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Resumo
A literatura apresenta uma escassez de resultados com efeitos combinados de vibração
induzida por vórtices (VIV) e rugosidade superficial para o controle da força de arrasto
de corpos rombudos. Neste contexto, o presente trabalho contribui para a literatura com
resultados numéricos de efeito de rugosidade superficial sobre VIV de um cilindro circular
único. A estrutura cilíndrica é forçada a vibrar na mesma direção do escoamento incidente.
A técnica numérica utiliza uma descrição puramente lagrangiana através do Método de
Vórtices Discretos (MVD) com modelo de rugosidade superficial. Resultados anteriores
publicados na literatura têm reportado que modelo de rugosidade bidimensional é bem mais
sensível do que simples modelagem de turbulência bidimensional para capturar fenômenos
da hidrodinâmica não linear com diferentes aplicações em problemas de engenharia. Os
resultados numéricos apresentados neste trabalho consideram uma amplitude adimensional
de A/D = 0, 13 (sendo D o diâmetro externo do cilindro) com variação da frequência
adimensional de oscilação na faixa 0, 04 ≤ f0 ≤ 0, 80. Estes valores são escolhidos
para comparação com resultados experimentais quando possível. Três alturas médias de
rugosidade relativa foram escolhidas: ε/D = 0, 001, 0, 0045 e 0, 007. Os casos de testes
sem modelo de rugosidade superficial, quando comparados com dados experimentais,
capturaram dois modos antissimétricos básicos conhecidos como AI e AIV, e também
modo caótico. O modo simétrico com coalescência também foi capturado. Estes modos
indicam que a frequência de emissão de vórtices, retirada da curva de oscilação no tempo
do coeficiente de arrasto, se encontra sincronizada com a frequência forçada de vibração
estrutural para número de Reynolds de 100.000. Em determinados ensaios realizados com
o modelo de rugosidade superficial, verificou-se uma dessincronização entre a frequência
forçada e a frequência de desprendimento de vórtices, acompanhada de variações expres-
sivas no coeficiente de arrasto. Esses efeitos configuram a principal contribuição deste
estudo, evidenciando a influência da rugosidade na dinâmica do escoamento.

Palavras-chave: aerodinâmica de corpo rombudo, simulação de grandes escalas (LES),
modelo de rugosidade, regime de lock-in, dinâmica lagrangiana.



Abstract
In the literature, there is scarcity of tests with combined effects of vortex-induced vibrations
(VIV) and rough surface to control drag force behaviour of bluff bodies. In this context, the
present work contributes to the limited studies on the surface roughness effects into the VIV
of a single circular cylinder. The body is forced to oscillate with respect to the free stream.
The numerical approach utilizes a purely Lagrangian description through the Discrete
Vortex Method (DVM) with surface roughness model. Previous works in the literature
have also demonstrated that two-dimensional roughness model is more sensitive than a
single turbulence modeling to capture nonlinear multi-physics phenomenon with a variety
of applications in different engineering areas. In the present results, the dimensionless
oscillation amplitude was fixed at A/D = 0.13 (D is the outer cylinder diameter) and the
body oscillation frequency varied in the range 0.04 ≤ f0 ≤ 0.80. These values were
chosen to compare with experimental data, when possible. Three relative roughness sizes
were chosen, i.e. ε/D = 0.001, 0.0045 and 0.007. The test cases with no roughness
effects, when compared to the experimental data, captured two basic antisymmetrical
modes, namely modes AI and AIV, and also the chaotic mode. The symmetric mode
with coalescence was captured. Those modes indicate that the vortex shedding frequency,
obtained from the time history curve of the drag coefficient force, is synchronized with
the body oscillation frequency at a fixed Reynolds number of 100,000. In certain tests
involving the surface roughness model, a desynchronization between the forced and vortex
shedding frequencies was observed, and significant drag force variations, representing the
main contribution of this study.

Keywords: bluff body aerodynamics, large-eddy simulation (LES), roughness model, drag
force, lock-in regime, lagrangian dynamics.
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1 Introdução

1.1 Motivações

O estudo do escoamento de fluidos ao redor de corpos rombudos tem sido foco de
pesquisa devido à sua relevância para aplicações em problemas de engenharia. Um dos
fenômenos mais importantes associados a esse tipo de escoamento é o desprendimento
de estruturas vorticosas, que ocorre de forma periódica e pode induzir vibrações em
uma estrutura cilíndrica. Essas Vibrações Induzidas por Vórtices (VIV) são uma fonte
significativa de problemas em diversas áreas da engenharia, como em projetos de dutos
submarinos, risers, cabos de ancoragem, estruturas offshore e equipamentos industriais,
por causarem esforços cíclicos que podem levar à fadiga e falhas estruturais.

O entendimento aprofundado das VIV é essencial para garantir a confiabilidade e
segurança dessas estruturas, especialmente em ambientes desafiadores como o offshore,
onde as condições de escoamento são complexas e os custos de manutenção e reparo são
elevados. Além disso, as vibrações induzidas pelo desprendimento de vórtices apresentam
aspectos dinâmicos interessantes, como a ocorrência do fenômeno conhecido como lock-

in, que consiste na sincronização da frequência de desprendimento de vórtices com a
frequência natural da estrutura, amplificando as oscilações e os esforços envolvidos.

Embora existam diversos estudos experimentais e numéricos focados em VIV, a maior
parte deles concentra-se em condições de baixo a moderado número de Reynolds ou em
estruturas com movimentos livres restritos a poucos graus de liberdade, considerando
predominantemente a vibração transversal. Por outro lado, em situações práticas, como
em dutos e cabos rígidos submetidos a vibrações forçadas in-line, muitas vezes em altos
números de Reynolds, os mecanismos envolvidos ainda não são totalmente compreendidos.
Adicionalmente, as condições reais de superfície, incluindo rugosidade, podem alterar
substancialmente a resposta do escoamento e das vibrações induzidas, porém são pouco
exploradas em simulações numéricas.

Dessa forma, há uma clara necessidade de desenvolvimento de técnicas numéricas
para ampliar o conhecimento dos mecanismos que regem as vibrações induzidas por
vórtices em corpos rombudos, especialmente considerando a influência da rugosidade
superficial e de vibrações forçadas in-line em regimes de número de Reynolds elevados. A
consideração do efeito rugoso é essencial para análises que envolvem vibrações induzidas
por vórtices, especialmente em corpos rombudos, pois a rugosidade superficial modifica o
comportamento da camada limite e interfere na dinâmica do desprendimento de vórtices.
Isso pode alterar tanto a intensidade dos carregamentos fluidodinâmicos atuantes quanto a
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frequência de emissão de vórtices, afetando a resposta vibratória do sistema. Ignorar esse
efeito pode levar a previsões imprecisas, sobretudo em aplicações envolvendo número de
Reynolds elevado.

1.2 Objetivos

Este trabalho tem como objetivo principal o estudo de VIV em um corpo rombudo
representado por um cilindro circular bidimensional que sofre vibrações forçadas na
direção do escoamento incidente (in-line), em condições de alto número de Reynolds.
Para representar de forma mais realista o escoamento, é incorporado um modelo de
rugosidade superficial, permitindo avaliar como as imperfeições da superfície afetam o
padrão de desprendimento de vórtices e o comportamento das vibrações induzidas. Assim,
os objetivos específicos são:

• Desenvolver e validar um modelo numérico baseado no Método de Vórtices Dis-
cretos (MVD) que incorpore o efeito da rugosidade superficial para simular com
maior fidelidade o comportamento do escoamento e das vibrações induzidas em
altas condições de Reynolds.

• Investigar os regimes de desprendimento de estruturas vorticosas e suas interações
com as vibrações forçadas in-line, considerando os efeitos da rugosidade superficial
na modulação desses fenômenos.

• Mapear a região de ocorrência do fenômeno de lock-in e caracterizar os modos
de desprendimento de vórtices, avaliando a influência conjunta da vibração e da
rugosidade na resposta hidrodinâmica.

• Fornecer análises detalhadas que contribuam para o aprimoramento do entendimento
dos mecanismos físicos associados à vibração e à rugosidade, visando futuras
aplicações em engenharia envolvendo corpos rombudos.

1.3 Metodologia

Para alcançar os objetivos propostos, este trabalho utiliza uma abordagem numérica
baseada no Método de Vórtices Discretos (MVD), uma técnica lagrangiana que modela
o escoamento viscoso ao redor do corpo por meio de vórtices discretos de Lamb. Esses
vórtices são gerados na superfície do cilindro e são advectados e difundidos conforme al-
goritmos específicos, permitindo simular com precisão a evolução do escoamento, mesmo
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em regimes de alto número de Reynolds. O avanço temporal é realizado por esquemas nu-
méricos explícitos, garantindo eficiência computacional, potencializada pela paralelização
via OpenMP em linguagem FORTRAN.

As condições de contorno sólidas são representadas pelo Método dos Painéis, que
utiliza painéis de fontes com densidade constante para impor a impermeabilidade. Já a
condição de não deslizamento é satisfeita através do desprendimento de vórtices discretos
de Lamb, sendo imposta via Método de Vórtices Discretos com modelo de camada
limite. O solo é tratado numericamente por meio de uma condição de movimento relativo,
eliminando a geração de vórtices discretos na sua superfície. Um modelo de rugosidade
superficial altera a intensidade dos vórtices gerados, simulando o aumento da transferência
de quantidade de movimento próximo às superfícies rugosas, o que impacta diretamente a
separação da camada limite e o padrão de desprendimento dos vórtices.

O modelo também contempla a vibração forçada in-line do cilindro, imposta como um
movimento oscilatório na direção do escoamento incidente, com frequência e amplitude
controladas. Essa abordagem permite analisar o impacto da oscilação sobre o desprendi-
mento de vórtices e as forças hidrodinâmicas atuantes, influenciando a resposta dinâmica
do sistema fluido-estrutura.

A modelagem da turbulência é realizada pelo método de avanço randômico, que
incorpora um coeficiente de viscosidade turbulento para representar os efeitos das escalas
submalha. As cargas fluidodinâmicas são obtidas a partir da distribuição de pressão sobre
a superfície do corpo, calculada por uma formulação integral baseada em uma equação de
Poisson, considerando a contribuição de todos os vórtices discretos presentes na esteira
viscosa. A integração dessas pressões resulta nas forças de arrasto de forma e sustentação,
possibilitando uma avaliação detalhada dos carregamentos fluidodinâmicos ao longo da
simulação.

1.4 Estrutura do Trabalho

Este trabalho está estruturado da seguinte forma:

• No Capítulo 2, apresenta-se uma revisão bibliográfica detalhada sobre Vibrações
Induzidas por Vórtices, métodos numéricos aplicados ao problema e estudos relacio-
nados à influência da rugosidade superficial.

• O Capítulo 3 expõe o modelo matemático do problema, incluindo as equações gover-
nantes, condições de contorno e a adimensionalização para ganho de generalidade.
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• O Capítulo 4 descreve o Método de Vórtices Discretos, suas bases teóricas e as
adaptações realizadas para incorporar a modelagem de turbulência, o modelo de
rugosidade e vibração forçada.

• No Capítulo 5 são apresentados e discutidos os resultados numéricos obtidos, com
análises detalhadas dos regimes de desprendimento, carregamentos fluidodinâmicos
atuantes e efeitos da rugosidade.

• O Capítulo 6 traz as conclusões principais, contribuições do trabalho e sugestões
para pesquisas futuras.

• Os Apêndices A e B incluem informações complementares, como detalhes da imple-
mentação computacional, parâmetros de simulação e demonstrações matemáticas
relevantes.



2 Revisão Bibliográfica

Este capítulo apresenta uma revisão bibliográfica sobre o mecanismo de formação e
desprendimento de vórtices em corpos rombudos, especialmente cilindros circulares, e suas
consequências na geração de vibrações induzidas por vórtices. São abordados os principais
conceitos e estudos relacionados à influência da rugosidade superficial na transição do
escoamento e no padrão de desprendimento dos vórtices. Também é apresentado o Método
do Vórtice Discreto, utilizado para a modelagem numérica do comportamento dos vórtices
na esteira e suas interações com o corpo, com destaque para a capacidade dessa metodologia
em capturar fenômenos fluidodinâmicos relevantes para o acoplamento fluido–estrutura.

2.1 O Mecanismo de Formação de Vórtices

No estudo da aerodinâmica de geometrias encontradas na engenharia, é comum
classificá-las em corpos rombudos e corpos esbeltos. Um corpo rombudo é aquele que,
quando sujeito a uma corrente de fluido, apresenta uma considerável proporção de sua
superfície submersa exposta ao fenômeno da separação do escoamento. Já nos corpos
esbeltos, como aerofólios em baixos ângulos de incidência, a separação do escoamento
apresenta-se reduzida, resultando em uma esteira mais fina a jusante do corpo. Por outro
lado, nos corpos rombudos, como um cilindro circular, o escoamento sofre separação da
camada limite, formando uma esteira espessa a jusante.

A separação da camada limite ocorre quando o escoamento ao redor de um corpo
encontra uma região com gradiente de pressão adverso. Nessa situação, as partículas do
fluido começam a perder energia cinética, o que compromete sua capacidade de vencer o
gradiente de pressão. Como consequência, formam-se duas camadas de cisalhamento, que
podem se enrolar em torno delas mesmas devido à instabilidade do escoamento, resultando
na formação da esteira viscosa.

Segundo Gerrard [1], a estrutura vorticosa cresce ganhando circulação oriunda da
camada cisalhante a qual está conectada. Quando esta estrutura vorticosa está suficiente-
mente intensa, ele atrai a camada limite cisalhante oposta com circulação oposta e seguem
um dos seguintes caminhos:

(a) Fundir-se com a estrutura vorticosa que está se formando no lado oposto da esteira,

(b) Mover-se em direção a camada cisalhante oposta e cortar a alimentação da estrutura
vorticosa liberando-a para a esteira viscosa,
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(c) Voltar na direção da região da esteira próxima ao corpo e iniciar uma nova estrutura
vorticosa no lado oposto.

A Figura 2.1 ilustra esses mecanismos associados à formação de vórtices, exemplifi-
cando os caminhos (a), (b) e (c).

Figura 2.1 – Mecanismo de formação de vórtices. (Reproduzida de Gerrard [1]).

É comum na literatura chamar de vórtices às estruturas vorticosas contrarrotativas; o
que também é adotado neste trabalho.

A compreensão da separação da camada limite e da formação de estruturas vorticosas
é essencial para a análise de corpos rombudos. Entre os fatores que influenciam esses
fenômenos, destaca-se o número de Reynolds, cuja variação altera o regime do escoamento
e a dinâmica da esteira.

A seção seguinte aborda o escoamento ao redor de um cilindro circular estacionário,
com foco na influência desse número adimensional sobre os principais comportamentos
do escoamento.

2.2 O escoamento ao redor de um cilindro circular es-

tacionário

O escoamento ao redor de um cilindro estacionário está fortemente condicionado pelo
número de Reynolds, parâmetro adimensional que expressa a razão entre as forças inerciais
e viscosas do escoamento (Re = UD/ν, onde U , D e ν são respectivamente, a velocidade
do escoamento incidente, o diâmetro do cilindro circular e o coeficiente de viscosidade
cinemática). Esse número adimensional é fundamental para caracterizar os diferentes
regimes de escoamento, influenciando diretamente fenômenos como separação da camada
limite, formação de vórtices e transições entre regimes laminar, transicional e turbulento.
Quando o número de Reynolds é baixo (Re < 1), o escoamento é aproximadamente
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simétrico e não há o fenômeno da separação da camada limite. Este tipo de escoamento é
chamado de creeping flow, visto na Figura 2.2.

Figura 2.2 – Escoamento ao redor de um cilindro estacionário para Re < 1. (Reproduzida
de Van Dyke [2]).

O aumento das forças está relacionado à separação da camada limite. Dessa forma,
para números de Reynolds na faixa de 5 a 40, ocorre a formação de vórtices estacionários,
conhecidos como vórtices de Föpll, que se estabelecem a jusante do cilindro, como
mostrado na Figura 2.3.

Figura 2.3 – Escoamento ao redor de um cilindro estacionário para 5 < Re < 40, for-
mando vórtices estacionários. (Reproduzida de Van Dyke [2]).

Com número de Reynolds em torno de 90, os pontos de separação tornam-se instáveis,
ocorrendo desprendimento alternado de vórtices contrarrotativos, caracterizando a esteira
de Von Kármán, como ilustra a Figura 2.4. Nessa faixa, o arrasto de forma representa
cerca de 98% do arrasto total. A força de arrasto de forma aparece nas estruturas quando
se identifica a forma rombuda com separação da camada limite hidrodinâmica.
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Figura 2.4 – Escoamento ao redor de um cilindro estacionário para Re = 140. (Reprodu-
zida de Van Dyke [2]).

Para valores de Reynolds abaixo de 200, a esteira permanece laminar; entretanto,
ao se ultrapassar esse limite, torna-se instável e irregular. Acima de Re = 200, os
efeitos tridimensionais passam a desempenhar um papel relevante, mesmo em cilindros
circulares com alta razão de aspecto. No regime subcrítico, correspondente ao intervalo
300 < Re < 3 · 105, a camada limite sobre o cilindro permanece laminar, apesar da esteira
de vórtices ser totalmente turbulenta, ilustrado na Figura 2.5. Nesse intervalo, o número de
Strouhal mantém-se praticamente constante em torno de 0,2, como mostra a Figura 2.6. O
número de Strouhal, adimensional, representa a frequência de desprendimento de vórtices
(St = fU/D), onde f , U e D são respectivamente, a frequência de desprendimento de
pares de estruturas vorticosas contrarrotativas, a velocidade do escoamento incidente e o
diâmetro do cilindro circular. A frequência de Strouhal, obtida a partir da série temporal do
coeficiente de sustentação, reflete diretamente a dinâmica do desprendimento de vórtices.

Figura 2.5 – Escoamento ao redor de um cilindro estacionário para Re = 10.000. (Repro-
duzida de Van Dyke [2]).
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Figura 2.6 – Variação do número de Strouhal em função do número de Reynolds. (Repro-
duzida de Sumer & Fredsøe [3]).

À medida que o número de Reynolds aumenta, a transição para o regime turbulento
ocorre na camada limite. Para 3 · 105 < Re < 3, 5 · 105 o escoamento é caracterizado
pela transição da camada limite para o regime turbulento em apenas um dos lados do
cilindro, enquanto o lado oposto permanece laminar, ocorrendo alternância entre os lados.
Essa assimetria no escoamento resulta em um coeficiente médio de sustentação diferente
de zero. Além disso, observa-se um aumento abrupto no número de Strouhal, que salta
de aproximadamente 0,2 para cerca de 0,45. No regime supercrítico, 3, 5 · 105 < Re <

1, 5 · 106, ambos os lados do cilindro apresentam camada limite turbulenta; no entanto,
persiste uma região laminar entre o ponto de estagnação e o ponto de transição para a
turbulência. O número de Strouhal mantém-se em torno de 0,45 por uma ampla faixa deste
regime, passando a decrescer gradualmente à medida que o número de Reynolds aumenta.
Para Re > 4, 5 · 106 o escoamento é conhecido como transcrítico; é caracterizado pela
presença de uma camada limite totalmente turbulenta ao longo da superfície do cilindro.
Essa condição restabelece o desprendimento regular de vórtices, resultando em valores
do número de Strouhal que variam entre 0,25 e 0,30. Com o escoamento ao redor de
um cilindro estacionário já caracterizado, passa-se à análise de uma configuração mais
complexa: o cilindro circular oscilando com um grau de liberdade, permitindo investigar
os efeitos sobre o campo de velocidades e a interação fluido-estrutura.
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2.3 Escoamento ao Redor de um Cilindro Circular Os-

cilando com um Grau de Liberdade

Em diversos sistemas mecânicos, as oscilações podem manifestar-se de diferentes
formas, sendo uma delas a Vibração Induzida pelo Escoamento (VIE). Esse fenômeno
ocorre quando um fluido em movimento interage com uma estrutura, gerando forças
aerodinâmicas ou hidrodinâmicas que provocam oscilações na mesma. Vibrações Induzidas
por Vórtices (VIV) é um caso particular de VIE. Tal fenômeno é identificado quando a
frequência de oscilação do corpo aproxima-se da frequência de geração e desprendimento
de vórtices.

O fenômeno de VIV pode ser analisado por meio de duas abordagens principais, de
acordo com Thomson [4]: a livre e a forçada. A oscilação livre ocorre naturalmente, ou
seja, a frequência de desprendimento de vórtices e a frequência natural são as mesmas.
Este modelo de vibração estrutural é constituído por molas ajustáveis e por um sistema de
amortecimento (base elástica) de forma a permitir a movimentação do corpo na direção
transversal e/ou na mesma direção do escoamento incidente. Por outro lado, a oscilação
forçada ocorre para velocidades e amplitudes que são impostas e controladas indepen-
dente da velocidade do fluido. Pode ser utilizado um túnel de vento ou de um canal de
recirculação de água.

Conforme mostrado por Parkinson [5] há prós e contras a cada uma dessas abordagens.
Para a oscilação livre é possível que o experimentalista obtenha evidências diretas das
interações não lineares, que ocorrem entre excitação e resposta. Entretanto, o número de
parâmetros a serem medidos é maior do que no caso de vibração forçada. Já no caso de
oscilação forçada a grande vantagem está no fato de ser possível controlar rigorosamente,
a frequência e amplitude de oscilação. Assim, a observação de um certo modo de despren-
dimento de vórtices é mais simples neste caso. Contudo, como desvantagem, tem-se o
fato de algumas das características observadas em problemas práticos de VIV não serem
reproduzidas.

Bishop & Hassan [6] analisaram, experimentalmente, o impacto das oscilações de
um corpo na formação de vórtices. Em seus estudos, investigaram a influência das
forças atuantes em um cilindro quando este é submetido a oscilações forçadas na direção
transversal ao escoamento. Descobriram que quando a frequência de oscilação f do
cilindro aproxima-se da frequênca de Strouhal, fs , a frequência f e a frequência de
oscilação do coeficiente de sustentação tornam-se sincronizadas. Ademais, apontaram a
variação brusca do ângulo de fase ϕ entre a força transversal e o deslocamento do corpo
que ocorre quando a frequência de oscilação varia em torno da frequência de geração de
vórtices. Junto com esta variação ocorre um repentino aumento da amplitude do coeficiente
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de sustentação.
Com o objetivo de determinar a região de sincronização, também conhecida como

fronteira de lock-in, Koopman [7] concluiu que a sincronização ocorre quando a amplitude
de oscilação ultrapassa um determinado valor limite. Dessa forma, o regime de lock-in pode
ser influenciado por duas condições principais: a amplitude e a frequência de oscilação do
corpo.

Com as regiões de sincronização já mapeadas por Koopman [7], Williamson &
Roshko [8] realizaram uma série de experimentos com um cilindro oscilando transversal-
mente. O número de Reynolds dos experimentos estava no intervalo entre 300 e 1000.
Foram varridas uma ampla faixa de amplitudes entre 0, 2 < A/D < 5 e frequências de
oscilação entre 1/3 < fs < 5. Dessa forma, identificou-se, experimentalmente, uma série
de regimes de sincronização, os quais foram classificados com base na quantidade de
vórtices gerados e desprendidos em cada ciclo de oscilação. A Figura 2.7 representa tais
regimes de desprendimento de vórtices para um número de Reynolds baixo, Re = 392.

Figura 2.7 – Regimes de desprendimento de vórtices sobre um cilindro circular oscilando
na direção transversal ao escoamento incidente.(Adaptada de Williamson &
Roshko[8]).

Os diferentes padrões de desprendimento de vórtices foram observados. Dentre eles,
destacam-se três: modo 2S, 2P e P + S. Como pode-se observar na Figura 2.7, o modo
2S é caracterizado por dois vórtices de circulação oposta sendo desprendidos a cada ciclo
de oscilação. Já o modo 2P , dois pares de vórtices são gerados e desprendidos a cada ciclo
de oscilação. Por fim, no modo P + S, um vórtice mais um par de vórtices de circulação
oposta são desprendidos a cada ciclo de oscilação. O fenômeno de Histerese foi uma
das principais contribuições do trabalho de Williamson & Roshko [8]. Esse fenômeno
foi identificado na transição do modo 2S para o modo 2P e vice-versa. Tal transição é
acompanhada por uma descontinuidade no ângulo de fase. Valores elevados do ângulo de
fase (aproximadamente entre 160º e 180º), assim como de amplitude, estão associados ao
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modo 2P . Por outro lado, o modo 2S está relacionado a valores de ângulo de fase de 0°
a 90°. Os experimentos foram conduzidos em um tanque equipado com uma plataforma
rebocada, que continha um sistema de oscilação controlada do cilindro, permitindo o ajuste
da amplitude e da frequência. Para a visuzalização do fenômeno, utilizou-se partículas de
alumínio na superfície.

Meneghini & Bearman [9] apresentaram resultados de simulações numéricas do esco-
amento ao redor de um cilindro submetido a uma oscilação senoidal forçada na direção
transversal. Para a realização das simulações, foi empregado o método dos vórtices discre-
tos, incluindo difusão viscosa, conforme descrito pelos autores. O número de Reynolds
destas simulações foi de 200, com amplitudes A/D inferiores a 0,6. Para determinar a
fronteira de sincronização, os autores realizaram simulações variando a frequência f/fs

entre 0,7 e 1,15 e amplitude A/D ntre 0,025 e 0,6. A geração e o desprendimento de
vórtices são caracterizados como sincronizados quando a frequência do coeficiente de
sustentação Cl coincide com a frequência de oscilação do cilindro. Nesse intervalo ocorre
a fronteira de sincronização primária e dois vórtices com circulações opostas são despren-
didos a cada ciclo. Este resultado está de acordo com aquele observado experimentalmente
de Williamson & Roshko [8].

Ademais, as séries temporais dos coeficientes de força constituíram resultados funda-
mentais no estudo de Meneghini & Bearman [9] para a adequada interpretação do fenômeno
de lock-in. A Figura 2.8 ilustra um caso em que a frequência f/fs foi mantida constante
em 0,75, enquanto a aplitude foi variada em quatro valores distintos: A/D = 0, 25; 0, 30;
0, 45 e 0, 60, correspondendo, respectivamente, aos casos (a), (b), (c) e (d). O fenômeno de
batimento é observado para o caso em que f/fs = 0, 75 e A/D = 0, 25. Com o aumento
da frequência de oscilação, o batimento desaparece, resultando em um comportamento
mais regular tanto da força de sustentação quanto da força de arrasto. A análise dos
resultados apesentados nas Figuras 2.8 permite concluir que quando a amplitude está se
aproximando da amplitude de sincronização, as cargas fluidodinâmicas são claramente
inconstantes e randômicas. Somente para a amplitude A/D = 0, 60 observa-se novamente
um padrão regular na sustentação.



34 Capítulo 2. Revisão Bibliográfica

Figura 2.8 – Séries temporais dos coeficientes de força. (Reproduzida de Meneghini &
Bearman [9])

Embora as vibrações transversais tenham sido amplamente estudadas devido à sua
predominância em diversas configurações de escoamento, as vibrações in-line também
merecem atenção, especialmente por sua ocorrência em situações práticas de engenharia.
Um exemplo marcante foi observado em 1968, durante a construção do Immingham Oil

Terminal, na costa leste da Inglaterra, quando o fenômeno chamou pela primeira vez a
atenção da comunidade científica.

Ongoren & Rockwell [10] realizaram um estudo experimental em um canal de recircu-
lação de água considerando um número de Reynolds igual a 855. O objetivo principal do
estudo foi identificar a sincronização entre a geração e desprendimento de vórtices com o
movimento de um cilindro circular submetido a uma oscilação forçada, considerando dife-
rentes ângulos de oscilação α em relação à corrente incidente. A amplitude de oscilação do
experimento foi de A = 0, 13D, em que D é o diâmetro do cilindro. A faixa de excitação
do cilindro foi 0, 5 ≤ f0/fs ≤ 4, 0, em que f0 é a frequência de oscilação do corpo e fs

é a frequência de emissão de vórtices correspondente ao cilindro estacionário. Assim,
Ongoren & Rockwell [10] observaram dois grupos básicos de emissão de vórtices, sendo
eles: modo simétrico e modo antissimétrico. No modo simétrico, Modo S (Figura 2.9),
ocorre o desprendimento simultâneo de uma estrutura vorticosa em cada lado do cilindro
no decorrer de um único período T de oscilação, como mostrado na Figura. O modo
antissimétrico é dididivo em quatro ramificações: Modo A − I , Modo A − II , Modo

A − III e Modo A − IV . O Modo A − I (Figura 2.10) assemelha-se ao modo clássico
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de Vón Kárman, no qual ocorre o desprendimento alternado de estruturas vorticosas con-
trarrotativas. O Modo A − II (Figura 2.11), embora semelhante ao Modo A − I , requer
dois períodos de oscilação para a formação do par de vórtices antissimétrico. O Modo

A − III (Figura 2.12) também demanda dois períodos de oscilação para se completar e
é caracterizado pelo desprendimento de um par de estruturas vorticosas de um lado do
cilindro, seguido pelo desprendimento de uma única estrutura do lado oposto. Por fim, o
Modo A − IV (Figura 2.13), assim como os anteriores, exige dois períodos de oscilação;
contudo, nesse caso, um par de estruturas vorticosas contrarrotativas se desprende de cada
lado do cilindro.

Figura 2.9 – Modo Simétrico de emissão de vórtices para oscilação in-line de um cilindro
circular. (Reproduzida de Ongoren & Rockwell [10].)

Figura 2.10 – Modo Antissimétrico A-I de emissão de vórtices para oscilação in-line de
um cilindro circular. (Reproduzida de Ongoren & Rockwell [10]).

Figura 2.11 – Modo Antissimétrico A-II de emissão de vórtices para oscilação in-line de
um cilindro circular. (Reproduzida de Ongoren & Rockwell [10]).
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Figura 2.12 – Modo Antissimétrico A-III de emissão de vórtices para oscilação in-line de
um cilindro circular. (Reproduzida de Ongoren & Rockwell [10]).

Figura 2.13 – Modo Antissimétrico A-IV de emissão de vórtices para oscilação in-line de
um cilindro circular. (Reproduzida de Ongoren & Rockwell [10]).

Yokoi & Kamemoto [11] investigaram o fenômeno de desprendimento de vórtices
ao redor de um cilindro circular sujeito a oscilações forçadas na direção do escoamento
uniforme. O experimento ocorreu em um canal de recirculação de água para uma faixa
de Reynolds variando entre 260 ≤ Re ≤ 2460. Os resultados indicaram que a frequência
de desprendimento dos vórtices (fs) tende a ser um múltiplo (n = 0, 5; 1; 2; 3; ...) da
frequência de oscilação do cilindro (f0), quando o fenômeno de lock-in ocorria. Os autores
categorizaram distindos padrões de desprendimento de vórtices por meio da técnica de
visualização por iluminação a laser. O primeiro padrão classificado pelos autores foi o
padrão "A", conforme ilustrado na Figura 2.14. Nesse regime os vórtices são desprendidos
alternadamente, de maneira semelhante ao desprendimento clássico de Vón Kármán,
porém com um intervalo de tempo variável. Essa variação temporal provoca uma distorção
na estrutura dos vórtices na esteira. Dessa forma, para esse padrão, a frequência de
desprendimento dos vórtices corresponde a um múltiplo inteiro da frequência de oscilação
do cilindro, ou seja, f0/fs = n, onde n = 2, 3. A Figura 2.15 apresenta o padrão "B", no
qual os vórtices são desprendidos simetricamente de ambos os lados do cilindro, resultando
no estado de lock-in unitário, definido por: f0/fs = 1. O padrão "C", por sua vez, descreve
um regime em que um par de vórtices são gerados pelo cilindro oscilante, porém não
formam uma esteira organizada, como mostra a Figura 2.16. Esses padrões refletem
comportamentos distintos do escoamento ao redor do cilindro, evidenciando a diversidade
das interações entre a oscilação do cilindro e a dinâmica do desprendimento de vórtices.
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Figura 2.14 – Padrão "A"de desprendimento de vórtices com Re = 490. (Reproduzida de
Yokoi & Kamemoto [11]).

Figura 2.15 – Padrão "B"de desprendimento de vórtices com Re = 490. (Reproduzida de
Yokoi & Kamemoto [11]).

Figura 2.16 – Padrão "C"de desprendimento de vórtices com Re = 490. (Reproduzida de
Yokoi & Kamemoto [11]).

Diante da necesidade de realizar simulações com maior aplicabilidade à engenharia,
especialmente com números de Reynolds elevados, Silva Siqueira [12] conduziu simu-
lações numéricas em um regime de alto número de Reynolds (Re = 105). Este estudo
demonstrou a viabilidade do Método de Vórtices Discretos na modelagem de fenômenos
de vibração forçada, aproximando-os das condições reais encontradas em problemas de
engenharia, especialmente em regimes com números de Reynolds elevados. O algoritmo
desenvolvido foi inicialmente validado para um cilindro circular estacionário antes de ser
empregado na análise de um cilindro oscilante na direção do escoamento (in-line). Os
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resultados obtidos apresentaram boa concordância com dados experimentais. As principais
discrepâncias podem ser atribuídas às limitações da formulação bidimensional utilizada,
que, embora adequada para reproduzir as características globais do escoamento, pode não
capturar todos os regimes de formação de vórtices que ocorrem em números de Reynolds
elevados (Re ≈ 105), particularmente em condições de lock-in.

Nesse estudo, foram realizadas simulações com amplitude de oscilação A = 0, 13, a
mesma utilizada no trabalho de Ongoren & Rockwell [10], e A = 0, 5. A frequência de
oscilação nesse estudo variou no intervalo 0, 1 ≤ f0/fs ≤ 4. Por outro lado, no trabalho
de Ongoren & Rockwell [10], a frequência de oscilação do cilindro variou no intervalo
0, 5 ≤ f0/fs ≤ 4. O código computacional desenvolvido neste estudo demonstrou
a capacidade de reproduzir o modo simétrico S e os modos antissimétricos A − I e
A − IV . O Modo S (Figura 2.17) foi claramente observado para amplitudes de oscilação
A = 0, 13 quando f0/fs = 2 e para A = 0, 5 no intervalo 1 < f0/fs < 2, enquanto
Ongoren & Rockwell [10] identificaram esses modos para f0/fs = 3 e f0/fs = 4. O
ModoA − I (Figura 2.18) ocorreu para f0/fs = 0, 2, diferindo dos resultados de Ongoren
& Rockwell [10], que observaram esse modo para f0/fs = 0, 5. O ModoA − IV (Figura
2.19) foi identificado para f0/fs = 1, 8, valor ligeiramente superior ao relatado por
Ongoren & Rockwell [10], que o verificaram para f0/fs = 1, 7. Um caso especial foi o
caso com f0/fs = 0, 4. A esteira do instante final da simulação apresenta uma tendência
ao modo antissimétrico A-I, mas em determinado intervalo de tempo da simulação é
observado o modo de desprendimento antissimétrico A-III, sendo considerado um modo
de competição (Figura 2.20). O modo de sincronização antissimétrico A − II não foi
encontrado nas simulações numéricas.

Figura 2.17 – Modo simétrico da estrutura de vórtices na esteira do cilindro circular osci-
lando in-line com Re = 105. (Reproduzida de Silva Siqueira [12]).
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Figura 2.18 – Modo antissimétrico A-I da estrutura de vórtices na esteira do cilindro
circular oscilando in-line com Re = 105. (Reproduzida de Silva Siqueira
[12]).

Figura 2.19 – Modo antissimétrico A-IV da estrutura de vórtices na esteira do cilindro
circular oscilando in-line com Re = 105. (Reproduzida de Silva Siqueira
[12]).

Figura 2.20 – Competição entre o modo antissimétrico A-I e AIII da estrutura de vórtices
na esteira do cilindro circular oscilando in-line com Re = 105. (Reproduzida
de Silva Siqueira [12]).

A partir do trabalho de Silva Siqueira [12], Martins [13] conduziu simulações numéricas
também em regime de alto número de Reynolds (Re = 105). No entanto, sua principal
contribuição consiste na adoção de um referencial inercial, diferente do trabalho de Silva
Siqueira [12], que utilizou um referencial não inercial fixado ao cilindro. O Modo S foi
observado para amplitudes de oscilação A = 0, 13 quando f0/fs = 1, 7 e f0/fs = 2. O
ModoA − I ocorreu para f0/fs = 0, 2 e f0/fs = 0, 4. O ModoA − IV foi identificado
para f0/fs = 1, 0.

No estudo experimental conduzido por Hu et al. [14], foram investigadas oscilações
in-line na faixa de número de Reynolds entre 360 e 460, considerando amplitudes eleva-
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das de oscilação (0, 2 ≤ A/D ≤ 1, 0) e variações significativas da razão de frequência
(0 ≤ f0/fs ≤ 6, 85). Os resultados sugerem que baixos valores de Reynolds favorecem a
coerência dos modos de escoamento, e, sob condições bastante específicas, os modos si-
métricos podem ser subdivididos em três categorias distintas, cada uma delas apresentando
dois subtipos. Além da identificação de um terceiro modo simétrico, os autores propuseram
a existência de um novo modo caracterizado por comportamento caótico, denominado
modo C, também com dois subtipos. A Figura 2.21 resume os principais modos associados
a vibrações in-line identificados até o momento na literatura.

Figura 2.21 – Possíveis modos da esteira vorticosa para oscilação puramente in-line. (Re-
produzida de Hu et al. [14]).

2.4 Supressão do Desprendimento de Vórtices e Con-

trole da Esteira

A supressão do desprendimento de vórtices tem sido amplamente investigada devido
à sua relevância em diversas aplicações de engenharia, principalmente no controle de
escoamentos ao redor de corpos imersos. Nesse contexto, Rashidi et al. [15] exploraram
técnicas ativas e passivas para o controle de desprendimentos de vórtices. Métodos ativos
necessitam energia externa para modificar o escoamento. Esses métodos podem ser
classificados em dois subgrupos: controle da camada limite e controle da esteira. No
contexto do controle da camada limite, destacam-se: métodos elétricos, métodos através
do uso de um campo magnético e métodos pelo uso de efeitos térmicos. Já os métodos de
controle da esteira, destacam-se: métodos de controle por feedback e métodos de geração
de um escoamento secundário.

Os métodos de controle passivos baseiam-se em modificações geométricas do corpo,
influenciando diretamente o mecanismo de formação e desprendimento de vórtices. Dentre
eles, destaca-se o método por rugosidade superficial, que constitui o objeto de estudo desta
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dissertação. Segundo Rashidi et al. [15], os efeitos da rugosidade na camada limite ocorrem
por meio de dois mecanismos: a antecipação da transição para um regime turbulento devido
à presença de irregularidades na superfície do corpo e a alteração do perfil de velocidades
na camada limite turbulenta. A vibração induzida por vórtices em corpos rombudos é um
fenômeno relevante na engenharia. Portanto, o controle do desprendimento de vórtices por
meio da rugosidade superficial desempenha um papel fundamental em diversas aplicações,
especialmente em estruturas offshore, como pilares de plataformas, dutos submarinos e
risers.

Nikuradse [16] foi o pioneiro na identificação de que os efeitos da rugosidade perma-
necem confinados a uma fina camada próxima à superfície. A rugosidade relativa, ε/D,
é um parâmetro adimensional que quantifica a influência das irregularidades superficiais
no escoamento de um fluido sobre uma superfície. É definida pela razão entre a altura
média das protuberâncias e saliências que formam a superfície (ε) e um comprimento
característico (D).

Achenbach Heinecke [17] estudaram o comportamento do número de Strouhal em
função do número de Reynolds para um cilindro circular rugoso. O efeito da rugosidade
relativa sobre o número de Strouhal evidencia que o aumento desse parâmetro provoca
uma antecipação dos regimes do escoamento. Os regimes de escoamento de um cilindro
liso também ocorrem em superfícies rugosas, porém, o ponto de separação do escoamento
no cilindro rugoso ocorre em ângulos menores devido ao aumento da espessura da camada
limite, reduzindo a troca de quantidade de movimento Sumer Fredsøe [3]. O regime
transcrítico se estreita com o aumento da rugosidade, elevando o coeficiente de arrasto
médio, enquanto em baixos números de Reynolds, como no regime subcrítico, a rugosidade
não impacta esse coeficiente.

Fage & Warsap [18] observaram que o aumento da rugosidade relativa (ε/D) antecipa
a crise do arrasto para menores números de Reynolds. O coeficiente de arrasto médio
varia menos em cilindros rugosos, reduzindo de 1,4 para 1,1 (ε/D = 30 · 10−3), enquanto
em cilindros lisos cai de 1,4 para 0,5. Essa diferença deve-se à posição do ponto de
separação, localizada em 140° para cilindros lisos e 115° para cilindros rugosos no regime
supercrítico.

Gao et al. [19] realizaram estudos experimentais sobre os efeitos da rugosidade superfi-
cial na resposta a vibração induzida por vórtices em um cilindro circular, considerando
um intervalo de número de Reynolds entre 25.000 e 180.000. Os resultados indicaram
que o coeficiente de arrasto nos cilindros rugosos apresenta uma redução abrupta para
baixos valores de rugosidade superficial. Entretanto, à medida que a rugosidade aumenta,
o arrasto cresce rapidamente, atingindo seu valor máximo quando ε/D = 0, 00843. Além
disso, concluíram que o inicio do fenômeno de lock-in para o cilindro liso ocorre para
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uma velocidade reduzida mais alta do que para cilindros rugosos, mas com uma região de
lock-in mais ampla. A velocidade reduzida é um parâmetro adimensional definido como
a razão entre a velocidade do escoamento livre e o produto do diâmetro do cilindro pela
frequência natural nas oscilações livres ou pela frequência de excitação nas oscilações
forçadas.

Estudos anteriores focaram em rugosidades ε/D inferiores a 3%, demonstrando que
tais condições alteram a separação do escoamento e podem reduzir o coeficiente de
arrasto. Assim, Chenlin Sun et al. [20] estudaram a influência de rugosidades elevadas no
escoamento ao redor de cilindros circulares. Este estudo investiga cilindros com ε/D entre
5% e 20%, mostrando que, para ε/D ≥ 15%, a rugosidade altera a dinâmica da esteira e
reduz a região de formação de vórtices, com implicações para o controle de vibrações e
estruturas em escoamentos turbulentos.

Han et al. [21] estudaram a influência da rugosidade superficial dos risers maríti-
mos, decorrente da adsorção de organismos marinhos ao longo do tempo de operação,
concluindo que exerce influência significativa sobre o campo de escoamento na esteira e,
consequentemente, sobre as características dinâmicas da vibração induzida por vórtices
(VIV). Utilizando métodos acoplados de dinâmica dos fluidos computacional (CFD) o
estudo propôs um modelo numérico que incorpora a variação de tensão com a vibração
estrutural, além de uma modificação no gradiente de velocidade em paredes rugosas. Os
resultados indicam que, na faixa de Reynolds entre 2, 52 · 104 e 1, 26 · 105 e velocidade re-
duzida entre 1,35 e 6,74; risers com superfície rugosa apresentam redução na amplitude de
vibração na direção do escoamento, efeito que se intensifica com o aumento da rugosidade
e da velocidade do fluxo.

2.5 O Método de Vórtices Discretos

De forma geral, a Dinâmica dos Fluidos Computacional(CFD) utiliza duas aborda-
gens principais para a solução de problemas de engenharia: a abordagem euleriana e a
abordagem lagrangiana. Na formulação euleriana, o escoamento é descrito a partir de
pontos fixos no espaço, focando na variação temporal das propriedades do fluido nesses
locais. Por outro lado, a abordagem lagrangiana consiste em acompanhar o movimento
individual das partículas fluidas, permitindo uma análise mais detalhada das trajetórias e
dos mecanismos de transporte envolvidos no escoamento. Entre os métodos lagrangianos
destaca-se o Método de Vórtices Discretos (MVD), ferramenta utilizada neste trabalho.

No caso do MVD a grandeza discretizada é o campo de vorticidades, representada
por uma nuvem de vórtices discretos de Lamb (Panton [22]). Assim, o método permite a
simulação dos mecanismos de geração, convecção e difusão da vorticidade no escoamento,



2.5. O Método de Vórtices Discretos 43

viabilizando, consequentemente, o cálculo das cargas aerodinâmicas que atuam sobre a
superfície do corpo em oscilação. O MVD teve um avanço significativo a partir do trabalho
de Chorin [23]. O autor propôs um algoritmo de separação da parte viscosa da Equação do
Transporte da Vorticidade (ETV). Neste algoritmo os efeitos da advecção e da difusão da
vorticidade podem ser resolvidos separadamente e os resultados convergem para a ETV
para pequenos valores de incremento de tempo (∆t).

A representação da camada limite nesta abordagem é obtida por meio da geração de
vórtices discretos de Lamb sobre a superfície do corpo. Para modelar essa superfície,
emprega-se o Método de Painéis, utilizando uma distribuição de singularidades do tipo
fontes com densidade uniforme (Katz & Plotkin [24]). Esta técnica permite cancelar a
componente normal (condição de contorno de Neumann) da velocidade total induzida
sobre cada ponto de controle localizado no centro de cada painel, impondo, assim, a
condição de impenetrabilidade. Com a geração dos vórtices discretos, torna-se necessário
implementar modelos numéricos de advecção para permitir o deslocamento desses vórtices
discretos ao longo do tempo. No entanto, antes dessa etapa, é fundamental determinar o
campo de velocidades. Sabe-se que a vorticidade é definida por ω = ∇ × u, e, ao integrar
o campo de vorticidades, determina-se o campo de velocidades, u, definindo a Lei de
Biot-Savart. Com isso, é possível aplicar esquemas de advecção da nuvem de vórtices,
como, por exemplo, o esquema de avanço de Euler de primeira ordem (Ferziger [25])
para os vórtices discretos marcharem no tempo. É importante destacar que o cálculo da
interação vórtice-vórtice, descrito pela Lei de Biot-Savart, apresenta alta complexidade
numérica, uma vez que requer N2 operações do processador para N vórtices discretos
presentes na nuvem.

A difusão da vorticidade foi simulada através do método de avanço randômico, e a
condição de escorregamento nulo sobre o corpo foi imposta pela criação de novos vórtices,
conforme proposto por Chorin [23] e Lewis [26]. O método é de simples implementação e
rápida execução; no entanto, possui uma taxa de baixa convergência (1/

√
N ), sendo N o

número total de vórtices discretos presentes na nuvem. Essa limitação motivou a busca
por alternativas que pudessem aprimorar a eficiência na inclusão dos efeitos da difusão
viscosa. Nesse contexto, outros métodos se destacam na incorporação desses efeitos nos
cálculos do Método de Vórtices Discretos (MVD), como o Método do Crescimento do
Raio do Núcleo do Vórtice Modificado e o Método da Velocidade de Difusão.

O Método do Crescimento do Raio do Núcleo do Vórtice foi inicialmente proposto
por Leonard [27] e aplicado com êxito por Kamemoto [28]. No entanto, Greengard [29]
demonstrou que esse método não convergia para as equações de Navier-Stokes (N-S). Em
resposta, Rossi [30] introduziu correções ao método, permitindo que o raio do núcleo dos
vórtices discretos se expandisse até atingir um valor máximo. Após alcançar este valor



44 Capítulo 2. Revisão Bibliográfica

crítico, os vórtices passavam por um processo de partição, gerando quatro novos vórtices,
cujos raios podiam novamente se expandir. Todavia, esse método apresenta a desvantagem
significativa de que, ao aumentar o número de vórtices discretos na nuvem, as simulações
numéricas tornam-se ainda mais onerosas em termos de tempo computacional. O Método
da Velocidade de Difusão foi inicialmente desenvolvido por Ogami & Akamatsu [31] com o
objetivo de simular a difusão viscosa da vorticidade, introduzindo uma velocidade adicional
no processo advecção, associada ao movimento difusivo. Essa velocidade adicional está
vinculada ao coeficiente de viscosidade cinemática do fluido e ao gradiente do campo de
vorticidades.

Kamemoto [28] realizaram uma revisão do MVD, ressaltando a relevância do desen-
volvimento de modelos de turbulência para métodos baseados na formulação Lagrangiana.
Nesse contexto, Alcântara Pereira et al. [32] apresentaram um estudo focado em simu-
lações numéricas mais detalhadas que considerassem aspectos turbulentos. Entre suas
principais contribuições, destacam-se a proposta de um modelo submalha de turbulência
baseado na Função Estrutura de Velocidade de Segunda Ordem, adaptada ao MVD, além
do desenvolvimento e implementação de um algoritmo para incorporar a modelagem turbu-
lenta no método. Para isso, foi necessário realizar ajustes para escoamentos bidimensionais,
mesmo reconhecendo que a turbulência é essencialmente um fenômeno tridimensional.
Posteriormente, Bimbato [33] modificou a abordagem proposta por Alcântara Pereira et

al.[32], e demonstrou que, quando associada ao modelo de rugosidade desenvolvido, é pos-
sível simular escoamentos bidimensionais ao redor de corpos rombudos hidraulicamente
rugosos com um nível de precisão bastante satisfatório.

De modo geral, a formulação lagrangiana baseada no campo de vorticidades apresenta
diversas vantagens na simulação de escoamentos viscosos. Primeiramente, permite uma
visualização mais clara dos fenômenos, sobretudo em escoamentos com altos números
de Reynolds. Além disso, ao aplicar o operador rotacional nas equações de N-S, o
termo de pressão é eliminado, simplificando o modelo. Já o uso do operador divergente
possibilita o cálculo dos carregamentos fluidodinâmicos atuantes por meio de uma equação
de Poisson para a pressão (Shintani & Akamatsu [34]). Outra vantagem relevante é que, em
simulações bidimensionais, a equação de transporte da vorticidade se reduz a uma equação
escalar, dispensando a resolução do termo advectivo não linear. Por fim, no Método de
Vórtices Discretos, as condições de contorno em regiões afastadas de superfícies sólidas
são automaticamente satisfeitas, uma vez que a influência do corpo e da nuvem de vórtices
não se propaga para essas áreas.

Nesse contexto, a experiência adquirida em dois trabalhos publicados anteriormente
pelo autor, desenvolvidos no âmbito da Universidade Federal de Itajubá (UNIFEI), foi
essencial para o amadurecimento técnico e conceitual deste estudo. O primeiro trabalho,
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apresentado em congresso (Chiaradia et al. [35]), teve como foco a implementação e
avaliação de diferentes esquemas de advecção para partículas de vorticidade e temperatura
em uma formulação lagrangiana, simulando a interação entre vórtices de ponta de asa de
uma aeronave e uma superfície aquecida. Nesse estudo, foi considerado o acoplamento
entre os campos de vorticidade e temperatura por meio do número de Richardson, e o alto
custo computacional do modelo foi tratado com paralelização em Fortran/OpenMP. Já
o segundo trabalho, publicado em revista científica (Chiaradia et al. [36]), propôs uma
metodologia numérica para simulações bidimensionais de escoamentos incompressíveis e
não permanentes com convecção mista, utilizando um modelo de Large-Eddy Simulation

(LES) acoplado à equação de energia, considerando os efeitos de empuxo via aproximação
de Boussinesq. Esses estudos forneceram uma base sólida para o presente trabalho,
especialmente no que se refere à descrição lagrangiana da vorticidade, ao tratamento das
interações térmicas e ao uso de estratégias computacionais eficientes para simulações de
alta complexidade.

Mais recentemente, um terceiro trabalho, do qual o autor é o primeiro autor, foi aceito
para apresentação e publicação nos anais do Congresso Brasileiro de Engenharia Mecânica.
Esse estudo combina a formulação lagrangiana do Método de Vórtices Discretos com um
modelo de vibração forçada, a teoria de LES e um modelo de rugosidade para resolver a
equação de transporte da vorticidade. Os resultados indicam que o modo antissimétrico
A-I de formação de vórtices é corretamente capturado no caso do cilindro liso, e que a
rugosidade superficial interfere de forma mais significativa para ε/d = 0,0070, dificultando
a sincronização entre as frequências de formação de vórtices e de oscilação do corpo. Além
disso, um quarto trabalho, atualmente em fase final de redação para publicação em revista
científica, apresentará parte dos resultados desenvolvidos nesta Dissertação de Mestrado,
com foco na análise da vibração forçada in-line de um cilindro circular rugoso.



3 Formulação Geral do Problema

Neste capítulo, apresenta-se a geometria do problema estudado: um cilindro bidi-
mensional sujeito a vibração forçada na direção do escoamento incidente. O cilindro
está posicionado a uma distância g do chão, o qual é considerado um referencial inercial,
suficientemente grande para evitar influência significativa do efeito solo. Essa configuração
possibilita reproduzir de maneira realista o comportamento do escoamento próximo à
parede, assim como estudar a interação fluido-estrutura em regimes de vibração forçada. A
geometria definida constitui a base para as simulações numéricas realizadas neste trabalho,
permitindo investigar os efeitos combinados da vibração do cilindro e da rugosidade super-
ficial sobre a evolução da nuvem de vórtices discretos e os carregamentos fluidodinâmicos
atuantes.

3.1 Geometria do Problema e Definições

A Figura 3.1 apresenta o sistema de coordenadas fixo xoy. O cilindro circular encontra-
se imerso em uma região semi-infinita completamente ocupada por um fluido em escoa-
mento uniforme de intensidade U∞. Esse cilindro possui diâmetro D e está posicionado a
uma distância g do solo.

Figura 3.1 – Geometia do problema e definições importantes
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Na Figura 3.1 são definidos:

• U∞ é a velocidade do escoamento incidente, paralela ao solo;

• D é o diâmetro do cilindro circular;

• g é a distância do corpo ao solo;

• Sb é o contorno que define o cilindro circular;

• Sg é o contorno que define o solo;

• S∞ é o contorno a grandes distâncias do cilindro circular e do solo;

• Ω é o domínio fluido, cujo contorno é definido por S = Sb ∪ Sg ∪ S∞;

• Y corresponde a um ponto arbitrário da superfície do cilindro circular em oscilação.

Com o objetivo de analisar a interação entre o escoamento e o movimento do corpo,
considera-se que o cilindro sofre uma oscilação harmônica na direção do escoamento
incidente, conforme expressa a Equação 3.1. A velocidade do corpo oscilante, observada a
partir de um referencial inercial, é dada pela Equação 3.2. A uma distância suficientemente
grande do corpo, o fluido apresenta componentes de velocidade uniformes, sendo u = U∞

na direção do escoamento e v = 0 na direção transversal.

xosc(t) = A sin(2πf0t) (3.1)

uosc(t) = ẋosc = 2πAf0 cos(2πf0t) (3.2)

onde A e f0 representam, respectivamente, a amplitude e a frequência da oscilação longitu-
dinal imposta ao corpo.

A Figura 3.2 ilustra um ciclo completo de oscilação forçada do cilindro, considerando
a vibração forçada in-line, representado pelos pontos A, B, C, D e E. Os pontos A, C e
E correspondem à passagem do cilindro pela posição de equilíbrio. Já os pontos B e D
indicam as amplitudes máximas da oscilação, sendo B no sentido oposto ao escoamento e
D no mesmo sentido do escoamento.
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Figura 3.2 – Oscilação do cilindro ao longo do eixo x

3.2 Hipóteses Simplificadoras

Para a formulação matemática do problema, estabelecem-se algumas hipóteses simplifi-
cadoras, as quais dizem respeito à geometria do problema, às propriedades termodinâmicas
do fluido e às propriedades do escoamento. Essas hipóteses visam tornar viável a análise do
escoamento em regime transiente, o qual se desenvolve a partir do fenômeno de separação
da camada limite na superfície do corpo e da formação da esteira de vórtices.

• H1: O escoamento é bidimensional, isto é, ele se realiza no plano (x, y) e a região
fluida é semi-infinita, estendendo-se até a região S∞;

• H2: Escoamento incidente paralelo ao solo, ou seja, ângulo de incidência nulo
(α = 0°);

• H3: Fluido newtoniano e com propriedades termodinâmicas constantes (massa
específica ρ e coeficiente de viscosidade dinâmica µ);

• H4: Considera-se um escoamento incompressível, em que os efeitos da compres-
sibilidade são desprezados. Isso implica que as velocidades características do
escoamento são significativamente inferiores à velocidade do som no meio, de modo
que o número de Mach é assumido bem inferior a 0,3 (Ma < 0, 3);

• H5: O escoamento é considerado isotérmico, assumindo-se a ausência de gradientes
de temperatura entre o fluido em movimento e as fronteiras sólidas;
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• H6: Força do campo gravitacional desprezada.

As hipóteses simplificadoras permitem representar o desenvolvimento da camada limite,
sua separação e a formação da esteira viscosa. A dinâmica do escoamento é regida pela
equação da continuidade e pelas equações de N-S, que representam, respectivamente, o
Princípio da Conservação da Massa (PCM) e o Princípio da Conservação da Quantidade de
Movimento Linear (PCQML). Na superfície do corpo, aplica-se a condição de aderência,
composta pelas condições de impenetrabilidade e de escorregamento nulo.

3.3 Equações Governantes e Condições de Contorno

As equações do movimento descrevem os principais fenômenos físicos que governam
o comportamento do escoamento. Considerando as hipóteses simplificadoras adotadas, o
Princípio da Conservação da Massa (PCM) e o Princípio da Conservação da Quantidade
de Movimento Linear (PCQML) são representados, em notação vetorial, pela equação da
continuidade (Equação 3.3) e pelas equações de Navier–Stokes (Equação 3.4), respectiva-
mente.

∇ · u = 0 (3.3)

∂u
∂t

+ u · ∇u = −1
ρ

∇p + ν∇2u (3.4)

onde u ≡ (u, v) é o vetor velocidade do fluido, p representa o campo de pressões, ρ é a
massa específica e ν é o coeficiente de viscosidade cinemática.

As condições de contorno sobre a superfície do corpo, denotada por Sb, e sobre o
solo, denotada por Sg. A condição de impenetrabilidade sobre Sb e Sg é representada pela
Equação 3.5. A condição de escorregamento-nulo sobre Sb é representada pela Equação
3.6.

u · n − V · n = 0 (3.5)

u · τ − V · τ = 0 (3.6)

sendo n e τ , respectivamente, os vetores unitários normal e tangencial às superfícies Sb e
Sg em cada ponto e o vetor V refere-se à velocidade da superfície do corpo.

Para longas distâncias do corpo, em S∞ , assume-se que o escoamento em estudo tende
a tornar-se igual ao escoamento não perturbado, representado pela Equação 3.7.
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|u| → U∞ (3.7)

3.4 Escoamentos Turbulentos

Grande parte dos escoamentos observados em aplicações práticas de engenharia é
turbulento, tornando imprescindível a compreensão e análise dos mecanismos físicos
envolvidos. Esses escoamentos apresentam um amplo espectro de escalas interagindo
de forma não linear: as grandes escalas são determinadas pela geometria, enquanto as
pequenas, associadas às escalas de Kolmogorov e à viscosidade molecular, dissipam
energia e concentram maior vorticidade. Nessas pequenas escalas ocorrem as frequências
mais altas, enquanto as grandes escalas concentram mais energia. Com o aumento do
número de Reynolds, a complexidade do escoamento se intensifica, dificultando a solução
direta das equações governantes e exigindo o uso de métodos aproximados para sua
simulação.

Entre as principais técnicas destacam-se: Simulação Numérica Direta (DNS), que
resolve todas as escalas do escoamento por meio de malhas extremamente finas e pequenos
incrementos temporais, demandando elevado custo computacional e sendo viável apenas
para baixos números de Reynolds; Simulação via Equações Médias de Reynolds (RANS),
que aplica a decomposição de Reynolds para separar componentes médias e flutuantes,
resultando nas tensões de Reynolds, cuja modelagem é necessária para fechar o sistema de
equações; e Simulação de Grandes Escalas (LES), que emprega filtragem espacial para
separar escalas, resolvendo explicitamente as maiores, influenciadas pela geometria, e
modelando as menores, homogêneas e isotrópicas, para representar seus efeitos sobre o
escoamento.

3.4.1 Filtragem das Equações Governantes

A Simulação LES é empregada com o objetivo de separar as diferentes escalas do
escoamento. Os fenômenos de maior relevância ocorrem nas macroescalas (Lesieur &
Métais [37]), cuja dinâmica pode ser representada por um número significativo de vórtices
discretos. As microescalas, por sua vez, devem ser modeladas. No processo de filtragem,
as equações governantes são submetidas a um operador de filtro passa baixo, permitindo
a separação entre as componentes de grandes escalas (F (x, t)), e aquelas associadas às
submalhas (F ′(x, t)), represetadas na Equação 3.8.

F (x, t) = F (x, t) + F ′(x, t) (3.8)
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A parte filtrada é dada pela Equação 3.9.

F (x, t) =
∫

V
F (x − y, t) G(y) dy (3.9)

onde a função G representa um filtro passa baixo.

As equações governantes consideradas para o processo de filtragem são as Equações 3.3
e 3.4. Com o intuito de favorecer o tratamento algébrico e a manipulação das expressões
matemáticas, tais equações serão reescritas em notação indicial. As respectivas formas
filtradas são apresentadas a seguir, representadas pelas Equações 3.10 e 3.11.

∂ui

∂xi

= 0 (3.10)

∂ui

∂t
+ ∂

∂xj

(uiuj) = −1
ρ

∂p

∂xi

+ ∂

∂xj

[
ν

(
∂ui

∂xj

+ ∂uj

∂xi

)]
(3.11)

A filtragem das equações resulta em um termo não linear (uiuj). Para solucionar o
sistema faz-se necessário decompor as escalas, utilizando a Equação 3.8. Assim, define-se
a Equação 3.12.

uiuj = uiuj + uiu′
j + u′

iuj + u′
iu

′
j (3.12)

Dessa forma, definem-se a seguir alguns tensores relevantes para esta análise, conforme
expressões apresentadas nas equações subsequentes.

Lij = uiuj − uiuj (3.13)

Cij = uiu′
j + u′

iuj (3.14)

τij = u′
iu

′
j (3.15)

onde as Equações 3.13, 3.14 e 3.15 correspondem, respectivamente, ao tensor de Leonard,
ao tensor cruzado e ao tensor de Reynolds submalha.

Portanto, a Equação 3.12 torna-se a Equação 3.16:

uiuj = uiuj + Lij + Cij + τij (3.16)

A resolução da Equação 3.16 requer a modelagem do tensor de Reynolds submalha
(τij), que representa o transporte turbulento entre as escalas resolvidas e não resolvidas.
Como essas flutuações não são capturadas pelo número de vórtices discretos utilizado,
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esse termo deve ser modelado. Silveira Neto et al. [38] demonstraram que, para esquemas
convectivos de até terceira ordem, como o de primeira ordem de Euler adotado neste
trabalho, os tensores de Leonard e cruzado podem ser desprezados.

3.4.2 Modelagem da Turbulência

Neste trabalho, a modelagem da turbulência baseia-se no conceito do coeficiente
de viscosidade turbulenta, νt. Essa grandeza é responsável pelo transporte de energia
entre as escalas maiores e menores do escoamento. De acordo com Boussinesq [39], a
parte anisotrópica do tensor de Reynolds submalha, τij , é proporcional ao tensor taxa de
deformação do campo de velocidades filtrado, Sij . No modelo proposto por Smagorinsky
[40], esse tensor de deformação é definido pela Equação 3.17.

Sij = 1
2

(
∂ui

∂xj

+ ∂uj

∂xi

)
(3.17)

A relação entre este tensor e o tensor de Reynolds sub malha é expressa pela Equação
3.18.

τij = −2νtSij (3.18)

Substituindo a Equação 3.18 na Equação 3.11 tem-se a Equação 3.19:

∂ui

∂t
+ ∂

∂xj

(uiuj) = −1
ρ

∂p

∂xi

+ 2 ∂

∂xj

[
(ν + νt)Sij

]
(3.19)

Assim, o coeficiente de viscosidade turbulenta (νt) deve ser determinado e, quando
necessário, pode ser somado ao coeficiente de viscosidade molecular (ν). Para estimar νt,
Smagorinsky [40] propôs a seguinte formulação, representada pela Equação 3.20:

νt = (CSM l)2 =
√

2SijSij (3.20)

onde CSM = 0, 18 e l =
√

∆x∆y, sendo ∆x e ∆y a largura e a altura da malha, respecti-
vamente.

O modelo proposto por Smagorinsky [40] é inadequado para ser combinado com o
Método de Vórtices Discretos, por depender de uma malha e utilizar a taxa de deformação
(derivadas), o que dificulta sua implementação em um método puramente lagrangiano.

Chollet e Lesieur [41] argumentam que, em regiões com baixa atividade turbulenta,
a modelagem submalha é desnecessária, enquanto nas zonas onde se identificam escalas
submalha, é fundamental dissipar as manifestações locais da turbulência. Nessas regiões,
os fenômenos podem ser considerados aproximadamente homogêneos e isotrópicos. Com
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base nessas observações, os autores propõem o uso do espectro local de energia cinética,
Ec(K, t), para definir o coeficiente de viscosidade turbulenta, representada pela Equação
3.21.

νt(Kc, t) = 2
3C

−3
2

k

√
E(Kc, t)

Kc

(3.21)

onde Ck = 1, 4 é a constante de Kolmogorov e Kc é o número de onda de corte.

Com base em uma relação apresentada por Batchelor [42], Métais & Lesieur [37]
determinaram o espectro local de energia cinética, Ec(K, t), utilizando o modelo da função
estrutura de segunda ordem da velocidade, F 2, calculada pela Equação 3.22.

F2 (x, ∆, t) =
∥∥∥u (x + r, t) − u (x + r, t)

∥∥∥2

∥r∥=∆
(3.22)

Nesta definição, é importante observar que o operador “média” é aplicado entre as
velocidades u(x + r, t), calculadas sobre pontos da superfície de uma esfera com o centro
em x e raio ∥r∥ = ∆, e a velocidade u(x, t), calculada sobre o ponto do escoamento
definido por x, onde se deseja determinar a atividade turbulenta.

A função estrutura de velocidade de segunda ordem é utilizada para calcular o coefici-
ente de viscosidade turbulenta, como mostra a Equação 3.23.

νt (x, ∆, t) = 0,105 C
−3/2
k ∆

√
F2 (x, ∆, t) (3.23)

Uma das principais vantagens dessa formulação, especialmente em sua aplicação con-
junta com o Método de Vórtices Discretos, reside no fato de que a função estrutura de
velocidade de segunda ordem se baseia diretamente nas flutuações locais de velocidade, ou
seja, nas diferenças entre velocidades em pontos vizinhos do escoamento. Essa caracterís-
tica é particularmente compatível com a natureza lagrangiana do método, pois dispensa
o uso de derivadas espaciais, facilitando sua implementação numérica em métodos que
operam com partículas ou elementos discretos no espaço. Na seção 4.2 será explicada a
adaptação deste cálculo para o MVD lagrangiano bidimensional.

3.4.3 Adimensionalização do Problema

A adimensionalização das equações governantes e das condições de contorno é uma
etapa essencial na formulação do problema, uma vez que promove maior generalidade à
apresentação da solução do modelo. Esse procedimento permite evidenciar as relações de
dependência entre as variáveis envolvidas e orientar a forma como devem ser associadas.



54 Capítulo 3. Formulação Geral do Problema

O primeiro passo consiste na definição das grandezas representativas do fenômeno inves-
tigado. Neste trabalho, assim como ocorre comumente em problemas da Mecânica dos
Fluidos, adota-se que:

• Comprimento característico (b): Adota-se o diâmetro do cilindro (D).

• Velocidade característica (U): Adota-se a velocidade do escoamento não perturbado
(U∞).

• Tempo característico (t): t = b
U

.

Com a utilização das grandezas características, as equações e suas condições de
contorno podem ser adimensionalizadas. As grandezas adimensionalizadas tornam-se:

• x∗ = x
b
: Coordenada na direção do eixo x.

• y∗ = y
b
: Coordenada na direção do eixo y.

• g∗ = g
b
: Distância entre o cilindro e o solo.

• ∆t∗ = ∆t
t

: Incremento temporal.

• u∗ = u
U

: Componente do vetor velocidade na direção do eixo x.

• v∗ = v
U

: Componente do vetor velocidade na direção do eixo y.

• p∗ = p
ρU2 : Pressão.

• ω∗ = t ω: Módulo do vetor vorticidade.

• Γ∗ = Γ
bU

: Intensidade de vórtice discreto de Lamb.

• σ∗
0 = σ0

b
: Raio do núcleo viscoso do vórtice discreto de Lamb.

• A∗ = A
b

: Amplitude de oscilação do movimento harmônico.

• f ∗
0 = t f0: Frequência de oscilação do movimento harmônico.

• x∗
osc = xosc

b
: Função da posição do movimento harmônico na direção x.

• u∗
osc = uosc

U∗ : Função da velocidade do movimento harmônico na direção x.

• VR = U
bf0

: Velocidade reduzida do corpo.

• St = bfs

U
: Número de Strouhal: frequência de emissão de estruturas vorticosas em

modo adimensional.
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• Re = ρUb
µ

: Número de Reynolds.

• ∇∗ = b∇: Operador Nabla.

• ∇∗2 = b2∇2: Operador Laplaciano.

O significado de algumas grandezas adimensionais, acima apresentadas, será melhor
entendido durante a apresentação do Capítulo 4. O asterisco (*), que denota grandeza
admensionalizada, é omitido a partir deste item por comodidade de digitação e apresentação
das equações.

3.4.4 A Equação do Transporte da Vorticidade

Sendo a vorticidade ω definida como o rotacional do campo de velocidades do fluido,
ou seja, ω = ∇ × u, a Equação 3.4 pode ser reformulada por meio da aplicação do
operador rotacional. Considerando-se a conservação da massa, a hipótese de escoamento
incompressível e a utilização de identidades vetoriais apropriadas, obtém-se a Equação
3.24.

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u +

( 1
Re

+ ν∗
t

)
∇2ω (3.24)

onde:

ν∗
t = νt

UD
(3.25)

O primeiro termo do lado esquerdo da Equação 3.24 representa a variação local da
vorticidade, o segundo termo representa o transporte convectivo da vorticidade, o primeiro
termo do lado direito representa a deformação dos tubos de vorticidade e o segundo
termo do lado direito representa os efeitos difusivos da vorticidade. Os dois primeiros
termos do lado esquerdo podem ser agrupados em uma derivada substancial, e, para o caso
bidimensional, o termo relativo a deformação dos tubos de vorticidade é nulo, obtendo-se,
assim, a forma lagrangiana da Equação de Transporte da Vorticidade (ETV) bidimensional,
que pode ser expressa em sua forma escalar conforme apresentado na Equação 3.26.

Dω

Dt
= ∂ω

∂t
+ (u · ∇)ω =

( 1
Re

+ ν∗
t

)
∇2ω (3.26)

Chorin [23] introduziu o chamado Viscous Splitting Algorithm, ou Algoritmo de
Separação da Parte Viscosa, aplicado à Equação 3.26. Esse método baseia-se na suposição
de que, dentro de um mesmo incremento temporal ∆t, os processos de convecção e difusão
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da vorticidade podem ser tratados separadamente, sendo a difusão considerada, de forma
aproximada, como independente da convecção.

Essa aproximação permite uma significativa simplificação na implementação numérica
do MVD, desde que as posições e intensidades dos vórtices discretos estejam previamente
conhecidas.

Dessa forma, o fenômeno de convecção da vorticidade é descrito pela Equação 3.27.

∂ω

∂t
+ (u · ∇)ω = 0 (3.27)

Já o fenômeno associado à difusão da vorticidade é governado pela Equação 3.28.

∂ω

∂t
=
( 1

Re
+ ν∗

t

)
∇2ω (3.28)

No cerne do algoritmo proposto por Chorin, os processos de convecção e difusão são
realizados de forma sucessiva dentro de um mesmo intervalo de tempo ∆t. No limite
em que ∆t → 0, a solução obtida converge para a Equação 3.26. Observa-se que, em
sua forma bidimensional, a Equação de Transporte da Vorticidade (ETV) assume uma
natureza escalar, o que simplifica consideravelmente sua resolução numérica. Além disso,
ao aplicar o operador rotacional às equações de N-S, o termo de pressão é naturalmente
eliminado do sistema. No entanto, caso seja necessário recuperá-lo, é possível aplicar o
operador divergente às equações de N-S, o que resulta na formulação de uma equação de
Poisson para a pressão, conforme apresentado por Shintani & Akamatsu [34], como será
apresentado na seção 4.
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4 Método de Solução: O Método de
Vórtices Discreto (MVD)

Este capítulo apresenta o modelo hidrodinâmico adotado para a solução numérica
do problema formulado no capítulo anterior. O Método de Vórtices Discretos (MVD)
fundamenta o desenvolvimento teórico e matemático aqui descrito, visando a determinação
dos carregamentos fluidodinâmicos associados à geração e ao desprendimento de vórtices
ao longo da superfície de um corpo oscilante. Esse procedimento permite analisar a
sincronização entre a frequência de vibração forçada in-line da estrutura e a frequência
natural de emissão de vórtices.

4.1 O Campo de Velocidades do Escoamento

A obtenção do campo de velocidades é realizada em três etapas distintas:

• Influência do escoamento incidente: o escoamento que incide sobre o sistema gera
uma indução de velocidade na nuvem de vórtices discretos. Esta etapa caracteriza-se
pela sua simplicidade de implementação;

• Influência das fronteiras sólidas: as superfícies sólidas presentes no domínio do
problema também promovem indução de velocidade sobre a nuvem de vórtices
discretos. No contexto deste estudo, tais efeitos são atribuídos ao corpo e ao solo,
sendo modelados por meio do Método dos Painéis de fontes(condição de contorno
de Neumann);

• Cada vórtice discreto exerce, em todos os instantes da simulação numérica, uma
indução de velocidade sobre os demais vórtices da nuvem. Destaca-se, nesse con-
texto, o elevado custo computacional inerente à aplicação da Lei de Biot-Savart para
o cálculo dessas interações. A avaliação do campo de velocidades para uma nuvem
composta por N vórtices discretos requer um número de operações da ordem de N2.
Em função dessa alta demanda computacional, o cálculo das velocidades induzidas
pelas interações vórtice-vórtice é implementado por meio de processamento paralelo,
utilizando OpenMP em Fortran.
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4.1.1 A Contribuição do Escoamento Incidente

O escoamento incidente é considerado uniforme, com intensidade U∞ e direção paralela
ao solo. Na forma adimensional e em termos de componentes, suas expressões são dadas
pela Equação 4.1.

u∞ = U∞ cos α = cos α = 1, v∞ = U∞ sin α = sin α = 0 (4.1)

4.1.2 A Contribuição das Fronteiras Sólidas (Método dos Painéis)

Para a determinação da contribuição das fronteiras sólidas no campo de velocidades
do escoamento, faz-se inicialmente necessária a representação adequada dessas fronteiras.
Para esse fim, adotou-se o método de painéis planos com densidade de fonte uniforme e
constante. Tal abordagem é amplamente empregada na discretização de contornos sólidos,
especialmente quando se busca garantir a satisfação da condição de impermeabilidade, isto
é, a anulação da componente normal da velocidade sobre as superfícies sólidas.

No presente estudo, o problema envolve duas fronteiras distintas: o cilindro, que
caracteriza um contorno fechado, e o solo, que corresponde a um contorno aberto. Dessa
forma, a formulação adotada deve contemplar condições de contorno que sejam válidas para
ambos os tipos de fronteira. Nesse contexto, a condição de contorno de Neumann revela-
se adequada, pois permite satisfazer simultaneamente as exigências impostas tanto pelo
contorno fechado quanto pelo aberto, assegurando o correto tratamento das singularidades
associadas a cada fronteira.

Considera-se um sistema de coordenadas fixo em um painel, conforme ilustrado na
Figura 4.1. Esse sistema de coordenadas é utilizado para descrever a posição de pontos
no domínio do escoamento, bem como para expressar matematicamente as contribuições
aerodinâmicas resultantes da presença de distribuições de singularidades sobre o painel.
As componentes da velocidade induzida no ponto W (x, y), localizado em uma posição
arbitrária do plano, nas direções x e y, são geradas pela presença de uma distribuição de
fontes de densidade constante σ(x), disposta ao longo de uma superfície que se estende no
intervalo de comprimento x2−x1. A partir dessa configuração, é possível calcular, por meio
de integração ao longo da superfície, as contribuições para as componentes da velocidade
induzida no ponto de interesse. As expressões resultantes para essas componentes nas
direções x e y são fornecidas, respectivamente, pelas Equações 4.2 e 4.3.
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Figura 4.1 – Velocidade induzida no ponto W (x, y) por uma distribuição de fontes com
densidade constante, σ(x), ao longo de uma superfície de comprimento
(x2 − x1). (Reproduzida de Bimbato [33]).

u = σ(x)
2π

∫ x2

x1

(x − x0)
(x − x0)2 − (y − y0)2 dx0 (4.2)

v = σ(x)
2π

∫ x2

x1

(y − y0)
(x − x0)2 − (y − y0)2 dx0 (4.3)

Resolvendo-se as duas integrais acima, obtém-se as Equações 4.4 e 4.5, respectiva-
mente.

u = σ(x)
2π

ln
(

r1

r2

)
(4.4)

v = σ(x)
2π

(θ2 − θ1) (4.5)

onde:

θi = arctan
(

y

x − xi

)
, i = 1, 2 (4.6)

ri =
√

(x − xi)2 + y2, i = 1, 2 (4.7)

A indução de velocidades na direção de x para y → 0± de um painel sobre ele mesmo
é dada pela Equação 4.8. (Katz & Plotkin [24])

v
(

x2 − x1

2 , 0±
)

= ±σ(x)
2 (4.8)

Os componentes da velocidade induzida por um painel com fontes de densidade
uniforme são determinadas pelas Equações 4.4 e 4.5, sendo inicialmente calculadas em
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um referencial local, orientado segundo a geometria do próprio painel. Em seguida, esses
componentes são projetados na direção normal ao ponto de controle, a fim de satisfazer a
condição de impenetrabilidade do escoamento.

A distribuição uniforme de fontes em cada painel gera um campo de velocidade
radial, o qual é decomposto em componentes normal e tangencial, de modo a viabilizar
a aplicação das condições de contorno. Quando esse procedimento é estendido aos M

painéis que compõem os contornos do corpo e do solo, obtém-se um sistema linear de
equações algébricas, cuja forma matricial representa a condição de contorno de Neumann,
conforme apresentado na Equação 4.9. Uma formulação alternativa desse sistema é dada
pela Equação 4.10, sendo a densidade uniforme de fontes a variável incógnita.



0.5 K12 · · · · · · K1M

K21 0.5 · · · · · · K2M

K31 K32
. . . · · · K3M

...
...

... . . . ...
KM1 KM2 · · · · · · 0.5





σ1

σ2

σ3
...

σM


=



RHSS1

RHSS2

RHSS3
...

RHSSM


(4.9)

[COUPS]{SIGMA} = {RHSS} (4.10)

onde:

• [COUPS] é a matriz de influência das fontes. Kij é um elemento da matriz [COUPS]
que representa a velocidade normal induzida no ponto de controle do painel i por
uma distribuição uniforme de fontes sobre o painel j;

• {SIGMA} é o vetor incógnita do problema, cujos elementos σj representam a densi-
dade uniforme de fontes sobre o painel j;

• {RHSS} é o vetor coluna do lado direito da equação matricial, com M elementos.
Ele representa a velocidade normal total induzida no ponto de controle do painel i

em decorrência da contribuição do escoamento incidente e da nuvem de vórtices
discretos.

Neste trabalho, considerando duas geometrias distintas, o solo, que representa o
referencial inercial, e o cilindro oscilante, torna-se necessário aplicar corretamente as
condições associadas ao vetor do lado direito do sistema {RHSS}, assegurando a devida
atribuição das contribuições correspondentes a cada uma das geometrias.

O cálculo do vetor coluna do lado direito associado às fontes, para o ponto de controle
do painel plano genérico i, pertencente ao solo, é realizado conforme a Equação 4.11:
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RHSS = u∞ sin(thi) − v∞ cos(thi) +
N∑

k=1
uik sin(thi) − vik cos(thi) (4.11)

Para os pontos de controle localizados nos painéis do corpo oscilante, o cálculo do
vetor {RHSS} incorpora a contribuição da velocidade de oscilação do corpo. Assim, sua
formulação é dada pela Equação 4.12:

RHSS = (u∞ + uosc) sin(thi) − v∞ cos(thi) +
N∑

k=1
(uik sin(thi) − vik cos(thi)) (4.12)

sendo:

• u∞ e v∞, os componentes do vetor velocidade do escoamento não perturbado;

• uosc, a componente da velocidade de oscilação longitudinal do corpo (veja a Equação
3.2);

• thi, o ângulo correspondente ao painel do ponto de controle i;

• ui,k e vi,k, os componentes da velocidade total induzida pela nuvem de vórtices
discretos (com k = 1, . . . , N ) no ponto de controle i.

4.1.3 A Contribuição da Nuvem de Vórtices Discretos (Lei de Biot

Savart)

A determinação do campo de velocidades gerado pela nuvem de vórtices discretos é
realizada com base na Lei de Biot-Savart. A etapa mais custosa em termos computacionais
corresponde ao cálculo das interações entre os vórtices na região fluida (interação vórtice-
vórtice), uma vez que o número de operações cresce proporcionalmente ao quadrado do
número total N de vórtices discretos no domínio.

As componentes nas direções x e y da velocidade total induzida no vórtice discreto k,
devido à influência dos demais vórtices discretos, são determinadas pelas Equações 4.13 e
4.14 respectivamente.

ukN
=

N∑
j=1

ΓjUVk,j
(4.13)

vkN
=

N∑
j=1

ΓjVVk,j
(4.14)
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onde UVk,j
e VVk,j

representam, respectivamente, as componentes das velocidades induzidas
nas direções x e y no vórtice discreto arbitrário k, devido à influência do vórtice discreto j,
conforme expresso nas Equações 4.15 e 4.16.

UVk,j
= 1

2π

yk − yj

(xk − xj)2 + (yk − yj)2

[
1 − exp

(
−

r2
kj

σ2
0cj

)]
(4.15)

VVk,j
= 1

2π

xk − xj

(xk − xj)2 + (yk − yj)2

[
1 − exp

(
−

r2
kj

σ2
0cj

)]
(4.16)

onde σ0cj
representa o raio do núcleo do vórtice discreto de Lamb, modificado em função

do modelo de rugosidade, cujo detalhamento será apresentado em seções posteriores.

4.2 Modelagem da Turbulência

No contexto da modelagem de escoamentos turbulentos, destaca-se a proposta de
Métais & Lesieur [37], segundo a qual os fenômenos que se manifestam nas microescalas
podem ser representados por meio de um coeficiente de viscosidade turbulenta, νt. A
determinação deste coeficiente depende de uma função estrutura de velocidade de segunda
ordem, F2, apresentada na Equação 4.17.

F2k(t) = 1
N

N∑
j=1

∥∥∥utk
(xk, t) − utj

(xk + rj, t)
∥∥∥2
(

σ0ck

rj(t)

) 2
3

(4.17)

A introdução da viscosidade turbulenta é fundamental, pois permite incorporar os
efeitos da transferência de energia entre as grandes e pequenas escalas diretamente na
modelagem do escoamento. Considerando-se o problema adimensionalizado, Alcântara Pe-
reira et al. [32] propuseram duas adaptações fundamentais para viabilizar a implementação
deste modelo de turbulência no presente trabalho:

• As velocidades devem ser avaliadas em uma coroa circular compreendida entre
os raios rint = 0,1 σ0ck

e rext = sm · σ0ck
, conforme ilustrado na Figura 4.2 (a).

O parâmetro σ0ck
representa o raio do núcleo do vórtice de Lamb, modificado

pelo modelo de rugosidade, o qual será detalhado na Seção 4.3. Para determinar
o parâmetro sm, Bimbato [33] realizou um estudo estatístico considerando uma
esteira composta por 300.000 vórtices discretos de Lamb. Com o raio interno
fixado, adotou-se 61 valores distintos de sm. Para cada valor, contou-se o número
de vórtices no interior da coroa circular ao redor de cada vórtice da esteira, dividiu-
se pelo respectiva área da coroa e calculou-se a média ⟨N/Ac⟩. A Figura 4.3
apresenta esses valores médios em função do raio externo da coroa, evidenciando
um comportamento assintótico que fundamenta a escolha do parâmetro sm. Esse
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procedimento estabelece que, em simulações numéricas, não é adequado aplicar o
modelo de turbulência em todos os vórtices discretos nem apenas em alguns poucos,
conforme apontado por Alcântara Pereira et al. [32].

• Para o cálculo da função estrutura de velocidade de segunda ordem, as velocidades
devem ser obtidas nas posições dos vórtices discretos vizinhos ao vórtice em análise,
conforme ilustra a Figura 4.2 (b).

(a) (b)

Figura 4.2 – Adaptação do modelo de turbulência ao Método de Vórtices Discre-
tos.(Reproduzida de Bimbato [33]).
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Figura 4.3 – Valores médios em função do raio externo da coroa circular definida ao redor
de cada vórtice discreto. (Reproduzida de Bimbato [33]).

Após o cálculo da função estrutura de velocidade de segunda ordem para cada vórtice
discreto da nuvem, essa função é empregada para determinar o coeficiente de viscosidade
turbulenta associado a cada vórtice discreto que compõe a referida nuvem, através da
Equação 4.18.

νtk
(t) = 0, 105C

−3
2

k σ0ck

√
F 2k(t) (4.18)

onde Ck é a constante de Kolmogorov (Ck = 1, 4).

Por fim, o coeficiente de viscosidade turbulenta deve ser adicionado ao coeficiente
de viscosidade molecular e considera-se um número de Reynolds modificado, conforme
mostrado na Equação 4.19.

Reck
(t) = U∞D

ν + νtk
(t) (4.19)

4.3 Geração da Vorticidade e Modelo de Rugosidade

A vorticidade é uma grandeza física fundamental na mecânica dos fluidos, desempe-
nhando papel central na descrição de diversos fenômenos fluidodinâmicos. Sua geração
ocorre em decorrência da interação do escoamento viscoso com a superfície do corpo, o
que promove o desenvolvimento da camada limite hidrodinâmica. Tal fenômeno resulta
dos efeitos viscosos associados à aderência do fluido à fronteira sólida, gerando um perfil
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de velocidades caracterizado pela rotação das partículas fluidas. A separação da camada
limite, por sua vez, ocorre exclusivamente na presença de um gradiente de pressão adverso.

Neste trabalho, a geração de vorticidade é realizada a cada incremento temporal da
simulação numérica, com o propósito de anular a componente tangencial da velocidade na
superfície do corpo. Para isso, são posicionados vórtices discretos de Lamb de forma que
cada um tangencie o ponto de controle correspondente a cada painel plano que representa
a superfície do corpo. A Figura 4.4 apresenta um exemplo ilustrativo da geração de
quatro vórtices discretos posicionados sobre os pontos de controle correspondentes a
quatro painéis planos que discretizam a superfície de um cilindro. Ressalta-se que não são
gerados vórtices discretos no solo, uma vez que essa região é modelada com uma técnica
de moving ground (Bimbato et al. [43]).

Figura 4.4 – Geração de vórtices discretos de Lamb sobre fronteiras hidraulicamente lisas.
(Reproduzida de Bimbato [33]).

onde:

• co1, co2, co3 e co4 representam os pontos de controle dos painéis 1, 2, 3 e 4 respecti-
vamente;

• eps′ corresponde à distância do ponto de controle ao ponto de desprendimento de
cada vórtice discreto de Lamb;

• pshed′
1, pshed′

2, pshed′
3 e pshed′

4 indicam os pontos de desprendimento dos vórtices
discretos de Lamb associados aos painéis 1, 2, 3 e 4, respectivamente;
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• σ0 denota o raio do núcleo dos vórtices discretos de Lamb.

O modelo de rugosidade desenvolvido por Bimbato [33] parte do pressuposto de
que a rugosidade da superfície sólida pode induzir o desenvolvimento da turbulência no
escoamento. Para quantificar a atividade turbulenta nos pontos de desprendimento dos
vórtices discretos associados a cada painel, emprega-se uma adaptação da função estrutura
de velocidade de segunda ordem. Essa função é calculada a partir das velocidades avaliadas
em pontos distribuídos sobre uma semicircunferência de raio b = 2ε − eps′, cujo centro é
o ponto de desprendimento do vórtice discreto do painel i, representado na Figura 4.5.

Figura 4.5 – Efeito da rugosidade sobre fronteiras sólidas. (Reproduzida de Bimbato [33]).

Esse procedimento permite modificar, a cada instante da simulação, o raio do núcleo do
vórtice discreto recém-gerado, ao considerar a influência de um coeficiente de viscosidade
turbulenta que afeta o número de Reynolds local. Esse coeficiente é determinado a partir
da função estrutura de velocidade de segunda ordem, que reflete a média das diferenças de
velocidade entre o ponto de geração do vórtice e os pontos próximos, denominados pontos
rugosos. Para garantir uma média representativa das flutuações locais, utilizam-se neste
trabalho NR = 21 pontos rugosos distribuídos ao redor de cada ponto de geração.

Portanto, a função de estrutura de velocidade, considerando-se a influência da rugosi-
dade, é definida pela Equação 4.20.

F 2i
(t) = 1

NR

NR∑
w=1

∥uti
(xi, t) − utw(xi + b, t)∥2

w (1 + ε), (4.20)

onde:

• ut denota a velocidade total nos pontos considerados e NR é o número de pontos

rugosos distribuídos ao longo da semicircunferência;
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• O raio b representa a distância entre o ponto de análise, correspondente ao ponto de
desprendimento do painel i (identificado como pshed′

i na Figura 4.5), e os pontos w

situados sobre a semicircunferência;

• O fator (1 + ε) representa uma injeção adicional de quantidade de movimento
na camada limite laminar, atuando como um mecanismo que intensifica a energia
cinética local na função estrutura de velocidade. Essa modificação modela os efeitos
da rugosidade superficial sobre o escoamento, estimulando a transição da camada
limite do regime laminar para o turbulento.

A partir dessa função, calcula-se o coeficiente de viscosidade turbulenta associado ao
ponto de desprendimento dos vórtices discretos de cada painel i, como mostra a Equação
4.21.

νti
(t) = 0, 105 C

− 3
2

k σ0k

√
F 2i

(t). (4.21)

onde: σ0k
é o raio do núcleo do vórtice discreto, k, posicionado no ponto de desprendimento

do painel i, de maneira a tangenciar o ponto de controle deste painel.
Como o coeficiente de viscosidade turbulenta deve ser somado ao coeficiente de

viscosidade molecular, o número de Reynolds é ajustado localmente, ou seja, ocorre
apenas nos pontos de desprendimento dos vórtices discretos onde os efeitos da rugosidade
são relevantes. como mostra a Equação 4.22.

Reci
(t) = UD

ν + νti
(t) , (4.22)

Dado que o raio do núcleo dos vórtices é função do número de Reynolds, o qual é
modificado pelo coeficiente de viscosidade turbulenta, impõe-se a necessidade de ajustar
esse raio, de modo a incorporar adequadamente os efeitos da rugosidade no processo de
geração dos vórtices. Assim a Equação 4.23 representa esse efeito.

σ0ck
(t) = 4,48364

√√√√∆t

Re

(
1 + vti

(t)
ν

)
χ (4.23)

Como cada vórtice discreto de Lamb deve tangenciar o ponto de controle do painel
que o origina, a posição de desprendimento desses vórtices precisa ser ajustada. Assim, a
cada instante da simulação numérica, os vórtices são desprendidos em posições distintas,
determinadas pela rugosidade da superfície e pelo correspondente efeito turbulento. A
Figura 4.6 ilustra esse processo de geração de vórtices de Lamb nas proximidades da
superfície discretizada de um corpo com parede hidraulicamente rugosa.
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Figura 4.6 – Geração de vórtices discretos de Lamb sobre fronteiras hidraulicamente rugo-
sas. (Reproduzida de Bimbato [33]).

onde:

• co1, co2, co3 e co4 representam os pontos de controle dos painéis 1, 2, 3 e 4 respecti-
vamente;

• eps1(t), eps2(t), eps3(t) e eps4(t) são as distâncias de geração dos vórtices discretos;

• pshed1(t), pshed2(t), pshed3(t) e pshed4(t) indicam os pontos de desprendimento
dos vórtices discretos de Lamb associados aos painéis 1, 2, 3 e 4, respectivamente;

• σ0c1 , σ0c2 , σ0c3 e σ0c4 são os valores do raio do núcleo dos vórtices discretos de Lamb
gerados nos painéis 1, 2, 3 e 4 respectivamente.

De forma análoga à construção da equação matricial associada às fontes, determina-se
a matriz de influência responsável pela geração dos novos vórtices discretos.
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

K11(t) K12(t) · · · · · · K1M(t)
K21(t) K22(t) · · · · · · K2M(t)
K31(t) K32(t)

. . . · · · K3M(t)
...

...
... . . . ...

KM1(t) KM2(t) · · · · · · KMM(t)





Γ1

Γ2

Γ3
...

ΓM


=



RHSV1

RHSV2

RHSV3
...

RHSVM


(4.24)

[COUPV]{GAMMA} = {RHSV} (4.25)

onde:

• Kij é um elemento da matriz [COUPV], o qual representa a velocidade tangencial
induzida pelo vórtice discreto de Lamb posicionado no ponto de desprendimento j,
sobre o ponto de controle do painel i;

• {GAMMA} é o vetor incógnita do problema, cujos elementos Γj representam a
intensidade do vórtice discreto posicionado no ponto de desprendimento j;

• {RHSV} é o vetor coluna do lado direito da equação matricial, com M elementos.
Este é a soma da velocidade do escoamento incidente e da velocidade induzida por
cada um dos vórtices discretos da nuvem sobre o ponto de controle do painel i, todas
decompostas na direção tangencial ao painel plano.

O cálculo do vetor coluna lado direito vórtices para o ponto de controle do painel plano
genérico i, pertencente ao cilindro circular, é calculado como:

RHSV = −(u∞ +uosc) cos(thi)−v∞ sin(thi)+
N∑

k=1
−ui,k cos(thi)−vi,k sin(thi) (4.26)

sendo:

• u∞ e v∞, os componentes do vetor velocidade do escoamento não perturbado;

• uosc, a componente da velocidade de oscilação longitudinal do corpo (veja a Equação
3.2);

• thi, o ângulo correspondente ao painel do ponto de controle i;

• ui,k e vi,k, os componentes da velocidade total induzida pela nuvem de vórtices
discretos (com k = 1, . . . , N ) no ponto de controle i.
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4.4 Carregamentos Fluidodinâmicos Atuantes

Uma vez representadas e tratadas adequadamente as fronteiras sólidas, torna-se possível
determinar as cargas hidrodinâmicas que atuam sobre o corpo imerso no escoamento. No
caso do escoamento ao redor de um cilindro circular, essas cargas resultantes sobre
a superfície do corpo têm duas origens principais: a atuação da pressão estática e a
contribuição da tensão cisalhante. A integração da tensão que atua sobre a superfície de um
corpo, frequentemente referida como carga fluidodinâmica distribuída, resulta nas cargas
fluidodinâmicas integradas, expressas pelas forças e momentos fluidodinâmicos.

Neste trabalho, emprega-se a formulação integral de Shintani & Akamatsu [34] para
determinar o valor da pressão em um ponto genérico, i, do domínio fluido. Essa formulação
requer apenas o conhecimento do campo de velocidades e do campo de vorticidade, sendo
a equação integral correspondente apresentada na Equação 4.27.

HY i −
∫

Sc

Y ∇Gi · n dS =
∫∫

Ω
∇Gi · (u × ω) dΩ − 1

Re

∫
Sc

(∇Gi × ω) · n dS (4.27)

onde: G corresponde à solução fundamental da equação de Laplace, enquanto Y representa
o trabalho específico e,

H =

1, em Ω (no domínio do escoamento)

0,5, em Sc (sobre a superfície do corpo)

As integrais presentes na Equação 4.27 são avaliadas numericamente. A dedução
completa da equação utilizada para determinar o valor da pressão no ponto i, encontra-se
no trabalho de Ricci [44], sendo sua forma final apresentada na Equação 4.28.

HYi +
∫

Sc

1
2π

nx(x − xi) + ny(y − yi)
(x − xi)2 + (y − yi)2 Y dS = −

∫
Ω

1
2π

v(x − xi) − u(y − yi)
(x − xi)2 + (y − yi)2 ω dΩ

− 1
Re

∫
Sc

1
2π

ny(x − xi) − nx(y − yi)
(x − xi)2 + (y − yi)2 ω dS,

(4.28)
A Equação 4.28 pode ser discretizada e resolvida numericamente por meio da Equação

4.29.

HYi + 1
2π

M∑
j=1
j ̸=i

nxj(xj − xi) + nyj(yj − yi)
(xj − xi)2 + (yj − yi)2 ∆SjYj = 1

2π

N∑
j=1

vj(xj − xi) − uj(yj − yi)
(xj − xi)2 + (yj − yi)2 Γj

+ 1
2πRe

M∑
j=1
j ̸=i

nyj(x − xi) − nxj(y − yi)
(xj − xi)2 + (yj − yi)2 ∆Sjγj

(4.29)
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A Equação 4.29 pode ser resolvida similarmente ao Método de Painéis, no qual o
primeiro termo é organizado em uma matriz de influência da pressão, denotada por Ap,
enquanto os dois somatórios restantes são reunidos em um vetor coluna no segundo
membro, denominado Ld. Assim, obtém-se a formulação discretizada expressa na Equação
4.30. Logo, a formulação discretizada, quando aplicada aos M painéis que compõem a
discretização da superfície do corpo, resulta na forma matricial da pressão, expressa na
Equação 4.31.

1
2π

M∑
j=1

Api,jYj = 1
2π

N∑
j=1

vj(xj − xi) − uj(yj − yi)
(xj − xi)2 + (yj − yi)2 Γj +

M∑
j=1

Adi,jγj (4.30)

[Ap]{Y } = {Ld} (4.31)

Dessa forma, ao resolver a equação matricial para a pressão, ou seja, ao determinar os
valores do vetor incógnita {Y } para os M painéis, é possível obter os valores do coeficiente
de pressão associados a cada segmento reto da superfície, representado pela Equação 4.32.

Cpi
= 2Yi + 1 (4.32)

As forças hidrodinâmicas sobre o corpo são determinadas por meio da integração
da pressão ao longo de sua superfície. A força de arrasto corresponde à componente da
força atuando na direção do escoamento incidente, enquanto a força de sustentação está
associada à componente normal a essa direção. Considerando as contribuições de cada um
dos M painéis, as forças totais de arrasto e sustentação podem ser expressas como:

D =
M∑

j=1
(pj − p∞)∆Sj sin(thpj) (4.33)

L = −
M∑

j=1
(pj − p∞)∆Sj cos(thpj) (4.34)

onde pj é a pressão no ponto de controle do painel j, p∞ é a pressão de referência, ∆Sj é
o comprimento do painel j, e thpj é o ângulo de orientação do painel plano j.

Por fim, a adimensionalização das Equações 4.33 e 4.34 permite a obtenção dos
coeficientes de arrasto e sustentação, respectivamente. Esses coeficientes são determinados
a partir da contribuição de todos os M painéis, resultando nas seguintes expressões:

CD =
M∑

j=1
2(pj − p∞)∆Sj sin(thpj) =

M∑
j=1

CP ∆Sj sin(thpj) (4.35)

CL = −
M∑

j=1
2(pj − p∞)∆Sj cos(thpj) = −

M∑
j=1

CP ∆Sj cos(thpj) (4.36)
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4.5 A Advecção da Nuvem de Vórtices Discretos

Para determinar a velocidade total induzida em um vórtice discreto arbitrário k, é ne-
cessário somar as contribuições provenientes do escoamento incidente (conforme expresso
na Equação 4.1), das fronteiras sólidas (conforme as Equações 4.4 e 4.5) e da própria
nuvem de vórtices discretos (conforme as Equações 4.13 e 4.14). Dessa forma, uma vez
determinado o campo de velocidades, a posição de cada vórtice discreto em cada passo
temporal é definido pela Equação 4.37.

dxk

dt
= uk(xk, t) (4.37)

Assim, uma vez determinado o campo de velocidades, a posição de cada vórtice
discreto pode ser atualizada numericamente a cada incremento de tempo t durante a
etapa advectiva, por meio de diferentes métodos de integração. Neste estudo, o avanço
advectivo é realizado utilizando o método explícito de Euler de primeira ordem, conforme
apresentado na Equação 4.38 (Ferziger [25]).

xk(t + ∆t) = xk(t) + uk(xk, t)∆t (4.38)

onde xk representa o vetor posição do vórtice discreto arbitrário k no instante de tempo t e
uk(xk, t) corresponde à velocidade total induzida no vórtice k.

4.6 A Difusão da Vorticidade

A difusão da vorticidade constitui o principal mecanismo de incorporação dos efeitos
viscosos no escoamento. Na Equação 4.39, essa influência está implicitamente representada
por meio do número de Reynolds, que relaciona as forças inerciais às forças viscosas do
escoamento.

∂ω

∂t
=
( 1

Re
+ ν∗

t

)
∇2ω (4.39)

Com a adoção do modelo de turbulência implementado neste trabalho, a viscosidade
efetiva do escoamento passa a ser composta pela soma da viscosidade molecular (ν) e
da viscosidade turbulenta (ν∗

t ), esta última responsável por representar a transferência de
energia das grandes para as pequenas escalas do escoamento.

Com o número de Reynolds já ajustado para refletir as características de um escoamento
turbulento, a solução da equação de difusão é obtida por meio de um esquema puramente
Lagrangiano, baseado no Método de Avanço Randômico (Chorin [23]). Trata-se de uma
técnica de natureza probabilística, que modela a difusão das propriedades do fluido a partir
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da introdução de deslocamentos aleatórios compatíveis com os efeitos viscosos presentes
no escoamento.

Esta técnica possibilita a cada vórtice da nuvem um avanço randômico definido por
Zd ≡ (xd, yd). Considere um vórtice discreto k pertencente à nuvem, localizado na
posição xk no instante t. O avanço deste vórtice, nas direções radial e angular, é descrito,
respectivamente, pelas seguintes Equações 4.40 e 4.41.

∆rk =
√

4∆t
( 1

Re
+ ν∗

t

)
ln
( 1

P

)
(4.40)

∆θk = 2πQ (4.41)

onde P e Q representam números randômicos entre 0 e 1. Nota-se que a inclusão do
número de Reynolds modificado na Equação 4.40 evidencia a consideração dos efeitos
viscosos e turbulentos durante a etapa de difusão da vorticidade.

Dessa forma, a difusão de um vórtice discreto k da nuvem, após um incremento de
tempo ∆t resulta em um deslocamento na direção x e um deslocamento na direção y,
dados respectivamente pelas Equações 4.42 e 4.43.

xdk
= ∆rk cos ∆θ (4.42)

ydk
= ∆rk sin ∆θ (4.43)

Portanto, a convecção dos vórtices discretos presentes na nuvem incorpora as contri-
buições tanto da advecção quanto da difusão, resultando no deslocamento total desses
elementos. Assim, as equações que descrevem, respectivamente, o avanço dos vórtices nas
componentes x e y, são expressas pelas Equações 4.44 e 4.45.

xk(t + ∆t) = xk(t) + uk(t)∆t + xdk
(4.44)

yk(t + ∆t) = yk(t) + vk(t)∆t + ydk
(4.45)



5 Análise de Resultados

Neste capítulo, os resultados numéricos são apresentados para o caso de um cilindro
com seção circular, nas configurações liso e rugoso, oscilando na direção in-line. A
apresentação desses resultados tem como principais objetivos:

• Estabelecer e validar os parâmetros numéricos variáveis empregados nas simulações
utilizando o algoritmo do Método de Vórtices Discretos (MVD);

• Calcular as séries temporais dos coeficientes de força e do coeficiente de pressão,
com o objetivo de permitir uma análise física do regime de formação de vórtices a
partir da superfície do corpo, e investigar o efeito da rugosidade no comportamento
dos carregamentos fluidodinâmicos ao longo do tempo;

• Avaliar o fenômeno de lock-in, verificando se o efeito simulado de rugosidade é
capaz de suprimir ou modificar esse acoplamento entre a frequência de oscilação do
corpo e a frequência de desprendimento de vórtices;

• Identificar o padrão de esteira formado a jusante do corpo e classificar os modos de
desprendimento de vórtices com base em comparações com resultados experimentais
disponíveis na literatura.

Os parâmetros físicos e numéricos necessários para a análise dos resultados são:

(a) Número de Reynolds (Re): Neste trabalho, adotou-se Re = 105 para todas as
simulações, considerando a faixa de interesse prático associada a altos números
de Reynolds. A escolha desse regime visa demonstrar a capacidade do Método de
Vórtices Discretos (MVD) em simular escoamentos não permanentes, utilizando o
Método de Avanço Randômico para tratar a difusão da vorticidade de forma eficiente.

(b) Ângulo de ataque para o escoamento incidente (α): O ângulo de ataque (α) do
escoamento incidente é considerado igual a zero para as simulações numéricas
envolvendo o cilindro circular.

(c) Amplitude de oscilação in-line do corpo (A): Para a análise comparativa com os
resultados apresentados por Ongoren & Rockwell para Re = 855, foi adotada
uma amplitude A = 0, 13. Essa escolha visa permitir a avaliação do comporta-
mento do sistema sob condições semelhantes às utilizadas no estudo de referência,
possibilitando uma comparação mais precisa dos resultados numéricos obtidos.
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(d) Freqüência de oscilação in-line do corpo (f0): A freqüência de oscilação do corpo
assume diferentes valores para que se identifique o fenômeno da sincronização
entre a freqüência de emissão de vórtices do corpo oscilando fs e a freqüência
de oscilação do corpo f0. As frequências de oscilação adotadas, já devidamente
adimensionalizadas foram: f0 = 0, 04, f0 = 0, 2, f0 = 0, 34, f0 = 0, 4 e f0 = 0, 8.

(e) Rugosidade relativa (ε/D): Nas simulações numéricas realizadas, foram conside-
rados quatro valores de alturas médias de rugosidade relativa para a superfície do
cilindro. Os valores adotados foram ε/D = 0, 0; ε/D = 0, 001; ε/D = 0, 0045 e
ε/D = 0, 007. Esses parâmetros permitem avaliar de forma sistemática os efeitos
da rugosidade na dinâmica do escoamento e na interação fluido-estrutura.

(f) Número de painéis planos no cilindro (M): A superfície do cilindro circular é
discretizada em M = 300 painéis planos de comprimento uniforme, sobre os
quais são distribuídas fontes de densidade constante para representar o campo de
escoamento.

(g) Número de módulos do solo (NM): O solo é dividido em NM = 10 módulos de
igual comprimento.

(h) Número de painéis em cada módulo do solo (NP ): Cada módulo do solo é discreti-
zado com NP = 20 painéis planos.

(i) Incremento de tempo (∆t): Nas simulações numéricas, adota-se um incremento
de tempo fixo de ∆t = 0, 05, compatível com a precisão do esquema de avanço
temporal de primeira ordem de Euler utilizado na advecção e difusão da nuvem de
vórtices discretos.

(j) Raio do Núcleo do Vórtice de Lamb (σ0): Adotando-se Re = 105 e ∆t = 0, 05
tem-se para o cilindro circular o valor de σ0 = 0, 001.
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5.1 Cilindro Circular Estacionário

Como etapa preliminar à análise do cilindro oscilante, realizou-se a simulação numérica
de um escoamento ao redor de um cilindro circular estacionário, posicionado a uma
distância vertical g = 1000 acima do solo. Este caso, amplamente estudado na literatura, é
comparado com os resultados experimentais de Blevins [45] com ±10% de incerteza.

A Figura 5.1 apresenta as séries temporais dos coeficientes de forças para um escoa-
mento com Re = 105. Observa-se a presença de um transiente numérico até aproximada-
mente um tempo t = 15. Após esse transiente, os coeficientes de arrasto de forma (pressão)
e sustentação passam a oscilar de forma mais regular, indicando o estabelecimento de um
comportamento periódico dos carregamentos fluidodinâmicos atuantes.

Com o objetivo de calcular os valores médios dos coeficientes de arrasto (C̄d) e
sustentação (C̄l), bem como descrever o mecanismo de formação de vórtices conforme
proposto por Gerrard [1], foi realizada uma análise mais detalhada da evolução temporal
dessas grandezas. A partir dos dados apresentados anteriormente, considerou-se o intervalo
entre t = 20 a t = 50, período no qual a simulação não encontra-se no transiente
numérico. Esse recorte, ilustrado na Figura 5.2, permitiu o cálculo dos valores médios dos
carregamentos fluidodinâmicos atuantes, além da identificação dos pontos característicos
P, Q, R, S e T, com base na curva do coeficiente de sustentação. Esses pontos representam
diferentes fases do processo de desprendimento de vórtices, possibilitando uma análise
física mais precisa do fenômeno.
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Figura 5.1 – Séries temporais dos coeficientes de forças para o cilindro circular estacionário
(M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105).
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Figura 5.2 – Séries temporais dos coeficientes de forças para o cilindro circular estacionário
(M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105).

Os valores obtidos para o coeficiente de arrasto e o número de Strouhal na simulação
numérica apresentaram boa concordância com os dados experimentais reportados por
Blevins [45], mesmo considerando-se uma abordagem bidimensional, conforme indicado
na Tabela 1. Nesta configuração, o coeficiente de arrasto de forma representa mais de 98%
do coeficiente de arrasto total, motivo pelo qual o coeficiente de arrasto de atrito (viscoso)
não foi considerado separadamente. Além disso, ressalta-se que o número de Strouhal
tende a apresentar baixa sensibilidade à ausência de efeitos tridimensionais, o que justifica
a adoção de uma abordagem bidimensional para esta análise.

Tabela 1 – Valores médios do coeficiente de arrasto e do número de Strouhal para um
cilindro circular estacionário.

Caso (Re = 105) C̄d St

Blevins (1984) 1, 2 ± 10% 0, 19 ± 10%
Presente Simulação 1, 21 0,20

A determinação da frequência dominante associada ao número de Strouhal foi realizada
a partir da análise do sinal temporal do coeficiente de sustentação (Cl). Para isso, utilizou-
se a ferramenta OriginPro, aplicando-se a Transformada Rápida de Fourier (FFT) sobre
a série temporal. Essa técnica permitiu identificar os picos de energia no domínio da
frequência, sendo selecionada a frequência correspondente ao pico mais representativo, a
qual define o valor do número de Strouhal para o regime analisado.
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A Figura 5.3 apresenta o comportamento da distribuição média de pressão sobre a
superfície discretizada do cilindro circular, comparando os resultados obtidos na presente
simulação com os dados experimentais de Blevins [45]. Assim, observa-se uma região de
inversão do gradiente de pressão, seguida por um platô na curva, a partir do qual é possível
identificar o ângulo de separação do escoamento (θs). Para a simulação realizada, esse
ângulo foi estimado em aproximadamente θs = 68°, um valor considerado aceitável para
as condições adotadas.
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Figura 5.3 – Distribuição média do coeficiente de pressão ao longo da superfície dis-
cretizada do cilindro circular estacionário (M = 300, ∆t = 0, 05, σ0 =
0, 001, Re = 105).

Os pontos indicados por P, Q, R, S e T na Figura 5.2 correspondem, também, aos
instantes nos quais foi analisada a distribuição instantânea do coeficiente de pressão ao
longo da superfície discretizada do cilindro circular, conforme ilustrado na Figura 5.4. O
ângulo θ indica a posição angular relativa de cada ponto de controle sobre a superfície
do cilindro, sendo o valor do coeficiente de pressão calculado pontualmente para cada
posição.
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Figura 5.4 – Distribuição instantânea do coeficiente de pressão sobre a superfície dis-
cretizada do cilindro circular estacionário (M = 300, ∆t = 0, 05, σ0 =
0, 001, Re = 105).

O instante de tempo correspondente ao ponto P (t = 36, 95) indica uma boa aproxima-
ção com o início do desprendimento de uma estrutura vorticosa horária na parte superior do
cilindro, momento em que atua uma força de sustentação máxima e positiva. Na Figura 5.5,
identifica-se uma região de baixa pressão ao longo da superfície do cilindro, compreendida
aproximadamente entre θ = 65° e θ = 170°.
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Figura 5.5 – Desprendimento de uma estrutura vorticosa horária no instante de tempo
t = 36, 95 (Ponto P).

No instante representado pelo ponto Q da Figura 5.6, observa-se uma região de baixa
pressão aproximadamente constante entre os ângulos θ = 67° e θ = 288°, na qual ocorre
uma inversão do coeficiente de sustentação, passando de um valor positivo para negativo.
Nesse momento, a estrutura vorticosa desprendida no ponto P começa a ser incorporado à
esteira viscosa formada a jusante do corpo.

Figura 5.6 – Desprendimento de uma estrutura vorticosa horária no instante de tempo
t = 38, 0 (Ponto Q).

O instante de tempo representado pelo ponto R, na Figura 5.7, corresponde a uma
região de baixa pressão situada entre os ângulos θ = 189° e θ = 292°. Essa configuração
indica o desprendimento de uma estrutura vorticosa de sentido anti-horário na parte inferior
do cilindro, resultando em um valor negativo para a força de sustentação.
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Figura 5.7 – Desprendimento de uma estrutura vorticosa anti-horária no instante de tempo
t = 38, 95 (Ponto R).

De forma similar ao instante representado pelo ponto Q, o ponto S, Figura 5.8, apresenta
uma região de baixa pressão aproximadamente constante, compreendida entre θ = 68° e
θ = 286°. Em torno deste instante, a estrutura vorticosa desprendida no ponto R começa a
ser incorporado à esteira viscosa formada a jusante do corpo.

Figura 5.8 – Desprendimento de uma estrutura vorticosa anti-horária no instante de tempo
t = 40, 3 (Ponto S).

O período se completa no instante representado pelo ponto T, no qual se observa uma
força de sustentação positiva e uma região de baixa pressão compreendida aproximada-
mente entre θ = 50° e θ = 172°. De forma análoga ao ponto P, o ponto T, Figura 5.9, se
encontra próximo do instante do desprendimento de uma estrutura vorticosa de sentido
horário na parte superior do cilindro.
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Figura 5.9 – Desprendimento de uma estrutura vorticosa horária no instante de tempo
t = 41, 3 (Ponto T).

Assim, ao final do ciclo representado pelos pontos P, Q, R, S e T, é possível identificar
a formação da clássica esteira de Von Kármán. A estrutura final correspondente à esteira é
apresentado na Figura 5.10 para o instante final da simulação (t = 50), abrangendo um
comprimento horizontal de 20 diâmetros do cilindro. Observa-se o mecanismo alternado
de formação e desprendimento de estruturas vorticosas contrarrotativas.

Figura 5.10 – Estrutura da esteira de vórtices para o tempo final t = 50 para o cilindro
circular estacionário (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105).

Com relação às cargas fluidodinâmicas, observa-se que o coeficiente de arrasto (Cd)
oscila uma vez para cada vórtice desprendido, enquanto o coeficiente de sustentação
(Cl) oscila uma vez para cada par de vórtices que se desprende (Figuras 5.1 e 5.2). A
frequência adimensional extraída da curva de Cd corresponde aproximadamente ao dobro
da frequência adimensional determinada a partir da curva de Cl.

Dessa forma, considera-se o código numérico empregado apto a incluir os efeitos de
rugosidade superficial sobre a superfície do cilindro circular, de acordo com a proposta
apresentada na Tese de Doutorado de Bimbato [33]. Esse modelo injeta quantidade de
movimento instantânea no interior da camada limite hidrodinâmica, representando, de
forma mais realista, os efeitos da rugosidade superficial. Ressalta-se que tal abordagem
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se mostrou consideravelmente mais sensível aos efeitos bidimensionais do que simples
modelos de turbulência.

É importante destacar, contudo, que não serão apresentados aqui resultados para os
efeitos da rugosidade superficial sobre a superfície do cilindro circular estacionário, visto
que uma análise detalhada encontra-se desenvolvida na Tese de Bimbato [33].

5.2 Cilindro Circular Oscilando In-Line sem e com Efeito

de Rugosidade

A Tabela 2 apresenta os valores médios obtidos numericamente para os coeficientes
de arrasto de forma e de sustentação, bem como para a frequência de emissão de vórtices,
considerando a curva do coeficiente de arrasto (f ∗). Os resultados referem-se ao caso
em que a amplitude de oscilação do cilindro circular é fixada em A = 0, 13, enquanto os
valores de frequência de oscilação e de rugosidade relativa variam conforme cada condição
analisada.

Tabela 2 – Resultados numéricos obtidos para cilindro circular oscilando in-line com
diferentes valores de rugosidade relativa (A = 0, 13, α = 0° e Re = 105).

Caso f0 ε/D C̄l C̄d f∗ f0/f∗ Modo

1 0, 04 0, 000 −0, 0056 1, 2270 0, 0394 1, 015 A − I
2 0, 04 0, 001 −0, 0024 1, 2853 0, 0391 1, 023 A − I
3 0, 04 0, 0045 −0, 0177 1, 2758 0, 0418 0, 957 A − I
4 0, 04 0, 007 0, 0150 1, 3470 0, 0507 0, 789 Não lock-in
5 0, 2 0, 000 −0, 0232 1, 3568 0, 2008 0, 996 A − IV
6 0, 2 0, 001 0, 0671 1, 4221 0, 1973 1, 014 A − IV
7 0, 2 0, 0045 0, 2063 1, 4521 0, 1996 1, 002 A − IV
8 0, 2 0, 007 −0, 0420 1, 5237 0, 201 0, 995 A − IV
9 0, 34 0, 000 −0, 0292 1, 3535 0, 3375 1, 007 S − I (Tipo I)
10 0, 34 0, 001 0, 0205 1, 3441 0, 3407 0, 998 S − I (Tipo I)
11 0, 34 0, 0045 −0, 0472 1, 5025 0, 3397 1, 000 Transição
12 0, 34 0, 007 −0, 0934 1, 6998 0, 3399 1, 000 A − IV com coalescência
13 0, 80 0, 000 −0, 0668 1, 0896 0, 80 1, 000 C − I
14 0, 80 0, 001 −0, 2403 0, 9408 0, 7958 1, 005 C − I
15 0, 80 0, 0045 −0, 0147 0, 9285 0, 7972 1, 004 C − I
16 0, 80 0, 007 −0, 0697 0, 9894 0, 7986 1, 002 C − I

A determinação da frequência dominante foi realizada a partir da análise espectral
do sinal temporal do coeficiente de arrasto (Cd). Para isso, foi utilizada a ferramenta
OriginPro, por meio da aplicação da Transformada Rápida de Fourier (FFT), que permitiu
identificar os picos de energia no domínio da frequência. A principal frequência associada
à oscilação do Cd reflete o modo de desprendimento de vórtices no regime analisado. Com
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base nessa análise, foram selecionadas as frequências correspondentes aos picos mais
representativos do espectro para estudo detalhado, uma vez que estas refletem os modos
predominantes de interação fluido-estrutura no escoamento.

5.2.1 Cilindro Circular com Fequência de Oscilação f0 = 0, 04

A Figura 5.11 apresenta a série temporal do coeficiente de arrasto e da oscilação
do corpo (Equação 3.1) para o Caso 1, que corresponde ao cilindro liso submetido a
uma frequência de oscilação imposta de 0,04. A partir da curva de oscilação do corpo,
identificam-se os pontos de A a E, que representam um período completo de movimento.
Para melhor visualização do comportamento das curvas, os resultados foram traçados
no intervalo de tempo de t = 25 a t = 80. Observa-se que os picos e vales da curva
de arrasto estão bem definidos e ocorrem em fase com a oscilação do corpo, indicando
que o período do coeficiente de arrasto é aproximadamente igual ao período de oscilação.
Essa sincronização evidencia que o cilindro circular opera no regime de lock-in, ou seja,
a frequência de oscilação do corpo é próxima à frequência associada às flutuações do
coeficiente de arrasto.
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Figura 5.11 – Séries temporais do coeficiente de arrasto e oscilação do corpo para o cilindro
circular liso oscilando in-line com frequência de oscilação forçada de f0 =
0, 04 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105, f0 = 0, 04 e A =
0, 13).
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A Figura 5.12 ilustra o comportamento das estruturas vorticosas nas imediações do
cilindro, correspondentes aos pontos A, B, C, D e E, os quais caracterizam um ciclo
completo de oscilação do cilindro. É importante destacar que esses pontos não possuem a
mesma interpretação física dos pontos extraídos da curva do coeficiente de sustentação para
o caso de um cilindro estacionário. Para o cilindro fixo, é possível observar diretamente o
mecanismo de geração e desprendimento de vórtices. No entanto, no caso atual, em que o
cilindro está oscilante, a análise dos pontos refere-se ao comportamento durante um ciclo
de oscilação, no qual ocorrem diversas variações do coeficiente de sustentação ao longo do
tempo.

Figura 5.12 – Sequência do movimento harmônico do cilindro circular liso oscilando in-
line com frequência de oscilação forçada de f0 = 0, 04 (M = 300, ∆t =
0, 05, σ0 = 0, 001, Re = 105, f0 = 0, 04 e A = 0, 13).

A estrutura final da esteira é apresentada na Figura 5.13 para o instante final da
simulação (t = 100). Observa-se o mecanismo alternado de formação e desprendimento
de estruturas vorticosas contrarrotativas, caracterizando a esteira clássica de Von Kármán.
Com base nos resultados obtidos de Ongoren & Rockwell [10], identificou-se a ocorrência
do Modo AI para o Caso 1. Pode-se observar na Tabela 2 que o coeficiente de arrasto
está próximo daquele obtido para o cilindro estacionário, e que o sistema encontra-se em
regime de lock-in.
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Figura 5.13 – Estrutura da esteira de vórtices para o tempo final t = 100 para o cilindro
circular liso oscilando in-line com frequência de oscilação forçada de f0 =
0, 04 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105, f0 = 0, 04 e A =
0, 13).

A comparação entre as Figuras 5.13 e 5.14 revela que os resultados numéricos ob-
tidos estão em concordância com os dados experimentais apresentados por Ongoren &
Rockwell [10] para uma razão de frequências f0/fs = 0, 5. No entanto, para o caso atual, a
razão de frequências observada é f0/fs = 0, 2. Essa diferença pode ser atribuída à variação
no número de Reynolds, uma vez que, nos experimentos de Ongoren & Rockwell [10],
o número de Reynolds considerado foi Re = 855, ao passo que, no presente estudo, o
regime considerado foi de Re = 105. Apesar dessa diferença, o modelo de vórtice discreto
(MVD) empregado neste trabalho foi capaz de capturar com sucesso o mesmo modo de
vibração.

Figura 5.14 – Visualização experimental do modo de sincronização A-I para Re = 855.
(Reproduzida de Ongoren & Rockwell [10]).

Os resultados a seguir referem-se à análise do efeito da rugosidade relativa sobre o valor
do coeficiente de arrasto médio e sobre a razão de frequências, mantendo-se a frequência
de oscilação constante em 0,04. Por meio dessa análise, é possível inferir se o cilindro em
vibração in-line permanece ou se foi retirado do regime de lock-in. As Figuras 5.15, 5.16
e 5.17 apresentam a série temporal do coeficiente de arrasto e da oscilação do corpo para
os casos 2, 3 e 4, respectivamente.
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Figura 5.15 – Séries temporais do coeficiente de arrasto e oscilação do corpo para o cilindro
circular rugoso (ε/D = 0, 001) oscilando in-line com frequência de oscila-
ção forçada de f0 = 0, 04 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e
A = 0, 13).
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Figura 5.16 – Séries temporais do coeficiente de arrasto e oscilação do corpo para o cilindro
circular rugoso (ε/D = 0, 0045) oscilando in-line com frequência de oscila-
ção forçada de f0 = 0, 04 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e
A = 0, 13).



88 Capítulo 5. Análise de Resultados

25 30 35 40 45 50 55 60 65 70 75 80

Tempo [ - ]

-0.4

0

0.4

0.8

1.2

1.6

2

C
d [

 - 
] e

 X
O

SC
 [ 

- ]

Coeficiente de Arrasto
Oscilação do Corpo

A

B

C

D

E

Figura 5.17 – Séries temporais do coeficiente de arrasto e oscilação do corpo para o cilindro
circular rugoso (ε/D = 0, 007) oscilando in-line com frequência de oscila-
ção forçada de f0 = 0, 04 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e
A = 0, 13).

Observa-se que, na Figura 5.17, a curva do coeficiente de arrasto não apresenta um
comportamento bem definido de picos e vales. Assim, pode-se inferir, em um primeiro
momento, que para a rugosidade relativa (ε/D = 0, 007) a curva de arrasto não apresenta
o fenômeno de batimento característico, indicando que a relação de frequências (f0/f ∗)
não se mantém próxima de 1. A partir da análise da Tabela 2, verifica-se que o valor
encontrado para a relação de frequências foi de 0,789, confirmando a primeira expectativa
obtida pela inspeção das curvas. Além disso, observa-se que, devido ao comportamento
menos regular em comparação às demais rugosidades analisadas, o coeficiente de arrasto
apresentou um aumento superior a 9% em relação ao caso 1.

Para o caso 2, observou-se um aumento no coeficiente de arrasto médio em comparação
ao caso liso, contudo o cilindro manteve-se no regime de lock-in. No caso 3, embora o
coeficiente de arrasto médio tenha permanecido aproximadamente constante, verificou-se
que o cilindro circular começou a se afastar do regime de lock-in, uma vez que a relação
de frequências encontrada foi de 0,957. Dessa forma, para as simulações realizadas com
frequência de oscilação igual a 0,04, observa-se uma tendência de saída do regime de
lock-in com o aumento da rugosidade relativa, ao mesmo tempo em que se evidencia um
incremento no valor do coeficiente de arrasto médio.

Como exemplo do efeito mais pronunciado da rugosidade em comparação ao cilindro
liso, a Figura 5.18 apresenta o comportamento das estruturas vorticosas nas imediações do
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cilindro, correspondentes aos pontos A, B, C, D e E, para o caso com rugosidade relativa
(ε/D = 0, 007). A Figura 5.19 ilustra o padrão da esteira no instante final da simulação
(t = 100), considerando uma distância equivalente a 20 diâmetros a jusante do cilindro.

Figura 5.18 – Sequência do movimento harmônico do cilindro circular rugoso (ε/D =
0, 007) oscilando in-line com frequência de oscilação forçada de f0 = 0, 04
(M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105, f0 = 0, 04 e A = 0, 13).

Figura 5.19 – Estrutura da esteira de vórtices para o tempo final t = 100 para o cilindro
circular rugoso (ε/D = 0, 007) oscilando in-line com frequência de oscila-
ção forçada de f0 = 0, 04 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e
A = 0, 13).
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As Figuras 5.20 e 5.21 mostram, respectivamente para o cilindro liso e para o com
maior rugosidade relativa (ε/D = 0,007), as distribuições instantâneas do coeficiente de
pressão ao longo do ciclo de oscilação, considerando os pontos de A a E.

Os pontos P a T da Figura 5.4 referem-se ao cilindro estacionário e foram obtidos a
partir da curva de sustentação. Comparando com os pontos A a E do cilindro liso oscilante,
observa-se comportamento semelhante na distribuição de pressão, com regiões de baixa
pressão em um dos lados e o ponto C indicando a incorporação da estrutura ao escoamento,
típica do modo A-I. As diferenças na ordem de desprendimento dos vórtices decorrem das
diferentes curvas analisadas.

Na Figura 5.21, o cilindro rugoso apresenta padrão de pressão distinto em relação ao
cilindro liso (Figura 5.20), refletindo a influência da rugosidade na dinâmica do escoamento.
Isso também é evidenciado pelas Figuras 5.12 e 5.18, que mostram diferenças claras no
campo de vorticidades.
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Figura 5.20 – Distribuição instantânea do coeficiente de pressão sobre a supefície discreti-
zada do cilindro circular liso oscilando in-line (M = 300, ∆t = 0, 05, σ0 =
0, 001, Re = 105, f0 = 0, 04 e A = 0, 13).
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Figura 5.21 – Distribuição instantânea do coeficiente de pressão sobre a supefície discre-
tizada do cilindro circular rugoso (ε/D = 0, 007) oscilando in-line com
frequência de oscilação forçada de f0 = 0, 04 (M = 300, ∆t = 0, 05, σ0 =
0, 001, Re = 105 e A = 0, 13).

5.2.2 Cilindro Circular com Fequência de Oscilação f0 = 0, 2

Para os casos com frequência de oscilação igual a 0,2, não foi observada influência
significativa da rugosidade relativa na retirada do sistema do regime de lock-in para o
cilindro circular. Observou-se, entretanto, um aumento superior a 12% no coeficiente
de arrasto na comparação entre os casos 5 e 8. Considerando que o efeito simulado da
rugosidade não promoveu a saída do regime de ressonância, os resultados apresentados
para a frequência de f0 = 0, 2 referem-se apenas aos Casos 5 e 8. As Figuras 5.22 e
5.23 apresentam as séries temporais do coeficiente de arrasto e da oscilação do corpo para
os Casos 5 e 8, respectivamente. Destacam-se os pontos de A até I, uma vez que são
necessárias duas oscilações completas do corpo para a caracterização do referido modo de
desprendimento.
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Figura 5.22 – Séries temporais do coeficiente de arrasto e oscilação do corpo para o cilindro
circular liso oscilando in-line com frequência de oscilação forçada de f0 =
0, 2 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e A = 0, 13).
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Figura 5.23 – Séries temporais do coeficiente de arrasto e oscilação do corpo para o cilindro
circular rugoso, com ε/D = 0, 007 oscilando in-line com frequência de
oscilação forçada de f0 = 0, 2 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re =
105 e A = 0, 13).
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As esteiras de vórtices correspondentes aos Casos 5 e 8 para o instante de tempo t = 75
estão representadas nas Figuras 5.24 e 5.25, respectivamente. Observa-se que o padrão
de desprendimento de vórtices está em concordância com os resultados experimentais
apresentados por Ongoren & Rockwell [10] para uma razão de frequências f0/fs = 1, 8,
conforme ilustrado na Figura 5.26. Dessa forma, para esses casos, identifica-se a ocorrência
do Modo A-IV.

Figura 5.24 – Estrutura da esteira de vórtices para o tempo final t = 75 para o cilindro
circular liso oscilando in-line com frequência de oscilação forçada de f0 =
0, 2 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e A = 0, 13).

Figura 5.25 – Estrutura da esteira de vórtices para o tempo final t = 75 para o cilindro
circular rugoso (ε/D = 0, 007) oscilando in-line com frequência de oscila-
ção forçada de f0 = 0, 2 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e
A = 0, 13).
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Figura 5.26 – Visualização experimental do modo de sincronização A-IV para Re = 855.
(Reproduzida de Ongoren & Rockwell [10].)

5.2.3 Cilindro Circular com Fequência de Oscilação f0 = 0, 34

Para os casos com frequência de oscilação igual a 0,34, não foi observada uma influên-
cia significativa da rugosidade relativa na saída do regime de lock-in para o cilindro circular.
No entanto, identificou-se um aumento progressivo no coeficiente de arrasto médio até
ε/D = 0, 007. Assim, o coeficiente de arrasto aumentou em mais de 25% na comparação
entre os casos 9 e 12. Considerando que a rugosidade não promoveu a saída do regime de
lock-in, os resultados apresentados para a frequência de f0 = 0, 34 referem-se aos casos 9
e 12. As Figuras 5.27 e 5.28 apresentam as séries temporais do coeficiente de arrasto e da
posição de oscilação do corpo para os casos 9 e 12, respectivamente.
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Figura 5.27 – Séries temporais do coeficiente de arrasto e oscilação do corpo para o cilindro
circular liso oscilando in-line com frequência de oscilação forçada de f0 =
0, 34 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e A = 0, 13).
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Figura 5.28 – Séries temporais do coeficiente de arrasto e oscilação do corpo para o cilindro
circular rugoso ε/D = 0, 007 oscilando in-line com frequência de oscilação
forçada de f0 = 0, 34 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e
A = 0, 13).

As esteiras de vórtices correspondentes aos Casos 9 e 12 para o instante de tempo
t = 50 estão representadas nas Figuras 5.29 e 5.30, respectivamente.

Figura 5.29 – Estrutura da esteira de vórtices para o tempo final t = 50 para o cilindro
circular liso oscilando in-line com frequência de oscilação forçada de f0 =
0, 34 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e A = 0, 13).
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Figura 5.30 – Estrutura da esteira de vórtices para o tempo final t = 50 para o cilindro
circular rugoso ε/D = 0, 007 oscilando in-line com frequência de oscilação
forçada de f0 = 0, 34 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e
A = 0, 13).

Em uma análise inicial das esteiras de vórtices geradas pelo escoamento ao redor dos
cilindros, observa-se visualmente uma distinção significativa entre os padrões associados
ao cilindro liso e ao cilindro com superfície rugosa. A Figura 5.29 ilustra, para o caso
do cilindro liso, um padrão de esteira que, à primeira vista, se assemelha à configuração
simétrica descrita por Ongoren & Rockwell [10], embora apresente algumas variações em
relação ao modelo clássico. Ao comparar esses resultados com os apresentados por Hu
et.al. [14] (Figura 5.31), observa-se que o padrão em questão pode ser classificado como
um desprendimento simétrico com coalescência de vórtices, fenômeno também reportado
em sua análise experimental.

Figura 5.31 – Visualização experimental do modo de sincronização S-I (Tipo I) para Re =
360, A/D = 0, 2, 0, 5e1, 0 e f0/fs = 0, 44 e 0, 88. (Reproduzida de Hu et
al. [14]).
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A Figura 5.32 apresenta o gráfico de distribuição instantânea de pressão ao longo de
um ciclo de oscilação do cilindro liso, considerando o intervalo de pontos de A até E.
Essa distribuição evidencia a presença de dois vales de baixa pressão, os quais indicam o
surgimento de vórtices gêmeos em posições simétricas em relação ao eixo do escoamento.
Tal comportamento reforça a hipótese de uma esteira predominantemente simétrica sob as
condições analisadas.
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Figura 5.32 – Distribuição instantânea do coeficiente de pressão sobre a supefície discreti-
zada do cilindro circular liso oscilando in-line com frequência de oscilação
forçada de f0 = 0, 34 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105, f0 =
0, 04 e A = 0, 13).
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No caso do cilindro com rugosidade superficial relativa ε/D = 0, 007, observa-se
uma alteração substancial no padrão de desprendimento de vórtices. A esteira de vórtices
apresentada na Figura 5.30 revela uma nova estrutura de desprendimento, o modo A-IV,
com a coalescência dos vórtices ao longo da esteira. Esse comportamento representa
uma novidade em relação ao efeito da rugosidade, que induziu a transição do modo de
desprendimento simétrico com coalescência, observado no cilindro liso, para o modo A-IV
com coalescência. O gráfico de distribuição instantânea de pressão ao longo de um ciclo
de oscilação do cilindro rugoso é analisado no intervalo de pontos de A até I, representado
nas Figuras 5.33 e 5.34, evidenciando características distintas em relação ao caso liso.
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Figura 5.33 – Distribuição instantânea do coeficiente de pressão dos pontos A até E sobre
a supefície discretizada do cilindro circular rugoso ε/D = 0, 007 oscilando
in-line com frequência de oscilação forçada de f0 = 0, 34 (M = 300, ∆t =
0, 05, σ0 = 0, 001, Re = 105, f0 = 0, 04 e A = 0, 13).
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Figura 5.34 – Distribuição instantânea do coeficiente de pressão dos pontos F até I sobre a
supefície discretizada do cilindro circular rugoso ε/D = 0, 007 oscilando
in-line com frequência de oscilação forçada de f0 = 0, 34 (M = 300, ∆t =
0, 05, σ0 = 0, 001, Re = 105, f0 = 0, 04 e A = 0, 13).

Dessa forma, conclui-se que o aumento da rugosidade para ε/D = 0, 007, em compa-
ração com a superfície lisa, induz mudanças no padrão de formação da esteira de vórtices,
embora o sistema permaneça em regime de lock-in. Tal comportamento evidencia a sen-
sibilidade do escoamento às condições de contorno impostas pela superfície do corpo,
mesmo quando o acoplamento entre a oscilação e o desprendimento de vórtices ainda se
mantém.
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5.2.4 Cilindro Circular com Fequência de Oscilação f0 = 0, 8

Os casos com frequência de oscilação f0 = 0, 8 apresentam resultados expressivos
em relação ao efeito da rugosidade na redução do arrasto sobre o cilindro. A Tabela 2
evidencia a diminuição do coeficiente de arrasto ao se comparar o cilindro liso com aquele
que apresenta rugosidade relativa de ε/D = 0, 0045, bem como o impacto de um aumento
da rugosidade de ε/D = 0, 0045 para ε/D = 0, 007. O coeficiente de arrasto apresentou
uma redução superior a 9% na comparação entre os casos 13 e 16. As Figuras 5.35, 5.36 e
5.37 apresentam os gráficos de coeficiente de arrasto e oscilação do corpo para a frequência
f0 = 0, 8, considerando três condições de superfície: cilindro liso, com rugosidade relativa
de ε/D = 0, 0045 e de ε/D = 0, 007.
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Figura 5.35 – Séries temporais do coeficiente de arrasto e oscilação do corpo para o cilindro
circular liso oscilando in-line com frequência de oscilação forçada de f0 =
0, 8 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e A = 0, 13).
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Figura 5.36 – Séries temporais do coeficiente de arrasto e oscilação do corpo para o cilindro
circular rugoso ε/D = 0, 0045 oscilando in-line com frequência de oscilação
forçada de f0 = 0, 8 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e
A = 0, 13).
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Figura 5.37 – Séries temporais do coeficiente de arrasto e oscilação do corpo para o cilindro
circular rugoso ε/D = 0, 007 oscilando in-line com frequência de oscilação
forçada de f0 = 0, 8 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e
A = 0, 13).
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Esse resultado está em concordância com os resultados obtidos por Gao et al. [19],
cuja análise demonstrou que, dentro de um intervalo limitado de números de Reynolds, o
coeficiente de arrasto em cilindros rugosos apresenta uma redução acentuada em compara-
ção ao cilindro liso, mesmo para baixos valores de rugosidade superficial. Com o aumento
da rugosidade, o arrasto cresce rapidamente, atingindo seu valor máximo quando 0, 00843.

As esteiras de vórtices dos Casos 13, 15 e 16 no instante t = 50 são mostradas
nas Figuras 5.38, 5.39 e 5.40. Ongoren e Rockwell [10] observaram que um cilindro
submetido a oscilações forçadas com ângulo α = 0◦ em relação ao escoamento livre
apresenta competição entre modos simétricos e antissimétricos para frequências na faixa
f0/fs = 0, 5 a 1, 0. Essa competição ocorre quando não há sincronização, resultando
na coexistência dos dois modos. No presente estudo, esse regime não foi identificado
para f0 = 0, 8. Por outro lado, essa mesma frequência forçada induz o modo caótico
C-I em todos os casos de rugosidade relativa simulados, o mesmo modo identificado
experimentalmente por Hu et al. [14] e ilustrado na Figura 5.41.

Figura 5.38 – Estrutura da esteira de vórtices para o tempo final t = 50 para o cilindro
circular liso oscilando in-line com frequência de oscilação forçada de f0 =
0, 8 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e A = 0, 13).

Figura 5.39 – Estrutura da esteira de vórtices para o tempo final t = 50 para o cilindro
circular rugoso (ε/D = 0, 0045) oscilando in-line com frequência de osci-
lação forçada de f0 = 0, 8 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e
A = 0, 13).
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Figura 5.40 – Estrutura da esteira de vórtices para o tempo final t = 50 para o cilindro
circular rugoso (ε/D = 0, 007) oscilando in-line com frequência de oscila-
ção forçada de f0 = 0, 8 (M = 300, ∆t = 0, 05, σ0 = 0, 001, Re = 105 e
A = 0, 13).

Figura 5.41 – Visualização experimental do modo caótico C-I para Re = 360. (Reprodu-
zida de Hu et al. [14].)

Por fim, considera-se que o código computacional desenvolvido, baseado no Método
de Vórtices Discretos (MVD) com acoplamento estrutural para vibração forçada e inclusão
de efeitos de rugosidade superficial, foi capaz de reproduzir adequadamente os fenômenos
analisados. Considerando número de Reynolds da ordem de 100.000, o modelo demons-
trou habilidade em capturar alguns modos de sincronização observados experimentalmente
para números de Reynolds inferiores a 1.000. Em determinadas configurações, a dessincro-
nização também foi obtida com sucesso, o que evidencia o atendimento ao objetivo central
desta Dissertação de Mestrado. Vale destacar que, embora os casos com frequência de
oscilação f0 = 0, 6 não tenham sido apresentados neste trabalho, verificou-se que exibiram
o mesmo comportamento observado para f0 = 0, 8.

Os resultados reforçam ainda a principal contribuição da Tese de Doutorado de Bim-
bato [33], a qual propôs um modelo de rugosidade superficial bidimensional mais sensível
do que simples modelagens de turbulência. No presente trabalho, tais efeitos foram
incorporados juntamente à análise de VIV forçada, alcançando resultados consistentes.



6 Conclusões e Sugestões de Traba-
lhos Futuros

O Capítulo 6 está organizado em duas seções principais. A primeira seção apresenta
as conclusões mais significativas relacionadas aos efeitos do escoamento em torno de um
cilindro circular que oscila forçadamente na direção do escoamento incidente. Para isso,
utilizou-se o Método dos Vórtices Discretos, que permitiu o acoplamento hidrodinâmico
com o modelo de vibração estrutural utilizado. Além disso, nesta análise foi considerado o
efeito da rugosidade superficial do cilindro, que influenciou diretamente nos resultados da
simulação. Na segunda seção, são apresentadas algumas sugestões para o desenvolvimento
futuro dos estudos iniciados nesta Dissertação de Mestrado, que também só foi possível
devido a trabalhos anteriores desenvolvidos no LMAML.

6.1 Conclusões

Esta Dissertação teve como objetivo analisar o fenômeno das Vibrações Induzidas por
Vórtices (VIV) em um cilindro circular bidimensional com rugosidade superficial, subme-
tido a movimento oscilatório in-line em escoamento uniforme. Utilizou-se o Método de
Vórtices Discretos (MVD), baseado em uma formulação puramente lagrangiana, eficiente
para representar campos de vorticidade em escoamentos não permanentes de alto número
de Reynolds (Re = 105), aproximando-se de cenários de interesse em engenharia.

A discretização do contorno do corpo foi realizada com M = 300 painéis planos, nos
quais foram distribuídas fontes de densidade uniforme (condição de contorno de Neumann)
e gerados vórtices de Lamb. Esses vórtices, com intensidade Γi, foram transportados de
acordo com velocidades resultantes do escoamento livre, do movimento oscilatório do
corpo e da interação mútua entre vórtices via Lei de Biot-Savart. A implementação do
modelo foi feita em FORTRAN com paralelização via OPEN/MP, permitindo significativa
redução no tempo computacional. O efeito viscoso foi incorporado pelo Método de Avanço
Randômico.

O modelo acoplado fluido-estrutura utilizou um referencial inercial sobre o chão,
possibilitando o cálculo do campo de velocidades e dos carregamentos hidrodinâmicos
por meio da formulação integral da pressão, derivada de uma equação de Poisson para a
pressão. O foco da análise foi o acoplamento entre vibração in-line e desprendimento de
vórtices, observando os impactos no campo de pressões, no coeficiente de arrasto de forma
e no número de Strouhal retirado desta curva.
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A inclusão da rugosidade superficial (ε/D = 0,001, 0,0045 e 0,007) demonstrou
influências significativas na dinâmica de desprendimento de vórtices. Para frequências
de excitação mais baixas, como f0 = 0,04, a rugosidade foi determinante para a saída
do regime de lock-in, indicando seu papel efetivo na modulação do acoplamento fluido-
estrutura. O coeficiente de arrasto aumentou em mais de 9% na comparação entre os casos
1 (ε/D = 0,000) e 4 (ε/D = 0,007).

Em contrapartida, para frequências mais elevadas, como f0 = 0,8, o sistema permane-
ceu em lock-in mesmo com a presença da rugosidade. Entretanto, observou-se uma redução
no valor médio do coeficiente de arrasto, sugerindo que a rugosidade pode melhorar a
eficiência aerodinâmica do sistema em certas condições, mesmo sem afetar o regime de
sincronização. O coeficiente de arrasto diminuiu em mais de 9% na comparação entre os
casos 13 (ε/D = 0,000) e 16 (ε/D = 0,007). Esses resultados mostram que a influência
da rugosidade está fortemente associada à frequência de excitação, impactando diferentes
aspectos da resposta hidrodinâmica do sistema.

As simulações também possibilitaram a identificação de diferentes modos de despren-
dimento de vórtices, mesmo em condições de alto número de Reynolds, em comparação
com regimes observados experimentalmente para Re < 1000. Foram capturados o Modo
AI para f0 = 0,04, o Modo AIV para f0 = 0,20 e um modo simétrico com coalescência de
vórtices para f0 = 0,34. Neste último caso, verificou-se que a introdução de rugosidade
na superfície do cilindro alterou o padrão de desprendimento, promovendo a transição do
modo simétrico para o Modo AIV com coalescência de vórtices (ε/D = 0, 007). Além
disso, para a frequência forçada f0 = 0,80, foi observado de forma consistente o Modo
Caótico C-I em todos os níveis de rugosidade analisados. Algumas divergências entre os
resultados simulados e dados experimentais são atribuídas principalmente à ausência de
tridimensionalidade na formulação bidimensional e à diferença entre os valores do número
de Reynolds. Ainda assim, os padrões globais de desprendimento, os mecanismos de aco-
plamento fluido-estrutura e as transições modais foram bem representados, evidenciando a
capacidade do MVD em capturar com boa fidelidade os fenômenos de VIV, incluindo-se
com sucesso os efeitos de rugosidade superficial.

Conclui-se que este trabalho atinge seu objetivo de contribuir para a compreensão
dos efeitos combinados de rugosidade e vibração forçada in-line em corpos rombudos
submetidos a escoamentos uniformes. A abordagem numérica demonstrou robustez e
eficiência para análise dos regimes de desprendimento de vórtices em condições de número
de Reynolds elevado. O modelo desenvolvido constitui uma base importante para futuras
extensões tridimensionais e aplicações em cenários mais complexos, como troca de calor,
interação com o solo, múltiplos corpos ou rugosidade distribuída de forma não uniforme.
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6.2 Sugestões Para Trabalhos Futuros

Com base nos resultados obtidos e nas características assumidas para o presente modelo,
diversas direções podem ser exploradas com o objetivo de aprofundar a compreensão dos
fenômenos relacionados à interação fluido-estrutura em corpos submetidos a vibração
in-line e à presença de rugosidade superficial.

Uma possível extensão deste estudo consiste na análise do chamado efeito solo, por
meio da aproximação do cilindro a uma parede inferior fixa. Alternativamente, pode-se
considerar a presença de duas paredes paralelas, simulando o efeito de bloqueio, como em
túneis de vento ou canais de recirculação de água. Essa configuração permitiria investigar
como a proximidade com o solo altera os padrões de desprendimento de vórtices, as forças
hidrodinâmicas atuantes e o campo de recirculação, sendo especialmente relevante para
aplicações práticas como risers submarinos, pilares de pontes e estruturas de suporte
próximas ao fundo.

Outra linha promissora de pesquisa envolve a consideração de múltiplos corpos no
domínio, com a introdução de cilindros adicionais dispostos em arranjos do tipo tandem,
lado a lado ou escalonados. A interação entre as esteiras geradas por diferentes corpos pode
resultar em modos oscilatórios mais complexos, como sincronização cruzada, interferência
de vórtices e amplificação das forças fluidodinâmicas, com impacto direto em aplicações
como trocadores de calor, estruturas offshore, cabos de torres de transmissão de energia
elétrica e sistemas de ventilação urbana.

Além dos aspectos puramente dinâmicos, é possível ampliar o escopo físico do modelo
incorporando efeitos térmicos, por meio da análise da transferência de calor entre o corpo
e o escoamento. Para isso, seria necessário implementar uma nuvem de partículas de
temperatura, possibilitando também a resolução da equação de energia. Essa abordagem
permitiria simulações de convecção forçada em corpos oscilantes e rugosos, contribuindo
para aplicações em engenharia térmica, resfriamento de componentes eletrônicos e pro-
cessos industriais com trocas de calor. Trabalhos anteriores, como o de Carvalho [46], já
exploraram essa metodologia no contexto de um cilindro estacionário, oferecendo uma
base sólida para a futura integração entre fenômenos térmicos e dinâmicos em geometrias
sujeitas a vibração induzida pelo escoamento. A incorporação desses efeitos ao modelo
atual representa um avanço importante na direção de uma modelagem multifísica mais
abrangente e realista.

Um desdobramento natural e relevante do presente modelo consiste na substituição da
oscilação forçada por um sistema de base elástica, representado por um modelo massa-
mola-amortecedor. Essa modificação permite a simulação de vibrações induzidas livre-
mente pelo escoamento, caracterizando fenômenos de VIV (Vórtice Induzindo Vibração)
com graus de liberdade estruturais. Tal abordagem contribui para uma representação mais
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realista da interação fluido-estrutura, refletindo condições frequentemente encontradas em
aplicações da engenharia civil, naval e aeroespacial. Nesse contexto, ressalta-se que já
foram realizados testes iniciais no Laboratório de Modelagem e Algoritmos de Métodos
Lagrangianos (LMAML) com um modelo numérico de VIV in-line baseado em base
elástica. O autor deste trabalho desenvolveu esse programa computacional com capacidade
de simular o acoplamento fluido-estrutura a partir de parâmetros físicos fundamentais,
como massa reduzida, velocidade reduzida e fator de amortecimento. Essa formulação
permite explorar regimes nos quais ocorre transferência de energia do fluido para a estru-
tura, possibilitando análises em diferentes condições. Os resultados preliminares obtidos
demonstram o potencial da ferramenta como base para validações experimentais e futuras
extensões da modelagem.

Outra possibilidade de extensão relevante refere-se à investigação mais aprofundada
dos efeitos da rugosidade superficial sobre o escoamento. Conforme discutido por Achen-
bach [47], a presença de rugosidades pode provocar um aumento percentual significativo
no coeficiente de arrasto de atrito (viscoso), alterando substancialmente a distribuição
de forças hidrodinâmicas sobre o corpo. A incorporação sistemática desses efeitos no
modelo atual permitiria avaliar como diferentes configurações de rugosidade influenciam o
desprendimento de vórtices, a dinâmica das oscilações e os regimes de transferência de
energia.

Outro aspecto relevante diz respeito ao tempo de simulação dos casos analisados.
Conforme demonstrado, os resultados numéricos obtidos apresentaram, de modo geral,
boa concordância com os dados experimentais utilizados para validação. A aplicação
de computação paralela na determinação da interação vórtice-vórtice permitiu aumentar
a quantidade de vórtices discretos e reduzir o passo de tempo, contribuindo para maior
precisão das simulações. Estas foram executadas em um computador com CPU Intel Core
i9-13900KF, 3,00 GHz, 32 threads e cache L2 de 32 MB, sendo que cada caso de teste
demandou aproximadamente 60 horas de tempo de processamento. Como aprimoramento
futuro, pretende-se implementar o algoritmo utilizando a tecnologia CUDA, o que pos-
sibilitará maior resolução nas simulações, redução do tempo de CPU e a viabilização de
simulações com maior duração temporal.

Essas propostas de continuação oferecem caminhos promissores para expandir a meto-
dologia desenvolvida neste trabalho, permitindo investigar uma gama mais ampla de fenô-
menos associados ao escoamento em regime transiente, ao acoplamento fluido-estrutura
e à presença de rugosidade superficial, especialmente em condições de alto número de
Reynolds e cenários com maior complexidade geométrica e física.
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APÊNDICE A – Vórtice Discreto de
Lamb

O modelo de vórtice discreto de Lamb descreve uma distribuição contínua de vortici-
dade (ω) e velocidade tangencial induzida (uθ), válida em todo o domínio. Essa distribuição
satisfaz a equação de difusão da vorticidade, conforme discutido na disciplina de Dinâmica
da Vorticidade (MMF11), ministrada no Programa de Pós-Graduação em Engenharia
Mecânica da Universidade Federal de Itajubá (UNIFEI) [48].
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A solução da equação acima, para um domínio infinito, é dada por (Kundu, 1990):

ω(r, t) = Γj

πσ2 exp
(

−
r2

kj

σ2
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(A.2)

Sendo o parâmetro σ definido como:

σ =
√

4νt (A.3)

A velocidade tangencial induzida pela vorticidade é expressa por:

ukj
θ = Γj

2πrkj

[
1 − exp

(
−

r2
kj

σ2

)]
(A.4)

O valor de r que maximiza essa velocidade é obtido derivando-se a equação acima em
relação a rkj e igualando-a a zero (Mustto, 1998). O ponto de máximo ocorre quando:

rkj

σ
= 1,12091 ⇒ rmáx = 1,12091 σ (A.5)

Logo, no ponto de máxima velocidade tangencial, temos:

ukj
θmáx

= −0,71533 Γj

2πrmáx
(A.6)

Define-se o raio do núcleo do vórtice discreto de Lamb, σ0N , como:

σ0N = 2rmáx (A.7)

Esse valor foi definido de forma a minimizar a diferença entre as velocidades induzidas
pelo modelo de Lamb e pelo vórtice potencial, com erro em torno de 0,6%.
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Relacionando a equação anterior com uma forma adimensional usando o tempo ∆t,
temos:

rmáx = 2,24182
√

∆t

Re
(A.8)

Assim, obtemos a equação final para o cálculo de σ0N :

σ0N = 4,48364
√

∆t

Re
(A.9)

Contudo, simulações numéricas mostram que esse valor nominal de σ0N pode depender
da malha e da discretização da fronteira sólida. Portanto, um procedimento de calibração é
recomendado:

(i) Definir ∆t e Re;

(ii) Determinar o número de painéis planos para discretizar a fronteira sólida;

(iii) Escolher o tipo de singularidade a ser distribuída nos painéis;

(iv) Realizar simulações numéricas com diferentes valores de σ0;

(v) Ajustar σ0 comparando os resultados numéricos com dados experimentais.

Neste estudo, o ajuste foi feito para o escoamento subcrítico (Re = 1,0 × 105) ao redor
de um cilindro circular, usando 300 painéis e ∆t = 0,05. O valor ideal encontrado foi:

σ0 = 0,001

Esse valor é utilizado para todas as simulações com o cilindro, independentemente da
rugosidade superficial ou efeito do solo.

Quando o modelo de rugosidade exige ajuste do raio do núcleo em função do Reynolds
local, define-se o fator de controle χ como:

χ = σ0

σ0N

(A.10)

Aplicando isso ao presente trabalho:

σ0 = 1,00 × 10−3

σ0N = 4,48364
√

5,0 × 10−2

1,0 × 105 = 3,17 × 10−3
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χ = 1,00 × 10−3

3,17 × 10−3 = 3,15 × 10−1 (A.11)

Para calcular a velocidade tangencial com o raio ajustado σ0, usa-se:

ukj
θ = Γj

2πrkj

[
1 − exp

(
−5,02572

r2
kj

σ2
0

)]
(A.12)

Esse modelo evita singularidades, mas seu termo exponencial aumenta o custo compu-
tacional. Assim, usa-se esta equação apenas quando rkj < σ0.



115

APÊNDICE B – Fluxograma do
Programa Principal

A simulação da oscilação forçada de um cilindro é uma ferramenta essencial para
estudar a interação entre o corpo em movimento e o escoamento ao seu redor. No programa
principal representado neste fluxograma, a amplitude e a frequência da oscilação são
definidas logo na rotina de entrada, permitindo a configuração de diferentes cenários
dinâmicos com facilidade. O código foi estruturado de forma modular, ou seja, dividido
em rotinas independentes, cada uma responsável por uma tarefa específica, o que facilita
a leitura, o desenvolvimento e futuras modificações. A rotina oscillation implementa o
modelo de oscilação forçada, controlando o movimento do cilindro ao longo do tempo,
enquanto as rotinas advec e diffus representam, respectivamente, o transporte dos vórtices
discretos por advecção e a difusão desses vórtices por meio de deslocamentos randômicos.
Também foram incluídas rotinas de turbulência, que, com base em um modelo de estruturas
de velocidade, permitiram representar a dissipação de energia no escoamento.

Outra rotina importante a se destacar é a reflect, responsável por refletir vórtices
discretos que possam adentrar o cilindro, garantindo que a simulação respeite a fronteira
sólida do corpo. Uma melhoria relevante nesta versão do programa é a inclusão de
um modelo de rugosidade na superfície do cilindro, permitindo considerar os efeitos
da rugosidade sobre o padrão de escoamento e sobre as forças atuantes, como arrasto e
sustentação, o que torna a simulação mais representativa das condições físicas reais. O
fluxograma a seguir mostra a sequência lógica dessas etapas dentro do programa principal,
desde a leitura dos parâmetros iniciais até os cálculos realizados em cada passo de tempo
da simulação.
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