 apresenta o comportamento da distribuicdo média de pressdo sobre a
superficie discretizada do cilindro circular, comparando os resultados obtidos na presente
simulagdo com os dados experimentais de Blevins [45]. Assim, observa-se uma regidao de
inversdo do gradiente de pressao, seguida por um platd na curva, a partir do qual € possivel
identificar o dngulo de separacdo do escoamento (0,). Para a simulagdo realizada, esse
angulo foi estimado em aproximadamente 6, = 68°, um valor considerado aceitdvel para

as condi¢des adotadas.
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Figura 5.3 — Distribui¢cdo média do coeficiente de pressdo ao longo da superficie dis-

cretizada do cilindro circular estaciondrio (M = 300, At = 0,05, 0
0,001, Re = 10°).

Os pontos indicados por P, Q, R, S e T na Figura 5.2 correspondem, também, aos
instantes nos quais foi analisada a distribuicao instantanea do coeficiente de pressdo ao
longo da superficie discretizada do cilindro circular, conforme ilustrado na Figura 5.4. O
angulo 6 indica a posi¢ao angular relativa de cada ponto de controle sobre a superficie
do cilindro, sendo o valor do coeficiente de pressdao calculado pontualmente para cada

posicao.
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Figura 5.4 — Distribuicdo instantanea do coeficiente de pressdo sobre a superficie dis-
cretizada do cilindro circular estaciondrio (M = 300, At = 0,05, 09

0,001, Re = 10°).

O instante de tempo correspondente ao ponto P (¢ = 36, 95) indica uma boa aproxima-
¢do com o inicio do desprendimento de uma estrutura vorticosa hordria na parte superior do
cilindro, momento em que atua uma forca de sustentacdo maxima e positiva. Na Figura 5.5,
identifica-se uma regido de baixa pressao ao longo da superficie do cilindro, compreendida

aproximadamente entre § = 65° e 6 = 170°.
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Figura 5.5 — Desprendimento de uma estrutura vorticosa hordria no instante de tempo
t = 36,95 (Ponto P).

No instante representado pelo ponto Q da Figura 5.6, observa-se uma regido de baixa
pressdo aproximadamente constante entre os angulos § = 67° e § = 288°, na qual ocorre
uma inversao do coeficiente de sustentacdo, passando de um valor positivo para negativo.
Nesse momento, a estrutura vorticosa desprendida no ponto P comeca a ser incorporado a

esteira viscosa formada a jusante do corpo.

Figura 5.6 — Desprendimento de uma estrutura vorticosa hordria no instante de tempo
t = 38,0 (Ponto Q).

O instante de tempo representado pelo ponto R, na Figura 5.7, corresponde a uma
regido de baixa pressao situada entre os angulos ¢ = 189° e 6 = 292°. Essa configuracao
indica o desprendimento de uma estrutura vorticosa de sentido anti-horério na parte inferior

do cilindro, resultando em um valor negativo para a for¢a de sustentacao.
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Figura 5.7 — Desprendimento de uma estrutura vorticosa anti-hordria no instante de tempo
t = 38,95 (Ponto R).

De forma similar ao instante representado pelo ponto Q, o ponto S, Figura 5.8, apresenta
uma regido de baixa pressao aproximadamente constante, compreendida entre § = 68° e
6 = 286°. Em torno deste instante, a estrutura vorticosa desprendida no ponto R comeca a

ser incorporado a esteira viscosa formada a jusante do corpo.

Figura 5.8 — Desprendimento de uma estrutura vorticosa anti-hordria no instante de tempo
t = 40, 3 (Ponto S).

O periodo se completa no instante representado pelo ponto T, no qual se observa uma
forca de sustentacao positiva e uma regiao de baixa pressao compreendida aproximada-
mente entre § = 50° e = 172°. De forma andloga ao ponto P, o ponto T, Figura 5.9, se
encontra proximo do instante do desprendimento de uma estrutura vorticosa de sentido

horério na parte superior do cilindro.



82 Capitulo 5. Andlise de Resultados

Figura 5.9 — Desprendimento de uma estrutura vorticosa hordria no instante de tempo
t = 41,3 (Ponto T).

Assim, ao final do ciclo representado pelos pontos P, Q, R, S e T, € possivel identificar
a formac@o da classica esteira de Von Karman. A estrutura final correspondente a esteira €
apresentado na Figura 5.10 para o instante final da simulacdo (¢ = 50), abrangendo um
comprimento horizontal de 20 didmetros do cilindro. Observa-se o mecanismo alternado

de formagdo e desprendimento de estruturas vorticosas contrarrotativas.

Figura 5.10 — Estrutura da esteira de vértices para o tempo final ¢ = 50 para o cilindro
circular estacionario (M = 300, At = 0,05, 09 = 0,001, Re = 10°).

Com relacao as cargas fluidodinamicas, observa-se que o coeficiente de arrasto (Cy)
oscila uma vez para cada vortice desprendido, enquanto o coeficiente de sustentacdo
(C)) oscila uma vez para cada par de vértices que se desprende (Figuras 5.1 ¢ 5.2). A
frequéncia adimensional extraida da curva de C,; corresponde aproximadamente ao dobro
da frequéncia adimensional determinada a partir da curva de Cj.

Dessa forma, considera-se o c6digo numérico empregado apto a incluir os efeitos de
rugosidade superficial sobre a superficie do cilindro circular, de acordo com a proposta
apresentada na Tese de Doutorado de Bimbato [33]. Esse modelo injeta quantidade de
movimento instantanea no interior da camada limite hidrodindmica, representando, de

forma mais realista, os efeitos da rugosidade superficial. Ressalta-se que tal abordagem
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se mostrou consideravelmente mais sensivel aos efeitos bidimensionais do que simples
modelos de turbuléncia.

E importante destacar, contudo, que nio serdo apresentados aqui resultados para os
efeitos da rugosidade superficial sobre a superficie do cilindro circular estaciondrio, visto

que uma andlise detalhada encontra-se desenvolvida na Tese de Bimbato [33].

5.2 Cilindro Circular Oscilando In-Line sem e com Efeito
de Rugosidade

A Tabela 2 apresenta os valores médios obtidos numericamente para os coeficientes
de arrasto de forma e de sustentacdo, bem como para a frequéncia de emissao de vortices,
considerando a curva do coeficiente de arrasto (f*). Os resultados referem-se ao caso
em que a amplitude de oscilag@o do cilindro circular € fixada em A = 0, 13, enquanto os
valores de frequéncia de oscila¢do e de rugosidade relativa variam conforme cada condi¢ao

analisada.

Tabela 2 — Resultados numéricos obtidos para cilindro circular oscilando in-line com
diferentes valores de rugosidade relativa (A = 0,13, = 0° € Re = 10°).

Caso  fo e/D C; Cy I fo/f* Modo

1 0,04 0,000 —0,0056 1,2270 0,0394 1,015 A-1T
0,04 0,001 —0,0024 1,2853 10,0391 1,023 A—-1

3 0,04 0,0045 —0,0177 1,2758 0,0418 0,957 A—1T
4 0,04 0,007 0,0150 11,3470 0,0507 0,789 Nao lock-in
5 0,2 0,000 —0,0232 1,3568 0,2008 0,996 A—-1V
6 0,2 0,001 0,0671 1,4221 10,1973 1,014 A-1V
7 0,2 0,0045 0,2063 1,4521 0,1996 1,002 A—1V
8 0,2 0,007 —0,0420 11,5237 0,201 0,995 A-1V
9 0,34 0,000 —0,0292 1,3535 0,3375 1,007 S —1I (TipoI)
10 0,34 0,001 0,0205 11,3441 0,3407 0,998 S — 1 (TipoI)
11 0,34 0,0045 —0,0472 1,5025 0,3397 1,000 Transicao
12 0,34 0,007 —0,0934 1,6998 0,3399 1,000 A — IV com coalescéncia
13 0,80 0,000 —0,0668 1,0896 0,80 1,000 c—-1
14 0,80 0,001 —0,2403 0,9408 0,7958 1,005 C-1
15 0,80 0,0045 —0,0147 0,9285 0,7972 1,004 c—-1
16 0,80 0,007 —0,0697 0,9894 0,7986 1,002 Cc—-1

A determinacdo da frequéncia dominante foi realizada a partir da anélise espectral
do sinal temporal do coeficiente de arrasto (Cy,). Para isso, foi utilizada a ferramenta
OriginPro, por meio da aplicacdo da Transformada Répida de Fourier (FFT), que permitiu
identificar os picos de energia no dominio da frequéncia. A principal frequéncia associada

a oscilagdo do C; reflete o modo de desprendimento de vortices no regime analisado. Com
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base nessa andlise, foram selecionadas as frequéncias correspondentes aos picos mais
representativos do espectro para estudo detalhado, uma vez que estas refletem os modos

predominantes de intera¢ao fluido-estrutura no escoamento.

5.2.1 Cilindro Circular com Fequéncia de Oscilacao f, = 0,04

A Figura 5.11 apresenta a série temporal do coeficiente de arrasto e da oscilacdo
do corpo (Equagdo 3.1) para o Caso 1, que corresponde ao cilindro liso submetido a
uma frequéncia de oscilacdo imposta de 0,04. A partir da curva de oscilagao do corpo,
identificam-se os pontos de A a E, que representam um periodo completo de movimento.
Para melhor visualizacdo do comportamento das curvas, os resultados foram tracados
no intervalo de tempo de ¢ = 25 at = 80. Observa-se que os picos e vales da curva
de arrasto estdo bem definidos e ocorrem em fase com a oscilagdo do corpo, indicando
que o periodo do coeficiente de arrasto é aproximadamente igual ao periodo de oscilacao.
Essa sincronizacao evidencia que o cilindro circular opera no regime de lock-in, ou seja,
a frequéncia de oscilagdo do corpo € préxima a frequéncia associada as flutuagdes do

coeficiente de arrasto.
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Figura 5.11 — Séries temporais do coeficiente de arrasto e oscilacio do corpo para o cilindro
circular liso oscilando in-line com frequéncia de oscilacdo forcada de f, =
0,04 (M = 300,At = 0,05,00 = 0,001, Re = 10°, fo = 0,04 e A =
0,13).
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A Figura 5.12 ilustra o comportamento das estruturas vorticosas nas imedia¢des do
cilindro, correspondentes aos pontos A, B, C, D e E, os quais caracterizam um ciclo
completo de oscilacdo do cilindro. E importante destacar que esses pontos ndo possuem a
mesma interpretagdo fisica dos pontos extraidos da curva do coeficiente de sustentagdo para
o caso de um cilindro estaciondrio. Para o cilindro fixo, € possivel observar diretamente o
mecanismo de geragdo e desprendimento de vortices. No entanto, no caso atual, em que o
cilindro esté oscilante, a andlise dos pontos refere-se ao comportamento durante um ciclo
de oscilacdo, no qual ocorrem diversas variagdes do coeficiente de sustentacio ao longo do

tempo.
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Figura 5.12 — Sequéncia do movimento harmonico do cilindro circular liso oscilando in-
line com frequéncia de oscilagdo forcada de fo = 0,04 (M = 300, At =
0,05,00 = 0,001, Re = 10°, fo = 0,04 e A = 0,13).

A estrutura final da esteira € apresentada na Figura 5.13 para o instante final da
simulac@o (¢ = 100). Observa-se o mecanismo alternado de formag@o e desprendimento
de estruturas vorticosas contrarrotativas, caracterizando a esteira classica de Von Karman.
Com base nos resultados obtidos de Ongoren & Rockwell [10], identificou-se a ocorréncia
do Modo Al para o Caso 1. Pode-se observar na Tabela 2 que o coeficiente de arrasto
estd proximo daquele obtido para o cilindro estaciondrio, € que o sistema encontra-se em

regime de lock-in.
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Figura 5.13 — Estrutura da esteira de vortices para o tempo final ¢ = 100 para o cilindro
circular liso oscilando in-line com frequéncia de oscilacao forcada de f, =
0,04 (M = 300,At = 0,05,00 = 0,001, Re = 10°, fo = 0,04 e A =
0,13).

A comparagdo entre as Figuras 5.13 e 5.14 revela que os resultados numéricos ob-
tidos estdo em concordancia com os dados experimentais apresentados por Ongoren &
Rockwell [10] para uma razio de frequéncias fy/f; = 0, 5. No entanto, para o caso atual, a
razdo de frequéncias observada é f/ f, = 0, 2. Essa diferenga pode ser atribuida & variagio
no nimero de Reynolds, uma vez que, nos experimentos de Ongoren & Rockwell [10],
o nimero de Reynolds considerado foi Re = 855, ao passo que, no presente estudo, o
regime considerado foi de Re = 10°. Apesar dessa diferenga, 0 modelo de vértice discreto

(MVD) empregado neste trabalho foi capaz de capturar com sucesso o mesmo modo de

-
ﬁ-ﬁi} Qﬁ

vibragao.

Figura 5.14 — Visualizagdo experimental do modo de sincronizacdo A-I para Re = 855.
(Reproduzida de Ongoren & Rockwell [10]).

Os resultados a seguir referem-se a andlise do efeito da rugosidade relativa sobre o valor
do coeficiente de arrasto médio e sobre a razdo de frequéncias, mantendo-se a frequéncia
de oscilagao constante em 0,04. Por meio dessa andlise, € possivel inferir se o cilindro em
vibragdo in-line permanece ou se foi retirado do regime de lock-in. As Figuras 5.15, 5.16
e 5.17 apresentam a série temporal do coeficiente de arrasto e da oscilacdo do corpo para

0s casos 2, 3 e 4, respectivamente.
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Figura 5.15 — Séries temporais do coeficiente de arrasto e oscilagio do corpo para o cilindro
circular rugoso (¢/D = 0,001) oscilando in-line com frequéncia de oscila-
¢do forgada de fo = 0,04 (M = 300, At = 0,05,00 = 0,001, Re = 10° e

A=0,13).
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Figura 5.16 — Séries temporais do coeficiente de arrasto e oscilagdo do corpo para o cilindro
circular rugoso (¢/D = 0,0045) oscilando in-line com frequéncia de oscila-
¢do forgada de fo = 0,04 (M = 300, At = 0,05,00 = 0,001, Re = 10° e

A=0,13).
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Figura 5.17 — Séries temporais do coeficiente de arrasto e oscilagio do corpo para o cilindro
circular rugoso (¢/D = 0,007) oscilando in-line com frequéncia de oscila-
¢do forgada de fo = 0,04 (M = 300, At = 0,05,00 = 0,001, Re = 10° e
A=0,13).

Observa-se que, na Figura 5.17, a curva do coeficiente de arrasto ndo apresenta um
comportamento bem definido de picos e vales. Assim, pode-se inferir, em um primeiro
momento, que para a rugosidade relativa (¢/D = 0,007) a curva de arrasto ndo apresenta
o fendmeno de batimento caracteristico, indicando que a relag@o de frequéncias (fy/f*)
nao se mantém proxima de 1. A partir da andlise da Tabela 2, verifica-se que o valor
encontrado para a relacdo de frequéncias foi de 0,789, confirmando a primeira expectativa
obtida pela inspecdo das curvas. Além disso, observa-se que, devido ao comportamento
menos regular em comparagao as demais rugosidades analisadas, o coeficiente de arrasto
apresentou um aumento superior a 9% em relacdo ao caso 1.

Para o caso 2, observou-se um aumento no coeficiente de arrasto médio em comparagao
ao caso liso, contudo o cilindro manteve-se no regime de lock-in. No caso 3, embora o
coeficiente de arrasto médio tenha permanecido aproximadamente constante, verificou-se
que o cilindro circular comegou a se afastar do regime de lock-in, uma vez que a relagdo
de frequéncias encontrada foi de 0,957. Dessa forma, para as simulagdes realizadas com
frequéncia de oscilagao igual a 0,04, observa-se uma tendéncia de saida do regime de
lock-in com o aumento da rugosidade relativa, a0 mesmo tempo em que se evidencia um
incremento no valor do coeficiente de arrasto médio.

Como exemplo do efeito mais pronunciado da rugosidade em comparacio ao cilindro

liso, a Figura 5.18 apresenta o comportamento das estruturas vorticosas nas imedia¢des do
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cilindro, correspondentes aos pontos A, B, C, D e E, para o caso com rugosidade relativa
(¢/D = 0,007). A Figura 5.19 ilustra o padrao da esteira no instante final da simulag@o

(t = 100), considerando uma distancia equivalente a 20 didmetros a jusante do cilindro.
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Figura 5.18 — Sequéncia do movimento harmonico do cilindro circular rugoso (¢/D =
0,007) oscilando in-line com frequéncia de oscilagdo forcada de f, = 0,04
(M =300, At = 0,05,00 = 0,001, Re = 10°, fo = 0,04 e A = 0,13).

Figura 5.19 — Estrutura da esteira de vortices para o tempo final ¢ = 100 para o cilindro
circular rugoso (¢/D = 0,007) oscilando in-line com frequéncia de oscila-
¢do forgada de fo = 0,04 (M = 300, At = 0,05,00 = 0,001, Re = 10° e
A=0,13).
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As Figuras 5.20 e 5.21 mostram, respectivamente para o cilindro liso e para o com
maior rugosidade relativa (¢/D = 0,007), as distribuigdes instantineas do coeficiente de
pressao ao longo do ciclo de oscilagdo, considerando os pontos de A a E.

Os pontos P a T da Figura 5.4 referem-se ao cilindro estaciondrio e foram obtidos a
partir da curva de sustentacdo. Comparando com os pontos A a E do cilindro liso oscilante,
observa-se comportamento semelhante na distribuicao de pressdo, com regides de baixa
pressdo em um dos lados e o ponto C indicando a incorporagdo da estrutura ao escoamento,
tipica do modo A-I. As diferencas na ordem de desprendimento dos vértices decorrem das
diferentes curvas analisadas.

Na Figura 5.21, o cilindro rugoso apresenta padrao de pressao distinto em relagdo ao
cilindro liso (Figura 5.20), refletindo a influéncia da rugosidade na dindmica do escoamento.
Isso também € evidenciado pelas Figuras 5.12 e 5.18, que mostram diferengas claras no

campo de vorticidades.

I

Figura 5.20 — Distribuicao instantanea do coeficiente de pressdo sobre a supeficie discreti-
zada do cilindro circular liso oscilando in-line (M = 300, At = 0,05, 00 =
0,001, Re = 10°, f = 0,04 e A = 0,13).
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E

Figura 5.21 — Distribuicdo instantanea do coeficiente de pressao sobre a supeficie discre-
tizada do cilindro circular rugoso (¢/D = 0,007) oscilando in-line com
frequéncia de oscilagdo for¢ada de fy = 0,04 (M = 300, At = 0,05,00 =
0,001, Re = 10° e A = 0, 13).

5.2.2 Cilindro Circular com Fequéncia de Oscilagao f, = 0, 2

Para os casos com frequéncia de oscilagcdo igual a 0,2, ndo foi observada influéncia
significativa da rugosidade relativa na retirada do sistema do regime de lock-in para o
cilindro circular. Observou-se, entretanto, um aumento superior a 12% no coeficiente
de arrasto na comparacgdo entre os casos 5 e 8. Considerando que o efeito simulado da
rugosidade ndao promoveu a saida do regime de ressonéncia, os resultados apresentados
para a frequéncia de f, = 0,2 referem-se apenas aos Casos 5 e 8. As Figuras 5.22 e
5.23 apresentam as séries temporais do coeficiente de arrasto e da oscilagdo do corpo para
os Casos 5 e 8, respectivamente. Destacam-se os pontos de A até I, uma vez que sdo
necessdarias duas oscilagdes completas do corpo para a caracterizacdo do referido modo de

desprendimento.
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Figura 5.22 — Séries temporais do coeficiente de arrasto e oscilagio do corpo para o cilindro
circular liso oscilando in-line com frequéncia de oscilacdo forcada de f, =
0,2 (M = 300, At = 0,05,00 = 0,001, Re = 10°e A = 0, 13).
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Figura 5.23 — Séries temporais do coeficiente de arrasto e oscilacio do corpo para o cilindro
circular rugoso, com £/D = 0,007 oscilando in-line com frequéncia de
oscilacdo forcada de fy = 0,2 (M = 300, At = 0,05,09 = 0,001, Re =

10°e A = 0,13).
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As esteiras de vortices correspondentes aos Casos 5 e 8 para o instante de tempo ¢ = 75
estdo representadas nas Figuras 5.24 e 5.25, respectivamente. Observa-se que o padrdo
de desprendimento de vortices estd em concordancia com os resultados experimentais
apresentados por Ongoren & Rockwell [10] para uma razao de frequéncias fy/fs = 1,8,
conforme ilustrado na Figura 5.26. Dessa forma, para esses casos, identifica-se a ocorréncia
do Modo A-IV.

Figura 5.24 — Estrutura da esteira de vortices para o tempo final ¢ = 75 para o cilindro
circular liso oscilando in-line com frequéncia de oscilacao forcada de f, =
0,2 (M = 300, At = 0,05,00 = 0,001, Re = 10° e A = 0, 13).

Figura 5.25 — Estrutura da esteira de vortices para o tempo final ¢ = 75 para o cilindro
circular rugoso (¢/D = 0,007) oscilando in-line com frequéncia de oscila-
¢do forgada de fo = 0,2 (M = 300, At = 0,05,00 = 0,001, Re = 10° e
A=0,13).
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Figura 5.26 — Visualiza¢ao experimental do modo de sincronizacdo A-IV para Re = 855.
(Reproduzida de Ongoren & Rockwell [10].)

5.2.3 Cilindro Circular com Fequéncia de Oscilagcdo f, = 0, 34

Para os casos com frequéncia de oscilagdo igual a 0,34, ndo foi observada uma influén-
cia significativa da rugosidade relativa na saida do regime de lock-in para o cilindro circular.
No entanto, identificou-se um aumento progressivo no coeficiente de arrasto médio até
e/D = 0,007. Assim, o coeficiente de arrasto aumentou em mais de 25% na comparagio
entre os casos 9 e 12. Considerando que a rugosidade ndo promoveu a saida do regime de
lock-in, os resultados apresentados para a frequéncia de fy = 0, 34 referem-se aos casos 9
e 12. As Figuras 5.27 e 5.28 apresentam as séries temporais do coeficiente de arrasto e da

posi¢do de oscilagdo do corpo para os casos 9 e 12, respectivamente.
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Figura 5.27 — Séries temporais do coeficiente de arrasto e oscilacio do corpo para o cilindro
circular liso oscilando in-line com frequéncia de oscilacdo forcada de f, =
0,34 (M = 300, At = 0,05,09 = 0,001, Re = 10°e A = 0, 13).



5.2. Cilindro Circular Oscilando In-Line sem e com Efeito de Rugosidade 95

4 ‘ T

Coeficiente de Arrasto
~ Oscilagdo do Corpo |

Cyl-leXose[-1]

e A Y S
4 | \ \

Tempo [ -]

Figura 5.28 — Séries temporais do coeficiente de arrasto e oscilagio do corpo para o cilindro
circular rugoso /D = 0,007 oscilando in-line com frequéncia de oscilagdo
forgada de fy = 0,34 (M = 300,At = 0,05,00 = 0,001, Re = 10° e
A=0,13).

As esteiras de vortices correspondentes aos Casos 9 e 12 para o instante de tempo

t = 50 estdo representadas nas Figuras 5.29 e 5.30, respectivamente.

Figura 5.29 — Estrutura da esteira de vértices para o tempo final ¢ = 50 para o cilindro
circular liso oscilando in-line com frequéncia de oscilacdo forcada de f, =
0,34 (M = 300, At = 0,05,09 = 0,001, Re = 10°e A = 0, 13).



96 Capitulo 5. Andlise de Resultados

Figura 5.30 — Estrutura da esteira de vortices para o tempo final ¢ = 50 para o cilindro
circular rugoso /D = 0,007 oscilando in-line com frequéncia de oscilagdo
forgada de fy = 0,34 (M = 300,At = 0,05,00 = 0,001, Re = 10° e
A=0,13).

Em uma andlise inicial das esteiras de vortices geradas pelo escoamento ao redor dos
cilindros, observa-se visualmente uma distin¢ao significativa entre os padrdes associados
ao cilindro liso e ao cilindro com superficie rugosa. A Figura 5.29 ilustra, para o caso
do cilindro liso, um padrao de esteira que, a primeira vista, se assemelha a configuragdo
simétrica descrita por Ongoren & Rockwell [10], embora apresente algumas variagdes em
relagdo ao modelo cldssico. Ao comparar esses resultados com os apresentados por Hu
et.al. [14] (Figura 5.31), observa-se que o padrdao em questdao pode ser classificado como
um desprendimento simétrico com coalescéncia de vortices, fendmeno também reportado

em sua andlise experimental.

Re=360 AWd=02 f//=0.88 —

Re=360 A/d=1 ﬂj Jgﬂl.ﬂﬂ

Figura 5.31 — Visualizag¢do experimental do modo de sincronizacdo S-I (Tipo I) para Re =
360, A/D = 0,2,0,5el,0e fo/fs = 0,44 ¢ 0,88. (Reproduzida de Hu et
al. [14]).
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A Figura 5.32 apresenta o grafico de distribui¢ao instantanea de pressao ao longo de
um ciclo de oscila¢ao do cilindro liso, considerando o intervalo de pontos de A até E.
Essa distribuicao evidencia a presenca de dois vales de baixa pressao, os quais indicam o
surgimento de vdrtices gémeos em posicdes simétricas em relacdo ao eixo do escoamento.

Tal comportamento refor¢a a hipétese de uma esteira predominantemente simétrica sob as

1 | I

condi¢Oes analisadas.

Figura 5.32 — Distribuicao instantanea do coeficiente de pressdo sobre a supeficie discreti-
zada do cilindro circular liso oscilando in-line com frequéncia de oscilagao
forgada de fo = 0,34 (M = 300, At = 0,05,00 = 0,001, Re = 10%, fy =
0,04e A=0,13).
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No caso do cilindro com rugosidade superficial relativa ¢/D = 0,007, observa-se
uma alterag@o substancial no padrdo de desprendimento de vortices. A esteira de vortices
apresentada na Figura 5.30 revela uma nova estrutura de desprendimento, o modo A-IV,
com a coalescéncia dos vortices ao longo da esteira. Esse comportamento representa
uma novidade em relacdo ao efeito da rugosidade, que induziu a transi¢cdo do modo de
desprendimento simétrico com coalescéncia, observado no cilindro liso, para 0 modo A-IV
com coalescéncia. O grafico de distribuicao instantanea de pressao ao longo de um ciclo
de oscilacdo do cilindro rugoso € analisado no intervalo de pontos de A até I, representado

nas Figuras 5.33 e 5.34, evidenciando caracteristicas distintas em relacio ao caso liso.

6[°]

Figura 5.33 — Distribuicdo instantanea do coeficiente de pressdo dos pontos A até E sobre
a supeficie discretizada do cilindro circular rugoso €/D = 0, 007 oscilando
in-line com frequéncia de oscilagdo forgada de fy = 0,34 (M = 300, At =
0,05,00 = 0,001, Re = 10°, fo = 0,04 e A = 0,13).
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Figura 5.34 — Distribuicdo instantanea do coeficiente de pressdo dos pontos F até I sobre a
supeficie discretizada do cilindro circular rugoso /D = 0,007 oscilando
in-line com frequéncia de oscilagdo forgada de f, = 0,34 (M = 300, At =
0,05,00 = 0,001, Re = 10°, fo = 0,04 e A = 0,13).

Dessa forma, conclui-se que o aumento da rugosidade para /D = 0,007, em compa-
racdo com a superficie lisa, induz mudancgas no padrdo de formagado da esteira de vortices,
embora o sistema permanec¢a em regime de /ock-in. Tal comportamento evidencia a sen-
sibilidade do escoamento as condi¢des de contorno impostas pela superficie do corpo,
mesmo quando o acoplamento entre a oscilagio e o desprendimento de vortices ainda se

mantém.
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5.2.4 Cilindro Circular com Fequéncia de Oscilacédo f, = 0,8

Os casos com frequéncia de oscilagdo f, = 0,8 apresentam resultados expressivos
em relacdo ao efeito da rugosidade na redugdo do arrasto sobre o cilindro. A Tabela 2
evidencia a diminuicdo do coeficiente de arrasto ao se comparar o cilindro liso com aquele
que apresenta rugosidade relativa de ¢/ D = 0, 0045, bem como o impacto de um aumento
da rugosidade de ¢/ D = 0,0045 para /D = 0,007. O coeficiente de arrasto apresentou
uma redu¢do superior a 9% na comparagdo entre os casos 13 e 16. As Figuras 5.35, 5.36 e
5.37 apresentam os graficos de coeficiente de arrasto e oscilagdo do corpo para a frequéncia
fo = 0,8, considerando trés condi¢des de superficie: cilindro liso, com rugosidade relativa
dee/D = 0,0045edee/D = 0,007.
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Figura 5.35 — Séries temporais do coeficiente de arrasto e oscilagdo do corpo para o cilindro
circular liso oscilando in-line com frequéncia de oscilacdo forcada de f, =
0,8 (M = 300, At = 0,05,00 = 0,001, Re = 10° e A = 0, 13).
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Figura 5.36 — Séries temporais do coeficiente de arrasto e oscilagio do corpo para o cilindro

circular rugoso €/ D = 0, 0045 oscilando in-line com frequéncia de oscilagdo
forgada de fy = 0,8 (M = 300,At = 0,05,00 = 0,001, Re = 10° e

A=0,13).
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Figura 5.37 — Séries temporais do coeficiente de arrasto e oscilagdo do corpo para o cilindro

circular rugoso /D = 0,007 oscilando in-line com frequéncia de oscilagdo
forgada de fo = 0,8 (M = 300,At = 0,05,00 = 0,001, Re = 10° e

A=0,13).
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Esse resultado estd em concordancia com os resultados obtidos por Gao et al. [19],
cuja anélise demonstrou que, dentro de um intervalo limitado de niimeros de Reynolds, o
coeficiente de arrasto em cilindros rugosos apresenta uma reducdo acentuada em compara-
cdo ao cilindro liso, mesmo para baixos valores de rugosidade superficial. Com o aumento
da rugosidade, o arrasto cresce rapidamente, atingindo seu valor maximo quando 0, 00843.

As esteiras de vortices dos Casos 13, 15 e 16 no instante ¢ = 50 sdo mostradas
nas Figuras 5.38, 5.39 e 5.40. Ongoren e Rockwell [10] observaram que um cilindro
submetido a oscilagdes forcadas com angulo o = 0° em relagdo ao escoamento livre
apresenta competi¢do entre modos simétricos e antissimétricos para frequéncias na faixa
fo/fs = 0,5 a1,0. Essa competicdo ocorre quando ndo ha sincronizagao, resultando
na coexisténcia dos dois modos. No presente estudo, esse regime ndo foi identificado
para fy = 0,8. Por outro lado, essa mesma frequéncia forcada induz o modo cadtico
C-I em todos os casos de rugosidade relativa simulados, o mesmo modo identificado

experimentalmente por Hu et al. [14] e ilustrado na Figura 5.41.

Figura 5.38 — Estrutura da esteira de vortices para o tempo final ¢ = 50 para o cilindro
circular liso oscilando in-line com frequéncia de oscilacdo forcada de f, =
0,8 (M = 300, At = 0,05,0¢ = 0,001, Re = 10° e A = 0, 13).

Figura 5.39 — Estrutura da esteira de vortices para o tempo final ¢ = 50 para o cilindro
circular rugoso (¢/D = 0,0045) oscilando in-line com frequéncia de osci-
lagdo forgada de fo = 0,8 (M = 300, At = 0, 05,00 = 0,001, Re = 10° e
A=0,13).
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Figura 5.40 — Estrutura da esteira de vortices para o tempo final ¢ = 50 para o cilindro
circular rugoso (¢/D = 0,007) oscilando in-line com frequéncia de oscila-
¢do forgada de fo = 0,8 (M = 300, At = 0,05,00 = 0,001, Re = 10° e
A=0,13).

Figura 5.41 — Visualizacdo experimental do modo cadtico C-I para Re = 360. (Reprodu-
zida de Hu et al. [14].)

Por fim, considera-se que o cédigo computacional desenvolvido, baseado no Método
de Vértices Discretos (MVD) com acoplamento estrutural para vibracao forcada e inclusio
de efeitos de rugosidade superficial, foi capaz de reproduzir adequadamente os fendmenos
analisados. Considerando nimero de Reynolds da ordem de 100.000, o modelo demons-
trou habilidade em capturar alguns modos de sincronizac¢do observados experimentalmente
para nimeros de Reynolds inferiores a 1.000. Em determinadas configuracdes, a dessincro-
nizacdo também foi obtida com sucesso, o que evidencia o atendimento ao objetivo central
desta Dissertacdo de Mestrado. Vale destacar que, embora os casos com frequéncia de
oscilacdo fo = 0, 6 ndo tenham sido apresentados neste trabalho, verificou-se que exibiram
0 mesmo comportamento observado para f, = 0, 8.

Os resultados reforcam ainda a principal contribui¢ao da Tese de Doutorado de Bim-
bato [33], a qual propds um modelo de rugosidade superficial bidimensional mais sensivel
do que simples modelagens de turbuléncia. No presente trabalho, tais efeitos foram

incorporados juntamente a andlise de VIV for¢ada, alcangando resultados consistentes.



6 Conclusoes e Sugestoes de Traba-
lhos Futuros

O Capitulo 6 esta organizado em duas secdes principais. A primeira se¢ao apresenta
as conclusdes mais significativas relacionadas aos efeitos do escoamento em torno de um
cilindro circular que oscila forcadamente na direcdo do escoamento incidente. Para isso,
utilizou-se o Método dos Vortices Discretos, que permitiu o acoplamento hidrodindmico
com o modelo de vibracdo estrutural utilizado. Além disso, nesta anélise foi considerado o
efeito da rugosidade superficial do cilindro, que influenciou diretamente nos resultados da
simulacao. Na segunda secdo, sdo apresentadas algumas sugestdes para o desenvolvimento
futuro dos estudos iniciados nesta Dissertacao de Mestrado, que também s6 foi possivel

devido a trabalhos anteriores desenvolvidos no LMAML.

6.1 Conclusodes

Esta Dissertacdo teve como objetivo analisar o fendmeno das Vibracdes Induzidas por
Vértices (VIV) em um cilindro circular bidimensional com rugosidade superficial, subme-
tido a movimento oscilatério in-line em escoamento uniforme. Utilizou-se o Método de
Vértices Discretos (MVD), baseado em uma formulacido puramente lagrangiana, eficiente
para representar campos de vorticidade em escoamentos ndo permanentes de alto nimero
de Reynolds (Re = 10°), aproximando-se de cendrios de interesse em engenharia.

A discretizagdo do contorno do corpo foi realizada com M = 300 painéis planos, nos
quais foram distribuidas fontes de densidade uniforme (condi¢do de contorno de Neumann)
e gerados vortices de Lamb. Esses vortices, com intensidade I';, foram transportados de
acordo com velocidades resultantes do escoamento livre, do movimento oscilatorio do
corpo e da interagdo mutua entre vortices via Lei de Biot-Savart. A implementagdo do
modelo foi feita em FORTRAN com paralelizacdo via OPEN/MP, permitindo significativa
reducdo no tempo computacional. O efeito viscoso foi incorporado pelo Método de Avanco
Randomico.

O modelo acoplado fluido-estrutura utilizou um referencial inercial sobre o chado,
possibilitando o calculo do campo de velocidades e dos carregamentos hidrodinamicos
por meio da formulacao integral da pressao, derivada de uma equacao de Poisson para a
pressdo. O foco da andlise foi o acoplamento entre vibragdo in-line e desprendimento de
vortices, observando os impactos no campo de pressdes, no coeficiente de arrasto de forma

e no numero de Strouhal retirado desta curva.
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A inclusdo da rugosidade superficial (¢/D = 0,001, 0,0045 e 0,007) demonstrou
influéncias significativas na dindmica de desprendimento de vortices. Para frequéncias
de excitacdo mais baixas, como f; = 0,04, a rugosidade foi determinante para a saida
do regime de lock-in, indicando seu papel efetivo na modulagdo do acoplamento fluido-
estrutura. O coeficiente de arrasto aumentou em mais de 9% na comparag@o entre 0s casos
1 (¢/D = 0,000)e4 (¢/D = 0,007).

Em contrapartida, para frequéncias mais elevadas, como fy = 0,8, o sistema permane-
ceu em lock-in mesmo com a presenca da rugosidade. Entretanto, observou-se uma reducio
no valor médio do coeficiente de arrasto, sugerindo que a rugosidade pode melhorar a
eficiéncia aerodinamica do sistema em certas condicdes, mesmo sem afetar o regime de
sincronizagdo. O coeficiente de arrasto diminuiu em mais de 9% na comparacao entre os
casos 13 (¢/D = 0,000) e 16 (¢/D = 0,007). Esses resultados mostram que a influéncia
da rugosidade esta fortemente associada a frequéncia de excitag¢do, impactando diferentes
aspectos da resposta hidrodindmica do sistema.

As simulagdes também possibilitaram a identificacdo de diferentes modos de despren-
dimento de vértices, mesmo em condi¢des de alto nimero de Reynolds, em comparacao
com regimes observados experimentalmente para e < 1000. Foram capturados o Modo
Al para fy = 0,04, o Modo AIV para fy = 0,20 e um modo simétrico com coalescéncia de
vortices para fy = 0,34. Neste dltimo caso, verificou-se que a introducio de rugosidade
na superficie do cilindro alterou o padrao de desprendimento, promovendo a transi¢dao do
modo simétrico para 0 Modo AIV com coalescéncia de vértices (¢/D = 0,007). Além
disso, para a frequéncia forcada f, = 0,80, foi observado de forma consistente 0 Modo
Cadtico C-I em todos os niveis de rugosidade analisados. Algumas divergéncias entre os
resultados simulados e dados experimentais sdo atribuidas principalmente a auséncia de
tridimensionalidade na formulacdo bidimensional e a diferenca entre os valores do nimero
de Reynolds. Ainda assim, os padrdes globais de desprendimento, os mecanismos de aco-
plamento fluido-estrutura e as transi¢des modais foram bem representados, evidenciando a
capacidade do MVD em capturar com boa fidelidade os fendmenos de VIV, incluindo-se
com sucesso os efeitos de rugosidade superficial.

Conclui-se que este trabalho atinge seu objetivo de contribuir para a compreensao
dos efeitos combinados de rugosidade e vibracdo forcada in-/ine em corpos rombudos
submetidos a escoamentos uniformes. A abordagem numérica demonstrou robustez e
eficiéncia para andlise dos regimes de desprendimento de vértices em condi¢cdes de nimero
de Reynolds elevado. O modelo desenvolvido constitui uma base importante para futuras
extensodes tridimensionais e aplicagdes em cendrios mais complexos, como troca de calor,

interacdo com o solo, multiplos corpos ou rugosidade distribuida de forma nao uniforme.
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6.2 Sugestdes Para Trabalhos Futuros

Com base nos resultados obtidos e nas caracteristicas assumidas para o presente modelo,
diversas dire¢des podem ser exploradas com o objetivo de aprofundar a compreensao dos
fendmenos relacionados a interacdo fluido-estrutura em corpos submetidos a vibragdo
in-line e a presenca de rugosidade superficial.

Uma possivel extensdo deste estudo consiste na andlise do chamado efeito solo, por
meio da aproximacdo do cilindro a uma parede inferior fixa. Alternativamente, pode-se
considerar a presenga de duas paredes paralelas, simulando o efeito de bloqueio, como em
tineis de vento ou canais de recirculacio de dgua. Essa configuragdo permitiria investigar
como a proximidade com o solo altera os padrdes de desprendimento de vortices, as forcas
hidrodinamicas atuantes e o campo de recirculacdo, sendo especialmente relevante para
aplicacdes praticas como risers submarinos, pilares de pontes e estruturas de suporte
préximas ao fundo.

Outra linha promissora de pesquisa envolve a consideracdo de multiplos corpos no
dominio, com a introdugéo de cilindros adicionais dispostos em arranjos do tipo tandem,
lado a lado ou escalonados. A interacdo entre as esteiras geradas por diferentes corpos pode
resultar em modos oscilatérios mais complexos, como sincroniza¢do cruzada, interferéncia
de vortices e amplificacdo das forcas fluidodinamicas, com impacto direto em aplicacdes
como trocadores de calor, estruturas offshore, cabos de torres de transmissdo de energia
elétrica e sistemas de ventilacao urbana.

Além dos aspectos puramente dinamicos, € possivel ampliar o escopo fisico do modelo
incorporando efeitos térmicos, por meio da andlise da transferéncia de calor entre o corpo
e o escoamento. Para isso, seria necessdrio implementar uma nuvem de particulas de
temperatura, possibilitando também a resoluciao da equagdo de energia. Essa abordagem
permitiria simulacdes de convecgao for¢cada em corpos oscilantes e rugosos, contribuindo
para aplicagdes em engenharia térmica, resfriamento de componentes eletronicos e pro-
cessos industriais com trocas de calor. Trabalhos anteriores, como o de Carvalho [46], j&
exploraram essa metodologia no contexto de um cilindro estaciondrio, oferecendo uma
base solida para a futura integracdo entre fenomenos térmicos e dindmicos em geometrias
sujeitas a vibracao induzida pelo escoamento. A incorporagdo desses efeitos ao modelo
atual representa um avanco importante na direcdo de uma modelagem multifisica mais
abrangente e realista.

Um desdobramento natural e relevante do presente modelo consiste na substituicao da
oscilacdo for¢ada por um sistema de base eléstica, representado por um modelo massa-
mola-amortecedor. Essa modificacdo permite a simulagcdo de vibracdes induzidas livre-
mente pelo escoamento, caracterizando fendmenos de VIV (Vértice Induzindo Vibracio)

com graus de liberdade estruturais. Tal abordagem contribui para uma representacao mais
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realista da interacao fluido-estrutura, refletindo condic¢des frequentemente encontradas em
aplicacdes da engenharia civil, naval e aeroespacial. Nesse contexto, ressalta-se que ja
foram realizados testes iniciais no Laboratério de Modelagem e Algoritmos de Métodos
Lagrangianos (LMAML) com um modelo numérico de VIV in-line baseado em base
elastica. O autor deste trabalho desenvolveu esse programa computacional com capacidade
de simular o acoplamento fluido-estrutura a partir de parametros fisicos fundamentais,
como massa reduzida, velocidade reduzida e fator de amortecimento. Essa formulacao
permite explorar regimes nos quais ocorre transferéncia de energia do fluido para a estru-
tura, possibilitando andlises em diferentes condicdes. Os resultados preliminares obtidos
demonstram o potencial da ferramenta como base para validagcdes experimentais e futuras
extensoes da modelagem.

Outra possibilidade de extensdo relevante refere-se a investigacdo mais aprofundada
dos efeitos da rugosidade superficial sobre o escoamento. Conforme discutido por Achen-
bach [47], a presenca de rugosidades pode provocar um aumento percentual significativo
no coeficiente de arrasto de atrito (viscoso), alterando substancialmente a distribui¢do
de for¢as hidrodindmicas sobre o corpo. A incorporagdo sistemadtica desses efeitos no
modelo atual permitiria avaliar como diferentes configuracdes de rugosidade influenciam o
desprendimento de vortices, a dindmica das oscilagdes e os regimes de transferéncia de
energia.

Outro aspecto relevante diz respeito ao tempo de simulacdo dos casos analisados.
Conforme demonstrado, os resultados numéricos obtidos apresentaram, de modo geral,
boa concordancia com os dados experimentais utilizados para validacdo. A aplicacdo
de computacdo paralela na determinacdo da interagdo voértice-vortice permitiu aumentar
a quantidade de voértices discretos e reduzir o passo de tempo, contribuindo para maior
precisdo das simulacOes. Estas foram executadas em um computador com CPU Intel Core
19-13900KF, 3,00 GHz, 32 threads e cache L2 de 32 MB, sendo que cada caso de teste
demandou aproximadamente 60 horas de tempo de processamento. Como aprimoramento
futuro, pretende-se implementar o algoritmo utilizando a tecnologia CUDA, o que pos-
sibilitard maior resolucdo nas simulacgoes, redugdo do tempo de CPU e a viabilizagdo de
simulacdes com maior duracdo temporal.

Essas propostas de continuacio oferecem caminhos promissores para expandir a meto-
dologia desenvolvida neste trabalho, permitindo investigar uma gama mais ampla de fend-
menos associados ao escoamento em regime transiente, ao acoplamento fluido-estrutura
e a presenca de rugosidade superficial, especialmente em condi¢des de alto ndmero de

Reynolds e cendrios com maior complexidade geométrica e fisica.
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APENDICE A — Vértice Discreto de
Lamb

O modelo de vortice discreto de Lamb descreve uma distribui¢@o continua de vortici-
dade (w) e velocidade tangencial induzida (ug), vilida em todo o dominio. Essa distribui¢io
satisfaz a equacdo de difusdo da vorticidade, conforme discutido na disciplina de Dindmica
da Vorticidade (MMF11), ministrada no Programa de P6s-Graduacdo em Engenharia
Mecanica da Universidade Federal de Itajuba (UNIFEI) [48].

ow 10 [ ow
— =v——|r= A.l
ot ~ “ror (T or ) A1)
A solugdo da equagdo acima, para um dominio infinito, é dada por (Kundu, 1990):
I 2.
w(r,t) = —L exp D (A.2)
wo? o?

Sendo o parametro o definido como:

o= Vdvt (A.3)

A velocidade tangencial induzida pela vorticidade € expressa por:

. T 7‘2.
kj J kj
= 1— — -k A4
Y 2y, [ eXp( 02)] (AD

O valor de r que maximiza essa velocidade € obtido derivando-se a equagdo acima em

relagdo a ry; e igualando-a a zero (Mustto, 1998). O ponto de maximo ocorre quando:

Thi 112091 = 1 = 1,120910 (A.5)
g

Logo, no ponto de méxima velocidade tangencial, temos:

, I
ug' = —0,71533—7 (A.6)

T max
Define-se o raio do nudcleo do vértice discreto de Lamb, o, como:
OON = 2Tmix (A7)

Esse valor foi definido de forma a minimizar a diferenca entre as velocidades induzidas

pelo modelo de Lamb e pelo vortice potencial, com erro em torno de 0,6%.
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Relacionando a equagdo anterior com uma forma adimensional usando o tempo At,

A
I 2,241821/—t (A.8)
Re

Assim, obtemos a equacao final para o calculo de oy :

| At
oon = 4,48364 Te (A9)

Contudo, simulacdes numéricas mostram que esse valor nominal de o pode depender

temos:

da malha e da discretizagc@o da fronteira sélida. Portanto, um procedimento de calibracio é

recomendado:

(i) Definir At e Re;

(i1) Determinar o numero de painéis planos para discretizar a fronteira s6lida;
(iii) Escolher o tipo de singularidade a ser distribuida nos painéis;
(iv) Realizar simula¢des numéricas com diferentes valores de oy;

(v) Ajustar oy comparando os resultados numéricos com dados experimentais.

Neste estudo, o ajuste foi feito para o escoamento subcritico (Re = 1,0 x 10°) ao redor

de um cilindro circular, usando 300 painéis ¢ At = 0,05. O valor ideal encontrado foi:

oo = 0,001

Esse valor € utilizado para todas as simula¢cdes com o cilindro, independentemente da
rugosidade superficial ou efeito do solo.
Quando o modelo de rugosidade exige ajuste do raio do nicleo em fun¢do do Reynolds

local, define-se o fator de controle x como:

y =22 (A.10)

OoN

Aplicando isso ao presente trabalho:
oo = 1,00 x 1073

5,0 x 1072

— 4.48364
ooN =% 1,0 x 10°

=3,17x107?
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1,00 x 10~3
317 x 103

Para calcular a velocidade tangencial com o raio ajustado o, usa-se:

x = =3,15x 107" (A.11)

ki L iy
Ug I —exp | —5,02572— (A.12)

21T o
Esse modelo evita singularidades, mas seu termo exponencial aumenta o custo compu-

tacional. Assim, usa-se esta equacdo apenas quando 7; < 0y.



115

APENDICE B — Fluxograma do
Programa Principal

A simulacdo da oscilacdo for¢ada de um cilindro é uma ferramenta essencial para
estudar a intera¢do entre o corpo em movimento e o escoamento ao seu redor. No programa
principal representado neste fluxograma, a amplitude e a frequéncia da oscilagcdo sdo
definidas logo na rotina de entrada, permitindo a configuracido de diferentes cendrios
dinamicos com facilidade. O cédigo foi estruturado de forma modular, ou seja, dividido
em rotinas independentes, cada uma responsdvel por uma tarefa especifica, o que facilita
a leitura, o desenvolvimento e futuras modificagcdes. A rotina oscillation implementa o
modelo de oscilagdo forcada, controlando o movimento do cilindro ao longo do tempo,
enquanto as rotinas advec e diffus representam, respectivamente, o transporte dos vortices
discretos por advec¢do e a difusdo desses vortices por meio de deslocamentos randomicos.
Também foram incluidas rotinas de turbuléncia, que, com base em um modelo de estruturas
de velocidade, permitiram representar a dissipacao de energia no escoamento.

Outra rotina importante a se destacar € a reflect, responsavel por refletir vortices
discretos que possam adentrar o cilindro, garantindo que a simulagdo respeite a fronteira
s6lida do corpo. Uma melhoria relevante nesta versdo do programa € a inclusdo de
um modelo de rugosidade na superficie do cilindro, permitindo considerar os efeitos
da rugosidade sobre o padrdao de escoamento e sobre as forcas atuantes, como arrasto e
sustentacdo, o que torna a simulacdo mais representativa das condicdes fisicas reais. O
fluxograma a seguir mostra a sequéncia légica dessas etapas dentro do programa principal,
desde a leitura dos parametros iniciais até os cédlculos realizados em cada passo de tempo

da simulagdo.
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