UNIVERSIDADE FEDERAL DE ITAJUBÁ INSTITUTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

DISSERTAÇÃO DE MESTRADO

ANÁLISE EXERGÉTICA DE UM SISTEMA DE RECUPERAÇÃO QUÍMICA DE UMA FÁBRICA DE PAPEL E CELULOSE

Autor: Ricardo José Passini

Orientador: Prof. Dr. Rogério José da Silva

ITAJUBÁ-MG Fevereiro de 2017

UNIVERSIDADE FEDERAL DE ITAJUBÁ INSTITUTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

RICARDO JOSÉ PASSINI

ANÁLISE EXERGÉTICA DE UM SISTEMA DE RECUPERAÇÃO QUÍMICA DE UMA FÁBRICA DE PAPEL E CELULOSE

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Mecânica como parte dos requisitos para obtenção do Título de Mestre em Engenharia Mecânica

Área de Concentração: Térmica, Fluídos e Máquinas de Fluxo

Orientador: Prof. Dr. Rogério José da Silva

ITAJUBÁ-MG Fevereiro de 2017

UNIVERSIDADE FEDERAL DE ITAJUBÁ INSTITUTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

RICARDO JOSÉ PASSINI

ANÁLISE EXERGÉTICA DE UM SISTEMA DE RECUPERAÇÃO QUÍMICA DE UMA FÁBRICA DE PAPEL E CELULOSE

Dissertação aprovada por banca examinadora em 15 de fevereiro de 2017, conferindo o autor o título de **Mestre em Ciências em Engenharia Mecânica**

Banca Examinadora:

Prof. Dr. Marcio de Oliveira - FEPI

Prof. Dr. Genésio José Menon - UNIFEI

Prof. Dr. Rogério José da Silva - UNIFEI

ITAJUBÁ-MG Fevereiro de 2017

AGRADECIMENTO

Ao Instituto de Engenharia Mecânica da Universidade Federal de Itajubá pelo curso de Pós-Graduação e a CAPES pelo apoio financeiro.

Ao Prof. Dr. Rogério José da Silva pela orientação desta dissertação, a qual sempre esteve disposto a sanar todas as dúvidas durante o desenvolvimento do trabalho.

A minha família pelo apoio emocional e incentivo durante todo o período do curso.

A minha namorada, Tainara Gomes Targino, pelo suporte prestado durante toda a minha estadia em Itajubá e pela compreensão dos meus momentos de estresse. Aos meus sogros e cunhados por toda motivação e suporte durante todo o curso.

As amizades construídas na pós-graduação pelos momentos de discussões sobre estudos e política, construção de conhecimento, dúvidas retiradas e momentos de descontração.

RESUMO

PASSINI, Ricardo José. Análise Exergética de um Sistema de Recuperação Química de uma Fábrica de Papel e Celulose. 2017. 166f. Dissertação (Mestrado) - Universidade Federal de

Itajubá UNIFEI, Programa de Pós-Graduação em Engenharia Mecânica, Itajubá.

O setor industrial produtor de papel e celulose brasileiro encontra-se com intenso investimento

financeiro devido as condições favoráveis de instalação das fábricas no Brasil. Dentre estas

condições, destaca-se a facilidade da produção de matéria prima devido a fácil adaptação do

eucalipto em solo brasileiro, resultando na produção de celulose de boa qualidade e com preço

competitivo no mercado externo. Desta forma, o método de obtenção da pasta celulósica no

Brasil mais utilizado é o processo *Kraft*, que utiliza o licor branco para cozinhar a madeira.

Após o processo de cozimento, a polpa celulósica é lavada para remoção de impurezas. Assim,

é gerado um subproduto denominado de licor preto. Para a viabilidade econômica e ambiental

da fábrica, o licor preto é direcionado para a Unidade de Recuperação, onde será utilizado como

combustível por uma caldeira de recuperação química. A caldeira gera vapor superaquecido e

um fundido inorgânico denominado *smelt*, que pode ser recuperado como licor branco. Desta

forma, este estudo analisou o sistema de recuperação química de quatro fábricas de papel e

celulose; avaliando o processo a partir da entrada do licor preto na caldeira de recuperação

química até a recuperação do licor branco com base na Segunda Lei da Termodinâmica,

identificando os fluxos de exergia de entrada e saída da caldeira de recuperação química, do

Tanque Dissolvedor e do reator *Slaker*.

Palavras-Chave: Papel e Celulose; Unidade de Recuperação; Licor Preto; Análise Exergética.

ABSTRACT

The industrial sector of Brazilian pulp and paper producer has found favourable conditions for the installation of factories in Brazil, for example, the ease of production of raw material due to easy adaptation of eucalyptus on Brazilian soil, resulting in the production of a good quality pulp with competitive price in the international market. In Brazil, the most widely used method for obtaining the cellulosic pulp is the Kraft process that is characterized by using the white liquor or cooking liquor to cook the wood. After cooking, the pulp is washed to remove impurities, thus generating a byproduct called black liquor. Thinking about the economic and environmental viability of a pulp and paper factory, this liquor is directed to the Recovery Unit to be used as fuel by the chemical recovery boiler. The boiler generates superheated steam and an inorganic fused called smelt that can be retrieved as white liquor. Thus, this study analyzed the chemical recovery system of four pulp and paper mills; evaluating the process from the entrance of the black liquor in the chemical recovery boiler until the white liquor recovery based on the Second Law of Thermodynamics, identifying the exergy flows of input and output of the chemical recovery boiler, Dissolving Tank and of the Slaker reactor.

Keywords: Pulp and Paper; Recovery Unit; Black Liquor; Exergy Analysis.

LISTA DE FIGURAS

Figura 1.1 – Evolução da produtividade do eucalipto	19
Figura 1.2 – Área de Arvores Plantadas no Brasil em 2014	20
Figura 1.3 – Distribuição das Fábricas de Papel e Celulose no Brasil	21
Figura 1.4 – Fontes de obtenção de energia	23
Figura 2.1 – Descascador de toras a tambor	27
Figura 2.2 – Picador de madeira	27
Figura 2.3 – Peneira vibratória separadora de cavacos	28
Figura 2.4 – Cavacos estocados no pátio	28
Figura 2.5 – Digestor de cozimento continuo	30
Figura 2.6 – Branqueamento da celulose	32
Figura 2.7 – Ilustração da unidade de recuperação	33
Figura 2.8 – Evaporador de único efeito.	34
Figura 2.9 – Arranjo de Evaporadores de Múltiplos Efeitos: a) P b) Contracorrente	
Figura 2.10 – Sistema de evaporação misto	
Figura 2.11 – Evaporador tipo <i>climbing film</i>	
Figura 2.12 – Evaporador de circulação forçada	
Figura 2.13 – Evaporador de fluxo descendente	
Figura 2.14 – Projeto de uma Caldeira de Recuperação Química de 1982	39
Figura 2.15 – Projeto de caldeira de recuperação química atual	40
Figura 2.16 – Regiões de uma caldeira de recuperação química	41
Figura 2.17 – Distribuição dos injetores de ar e do licor preto na caldeira	41
Figura 2.18 – Injetores de ar secundário posicionados em paredes opostas	43
Figura 2.19 – Injetor com placa espalhadora de licor preto	44
Figura 2.20 – Etapas que envolvem a queima do licor preto	46
Figura 2.21 – Tempo de queima do licor preto	46

Figura 2.22 – Ciclo de reações do sulfeto e sulfato de sódio	47
Figura 2.23 – Reações químicas dentro da caldeira de recuperação	48
Figura 2.24 – Precipitador eletrostático	49
Figura 2.25 – Tratamentos do material particulado	50
Figura 2.26 – Bico dispersor de smelt	51
Figura 2.27 – Caustificação	52
Figura 2.28 – Ilustração do filtro PDW	53
Figura 2.29 – Filtro do licor branco	54
Figura 2.30 – Forno rotativo de cal	55
Figura 3.1 – Volume de controle da caldeira de recuperação química	56
Figura 3.2 – Parcelas de exergia	59
Figura 3.3 – Equipamentos analisados neste trabalho	63
Figura 3.4 – Fluxos da caldeira de recuperação química	64
Figura 3.5 – Tanque Dissolvedor com o volume de controle	73
Figura 3.6 – Volume de controle analisado no Reator Slaker	79
Figura 4.1 – Volume de controle para análise energética	90
Figura 4.2 – Volume de controle para análise exergética	91
Figura 4.3 – Fluxo de exergia da caldeira de recuperação química A	92
Figura 4.4 – Fluxo de exergia da caldeira de recuperação química B	93
Figura 4.5 – Fluxo de exergia da caldeira de recuperação química C	94
Figura 4.6 – Fluxo de exergia da caldeira de recuperação química D	96
Figura 4.7 – Fluxos de entrada e saída de exergia no Tanque Dissolvedor da localizada em CLSP	
Figura 4.8 – Fluxos de entrada e saída de exergia no Tanque Dissolvedor de localizada em COSP	
Figura 4.9 – Fluxos de entrada e saída de exergia no Tanque Dissolvedor da localizada na Índia	

Figura 4.10 - Fluxos de entrada e saída de exergia no Tanque Dissolvedor da fábrica
localizada na Finlândia
Figura 4.11 – Exergia do licor verde filtrado da fábrica localizada em CLSP100
Figura 4.12 – Filtro do licor verde da fábrica localizada em COSP 101
Figura 4.13 – Filtro do licor verde da fábrica da Índia
Figura 4.14 – Exergia dos <i>dregs</i> e do licor verde da fábrica finlandesa102
Figura 4.15 – Fluxos de exergias de entrada e saída no Reator <i>Slaker</i> da fábrica localizada
em CLSP
Figura 4.16 – Fluxos de exergias de entrada e saída no Reator <i>Slaker</i> da fábrica localizada
em COSP
Figura 4.17 – Fluxos exergéticos do reator <i>Slaker</i> da fábrica indiana103
Figura 4.18 – Fluxo de exergia do reator <i>Slaker</i> da fábrica da Finlândia104

LISTA DE TABELAS

Tabela 1.1 – Crescimento da produção e exportação de celulose entre 2014 e 2015	22
Tabela 1.2 - Ranking mundial de produção de celulose	22
Tabela 2.1 – Composição química da madeira em porcentual	25
Tabela 2.2 – Composição aproximada do licor de cozimento	29
Tabela 2.3 – Dados de projeto da Caldeira de Recuperação Química de 1982	39
Tabela 2.4 – Dados de projeto da Caldeira de Recuperação Química de 2017	40
Tabela 2.5 – Distribuição dos níveis de ar, faixa do percentual inserido e faixa temperatura.	
Tabela 3.1 – Composição elementar do licor preto de diferentes localidades	65
Tabela 3.2 – Composição molecular do licor preto	65
Tabela 3.3 – Coeficientes e valores de exergia química padrão dos compostos preser	ntes
no licor preto	66
Tabela 3.4 – Composição molar do <i>smelt</i>	67
Tabela 3.5 – Coeficientes e valores de exergia química padrão dos compostos quím	
presentes no <i>smelt</i>	68
Tabela 3.6 – Coeficientes e valores de exergia química padrão dos compostos quím presentes nos gases de exaustão	
Tabela 3.7 - Coeficientes e valores de exergia química padrão para os compo	stos
presentes no ar	72
Tabela 3.8 – Composição mássica do licor branco fraco	74
Tabela 3.9 – Coeficientes para cálculo de entalpia e entropia do hidróxido de sódio	74
Tabela 3.10 – Composição molar dos <i>dregs</i>	77
Tabela 3.11 – Valores dos coeficientes para cálculo de entalpia e entropia dos <i>dregs</i> .	78
Tabela 3.12 – Composição molar do licor verde	79
Tabela 3.13 – Composição de cal inserida no reator <i>Slaker</i>	81
Tabela 3.14 – Coeficientes e valores de exergia química padrão para a cal	81

Tabela 3.15 – Composição mássica dos <i>grits</i>
Tabela 3.16 – Coeficientes e valores de exergia química padrão dos compostos presentes
no grits83
Tabela 3.17 – Composição do licor branco bruto gerado
Tabela 3.18 – Composição molar do licor de cozimento
Tabela 3.19 – Concentração molar da lama de cal
Tabela 4.1 – Composição do licor preto
Tabela 4.2 – Informações sobre as caldeiras de recuperação química89
Tabela 4.3 – Eficiência energética e exergética das caldeiras de recuperação química .97
Tabela 4.4 – Eficiência exergética dos Tanques Dissolvedores
Tabela 4.5 – Eficiência exergética dos reatores Slaker
Tabela 4.6 – Quantidade de licor branco recuperado por dia

SIMBOLOGIA

B_{ch} Exergia química

b_{ch} Exergia química específica

b_{ch} Exergia química padrão

 $egin{array}{lll} B_k & Exergia cinética \ B_p & Exergia dos produtos \ B_p & Exergia potencial \ B_{ph} & Exergia física \ \end{array}$

b_{ph} Exergia física específica

b_{phT} Exergia física específica na temperatura da substância

B_R Exergia dos recursos c_p Calor específico

h_{298.15} Entalpia específica na temperatura de referência

h_{ph} Entalpia específica física

h_T Entalpia específica na temperatura da substância

m Vazão mássican Vazão molar

s_{298.15} Entropia específica na temperatura de referência

s_{ph} Entropia específica física

S_T Entropia específica na temperatura da substância

T₀ Temperatura de referência

y_i Fração molar

Δh Variação de entalpia específicaΔs Variação de entropia específica

B Exergia C Carbono

CLSP Centro-Leste do Estado de São Paulo COSP Centro-Oeste do Estado de São Paulo

H Hidrogênio I Irreversibilidade

K Kelvin kg Quilograma kJ Quilojoule kmol Quilomol L Perdas

n Eficiência energética

Na Sódio O Oxigênio °C Graus Celsius

PCI Poder calorífico inferior PCS Poder calorífico superior R Constante dos gases ideais

s Segundos
S Enxofre
T Temperatura

tss Toneladas de sólidos secos

Ψ Eficiência exergética

SUMÁRIO

CAPÍTULO 116			
1. INT	RODUÇÃO	16	
1.1. Mo	otivação do Trabalho	. 16	
1.2. Ob	jetivos	. 17	
<i>1.2.1. O</i>	Objetivo Principal	. 17	
1.2.1.1.	Objetivos Específicos	. 17	
1.3. Par	norama Brasileiro	. 18	
1.4. Des	senvolvimento do Trabalho	. 24	
CAPÍTUI	LO 2	25	
2. IND	ÚSTRIA DE PAPEL E CELULOSE	. 25	
2.1. Ma	ntéria Prima	25	
	tenção da Celulose pelo Processo Kraft		
2.2.1. L	inha de fibras		
2.2.1.1.	Recepção da Madeira e Descascadores		
2.2.1.2.	Digestores	. 29	
2.2.1.3.	Processamento da Pasta Celulósica	. 30	
2.2.1.4.	Branqueamento	. 31	
2.2.2. L	inha de Recuperação	. 33	
2.2.2.1.	Evaporadores de Múltiplos Efeitos	. 33	
2.2.2.2.	Caldeira de Recuperação Química	. 38	
2.2.2.1.	Descrição do Projeto de uma Caldeira de Recuperação Química	39	
2.2.2.2.2.	Injetores de ar	. 41	
2.2.2.3.	Ar Primário	. 42	
2.2.2.4.	Ar Secundário	. 42	
2.2.2.5.	Ar Terciário e Quaternário	. 43	
2.2.2.2.6.	Injetores do Licor Preto	. 44	
2.2.2.7.	Principais Reações Químicas dentro da Caldeira de Recuperação Químicas	a 45	
2.2.2.3.	Precipitadores Eletrostáticos	. 48	
2.2.2.4.	Tratamento das Cinzas	. 50	
2.2.2.5.	Tanque Dissolvedor	. 50	
2.2.2.6.	Caustificação	. 51	

CAPÍ	CAPÍTULO 3 56		
3. I	METODOLOGIA	56	
3.1.	Eficiência Energética da Caldeira de Recuperação Química	56	
3.2.	Exergia	58	
3.2.1.	Introdução	58	
3.2.2.	Análise Exergética	58	
3.2.3.	Exergia Física	59	
3.2.4.	Exergia Química	60	
3.2.5.	Eficiência Exergética	61	
<i>3.2.6.</i>	Irreversibilidades	61	
3.3.	Análise Exergética do Processo de Recuperação do Licor Branco	62	
3.3.1.	Análise Exergética da Caldeira de Recuperação Química	64	
3.3.1.1	. Exergia do Licor Preto	64	
3.3.1.2	Exergia do Smelt	67	
3.3.1.3	. Exergia dos Gases de Combustão	69	
3.3.1.4	. Exergia da Água Condensada e do Vapor	70	
3.3.1.5	. Exergia do Ar Estequiométrico	71	
3.3.1.6	. Eficiência Exergética da Caldeira de Recuperação Química	72	
<i>3.3.2.</i>	Análise Exergética do Tanque Dissolvedor	73	
3.3.2.1	. Cálculo De Exergia do licor branco fraco	74	
3.3.2.2	. Cálculo De Exergia dos fluxos de saída do Tanque Dissolvedor	75	
3.3.2.3	. Eficiência exergética do Tanque Dissolvedor	76	
<i>3.3.3.</i>	Filtro do Licor Verde Bruto	77	
3.3.3.1	. Exergia dos Dregs	77	
<i>3.3.4</i> .	Análise Exergética do Reator Slaker	78	
3.3.4.1	. Exergia do Licor Verde	79	
3.3.4.2	. Exergia da Cal	81	
3.3.4.3	Exergia dos Grits	82	
3.3.4.4	Exergia do Licor Branco Bruto	84	
3.6.4.5	. Eficiência Exergética do Reator Slaker	85	
3.3.5.	Recuperação do Licor de Cozimento	85	
CAPÍ	ΓULO 4	87	
4. A	ANÁLISE DOS RESULTADOS	87	

4.1.	Cálculo do Valor do PCI para o Licor Preto	87
4.2. Quí	Eficiência Energetica e Eficiência Exergética das Caldeiras de Recuper ímica	_
4.3.	Eficiência Exergética do Filtro do Tanque Dissolvedor	98
4.4.	Eficiência Exergética do Filtro do Licor Verde	101
4.5.	Eficiência Exergética do Reator Slaker	102
4.6. Fáb	Comparativo da Quantidade de Licor Branco Recuperado pelas oricas	105
CA	PÍTULO 5	106
5.	CONCLUSÃO E SUGESTÕES PARA TRABALHOS FUTUROS	106
5.1.	Conclusão	106
5.2.	Sugestões para Desenvolvimento de Trabalhos Futuros	108
REI	FERÊNCIAS	109
APÍ	ÊNDICE A	114
APÍ	ÊNDICE B	116
APÍ	ÊNDICE C	117
APÍ	ÊNDICE D	148
APÍ	ÊNDICE E	156
APÍ	ÊNDICE F	162

Capítulo 1

1. INTRODUÇÃO

1.1. MOTIVAÇÃO DO TRABALHO

O setor industrial de papel e celulose brasileiro tem passado por intenso investimento financeiro em todo âmbito fabril, desde as áreas de plantio da matéria prima até a qualidade final do produto obtido (BNDES, 2014).

Atualmente no Brasil, o método mais difundido de extração da celulose da madeira é o processo Kraft. Este método é caracterizado pelo licor de cozimento ou licor branco, uma mistura de hidróxido de sódio (NaOH) e sulfeto de sódio (Na_2S) , que é misturado com cavacos de madeira em um digestor. Assim, o cozimento da madeira ocorre de modo a não degradar os carboidratos presentes na madeira.

Após o processo de cozimento, a celulose gerada segue para o clareamento. Neste processo a celulose pode ter dois destinos distintos: ser estocada e vendida, ou ser transformada em papel. Além da celulose, o processo *Kraft* gera um subproduto denominado licor preto ou licor negro.

Análises da constituição química do licor preto identificam em sua composição compostos orgânicos e compostos inorgânicos. Com isso, se devidamente aproveitados, estes compostos podem fornecer energia para geração de vapor e, também, recuperar compostos químicos que constituem o licor de cozimento. Logo, são estas as principais características presentes no processo *Kraft*.

O licor preto é enviado para a unidade de recuperação química, unidade composta por evaporadores de múltiplos efeitos, caldeira de recuperação química, tanque de dissolvedor, tanque de caustificação (reator Slaker) e forno de cal. É esta unidade que torna a fábrica viável economicamente e ambientalmente.

Com isso, este trabalho tem como foco analisar os equipamentos que realizam a recuperação química do licor branco, a partir do licor preto, sendo eles: a caldeira de

recuperação química, o tanque dissolvedor e o reator *Slaker*. A realização de uma análise energética e exergética nos equipamentos constituintes são ferramentas relevantes que determinam a energia gerada e a real parcela do que é possível ser aproveitado, respectivamente.

A análise exergética é uma ferramenta útil para a análise e avaliação dos componentes presentes no processo produtivo. Em virtude disto, as informações que esta análise apresenta, identificam os equipamentos que possuem maiores irreversibilidades e, identificam o equipamento e os fluxos que podem receber aperfeiçoamentos.

1.2. OBJETIVOS

1.2.1. OBJETIVO PRINCIPAL

Este trabalho tem como objetivo realizar uma análise exergética no sistema de recuperação química de uma fábrica de papel e celulose, analisando a partir da caldeira de recuperação química até a recuperação do licor branco bruto no reator *Slaker*.

1.2.1.1. OBJETIVOS ESPECÍFICOS

- Buscar em bibliografia a composição do licor preto;
- Identificar o poder calorífico do licor preto e comparar com a bibliografia;
- Realizar balanços estequiométricos e mássicos dos fluxos de entrada e saída nos equipamentos;
- Efetuar uma análise exergética a partir das vazões molares de entrada e saída de cada equipamento.

1.3. PANORAMA BRASILEIRO

O setor industrial de produção de papel e celulose brasileiro é um ramo industrial estável economicamente que vem adquirindo intenso investimento financeiro, como o investimento ocorrido no período de 2008 a 2013 com valor aproximado de R\$ 4 bilhões ao ano. Por ser um setor que apresenta muitos desafios à serem superados, o mercado investidor projeta para o período de 2015 a 2018 um investimento total da ordem de R\$ 16 bilhões (BNDES, 2014).

Este investimento setorial está diretamente ligado com o grande aumento no consumo de papéis no Brasil e no mundo. Este mercado consumidor vem passando por influências substanciais como o reportado pela Associação Brasileira Técnica de Celulose e Papel:

- "a globalização em termos de hábitos de consumo e o crescimento da permeabilidade do comércio internacional;
- o aumento do poder aquisitivo de grandes massas de população residentes nos países em desenvolvimento e sua consequente ascensão a uma nova classe média de hábitos mais sofisticados e demandantes".: (ABTCP, 2015, p. 20)

Para garantir a sustentabilidade produtiva do papel e a produção continua de celulose, matéria prima para produção de papel, houve intensificação das áreas de plantio florestal de eucalipto e de pinus. A Figura 1.1 apresenta o crescimento do plantio de eucalipto no Brasil em decorrer do tempo.

O aumento da produtividade do eucalipto contribui não só para maior disponibilidade de matéria prima para a indústria de papel e celulose, mas com a geração de emprego para a população e a contribuição ambiental, por elevar o aumento da captura de dióxido de carbono com o plantio de novas árvores, redução do aquecimento global e criação de microclimas regionais e locais, entre outros aspectos (OLIVEIRA, *et al.* 2011).

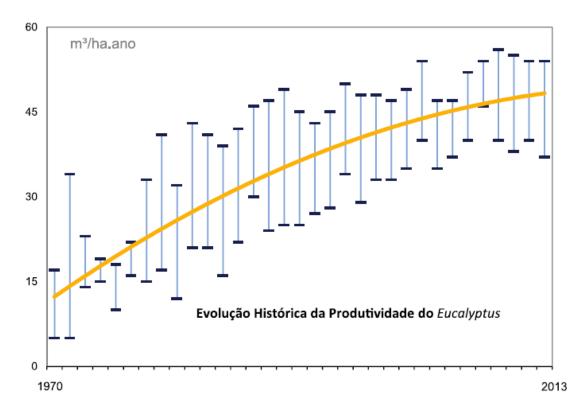


Figura 1.1 – Evolução da produtividade do eucalipto Fonte: ABTCP, 2015

Afim de melhorar a qualidade das árvores plantadas, foram, e ainda são, desenvolvidas técnicas de silvicultura para aprimoramento das mudas e também do crescimento vegetal (ABTCP, 2015). Contudo, vale ressaltar que, além destas técnicas, também é muito importante a realização de estudos acerca da localização do plantio florestal. A Figura 1.2 apresenta a disposição das plantações e as principais localizações do plantio florestal de eucalipto e pinus utilizada pela indústria de papel e celulose distribuída no Brasil. E também na Figura 1.2, é possível visualizar como é a utilização do solo brasileiro referente as áreas naturais, pastagens, agricultura, áreas urbanas e árvores plantadas.

Como o valor do transporte da madeira implica diretamente no custo final do produto, a proximidade da indústria produtora de celulose com a área florestal é importante para a redução destes custos. Comparando as Figuras 1.2 e 1.3, é possível analisar a proximidade das regiões de plantio e das indústrias produtoras de celulose no território brasileiro.

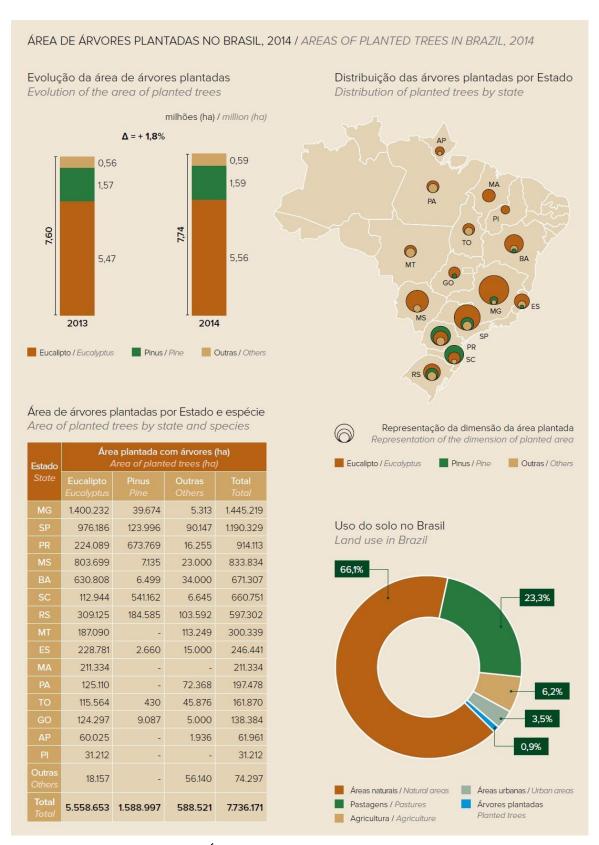


Figura 1.2 – Área de Arvores Plantadas no Brasil em 2014 Fonte: INDÚSTRIA BRASILEIRA DE ÁRVORES, 2015

Figura 1.3 – Distribuição das Fábricas de Papel e Celulose no Brasil Fonte: INDÚSTRIA BRASILEIRA DE ÁRVORES, 2016

No ano de 2015, o setor econômico brasileiro passou por dificuldades com destaque para o valor do dólar, que atingiu um valor superior a R\$ 4,00 nos primeiros meses do ano, e, no final do ano, uma taxa de inflação acima dos 10%. Esta situação fez com que muitos setores industriais recuassem para as indústrias (6,2%) ou para os serviços (2,7%). Entretanto o setor agropecuário de plantio da matéria prima apresentou resistência e teve um crescimento de 1,8% (IBÁ, 2016).

Para o setor de papel e celulose, a alta no valor do dólar foi benéfica pois desse modo o valor monetário da celulose apresentou preço competitivo no mercado externo. A Tabela 1.1 apresenta o crescimento da produção e exportação de celulose entre os anos de 2014 e 2015. Assim, com as adversidades sofridas durante o ano, o setor contribuiu para a economia brasileira amenizando o fraco rendimento econômico.

Tabela 1.1 – Crescimento da produção e exportação de celulose entre 2014 e 2015

Celulose	Total	Total	Variação
(1.000 toneladas)	2014	2015	percentual
Produção	16.465	17.370	5,5
Exportação	10.614	11.528	8,6
Importações	416	407	-2,2

Fonte: INDÚSTRIA BRASILEIRA DE ÁRVORES, 2016

Segundo o relatório apresentando pela Ibá (2016) e os dados apresentados pela Tabela 1.1, a exportação de celulose, considerando fibras curtas e longas, cresceu 8,6% entre os anos de 2014 e 2015. Com isto, acarretou a consolidação do Brasil como o quarto maior produtor de celulose no mundo. A Tabela 1.2 apresenta os dez maiores países produtores e suas respectivas produções em milhões de toneladas.

Tabela 1.2 - Ranking mundial de produção de celulose

	País	Produção de celulose (milhões de toneladas)
1 °	EUA	48,0
2 °	China	17,9
3 °	Canadá	17,7
4 °	Brasil	17,4
5 °	Suécia	11,5
6 °	Finlândia	10,5
7 °	Japão	9,1
8 °	Rússia	7,9
9 °	Indonésia	6,8
10 °	Chile	5,2

Fonte: INDÚSTRIA BRASILEIRA DE ÁRVORES, 2016

Para que fosse possível o incremento da produção de celulose, novas tecnologias foram adicionadas e estão sendo aprimorados estudos de melhor aproveitamento dos subprodutos gerados no processo.

O setor produtivo de papel e celulose é um dos maiores em termo de consumo energético. O uso do licor preto, subproduto da celulose, e da biomassa, proveniente da madeira, como combustíveis tem tornado as fábricas de papel e celulose autossuficientes em energia elétrica e, em alguns casos, possuindo a capacidade de produção de excedentes. A Figura 1.4 apresenta os principais combustíveis utilizados pela indústria de papel e celulose para geração de eletricidade, sendo o licor preto o principal entre eles.

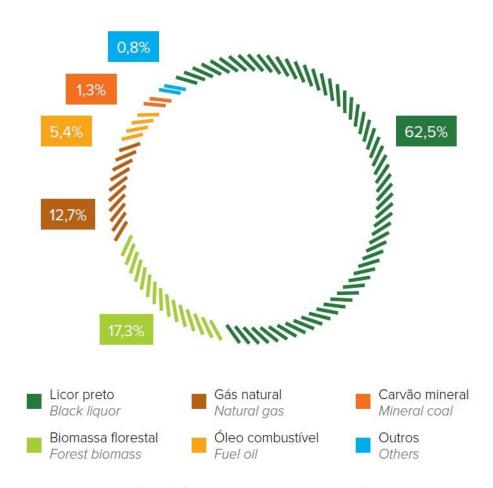


Figura 1.4 – Fontes de obtenção de energia Fonte: INDÚSTRIA BRASILEIRA DE ÁRVORES, 2016

1.4. DESENVOLVIMENTO DO TRABALHO

Este trabalho foi produzido em capítulos visando um melhor entendimento do leitor.

O Capítulo 1 introduz o trabalho, apresentou de forma breve aquilo que motivou a escolha do tema, o objetivo do trabalho, bem como, o panorama da indústria de papel e celulose no Brasil.

O Capítulo 2 apresenta a indústria de papel e celulose com o foco em sua unidade de recuperação química, apresentando como se dá o funcionamento desta unidade, bem como, cada etapa que a constitui e os equipamentos presentes.

O Capítulo 3 apresenta a metodologia utilizada para alcançar o objetivo proposto no trabalho. Sendo assim, apresentou-se neste capítulo todos os cálculos utilizados e sua devida fundamentação teórica preocupando-se em apresenta-los para cada equipamento.

Através dos cálculos apresentados na metodologia, foi possível obter os resultados, que podem ser visualizados no Capítulo 4. Neste capítulo discutiu-se os resultados dos cálculos das fábricas analisadas através dos valores dos fluxos de exergia de cada equipamento e suas respectivas eficiências exergéticas.

Por fim, no Capítulo 5, foi concluído o trabalho, apresentando os pontos mais relevantes da pesquisa, e apresentando sugestões para a realização de trabalhos futuros que sigam este mesmo tema.

Capítulo 2

2. INDÚSTRIA DE PAPEL E CELULOSE

2.1. MATÉRIA PRIMA

A indústria de papel e celulose utiliza como principais fontes de matéria prima a madeira proveniente de espécies arbóreas como as folhosas ou *hardwoods*, (eucalipto, bétula, acácia, e outras) que possuem fibras curtas de celulose, e as coníferas ou *softwoods*, (pinus, araucária, entre outros) possuindo as fibras longas. (BNDES, 2014)

As fibras curtas de celulose provem uma característica de maciez, absorção e opacidade do papel a ser gerado, enquanto as fibras longas dão maior resistência mecânica ao papel. Contudo, vale salientar que cada espécie de árvore, até mesmo as clonadas, apresenta características mais adequadas para determinados tipos de papéis. A Tabela 2.1 apresenta os constituintes das coníferas e folhosas, respectivamente.

Tabela 2.1 – Composição química da madeira em porcentual

Constituinte	Coníferas	Folhosas
Celulose	40-44	43-47
Hemicelulose	25-29	25-35
Lignina	26-30	16-24
Extrativos	2-8	1-5

Fonte: HORA; VIDAL, 2014

O processo mais utilizado atualmente para a obtenção da celulose da madeira é o processo *Kraft* por apresentar vantagens como a produção de celulose com elevada resistência, flexibilidade quanto aos diferentes tipos de madeira, disponibilidade de recuperação de reagentes químicos e geração de energia elétrica. Os projetos industriais mais recentes possuem capacidade de geração de excedente em energia elétrica, acarretando em mais um ganho para a empresa.

2.2. OBTENÇÃO DA CELULOSE PELO PROCESSO KRAFT

O sistema de obtenção da celulose pelo processo *Kraft* pode ser dividido em três principais linhas:

- Linha de fibras: recepção da madeira no pátio, descascadores, digestores, depuração, deslignificação, branqueamento, desaguamento e secagem;
- Linha de recuperação: evaporadores de múltiplos efeitos, caldeira de recuperação química, tanque dissolvedor, reator *Slaker* ou reator apagador, forno de cal e filtros;
- Linha de utilidades: tratamento de água e esgoto, clareamento, turbo geradores e outros.

2.2.1. Linha de fibras

A linha de fibras de uma indústria de papel e celulose compreende as etapas iniciais do processo de obtenção da celulose, iniciando com a chegada da matéria prima no pátio.

2.2.1.1. Recepção da madeira e descascadores

No Brasil, o meio de transporte da matéria prima utilizada pela indústria de papel e celulose é realizado por caminhões através das rodovias, sendo a madeira transportada na forma de toras ou cavacos.

A madeira recebida na forma de toras pode conter as cascas ou não. As toras que possuem cascas são direcionadas para descascadores.

Os descascadores têm como objetivo descascar a madeira, pois as cascas não apresentam quantidade significativa de celulose, consomem grande quantidade de produtos químicos e prejudicam a qualidade da polpa gerada. A Figura 2.1 ilustra um tipo de descascador de toras, o descascador a tambor.

Figura 2.1 – Descascador de toras a tambor Fonte: UNIVERSIDADE FEDERAL DO PARANÁ, 2013

Após a retirada das cascas, as toras seguem para os picadores, Figura 2.2, que picotam a madeira na forma de cavacos.

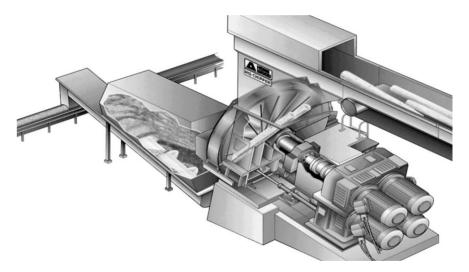


Figura 2.2 – Picador de madeira Fonte: UNIVERSIDADE FEDERAL DO PARANÁ, 2013

Para garantir o bom cozimento da madeira, os cavacos provenientes dos picadores são direcionados para uma peneira vibratória, Figura 2.3, em busca de separar os cavacos que possuem dimensões regulares daqueles que apresentam super ou sub-dimensionamentos.

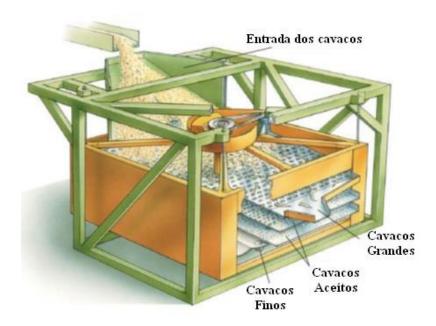


Figura 2.3 – Peneira vibratória separadora de cavacos Fonte: UNIVERSIDADE FEDERAL DO PARANÁ, 2013

Os cavacos aceitos seguem para um silo de estocagem ou pátio de madeiras, ilustrado pela Figura 2.4, e os rejeitados são utilizados como combustível em uma caldeira de biomassa para geração de vapor.

Figura 2.4 – Cavacos estocados no pátio Fonte: DACIOLE, 2004.

2.2.1.2. Digestores

Os cavacos que foram estocados são transportados por esteiras para os digestores, onde serão misturados com o licor de cozimento ou licor branco. Segundo Fernandes (2007), o licor branco é uma solução aquosa composta por compostos ativos (hidróxido de sódio (NaOH) e sulfeto de sódio (Na_2S)) e por carga morta (como o carbonato de sódio (Na_2CO_3), sulfato de sódio (Na_2SO_4), sulfito de sódio (Na_2SO_3) e tiossulfato de sódio (Na_2SO_3), entre outros).

A composição do licor branco pode variar ligeiramente devido ao ciclo de recuperação dos compostos químicos e também podem diferir entre as fábricas. Entretanto, a sua composição não apresenta grande variação da composição que é apresentada na Tabela 2.2 (FERNANDES, 2007).

Tabela 2.2 - Composição aproximada do licor de cozimento

Componente	Percentual mássico
ativos	
NaOH	53%
Na ₂ S	21%
carga morta	
Na ₂ CO ₃	14%
Na ₂ SO ₄	6%
Na ₂ SO ₃	3%
Na ₂ S ₂ O ₃	3%

Fonte: FERNANDES, 2007

O cozimento dos cavacos pode decorrer nos digestores em um processo em batelada ou em fluxo contínuo. No processo de cozimento do tipo batelada, o licor de cozimento e os cavacos de madeira são introduzidos no digestor e eleva-se a temperatura e pressão com adição de vapor d'água até a temperatura de cozimento, que permanece entre 160 e 170 °C. Durante o cozimento, o hidróxido de sódio é consumido e o sulfeto de sódio age como agente tamponante da reação, sendo que a mistura permanece em repouso até que o cozimento seja finalizado (NEUBERGER, 2008).

Ao término do processo de cozimento, a pressão residual interna do digestor se encarrega de efetuar a descarga da polpa celulósica. Ao término de um ciclo, inicia-se um novo processo de cozimento (HOCKING, 2006).

Já nos digestores contínuos, inicialmente é misturado os cavacos com o licor branco, para então iniciar a etapa de impregnação. A impregnação consiste na inserção de vapor d'água

junto à mistura, que tem como finalidade facilitar a penetração do licor branco na madeira e melhorar a eficiência do processo de separação da celulose das fibras de lignina.

Em seguida, a mistura é direcionada para a etapa de cozimento, aonde permanece por um período de 1 a 2 horas com temperatura controlada entre 150 a 170 °C (REIS, 2013; MACEDO, 2006). A Figura 2.5 apresenta o esquema de um digestor contínuo.

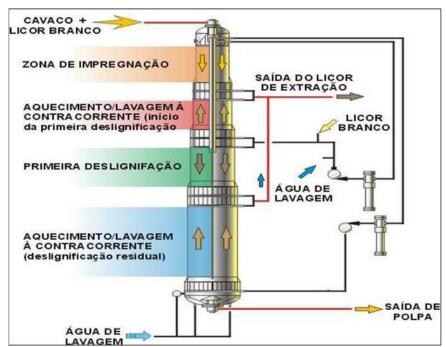


Figura 2.5 – Digestor de cozimento continuo

Fonte: REIS, 2013.

Muitas indústrias utilizam uma combinação entre o processo em batelada e contínuo, fazendo com que o processo de cozimento seja mais flexível em relação aos tipos de madeira utilizado (HOCKING, 2006).

Ao término do período de cozimento, a polpa celulósica segue para disposição nos denominados *blow tanks*, onde é diluída e direcionada ao setor de depuração e lavagem (HOCKING, 2006).

2.2.1.3. Processamento da pasta celulósica

A depuração da pasta celulósica consiste na remoção das impurezas sólidas, apresentando elementos como cavacos malcozidos, e fragmentos como areia, pedras e metais (EUROPEAN COMMISSION, 2001)

O sistema de lavagem da polpa é necessário para a retirada de solúveis não desejáveis como a lignina e resquícios do licor de cozimento impregnados na polpa. As operações de lavagem nas fábricas de produção de celulose mais modernas são efetuadas com água limpa.

O sistema de lavagem mais comum é o de cestos rotativos a vácuo, carregados sequencialmente por dois, três ou quatro unidades de lavagem. Outros sistemas de lavagem incluem lavadores por difusão, lavadores rotativos pressurizados e prensas de lavagem. Esses sistemas de remoção de impurezas podem chegar a uma eficiência de até 99 % (EK et al., 2009).

Após a lavagem, é obtido como produto principal a celulose isenta de resíduos e um subproduto denominado de licor preto, licor negro ou lixívia negra.

Os principais benefícios com o processo de depuração e lavagem da polpa são:

- Obtenção de uma celulose final mais limpa;
- Menor consumo de compostos químicos para o processo de branqueamento da polpa.

Finalizado a etapa de lavagem, a polpa celulósica é direcionada para o processo de branqueamento.

2.2.1.4. Branqueamento

A celulose proveniente do processo de lavagem apresenta coloração marrom, devido à presença de lignina. Primeiramente, realiza-se o pré-branqueamento da polpa ou pasta marrom, etapa também conhecida como deslignificação com oxigênio. Nesta etapa, é efetuada a remoção da lignina remanescente na pasta celulósica aplicando soluções de hidróxido de sódio, ou de licor branco oxidado, ou de gás oxigênio ou de peróxido de hidrogênio. Em seguida, a polpa é lavada novamente para a remoção dos produtos químicos solubilizados, gerando mais do resíduo licor preto. Neste estágio ocorre a remoção de mais de 98 % da lignina residual ainda presente na pasta celulósica (BAJPAI, 2005).

Com a retirada de grande parte da lignina da polpa, esta é direcionada para o processo de branqueamento para aumento da alvura. As polpas que passam pelo processo de branqueamento são destinadas para a produção de papéis para a impressão e que entram em contato com alimentos, enquanto as polpas que não são branqueadas são utilizadas para a produção de papelões, caixas e sacos.

O branqueamento tem como função melhorar a pureza e as propriedades ópticas da polpa através de um tratamento físico-químico, que deve decorrer em múltiplos estágios a fim de um melhor aproveitamento dos reagentes químicos e da preservação das características de uma polpa branqueada. As soluções químicas mais utilizadas são de peróxido de hidrogênio, ozônio, dióxido de cloro ou hidróxido de sódio. Os sistemas de branqueamento podem receber a denominação de ECF (livre de cloro elementar) e TCF (totalmente livre de cloro) (BAJPAI, 2005).

Por fim, a celulose branqueada obtida, ilustrada na Figura 2.6, segue para o processo de secagem.

Figura 2.6 – Branqueamento da celulose Fonte: REIS, 2013.

O licor preto, subproduto gerado nos processos de lavagem e branqueamento, apresenta em sua composição compostos orgânicos, que podem ser queimados, e compostos inorgânicos, que podem ser recuperados como licor de cozimento. Finalmente, o licor preto é encaminhado para a linha de recuperação.

2.2.2. LINHA DE RECUPERAÇÃO

A linha de recuperação do processo Kraft, ilustrado pela Figura 2.7, é parte essencial da fábrica por viabilizar ambientalmente e economicamente a planta industrial. A unidade de recuperação tem como função usar o licor preto para:

- Recuperar o licor branco, ocasionando na redução de gastos com compra de matéria compostos químicos;
- Produzir vapor para o processo fabril e para os turbogeradores;
- Reduzir os impactos ambientais que o licor preto proporcionaria se fosse despejado diretamente no meio ambiente.

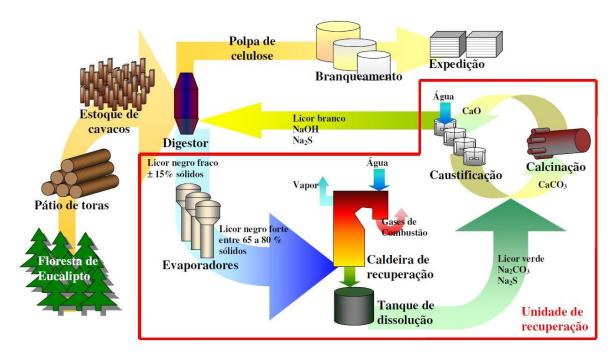


Figura 2.7 – Ilustração da unidade de recuperação Fonte: FERREIRA, 2013.

Como ilustrado pela Figura 2.7, a Unidade de Recuperação o licor preto fraco é direcionado aos evaporadores de múltiplos efeitos, para que assim seja removido o excesso de solvente contido na solução.

2.2.2.1. Evaporadores de Múltiplos Efeitos

O licor preto gerado no processo de lavagem da polpa celulósica apresenta em sua composição mássica de 15 a 20% de sólidos secos e o restante de água. Para que o licor possa

ser utilizado como combustível por uma caldeira de recuperação química, sua concentração de sólidos secos deve estar entre 65 e 85%.

A evaporação consiste na remoção do solvente na forma de vapor, objetivando o aumento da concentração do soluto não volátil. Basicamente, os evaporadores são tanques, onde se encontra a solução a ser concentrada em contato com trocadores de calor, que contém o fluido que irá fornecer a energia necessária para a evaporação do solvente da solução. A Figura 2.8 apresenta uma imagem esquemática de um evaporador de simples efeito do tipo Calandra.

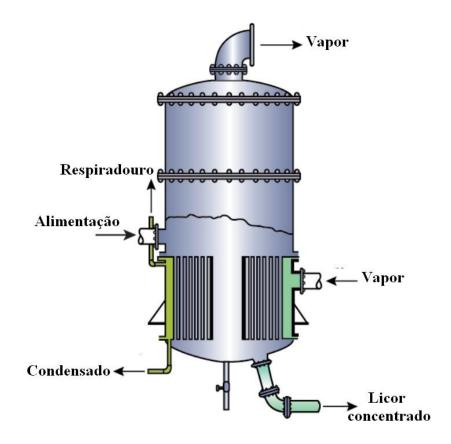


Figura 2.8 – Evaporador de único efeito. Fonte: Adaptado de NPTEL, 2016

Normalmente, o sistema de evaporadores de múltiplos efeitos é utilizado nas indústrias devido à economia de vapor do sistema. Seu funcionamento decorre do uso do vapor da solução gerado no primeiro efeito, no trocador de calor do efeito seguinte, e assim sequencialmente. Isto implica na redução de custos referente a geração de vapor para a concentração da solução em cada efeito.

Após a transferência de energia contida no vapor para a solução a ser concentrada, os evaporadores eliminam água no seu estado líquido. Esta água condensada, apresenta uma característica de pureza que possibilita utilizá-la como água de lavagem da celulose, dentro dos digestores e nos *blow tanks*, bem como, para a lavagem da lama de cal.

Os evaporadores apresentam dois arranjos quanto à concentração da solução, podendo ser com correntes em paralelo ou em contracorrente, como apresentado na Figura 2.9. A escolha do arranjo é efetuada de acordo com o projeto, pois as eficiências no processo de evaporação são iguais.

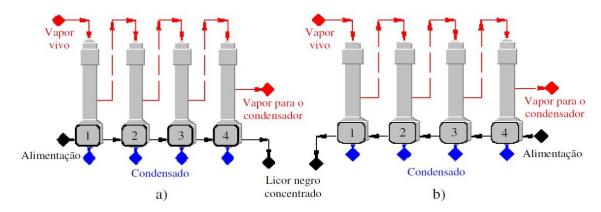


Figura 2.9 - Arranjo de Evaporadores de Múltiplos Efeitos: a) Paralelo e

b) Contracorrente

Fonte: CAMPOS, 2009.

Em sistemas mais antigos podem apresentar uma combinação de projetos de contracorrente com corrente em paralelo, em que o licor preto fraco é inserido no quarto efeito e o licor preto concentrado é liberado do sistema pelo segundo efeito, como é apresentado na Figura 2.10.

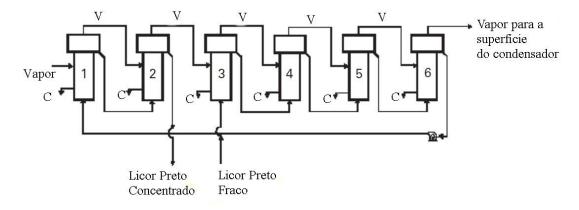


Figura 2.10 – Sistema de evaporação misto Fonte: Adaptado de EK et al., 2009.

Na indústria de papel e celulose, existem três tipos de evaporadores para a concentração do licor preto conforme reportado por Ek et al. (2009):

evaporador composto por trocadores de calor formados por longos tubos verticais com comprimentos que variam de 7 a 10 metros. O vapor de aquecimento possui fluxo descendente, enquanto a solução a ser concentrada possui fluxo ascendente. Desse modo, a separação do solvente da solução ocorre no topo do equipamento. Esses equipamentos podem ser utilizados para concentrar soluções até um teor de 50% de sólidos secos, pois acima disto a viscosidade afeta o rendimento do processo. Devido à restrição referente à concentração, atualmente este tipo de equipamento não é mais instalado. A Figura 2.11 apresenta o esquema desse tipo de equipamento.

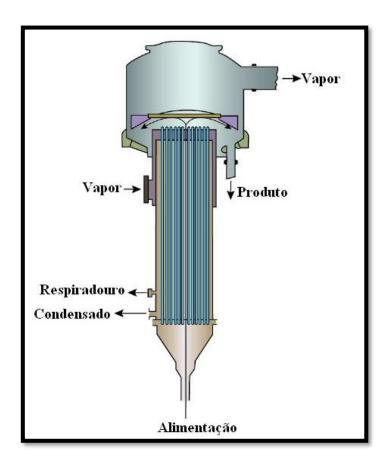


Figura 2.11 – Evaporador tipo *climbing film*Fonte: Adaptado de NPTEL, 2016

Os evaporadores de circulação forçada utilizados pela indústria de papel e celulose podem ser utilizados para elevar a concentração do licor preto de 50% até 70-80%. Este tipo de equipamento utiliza uma bomba para circulação da solução a ser concentrada e apresenta tubos trocadores de calor que variam de 4 a 7 metros de comprimento com 0,03 a 0,05 metros de diâmetro. A Figura 2.12 esquematiza o equipamento.

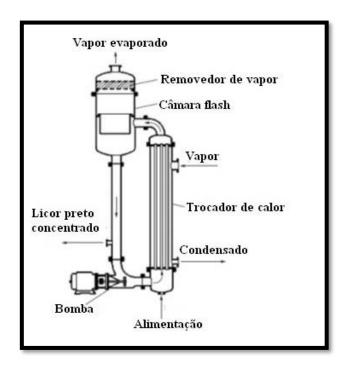


Figura 2.12 – Evaporador de circulação forçada Fonte: Adaptado de EK et al., 2009.

• Os evaporadores mais utilizados são os de fluxo descendente ou *falling film*, por ser o equipamento que possui uma grande faixa de concentração para licor preto. Esse tipo de arranjo faz com que o licor entre no topo do evaporador, onde o trocador de calor está localizado. Quando o licor entra em contato com os trocadores de calor, forma-se uma camada ou filme líquido que se move lentamente para baixo com a ação da gravidade, sendo essa a parte de estudos mais difícil e mais crítica do processo. Neste equipamento a separação do solvente da solução ocorre na parte inferior do equipamento e o vapor dentro do trocador de calor, transforma-se em água condensada somente fora da região de troca térmica. A Figura 2.13 esquematiza este equipamento.

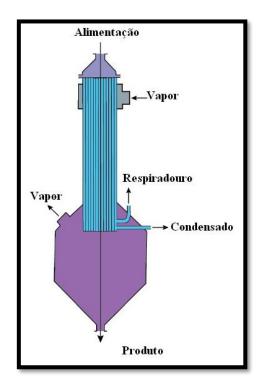


Figura 2.13 – Evaporador de fluxo descendente Fonte: Adaptado de NPTEL, 2016

Com a retirada de grande parte da água do licor preto, o seu poder calorífico eleva-se, dessa maneira sendo possível utilizá-lo como combustível em uma caldeira de recuperação química.

2.2.2.2. Caldeira de recuperação química

A caldeira de recuperação química de uma fábrica de papel e celulose é o equipamento que possui a maior dimensão, quando comparado com os outros equipamentos, e o que demanda maior custo de instalação, chegando até 20% do investimento total da fábrica.

A função da caldeira é de utilizar o licor preto concentrado como combustível, queimando a parte orgânica, afim de fornecer a energia necessária para geração de vapor à alta pressão, e recuperar compostos inorgânicos presentes no licor branco.

2.2.2.1. Descrição do projeto de uma caldeira de recuperação química

Com o processo *Kraft* estabelecido como um dos melhores para a obtenção da pasta celulósica, têm-se realizado estudos referente ao melhoramento das características das caldeiras de recuperação química. As Figuras 2.14 e 2.15 juntamente com as Tabelas 2.3 e 2.4 apresentam dois projetos, sendo o primeiro um projeto de uma caldeira de recuperação química de 1982 e o segundo, uma caldeira com funcionamento previsto para 2017, ambos com seus respectivos dados de operação.

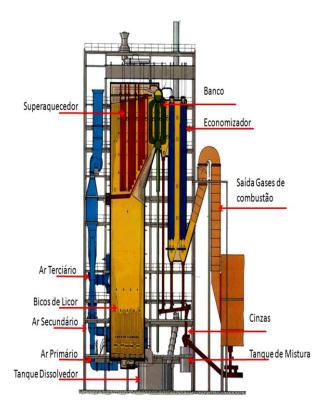


Tabela 2.3 – Dados de projeto da Caldeira de Recuperação Química de 1982

Licor Preto (tss/d)	1.700
Sólidos Secos (%)	64
Temperatura vapor (°C)	480
Pressão vapor (bar)	85
Produção de	3,50 kg vapor/
vapor por	kg sólido seco
sólido seco queimado	

Fonte: VAKKILAINEN, 2005

Figura 2.14 – Projeto de uma Caldeira de Recuperação Química de 1982 Fonte: REIS, 2013

Com os dados contidos nas Tabelas 2.3 e 2.4 é possível analisar os benefícios do avanço tecnológico dos materiais metálicos utilizados para fabricação da caldeira que associados a um novo arranjo da caldeira, ocasionam um aumento da produção e melhora na qualidade do vapor gerado. Todo o vapor gerado segue para turbogeradores, para produzir energia elétrica para a fábrica.

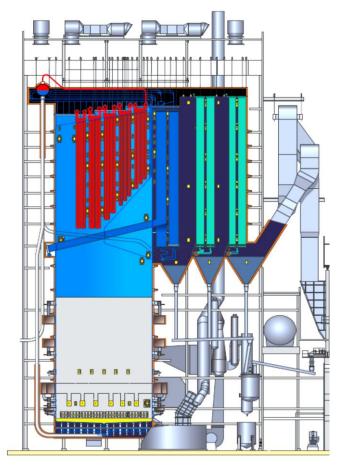


Tabela 2.4 - Dados de projeto da Caldeira de Recuperação Química de 2017

Licor Preto (tss/d)	7.200
Sólidos Secos (%)	85
Temperatura vapor (°C)	515
Pressão vapor (bar)	110
Produção de	4,20 kg
vapor por	vapor/ kg
sólido seco queimado	sólido seco

Fonte: VALMET, 2015

Figura 2.15 – Projeto de caldeira de recuperação química atual.

Fonte: VALMET, 2015

Segundo Ferreira (2013), os designs das caldeiras de recuperação química são constituídos por duas regiões, sendo a região inferior referente ao da fornalha ou zona de combustão do licor preto e a parte superior a região de troca térmica, contendo os superaquecedores, os balões e os economizadores. A região de fronteira entre a fornalha e a região de troca térmica é denominada nariz da caldeira, como pode ser visualizado na Figura 2.16.

Figura 2.16 – Regiões de uma caldeira de recuperação química Fonte: PAOLIELIO et al., 2002.

2.2.2.2.2. Injetores de ar

Para que ocorra a combustão do licor preto, injetores de ar estão distribuídos pelas paredes da caldeira, como demonstrado na Figura 2.17. A quantidade dos níveis de ar inserida e sua respectiva distribuição podem variar entre projetos. A Tabela 2.5 apresenta informações referentes aos níveis de ar como a faixa percentual de ar inserida por cada nível e a faixa de temperatura.

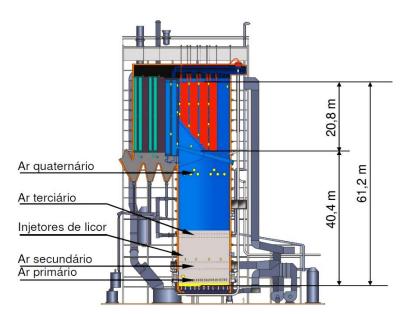


Figura 2.17 – Distribuição dos injetores de ar e do licor preto na caldeira Fonte: RIBEIRO et al., 2007

Tabela 2.5 – Distribuição dos níveis de ar, faixa do percentual inserido e faixa de temperatura.

Número de níveis	Nível do ar	Percentual do fluxo de ar injetado (% estequiométrico)	Temperatura (°C)
2	Primário	50 – 70	90 - 205
	Secundário	30 - 50	90 - 205
≥3	Primário	30 - 40	90 - 205
	Secundário	20 - 50	90 - 205
	Terciário	15 - 40	Ambiente

Fonte: WESSEL, 2016.

2.2.2.2.3. Ar primário

O ar primário inserido é distribuído nas paredes da parte inferior da fornalha entre 100 e 150 portas de entrada, posicionados de 1 a 2 metros acima do fundo da caldeira. Este ar é o que apresenta menor variedade de arranjos, localização e elevação de suas portas de entrada de ar quando comparado entre projetos de caldeiras de recuperação química (FERREIRA et al., 2010)

Conforme apontado por Ferreira (2013), os principais objetivos do ar primário são:

- Efetuar a oxidação do leito carbonizado do licor na camada externa do leito;
- Assentar o leito carbonizado e controlar o formato do leito, garantindo uma distância regular das paredes da caldeira;
- Controlar a temperatura do leito carbonizado para que as reações desejadas de combustão e redução ocorram normalmente;
- Fornecer oxigênio necessário para a combustão homogênea na camada externa do leito carbonizado.

2.2.2.2.4. Ar secundário

Segundo Ferreira (2013), o ar secundário está posicionado acima dos injetores de ar primário e abaixo dos injetores de licor preto, como foi apresentado na Figura 2.17. Este é o ar com maior influência na operação do equipamento e tem como principais funções:

- Definir a altura do leito carbonizado;
- Fornecer oxigênio para reação de combustão completa do licor preto;
- Oxidar os gases voláteis gerados;

Ao contrário dos injetores de ar primário, o número de portas do ar secundário é menor e com um arranjo que busca promover a melhor mistura possível dos fluxos dos gases presentes dentro na caldeira. O arranjo dos injetores é distribuído em paredes opostas, como o ilustrado na Figura 2.18 (VAKKILAINEN, 2005).

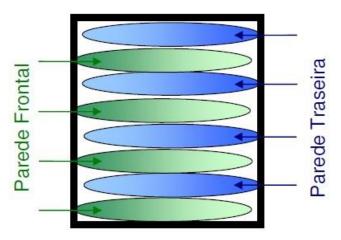


Figura 2.18 – Injetores de ar secundário posicionados em paredes opostas Fonte: FERREIRA, 2013

2.2.2.5. Ar terciário e quaternário

O ar terciário tem como principal função fornecer o oxigênio necessário para completar a combustão dos gases, promovendo uma mistura homogênea destes. Em relação ao arranjo do ar terciário, há destaque para os três principais, como reportado por Ferreira (2013):

- "Portas de entrada em paredes opostas com posicionamento entrelaçado";
- "Arranjo tangencial";
- "Arranjo concêntrico".

Já o ar quaternário é mais comum em projetos de caldeiras que apresentam maiores capacidades de queima, tanto em quantidade de licor preto quanto em maiores concentrações. O uso deste sistema quaternário é aconselhável para as caldeiras que possuem mais de 60 metros de altura.

As principais funções do ar quaternário são (FOCUS ON ENERGY, 2005):

- Reduzir a passagem de material particulado para a região superior da caldeira;
- Promover o fornecimento de oxigênio extra para complementar a oxidação dos gases;
- Redução nos gases poluentes lançados para a atmosfera.

2.2.2.6. Injetores do licor preto

Antes da inserção do licor preto na caldeira de recuperação química, o licor passa pelo tanque de mistura ou *mixture tank*, onde é misturado com as cinzas capitadas pelo precipitador eletrostático. O tanque mantém a temperatura do licor entre 100 e 200 °C. Após este tanque, o licor preto é inserido na caldeira para ser queimado.

Os injetores de licor preto são projetados de tal forma que, no momento de inserção na caldeira, ocorra o espalhamento uniforme de gotas na fornalha, facilitando a queima. A melhora na dispersão do licor preto dentro da caldeira contribui para a redução dos compostos inorgânicos, diminui a quantidade de particulados nos gases de exaustão e de incrustação na região de troca térmica e aumenta a eficiência da caldeira de recuperação química (CLEAN COMBUSTION DYNAMIC PERFORMANCE, 2016).

A Figura 2.19 ilustra o injetor de licor preto.

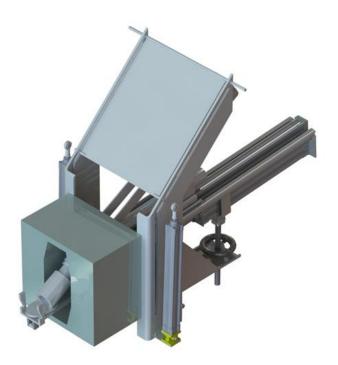


Figura 2.19 – Injetor com placa espalhadora de licor preto Fonte: CLEAN COMBUSTION DYNAMIC PERFORMANCE, 2016.

2.2.2.7. Principais reações químicas dentro da caldeira de recuperação química

Com o espalhamento uniforme do licor preto dentro da caldeira de recuperação química, três etapas principais ocorrem durante a queima (Vakkilainen, 2005; Ferreira, 2013; Fakhrai, 2002, EK et al., 2009):

 Secagem: etapa inicial de remoção da umidade restante no licor preto pelo processo de vaporização, reação representada pela equação (2.1);

$$H_2O_{(l)} + 41.800 \frac{kJ}{kmol} \rightarrow H_2O_{(g)}$$
 (2.1)

 Volatilização ou pirólise: promove reações irreversíveis com a degradação da matéria orgânica de baixo peso molecular contida no licor, como o metano, sulfeto de hidrogênio, monóxido e dióxido de carbono, indicadas pelas Equações de 2.2 a 2.5.

$$CH_{4(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{(g)} + H_{2(g)} + 35.000 \frac{kJ}{kmol}$$
 (2.2)

$$CO_{(g)} + \frac{1}{2}O_{2(g)} \to CO_{2(g)} + 283.000 \frac{kJ}{kmol}$$
 (2.3)

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)} + 284.000 \frac{kJ}{kmol}$$
 (2.4)

$$H_2S_{(g)} + O_{2(g)} \rightarrow H_2O_{(l)} + SO_{2(g)} + 560.000 \frac{kJ}{kmol}$$
 (2.5)

Combustão homogênea ocorrendo em duas regiões: a primeira ocorre acima da região de inserção do licor preto na caldeira, onde há formação dos gases de combustão com a queima da matéria orgânica de baixo peso molecular, e a segunda região é na camada ativa do leito carbonizado, onde há liberação da energia necessária para as reações de redução dos compostos químicos, formando o fundido denominado *smelt*. As principais reações químicas que ocorrem na camada ativa do leito carbonizado são apresentadas nas Equações de 2.6 a 2.10.

$$C_{(s)} + \frac{1}{2}O_{2(g)} \to CO_{(g)} + 110.000 \frac{kJ}{kmol}$$
 (2.6)

$$C_{(s)} + H_2 O_{(g)} + 78.000 \frac{kJ}{kmol} \rightarrow CO_{(g)} + H_{2(g)}$$
 (2.7)

$$C_{(s)} + CO_{2(g)} + 173.000 \frac{kJ}{kmol} \rightarrow 2CO_{(g)}$$
 (2.8)

$$CO_{(g)} + H_2O_{(g)} + 95.000 \frac{kJ}{kmol} \leftrightarrow CO_{2(g)} + H_{2(g)}$$
 (2.9)

$$CO_{(g)} + O_{2(g)} \rightarrow CO_{2(g)} + 283.000 \frac{kJ}{kmol}$$
 (2.10)

A Figura 2.20 ilustra as etapas de combustão do licor preto e a Figura 2.21 o tempo de ocorrência de cada etapa.

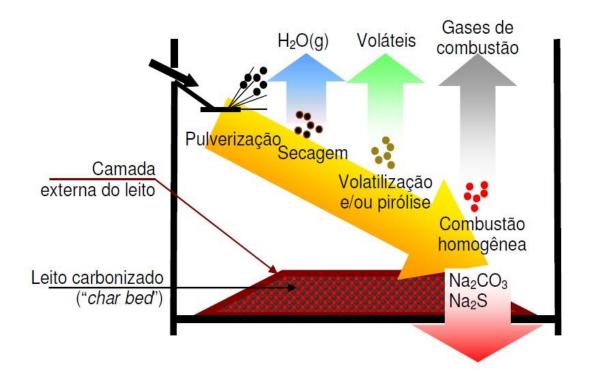


Figura 2.20 – Etapas que envolvem a queima do licor preto. Fonte: FERREIRA, 2013.

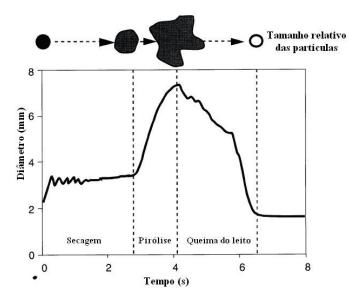


Figura 2.21 – Tempo de queima do licor preto Fonte: VAKKILAINEN, 2005.

Ainda sobre as reações de combustão, são as Equações de (2.6) a (2.10) que fornecem a energia necessária para a redução dos componentes inorgânicos, uma vez que as reações de redução destes compostos são mais lentas do que as de combustão da matéria orgânica.

As reações de redução dos compostos inorgânicos podem ser visualizadas nas Equações 2.11 e 2.12 (Vakkilaine, 2005; Ferreira, 2013; Fakhrai, 2002, EK et al., 2009):

$$4C_{(s)} + Na_2SO_{4(l,s)} + 568.000 \frac{kJ}{kmol} \rightarrow Na_2S_{(l,s)} + 4CO_{(g)}$$
 (2.11)

$$2C_{(s)} + Na_2CO_{3(l,s)} + 586.000 \frac{kJ}{kmol} \rightarrow 2Na_{(g)} + 3CO_{(g)}$$
 (2.12)

A quantidade de ar primário, por ser próxima a camada do leito ativo, é inserida para reagir com o carbono fixo. Caso haja excesso de ar primário, o oxigênio pode reagir com o sulfeto de sódio e formar sulfato de sódio, se a região da fornalha atingir temperaturas acima de 980°C, sendo esta uma reação indesejada. A Equação (2.13) representa a reação química citada anteriormente e a Figura 2.22 apresenta as reações que envolvem o sulfato de sódio e o sulfeto de sódio:

$$Na_s S_{(l)} + 2O_{2(g)} \rightarrow Na_2 SO_{4(l)} + 1.008.000 \frac{kJ}{kmol}$$
 (2.13)

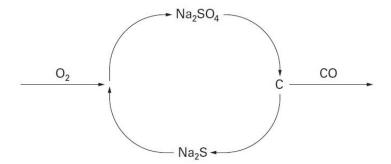


Figura 2.22 – Ciclo de reações do sulfeto e sulfato de sódio.

Fonte: EK et al., 2009.

Após a combustão do licor preto, os gases liberados são direcionados para os precipitadores eletrostáticos, a fim de retirar particulados presentes nos gases. Por estes gases apresentarem temperaturas elevadas, acima de 200 °C, os projetos mais recentes das caldeiras de recuperação aproveitam sua energia térmica para pré-aquecer a água condensada, que entra na caldeira para virar vapor superaquecido, através de trocadores de calor, ocasionando o aumento da eficiência térmica da caldeira. Além disso, existem outros projetos em que os gases de exaustão são utilizados nos evaporadores de múltiplos efeitos como fluido de aquecimento.

Como a caldeira de recuperação química apresenta a característica de reator químico, a queima do licor preto gera um fundido inorgânico denominado *smelt*, constituído em sua maioria por carbonato de sódio (Na_2CO_3) e sulfeto de sódio (Na_2S) . Este fundido liberado pela caldeira segue para o Tanque Dissolvedor.

A Figura 2.23 ilustra as principais reações químicas presentes dentro da caldeira de recuperação química e a distribuição do ar primário, ar secundário e ar terciário interagindo com as etapas da queima do licor preto.



Figura 2.23 – Reações químicas dentro da caldeira de recuperação Fonte: Adaptado de FAKHRAI, 2009.

2.2.2.3. Precipitadores Eletrostáticos

Os gases quentes de exaustão liberados pela caldeira de recuperação apresentam compostos particulados, sendo o sulfato de sódio o principal entre eles. Para evitar o lançamento deste composto químico para o meio ambiente, os gases passam por precipitadores eletrostáticos.

Os precipitadores eletrostáticos são os equipamentos mais utilizados para a retirada de materiais particulados de pequena granolometria presente nos gases de exaustão por apresentarem grande eficiência no tratamento.

Segundo Mendonça (2016) o funcionamento do precipitador eletrostático se dá pela aplicação de forças elétricas de alta tensão em eletrodos de emissão que ao aplicar cargas nos particulados, os separa dos gases de exaustão até os eletrodos de captação. O campo elétrico gerado pelos eletrodos de emissão, carrega eletricamente as partículas e faz com que as mesmas sejam atraídas pelos eletrodos de captação, que possuem carga elétrica oposta.

Para evitar acúmulos das cinzas, os eletrodos de captação são submetidos a um ciclo intermitente de batimento, provocando o desprendimento do material particulado retido até as tremonhas inferiores (Mendonça, 2016). O equipamento está ilustrado na Figura 2.24.

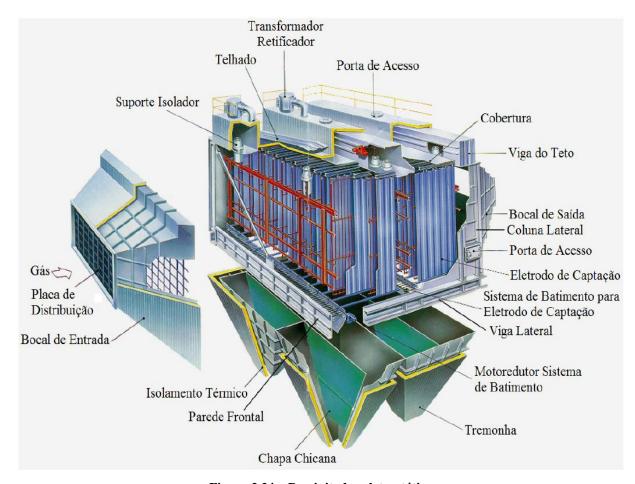


Figura 2.24 – Precipitador eletrostático Fonte: OZAWA, 2003

2.2.2.4. Tratamento das cinzas

Como mencionado anteriormente, o material particulado ou cinzas, separado pelo precipitador eletrostático, apresenta sulfato de sódio em sua composição, que é interessante pois pode ser convertido em sulfeto de sódio. Desse modo, as cinzas são direcionadas a um tanque de tratamento de cinzas, ilustrado na Figura 2.25.

Segundo a Valmet (2015), as cinzas são misturadas com água pois os elementos químicos desejados são insolúveis e os não desejáveis, como sódio e potássio, são solúveis. Após o preparo da solução, efetua-se um processo de centrifugação na mistura, separando os sólidos da solução aquosa. Os sólidos obtidos retornam para o processo de recuperação química e a solução aquosa é direciona para a unidade de tratamento de água. A Figura 2.25 apresenta este processo de tratamento das cinzas.

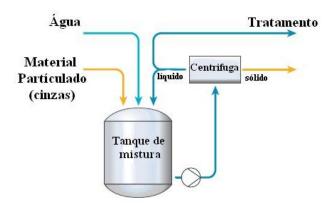


Figura 2.25 – Tratamentos do material particulado Fonte: Adaptado de VALMET, 2015.

2.2.2.5. Tanque Dissolvedor

O tanque dissolvedor é um equipamento posicionado logo abaixo da caldeira de recuperação química e tem como função coletar o fundido proveniente da queima do licor preto. Em relação à quantidade de sólidos secos totais presentes no licor inserido na caldeira, aproximadamente 40% de sua massa é convertida em *smelt*. Por ser formado na região de leito carbonizado da caldeira, o *smelt* liberado pela caldeira possui uma temperatura em torno de 800 a 900 °C (Vakkilainen, 2005).

Segundo Vakkilainen (2005), devido à alta temperatura de ejeção do *smelt*, é necessário realizar o seu resfriamento até temperaturas de 60 a 90 °C. Para que isto seja possível, um jato

de água posicionado acima dos bicos ejetores do fundido faz com que o smelt disperse na forma de gotas, facilitando o resfriamento. Esta água de dispersão tem uma temperatura entre 80 e 90°C, para que no momento do contato com o *smelt* ela evapore instantaneamente. A figura 2.26 apresenta como funciona a dispersão do *smelt*.

Figura 2.26 – Bico dispersor de *smelt* Fonte: Adaptado de TARANENKO, 2013.

No tanque dissolvedor, o *smelt* é misturado com água ou licor branco fraco para produzir o licor verde bruto. Durante a mistura, os gases liberados, sendo principalmente vapor de água, são direcionados para tratamento nos lavadores *Scrubbers*. O licor verde bruto gerado segue para filtros onde se retira algumas impurezas presentes, denominadas *dregs*, antes de ser inserido no reator *Slaker*.

Segundo Taranenko (2013), devido à alta temperatura do fundido, podem ocorrer acidentes neste equipamento. Existem ocorrências de tanques dissolvedores que explodiram e não se identificou o verdadeiro motivo, entretanto, uma hipótese levantada seria a falha do bico dispersor de *smelt*, em que a água evaporou em algum momento posterior ao desejado.

2.2.2.6. Caustifição

O processo de caustificação tem como função converter o carbonato de sódio (Na_2CO_3) em hidróxido de sódio (NaOH), efetuando a etapa final da recuperação do licor de cozimento.

Após a retenção das impurezas do licor verde por filtros, este licor é inserido no reator *Slaker*, ou reator apagador, para ser misturado com cal, como apresentado na Figura 2.27. A cal

inserida apresenta em sua composição aproximadamente 92% de óxido de cálcio (CaO), 2% de carbonato de cálcio ($CaCO_3$) e 6% de compostos como sílica e óxido de ferro (REIS, 2013).

O óxido de cálcio em contato com a água presente no licor verde ocasiona uma reação química denominada de hidratação ou apagamento da cal, gerando hidróxido de cálcio. Esta reação está indicada na Equação (2.14). Imediatamente após o apagamento da cal, o hidróxido de cálcio $[Ca(OH)_2]$ gerado reage com o carbonato de sódio, formando hidróxido de sódio e carbonato de cálcio. Esta reação recebe a denominação de caustificação e está representada pela Equação (2.15) (HOCKING, 2006).

$$CaO_{(s)} + H_2O_{(l)} \rightarrow Ca(OH)_{2(aq)} + 64.900 \frac{kJ}{kmol}$$
 (2.14)

$$Na_2CO_{3(aq)} + Ca(OH)_{2(aq)} \leftrightarrow 2NaOH_{(aq)} + CaCO_{3(s)} + 8.400 \frac{kJ}{kmol}$$
 (2.15)

O sucesso da obtenção de hidróxido de sódio por este método reacional está relacionado com a baixa solubilidade do carbonato de sódio em água, desse modo tornando possível realizar este processo tanto em pequena escala quanto em larga escala (HOCKING, 2006).

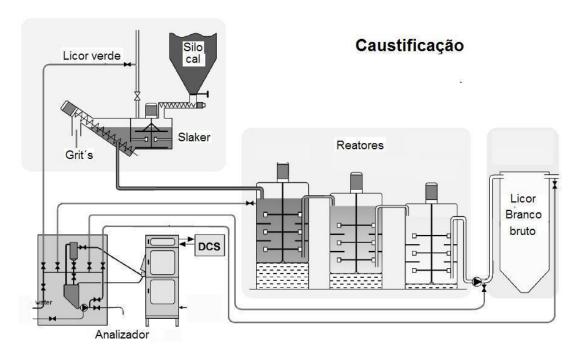


Figura 2.27 – Caustificação Fonte: REIS, 2013.

A reação de caustificação possui uma eficiência reacional no reator *Slake*r entre 85 a 90%. Desse modo, para atingir 100% o licor segue para reatores que propiciam um tempo de

retenção entre 90 e 120 minutos, onde ocorrem as reações restantes de caustificação (HOCKING, 2006; EK et al., 2009).

Os sólidos inseridos no reator *Slaker* que não reagiram, depositam-se no fundo do reator e recebem a denominação de *grits*. Estas substâncias depositadas são constituídas por sólidos de cal mal dissolvidos, areia, entre outros elementos. A remoção destes sólidos é feita pelo classificador.

O licor branco bruto produzido possui em sua composição o carbonato de cálcio como precipitado, também chamado de lama de cal. Por isso, antes do licor branco ser enviado para os digestores, é necessário filtrá-lo para a retirada das impurezas. Um exemplo de filtro utilizado é o filtro PDW, ilustrado na Figura 2.28. Este equipamento é pressurizado e integrado por um eixo horizontal com vários discos em seu comprimento, que ao rotacionarem retém a lama de cal e a despejam em um coletor, como ilustrado na Figura 2.29 (REIS, 2013).

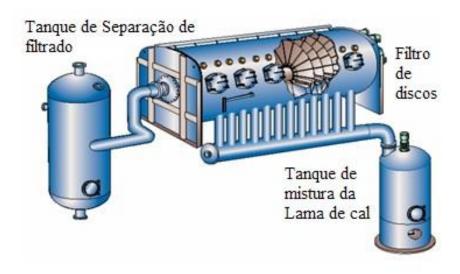


Figura 2.28 – Ilustração do filtro PDW Fonte: Adaptado de TRAN e VAKKILAINNEN, 2016.

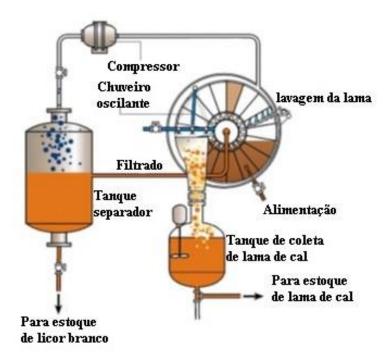


Figura 2.29 - Filtro do licor branco Fonte: Adaptado de FLSMIDTH, 2011.

O licor branco filtrado é direcionado para um tanque de armazenagem no setor de cozimento da madeira e a lama de cal é enviada para o filtro de lama, onde é realizada uma lavagem para retirada de hidróxido e carbonato de sódio restante. A água de lavagem da lama recebe o nome de licor branco fraco, que devido a sua composição pode ser utilizada para diluição do *smelt* no tanque dissolvedor.

A lama de cal lavada é enviada para o forno rotativo com teores de sólidos entre 60 e 80%, que ao receber a energia térmica proveniente da combustão de gás natural, converte o carbonado de cálcio em óxido de cálcio e dióxido de carbono, Equação (2.16), com uma eficiência entre 85 e 95%. A Figura 2.30 ilustra o forno de cal com os fluxos de entradas e saídas.

$$CaCO_{3(s)} + 177.800 \xrightarrow{kJ} \xrightarrow{900-1000 \text{ °C}} CaO_{(s)} + CO_{2(g)}$$
 (2.16)

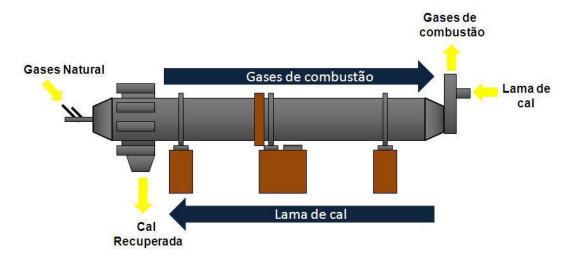


Figura 2.30 – Forno rotativo de cal Fonte: REIS, 2013.

A cal recuperada pelo forno rotativo é liberada na forma de aglomerados ou pelotas. Assim, estes aglomerados são direcionados para um moinho de martelo, para que as partículas atinjam um diâmetro menor e mais homogêneo, ocasionando em redução dos desperdícios de matéria prima no processo.

Capítulo 3

3. METODOLOGIA

Neste trabalho tem-se o interesse de efetuar um estudo no sistema de recuperação química de uma fábrica de papel e celulose, afim de identificar seus parâmetros de eficiência energética, eficiência exergética e possíveis melhorias do sistema.

3.1. EFICIÊNCIA ENERGÉTICA DA CALDEIRA DE RECUPERAÇÃO QUÍMICA.

A Primeira Lei da Termodinâmica estabelece que em um sistema fechado haja conservação de energia, ou seja, toda a energia gerada sofre transformações ou transferência por meio de trabalho ou calor, não sendo possível criar ou destruir a energia (MORAN e SHAPIRO, 2009).

Para a caldeira de recuperação química, a conversão de energia está na geração de vapor superaquecido a partir da água condensada, sendo que a energia necessária para esta transformação é proveniente da queima do combustível, o licor preto, com ar e a eletricidade consumida pela caldeira. Deste modo, a Figura 3.1 apresenta o volume de controle da caldeira de recuperação química.

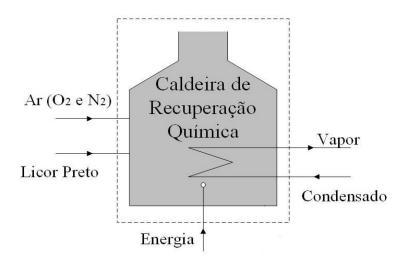


Figura 3.1 – Volume de controle da caldeira de recuperação química Fonte: Próprio autor

A eficiência energética da caldeira pode ser mensurada através da relação com o valor do calor útil, ou seja, aquele que realmente é aproveitado ao transferir energia para à água no estado líquido para transformá-la em vapor, com o calor gerado pela queima do combustível na fornalha. A Equação (3.1) apresenta como calcular a eficiência energética para caldeira de recuperação química.

$$n_{caldeira} = \frac{\dot{m}_{vapor} \cdot (H_{vapor} - H_{condensado})}{\dot{m}_{licor\ preto} \cdot PCI_{licor\ preto} + EE + Energia_{ar}}$$
(3.1)

Sendo $n_{caldeira}$ a eficiência energética da caldeira de recuperação química, \dot{m}_{vapor} a vazão mássica do vapor (kg/s), H_{vapor} e $H_{condensado}$ as entalpias (kJ/kg) do vapor gerado e da água condensada inserida para aquecimento, $\dot{m}_{licor\ preto}$ é a vazão mássica do licor preto, o $PCI_{licor\ preto}$ é o poder calorífico inferior do licor preto, EE é a energia elétrica consumida pela caldeira para funcionamento dos ventiladores e outras funções e $Energia_{ar}$ a energia térmica contida no ar para efetivar a combustão do combustível.

A vazão de licor preto é calculada a partir de informações da queima em toneladas de sólidos secos por dia, como está apresentado na Equação (3.2).

$$\dot{m}_{licor\ preto} = \frac{tss \cdot 1.000 \cdot 100}{3.600 \cdot 24 \cdot \%licor\ preto} \left[\frac{kg}{s} \right]$$
(3.2)

Sendo *tss* as toneladas de sólidos secos no licor preto queimada diariamente (t/d) e %*licor preto* é o percentual de sólidos secos no licor preto.

Como o licor preto é um combustível composto por sólidos, pode-se calcular o poder calorífico deste combustível com a Equação de Dulong, Equação (3.3) e pela Equação da Associação dos Engenheiros Alemães, Equação (3.4), a partir de uma composição elementar do licor preto em base seca. Estas equações foram apresentadas por Fernandez (2016).

$$PCI = 4,186 \cdot \left[8.140 \cdot C + 29.000 \cdot \left(H - \frac{o}{8} \right) + 2.220 \cdot S \right] \left[\frac{kJ}{ka} \right]$$
 (3.3)

$$PCI = 4,186 \cdot \left[8.080 \cdot C + 29.000 \cdot \left(H - \frac{o}{8} \right) + 2.500 \cdot S - 600 \cdot H_2 O \right] \left[\frac{kJ}{ka} \right] (3.4)$$

Sendo C a fração mássica de carbono, H a fração mássica de hidrogênio, O a fração mássica de oxigênio e S a fração mássica de enxofre.

O valor de consumo de energia elétrica pela caldeira de recuperação química pode ser obtido através de informações reportadas por autores na bibliografia.

A energia do ar pode ser calculada segundo a Equação (3.5):

$$Energia_{ar} = \dot{n}_{ar} \cdot (h_T - h_{298}) [kW]$$
(3.5)

Sendo \dot{n}_{ar} a vazão molar do ar (kmol/s), o h_T e h_{298} os valores de entalpia (kJ/kmol) na temperatura do ar inserido e na temperatura de referência, respectivamente.

3.2. EXERGIA

3.2.1. Introdução

A Segunda Lei da Termodinâmica insere o conceito de processos reversíveis e irreversíveis. O processo reversível consiste em que sistemas ideais não sofram perdas energéticas, podendo retornar ao seu estado inicial, e os processos irreversíveis são sistemas em que há perdas de energia durante o processo.

Como todo sistema térmico real possui perdas de energia, seja para o meio ambiente ou no processo em si, uma análise termodinâmica pela Primeira Lei da Termodinâmica nem sempre é satisfatória. Isto ocorre por considerar somente a energia produzida e não o que realmente é utilizado ou aproveitado.

Assim, pode-se dizer que a Primeira Lei da Termodinâmica mensura a quantidade de energia produzida, enquanto a Segunda Lei da Termodinâmica analisa a parcela de energia que realmente é aproveitada (Oliveira Junior, 2013).

De acordo com Szargut (1988), o conceito de exergia une os conceitos presentes na Primeira e Segunda Lei da Termodinâmica e mensura a quantidade máxima de trabalho que pode ser obtido até o estado de equilíbrio termodinâmico (mecânico, térmico e químico) com o meio ambiente.

3.2.2. Análise Exergética

A análise exergética busca revelar perdas no sistema através das irreversibilidades presentes no processo, ou seja, através dos princípios da conservação de massa, conservação de energia; e com a Segunda Lei da Termodinâmica, torna-se possível mensurar as

irreversibilidades presentes em um sistema térmico, ou seja, a exergia quantifica todo o trabalho gerado e qualifica toda a sua utilidade (Oliveira Junior, 2013).

Como reportado por Szargut (1988), a exergia total de um sistema pode ser calculada como apresentado pela Equação (3.6):

$$B = B_k + B_p + B_{ph} + B_{ch} (3.6)$$

Sendo B a exergia total (kW), B_k a exergia cinética, B_p a exergia potencial, B_{ph} a exergia física e por fim, B_{ch} a exergia química.

A Figura 3.2 apresenta a ordem de grandeza de exergia parcial que compõem uma substância ou sistema.

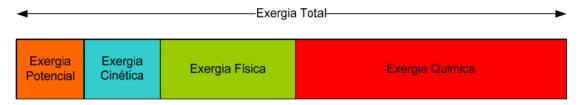


Figura 3.2 – Parcelas de exergias Fonte: ORTIZ; FLÓREZ-ORREGO, 2013.

Segundo Kotas (1985), o cálculo de exergia para um sistema térmico que não sofre efeitos das energias cinéticas e potenciais, podem ser desprezadas. Portanto, para este trabalho tem-se como interesse os valores representados pela exergia física e exergia química.

3.2.3. Exergia Física

Os valores de entalpia, entropia e exergia física são calculados adotando como referencial a temperatura e pressão ambiente, sendo 298,15 K e 1 bar respectivamente, sem qualquer alteração da composição química da substância considerada (Szargut, 1988). A Equação (3.7) representa o cálculo da exergia física específica:

$$b_{ph} = h_{ph} - T_0 \cdot s_{ph} \text{ [kJ/kmol]}$$
(3.7)

Sendo b_{ph} a exergia física específica, h_{ph} a entalpia específica, T_0 a temperatura de referência (298,15 K) e s_{ph} a entropia específica.

A exergia física está relacionada com a variação da temperatura, uma vez que, a mudança de temperatura ocasiona mudança nos valores de entalpia e entropia. Em vista disto, para determinar a variação de entalpia e entropia pode-se utilizar das Equações (3.8) e (3.9), respectivamente. Assim, a Equação (3.10) apresenta o cálculo da exergia física considerando a variação de entalpia e entropia específica.

$$\Delta h_{ph} = \int_{T_0}^T c_p dT \quad [kJ/kmol] \tag{3.8}$$

$$\Delta s_{ph} = \int_{T_0}^{T} \frac{c_p}{T} dT \text{ [kJ/kmol.K]}$$
(3.9)

$$b_{phT} = (\Delta h_{ph} - T_0 \cdot \Delta s_{ph}) \text{ [kJ/kmol]}$$
(3.10)

Sendo b_{phT} a exergia física específica correspondente a variação de entalpia e entropia, Δh_{ph} a variação de entalpia específica, Δs_{ph} a variação de entropia específica, T a temperatura da substância e o c_p o calor específico da substância.

Para um sistema que apresenta uma mistura de compostos químicos, o valor de exergia física pode ser calculado segundo a Equação (3.11), equação que considera a somatória das parcelas de entalpia específica e entropia específica de todos os compostos presentes na mistura.

$$B_{ph\,i} = \sum_{i} \dot{n}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \quad [kW]$$
(3.11)

Sendo $B_{ph\,i}$ a exergia física da corrente i e \dot{n}_i a vazão molar do composto i (kmol/s).

3.2.4. Exergia Química

A exergia química é a quantidade máxima de trabalho produzida até que o equilíbrio termodinâmico seja atingido em processos reativos, não reativos, processos que envolvem transferência de calor e quando há troca de compostos com o ambiente por meio de processos reversíveis (Kotas, 1985).

Como reportado por Szargut (1988), para soluções ideais e gases em que se conhece a composição química da solução, a exergia química pode ser calculada como apresentado pela Equação (3.12):

$$B_{ch} = \dot{n}_T \cdot \left[\sum_i y_i \cdot b_{ch}^0 + R \cdot T_0 \cdot \sum_i y_i \cdot \ln(y_i) \right] [kW]$$
 (3.12)

Sendo \dot{n}_T a vazão molar total [kmol/s], b_{ch}^0 a exergia química padrão [kJ/kmol], y_i a fração molar do composto i e R a constante universal dos gases. Entretanto, a Equação (3.9) é válida para as soluções aquosas ideais e que apresentam a exergia química padrão para uma molalidade de 1 mol/kg H_2O .

Ainda Szargut (1988), reportou que a exergia química de soluções pode ser obtida considerando as parcelas de exergias específicas dos solutos, como indicado pela Equação (3.13):

$$B_{ch} = \sum_{i} \dot{n}_i \cdot b_{ch}^0 \quad [kW] \tag{3.13}$$

3.2.5. Eficiência Exergética

A eficiência exergética é a eficiência baseada na Segunda Lei da Termodinâmica. A eficiência racional apresentada por Kotas (1985) demonstra um cálculo que leva em relação a quantidade de exergia desejada produzida em relação a exergia proveniente dos recursos. A Equação (3.14) representa estas informações:

$$\Psi = \frac{B_P}{B_R} \tag{3.14}$$

Sendo que Ψ simboliza a eficiência exergética, B_P é a exergia dos produtos (kW) e B_R a exergia proveniente dos recursos (kW).

3.2.6. Irreversibilidades

A irreversibilidade (I) é uma parte do trabalho termodinâmico que é perdido através de degradações exergéticas como reações química, deformações inelásticas, mistura de fluidos, atrito, entre outros fatores.

Segundo Kotas (1985), a irreversibilidade pode ser mensurada através da diferença de exergia entre a somatória dos recursos (R) com a somatória dos produtos (P) úteis e das perdas (L), como apresentado na Equação (3.15).

$$I_i = \sum R - \sum P - \sum L [kW] \tag{3.15}$$

Outro interessante fator a ser analisado está no percentual de irreversibilidade do equipamento no sistema, ou seja, identifica-se o equipamento que apresenta a maior perda no sistema. A expressão (3.16) apresenta o percentual de irreversibilidade (δ_i).

$$\delta_i = \frac{I_i}{\sum I_i} \tag{3.16}$$

Sendo $\sum I_i$ o somatório das irreversibilidades do sistema.

3.3. ANÁLISE EXERGÉTICA DO PROCESSO DE RECUPERAÇÃO DO LICOR BRANCO

A Figura 3.3 representa o sistema de recuperação química do licor de cozimento *Kraft*. Para o trabalho proposto, o processo será analisado a partir da entrada do licor preto na caldeira de recuperação química até a obtenção do licor branco final. O processo inicia com a entrada no licor preto na caldeira de recuperação química. Após a queima do licor preto, o *smelt* gerado segue para o tanque dissolvedor, onde irá produzir o licor verde bruto. Devido o licor verde bruto possuir impurezas em sua constituição, torna-se necessário filtra-lo para a retirada das impurezas e sendo liberado o licor verde. Este, segue para o reator *Slaker* ou reator apagador. No reator, ocorrem reações químicas que formam o licor branco bruto. Como o licor branco bruto apresenta carbonato de cálcio em sua constituição, o licor passa por um filtro para a remoção das partículas sólidas. O licor branco recuperado segue para um tanque onde será estocado, enquanto a lama de cal é lavada em outro filtro antes de entrar no forno de cal. A água de lavagem retorna para o tanque dissolvedor para misturar-se com o *smelt*.

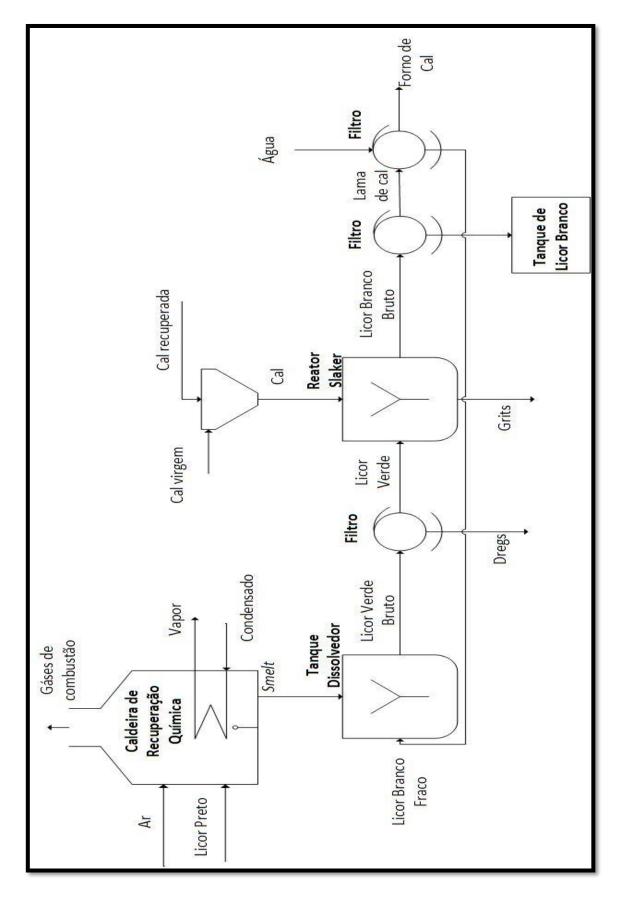


Figura 3.3 – Equipamentos analisados neste trabalho Fonte: REIS, 2013

3.3.1. Análise exergética da caldeira de recuperação química

Como a caldeira de recuperação química gera produtos que podem ser aproveitados, como o *smelt* e os gases de exaustão, efetuar uma análise aplicando a Segunda Lei da Termodinâmica pode ser interessante afim de identificar a real eficiência do equipamento.

Assim, a Figura 3.4 apresenta o volume de controle e os fluxos a serem analisados.

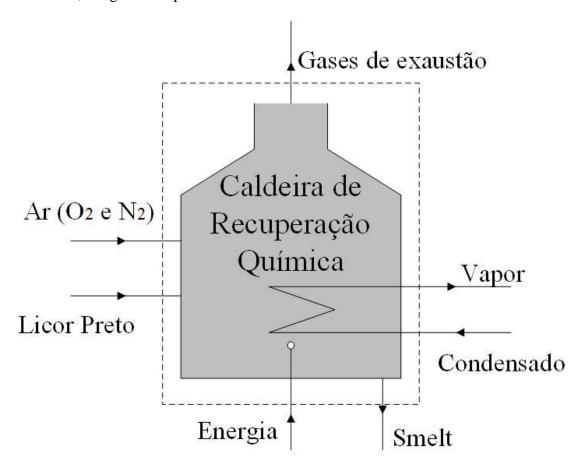


Figura 3.4 – Fluxos da caldeira de recuperação química Fonte: Próprio autor

3.3.1.1. Exergia do licor preto

O licor preto inserido na caldeira de recuperação química apresenta uma grande variedade de compostos em sua composição. Cardoso (1998) apresentou dados sobre a composição elementar do licor preto, presentes na Tabela 3.1.

Tabela 3.1 – Composição elementar do licor preto de diferentes localidades

Licor (tipo de madeira processada	Localização	ão Composição elementar do licor preto (%)						
		С	Н	N	Na	K	S	Cl
"Softwood"	Escandinávia	35,80	3,60	0,06	19,60	1,80	4,60	0,50
"Softwood"	Escandinávia	34,60	3,30	0,07	19,80	1,40	5,20	0,50
"Softwood"	Escandinávia	34,60	3,40	0,07	17,20	3,20	5,40	0,30
"Softwood"	Escandinávia	33,90	3,30	0,07	19,60	3,20	5,70	0,30
Hardwood	Escandinávia	33,20	3,30	0,08	20,80	2,60	5,20	0,30
Eucalyptus	América do Norte	37,30	3,60	0,09	17,30	1,80	3,40	1,60
Eucalyptus	Brasil/Cenibra	33,40	3,70	0,06	21,40	2,0	2,4	1,5

Fonte: CARDOSO, 1998

Atualmente existem estudos sobre a melhora do espalhamento do licor preto pelos injetores, de modo a inserir partículas de menor dimensão e tornar as etapas de secagem e pirólise praticamente instantâneas (JÄRVINEN, 2012). Desse modo, Marklund et al. (2007) apresentou em seu trabalho a composição molecular do licor preto que pode ser formada após ser inserido no interior da caldeira, apresentado na Tabela 3.2.

Tabela 3.2 – Composição molecular do licor preto

Composto	Percentu	al mássico úr	nido (%)
H ₂ O	24,80	24,80	24,80
H_2S	2,02	3,23	0,81
CO	15,70	14,90	16,50
CO_2	3,08	2,93	3,24
\mathbf{H}_2	0,56	0,36	0,76
$\mathbf{CH_4}$	7,60	8,10	7,10
C	9,90	9,40	10,30
Na ₂ SO ₄	4,20	1,68	6,73
Na ₂ S	2,31	0,92	3,70
Na ₂ CO ₃	29,90	33,60	26,10

Fonte: MARKLUND et al., 2007

Efetuar uma análise exergética considerando a composição molecular do licor preto, pode ser mais interessante do que a de considerar a composição elementar pois pode-se considerar o valor da exergia química de várias substâncias moleculares ao invés de uma única

pela composição elementar, ou seja, considerar a exergia química do sulfeto de sódio, carbonato de sódio e sulfato de sódio de uma composição molecular pode ser mais interessante do que somente contabilizar a exergia química do sódio a partir de uma composição elementar.

Para este estudo, considerou-se a composição molecular do licor preto referente à primeira coluna do percentual da composição do licor preto que foi apresentado na Tabela 3.2. Assim, para determinar a vazão molar de cada composto, aplicou-se a Equação (3.17).

$$\dot{n}_i = \frac{\dot{m}_{licor\ preto} \cdot Percentual_i}{MassaMolecular_i}$$
(3.17)

Sendo \dot{n}_i a vazão molar do composto i (kmol/s), $Percentual_i$ da fração mássica do composto i e $MassaMolecular_i$ a massa molecular do composto i (kg/kmol).

Para calcular a parcela de exergia física do licor preto, as interações intermoleculares entre as substâncias foram desconsideradas e aplicaram-se as equações reportadas por Carvalho (1977), vide Equação (3.18) e (3.19), afim de determinar os valores de entalpia específica e entropia específica de cada composto molecular.

$$\Delta h_{ph} = \left(h_T - h_{298,15}\right) = 4,186 \cdot \left(A \cdot T + B \cdot 10^{-3} \cdot T^2 + C \cdot 10^5 \cdot + D\right) \left[\frac{kJ}{kmol}\right]$$
(3.18)
$$\Delta s_{ph} \left(s_T - s_{298,15}\right) = 4,186 \cdot \left[A \cdot \ln\left(\frac{T}{298,15}\right) + 2 \cdot B \cdot 10^{-3} \cdot \left(T - 298,15\right) + \frac{c}{2} \cdot 10^5 \cdot \left(\frac{1}{T^2} - \frac{1}{298,15^2}\right)\right] \left[\frac{kJ}{kmol.K}\right]$$
(3.19)

Sendo *T* a temperatura (K), A, B, C e D são os coeficientes de cada composto químico que podem ser visualizados na Tabela 3.3.

Tabela 3.3 – Coeficientes e valores de exergia química padrão dos compostos presentes no licor preto

Compostos	A	В	C	D	b_{ch}^{0} (kJ/kmol)
H ₂ O	7,3	1,23	0	-2286	3.120
H_2S	7,81	1,48	0,46	-2614	804.770
CO	6,79	0,49	0,11	-2105	275.430
CO_2	10,57	1,05	2,06	-3936	20.140
\mathbf{H}_2	6,52	0,3	-0,12	-1938	238.490
$\mathbf{CH_4}$	5,65	5,72	0,46	-2347	836.510
C	4,03	0,57	2,04	-1936	410.820
Na ₂ SO ₄	47,18	0	0	-10190	35.000
Na ₂ S	19,81	0,82	0	-5979	930.340
Na ₂ CO ₃	27,13	7,81	4,78	-10386	53.130

Fonte: CARVALHO (1977) e KOTAS (1985).

Para o cálculo da variação de entalpia específica e entropia específica referente a cada composto molecular, basta substituir os coeficientes A, B, C e D nas Equações (3.18) e (3.19). O valor da temperatura do fluido considerada foi de 398 K, como reportado por Carreiro (2009).

Com os valores de vazão molar dos compostos, entalpia específica e entropia específica, pode-se calcular a exergia física para todos os compostos presentes no licor preto aplicando a Equação (3.20), conforme apresentado por Szargut (1988).

$$B_{ph\,licor\,preto} = \sum_{i} \dot{n}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \quad [kW]$$
 (3.20)

Ainda na Tabelas 3.3, foram apresentados os valores de exergia química padrão (b_{ch}^0) de cada substância. Dessa maneira, pode-se determinar a exergia química da corrente de licor preto com a Equação (3.21), reportada por Szargut (1988).

$$B_{ch \ licor \ preto} = \sum_{i} \dot{n}_{i} \cdot b_{ch}^{0} \ [kW] \tag{3.21}$$

Finalmente, somando os resultados das Equações (3.20) e (3.21), obtém-se o valor de exergia total de fluxo apresentado na Equação (3.22), como reportado por Szargut (1988).

$$B_{licor\ preto} = B_{ph\ licor\ preto} + B_{ch\ licor\ preto} \ [kW] \tag{3.22}$$

Sendo $B_{licor\ preto}$ a exergia do licor preto.

3.3.1.2. Exergia do *smelt*

O *smelt* é o fundido gerado na cadeira de recuperação química através de reações químicas entre substâncias inorgânicas. A Tabela 3.4 apresenta a composição molecular do *smelt* liberado pela caldeira.

Tabela 3.4 – Composição molar do smelt

Composto	Percentual molar				
	(%)				
Na ₂ CO ₃	75,900				
Na ₂ S	15,800				
Na ₂ SO ₄	0,032				
C	8,200				

Fonte: MARKLUND et al., 2007.

A partir da composição do *smelt*, pode-se fazer balanços estequiométricos com o licor preto, considerando que toda a parcela de sódio que entra na caldeira sai na forma de fundido.

O *smelt* deve ser liberado pela caldeira com uma temperatura entre 1.073 e 1.173 K, sendo que para este trabalho considerou-se o valor reportado por Carreiro (2009) de 1.133 K.

Para o cálculo de entalpia específica e entropia específica utiliza-se das Equações (3.23) e (3.24) apresentadas por Carvalho (1977).

$$(h_T - h_{298,15}) = 4,186. (A.T + B. 10^{-3}T^2 + C. 10^5. T^{-1} + D) \left[\frac{kJ}{kmol} \right]$$
 (3.23)
$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right] \left[\frac{kJ}{kmol.K} \right]$$
 (3.24)

Os coeficientes A, B, C e D utilizados para cálculo de entalpia entropia do compostos moleculares presentes no *smelt* estão presentes na Tabela 3.5.

Tabela 3.5 – Coeficientes e valores de exergia química padrão dos compostos químicos presentes no *smelt*

Composto	A	В	С	D	$b_{ch}^0 \ [ext{kJ/kmol}]$
Na ₂ CO ₃	45	0	0	-13.100	53.130
Na ₂ S	19,81	0,82	0	-5.979	930.340
Na ₂ SO ₄	47,18	0	0	-10.190	35.000
C	4,03	0,57	2,04	-1.936	410.820

Fonte: CARVALHO (1977) e KOTAS (1985).

Com os valores de vazão molar dos compostos, entalpia específica e entropia específica, pode-se calcular o valor de exergia física dos compostos presentes no *smelt* aplicando a Equação (3.25).

$$B_{ph \, smelt} = \sum_{i} \dot{n}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \quad [kW]$$
 (3.25)

A Tabelas 3.5 também apresentou os dados sobre a exergia química padrão de cada substância. Desse modo, pode-se determinar a exergia química do *smelt* com a Equação (3.26).

$$B_{ch \text{ smelt}} = \sum_{i} \dot{n}_{i} \cdot b_{ch}^{0} \quad [kW] \tag{3.26}$$

Por fim, somando os resultados das Equações (3.25) e (3.26), obtém-se o valor de exergia total do fluxo, sendo apresentado na Equação (3.27).

$$B_{smelt} = B_{ph \, smelt} + B_{ch \, smelt} \left[kW \right] \tag{3.27}$$

Sendo B_{smelt} a exergia do *smelt*.

3.3.1.3. Exergia dos gases de combustão

A parte orgânica presente no licor preto efetua combustão completa, liberando os gases de exaustão. Assim, para efeitos de balanços estequiométricos considera-se a formação de dióxido de carbono, dióxido de enxofre, nitrogênio, oxigênio e água.

Para o cálculo de exergia física dos gases de combustão da caldeira, utiliza-se das vazões molares dos gases de exaustão a uma temperatura de 473 K, sendo este apresentado por Carreiro (2009).

Primeiramente, calcula-se os valores de entalpia específica e entropia específica pelas Equações (3.28) e (3.29)

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5. T^{-1} + D) \left[\frac{kJ}{kmol} \right]$$
 (3.28)
$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right] \left[\frac{kJ}{kmol.K} \right]$$
 (3.29)

A Tabela 3.6 apresenta os valores dos coeficientes A, B, C e D e exergia química padrão dos compostos constituintes dos gases de exaustão.

Tabela 3.6 - Coeficientes e valores de exergia química padrão dos compostos químicos presentes nos gases de exaustão

Composto	A	В	C	D	b ⁰ _{ch} [kJ/kmol]
SO ₂	11,04	0,94	1,84	-3992	303.500
N_2	6,83	0,45	0,12	-2117	720
CO_2	10,57	1,05	2,06	-3936	20.140
H_2O	7,3	1,23	0	-2286	11.710
O_2	7,16	0,5	0,4	2313	3.970

Fonte: CARVALHO (1977) e KOTAS (1985).

O valor de exergia física de cada composto molecular pode ser calculado pela Equação (3.30).

$$B_{ph \ gases \ de \ exaust\~ao} = \sum_{i} \dot{\pi}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \quad [kW]$$
 (3.30)

O cálculo de exergia química dos compostos presentes nos gases de exaustão, deve ser efetuado segundo a Equação (3.32). Contudo, para a realização deste cálculo, é necessário saber o valor da fração molar, que pode ser calculada através da Equação (3.31). Os valores de exergia química padrão de cada composto molecular, foram apresentados na Tabela (3.5).

$$y_i = \frac{\dot{n}_i}{\dot{n}_T} \tag{3.31}$$

$$B_{ch \ gases \ de \ exaust\~ao} = \dot{n}_T \cdot \left[\sum_i y_i \cdot b_{ch}^0 + R \cdot T_0 \cdot \sum_i y_i \cdot \ln(y_i) \right] \ [kW] \tag{3.32}$$

Sendo y_i a fração molar do composto i, \dot{n}_i a vazão molar do composto i (kmol/s) e \dot{n}_T a vazão molar total da corrente dos gases de exaustão (kmol/s).

Por fim, com os valores de exergia física e química de todos os compostos, aplica-se a Equação (3.33) para obtenção do valor de exergia dos gases de exaustão.

$$B_{gases\ de\ exaust\~ao} = B_{ph\ gases\ de\ exaust\~ao} + B_{ch\ gases\ de\ exaust\~ao} [kW]$$
 (3.33)

3.3.1.4. Exergia da água condensada e do vapor

Com a energia liberada da queima da parte orgânica do licor preto, através de trocadores de calor a água na fase líquida absorve esta energia e transforma-se em vapor superaquecido.

Por este vapor e água condensada estarem em um sistema fechado de substância pura, a sua parcela de exergia química pode ser desconsiderada. Entretanto, a parcela de exergia física contribui significativamente na eficiência exergética da caldeira de recuperação química.

Através dos dados de processo do vapor gerado e da água condensada introduzida, como por exemplo, os dados do valor de temperatura e pressão do vapor produzido e da água condensada inserida, pode-se obter os valores de entalpia e entropia consultando as tabelas termodinâmicas apresentadas por Moran e Shapiro (2007) ou utilizando o *software* Computer-Aided Thermodynamic Table 3 (CATT3).

Com os valores de entalpia, entropia e da vazão mássica de vapor informada pelos fabricantes das caldeiras, aplica-se a Equação (3.34) para obter o valor da exergia da água condensada ou do vapor por esta mesma equação, apenas adequando os dados para o respectivo fluxo:

$$B_{vapor} = \dot{m}_{vapor} \cdot (\Delta H_{vapor} - T_0 \cdot \Delta S_{vapor}) [kW]$$
 (3.34)

Sendo B_{vapor} a exergia total do vapor (kW), \dot{m}_{vapor} a vazão mássica de vapor gerado na caldeira (kg/s), ΔH_{vapor} é a variação de entalpia (kJ/kg) e ΔS_{vapor} é a variação de entropia (kJ/kg K).

3.3.1.5. Exergia do ar estequiométrico

Após finalizado os balanços estequiométricos do licor preto, do *smelt* e gases de exaustão, faz o complemento de oxigênio necessário das reações químicas balanceando a parcela de ar inserida na caldeira de recuperação química.

A Tabela 2.5 apresentou informações da divisão em níveis do ar estequiométrico. Neste trabalho, considerou-se para o ar primário a parcela de 30% do ar estequiométrico, para o ar secundário 40% do ar estequiométrico e para o ar terciário a parcela de 30%, em que estes dados adotados foram considerados com o auxílio da Tabela 2.5. A temperatura do ar de cada nível é informada pelo fabricante da empresa ou por autores em seus trabalhos. Ainda, considerou-se uma parcela de 7% de excesso de ar inserida a temperatura ambiente.

Primeiramente, calcula-se os valores de entalpia específica e entropia específica pelas Equações (3.35) e (3.36)

A Tabela 3.7 apresenta os valores dos coeficientes A, B, C e D e exergia química padrão do oxigênio e do nitrogênio atmosférico.

Tabela 3.7 - Coeficientes e valores de exergia química padrão dos compostos presentes no ar

Composto	A	В	С	D	b _{ch} [kJ/kmol]
N_2	6,83	0,45	0,12	-2117	690
O_2	7,16	0,5	0,4	2313	3.970

Fonte: CARVALHO (1977) e KOTAS (1985).

O valor de exergia física de cada composto molecular pode ser calculado pela Equação (3.37).

$$B_{ph ar} = \sum_{i} \dot{n}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \quad [kW]$$
 (3.37)

O cálculo de exergia química do oxigênio e nitrogênio, deve ser efetuado segundo a Equação (3.39) e os respectivos valores foram apresentados na Tabela (3.7). Vale ressaltar que o valor da fração molar pode ser calculado através da Equação (3.38).

$$y_i = \frac{\dot{n}_i}{\dot{n}_T} \tag{3.38}$$

$$B_{ch\ ar} = \dot{n}_T. \left[\sum_i y_i. b_{ch}^0 + R. T_0. \sum_i y_i. \ln(y_i) \right] [kW]$$
 (3.39)

Sendo y_i a fração molar do oxigênio ou nitrogênio, \dot{n}_i a vazão molar do composto i (kmol/s) e \dot{n}_T a vazão molar total da corrente de ar inserida (kmol/s).

Por fim, com os valores de exergia física e química de todos os compostos, aplica-se a Equação (3.40) para obtenção do valor de exergia da corrente de ar.

$$B_{ar} = B_{ph ar} + B_{ch ar} [kW]$$
(3.40)

Sendo B_{ar} a exergia do ar.

3.3.1.6. Eficiência exergética da caldeira de recuperação química

A eficiência exergética da caldeira de recuperação química pode ser calculada fazendo uma razão entre a somatória da exergia dos produtos pela somatória da exergia dos recursos, como é apresentado na Equação (3.41).

$$\Psi_{Caldeira\ de\ Recuperação} = \frac{(B_{vapor} - B_{condensado}) + B_{smelt} + B_{gases\ de\ exaustão}}{B_{licor\ preto} + Energia + B_{ar}}$$
(3.41)

A irreversibilidade da caldeira de recuperação química pode ser calculada como a diferença entre os recursos inseridos e os produtos úteis do equipamento, como apresentado na Equação (3.42).

$$I_{caldeira\ de\ recuperação} = \left(B_{licor\ preto} + B_{ar} + Energia\right) - \\ \left[\left(B_{vapor} - B_{condensado}\right) + B_{smelt} + B_{gases\ de\ exaustão}\right] [kW] \quad (3.42)$$

Sendo $I_{caldeira\ de\ recuperação}$ a irreversibilidade da caldeira de recuperação química.

3.3.2. Análise exergética do tanque dissolvedor

O tanque dissolvedor, posicionado logo abaixo da caldeira de recuperação química, recebe o *smelt* e o dilui em licor branco fraco. A mistura entre essas duas correntes produz o licor verde bruto e, devido à alta temperatura do *smelt*, o tanque libera vapor d'água. A Figura 3.5 esquematiza os fluxos de entrada e saída presentes no tanque dissolvedor.

Tanque Dissolvedor

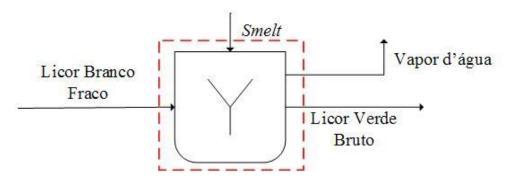


Figura 3.5 – Tanque dissolvedor com o volume de controle Fonte: Próprio autor.

A metodologia de cálculo do valor de exergia do *smelt* já foi apresentada na seção 3.3.1.2, não sendo necessário refazê-la.

3.3.2.1. Cálculo de exergia do licor branco fraco

Como a diluição do fundido em licor branco fraco pode variar entre empresas, Reis (2013) reportou dados da composição mássica do licor branco fraco e considerou uma taxa de diluição de 1 kg de *smelt* para 8,13 kg de licor branco fraco. A Tabela 3.8 mostra a composição mássica do licor branco fraco.

Tabela 3.8 – Composição mássica do licor branco fraco

Componente	Percentual mássica (%)
Na ₂ CO ₃	16,19
Na ₂ S	1,97
Na ₂ SO ₄	1,22
NaOH	0,48
C	0,13
H_2O	80,01
Total	100

Fonte: REIS, 2013.

Primeiramente, calcula-se os valores de entalpia específica e entropia específica pelas Equações (3.43) e (3.44)

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5. T^{-1} + D) \left[\frac{kJ}{kmol} \right]$$

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B.10^{-3}. (T - 298,15) + \frac{C}{2}.10^5. \left(\frac{1}{T^2} - \frac{1}{298.15^2} \right) \right] \left[\frac{kJ}{kmol.K} \right]$$

$$(3.44)$$

Segundo Reis (2013), a temperatura de entrada do licor branco fraco no Tanque Dissolvedor é de 333 K.

Como os coeficientes A, B, C e D e valores de exergia química padrão da maioria dos compostos que compõe o licor branco fraco já foram apresentados anteriormente, a Tabela 3.9 contém os dados somente do hidróxido de sódio.

Tabela 3.9 – Coeficientes para cálculo de entalpia e entropia do hidróxido de sódio

Componente	A	В	С	D	b _{ch} 0 (kJ/kmol)
NaOH	0,24	16,21	-3,87	-215	84.490

Fonte: CARVALHO (1977) e KOTAS (1985).

O cálculo de exergia física pode ser efetuado segundo a Equação (3.45).

$$B_{ph \ licor \ branco \ fraco} = \sum_{i} \dot{n}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \ [kW]$$
 (3.45)

E a parcela de exergia química é calculada segundo a Equação (3.47). Contudo, calculase o valor da exergia química específica, necessária para o cálculo da parcela de exergia química, através da Equação (3.46).

$$b_{ch\ i} = y_i \cdot b_{ch}^0 \ \left[\frac{kJ}{kmol} \right] \tag{3.46}$$

$$B_{ch \ licor \ branco \ fraco} = \dot{n}_T \cdot \sum b_{ch \ i} \ [kW]$$
 (3.47)

Sendo $b_{ch\,i}$ a exergia química específica do composto i e y_i a fração molar do composto i.

Por fim, soma-se os valores obtidos de exergia física e química, como é apresentado na Equação (3.48).

$$B_{licor\ branco\ fraco} = B_{ph\ licor\ branco\ fraco} + B_{ch\ licor\ branco\ fraco} \left[kW \right] \tag{3.48}$$

3.3.2.2. Cálculo de exergia dos fluxos de saída do Tanque Dissolvedor

Segundo Reis (2013), da parcela de água presente no licor branco fraco, cerca de 15% da massa de água evapora ao ser misturado com o *smelt*. Desse modo, com esta informação obtém-se os dados de vazão molar e mássico do vapor e do licor verde bruto gerado pelo Tanque dissolvedor.

Os valores de entalpia específica e entropia específica podem ser calculados pelas Equações (3.49) e (3.50), em que a temperatura do vapor liberado pelo tanque é de 373 K e o licor verde bruto de 363 K.

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5. T^{-1} + D) \left[\frac{kJ}{kmol} \right]$$

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B.10^{-3}. (T - 298,15) + \frac{C}{2}.10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right] \left[\frac{kJ}{kmol.K} \right]$$

$$(3.50)$$

Sendo que os coeficientes A, B, C e D e exergia química padrão dos compostos presente no licor verde bruto e para o vapor d'água já foram citados anteriormente.

Assim, o cálculo de exergia física para o licor verde bruto e vapor podem ser efetuados segundo a Equação (3.51).

$$B_{ph\ licor\ branco\ fraco} = \sum_{i} \dot{n}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \ [kW]$$
 (3.51)

E a parcela de exergia química é calculada segundo a Equação (3.53). Contudo, calculase o valor da exergia química específica através da Equação (3.52).

$$b_{ch\ i} = y_i \cdot b_{ch}^0 \ \left[\frac{kJ}{kmol} \right] \tag{3.52}$$

$$B_{ch \ licor \ branco \ fraco} = \dot{n}_T \cdot \sum b_{ch \ i} \ [kW]$$
 (3.53)

Sendo $b_{ch\,i}$ a exergia química específica do composto i e y_i a fração molar do composto i.

Por fim, soma-se os valores obtidos de exergia física e química, como é apresentado na Equação (3.54).

$$B_{licor\ branco\ fraco} = B_{ph\ licor\ branco\ fraco} + B_{ch\ licor\ branco\ fraco} \left[kW \right] \qquad (3.54)$$

3.3.2.3. Eficiência exergética do Tanque Dissolvedor

Com os dados de exergia de todos os fluxos, pode-se calcular a eficiência exergética do Tanque Dissolvedor aplicando a Equação (3.55).

$$\Psi_{Tanque\ Dissolvedor} = \frac{B_{licor\ verde\ bruto} + B_{vapor}}{B_{smelt} + B_{licor\ branco\ fraco} + Energia}$$
(3.55)

Sendo $\Psi_{Tanque\ Dissolvedor}$ a eficiência exergética do Tanque Dissolvedor e Energia a energia elétrica consumida pelo equipamento.

3.3.3. Filtro do Licor Verde Bruto

O filtro do licor verde bruto tem como função remover a parcela de impurezas insolúveis gerada na caldeira de recuperação do licor verde bruto. Dentre os compostos a serem removidos, a parcela de carbono fixo residual deve ser extraída totalmente.

3.3.3.1. Exergia dos dregs

Como apontado por Reis (2013), a parcela de *dregs* extraída do licor verde bruto é baixa, sendo menor que 1,0 % da vazão molar do total da vazão molar do licor verde bruto. A Tabela 3.10 apresenta a composição molar dos *dregs* extraídos.

Tabela 3.10 - Composição molar dos dregs

Componente	Percentual molar (%)
C	61,50
Na ₂ O	9,62
CaO	10,38
MgO	12,67
Na ₂ SO ₃	0,10
MnO	1,57
Fe ₂ O ₃	0,34
Total	100,00

Fonte: REIS, 2013.

Como pôde ser visto, o percentual predominante é referente ao de carbono fixo, enquanto as outras moléculas químicas a parcela é pequena.

As Equações (3.56) e (3.57) juntamente com a Tabela 3.11, apresentam como obter os valores de entalpia e entropia a partir dos coeficientes A, B, C e D. A temperatura das impurezas é de 333 K.

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5. T^{-1} + D) \left[\frac{kJ}{kmol} \right]$$
 (3.56)
$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B.10^{-3}. (T - 298,15) + \frac{C}{2}.10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right] \left[\frac{kJ}{kmol K} \right]$$
 (3.57)

Componente	A	В	С	D	b _{ch} ⁰ (kJ/kmol)
C	0,24	16,21	-3,87	-215	84.490
Na_2O	15,7	2,7	0	4.921	313.260

Tabela 3.11 – Valores dos coeficientes para cálculo de entalpia e entropia dos dregs

0.54 1.56 CaO 11,67 -4.051119.620 MgO 1,48 -3.609 59.170 10,18 0.87 Na₂SO₃ 13,9 3,05 3,22 -5.495 82.840 MnO 11,11 0,97 0,88 -3.694 122.390 Fe₂O₃ 23,49 9,3 3,55 133.750 -9.021

Fonte: Carvalho (1977) e Kotas (1985)

Utilizando a Equação (3.58), pode-se calcular o valor da exergia física dos *dregs*.

$$B_{ph dregs} = \sum_{i} \dot{n}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \quad [kW]$$
 (3.58)

Sendo $B_{ph\ dregs}$ a exergia física dos dregs.

A parcela de exergia química pode ser obtida segundo a Equação (3.60). Contudo, é necessário saber o valor da exergia química específica que pode ser calculada através da Equação (3.59).

$$b_{ch i} = y_i \cdot b_{ch}^0 \left[\frac{kJ}{kmol} \right] \tag{3.59}$$

$$B_{ch\,dregs} = \dot{n}_T \cdot \sum b_{ch\,i} \ [kW] \tag{3.60}$$

Sendo $B_{ch\ dregs}$ a exergia química dos dregs

A exergia total dos *dregs* pode ser calculada aplicando a Equação (3.61).

$$B_{dreas} = B_{dreas} + B_{dreas} [kW] (3.61)$$

3.3.4. Análise exergética do reator Slaker

Com o licor verde filtrado, segue o processo de recuperação do licor verde em licor branco no reator Slaker, onde será misturado com óxido de cálcio. A Figura 3.6 ilustra o volume de controle dos fluxos que foram analisados neste trabalho.

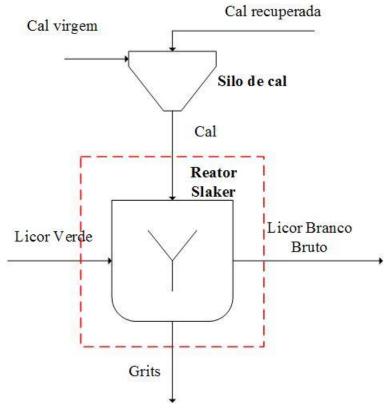


Figura 3.6 – Volume de controle analisado no Reator Slaker

Fonte: Próprio autor

3.3.4.1. Exergia do licor verde

Após o licor verde ser filtrado, a concentração do licor verde obtida por balanços de massa pode ser visualizada na Tabela 3.12

Tabela 3.12 – Composição molar do licor verde

Componente	Percentual molar
	(%)
Na ₂ CO ₃	3,28
Na ₂ S	0,55
Na ₂ SO ₄	0,18
NaOH	0,26
H ₂ O	95,74
Total	100,00

Fonte: Próprio autor

Os valores de entalpia específica e entropia específica podem ser calculados pelas Equações (3.62) e (3.63), em que a temperatura do licor verde inserida no reator *Slaker* é de 333 K.

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5. T^{-1} + D) \left[\frac{kJ}{kmol} \right]$$

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B.10^{-3}. (T - 298,15) + \frac{C}{2}.10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right] \left[\frac{kJ}{kmol.K} \right]$$

$$(3.63)$$

Os dados referentes aos coeficientes A, B, C e D e exergia química padrão dos compostos moleculares presente no licor verde já foram citados anteriormente.

Dessa maneira, o cálculo de exergia física para o licor verde pode ser efetuado segundo a Equação (3.64).

$$B_{ph\,licor\,verde} = \sum_{i} \dot{n}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \quad [kW]$$
 (3.64)

E a parcela de exergia química é calculada segundo a Equação (3.66). Contudo, é necessário saber o valor da exergia química específica que pode ser calculada através da Equação (3.65).

$$b_{ch i} = y_i \cdot b_{ch}^0 \left[\frac{kJ}{kmol} \right] \tag{3.65}$$

$$B_{ch\ licor\ verde} = \dot{n}_T \cdot \sum b_{ch\ i} \ [kW] \tag{3.66}$$

Sendo $b_{ch\,i}$ a exergia química específica do composto i e y_i a fração molar do composto i.

Por fim, soma-se os valores obtidos de exergia física e química, como é apresentado na Equação (3.67).

$$B_{licor\ verde} = B_{ph\ licor\ verde} + B_{ch\ licor\ verde}\ [kW] \tag{3.67}$$

Sendo $B_{licor\ verde}$ o valor de exergia para o licor verde

3.3.4.2. Exergia da cal

A quantidade de cal virgem inserida no reator *Slaker* está relacionada com a quantidade de carbonato de sódio presente no licor verde. Por meio de balanços com o licor verde, chegouse a uma relação de mistura de 1,00 kg de cal para 13,22 kg de licor verde inserido no reator. A Tabela 3.13 apresenta a composição mássica da cal inserida no reator.

Tabela 3.13 – Composição de cal inserida no reator Slaker

Composto	Porcentagem mássica (%)
CaCO ₃	2,00
CaO	92,00
Outros	6,00

Fonte: REIS, 2013.

Ao efetuar os balanços estequiométricos com o licor verde, obtém-se os dados de vazão mássica e molar da cal.

E do mesmo modo que foi calculado as exergias para o licor verde, repete-se o procedimento para a cal. Aplica-se as Equações (3.68) e (3.69) para o cálculo da entalpia específica e entropia específica.

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5. T^{-1} + D) \left[\frac{kJ}{kmol} \right]$$
 (3.68)
$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B.10^{-3}. (T - 298,15) + \frac{C}{2}.10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right] \left[\frac{kJ}{kmol.K} \right]$$
 (3.69)

Os valores referentes aos coeficientes A, B, C e D e exergia química padrão dos compostos moleculares de maior relevância, como o óxido de cálcio e carbonato de sódio, podem ser visualizados na Tabela 3.14.

Tabela 3.14 – Coeficientes e valores de exergia química padrão para a cal

Componente	A	В	С	D	b_{ch}^0
					[kJ/kmol]
CaO	11,67	0,54	1,56	-4.051	119.620
CaCO ₃	24,98	2,62	6,2	-9.760	5.050

Fonte: CARVALHO (1977) e KOTAS (1985)

Assim, a parcela de exergia física pode ser calculada segundo a Equação (3.70).

$$B_{ph\,cal} = \sum_{i} \dot{n}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \quad [kW]$$
 (3.70)

E a parcela de exergia química é calculada segundo a Equação (3.72), tendo em vista que o valor da exergia química específica pode ser calculada através da Equação (3.71).

$$b_{ch\ i} = y_i \cdot b_{ch}^0 \ \left[\frac{kJ}{kmol} \right] \tag{3.71}$$

$$B_{ch\ cal} = \dot{n}_T \cdot \sum b_{ch\ i} \quad [kW] \tag{3.72}$$

E finalmente, a Equação (3.73) apresenta o cálculo para obtenção do valor de exergia total para a cal.

$$B_{cal} = B_{ph \text{ cal}} + B_{ch \text{ cal}} [kW] \tag{3.73}$$

Sendo B_{cal} o valor de exergia para a cal

3.3.4.3. Exergia dos grits

Os *grits* representam uma baixa quantidade de sólidos insolúveis, em torno de 0,1 % do total da massa inserida no reator, que se depositam no fundo do reator *Slaker* e que são removidos pelo classificador, como foi ilustrado na Figura 2.28. A composição mássica dos *grits* pode ser visualizada na Tabela 3.15.

Tabela 3.15 – Composição mássica dos grits

Componentes	Porcentagem mássica (%)
Na ₂ O	4,14
CaO	49,97
MgO	7,94
Fe ₂ O ₃	23,45
SiO ₂	14,50
Total	100,00

Fonte: Reis, 2013

Os valores de entalpia específica e entropia específica podem ser calculados pelas Equações (3.74) e (3.75), em que a temperatura do licor verde inserida no reator *Slaker* é de 333 K.

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5. T^{-1} + D) \left[\frac{kJ}{kmol} \right]$$

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B.10^{-3}. (T - 298,15) + \frac{C}{2}.10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right] \left[\frac{kJ}{kmol.K} \right]$$

$$(3.75)$$

Os dados referentes aos coeficientes A, B, C e D e exergia química padrão dos compostos moleculares que compõem os *grits* podem ser visualizados na Tabela 3.16.

Tabela 3.16 – Coeficientes e valores de exergia química padrão dos compostos presentes no grits.

Componente	A	В	C	D	b_{ch}^0
					[kJ/kmol]
Na ₂ O	15,7	2,7	0	4.921	313.260
CaO	11,67	0,54	1,56	-4.051	119.620
MgO	10,18	0,87	1,48	-3.609	59.170
Fe ₂ O ₃	23,49	9,3	3,55	-9.021	20.370
SiO ₂	11,22	4,1	2,7	-4.615	1.860

Fonte: CARVALHO (1977) e KOTAS (1985)

Assim, o cálculo de exergia física para os *grits* pode ser efetuado segundo a Equação (3.76).

$$B_{ph grits} = \sum_{i} \dot{n}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \quad [kW]$$
 (3.76)

E a parcela de exergia química é calculada segundo a Equação (3.78), tendo em vista que o valor da exergia química específica pode ser calculada através da Equação (3.77).

$$b_{ch\ i} = y_i \cdot b_{ch}^0 \ \left[\frac{kJ}{kmol} \right] \tag{3.77}$$

$$B_{ch\ grits} = \dot{n}_T \cdot \sum b_{ch\ i} \ [kW] \tag{3.78}$$

Sendo $b_{ch\,i}$ a exergia química específica do composto i e y_i a fração molar do composto i.

Por fim, são somados os valores de exergia física e química, como é apresentado na Equação (3.79).

$$B_{grits} = B_{ph \text{ grits}} + B_{ch \text{ grits}} [kW]$$
 (3.79)

3.3.4.4. Exergia do licor branco bruto

O licor branco bruto gerado pelo reator *Slaker* apresenta composição heterogênea devido à presença da lama de carbonato de cálcio gerada. A Tabela 3.17 apresenta a composição mássica do licor.

Tabela 3.17 – Composição do licor branco bruto gerado.

Componentes	Percentual mássico (%)
CaCO ₃	11,52
NaOH	9,56
Na ₂ S	1,85
Na ₂ SO ₄	1,14
H_2O	72,81
Na ₂ CO ₃	3,02
CaO	0,11
Total	100,00

Fonte: REIS, 2013.

Para cálculo da entalpia específica e entropia específica, aplicam-se as Equações (3.80) e (3.81), utilizando o valor de temperatura do licor branco bruto liberada pelo reator *Slaker* reportado por Reis (2013), de 358 K.

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5. T^{-1} + D) \left[\frac{kJ}{kmol} \right]$$
 (3.80)
$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B.10^{-3}. (T - 298,15) + \frac{C}{2}.10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right] \left[\frac{kJ}{kmol.K} \right]$$
 (3.81)

Os dados referentes aos coeficientes A, B, C e D e exergia química padrão dos compostos moleculares presente no licor branco bruto já foram citados anteriormente.

Com isso, o cálculo de exergia física para o licor branco bruto pode ser efetuado segundo a Equação (3.82).

$$B_{ph\ licor\ branco\ bruto} = \sum_{i} \dot{n}_{i} \cdot (\Delta h_{ph} - T_{0} \cdot \Delta s_{ph}) \ [kW]$$
 (3.82)

E a parcela de exergia química é calculada segundo a Equação (3.84), tendo em vista que o valor da exergia química específica pode ser calculada através da Equação (3.83).

$$b_{ch\,i} = y_i \cdot b_{ch}^0 \, \left[\frac{kJ}{kmol} \right] \tag{3.83}$$

$$B_{ch \ licor \ branco \ bruto} = \dot{n}_T \cdot \sum b_{ch \ i} \ [kW]$$
 (3.84)

Sendo $b_{ch\,i}$ a exergia química específica do composto i e y_i a fração molar do composto i.

Por fim, soma-se os valores obtidos de exergia física e química, como é apresentado na Equação (3.85).

$$B_{licor\ branco\ bruto} = B_{ph\ licor\ branco\ bruto} + B_{ch\ licor\ branco\ bruto} [kW]$$
 (3.85)

Sendo $B_{licor\ branco\ bruto}$ o valor de exergia do licor branco bruto.

3.3.4.5. Eficiência exergética do reator Slaker

Com os valores de exergia dos fluxos de entrada e saída do reator *Slaker*, pode-se calcular a eficiência exergética do equipamento seguindo a Equação (3.86).

$$\Psi_{Reator\,Slaker} = \frac{B_{licor\,branco\,bruto}}{B_{licor\,verde} + B_{cal} + Energia}$$
(3.86)

Sendo $\Psi_{Reator\;Slaker}$ a eficiência exergética do Reator Slaker.

3.3.5. Recuperação do licor de cozimento

O licor branco bruto gerado possui em sua composição insolúveis, sendo praticamente composto por carbonato de cálcio. Assim, é necessário filtrá-lo para separar o licor branco da lama de cal.

Reis (2013) reportou a composição molar do licor branco que é recuperado após o licor branco bruto ser filtrado para a retirada da lama de cal. A Tabela 3.18 apresenta a concentração molar do licor branco recuperado.

Tabela 3.18 - Composição molar do licor de cozimento

Componentes	Percentual molar do licor de cozimento
	(%)
NaOH	5,30
Na_2S	0,42
Na ₂ CO ₃	0,68
H_2O	93,60
Total	100,00

Fonte: REIS, 2013

O licor de cozimento gerado segue para um tanque, onde será estocado. E por fim, a Tabela 3.19 apresenta a composição molar da lama de cal gerada.

Tabela 3.19 - Concentração molar da lama de cal

Componentes	Percentual molar (%)
CaCO ₃	72,39
CaO	0,67
NaOH	4,38
Na ₂ S	0,18
Na ₂ SO ₄	7,16
H_2O	15,23
Total	100,00

Fonte: REIS, 2013

Com esses conjuntos de dados calculados, é obtido a quantidade de licor branco ou licor de cozimento recuperado pelo sistema de recuperação química de uma fábrica de papel e celulose.

Capítulo 4

4. ANÁLISE DOS RESULTADOS

Neste capítulo serão discutidos os resultados obtidos a partir dos cálculos realizados para o sistema de recuperação química das quatro fábricas; vale ressaltar que as mesmas foram nomeadas de acordo com suas localizações: Centro-Leste do Estado de São Paulo (CLSP), Centro-Oeste do Estado de São Paulo (COSP), Finlândia e Índia.

Todos os cálculos foram efetuados com auxílio do software Microsoft Excel 2016.

4.1. CÁLCULO DO VALOR DO PCI PARA O LICOR PRETO

O valor do poder calorífico do licor preto é fundamental para determinar a eficiência energética da caldeira de recuperação química, bem como, para validar se a composição apresentada está, ou não, de acordo com os padrões de uma amostra de licor preto de uma fábrica de papel e celulose.

Neste trabalho, foi considerada a composição do licor preto após ser inserido na caldeira. Desse modo, pôde-se contabilizar as parcelas de exergia química e exergia física dos compostos moleculares envolvidos no processo de combustão, sendo que esta composição foi apresentada por Marklund *el al.* (2007).

Para validação da composição molecular, foi determinado o valor do poder calorífico do licor preto apresentada por Marklund *el al.* (2007) através da Equação de Dulong e dos Engenheiros Alemães, Equações (3.3) e (3.4), e fez-se a comparação com a bibliografia. Para efetuar o cálculo do PCI foi necessário determinar a composição elementar do licor, que está apresentado na Tabela 4.1. Os cálculos podem ser conferidos no Apêndice A.

Tabela 4.1 - Composição do licor preto

Elemento Químico	Percentual	
	elementar mássico	
	em base seca (%)	
С	35,28	
H	3,42	
S	5,04	
0	35,40	
Na	20,86	
Total	100,00	

Fonte: Próprio autor

Como dito, com a Tabela 4.1 foi possível calcular o valor de PCI do licor preto pela Equação de Dulong e pela equação da Associação dos Engenheiros Alemães, cujos resultados estão apresentados a seguir.

$$PCI_{Dulong} = 11.269 \frac{kJ}{kg}$$

$$PCI_{Eng.alemaes} = 11.240 \frac{kJ}{kg}$$

Estes valores obtidos de forma teórica, estão próximos ao valor reportado por Cardoso (1998), que apresenta o resultado de $11.820 \frac{kJ}{kg}$. Com isso, foi possível considerar os dados de composição do licor preto apresentado por Marklund *et al.* (2007).

4.2. EFICIÊNCIA ENERGÉTICA E EFICIÊNCIA EXERGÉTICA DAS CALDEIRAS DE RECUPERAÇÃO QUÍMICA

Como neste trabalho teve o interesse de analisar diferentes tipos de equipamentos, considerando suas principais características como a vazão de licor preto queimada diariamente, a concentração de sólidos secos inserida na caldeira e a qualidade do vapor gerado, apresentouse estes dados na Tabela 4.2 que traz informações referente aos projetos das caldeiras, denominando cada caso em relação com a localização da fábrica.

Para efeito de cálculos, os dados referentes a quantidade de ar estequiométrico utilizado foram considerados de acordo com a Tabela 2.5 e para os valores de energia elétrica consumida

pela caldeira, adotou-se uma relação entre a quantidade de sólidos secos queimadas diariamente com a energia consumida pela caldeira localizada no CLSP.

Tabela 4.2 – Informações sobre as caldeiras de recuperação química

Localização da	Fábrica	CLSP	COSP	Índia	Finlândia	
Caldeir	a	A	В	С	D	Quantidade estequiométrica de ar utilizada
Temperatura (°C)	Ar primário	150	150	190	205	*30%
	Ar secundário	150	150	170	205	*40%
	Ar Terciário	30	30	70	205	*30%
Licor preto queimado (tss/d)		1.400	900	4.450	7.200	
Concentração d secos queima		75	75	82	85	
Vazão de vapor (t/h)		180	137	660	1.307	
Temperatura do	vapor (°C)	400	480	505	515	
Pressão (b	oar)	50	134	102	110	
Temperatura (inserida (140	*130	115	224	
Pressão (bar)		80	*110	*120	*130	
Energia elétrica (kW)	consumida	2.440	*1.569	*7.756	*12.549	

^{*}dados adotados pelo autor

Fonte: CARREIRO (2009); LWARCEL CELULOSE (2013); CONFEDERATION OF INDIAN INDUSTRY (2009); VALMET (2015).

De acordo com Primeira Lei da Termodinâmica, a eficiência energética mensura a relação entre o calor útil e o combustível utilizado. O volume de controle considerado pode ser visualizado na Figura 4.1.

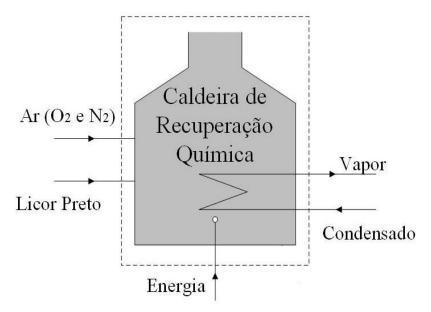


Figura 4.1 – Volume de controle para análise energética Fonte: Próprio autor

Assim, com as informações apresentadas na Tabela 4.2, a energia contida no ar calculada no Apêndice B, os valores de entalpia do vapor e da água condensada nos Apêndices C, D, E e F, aplicou-se as Equações (4.1), (4.2), (4.3) e (4.4) quantificando assim, a eficiência energética de cada caldeira de recuperação química das fábricas localizadas em CLSP, COSP, Índia e Finlândia, respectivamente.

$$n_{caldeira\;A} = \frac{\dot{m}_{vapor} \cdot (H_{vapor} - H_{condensado})}{\dot{m}_{licor\;preto} \cdot PCI_{licor\;preto} + EE + Energia_{ar}} = \frac{50 \cdot (3.196 - 551)}{21,6 \cdot 11.269 + 5.857 + 2.440} = 52,8 \% \ (4.1)$$

$$n_{caldeira\ B} = \frac{\dot{m}_{vapor} \cdot (H_{vapor} - H_{condensado})}{\dot{m}_{licor\ preto} \cdot PCI_{licor\ preto} + EE + Energia_{ar}} = \frac{37,22 \cdot (3.344 - 553,6)}{13,9 \cdot 11.269 + 3.759 + 1.569} = 64,2 \% \quad (4.2)$$

$$n_{caldeira\ C} = \frac{m_{vapor} \cdot (H_{vapor} - H_{condensado})}{m_{licor\ preto} \cdot PCI_{licor\ preto} + EE + Energia_{ar}} = \frac{183,33 \cdot (3.384 - 596)}{62,81 \cdot 11.269 + 25.329 + 7.756} = 69,0 \% (4.3)$$

$$n_{caldeira\ D} = \frac{m_{vapor} \cdot (H_{vapor} - H_{condensado})}{m_{licor\ preto} \cdot PCI_{licor\ preto} + EE + Energia_{ar}} = \frac{363 \cdot (3.400 - 1.021)}{98,03 \cdot 11.269 + 61.360 + 12.549} = 76,5\ \%\ (4.4)$$

Comparando os valores das eficiências energéticas das caldeiras das fábricas localizadas em CLSP (caldeira A) e COSP (caldeira B), pôde-se notar que a melhora da qualidade do vapor gerado contribuiu para elevação no valor da eficiência energética. Isto pode estar associado com o fato de esta caldeira possuir um arranjo mais atual, e/ou por utilizar materiais metálicos mais modernos.

Ao comparar as caldeiras das fábricas localizadas na Índia (caldeira C) e na Finlândia (caldeira D) com as outras fábricas, foi possível observar que elas apresentaram uma maior eficiência energética. Este alto valor pode estar associado ao fato de serem projetos mais modernos, que realizam a queima de um licor preto de maior concentração de sólidos secos. Além disso, ao efetuar uma análise comparativa entre a caldeira C e a caldeira D, constata-se que a queima de sólidos secos de maior concentração da caldeira D contribui para um aumento na vazão de vapor e, também, na qualidade deste gerado.

Um parâmetro que destaca a caldeira D das demais caldeiras é a temperatura do ar inserido. Segundo a Valmet (2015), o uso do ar primário, secundário e terciário com temperaturas acima de 200 °C contribuem para o aumento na geração de vapor e, consequentemente, aumenta a eficiência energética da caldeira.

Outro aspecto interessante está no percentual de sólidos secos queimados pela caldeira de recuperação química, pois a elevação de 1 % na concentração do licor preto, acarreta o aumento de 0,5 % na produção de vapor (VALMET, 2015).

Para o cálculo de exergia dos fluxos da caldeira de recuperação química, o volume de controle adotado pode ser visualizado na Figura 4.2.

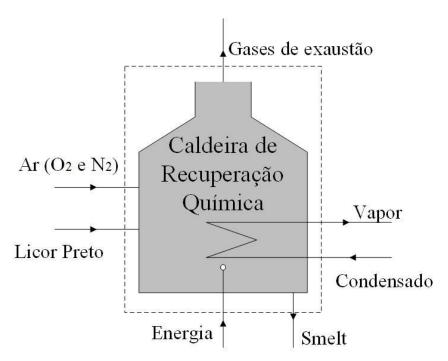


Figura 4.2 – Volume de controle para análise exergética Fonte: Próprio autor

Os valores de exergia calculados para os fluxos de entrada e saída da caldeira de recuperação química da fábrica localizada em CLSP podem ser visualizados na Figura 4.3, enquanto os cálculos desenvolvidos podem ser consultados no Apêndice C.

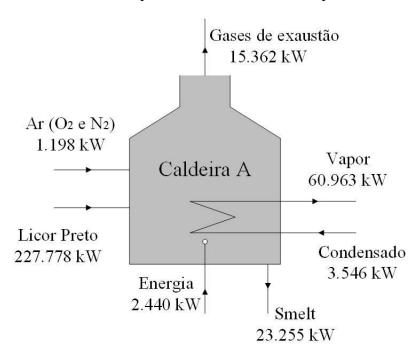


Figura 4.3 – Fluxo de exergia da caldeira de recuperação química A Fonte: Próprio autor

Com os valores de exergia dos fluxos de entrada e saída, pôde-se obter o valor da eficiência exergética pela Equação (4.5).

$$\Psi_{Caldeira\ A} = \frac{(B_{vapor} - B_{condensado}) + B_{smelt}}{B_{licor\ nreto} + Energia + B_{ar}} = 34,9\%$$
 (4.5)

Para esta caldeira não foi considerada a parcela da exergia dos gases na equação da eficiência exergética, tendo em vista que, os gases de exaustão são descartados para o meio ambiente.

O valor de eficiência exergética obtido, considerando a composição molecular do licor preto, obteve maior relevância do que o valor apresentando por Carreiro (2009), eficiência exergética de 21,3%, que considerou a composição elementar do licor preto. Isto indica que, ao considerar uma composição molecular os valores são melhores estimados do que os avaliados

por uma análise elementar, devido a uma melhor consideração dos valores de exergia química das moléculas.

Com os fluxos exergéticos também pôde-se mensurar a parcela de irreversibilidade gerada na caldeira, sendo expressa pela equação (4.6).

$$I_{Caldeira\ A} = \sum R - \sum P - \sum L = (227.778 + 2.440 + 1.198) - ((60.963 - 3.546) + 23.255) = 150.743\ kW$$
 (4.6)

As irreversibilidades podem ter como fonte as reações químicas de combustão e de recuperação química e, também, o descarte dos gases de exaustão por chaminés.

Para a caldeira localizada em COSP, os fluxos de exergia obtidos podem ser visualizados na Figura 4.4 e os cálculos podem ser conferidos no Apêndice D. O cálculo de exergia do ar pode ser conferido no Apêndice B.

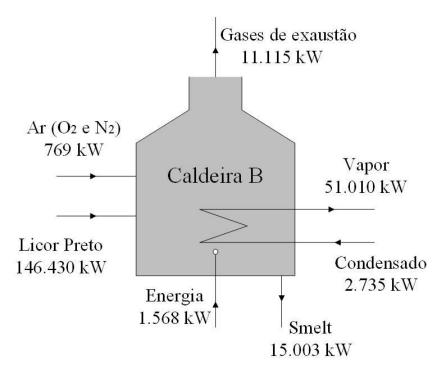


Figura 4.4 – Fluxo de exergia da caldeira de recuperação química B Fonte: Próprio autor

Para a caldeira localizada em COSP, os gases de exaustão também não são utilizados como fluido de troca térmica. Deste modo, a exergia contida neste fluxo é descartada. Assim,

com os valores dos fluxos de exergia e com a Equação (4.7), foi calculado o valor da eficiência exergética da caldeira B.

$$\Psi_{Caldeira\ B} = \frac{(B_{vapor} - B_{condensado}) + B_{smelt}}{B_{licor\ preto} + Energia + B_{ar}} = 42,5\%$$
 (4.7)

Ainda com os fluxos exergéticos, pôde-se mensurar a parcela de irreversibilidade gerada na caldeira B calculando a diferença entre a exergia dos recursos com a exergia dos produtos úteis, sendo expressa pela equação (4.8).

$$I_{Caldeira\,B} = \sum R - \sum P = (146.430 + 1.568 + 769) - ((51.010 - 2.735) + 15.003) = 85.489 \, kW$$
 (4.8)

As fontes de irreversibilidades podem estar associadas as reações químicas de combustão e de recuperação química.

Analisando a fábrica localizada na Índia, os cálculos dos fluxos de exergia de entrada e saída da caldeira de recuperação química estão apresentados no Apêndice E e podem ser visualizados na Figura 4.5. O fluxo de exergia do ar pode ser conferido no Apêndice B.

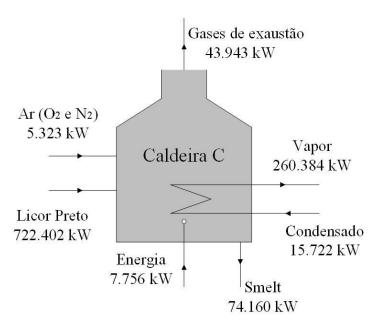


Figura 4.5 – Fluxo de exergia da caldeira de recuperação química C Fonte: Próprio autor

Com os valores dos fluxos de exergia e com a Equação (4.9), calculou-se o valor da eficiência exergética. Para este cálculo, foi considerado a exergia útil dos produtos sendo o smelt, o vapor e os gases de exaustão, enquanto para os recursos a exergia do licor preto, da água condensada, da energia elétrica e do ar de combustão.

$$\Psi_{Caldeira\ C} = \frac{(B_{vapor} - B_{condensado}) + B_{smelt} + B_{gases\ de\ exaustão}}{B_{licor\ preto} + Energia + B_{ar}} = 49,3\%$$
 (4.9)

A exergia dos gases de exaustão é considerada neste sistema, pois estes gases são utilizados para pré-aquecer o ar de combustão a ser inserido na caldeira de recuperação química. Com isso, percebe-se um aumento significativo no valor da eficiência exergética desta caldeira.

Ainda com os fluxos exergéticos, pôde-se mensurar a parcela de irreversibilidade gerada na caldeira C calculando a diferença da exergia dos recursos com a exergia dos produtos úteis, sendo expressa pela equação (4.10).

$$I_{Caldeira\ C} = \sum R - \sum P = (722.402 + 5.323 + 7.756) - ((260.384 - 15.722) + 74.160 + 43.843) = 372.716\ kW$$
(4.10)

Para a fábrica localizada na Finlândia, os valores calculados para os fluxos de exergia podem ser visualizados no Apêndice F, bem como estão exibidos na Figura 4.6. O fluxo de exergia do ar pode ser conferido no Apêndice B.

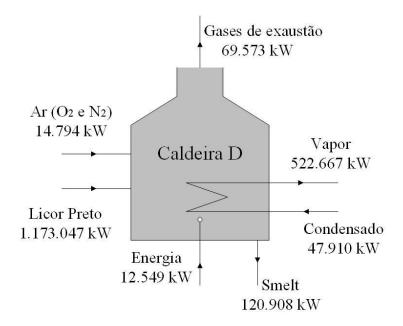


Figura 4.6 – Fluxo de exergia da caldeira de recuperação química D Fonte: Próprio autor

Para esta caldeira, os fluxos de exergia dos produtos considerado para cálculo da eficienca exergética são o de exergia dos gases de exaustão, do vapor e do *smelt*, enquanto a exergia dos recursos é proveniente da exergia do licor preto, da água condensada, do ar estequiométrico e da energia elétrica consumida pela caldeira. A Equação 4.15 apresenta o valor da eficiência exergética da caldeira finlandesa.

$$\Psi_{Caldeira\ D} = \frac{(B_{vapor} - B_{condensado}) + B_{smelt} + B_{gases\ de\ exaustão}}{B_{licor\ preto} + Energia + B_{ar}} = 50,0\%$$
 (4.15)

Como esta caldeira utiliza os gases de exaustão para pré-aquecer a água desmineralizada e produz um vapor de melhor qualidade do que as caldeiras dos outros fabricantes, como foi apresentado na Tabela 4.2, o valor de eficiência exergética é maior do que os das outras fábricas.

Outro fator interessante desta caldeira é que, ao queimar o licor preto com uma maior concentração de sólidos secos, diminui a emissão de particulados para a região de troca térmica e para os precipitadores eletrostáticos.

Ainda com os fluxos exergéticos, pôde-se mensurar a parcela de irreversibilidade gerada na caldeira calculando a diferença entre a exergia dos recursos e a exergia dos produtos úteis, sendo expressa pela equação (4.16).

$$I_{Caldeira\ D} = \sum R - \sum P = (1.117.047 + 14.794 + 12.549) - ((522.667 - 114.732) + 120.717 + 69.5733) = 602.166\ kW$$
 (4.16)

Afim de comparação, a Tabela 4.3 apresenta, de maneira conjunta, as eficiências energéticas e exergéticas das caldeiras de recuperação química estudadas.

Tabela 4.3 – Eficiência energética e exergética das caldeiras de recuperação química

Localização da Fábrica	Caldeira de Recuperação Química (n)	Caldeira de Recuperação Química (Y)
CLSP	52,8 %	34,9 %
COSP	64,2 %	42,5 %
Índia	69,0 %	49,3 %
Finlândia	76,5 %	50,0 %

Fonte: Próprio autor

Com as informações apresentadas na Tabela 4.2 juntamente com a Tabela 4.3, foi constatado que a geração de vapor de melhor qualidade, o uso do ar de combustão com temperaturas mais altas e a queima do licor preto com maior concentração de sólidos secos, contribuíram para o aumento da eficiência energética da caldeira de recuperação química (vide os dados da fábrica localizada na Finlândia). Outro fator interessante foi que, ao considerar a exergia dos gases de exaustão pelas caldeiras localizadas na Índia e na Finlândia, houve um aumento significativo na eficiência exergética dos equipamentos. Entretanto, a exergia do ar de combustão não apresentou contribuição significativa na eficiência exergética quando comparada com a eficiência energética, como pôde ser observado os valores obtidos para a fábrica localizada na Finlândia.

4.3. EFICIÊNCIA EXERGÉTICA DO TANQUE DISSOLVEDOR

Dando início ao sistema de recuperação química do licor branco, nesta seção serão apresentados os fluxos de exergia calculados para o Tanque Dissolvedor.

Assim, os valores dos fluxos de exergia obtido para o Tanque Dissolvedor da fábrica localizada em CLSP pode ser visualizado na Figura 4.7 e os cálculos efetuados podem ser conferidos no Apêndice C.

Tanque Dissolvedor

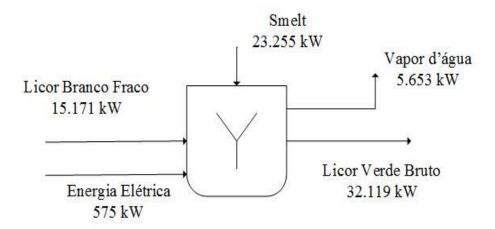


Figura 4.7 – Fluxos de entrada e saída de exergia no Tanque Dissolvedor da fábrica localizada em CLSP

Fonte: Próprio autor

Para a fábrica localizada em COSP, a Figura 4.8 apresenta os fluxos de exergia do Tanque Dissolvedor e os resultados dos cálculos podem ser conferidos no Apêndice D.

Tanque Dissolvedor

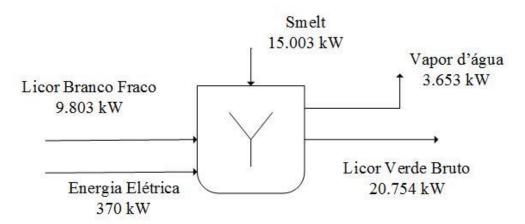


Figura 4.8 – Fluxo de exergia do Tanque Dissolvedor da fábrica localizada em COSP Fonte: Próprio autor

A Figura 4.9 apresenta os fluxos exergéticos do Tanque Dissolvedor da fábrica localizada na Índia cujos valores podem ser conferidos no Apêndice E.

Tanque Dissolvedor

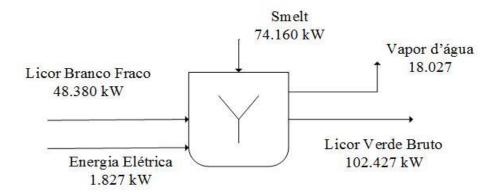


Figura 4.9 – Fluxos exergéticos do Tanque Dissolvedor da fábrica localizada na Índia Fonte: Próprio autor

Para a fábrica localizada na Finlândia, a Figura 4.10 contém as informações dos fluxos de exergia de entrada e saída do Tanque Dissolvedor. As informações dos valores utilizado para os cálculos deste equipamento podem ser visualizados no Apêndice F.

Tanque Dissolvedor

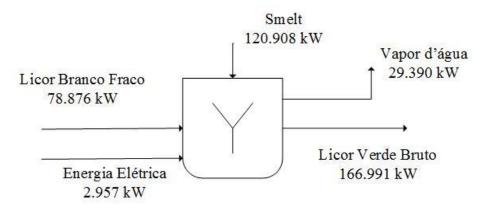


Figura 4.10 – Fluxo de exergia do Tanque Dissolvedor da fábrica localizada na Finlândia

Fonte: Próprio autor

Desse modo, com os valores de exergia dos fluxos de entrada e saída dos Tanques Dissolvedores das quatro fábricas analisados, pôde-se mensurar o valor da eficiência exergética de cada fábrica utilizando a Equação (3.55). Vale ressaltar que as fábricas localizadas em CLSP, COSP e na Índia descartam o vapor gerado no Tanque Dissolvedor por chaminés juntamente com os gases de exaustão liberados pela caldeira de recuperação química. Assim, para estes sistemas não foi contabilizado a parcela de exergia do vapor d'água.

Com isso, a Tabela 4.4 apresenta os valores de eficiência exergética de cada fábrica.

Tabela 4.4 – Eficiência exergética dos Tanques Dissolvedores

Localização da Fábrica	Eficiência Exergética do Tanque Dissolvedor (Ψ)
CLSP	82,4 %
COSP	82,4 %
Índia	82,3 %
Finlândia	96,9 %

Fonte: Próprio autor

O sistema de recuperação química da fábrica da Finlândia é o único que aproveita o vapor de água liberado pelo Tanque Dissolvedor, o que resultou em um aumento significativo no valor final da eficiência exergética. Sendo assim, este aproveitamento pode ser considerado uma possível melhoria a ser efetuada em outros sistemas.

4.4. EFICIÊNCIA EXERGÉTICA DO FILTRO DO LICOR VERDE

Devido ao licor verde bruto gerado no tanque dissolvedor apresentar impurezas, tornase necessário filtrá-lo. Desse modo, foi mensurada a quantidade de exergia de *dregs*, impurezas descartadas, e do licor verde que será inserido no Reator *Slaker*.

Sendo assim, a Figura 4.11 apresenta a exergia do licor verde e a quantidade de exergia perdida pelas impurezas da fábrica localizada em CLSP.

Filtro

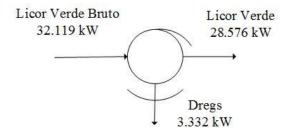


Figura 4.11 – Exergia do licor verde filtrado da fábrica localizada em CLSP Fonte: Próprio autor

Para a fábrica localizada em COSP, a Figura 4.12 apresenta a exergia do licor verde e a exergia perdida pelas impurezas, os *dregs*.

Filtro

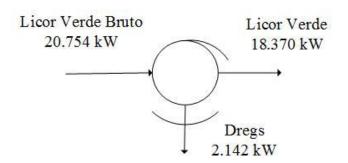


Figura 4.12 – Filtro do licor verde da fábrica localizada em COSP Fonte: Próprio autor

Em relação à fábrica localizada na Índia, a Figura 4.13 apresenta a exergia do licor verde e a quantidade de exergia perdida pelas impurezas, os *dregs*.

Filtro

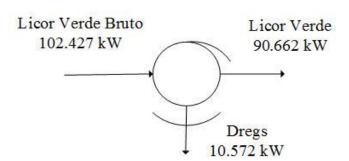


Figura 4.13 – Filtro do licor verde da fábrica da Índia Fonte: Próprio autor

Por fim, a exergia do licor verde e a quantidade de exergia perdida pelas impurezas, os *dregs*, para a fábrica localizada na Finlândia, está apresentada na Figura 4.14.

Filtro

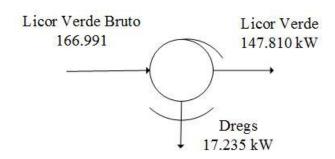


Figura 4.14 – Exergia dos *dregs* e do licor verde da fábrica finlandesa Fonte: Próprio autor

4.5. EFICIÊNCIA EXERGÉTICA DO REATOR SLAKER

O licor verde filtrado segue para o Reator *Slaker*, onde será misturado com óxido de cálcio para gerar o licor branco bruto.

Com isso, os fluxos de exergia de entrada e saída do reator *Slaker*, para obtenção do licor branco bruto, da fábrica localizada em CLSP, podem ser conferidos na Figura 4.15. Os cálculos podem ser conferidos no Apêndice C.

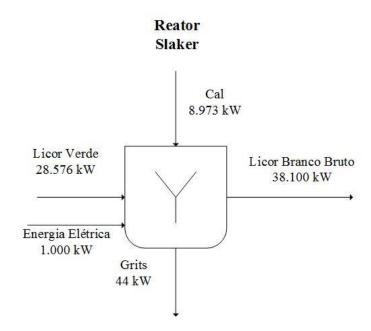


Figura 4.15 – Fluxos de exergias de entrada e saída no Reator *Slaker* da fábrica localizada em CLSP Fonte: Próprio autor

Para a fábrica localizada em COSP, os fluxos de exergia envolvidos para a recuperação química do licor branco bruto podem ser conferidos na Figura 4.16. Os cálculos podem ser conferidos no Apêndice D.

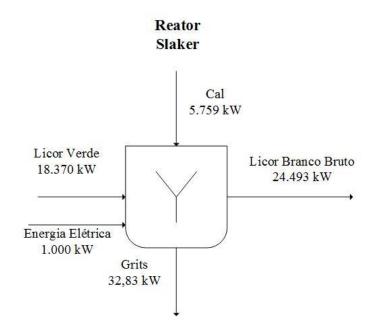


Figura 4.16 – Fluxos de exergia do reator Slaker da Fábrica localizada em COSP Fonte: Próprio autor

A Figura 4.17 apresenta os fluxos de exergia do reator *Slaker* da fábrica localizada na Índia. Os cálculos podem ser conferidos no Apêndice E.

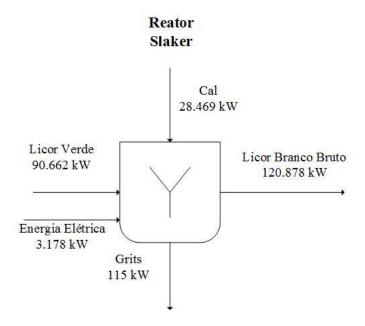


Figura 4.17 – Fluxos exergéticos do reator *Slaker* da fábrica indiana Fonte: Próprio autor

Por fim, os fluxos de exergia dos recursos e dos produtos do reator *Slaker* da fábrica localizada na Finlândia estão apresentados na Figura 4.18. Os cálculos podem ser conferidos no Apêndice F.

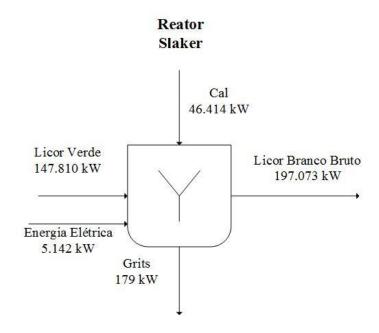


Figura 4.18 – Fluxo de exergia do reator Slaker da fábrica da Finlândia Fonte: Próprio autor

Para a determinação da eficiência exergética do reator, tem-se como produto útil o licor branco bruto e como recursos o licor verde, a cal e a energia elétrica. Desse modo, a Equação (4.17) apresenta a eficiência exergética do reator *Slaker*.

$$\Psi_{Reator\,Slaker} = \frac{B_{licor\,branco\,bruto}}{B_{licor\,verde} + B_{cal} + Energia} \tag{4.17}$$

A Tabela 4.5 contém os valores de eficiência exergética do Reator *Slaker* de cada fábrica.

Tabela 4.5 – Eficiência exergética dos reatores Slaker

Localização da Fábrica	Reator Slaker (Ψ)
COSP	97,4 %
CLSP	98,8 %
Índia	98,8 %
Finlândia	98,8 %

Fonte: Próprio Autor

O reator *Slaker*, por ser um equipamento de mistura perfeita e ter relação da decorrência de reações exotérmicas, como foi apresentado nas Equações (2.14) e (2.15), apresenta altos valores de eficiência exergética, indicando uma baixa irreversibilidade.

A fábrica localizada em COSP apresentou o valor de eficiência exergética inferior aos outros sistemas. Este valor foi inferior pois foi considerada uma similaridade de dimensão entre esta e a fábrica localizada em CLSP, fazendo com que o autor adotasse para as duas fábricas, o mesmo valor de consumo de eletricidade pelo Reator *Slaker*.

4.6. COMPARATIVO DA QUANTIDADE DE LICOR BRANCO RECUPERADO PELAS FÁBRICAS

Através dos balanços de massa efetuados para os sistemas de recuperação química das quatro fábricas de papel e celulose, pôde-se mensurar a quantidade de licor branco recuperado.

Assim sendo, a Tabela 4.6 apresenta a quantidade de licor branco recuperada, em que foi contabilizado a quantidade de hidróxido de sódio e sulfeto de sódio recuperado referente a quantidade de licor preto queimada por dia.

Tabela 4.6 – Quantidade de licor branco recuperado por dia

Localização da Fábrica	Licor preto queimado (tss/d)	Licor branco recuperado (t/d)	Percentual recuperado (%)
COSP	900	382	42,4
CLSP	1.400	607	43,4
Índia	4.450	1.981	44,5
Finlândia	7.200	3.154	44,0

Fonte: Próprio Autor

Com isto, notou-se que o sistema de recuperação química de uma fábrica de papel e celulose recupera uma grande quantidade de licor de cozimento diariamente, acarretando em redução de custos com a compra de matéria prima.

5. CONCLUSÃO E SUGESTÕES PARA TRABALHOS FUTUROS

Neste capítulo serão apresentadas as conclusões do trabalho e algumas sugestões para futuros trabalhos

5.1. CONCLUSÃO

O setor produtivo de papel e celulose brasileiro encontra-se em expansão e com expectativas de altos investimentos financeiros durante os próximos anos. Assim, o estudo deste setor em busca de melhorias pode contribuir muito para o crescimento econômico do país.

Em vista disso, o estudo da utilização do licor preto como combustível para geração de vapor e para recuperação do licor de cozimento são importantes, pois abre a possibilidade de não descartar o licor preto no meio ambiente, o que implica na redução dos impactos ambientais. Com isso, pode-se afirmar que a Unidade de Recuperação é fundamental para o funcionamento de uma fábrica de papel e celulose.

Como o custo de implantação de uma nova caldeira de recuperação química em uma fábrica acarreta elevado investimento, constatou-se que realizar análises em diferentes tipos de caldeiras facilita identificar parâmetros interessantes que possam ser melhorados por um processo de *retrofit* da caldeira ou do processo, acarretando em melhora na performance do sistema.

Nesta dissertação, foram calculados dados do poder calorífico inferior em base seca do licor preto, para compará-lo com os valores presentes da bibliografia e garantir que a composição do licor preto estudada estava de acordo com as especificações contidas na mesma. É válido ressaltar que com o valor do PCI, pôde-se mensurar a eficiência energética das caldeiras de recuperação química das quatro fábricas, sendo que a caldeira A apresentou eficiência energética de 52,8 %, a caldeira B de 61,6 %, a caldeira C de 69,0 % e a caldeira D de 76,5 %. Destes valores pode-se concluir que a queima de um licor preto com maior

concentração de sólidos secos aumenta a eficiência energética, por produzir vapor de melhor qualidade.

Por se tratar de um sistema térmico, o cálculo da eficiência energética nem sempre é satisfatório pois esconde as irreversibilidades do sistema. Assim, a análise exergética tornou-se uma interessante ferramenta de análise para esse sistema por quantificar todo o trabalho gerado e qualificar toda a sua utilidade, deste modo, identificando os fluxos que podem ser aproveitados ou melhorados.

Assim, dentre os equipamentos da Unidade de Recuperação analisados, a caldeira de recuperação química apresentou a menor eficiência exergética da unidade e através de estudos constatou-se que uma alternativa válida para aumentar a eficiência exergética da caldeira foi o aproveitamento da exergia dos gases de exaustão para pré-aquecer o ar de combustão ou água desmineralizada, acarretando em um aumento significativo no resultado final. Uma outra alternativa de melhorar a eficiência exergética, está no aumento da concentração do licor preto, o que acarreta a diminuição do percentual de água e consequentemente a redução da vazão dos gases gerados, diminuindo a perda de calor do interior da caldeira.

Para o Tanque Dissolvedor, evidenciou-se que aproveitar o vapor gerado para préaquecer água desmineralizada, que será inserida na caldeira, é uma alternativa para não desperdiçar esta exergia para o ambiente. Como comparação, pôde-se ver que o Tanque dissolvedor da fábrica da Finlândia apresentou eficiência exergética de 96,9 %, enquanto os mesmos equipamentos das outras fábricas apresentaram um valor médio de 82,37 %.

Em relação ao reator *Slaker*, por ser um reator de mistura perfeita e puramente de mistura química, a eficiência exergética do equipamento foi de 98,8 %. Desse modo, este equipamento apresentou uma eficiência exergética de acordo com o projeto deste tipo de reator.

Por fim, apresentou-se a quantidade de licor branco recuperada pelas diferentes quantidades de sólidos secos queimados pelas caldeiras, que com isto, confirmou a importância do sistema de recuperação química recuperando grande quantidade de matéria prima.

Em suma, com estes dados, mostrou-se a importância da Unidade de Recuperação de uma fábrica de papel e celulose, visto que, esta possibilita a recuperação de uma grande quantidade de licor de cozimento, ocasionando em redução nos gastos com compra de matéria prima, bem como a geração de vapor, que pode ser convertido em energia elétrica para a indústria, e a redução de poluentes que seriam descartados no meio ambiente.

5.2. SUGESTÕES PARA DESENVOLVIMENTO DOS TRABALHOS FUTUROS

Como neste trabalho levou-se em consideração todas as possíveis reações químicas, de queima da parte orgânica e recuperação dos compostos inorgânicos, realizar estudos nas caldeiras de recuperação química referente a transferência de calor por condução, radiação e convecção pode ser um interessante caminho afim de identificar, quantificar e propor soluções para as perdas deste sistema térmico.

Outra sugestão interessante seria analisar o licor preto utilizando equipamentos mais modernos (cromatografia gasosa ou HPLC), tendo em vista que, os compostos podem ser determinados com maior precisão.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA TÉCNICA DE CELULOSE E PAPEL. **Guia ABTPC de Fornecedores & Fabricantes, Celulose e Papel 2015**. Disponível em: < http://www.guiacomprascelulosepapel.org.br/publicador/edicoes_impressas/8.pdf> Acesso em: 23 set. 2016.

BAJPAI, Pratima. **Green Chemistry and Sustainability in Pulp and Paper Industry**. Springer, 2005. 273 p.

BANCO NACIONAL DO DESENVOLVIMENTO ECONÔMICO E SOCIAL. **Perspectivas do investimento 2015-2018 e panoramas setoriais**. Dez. 2014. Disponível em:http://www.pedbrasil.org.br/ped/artigos/2F11DABAD8B76964.pdf> Acesso em: 30 nov. 2016.

CAMPOS, S. G. S., 2009, Modelagem Matemática e análise do Coeficiente Global de Transferência de Calor para o Processo de concentração do Licor Negro de Eucalipto em Sistema de Evaporadores de Mútiplo Efeito, Coronel Feliciano, Dissertação (Mestrado em Engenharia Industrial), Centro Universitário do Leste de Minas Gerais, 110 p.

CARDOSO, Marcelo. Análise Da Unidade De Recuperação Do Licor Negro De Eucalipto No Processo "Kraft", Avaliando Alternativas De Processamento. 1998. 147f. Tese (Doutorado) - Universidade Estadual De Campinas- Unicamp, Faculdade De Engenharia Química, Campinas. Disponível em:http://www.bibliotecadigital.unicamp.br/document/?code=vtls000186792> Acesso em: 05 Jan. 2016.

CARREIRO, Milton Roberto de Mattos. **Análise Exergética e Ambiental do Processamento do Licor Negro Gerado em Fábricas de Celulose e Papel**. 2009. 141f. Dissertação (Mestrado) - Universidade Federal de Itajubá UNIFEI, Programa de Pós-Graduação em Ciências em Engenharia Mecânica, Itajubá. Disponível em:http://saturno.unifei.edu.br/bim/0035811.pdf Acesso em: 05 Jan. 2016.

CARVALHO, J. L. R. de et al. **Dados Termodinâmicos Para Metalurgistas. Departamento de engenharia metalúrgica e de materiais, escola de engenharia, universidade federal de minas gerais**. Belo horizonte. Fev. 1997. Disponível em: https://pt.scribd.com/document/85121251/dados-termodinamicos. Acesso em: 05 jan. 2016.

CLEAN COMBUSTION DYNAMIC PERFORMANCE. **Black Liquor Burner & Robot**. 2016. Disponível em:< http://www.cleancombustion.se/products/burners/black-liquor-burner.html> Acesso em: 10 dez. 2016.

COMPUTER-AIDED **Thermodynamic Tables 3**. Versão 1.0. [S.l.]: John Wiley & Sons, Inc. 1996. Software.

CONFEDERATION OF INDIAN INDUSTRY. **National & international pulp & paper industry best practices manual**. vol 2. jul. 2009. Disponível em: http://ipma.co.in/wpcontent/uploads/2015/09/best-practices-manual-vol-2.pdf>. Acesso em: 04 mar. 2016.

DACIOLE, Leonardo. **Fotos do Brasil**. 2004. Disponível em:< http://www.fotosdobrasil.fot.br/index_main.htm> Acesso em: 22 nov. 2016.

EK, Monica; GELLERSTEDT, Göran; HENRIKSSON, Gunnar. **Pulp and paper chemistry and technology, pulping chemistry and technology**. Germany, vol.2. 2009. Disponível em: http://www.masagroup.ir/attach/165ff594-2680-4167-8424-b34bafdc0abdpulpingchemistryandtechnology.pdf. Acesso em: 09 ago. 2016.

EUROPEAN COMMISSION. Reference Document on Best Available Techniques in the Pulp and Paper Industry. Dec. 2001. Disponível em:<

http://eippcb.jrc.ec.europa.eu/reference/BREF/ppm_bref_1201.pdf> Acesso em: 08 Set. 2016.

FAKHRAI, Reza. **Black Liquor Combustion in Kraft Recovery Boilers-Numerical Modelling**. 2002. 24f. Tese (Doutorado) - Department of Material Science and Engineering Division of Energy and Furnace Technology Royal Institute of Technology. Disponível em:https://www.diva-portal.org/smash/get/diva2:9138/FULLTEXT01.pdf Acesso em: 05 Jun. 2016.

FERNANDES, Natércia. C. P. **Modelização de um Digestor Contínuo de Cozimento Kraft**. 2007. 317f. Tese (Doutorado) - Universidade de Coimbra, departamento de engenharia química, Coimbra. Disponível em:https://estudogeral.sib.uc.pt/bitstream/10316/5867/4/PhD_Natercia-Fernandes.pdf Acesso

https://estudogeral.sib.uc.pt/bitstream/10316/586//4/PhD_Natercia-Fernandes.pdf> Acesso em: 05 set. 2016.

FERNANDEZ, Jorge Felix. **Poder Calorífico**. 2016. Disponível em:< http://www.edutecne.utn.edu.ar/maquinas_termicas/01-poder_calorifico.pdf> Acesso em: 05 dez. 2016.

FERREIRA, Daniel José de Oliveira. **Modelagem de Caldeira de Recuperação Química Kraft**. 2013. 209f. Tese (Doutorado) — Escola Politécnica da Universidade de São Paulo, São Paulo. Disponível em:< http://www.teses.usp.br/teses/disponiveis/3/3137/tde-26072013-122445/pt-br.php > Acesso em: 12 Ago. 2016.

FERREIRA,D. J. O.; CARDOSO, M; PARK, S. W. Gas flows analysis in a Kraft recovery boiler. Fuel, vol 91, pp. 789-798, 2010.

FLSMIDTH. **White Liquor Production**. Fev. 2011. Disponível em: < http://www.flsmidth.com/~/media/PDF%20Files/MineralsBrochures/WhiteLiquorProduction_Brochure_EN.ashx>.Acesso em: 05 Fev. 2016.

FOCUS ON ENERGY. **Pulp and Paper Energy Best Practice Guidebook**. May, 2005. Disponível em:< https://focusonenergy.com/sites/default/files/pulpandpaper_guidebook.pdf> Acesso em: 30 Mar. 2016.

HOCKING, Martin B. **Handbook of Chemical Technology and Pollution Control**. 3st ed. Academic Press, 2006.

HORA, A. B; VIDAL, A. C. (2014). Celulose de fibra longa: uma oportunidade para a indústria brasileira?. BNDES Setorial 39, p. 281-342.

INDÚSTRIA BRASILEIRA DE ÁRVORES. **Relatório Ibá 2016**. Disponível em:< http://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2016_.pdf> Acesso em: 05 dez. 2016.

INDÚSTRIA BRASILEIRA DE ÁRVORES. **Relatório Ibá 2015**. Disponível em:http://iba.org/images/shared/iba_2015.pdf> Acesso em: 01 Out. 2016.

JÄRVINEN, Mika. Aalto university school of engineering. [2012]. Department of Mechanical Engineering Laboratory of Thermodynamics and Combustion. **Black Liquor and Recovery boilers**. [55 slides: color.]. Finland.

KOTAS, T. K. The Exergy Method of Thermal Plant Analysis. 1st Edition, Butterworth-Heinemann. 1985.

LWARCEL CELULOSE. **Caldeira De Recuperação Química**. 2013. Disponível em:< http://www.lwarcel.com.br/site/content/lwarcel/celulose_processo_industrial_recuperacao_qu imica_etapa.asp?id=19> Acesso em: 30 mar. 2016.

MACEDO, Júlio Cezar Ferreira. **Análise Térmica e Ambiental da Queima do Lodo Primário da Fabricação de Papel e Celulose em Caldeira de Biomassa à Grelha**. 2006. 196f. Dissertação (Mestrado) - Universidade Federal de Itajubá UNIFEI, Programa de Pós-Graduação em Ciências em Engenharia Mecânica, Itajubá. Disponível em:http://saturno.unifei.edu.br/bim/0030153.pdf Acesso em: 05 mar. 2015.

MARKLUND, Magnus; TEGMAN, Ragnar; GEBART, Rikard. (2007). **Cdf modelling of black liquor gasification: identification of importante model parameters**. Fuel, 86, 1-9, Elsevier Ltd. All rights reserved. doi:10.1016/j.fuel.2006.12.015.

MENDONÇA, Junior. **Coletor de pó - Preciptador eletrostática, lavadores úmido**. 2016. Disponível em:< http://www.ebah.com.br/content/ABAAAAbNwAK/coletor-po-preciptador-eletrostatica-lavadores-umido#> Acesso em: 05 Out. 2016.

MORAN, M. J.; SHAPIRO, H. N. **Princípios de termodinâmica para engenharia** . 6. ed. Rio de Janeiro: LTC, 2009.

NEUBERGER, Reinaldo. **Boas Práticas De Operação E Manutenção Para Redução De Odores Na Produção De Celulose Kraft: Uma Abordagem Qualitativa**. 2008. 125f. Dissertação (Mestrado) - Escola de Engenharia Mauá do Centro Universitário do Instituto Mauá de Tecnologia, Programa de Pós-Graduação em Engenharia de Processos Químicos e Bioquímicos, São Caetano do Sul. Disponível em:< http://maua.br/files/dissertacoes/boas-praticas-de-operacao-e-manutencao.pdf > Acesso em: 20 nov. 2016.

NPTEL. **Module 3: Design of Evaporator**. 2016. Disponível em:< http://nptel.ac.in/courses/103103027/module3/lec1/3.html> Acesso em: 30 Dez. 2016.

OLIVEIRA JUNIOR, Silvio de. **EXERGY: Production, cost and renewability**. 1. ed. Londres: Springer, 2013. v. 1. 336 p.

OLIVEIRA, E. B., NAKAJIMA, N. Y., CHANG, M., HALISKI, M. **Determinação da quantidade de madeira, carbono e renda da platanção florestal.** (Empresa Brasileira de Pesquisa Agropecuária). Embrapa. 2011. Disponível em:<

https://www.infoteca.cnptia.embrapa.br/bitstream/doc/898993/1/Doc220.pdf> Acesso em: 04 de ago. 2016.

ORTIZ, Pablo A. Silva; FLÓREZ-ORREGO, Daniel A. **Exergia, conceituação e aplicação.** Departamento De Engenharia Mecânica Universidade De São Paulo Escola Politécnica. São Paulo, 2013. Disponível em:

http://archive.is/20130626173945/academia.edu/3315176/exergia_conceituacao_e_aplicacao>. Acesso em: 05 san. 2015.

OZAWA, M. Determinação Experimental da Resistividade Ohmica de Cinzas Volantes para Projeto de Precipitador Eletrostático. Dissertação de Mestrado, Escola Politécnica da Universidade de São Paulo, São Paulo, 2003.

PAOLIELIO, F. A.; ALVEZ, A. C.; MAESTRI, E; FELICÍSSIMO NETO, J.; ASPGREN, L. P. **Guide for recovery boiler inspections**. CSBR – Safety Committee in (Chemical) Recovery Boiler of Brazil. ABTCP, 2002.

REIS, Haroldo Marinho. Análise Exergética e Ambiental do Processo de Obtenção do Licor de Cozimento Kraft para Extração de Celulose. 2013. 140f. Dissertação (Mestrado) - Universidade Federal de Itajubá UNIFEI, Programa de Pós-Graduação em Ciências em Engenharia Mecânica, Itajubá. Disponível em:< http://saturno.unifei.edu.br/bim/0042617.pdf> Acesso em: 05 out. 2015.

RIBEIRO, R. N.; MUNIZ, E. S.; LAMARQUE, L. H. F.; MEHTA, R. K.; PARK, S. W. Automação e sistemas de segurança em caldeiras de recuperação química, *Intech Brasil BLRBAC*, nº 95, pp. 7-22, 2007.

SABINO, Fernando. **No Fim dá Certo.** Crônicas, Record. 1998. Disponível em:http://kdfrases.com/frase/100752> Acesso em: 10 jan. 2017.

SZARGUT, J. 1988. Exergy analyses of Thermal, Chemical and Metallurgical Processs. Hemisphere publishing Corporation, USA.

TARANENKO, Anton. **Shattering Kraft Recovery Boiler Smelt by a Steam Jet.** 2013. 86f. Dissertação (Mestrado) - Department of Chemical Engineering and Applied Chemistry University of Toronto, Toronto. Disponível em:https://tspace.library.utoronto.ca/bitstream/1807/35142/3/Taranenko_Anton_201303_MASc_t hesis.pdf> Acesso em: 05 set. 2016.

TRAN, Honghi; VAKKILAINEN, Esa K. **The kraft chemcial recovery process.** Disponível em:< http://www.tappi.org/content/events/08kros/manuscripts/1-1.pdf> Acesso em: 30 nov. 2016.

UNIVERSIDADE FEDERAL DO PARANÁ. Disciplinas Klock: Polpa e Papel. II. Matérias-Primas Fibrosas Para Celulose E Papel. Paraná, 2013. 117 Slides: color.

VAKKILAINEN, Esa K. **Kraft recovery boilers - Principles and Practice**. suomen soodakattilayhdistys r.y. 2005. Disponível em: < https://www.doria.fi/bitstream/handle/10024/111915/KRBFull.pdf?sequence=2> Acesso em: 05 jan. 2016.

VALMET. **Ash treatment pays off in cleaner recovery boiler conditions.** Forward 1/2015. Disponível em: http://www.valmet.com/valmet/products/vault2mp.nsf/bywid2/wid-150309-2256e-95f6d/\$file/forward115ashtreatment.pdf?openelement Acesso em: 16 Mai. 2016.

VALMET. **Evaporator and Recovery Boiler Energy Efficiency.** 2015. Disponível em: http://www.valmet.com/Valmet/products/Vault2MP.nsf/BYWID2/WID-151117-2256E-A87EA/\$File/Forward315RecoveryBoiler.pdf?openElement > Acesso em: 05 Ago. 2016.

VALMET. Metsä Fibre Äänekoski Bioproduct Mil: More Electricity with Valmet's High-Power Recovery Boilers. Forward 3/2015. Disponível em: http://www.valmet.com/Valmet/products/Vault2MP.nsf/BYWID2/WID-151117-2256E-A87EA/\$File/Forward315RecoveryBoiler.pdf?openElement> Acesso em: 16 Mai. 2016.

WESSEL, Rick. PH.D. **Recovery boiler air systems recovery boiler.** Disponível em: http://www.tappi.org/content/events/08kros/handouts/4-5.pdf> Acesso em: 05 mai. 2016.

APÊNDICE A – CÁLCULO DA COMPOSIÇÃO ELEMENTAR DO LICOR PRETO

Para o cálculo da composição elementar do licor preto, primeiramente deve-se retirar a parcela de água da composição e elevar a soma do restante até 100%.

Tabela A.1 - Composição do licor preto

Composto	Percentual mássico úmido	Percentual Mássico seco
	(%)	(%)
H ₂ O	24,80	-
H_2S	2,02	2,68
CO	15,70	20,86
CO_2	3,08	4,09
\mathbf{H}_2	0,56	0,74
CH ₄	7,60	10,10
C	9,90	13,15
Na ₂ SO ₄	4,20	5,58
Na ₂ S	2,31	3,07
Na ₂ CO ₃	29,90	39,72

Fonte: MARKLUND et al., 2007

Em seguida, divide-se o valor do percentual mássico seco obtido, vide tabela anterior, pela massa molecular de cada substância.

- $H_2S: 0.0268/34 = 0.000789 \text{ kmol H2S} \rightarrow 0.000789 \text{ kmol H2} + 0.000789 \text{ kmol S};$
- CO: $0.2086/28 = 0.007449 \text{ kmol CO} \rightarrow 0.007449 \text{ kmol C} + 0.0037245 \text{ kmol O2}$;
- CO_2 : 0,0409/44 = 0,000930 kmol $CO2 \rightarrow 0$,000930 kmol C + 0,000930 kmol O2;
- H_2 : 0,0074/2 = 0,003720H kmol H2;
- CH₄: 0.101/16 = 0.006311 CH₄ $\rightarrow 0.006311$ kmol C + 0.012622 kmol H₂;
- C: 0.1315/12 = 0.010961 kmol C;
- Na₂SO₄: 0,0558/142 = 0,000393 kmol Na₂SO₄ $\rightarrow 0,000393$ kmol Na₂ + 0,000393 kmol S + 0,000786 kmol O2;
- Na₂S: 0.0307/78 = 0.000393 Na₂S $\rightarrow 0.000393$ Na₂ + 0.000393 S;
- Na₂CO₃: 0.3972/106 = 0.003748 Na₂CO₃ $\rightarrow 0.003748$ kmol Na₂ + 0.005622 O2.

Em seguida, é somado o resultado molar de cada elemento e o multiplica pela massa molecular do elemento químico.

- $H_2 = 0.01713 \text{ kmol } H_2 \times 2 \text{ kg/kmol} \rightarrow 0.0342 \text{ kg H};$
- C = 0,029398 kmol C x 12 kg/kmol \rightarrow 0,3527 kg C;
- $O_2 = 0.011062 \text{ kmol O x } 32 \text{ kg/kmol} \rightarrow 0.3539 \text{ kg O};$
- S = 0,001576 kmol S x 32 kg/kmol \rightarrow 0,0504 kg S;

 \bullet Na₂ = 0,004534 kmol Na₂ x 46 kg/kmol \rightarrow 0,2085 kg Na;

Assim, tem-se a composição elementar do licor preto e a parcela de água.

Tabela A. 2 - Composição elementar do licor preto

Elemento Químico	Percentual elementar mássico em base seca (%)
С	35,28
H	3,42
\mathbf{S}	5,04
0	35,40
Na	20,86
Total	100,00

Fonte: Próprio autor

APÊNDICE B – DADOS DO AR DE COMBUSTÃO

Tabela B.1 - Dados termodinâmicos do ar

Temperatura (K)	298	303	343	423	443	463	478
Entalpia do ar (kJ/kmol)	8.650	8.795	9.961	12.300	12.890	13.490	13.930
Entropia do ar (kJ/kmol.K)	198,8	199,3	202,9	209	210,4	211,7	212,6

Fonte: CATT3, 1996.

Calculo da massa molecular do ar e da vazão molar de ar

$$MM_{ar} = 0.21 \cdot 32 + 0.79 \cdot 28 = 28.84 \frac{kg}{kmol}$$
$$\dot{n}_{ar} = \frac{\dot{n}_{o2} \cdot MM_{o2} + \dot{n}_{N2} \cdot MM_{N2}}{MM_{ar}}$$

Os valores das vazões molares de oxigênio e nitrogênio podem ser consultados nos Apêndices seguintes no item referente ao "Balanço de massa do ar". Desse modo, obteve-se os dados da Tabela B.2, considerando que de todo o ar estequiométrica 30 % foi para o ar primário, 40 % para o ar secundário e 30 % para o ar terciário.

Tabela B.2 - Balanço estequiométrico do ar para as caldeiras

Caldeira	A	В	C	D
Vazão molar do ar primário (kmol/s)	0,6762	0,43397	2,14579	3,48637
Vazão molar do ar secundário (kmol/s)	0,9016	0,57863	2,86102	4,6485
Vazão molar do ar terciário (kmol/s)	0,6762	0,43397	2,14579	3,48637

Fonte: Próprio autor

Cálculo da energia do ar pela Primeira Lei da Termodinâmica:

$$Energia_{arcaldeiraD} = \dot{n}_{ar} \cdot \Delta h_{ar} = (3,48637 + 4,6485 + 3,48637) \cdot (13.930 - 8.650) = 61.360 \ kW$$

$$Energia_{A} = \dot{n}_{ar} \cdot \Delta h_{ar} = 1,5778 \cdot (12.300 - 8650) + 0,67619 \cdot (8.765 - 8.650) = 5.837 \ kW$$

$$Energia_{B} = \dot{n}_{ar} \cdot \Delta h_{ar} = 1,0126 \cdot (12.300 - 8650) + 0,43397 \cdot (8.765 - 8.650) = 3.759 \ kW$$

$$Energia_{C} = \dot{n}_{ar} \cdot \Delta h_{ar} = 2,14576 \cdot (13.490 - 8650) + 2,86102 \cdot (12.890 - 8.650) + 2,14579 \cdot (9.961 - 8.650)$$

$$= 25.329 \ kW$$

Cálculo da exergia do ar utilizando a Segunda Lei da Termodinâmica para a caldeira D:

$$B_{ar} = \{(0.21 \cdot 3970 + 0.79 \cdot 690) + R \cdot T_0 \cdot [y_{02} \ln(y_{02}) + y_{N2} \ln(y_{N2})]\} \cdot \dot{n}_{ar} + \dot{n}_{ar} \cdot (\Delta h - T_0 \cdot \Delta s) \quad [kW]$$

Tabela B.3 - Valores de energia e exergia calculados para o ar de combustão

Caldeira	A	В	C	D
Energia do	5.857	3.759	25.329	61.360
ar (kW)				
Exergia do	1.198	769	5.323	13.674
ar (kW)				

Fonte: Próprio autor

APÊNDICE C - CÁLCULO DE EXERGIA DA FÁBRICA LOCALIZADA EM CENTRO-LESTE DO ESTADO DE SÃO PAULO

• CÁLCULO DE EXERGIA DA CALDEIRA A

Tabela C.1 - Informações da Caldeira A

Localização d	la Fábrica	CLSP	
Caldeira		A	Quantidade estequiométrica de ar utilizada
	Ar primário	150	*30%
Temperatura (°C)	Ar secundário	150	*40%
	Ar Terciário	30	*30%
Licor preto quei	imado (tss/d)	1400	
Concentração de sólidos secos queimada (%)		75	
Vazão de vapor (t/h)		180	
Temperatura do vapor (°C)		400	
Pressão (bar)		50	
Temperatura da água inserida (°C)		140	
Pressão (bar)		80	
Energia elétrica co	onsumida (kW)	2.440	

Fonte: CARREIRO, 2009

Cálculo de Exergia do condensado e do vapor

Tabela C.2 – Dados do condensado e vapor

1 400 012	zudos do comaciisado e tapor		
Propriedades	Condensado	Vapor	
T ₀ (K)	298	298	
T (K)	403	473	
Pressão (bar)	80	50	
\dot{m} (kg/s)	50	50	
$H_1(kJ/kg)$	551	3196,2	
H_0 (kJ/kg)	104,879	104,879	
$S_1(kJ/kg.K)$	1,6258	6,6463	
S ₀ (kJ/kg.K)	0,3674	0,3674	

Fonte: CARREIRO (2009); CATT3 (1996)

Aplicando equação para cálculo de exergia para o condensado:

$$B_{condensado} = \dot{m} \cdot [(H_1 - H_0) - T_0 \cdot (S_1 - S_0)] = 3.564 \, kW$$

Aplicando equação para cálculo de exergia para o vapor:

$$B_{vapor} = \dot{m} \cdot [(H_1 - H_0) - T_0 \cdot (S_1 - S_0)] = 60.963 \; kW$$

Balanço de massa para o licor preto

Temperatura do licor preto = 398 K

Consumo de licor preto pela caldeira

$$\dot{m}_{licor\; preto} = 1400 \cdot \frac{1000}{24 \cdot 3600 \cdot 0.75} = 21,60 \; kg/s$$

Tabela C.3 - Composição mássica do licor preto a 75% de sólidos secos

Composto	Percentual mássico (%)
H ₂ O	25,00
H_2S	2,02
CO	15,61
CO_2	3,08
\mathbf{H}_2	0,56
CH ₄	7,60
C	9,90
Na_2SO_4	4,20
Na ₂ S	2,31
Na ₂ CO ₃	29,72

Fonte: Próprio autor

Vazão molar de cada composto presente no licor preto (kmol/s)

$$n_{H2O} = 21.6 \left(\frac{kg}{s}\right) * \frac{0.248}{18 \left(\frac{kg}{kmol}\right)} = 0.30007 \frac{kmol}{s}$$

$$n_{H2S} = 21.6 * \frac{0.0202}{34} = 0.01283$$

$$n_{CO} = 21.6 * \frac{0.1561}{28} = 0.12076$$

$$n_{CO2} = 21.6 * \frac{0.308}{44} = 0.01511$$

$$n_{H2} = 21.6 * \frac{0.56}{2} = 0.06048$$

$$n_{CH4} = 21.6 * \frac{0.076}{16} = 0.10247$$

$$n_{C} = 21.6 * \frac{0.099}{12} = 0.17788$$

$$n_{Na2SO4} = 21.6 * \frac{0.042}{142} = 0.00638$$

$$n_{Na2S} = 21.6 * \frac{0.0231}{78} = 0.0064$$

$$n_{Na2CO3} = 21.6 * \frac{0.2972}{106} = 0.06057$$

Tabela C.4 - Coeficientes para cálculo de entalpia e entropia e valor de exergia química padrão

Compostos	A	В	C	D	b_{ch}^0 (kJ/kmol)
H ₂ O	7,3	1,23	0	-2286	3.120
H_2S	7,81	1,48	0,46	-2614	804.770
CO	6,79	0,49	0,11	-2105	275.430
CO_2	10,57	1,05	2,06	-3936	20.140
H_2	6,52	0,3	-0,12	-1938	238.490
CH ₄	5,65	5,72	0,46	-2347	836.510
C	4,03	0,57	2,04	-1936	410.820
Na ₂ SO ₄	47,18	0	0	-10190	35.000
Na ₂ S	19,81	0,82	0	-5979	930.340
Na ₂ CO ₃	27,13	7,81	4,78	-10386	53.130

Fonte: CARVALHO (1977); KOTAS (1985)

-H₂O

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B. 10^{-3}T^2 + C. 10^5. T^{-1} + D) \left[\frac{kJ}{kmol} \right]$$

$$(h_T - h_{298,15}) = 4,186. (7,3 \cdot 398 + 1,23. 10^{-3} (398)^2 + 0. 10^5. 398^{-1} + (-2286))$$

$$(h_T - h_{298,15}) = 3413 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$\left(s_T - s_{298,15} \right) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. \left(T - 298,15 \right) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$\left(s_T - s_{298,15} \right) = 4,186. \left[7,3. \ln \left(\frac{398}{298,15} \right) + 2.1,23. 10^{-3}. \left(398 - 298,15 \right) + \frac{0}{2}. 10^5. \left(\frac{1}{398^2} - \frac{1}{298,15^2} \right) \right]$$

$$\left(s_T - s_{298,15} \right) = 9,86 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia Física

$$Bph_{H2O} = n_{H2O} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right]$$

$$Bph_{H2O} = 0,30007 \cdot (3413 - 298 \cdot 9,86) = 142 \ kW$$

-Exergia Química

$$Bch_{H2O} = n_{H2O} \cdot b_{ch}^{0}$$

 $Bch_{H2O} = 0,30007 \cdot 3.120 = 936 \, kW$

-Exergia total da H2O

$$B_T = Bph_{H2O} + Bch_{H2O} = 142 + 936 = 1078 \, kW$$

Para o cálculo de exergia física e química dos outros compostos, aplica-se a mesma metodologia para o cálculo de exergia da H₂O.

 $-H_2S$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 3540 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 10,2 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{H2O} = n_{H2S} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 6.32 \ kW$$

-Exergia química:

$$Bch_{H2S} = n_{H2S} \cdot b_{ch}^0 = 10.325,7 \ kW$$

-Exergia total:

$$B_T = Bph_{H2S} + Bch_{H2S} = 10.332 \, kW$$

-CO

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2945 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 8,52 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{CO} = n_{CO} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 49,07 \ kW$$

-Exergia química:

$$Bch_{CO} = n_{CO} \cdot b_{ch}^{0} = 33.260 \ kW$$

-Exergia total:

$$B_T = Bph_{CO} + Bch_{CO} = 33.309 \, kW$$

 $-CO_2$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 4003 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 11,55 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{CO2} = n_{CO2} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 8,47 \text{ kW}$$

-Exergia química:

$$Bch_{CO} = n_{CO} \cdot b_{ch}^0 = 304 \ kW$$

-Exergia total:

$$B_T = Bph_{CO2} + Bch_{CO2} = 312 \, kW$$

 $-H_2$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.827 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 8,26 \left[\frac{kJ}{kmol.K} \right]$$

-Exergia física:

$$Bph_{H2} = n_{H2} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 21,87 \text{ kW}$$

-Exergia química:

$$Bch_{H2} = n_{H2} \cdot b_{ch}^0 = 14.425 \ kW$$

-Exergia total:

$$B_T = Bph_{H2} + Bch_{H2} = 14.447 \ kW$$

-CH₄

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 3.871 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 11,15 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{CH4} = n_{CH4} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 55,94 \, kW$$

-Exergia química:

$$Bch_{CH4} = n_{CH4} \cdot b_{ch}^{0} = 85.713 \, kW$$

-Exergia total:

$$B_T = Bph_{CH4} + Bch_{CH4} = 85.769 \ kW$$

-**C**

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 1.135 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 3,24 \left[\frac{kJ}{kmol.K} \right]$$

-Exergia física:

$$Bph_C = n_C \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 29.8 \, kW$$

-Exergia química:

$$Bch_C = n_C \cdot b_{ch}^0 = 73.078 \, kW$$

-Exergia total:

$$B_T = Bph_C + Bch_C = 14.447 \ kW$$

-Na₂SO₄

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.827 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 8,26 \left[\frac{kJ}{kmol.K} \right]$$

-Exergia física:

$$Bph_{Na2SO4} = n_{Na2SO4} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 21,87 \; kW$$

-Exergia química:

$$Bch_{Na2SO4} = n_{Na2SO4} \cdot b_{ch}^{0} = 14.425 \, kW$$

-Exergia total:

$$B_T = Bph_{Na2SO4} + Bch_{Na2SO4} = 14.447 \ kW$$

-Na₂S

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 8.532 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$\left(s_T - s_{298,15}\right) = 4,186. \left[A. \ln\left(\frac{T}{298,15}\right) + 2.B. 10^{-3}. \left(T - 298,15\right) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2}\right)\right] \\
= 24,67 \left[\frac{kJ}{kmol\ K}\right]$$

-Exergia física:

$$Bph_{Na2S} = n_{Na2S} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 7,52 \; kW$$

-Exergia química:

$$Bch_{Na2S} = n_{Na2S} \cdot b_{ch}^0 = 5.949 \ kW$$

-Exergia total:

$$B_T = Bph_{Na2S} + Bch_{Na2S} = 5.957 \text{ kW}$$

-Na₂CO₃

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 11.948 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 34,44 \left[\frac{kJ}{kmol.K} \right]$$

-Exergia física:

$$Bph_{Na2SO4} = n_{Na2CO3} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 101,7 \; kW$$

-Exergia química:

$$Bch_{Na2CO3} = n_{Na2CO3} \cdot b_{ch}^0 = 3.218 \ kW$$

-Exergia total:

$$B_T = Bph_{Na2CO3} + Bch_{Na2CO3} = 3.319 \, kW$$

Balanço de massa para o smelt

Temperatura do *smelt* = 1.133 K

Tabela C.5 – Composição molar do smelt

Composto	Percentual molar (%)
Na ₂ CO ₃	75,900
Na ₂ S	15,800
Na ₂ SO ₄	0,032
C	8,200

Fonte: MARKLUND et al., 2007.

Para o balanço estequiométrico do smelt, é necessário o uso da Tabela C.5.

Tabela C.6 – Vazão Molar do Smelt

Localização da Fábrica	CLSP
Caldeira	A
Composto	$\dot{n}\left(\frac{kmol}{s}\right)$
Na ₂ CO ₃	0,060546
Na ₂ S	0,012601
Na ₂ SO ₄	1,12E-05
C	0,006594

Fonte: Próprio autor

-Cálculo de exergia física, química e total do smelt

-**C**

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 14.829 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$\begin{split} \left(s_T - s_{298,15}\right) &= 4,186. \left[A. \ln \left(\frac{T}{298,15}\right) + 2.B. \, 10^{-3}. \left(T - 298,15\right) + \frac{C}{2}. \, 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2}\right)\right] \\ &= 22,03 \, \left[\frac{kJ}{kmol. \, K}\right] \end{split}$$

-Exergia física:

$$Bph_C = n_C \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 54,73 \text{ kW}$$

-Exergia química:

$$Bch_C = n_C \cdot b_{ch}^0 = 2.772 \frac{kJ}{kmol}$$

-Exergia total:

$$B_T = Bph_C + Bch_C = 2.777 \text{ kW}$$

-Na₂SO₄

-Entalpia:

$$(h_T - h_{298,15}) = 4,186.(A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 157.012 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 230 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{Na2SO4} = n_{Na2SO4} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 0.99 \; kW$$

-Exergia química:

$$Bch_{Na2SO4} = n_{Na2SO4} \cdot b_{ch}^0 = 0.39 \ kW$$

-Exergia total:

$$B_T = Bph_{Na2SO4} + Bch_{Na2SO4} = 1,39 \text{ kW}$$

-Na₂S

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 73.345 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 116 \left[\frac{kJ}{kmol\ K} \right]$$

-Exergia física:

$$Bph_{Na2S} = n_{Na2S} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 489 \, kW$$

-Exergia química:

$$Bch_{Na2S} = n_{Na2S} \cdot b_{ch}^{0} = 11.783 \ kW$$

-Exergia total:

$$B_T = Bph_{Na2S} + Bch_{Na2S} = 12.153 \, kW$$

 $-Na_2CO_3$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 158.615 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 251 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{Na2SO4} = n_{Na2CO3} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 5.089 \; kW$$

-Exergia química:

$$Bch_{Na2CO3} = n_{Na2CO3} \cdot b_{ch}^0 = 3.233 \, kW$$

-Exergia total:

$$B_T = Bph_{Na2CO3} + Bch_{Na2CO3} = 8.322 \, kW$$

--EXERGIA DO SMELT

$$B_{licor\,preto} = \sum B_T = 23.255 \, kW$$

Balanço de massa e cálculo de exergia física, química e total do ar estequiométrico

Tabela C.7 - Vazão Molar do Ar de combustão

Localização da Fábrica	CLSP
Caldeira	A
Composto	$\dot{n}\left(\frac{kmol}{s}\right)$
\mathbf{O}_2	0,47352
N_2	1,78045

Fonte: Próprio autor

-Exergia química

$$B_{ch\ ar} = \{(0.21 \cdot 3970 + 0.79 \cdot 690) + R \cdot T_0 \cdot [y_{02} \ln(y_{02}) + y_{N2} \ln(y_{N2})]\} \cdot n_{total} = 253 \ kW$$

-Exergia física

Como o ar que possui temperatura é o ar primário e secundário de 423 K, então multiplica-se 0,7 na vazão total de ar.

 N_2

$$Bph_{N2} = 0.7 \cdot n_{N2} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right]$$

 O_2

$$Bph_{02} = 0.7 \cdot n_{02} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right]$$

-EXERGIA TOTAL

$$B_{total\ ar} = B_{ch\ ar} + Bph_{N2} + Bph_{O2} = 1.198\ kW$$

Balanço de massa para os gases de combustão

Temperatura dos gases de exaustão: 473 K

Com o balanço estequiométrico já feito para o fundido, para os gases de exaustão resta a parte orgânica que faz a combustão junto com ar.

Tabela C.8 - Vazão Molar dos Gases de Exaustão

Localizaçao da Fábrica	CLSP
Caldeira	A
Composto	$\dot{n}\left(\frac{kmol}{s}\right)$
SO2	0,0129
N_2	1,9
CO_2	0,4084
H ₂ O	0,5768
O_2	0,0331

Fonte: Próprio autor

-Cálculo de exergia física, química e total para os gases de exaustão

Tabela C.9 - Coeficientes e valores de exergia química padrão dos compostos químicos presentes nos gases de exaustão

Composto	A	В	С	D	$b_{ch}^0 \ [ext{kJ/kmol}]$
SO ₂	11,04	0,94	1,84	-3992	303.500
N_2	6,83	0,45	0,12	-2117	690
CO_2	10,57	1,05	2,06	-3936	20.140
H_2O	7,3	1,23	0	-2286	11.710
O_2	7,16	0,5	0,4	2313	3.970

Fonte: CARVALHO (1977) e KOTAS (1985).

-SO₂

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 5.402 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 15 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{SO2} = n_{Na2SO4} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 11,8 \ kW$$

-Exergia química:

$$y_{SO2} = \frac{y_{SO2}}{y_{total}} = 0,004411$$

$$bch_{SO2} = y_{SO2} \cdot b_{ch}^0 + R \cdot T_0 \cdot [y_{SO2} \cdot \ln(y_{SO2})] = 1.279 \frac{kJ}{kmol}$$

 $-N_2$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 3.662 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 10 \left[\frac{kJ}{kmol \ K} \right]$$

-Exergia física:

$$Bph_{N2} = n_{N2} \cdot [(h_T - h_{298.15}) - T_0 \cdot (s_T - s_{298.15})] = 1142 \, kW$$

-Exergia química:

$$bch_{N2} = y_{N2} \cdot b_{ch}^{0} + R \cdot T_{0} \cdot [y_{N2} \cdot \ln(y_{N2})]$$

-CO₂

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 5.109 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 14 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{CO2} = n_{CO2} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 352 \; kW$$

-Exergia química:

$$bch_{CO2} = y_{CO2} \cdot b_{ch}^0 + R \cdot T_0 \cdot [y_{CO2} \cdot \ln(y_{CO2})] = 2.125 \frac{kJ}{kmol}$$

 $-H_2O$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 4.177 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 12 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{H2O} = n_{H2O} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 392 \, kW$$

-Exergia química:

$$bch_{H2O} = y_{H2O} \cdot b_{ch}^{0} + R \cdot T_{0} \cdot [y_{H2O} \cdot \ln(y_{H2O})] = 1.511 \frac{kJ}{kmol}$$

-O₂

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 3.752 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 10,5 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{O2} = n_{O2} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 20,6 \text{ kW}$$

-Exergia química:

$$bch_{O2} = y_{O2} \cdot b_{ch}^{0} + R \cdot T_{0} \cdot [y_{O2} \cdot \ln(y_{O2})]$$

--EXERGIA DOS GASES DE EXAUSTÃO

$$B_{gases\ de\ exaustão} = \sum B_{ph} + n_{total} \cdot \sum b_{ch} = 15.362\ kW$$

-Consumo elétrico da caldeira

$$EE = 2.440 \ kW$$

EFICIÊNCIA EXERGÉTICA DA CALDEIRA DE RECUPERAÇÃO QUÍMICA

$$\Psi_{caldeira\;A} = \frac{\left(B_{vapor} - B_{condensado}\right) + B_{Smelt}}{B_{licor\;preto} + B_{ar} + EE} = 34,9\;\%$$

• CÁLCULO DE EXERGIA DO TANQUE DISSOLVEDOR

Cálculo de exergia física, química e total do smelt

Para o smelt, o valor de exergia é o mesmo calculado para a caldeira de recuperação química por estar a mesma temperatura de 1.133 K.

Balanço de massa do licor branco fraco

Segundo Reis (2013), mistura-se 1 kg de *smelt* para 8,13 kg de licor branco fraco. A Tabela C.10 mostra a composição do licor branco fraco e a vazão mássica dos compostos químicos obtido através de balanço de massa.

Tabela C.10 -Vazão molar do licor branco fraco

Componente	Vazão molar (kmol/s)
Na ₂ CO ₃	0,031314
Na ₂ S	0,002567
Na ₂ SO ₄	0,00516
NaOH	0,007195
H ₂ O	3,1435
Total	3,18973

Fonte: REIS, 2013.

-Cálculo de exergia física, química e total do licor branco fraco

Temperatura do licor branco fraco de 333 K

Tabela C.11 – Coeficientes para cálculo de entalpia e entropia do hidróxido de sódio

Componente	A	В	C	D	b _{ch} 0 (kJ/kmol)
NaOH	0,24	16,21	-3,87	-215	84490

Fonte: CARVALHO (1977)

-Na₂CO₃

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 3.993 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 12,65 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{Na2CO3} = n_{Na2CO3} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 6.9 \text{ kW}$$

-Exergia química:

$$y_{Na2CO3} = \frac{n_{Na2CO3}}{n_{total}}$$

$$bch_{Na2CO3} = y_{Na2CO3} \cdot b_{ch}^0 = 521 \frac{kJ}{kmol}$$

-Na₂S

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.979 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 9,4 \left[\frac{kJ}{kmol.K} \right]$$

-Exergia física:

$$Bph_{Na2S} = n_{Na2CO3} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 0.42 \text{ kW}$$

-Exergia química:

$$y_{Na2S} = \frac{n_{Na2S}}{n_{total}}$$

$$bch_{Na2S} = y_{Na2S} \cdot b_{ch}^0 = 748 \; \frac{kJ}{kmol}$$

-Na₂SO₄

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 4.637 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$\begin{split} \left(s_T - s_{298,15}\right) &= 4,186. \left[A. \ln \left(\frac{T}{298,15}\right) + 2.B. \, 10^{-3}. \, (T - 298,15) + \frac{C}{2}. \, 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2}\right)\right] \\ &= 14,7 \, \left[\frac{kJ}{kmol.\,K}\right] \end{split}$$

-Exergia física:

$$Bph_{Na2SO4} = n_{Na2CO3} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 1,30 \text{ kW}$$

-Exergia química:

$$y_{Na2SO4} = \frac{n_{Na2SO4}}{n_{total}}$$

$$bch_{Na2SO4} = y_{Na2SO4} \cdot b_{ch}^0 = 56 \frac{kJ}{kmol}$$

-NaOH

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.103 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 6,67 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{NaOH} = n_{Na2CO3} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 0.81 \text{ kW}$$

-Exergia química:

$$y_{NaOH} = \frac{n_{NaOH}}{n_{total}}$$
 $bch_{NaOH} = y_{NaOH} \cdot b_{ch}^0 = 190 \; \frac{kJ}{kmol}$

-H₂O

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.641 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 8,38 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{Na2CO3} = n_{Na2CO3} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 447 \; kW$$

-Exergia química:

$$y_{H2O} = \frac{n_{H2O}}{n_{total}}$$

$$bch_{H2O} = y_{H2O} \cdot b_{ch}^{0} = 3.074 \frac{kJ}{kmol}$$

--EXERGIA TOTAL DO LICOR BRANCO FRACO

$$B_{licor\ branco\ fraco} = \sum B_{ph\ i} + n_T \cdot \sum bch\ i = 15.171\ kW$$

-Consumo elétrico do tanque dissolvedor

$$EE = 575 kW$$

Balanço de massa para o licor verde bruto

Tabela C.12 - Vazão molar do licor verde bruto

Componente	Vazão molar (kmol/s)
Na ₂ CO ₃	0,092171
Na ₂ S	0,015233
Na ₂ SO ₄	0,005171
NaOH	0,007195
C	0,006628
H_2O	2,682304
Total	2,808701

Fonte: Próprio autor

Calculo de exergia física, química e total do licor verde bruto

Temperatura do licor verde bruto liberado pelo tanque dissolvedor: 363 K

-Na₂CO₃

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 7.587 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 22,9 \left[\frac{kJ}{kmol\ K} \right]$$

-Exergia física:

$$Bph_{Na2CO3} = n_{Na2CO3} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 67.8 \text{ kW}$$

-Exergia química:

$$y_{Na2CO3} = \frac{n_{Na2CO3}}{n_{total}}$$

$$bch_{Na2CO3} = y_{Na2CO3} \cdot b_{ch}^0 = 1.743 \; \frac{kJ}{kmol}$$

-Na₂S

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 5.538 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 16,8 \left[\frac{kJ}{kmol\ K} \right]$$

-Exergia física:

$$Bph_{Na2S} = n_{Na2S} \cdot [(h_T - h_{298.15}) - T_0 \cdot (s_T - s_{298.15})] = 8,06 \, kW$$

-Exergia química:

$$y_{Na2S} = \frac{n_{Na2S}}{n_{total}}$$

$$bch_{Na2S} = y_{Na2S} \cdot b_{ch}^0 = 5.045 \frac{kJ}{kmol}$$

-Na₂SO₄

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 8.830 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 26,75 \left[\frac{kJ}{kmol \ K} \right]$$

-Exergia física:

$$Bph_{Na2SO4} = n_{Na2SO4} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 4,41 \text{ kW}$$

-Exergia química:

$$y_{Na2SO4} = \frac{n_{Na2SO4}}{n_{total}}$$

$$bch_{Na2SO4} = y_{Na2SO4} \cdot b_{ch}^{0} = 64,4 \frac{kJ}{kmol}$$

-NaOH

-Entalpia:

$$(h_T - h_{298,15}) = 4,186.(A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 688 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 2,07 \left[\frac{kJ}{kmol.K} \right]$$

-Exergia física:

$$Bph_{NaOH} = n_{NaOH} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 2,71 \; kW$$

-Exergia química:

$$y_{NaOH} = \frac{n_{NaOH}}{n_{total}}$$

$$bch_{NaOH} = y_{NaOH} \cdot b_{ch}^{0} = 216 \; \frac{kJ}{kmol}$$

-C

-Entalpia:

$$(h_T - h_{298,15}) = 4,186.(A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 688 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 2,07 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_C = n_C \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 0.46 \, kW$$

-Exergia química:

$$y_C = \frac{n_C}{n_{total}}$$

$$bch_C = y_C \cdot b_{ch}^0 = 969 \frac{kJ}{kmol}$$

 $-H_2O$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 4.906 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 14,9 \left[\frac{kJ}{kmol.K} \right]$$

-Exergia física:

$$Bph_{H2O} = n_{H2O} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 1251 \, kW$$

-Exergia química:

$$y_{H2O} = \frac{n_{H2O}}{n_{total}}$$

$$bch_{H2O} = y_{H2O} \cdot b_{ch}^{0} = 2.979 \frac{kJ}{kmol}$$

--EXERGIA TOTAL DO LICOR VERDE BRUTO

$$B_{licor\ verde\ bruto} = \sum B_{ph\ i} + n_T \cdot \sum bch\ i = 32.119\ kW$$

Cálculo de exergia do vapor liberado pelo tanque dissolvedor

O balanço estequiométrico é realizado pela diferença de água inserida no licor branco fraco com o licor verde bruto

$$n_{vapor} = 0.46119 \ kmol/s$$

Temperatura do vapor: 373 K

 $-H_2O$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 5.662 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 16,9 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{H2O} = n_{H2O} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 252 \, kW$$

-Exergia química:

$$Bch_{H2O} = n_{H2O} \cdot \{b_{ch}^{0} + R \cdot T_{0} \cdot [y_{H2O} \cdot \ln(y_{H2O})]\} = 5.401 \, kW$$

$$B_{vapor} = \sum_{i} B_{ph \, i} + \sum_{i} Bch \, i = 5.653 \, kW$$

EFICIÊNCIA EXERGÉTICA DO TANQUE DISSOLVEDOR

Como neste sistema, a exergia do vapor é perdida devido a emissão direta para a atmosfera, é considerada a exergia do vapor como zero no cálculo de eficiência exergética.

$$\Psi_{Tanque\ Dissolvedor} = \frac{B_{vapor} + B_{licor\ verde\ bruto}}{B_{smelt} + B_{licor\ branco\ fraco} + EE} = \frac{0 + 32.119}{23.255 + 15.171 + 575} = 82,4\ \%$$

• CÁLCULO DE EXERGIA DO FILTRO DE LICOR VERDE

Balanço de massa para o licor verde

Tabela C.13 – Vazão molar do licor verde

Componente	Vazão molar (kmol/s)
Na ₂ CO ₃	0,091565
Na ₂ S	0,015233
Na ₂ SO ₄	0,00516
NaOH	0,007195
H ₂ O	2,674761
Total	2,793913

Cálculo de exergia física, química e total para o licor verde

Temperatura do licor verde liberado pelo filtro: 333 K

$$-Na_2CO_3$$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 3.993 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 12,65 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{Na2CO3} = n_{Na2CO3} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 20.2 \text{ kW}$$

-Exergia química:

$$y_{Na2CO3} = \frac{n_{Na2CO3}}{n_{total}}$$

$$bch_{Na2CO3} = y_{Na2CO3} \cdot b_{ch}^0 = 1.741 \frac{kJ}{kmol}$$

-Na₂S

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.979 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 9,4 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{Na2S} = n_{Na2S} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 2.5 \text{ kW}$$

-Exergia química:

$$y_{Na2S} = \frac{n_{Na2S}}{n_{total}}$$

$$bch_{Na2S} = y_{Na2S} \cdot b_{ch}^{0} = 5.072 \frac{kJ}{kmol}$$

-Na₂SO₄

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 4.637 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 14,7 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{Na2SO4} = n_{Na2SO4} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 1,30 \; kW$$

-Exergia química:

$$y_{Na2SO4} = \frac{n_{Na2SO4}}{n_{total}}$$

$$bch_{Na2SO4} = y_{Na2SO4} \cdot b_{ch}^{0} = 64.6 \frac{kJ}{kmol}$$

-NaOH

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.103 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 6,67 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{NaOH} = n_{NaOH} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 0.81 \; kW$$

-Exergia química:

$$y_{NaOH} = \frac{n_{NaOH}}{n_{total}}$$
 $bch_{NaOH} = y_{NaOH} \cdot b_{ch}^0 = 217.5 \ \frac{kJ}{kmol}$

 $-H_2O$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.641 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 8,38 \left[\frac{kJ}{kmol.K} \right]$$

-Exergia física:

$$Bph_{H2O} = n_{H2O} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 380,9 \ kW$$

-Exergia química:

$$y_{H20} = \frac{n_{H20}}{n_{total}}$$
 $bch_{H20} = y_{H20} \cdot b_{ch}^0 = 2986 \frac{kJ}{kmol}$

-- EXERGIA TOTAL DO LICOR VERDE

$$B_{licor\ branco\ fraco} = \sum B_{ph\ i} + n_T \cdot \sum bch\ i = 405 + 2,79 \cdot 10.082 = 28.576\ kW$$

Balanço de massa para os dregs

Tabela C.14 - Vazão molar dos dregs

V. molar	
(kmol/s)	
0,00426	
0,00067	
0,00072	
0,00088	
7,2E-06	
0,00011	
2,4E-05	
0,00693	

Cálculo de exergia física, química e total para os dregs

Temperatura: 333 K

Tabela C.15 – Valores dos coeficientes para cálculo de entalpia e entropia dos dregs

Componente	A	В	C	D	b _{ch} 0 (kJ/kmol)
C	0,24	16,21	-3,87	-215	84.490
Na ₂ O	15,7	2,7	0	4921	313.260
CaO	11,67	0,54	1,56	-4051	119.620
MgO	10,18	0,87	1,48	-3609	59.170
Na ₂ SO ₃	13,9	3,05	3,22	-5495	82.840
MnO	11,11	0,97	0,88	-3694	122.390
Fe ₂ O ₃	23,49	9,3	3,55	-9021	133.750

Fonte: Carvalho (1977) e Kotas (1985)

-C

-Entalpia:

$$(h_T - h_{298,15}) = 4,186.(A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 344 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 1,08 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_C = n_C \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 0.13 \ kW$$

-Exergia química:

$$y_C = \frac{n_C}{n_{total}}$$

$$bch_C = y_C \cdot b_{ch}^0 = 252.667 \frac{kJ}{kmol}$$

-Na₂O

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 43.748 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 8,08 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{Na20} = n_{Na20} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 42,85 \, kW$$

-Exergia química:

$$y_{Na2O} = \frac{n_{Na2S}}{n_{total}}$$

$$bch_{Na2O} = y_{Na2O} \cdot b_{ch}^0 = 30.133 \text{ kW}$$

-CaO

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 1.528 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 4,8 \left[\frac{kJ}{kmol\ K} \right]$$

-Exergia física:

$$Bph_{CaO} = n_{CaO} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 0.09 \, kW$$

-Exergia química:

$$y_{CaO} = \frac{n_{CaO}}{n_{total}}$$

$$bch_{CaO} = y_{CaO} \cdot b_{ch}^{0} = 12.420 \text{ kW}$$

-MgO

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 1.353 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 4,29 \left[\frac{kJ}{kmol\ K} \right]$$

-Exergia física:

$$Bph_{MgO} = n_{MgO} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 0.10 \text{ kW}$$

-Exergia química:

$$y_{MgO} = \frac{n_{MgO}}{n_{total}}$$

$$bch_{MgO} = y_{MgO} \cdot b_{ch}^{0} = 7.498 \text{ kW}$$

-Na₂SO₃

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 1.845 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 5,8 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{Na2SO3} = n_{Na2SO3} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 0,002 \ kW$$

-Exergia química:

$$y_{Na2SO3} = \frac{n_{Na2SO3}}{n_{total}}$$

$$bch_{Na2SO3} = y_{Na2SO3} \cdot b_{ch}^{0} = 86 \frac{kJ}{kmol}$$

-- EXERGIA TOTAL DO DREGS

$$B_{licor\ branco\ fraco} = \sum B_{ph\ i} + n_T \cdot \sum bch\ i = 43 + 0,010 \cdot 304.734 = 3.332\ kW$$

• CÁLCULO DE EXERGIA DO REATOR SLAKER

Balanço de massa da cal com o licor verde

Para o balanço estequiométrico, segundo Reis (2013) considera-se que a eficiência da conversão de carbonato de sódio em hidróxido de sódio é de 85%.

0,073252 CaO
$$\rightarrow$$
 0,073252 Ca(OH)₂ 0,073252 H₂O \rightarrow 0,073252 Ca(OH) \rightarrow 0,146503 NaOH \rightarrow 0,073252 Na₂CO₃ \rightarrow 0,018313 Na2CO₃

-CaCO₃

-Entalpia:

$$(h_T - h_{298,15}) = 4,186.(A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 6.645 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$\left(s_T - s_{298,15} \right) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. \left(T - 298,15 \right) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 19,83 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{CaCO3} = n_{CaCO3} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 0,62kW$$

-Exergia química:

$$y_{caco3} = \frac{n_{caco3}}{n_{total}}$$

$$bch_{caco3} = y_{caco3} \cdot b_{ch}^{0} = 57,06 \frac{kJ}{kmol}$$

-CaO

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 3.336 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 10,0 \left[\frac{kJ}{kmol\ K} \right]$$

-Exergia física:

$$Bph_{CaO} = n_{CaO} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 27.1 \text{ kW}$$

-Exergia química:

$$y_{CaO} = \frac{n_{CaO}}{n_{total}}$$

$$bch_{CaO} = y_{CaO} \cdot b_{ch}^{0} = 118.268 \frac{kJ}{kmol}$$

$$B_{cal} = \sum B_{phi} + n_{T} \cdot \sum bch i = 8.973 kW$$

Balanço de massa para o licor branco bruto

Tabela C.16 - Vazão molar do licor branco bruto

Componente	V. molar
	(kmol/s)
CaCO ₃	0,04764
NaOH	0,09881
Na ₂ S	0,00979
Na ₂ SO ₄	0,00332
H_2O	1,6724
Na_2CO_3	0,01177
CaO	0,00079
Total	1,84451

-Consumo elétrico do Reator Slaker

$$EE = 1.000 \, kW$$

Cálculo de exergia física, química e total para o licor branco bruto

Temperatura: 358 K

-Na₂CO₃

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 6.978 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$\begin{split} \left(s_T - s_{298,15}\right) &= 4,186. \left[A.\ln\left(\frac{T}{298,15}\right) + 2.B.\,10^{-3}.\left(T - 298,15\right) + \frac{C}{2}.\,10^5.\left(\frac{1}{T^2} - \frac{1}{298,15^2}\right)\right] \\ &= 21,29\,\left[\frac{kJ}{kmol.\,K}\right] \end{split}$$

-Exergia física:

$$Bph_{Na2CO3} = n_{Na2CO3} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 11,5 \; kW$$

-Exergia química:

$$y_{Na2CO3} = \frac{n_{Na2CO3}}{n_{total}}$$

$$bch_{Na2CO3} = y_{Na2CO3} \cdot b_{ch}^0 = 339,1 \ \frac{kJ}{kmol}$$

-Na₂S

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 5.111 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 15,6 \left[\frac{kJ}{kmol.K} \right]$$

-Exergia física:

$$Bph_{Na2S} = n_{Na2S} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 6,9 \ kW$$

-Exergia química:

$$y_{Na2S} = \frac{n_{Na2S}}{n_{total}}$$

$$bch_{Na2S} = y_{Na2S} \cdot b_{ch}^{0} = 4.939 \frac{kJ}{kmol}$$

-Na₂SO₄

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 8.117 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 24,7 \left[\frac{kJ}{kmol.K} \right]$$

-Exergia física:

$$Bph_{Na2SO4} = n_{Na2SO4} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 3,77 \ kW$$

-Exergia química:

$$y_{Na2SO4} = \frac{n_{Na2SO4}}{n_{total}}$$

$$bch_{Na2SO4} = y_{Na2SO4} \cdot b_{ch}^{0} = 62.9 \frac{kJ}{kmol}$$

-NaOH

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 3.640 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 11,17 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{NaOH} = n_{NaOH} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 49,77 \ kW$$

-Exergia química:

$$y_{NaOH} = rac{n_{NaOH}}{n_{total}}$$
 $bch_{NaOH} = y_{NaOH} \cdot b_{ch}^0 = 4.525 rac{kJ}{kmol}$

 $-H_2O$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 4.529 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 13,8 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{H2O} = n_{H2O} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 1.043 \ kW$$

-Exergia química:

$$y_{H2O} = \frac{n_{H2O}}{n_{total}}$$
 $bch_{H2O} = y_{H2O} \cdot b_{ch}^{0} = 2.828 \frac{kJ}{kmol}$

-CaCO₃

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 5.248 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 16,0 \left[\frac{kJ}{kmol.K} \right]$$

-Exergia física:

$$Bph_{CaCO3} = n_{CaCO3} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 35,3kW$$

-Exergia química:

$$y_{CaCO3} = \frac{n_{CaCO3}}{n_{total}}$$

$$bch_{CaCO3} = y_{CaCO3} \cdot b_{ch}^0 = 130,46 \frac{kJ}{kmol}$$

-CaO

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.651 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 8,1 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{CaO} = n_{CaO} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 0.29 \text{ kW}$$

-Exergia química:

$$y_{Cao} = \frac{n_{Cao}}{n_{total}}$$

$$bch_{Cao} = y_{Cao} \cdot b_{ch}^{0} = 51,1 \frac{kJ}{kmol}$$

--EXERGIA TOTAL DO LICOR BRANCO BRUTO

$$B_{licor\ branco\ bruto} = \sum B_{ph\ i} + n_T \cdot \sum bch\ i = 38.100\ kW$$

Balanço de massa para o grits

Tabela C.17 - Vazão molar do grits

Componente	V. molar
	(kmol/s)
Na ₂ O	2E-05
CaO	0,00017
MgO	6E-05
Fe ₂ CO ₃	5,6E-05
SiO ₂	7,3E-05
Total	0,00038

Cálculo de exergia física, química e total para o grits

Temperatura 358 K

Tabela C.18 – Coeficientes termodinâmicos e valores de exergia química padrão dos compostos presentes no grits.

Componente	A	В	С	D	b ⁰ _{ch} [kJ/kmol]
Na ₂ O	15,7	2,7	0	4.921	313.260
CaO	11,67	0,54	1,56	-4.051	119.620
MgO	10,18	0,87	1,48	-3.609	59.170
Fe_2O_3	23,49	9,3	3,55	-9.021	20.370
SiO ₂	11,22	4,1	2,7	-4.615	1.860

Fonte: CARVALHO (1977) e KOTAS (1985)

-Na₂O

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 45.587 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$\left(s_T - s_{298,15} \right) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. \left(T - 298,15 \right) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 13,4 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{Na2O} = n_{Na2O} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 0.83 \ kW$$

-Exergia química:

$$y_{Na20} = \frac{n_{Na20}}{n_{total}}$$
 $bch_{Na20} = y_{Na20} \cdot b_{ch}^{0} = 13.208 \frac{kJ}{kmol}$

-MgO

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.351 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 7,18 \left[\frac{kJ}{kmol\ K} \right]$$

-Exergia física:

$$Bph_{MgO} = n_{MgO} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 0.0126 \, kW$$

-Exergia química:

$$y_{MgO} = \frac{n_{MgO}}{n_{total}}$$

$$bch_{MgO} = y_{MgO} \cdot b_{ch}^{0} = 7.409 \frac{kJ}{kmol}$$

 $-Fe_2CO_3$

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 6.597 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 20,1 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{Fe2CO3} = n_{Fe2CO3} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 0.03 \ kW$$

-Exergia química:

$$y_{Fe2CO3} = \frac{n_{Fe2CO3}}{n_{total}}$$

$$bch_{Fe2CO3} = y_{Fe2CO3} \cdot b_{ch}^0 = 2.391 \frac{kJ}{kmol}$$

-SiO₂

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.860 \left[\frac{kJ}{kmol} \right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$

$$= 8,7 \left[\frac{kJ}{kmol. K} \right]$$

-Exergia física:

$$Bph_{SiO2} = n_{SiO2} \cdot \left[\left(h_T - h_{298,15} \right) - T_0 \cdot \left(s_T - s_{298,15} \right) \right] = 0.02kW$$

-Exergia química:

$$y_{SiO2} = \frac{n_{SiO2}}{n_{total}}$$

$$bch_{SiO2} = y_{SiO2} \cdot b_{ch}^{0} = 283,44 \frac{kJ}{kmol}$$

-CaO

-Entalpia:

$$(h_T - h_{298,15}) = 4,186. (A.T + B.10^{-3}T^2 + C.10^5.T^{-1} + D) = 2.651 \left[\frac{kJ}{kmol}\right]$$

-Entropia:

$$(s_T - s_{298,15}) = 4,186. \left[A. \ln \left(\frac{T}{298,15} \right) + 2.B. 10^{-3}. (T - 298,15) + \frac{C}{2}. 10^5. \left(\frac{1}{T^2} - \frac{1}{298,15^2} \right) \right]$$
$$= 8,1 \left[\frac{kJ}{kmol\ K} \right]$$

-Exergia física:

$$Bph_{CaO} = n_{CaO} \cdot [(h_T - h_{298,15}) - T_0 \cdot (s_T - s_{298,15})] = 0.063 \text{ kW}$$

-Exergia química:

$$y_{Cao} = \frac{n_{Cao}}{n_{total}}$$

$$bch_{Cao} = y_{Cao} \cdot b_{ch}^{0} = 67.324 \frac{kJ}{kmol}$$

-- EXERGIA TOTAL DO GRITS

$$B_{grits} = \sum B_{ph\,i} + n_T \cdot \sum bch\,i = 44,0\,kW$$

EFICIÊNCIA EXERGÉTICA DO REATOR SLAKER

$$\Psi_{REATOR\;SLAKER} = \frac{B_{licor\;branco\;bruto}}{B_{licor\;verde} + B_{cal} + EE} = \frac{38.100}{28.576 + 8.973 + 1.000} = 98,8\;\%$$

• CALCULO DE LICOR BRANCO RECUPERADO Balanço de massa para o filtro de licor branco

Ι	ENTRADA	
Licor branco		
bruto		
	V. Massica	V. Molar
Componentes	(kg/s)	(kmol/s)
CaCO3	7,41	0,0741
NaOH	6,14	0,1536
Na2S	1,18	0,0152
Na2SO4	0,73	0,0051
Agua	46,82	2,6015
Na2CO3	1,94	0,0183
CaO	0,06	0,0012
Total	64,31	2,8692

	,	
	SAÍDA	
Licor Branco		
	V. Massica	V. Molar
Componentes	(kg/s)	(kmol/s)
NaOH	5,860138	0,1465
Na2S	1,169443	0,0126
Na2CO3	1,94	0,0183
Agua	45,26	2,514
Total	54,23	2,692
Lama de cal		
	V. Massica	V. Molar
Componentes	(kg/s)	(kmol/s)
CaCO3	7,4102	0,0741
CaO	0,068	0,0015
NaOH	0,287	0,0071
114011		
Na2S	0,018	0,0025
	0,018 0,731	0,0025 0,0051
Na2S	,	

APÊNDICE D - SISTEMADE RECUPERAÇÃO QUÍMICA DA EMPRESA LOCALIZADA NO CENTRO-OESTE DO ESTADO DE SÃO PAULO

• CALDEIRA DE RECUPERAÇÃO QUÍMICA B Exergia do licor preto

Tabela D.1 – Exergia do licor preto para a caldeira B

					T	398,15 K		T_0	298,15 K	
Composto	H ₂ O	H ₂ S	СО	CO ₂	H_2	CH ₄	С	Na ₂ SO	Na ₂ S	Na ₂ CO ₃
Vazão molar (kmol/s)	0,19 2	0,00 8	0,077 6	0,00 9	0,03 8	0,0658	0,114 2	0,0041	0,0041	0,0390
(h-h0) (kJ/kmol)	3413	3540	2945	4003	2827	3871	1135	35977	8532	11948
(s-s0) (kJ/kmol.K)	9,87	10,2 2	8,52	11,5 5	8,27	11,15	3,25	57,12	24,67	34,44
B _{ph licor preto} (kW)	90,9 4	4,06	31,57	5,31	14,0 2	35,92	19,15	77,63	4,83	65,63
B _{ch licor preto} (kW)	601	6623	21392	190	9249	55039	46947	143	3816	2075
B_{Total} (kW)	692	6627	21424	196 B _{Licor}	9263 $Preto = 1$	55075 46.430 kW	46967	221	3821	2141

Fonte: Próprio autor

Exergia do smelt

Tabela D.2 – Exergia do smelt para a caldeira da fábrica localizada em COSP

	T	1133,15 K	T_0	298,15 K
Composto	Na ₂ CO ₃	Na ₂ S	Na ₂ SO ₄	С
Vazão molar (kmol/s)	0,039122	0,00814261	7,2E-06	0,00426
(h-h0) (kJ/kmol)	15.8614,87	69.482,12	60.032,26	13.534,69
(s-s0) (kJ/kmol.K)	251,50	111,40	105,81	20,89
$m{B_{ph~smelt}} \ (\mathbf{kW})$	3271,77	295,31	0,21	31,13
B _{ch smelt} (kW)	2.078,58	7.575,40	0,25	1.750,40
B_{Total} (kW)	5350,35	7870,70	0,46	1781,53
	В	$s_{melt} = 15.003 \text{ kW}$		

Fonte: Próprio autor

Balanço de massa para o ar

Tabela D.3 - Vazão Molar do Ar de combustão

Localização da Fábrica	COSP
Caldeira	В
Composto	$\dot{n}\left(\frac{kmol}{s}\right)$
O_2	0,3039
N_2	1,14268
T 4 D	

Exergia dos gases de exaustão

Tabela D.4 - Coeficientes e valores de exergia química padrão dos compostos químicos presentes nos gases de exaustão

Composto	A	В	C	D	$b_{ch}^0 \ [ext{kJ/kmol}]$
SO ₂	11,04	0,94	1,84	-3992	303.500
N_2	6,83	0,45	0,12	-2117	690
CO ₂	10,57	1,05	2,06	-3936	20.140
H_2O	7,3	1,23	0	-2286	11.710
O_2	7,16	0,5	0,4	2313	3.970

Fonte: CARVALHO (1977) e KOTAS (1985).

Tabela D.5 – Exergia dos gases de exaustão

		T	473 K	T_0	298,15 K
Composto	SO2	N_2	CO_2	H_2O	O_2
Vazão molar (kmol/s)	0,008279	1,223367	0,262905	0,513792	0,021285
(h-h0) (kJ/kmol)	5402,97	10392,26	7542,70	5858,22	3752,67
(s-s0) (kJ/kmol.K)	15,06	12,11	19,65	15,46	10,50
B _{ph gases} (kW)	14,65	4442,17	442,96	641,17	13,25
b _{ch gases} (kJ/kmol)	1182,40	-340,5	1952,6	2102,3	-76,8
B _{ch gases} (kW)			9782,60		
			$\boldsymbol{B}_{gases} = 15.339$	9 kW	

Fonte: Próprio autor

Exergia da água condensada e do vapor

Tabela D.6 – Exergia da água condensada e do vapor

Propriedades	Condensado	Vapor
T ₀ (°C)	25	25
T (°C)	130	480
Pressão (bar)	110	83,3
m (kg/s)	37,22	37,22
$H_1\left(kJ/kg\right)$	553	3344
H_0 (kJ/kg)	104,879	104,879
$S_1(kJ/kg.K)$	1,624	6,635
$S_0(kJ/kg.K)$	0,3674	0,3674
B (kW)	2.735	51.010

Fonte: Lwarcel (2013), CATT3 (1996) e Próprio autor

• TANQUE DISSOLVEDOR

Balanço de massa do licor verde bruto

Tabela D.7 – Composição e vazão mássica do licor verde bruto

Componente	Composição	Vazão mássica
	mássica (%)	(kg/s)
Na ₂ CO ₃	16,19	2,13
Na ₂ S	1,97	0,13
Na ₂ SO ₄	1,22	0,47
NaOH	0,48	0,18
C	0,13	36,37
H ₂ O	80,01	39,29
Total	100	2,13

Fonte: Próprio autor.

Exergia do licor branco fraco

Tabela D.8 – Dados da exergia do licor branco fraco

Temperatura	333,15 K						
Licor Brand	co Fraco						
Componente	V.	V. molar	$(h-h_0)$	$(s-s_0)$	B_{ph}	b_{ch}	B _{total}
	mássica	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kW)	(kJ/kmol)	(kW)
	(kg/s)						
Na_2CO_3	2,13381	0,02013	3993,33	12,6534	4,44	521,58	
Na_2S	0,12869	0,00165	2979,23	9,44459	0,27	748,58	
Na_2SO_4	0,471	0,00332	4637,72	14,7059	0,84	56,62	
NaOH	0,18501	0,00463	2103,25	6,67535	0,52	190,57	
H_2O	36,3747	2,02082	2641,47	8,38192	287,77	3120,00	
Total	39,2932	2,05054	·		293,85	9509,08 kW	9802,93

Fonte: Próprio autor

Exergia dos fluxos de saída

Tabela D.9 – Exergia dos fluxos de saída do Tanque Dissolvedor

SAÍDA								
Temperatura	363,15 K							
Licor Verd	de Bruto							
Componente	V. mássica (kg/s)	V. molar (kmol/s)	(h-h ₀) (kJ/kmol)	(s-s ₀) (kJ/kmol.K)	b _{ch} ⁰ (kJ/kmol)	B _{ph} (kW)	b _{ch} (kJ/kmol)	B _{total} (kW)
Na_2CO_3	6,280794	0,05925	7587,07	22,98	53130	43,60	1743,53	
Na_2S	0,763818	0,00979	5538,67	16,80	930340	5,19	5045,65	
Na_2SO_4	0,472027	0,00332	8830,48	26,75	35000	2,84	64,44	
NaOH	0,185007	0,00463	3952,51	11,99	84490	1,75	216,43	
C	0,051129	0,00426	688,25	2,07	410820	0,30	969,43	
H_2O	31,03809	1,72434	4906,94	14,89	3120	804,51	2979,59	
Total	38,79086	1,80559				858,18	19896 kW	20.754
Temperatura GASES	373,15 K							
Componente	V. mássica (kg/s)	V. molar (kmol/s)	(h-h ₀) (kJ/kmol)	(s-s ₀) (kJ/kmol.K)	b _{ch} (kJ/kmol)	B _{ph} (kW)	B _{ch} (kW)	B _{total} (kW)
H_2O	5,336647	0,29648	5662,09	16,94	11710	180,885	3471,79	
Total	9,192018	0,51067						3.653

• FILTRO DO LICOR VERDE

Tabela D.10 - Vazão mássica e molar dos dregs

Componente	Vazão mássica (kg/s)	Vazão molar (kmol/s)
C	0,0511	0,00426
Na ₂ O	0,0413	0,00067
CaO	0,0402	0,00072
MgO	0,0351	0,00088
Na ₂ SO ₃	0,0009	7,2E-06
MnO	0,0077	0,00011
Fe ₂ O ₃	0,0041	2,4E-05
Total	0,1806	0,00693

Fonte: REIS, 2013.

Tabela D.11 – Valores dos coeficientes para cálculo de entalpia e entropia dos dregs

Componente	A	В	C	D	$\mathbf{b_{ch}}^0$
					(kJ/kmol)
C	0,24	16,21	-3,87	-215	84.490
Na ₂ O	15,7	2,7	0	4921	313.260
CaO	11,67	0,54	1,56	-4051	119.620
MgO	10,18	0,87	1,48	-3609	59.170
Na ₂ SO ₃	13,9	3,05	3,22	-5495	82.840
MnO	11,11	0,97	0,88	-3694	122.390
Fe ₂ O ₃	23,49	9,3	3,55	-9021	133.750

Fonte: Carvalho (1977) e Kotas (1985)

Tabela D.12 – Valores obtidos para os dregs para a fábrica localizada em COSP

Temperatura 333,15 K **DREGS** Componente V. V. $(h-h_0)$ $(s-s_0)$ B_{ph} b_{ch} B_{total} (kW) molar (kJ/kmol) (kJ/kmol.K) mássica (kW) (kJ/kmol) (kg/s) (kmol/s) C 344,07 1,08 0,09 252666,79 0,05113 0,00426 0,04132 Na₂O 0,00067 43748,41 8,09 27,55 30133,24 0,00072 12420,90 CaO 0,04028 1528,11 4,85 0,06 MgO 0,03512 0,00088 1353,22 4,29 0,06 7498,82 Na_2SO_3 7,2E-06 1845,33 5,84 0,00 86,37 0,00091 MnO 0,00011 1586,92 5,03 0,01 0,00775 1927,62 Fe₃O₄ 0,00413 2,4E-05 0,00 455,81 0,00693 Total 0,18064 27,77 2114 kW 2142

Fonte: Próprio autor

Tabela D.13 - Vazão mássica e molar do licor verde

Componente	Vazão mássica	Vazão molar
	(kg/s)	(kmol/s)
Na ₂ CO ₃	6,24	0,05886
Na_2S	0,76	0,00979
Na ₂ SO ₄	0,47	0,00332
NaOH	0,19	0,00463
H_2O	30,95	1,71949
Total	38,61	1,79609

Exergia do licor verde

Tabela D.14 – Exergia do licor verde da fábrica localizada em COSP

Temperatura	333,15 K							
Licor V	erde							
Componente	V.	V.	$(h-h_0)$	(s-s ₀)	b_{ch}^0	B _{ph}	b _{ch}	B _{total}
	mássica	molar	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
	(kg/s)	(kmol/s)						
Na_2CO_3	6,23948	0,05886	3993,33	12,65	53130	12,99	1741,22	
Na_2S	0,76382	0,00979	2979,23	9,44	930340	1,60	5072,36	
Na_2SO_4	0,471	0,00332	4637,72	14,71	35000	0,84	64,64	
NaOH	0,18501	0,00463	2103,25	6,68	84490	0,52	217,57	
H_2O	30,9508	1,71949	2641,47	8,38	3120	244,86	2986,94	
							18109	
Total	38,6101	1,79609				260,82	kW	18.370

Fonte: Próprio autor

Tabela D.15 – Composição de cal inserida no reator Slaker

Composto	Composição Mássica (%)
CaCO ₃	2,00
CaO	92,00
Outros	6,00

Fonte: REIS, 2013.

Tabela D.16 – Coeficientes e valores de exergia química padrão para a cal

Componente	A	В	С	D	b ⁰ _{ch} [kJ/kmol]
CaO	11,67	0,54	1,56	-4051	119.620
CaCO ₃	24,98	2,62	6,2	-9760	5.050

Fonte: CARVALHO (1977) e KOTAS (1985)

Exergia da cal

Tabela D.17 – Exergia da cal da fábrica localizada em COSP

Temperatura Cal	373,15 K							
Componente	V. mássica (kg/s)	V. molar (kmol/s)	(h-h ₀) (kJ/kmol)	(s-s ₀) (kJ/kmol.K)	b _{ch} ⁰ (kJ/kmol)	B _{ph} (kW)	b _{ch} (kJ/kmol)	B _{total} (kW)
CaCO ₃ CaO	0,054916 2,69088	0,00055 0,04805	6645,81 3335,88	19,83 9,97	5050 119620	0,40 17,43	57,06 118268,36	
Total	2,745796	0,0486	3333,00	7,71	117020	18	5741 kW	5759

Composição do grits

Tabela D.18 – Composição do grits

Componentes	Composição Mássica (%)
Na ₂ O	4,14
CaO	49,97
MgO	7,94
Fe_2O_3	23,45
SiO ₂	14,50
Total	100,00

Fonte: REIS, 2013.

Composição mássica do licor branco bruto gerado

Tabela D.19 – Composição do licor branco bruto gerado.

Componentes	Composição Mássica (%)
CaCO ₃	11,52
NaOH	9,56
Na ₂ S	1,85
Na ₂ SO ₄	1,14
H_2O	72,81
Na ₂ CO ₃	3,02
CaO	0,11
Total	100,00

Fonte: REIS, 2013.

Tabela D.20 – Coeficientes termodinâmicos e valores de exergia química padrão dos compostos presentes no *grits*.

composios presentes no grus.								
Componente	A	В	С	D	b_{ch}^0 [kJ/kmol]			
Na ₂ O	15,7	2,7	0	4.921	313.260			
CaO	11,67	0,54	1,56	-4.051	119.620			
MgO	10,18	0,87	1,48	-3.609	59.170			
Fe_2O_3	23,49	9,3	3,55	-9.021	20.370			
SiO ₂	11,22	4,1	2,7	-4.615	1.860			

Fonte: CARVALHO (1977) e KOTAS (1985)

Exergia do licor branco bruto

Tabela D.21 –Exergia do licor branco bruto da fábrica localizada em COSP

Temperatura	358,15 K							
Licor Brand	co Bruto							
Componente	V.	V. molar	$(h-h_0)$	$(s-s_0)$	b_{ch}^0	B_{ph}	b _{ch}	B _{total}
	mássica	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
	(kg/s)							
CaCO ₃	4,763955	0,04764	5248,31	16,01	5050	22,66	130,43	
NaOH	3,952238	0,09881	3640,49	11,12	84490	32,00	4525,92	
Na_2S	0,763818	0,00979	5111,67	15,62	930340	4,46	4939,18	
Na_2SO_4	0,471002	0,00332	8117,85	24,78	35000	2,42	62,94	
H_2O	30,10318	1,6724	4529,36	13,85	3120	670,85	2828,87	
Na_2CO_3	1,247895	0,01177	6978,25	21,29	53130	7,42	339,10	
CaO	0,044115	0,00079	2651,62	8,10	119620	0,19	51,09	
							23753	
Total	41,3462	1,84451				740	kW	24493

Fonte: Próprio autor

Exergia do grits

Tabela D.22 - Exergia do Grits da fábrica localizada em COSP

Temperatura	358,15 K							
Grits								
Componente	V.	V. molar	$(h-h_0)$	$(s-s_0)$	b_{ch}^0	B_{ph}	b_{ch}	B _{total}
	mássica	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
	(kg/s)					, í		
Na_2O	0,001252	2E-05	45586,74	13,41	313260	0,8397	16530,6	
CaO	0,009703	0,00017	2651,62	8,10	119620	0,0409	54167,4	
MgO	0,002399	6E-05	2351,69	7,18	59170	0,0126	9273,98	
Fe_2CO_3	0,007084	5,6E-05	6597,44	20,13	20370	0,0334	2993,18	
SiO_2	0,004378	7,3E-05	2860,00	8,72	1860	0,0189	354,75	
Total	0,024816	0,00038				0,95	31,88 kW	32,83

Fonte: Próprio autor

Licor branco recuperado

Tabela D.23 – Quantidade de licor branco recuperado

Componentes	Vazão mássica (kg/s)
NaOH	3,664
Na ₂ S	0,752
Na ₂ CO ₃	1,248
H_2O	29,101
Total	34,765

Lama de cal gerada

Tabela D.24 – Vazão mássica da lama de cal

Componentes	Vazão mássica (kg/s)
CaCO ₃	4,764
CaO	0,044
NaOH	0,288
Na ₂ S	0,012
Na ₂ SO ₄	0,471
H ₂ O	1,002
Total	6,581

APÊNDICE E - SISTEMADE RECUPERAÇÃO QUÍMICA DA EMPRESA LOCALIZADA NA ÍNDIA

• CALDEIRA DE RECUPERAÇÃO QUÍMICA C

Exergia do licor preto

Tabela E.1 - Cálculo de exergia do licor preto para a caldeira de 4450 tDS.

					T	398,15 K		T_0	298,15 K	
Composto	H ₂ O	H_2S	CO	CO_2	H_2	CH ₄	С	Na ₂ SO ₄	Na ₂ S	Na ₂ CO ₃
Vazão molar (kmol/s)	0,6281	0,0407	0,3836	0,0484	0,1918	0,3251	0,5646	0,0203	0,0203	0,1928
(h-h0) (kJ/kmol)	3413	3540	2945	4003	2827	3871	1135	35977	8532	11948
(s-s0) (kJ/kmol.K)	9,87	10,22	8,52	11,55	8,27	11,15	3,25	57,12	24,67	34,44
B _{ph licor preto} (kW)	296,1	20,1	155,9	27,1	69,3	177,5	94,6	383,7	23,9	323,8
B _{ch licor preto} (kW)	1959	32742	105652	974	45733	271988	231962	708	18867	10241
B_{Total} (kW)	2255	32762	105808	1001	45803	272165	232056	1092	18891	10565
				B _{Licor Pr}	$r_{eto} = 722$.402 kW				

Fonte: Próprio Autor

Exergia do smelt

Tabela E.2 - Cálculo da exergia do smelt para a caldeira de 4450 tDS.

	T	1133,15 K	T_0	298,15 K
Composto	Na ₂ CO ₃	Na ₂ S	Na ₂ SO ₄	С
Vazão molar (kmol/s)	0,193079	0,040186	0,000036	0,021028
(h-h0) (kJ/kmol)	15.8614,87	69.482,12	60.032,26	13.534,69
(s-s0) (kJ/kmol.K)	251,50	111,40	105,81	20,89
$B_{ph \ smelt} \ (ext{kW})$	16147,0	1552,2	3,2	173,7
B _{ch smelt} (kW)	10258,3	37386,3	1,2	8638,6
B_{Total} (kW)	26405,2	38938,5	4,4	8812,3
		$B_{smelt} = 74.160 \text{ kW}$		

Fonte: Próprio Autor

Balanço de massa do ar

Tabela E.3 – Vazão Molar do Ar de combustão

Localização da Fábrica	Índia
Caldeira	C
Composto	$\dot{n}\left(\frac{kmol}{s}\right)$
O_2	1,50264
N_2	5,64991

Exergia do condesado e do vapor

Tabela E.4 – exergia do condensado e do vapor

Propriedades	Condensada	Vapor
T ₀ (K)	298	298
T (K)	413	778
Pressão (bar)	120	102
m (kg/s)	183,33	183,33
$H_1(kJ/kg)$	596	3.384
H_0 (kJ/kg)	104,879	104,879
$S_1(kJ/kg.K)$	1,727	6,602
$S_0(kJ/kg.K)$	0,3674	0,3674
B (kW)	15.721	260.383

Fonte: Lwarcel (2013), CATT3 (1996) e Próprio autor

Exergia dos gases de exaustão

Tabela E.5 - Exergia dos gases de exaustão na caldeira de 4450 tDS.

		T	473 K	T_0	298,15 K
Composto	SO2	N_2	CO ₂	H ₂ O	O_2
Vazão molar (kmol/s)	0,040995	6,045403	1,300402	1,217925	0,105184
(h-h0) (kJ/kmol)	5402,98	3661,03	5109,17	4177,54	3752,67
(s-s0) (kJ/kmol.K)	15,065	10,263	14,240	11,729	10,499
$B_{ph\;gases} \ ({ m kW})$	37,36	3634,02	1122,73	828,86	65,47
b _{ch gases} (kJ/kmol)	1366,01	-149,03	2303,45	955,87	-84,20
$egin{aligned} B_{ch~gases} \ \mathrm{(kW)} \end{aligned}$			38254,8		
		\boldsymbol{B}_{s}	gases = 43.943	3 kW	

• TANQUE DISSOLVEDOR

Exergia do Licor branco fraco

Tabela E.6 - Exergia do Licor branco fraco na entrada do Tanque Dissolvedor.

			Eì	NTRADA				
T (K)	333,15							
LBF [kg/s]								
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	b_{ch}^{0}	B_{ph}	b_{ch}	$\mathbf{B}_{ ext{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
Na ₂ CO ₃	10,53	0,099348	3993,33	12,65	53130	21,93	521,58	
Na_2S	0,64	0,008143	2979,23	9,44	930340	1,33	748,58	
Na ₂ SO ₄	2,32	0,01637	4637,72	14,71	35000	4,14	56,62	
NaOH	0,91	0,022826	2103,25	6,68	84490	2,58	190,57	
Agua	179,52	9,97321	2641,47	8,38	0	1420,24	3120,00	
Total	193,92	10,1199				1450,22	46929,51	48380

Fonte: Próprio Autor

Exergia do licor verde bruto

Tabela E.7 - Exergia do Licor Verde Bruto na saída do Tanque Dissolvedor.

				SAÍDA				
T (K)	363,15							
LVB + dregs								
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	b_{ch}^{0}	\mathbf{B}_{ph}	b_{ch}	$\mathbf{B}_{ ext{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
Na ₂ CO ₃	31,00	0,292426	7587,07	22,98	53130	215,18	1743,53	
Na_2S	3,77	0,048328	5538,67	16,80	930340	25,59	5045,65	
Na_2SO_4	2,33	0,016405	8830,48	26,75	35000	14,02	64,44	
NaOH	0,91	0,022826	3952,51	11,99	84490	8,63	216,43	
C	0,25	0,021028	688,25	2,07	410820	1,48	969,43	
Agua	153,18	8,510011	4906,94	14,89	3120	3970,44	2979,59	
Total	191,44	8,911025				4235,33	98191,17	102426,5

Fonte: Próprio Autor

Exergia do vapor liberado do tanque dissolvedor

Tabela E.8 - Exergia do vapor liberado do Tanque Dissolvedor.

T (K)	373,15							
GASES								
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	$b_{ch}{}^0$	\mathbf{B}_{ph}	b_{ch}	$\mathbf{B}_{\text{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
H_2O	26,34	1,4632	5662,09	16,94	11710	892,71	17134,07	
Total	9,19	0,510668						18.027

• FILTRO DE LICOR VERDE

Tabela E.9 - Exergia dos Dregs

			S	SAÍDA				
T (K)	333,15							
DREGS								
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	b_{ch}^{0}	\mathbf{B}_{ph}	b_{ch}	$\mathbf{B}_{\text{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
C	0,252	0,021028	344,07	1,08	410820	0,44	252666,79	
Na_2O	0,204	0,003289	43748,41	8,09	313260	135,95	30133,24	
CaO	0,199	0,00355	1528,11	4,85	119620	0,29	12420,90	
MgO	0,173	0,004333	1353,22	4,29	59170	0,32	7498,82	
Na_2SO_3	0,004	3,56E-05	1845,33	5,84	82840	0,00	86,37	
MnO	0,038	0,000538	1586,92	5,03	122390	0,05	1927,62	
Fe ₂ O ₄	0,020	0,000117			133750	0,00	455,81	
Total	0,891	0,03419				137,06	10434,39	10571

Fonte: Próprio autor

Tabela E.10 - Exergia do Licor Verde.

T (K)	333,15							
LV								
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	b_{ch}^{0}	\mathbf{B}_{ph}	b_{ch}	$\mathbf{B}_{\text{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
Na_2CO_3	30,79	0,290503	3993,33	12,65	53130	64,12	1741,22	
Na_2S	3,77	0,048328	2979,23	9,44	930340	7,89	5072,36	
Na_2SO_4	2,32	0,01637	4637,72	14,71	35000	4,14	64,64	
NaOH	0,91	0,022826	2103,25	6,68	84490	2,58	217,57	
Agua	152,75	8,48608	2641,47	8,38	3120	1208,46	2986,94	
Total	190,55	8,864107				1287,20	89374,41	90662

Fonte: Próprio Autor

• REATOR SLAKER

Tabela E.11 - Exergia da Cal inserida no Reator Slaker.

	ENTRADA										
T (K)	373,15										
Cal											
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	b_{ch}^{0}	\mathbf{B}_{ph}	b_{ch}	B_{total}			
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)			
CaCO ₃	0,271	0,00271	6645,813	19,830	5050	1,988	57,062				
CaO	13,280	0,237145	3335,878	9,972	119620	86,002	118268,362				
Total	13,551	0,239855				87,990	28380,966	28468,956			

 ${\bf Tabela~E.12-Licor~Branco~Bruto~liberado~pelo~Reator~\it Slaker.}$

				SAÍDA				
T (K) Licor branco bruto	358,15							
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	b_{ch}^{0}	\mathbf{B}_{ph}	b_{ch}	$\mathbf{B}_{ ext{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
CaCO ₃	23,51	0,235112	5248,31	16,01	5050	111,84	130,43	
NaOH	19,51	0,48763	3640,49	11,12	84490	157,92	4525,92	
Na_2S	3,77	0,048328	5111,67	15,62	930340	22,02	4939,18	
Na_2SO_4	2,32	0,01637	8117,85	24,78	35000	11,96	62,94	
Agua	148,57	8,253678	4529,36	13,85	3120	3310,82	2828,87	
Na_2CO_3	6,16	0,058101	6978,25	21,29	53130	36,62	339,10	
CaO	0,22	0,003888	2651,62	8,10	119620	0,92	51,09	
Total	204,05	9,103107				3652,10	117225,47	120877,6

Fonte: Próprio autor

Tabela E.13 - Grits liberado pelo Reator Slaker.

T (K)	358,15							
Grits								
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	b_{ch}^{0}	\mathbf{B}_{ph}	b_{ch}	$\mathbf{B}_{ ext{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
Na_2O	0,00125	2,02E-05	45586,74	13,406	313260	0,8397	5942,03	
CaO	0,04788	0,000855	2651,62	8,101	119620	0,2021	96092,73	
MgO	0,00240	6E-05	2351,69	7,181	59170	0,0126	3333,58	
Fe_2CO_3	0,00708	5,62E-05	6597,44	20,135	20370	0,0334	1075,92	
SiO_2	0,00438	7,3E-05	2860,00	8,720	1860	0,0190	127,52	
Total	0,06300	0,001064				1,1069	113,44	114,55

Fonte: Próprio Autor

• LICOR BRANCO RECUPERADO

Tabela E.14 - Licor Branco recuperado

	SAÍDA	
Licor Branco		
Commonantos	V. mássica	V. molar
Componentes	(kg/s)	(kmol/s)
NaOH	19,2174	0,480436
Na_2S	3,7102	0,045762
Na_2CO_3	6,1587	0,058101
Água	143,6216	7,978979
Total	172,7079	8,563277

Fonte: Próprio Autor

Tabela E.15 – Lama de cal

Lama de cal		
Componentes	V. mássica	V. molar
Componentes	(kg/s)	(kmol/s)
CaCO ₃	23,5112	0,235112
CaO	0,2177	0,003888
NaOH	0,2878	0,007195
Na_2S	0,0594	0,002567
Na_2SO_4	2,3245	0,01637
Água	4,9446	0,274699

APÊNDICE F - SISTEMADE RECUPERAÇÃO QUÍMICA DA EMPRESA LOCALIZADA NA FINLÂNDIA

• CALDEIRA DE RECUPERAÇÃO QUÍMICA D Exergia do licor preto

Tabela F.1 - Cálculo de exergia do licor preto para a caldeira de 7200 tDS.

					T	398,15 K		T ₀	298,15 K	
Composto	H ₂ O	H ₂ S	CO	CO ₂	H ₂	CH ₄	С	Na ₂ SO ₄	Na ₂ S	Na ₂ CO ₃
Vazão molar	0,8170	0,0660	0,6242	0,0669	0,3111	0,5283	0,9178	0,0329	0,0329	0,3146
(kmol/s)										
(h-h0)	3413	3540	2945	4003	2827	3871	1135	35977	8532	11948
(kJ/kmol)										
(s-s0)	9,87	10,22	8,52	11,55	8,27	11,15	3,25	57,12	24,67	34,44
(kJ/kmol.K)										
$B_{ph\ licor\ preto}$	385,2	32,6	253,7	37,4	112,5	288,4	153,8	623,0	38,7	528,4
(kW)										
$B_{ch\ licor\ preto}$	2549	53138	171927	1346	74202	441902	377041	1150	30622	16712
(kW)										
B_{Total} (kW)	2934	53171	172181	1384	74314	442190	377195	1773	30661	17241
				B _{Licor Pro}	eto = 1.17	3.047 kW				

Fonte: Próprio Autor

Exergia do smelt

Tabela F.2 - Cálculo da exergia do smelt cara a caldeira de 7200 tDS.

	T	1133,15 K	T_0	298,15 K
Composto	Na ₂ CO ₃	Na ₂ S	Na ₂ SO ₄	С
Vazão molar (kmol/s)	0,3148	0,0655	0,0001	0,0343
(h-h0)	15.8614,87	69.482,12	60.032,26	13.534,69
(kJ/kmol)				
(s-s0)	251,50	111,40	105,81	20,89
(kJ/kmol.K)				
$B_{ph \ smelt} \ (ext{kW})$	26325,24	2376,10	1,66	250,47
$B_{ch \ smelt} \ (kW)$	16724,60	60952,96	2,03	14084,05
B_{Total} (kW)	43049,84	63329,05	3,689495474	14334,52
	1	$B_{smelt} = 120.908 \text{ k}^{3}$	W	

Fonte: Próprio Autor

Balanço de massa para o ar

Tabela F.3 - Vazão Molar do Ar de combustão

Localização da Fábrica	Finlândia
Caldeira	D
Composto	$\dot{n}\left(\frac{kmol}{s}\right)$
O_2	2,44144
N_2	9,17981

Fonte: Próprio autor

Exergia dos gases de exaustão

Tabela F.4 - Exergia dos gases de exaustão na caldeira de 7200 tDS.

		T	473 K	\mathbf{T}_0	298,15 K
Composto	SO2	N_2	CO_2	H_2O	O_2
Vazão molar (kmol/s)	0,06625	9,822392	2,10262	1,768883	0,170901
(h-h0) (kJ/kmol)	5402,98	3661,03	5109,17	4177,54	3752,67
(s-s0) (kJ/kmol.K)	15,065	10,263	14,240	11,729	10,499
$B_{ph\;gases} \ ({ m kW})$	60,38	5904,46	1815,35	1203,81	106,37
b _{ch gases} (kJ/kmol)	1380,3	-124,0	2332,6	837,6	-85,1
B _{ch gases} (kW)			60482,73		
			$\boldsymbol{B_{gases}} = 69.573$	3 kW	

Fonte: Próprio Autor

Exergia do Condensado e do vapor

Tabela F.5 - Exergia do condensado e do vapor

Propriedades	Condensado	Vapor
T ₀ (K)	298	298
T (K)	497	788
Pressão (bar)	130	110
m (kg/s)	363,00	363,00
$H_1(kJ/kg)$	1021,3	3400
H_0 (kJ/kg)	104,879	104,879
$S_1(kJ/kg.K)$	2,381	6,59
$S_0(kJ/kg.K)$	0,3674	0,3674
B (kW)	114.732	522.667

Fonte: Lwarcel (2013), CATT3 (1996) e Próprio autor

• TANQUE DISSOLVEDOR

Exergia do licor branco fraco

Tabela F.6 - Exergia do Licor branco fraco na entrada do Tanque Dissolvedor.

			EN	NTRADA				
T (K)	333,15							
LBF [kg/s]								
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	b_{ch}^{0}	B_{ph}	b_{ch}	$\mathbf{B}_{\text{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
Na_2CO_3	17,17	0,161972	3993,33	12,65	53130	35,75	521,58	
Na_2S	1,04	0,013276	2979,23	9,44	930340	2,17	748,58	
Na_2SO_4	3,79	0,026688	4637,72	14,71	35000	6,76	56,62	
NaOH	1,49	0,037215	2103,25	6,68	84490	4,20	190,57	
Agua	292,68	16,25986	2641,47	8,38	0	2315,49	3120,00	
Total	316,16	16,49901				2364,3675	76511,7	78876,07

Fonte: Próprio Autor

Exergia dos fluxos de saída do Tanque Dissolvedor

Tabela F.7 - Exergia do Licor Verde Bruto na saída do Tanque Dissolvedor.

SAÍDA								
T (K) LVB + dregs	363,15							
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	$b_{ch}{}^0$	\mathbf{B}_{ph}	b_{ch}	$\mathbf{B}_{\text{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
Na_2CO_3	50,54	0,476758	7587,07	22,98	53130	350,81	1743,53	
Na_2S	6,15	0,078792	5538,67	16,80	930340	41,73	5045,65	
Na_2SO_4	3,80	0,026747	8830,48	26,75	35000	22,85	64,44	
NaOH	1,49	0,037215	3952,51	11,99	84490	14,06	216,43	
C	0,41	0,034283	688,25	2,07	410820	2,42	969,43	
Agua	249,74	13,87433	4906,94	14,89	3120	6473,21	2979,59	
Total	312,12	14,52812				6905,09	160086,3	166991,4

Fonte: Próprio autor

Tabela F.8 -Exergia do vapor liberado do Tanque Dissolvedor

T (K)	373,15							
GASES								
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	$b_{ch}{}^0$	\mathbf{B}_{ph}	b_{ch}	$\mathbf{B}_{\text{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
H_2O	42,94	2,385533	5662,09	16,94	11710	1455,43	27934,59	
Total	9,19	0,510668						29390,02

Fonte: Próprio Autor

• FILTRO DO LICOR VERDE

Exergia dos dregs

Tabela F.9 - Exergia dos dregs e do Licor Verde.

SAÍDA								
T (K)	333,15							
DREGS								
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	$b_{ch}{}^0$	B_{ph}	b_{ch}	$\mathbf{B}_{\text{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
C	0,41	0,034283	344,07	1,08	410820	0,72	252666,79	
Na_2O	0,33	0,005362	43748,41	8,09	313260	221,65	30133,24	
CaO	0,32	0,005788	1528,11	4,85	119620	0,48	12420,90	
MgO	0,28	0,007064	1353,22	4,29	59170	0,52	7498,82	
Na_2SO_3	0,01	5,81E-05	1845,33	5,84	82840	0,01	86,37	
MnO	0,06	0,000878	1586,92	5,03	122390	0,08	1927,62	
Fe ₂ O ₄	0,03	0,00019			133750	0,00	455,81	
Total	1,45	0,055742				223,45	17011,75	17235,2

Fonte: Próprio autor

Exergia do Licor Verde

Tabela F.10 - Exergia do licor verde									
T (K)	333,15								
LV									
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	$b_{ch}{}^0$	\mathbf{B}_{ph}	b_{ch}	$\mathbf{B}_{\text{total}}$	
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)	
Na_2CO_3	50,20	0,473622	3993,33	12,65	53130	104,54	1741,22		
Na_2S	6,15	0,078792	2979,23	9,44	930340	12,87	5072,36		
Na_2SO_4	3,79	0,026688	4637,72	14,71	35000	6,76	64,64		
NaOH	1,49	0,037215	2103,25	6,68	84490	4,20	217,57		
Agua	249,04	13,83531	2641,47	8,38	3120	1970,22	2986,94		
Total	310,66	14,45163				2098,59	145711,88	147810,5	

Fonte: Próprio Autor

Exergia da Cal

Tabela F.11 - Exergia da Cal inserida no Reator Slaker.

ENTRADA								
T (K)	373,15							
Cal								
Componente	V. mássica	V. molar	$(h-h_0)$	$(s-s_0)$	b_{ch}^{0}	\mathbf{B}_{ph}	b_{ch}	$\mathbf{B}_{\text{total}}$
Componente	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
CaCO ₃	0,44	0,004419	6645,81	19,83	5050	3,24	57,06	
CaO	21,65	0,38663	3335,88	9,97	119620	140,21	118268,36	
Total	22,09	0,391049				143,45	46271,01	46414,46

Fonte: Próprio Autor

Exergia do licor branco bruto

Tabela F.12 - Tratamento do Licor Branco Bruto liberado pelo Reator Slaker.

				SAÍDA				
T (K)	358,15							
LBB								
Componente	V. mássica	V. molar	(h-h ₀)	(s-s ₀)	${b_{\rm ch}}^0$	\mathbf{B}_{ph}	b_{ch}	\mathbf{B}_{total}
•	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
CaCO ₃	38,33	0,383316	5248,31	16,01	5050	182,34	130,43	
NaOH	31,80	0,79501	3640,49	11,12	84490	257,46	4525,92	
Na_2S	6,15	0,078792	5111,67	15,62	930340	35,90	4939,18	
Na_2SO_4	3,79	0,026688	8117,85	24,78	35000	19,50	62,94	
Agua	242,22	13,45641	4529,36	13,85	3120	5397,80	2828,87	
Na_2CO_3	10,04	0,094724	6978,25	21,29	53130	59,71	339,10	
CaO	0,35	0,006339	2651,62	8,10	119620	1,50	51,09	
Total	332,68	14,84128				5954,21	191118,96	197073,17

Fonte: Próprio Autor

Exergia dos grits

Tabela F.13 – Exergia dos *grits*

T (K)	358,15							
Grits								
Componente	V. mássica	V. molar	$(h-h_0)$	(s-s ₀)	b_{ch}^{0}	B_{ph}	b_{ch}	$\mathbf{B}_{ ext{total}}$
1	(kg/s)	(kmol/s)	(kJ/kmol)	(kJ/kmol.K)	(kJ/kmol)	(kW)	(kJ/kmol)	(kW)
Na_2O	0,00125	2,02E-05	45586,74	13,41	313260	0,839715	3944,59	
CaO	0,07807	0,001394	2651,62	8,10	119620	0,329555	104001,51	
MgO	0,00240	6E-05	2351,69	7,18	59170	0,012640	2212,98	
Fe_2CO_3	0,00708	5,62E-05	6597,44	20,13	20370	0,033410	714,24	
SiO ₂	0,00438	7,3E-05	2860,00	8,72	1860	0,018993	84,65	
Total	0,09318	0,001603				1,234314	177,91	179,15

Fonte: Próprio Autor

• LICOR BRANCO RECUPERADO

Tabela F.14 - Licor Branco recuperado

SAÍDA								
LB								
Componentes	V. mássica	V. molar						
	(kg/s)	(kmol/s)						
NaOH	30,6293	0,765732						
Na2S	5,8810	0,074037						
Na2CO3	9,7619	0,092093						
Água	227,6497	12,64721						
Total	273,9218	13,57907						

Fonte: Próprio autor

Tabela F.15 – Lama de cal

Lama		
Componentes	V. mássica (kg/s)	V. molar (kmol/s)
CaCO3	37,2668	0,372668
CaO	0,3451	0,006162
NaOH	0,2878	0,007195
Na2S	0,0941	0,002567
Na2SO4	3,6845	0,025947
Água	7,8375	0,435416
Total	49,5158	0,849955