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Abstract
Considering the thematic of climate change, numerous strategies have been adopted in
order to struggle with such problem. In electrical systems and power supply, the use of
clean technologies is considered the most acceptable solution. In this context, emerges the
concept of microgrids (MGs). MGs are local energy providers that can potentially reduce
energy expenses and emissions by utilizing distributed energy resources (DERs). Among a
variety of DERs used on microgrids, it is widely accepted that renewable sources, especially
solar and wind generation, play a significant role in providing sustainable energy, as they
are both inexhaustible and less polluting.

Because of that, the microgrids and renewable energy sources are receiving increasing
attention from power system operators, since they can aid to transform the current high
pollutant power system into a "greener" system. However, there is still much to be consid-
ered and proven in relation to the implementation of such technologies. The intermittent
nature and the uncertainties associated with solar and wind generation pose sufficient
technological and economical challenges for system planners. Besides, the supply of elec-
tricity interferes the society as a whole, which makes the implementation of microgrids
and renewable energies an even more complex problem, dependent on a wide spectrum of
players, interests and constraints.

In this context, the present work is a first effort in establishing a framework that is capable
of dealing with such heterogeneous problem. More than that, this thesis contributes with
a broader view of microgrid implementation, suggesting a collection of tools which are
suitable for observing the effects of penetration of clean technologies on society.

The proposed framework is a five stage planning strategy which allows the system planners
to consider all aspects ranging from uncertainty in resources, technological feasibility,
economics, and environmental impacts of the system and choose an optimal design suited
to their localized conditions. The motivation behind using such strategy lies not only
in the optimization of the individual systems or disciplines but also their interactions
between each other.

In short, the suggested approach is an iterative procedure divided in five stages, named
microgrid coordination, operation optimization, reliability assessment, contingency as-
sessment, and searching mechanism. The microgrid coordination stage has the function
of modeling the philosophy used by the energy management system (EMS) to control
the power balance in microgrids. The models of EMS are developed using the Petri net
formalism. Optimization stage performs a constrained cost minimization analysis of mi-
crogrid considering the operation and maintenance (O&M) cost, pollutants emission, and
stochastic variables (generation and load demand). After that, it is executed the reliability
assessment, where the power system reliability indexes are estimated by means of a Monte



Carlo Simulation (MCS), taking into account the EMS philosophy of microgrid in isolated
mode. Next, using the reliability indexes, the contingency probability is calculated using
the steady state analysis of a Markov chain, which aims to assess the distribution power
system admitting all possible mode transition. Finally, since the DER selection involves
multiple criteria and interests of different parts, it is required a multi-attribute decision
system providing a list of possible configuration based on their relative importance as
denoted by the stakeholders. Because of that, the Particle Swarm Optimization (PSO)
is used to search the best DER combination using two distinct solvers - multi-objective
weighted function and Pareto front. As result, the framework provides the rated power
of each DER that must be installed in the microgrid in order to have an optimal balance
between technical, economical, social, and environmental aspects.

Regarding the heterogeneous quality of planning problem, this strategy is effective in the
sense of incorporating several aspects into the same analysis framework. In addition, the
proposed framework contributes helping the planners to handle the penetration of renew-
able resources in a systematic way. To have realistic results, the framework is performed
on a case of study of a potential campus microgrid program.

Key-words: Petri nets, microgrid design, optimal planning, renewable energy, reliability
analysis, distributed energy resources.
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1 Introduction

Climate change, scarcity of energy resources, and cost of energy are becoming
increasingly important in the political agendas. The solutions to reduce energy produc-
tion from traditional power systems are mainly based on three pillars: the promotion of
renewable energy, energy efficiency and energy savings by behavior changes.

The development of renewable energy has seen a significant boost, remarkably
because of its associated socioeconomic and environmental advantages, role in address-
ing climate change concerns, increased federal and state support in forms of tax credits,
net metering policy, and other incentives and mandates. However, the renewable energy
sources (RESs) are usually weather-dependent, which increases the variability and uncer-
tainty in both generation sector (when appeared in the form of large-scale power plants)
and load sector (when deployed by customers as distributed energy resources (DERs)).
On the load side, renewable generation proliferation does not only lead to higher variabil-
ity and uncertainty, hence challenging supply-load balance, but also results in sharp net
load ramps that require additional investment and application of fast-response units to
address abrupt load changes.

Therefore, it is not only important to adopt many kinds of renewable energy alter-
natives but also integrating them with public grids in order to achieve a complete energy
solution, indicating a greener and reliable choice for electricity, cooling, and transportation
needs of communities. So, to guarantee energy in a safe way, the hybrid energy systems
stands out. The hybrid characteristic is given by the capacity of taking any combina-
tion of the different available RES including solar (photovoltaic - PV), wind, geothermal,
with/without traditional diesel engine generator and storage systems, operating in both
grid-connected and off-grid (isolated).

In such context, the microgrid (MG) technologies perform a significant role on
RES integration. A microgrid can be regarded as a small-scale version of the centralized
electricity system able to generate, distribute and regulate the electricity flow in order
to satisfy the demand needs in a local and decentralized way [1]. This small-scale energy
system allows a most feasible way to cope with RES penetration since it is more flexible
than large-scale traditional networks. In this way, one can assumes that the microgrid
implementation increases reliability and decreases the pollutants emission. However, the
microgrid technologies faces a plenty of issues on implementation side, especially because
of its dependency on many players and non-standardized practices. Table 1 expresses the
duality on microgrid deployment [2, 3].
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Table 1 – Microgrid Benefits x Drawbacks

Benefits Drawbacks
Improves local energy delivery High installation cost
Increases reliability Necessity of improved standard legislation

and regulations
Efficient energy consumption Voltage, frequency and power quality
Generating revenue Resynchronization with the utility grid
Makes the grid more resilient Market monopoly
Aiding economic growth
Helping to counter climate change

1.1 Overview
This work is an effort to promote an appropriate collection of tools for microgrid

planning and design. The investigation is largely based on previous work done on pilot
and research project, which validate early ideas that may be brought to standardization
or at least to common practices.

To contextualize the present work under the Smart Grid vision, the technical report
of Smart Grid architectures promoted by the CEN-CENELEC-ETSI Smart Grid Coor-
dination Group (SG-CG/RA) and the National Institute of Standards and Technologies
(NIST) [4, 5] is briefly discussed below.

To achieve consistency and gradual integration of innovation in an incremental
manner, two items stated in such report are essential:

∙ an overall high-level model that describes the main actors of the power system and
their main interactions. This is captured by the conceptual model;

∙ a set of universal presentation schema that allow for the presentation of the power
system according to a variety of viewpoints that can cope with the variety of power
network stakeholders, combining power system management requirements with ex-
panded interoperability requirements, and the possibility of allowing various levels
of description from the top to down level to more detailed views. This is captured
in the reference architecture that should be seen as the aggregation of several archi-
tectures (e.g. technical, economical, environmental, etc.) into a common framework.

The first item is achieved considering well-know and well-accepted models defined
on Smart Grid research groups, as presented in some techinical reports [6–8]. The second
item is exactly where this thesis is placed, suggesting a set of tools to deal with the new
paradigms and new players of power systems. Figure 1 depicts SGAM model adapted by
the NIST institute, in which it is highlighted the area where this thesis aims to achieve
(distribution system operators, distributed energy resources, customer/prosumers).
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Figure 1 – Conceptual model SGAM adaptation of NIST framework (adapted from [4])

Back to the microgrid context, one may understand the MG as a complex sys-
tem dependent on many players who consider distinct interests, as technical indica-
tors (power balance, reliability), organizational aspects (business, regulation), and so-
ciety/environmental issues (energy demand, greenhouse gases emission). Therefore, the
investigation about planning of microgrids ponders different aspects at the same time.
Here, it is considered four important aspects - energy management strategy, operational
costs, pollutants emission, and reliability issues. The selection of these parameters is jus-
tified by the reason that they represent the greatest impacts in the implementation of a
distribution system as suggested in the literature [9–15].

Thus, the proposed framework indicates a strategy that facilitates the development
and implementation of microgrids suggesting suitable tools dealing with operational, eco-
nomical, social and environmental aspects. The methodology presented in this document
is a combination of well-known techniques in the microgrid planning problem, however,
the concept of unifying all these techniques in only one problem is unique.
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1.2 Related work
There are a significant number of relevant work regarding planning and design of

microgrid. However, in order to validate the proposed framework, it is necessary to give
more attention to solid solutions. In this way, two tools must be highlighted: DER-CAM
[16], and HOMER Pro [17]. The first one has academic purposes, while the second is a
commercial software.

Distributed Energy Resources Customer Adoption Model (DER-CAM) is a pow-
erful and comprehensive decision support tool that primarily serves the purpose of finding
optimal distributed energy resource (DER) investments in the context of either buildings
or multi-energy microgrids. The problem solved by the optimization algorithm is formu-
lated as a mixed integer linear programming (MILP) and the objective function typically
consists of minimizing total annual costs of energy supply (including DER investment
costs) or carbon dioxide (CO2) emissions.

Similarly to DER-CAM, the HOMER Pro microgrid software is the global stan-
dard for optimizing microgrid design in all sectors, from village power and island utilities
to grid-connected campuses and military bases. It uses a proprietary derivative-free algo-
rithm to search for the least-costly system.

Since the present work has academic purposes, the base of comparison is the DER-
CAM, which has free distribution, and its implementation is detailed in some scientific
papers [18, 19]. Following, some vantages and disadvantages of DER-CAM and the pro-
posed framework are disposed for comparison.

A) DER-CAM - ADVANTAGES AND DISADVANTAGES

The DER-CAM presents some advantages and disadvantages listed below.

ADVANTAGES

∙ Very accurate economic model;

∙ Parametric solution;

∙ Simple to use;

∙ Allows power network topology;

∙ Indicates the best size of distributed generators;

∙ Indicates best positioning of distributed generators;

∙ Considers power flow analysis;
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DISADVANTAGES

∙ Does not consider the reliability as explicit variable on the objective function;

∙ Considers 𝜀-constrain method for generation of Pareto front, which is an approxi-
mation method (simple approach);

∙ Does not allows appropriate stochastic sampling, which can lead to weak results;

∙ Simplifies the formulation considering a single optimization problem;

∙ Uses only a commercial platform of Mixed Integer Linear Program (MILP) as opti-
mization tool – biased solutions can appear;

∙ Limited effectiveness in the results when considering multiple aspects, as sustainable
approach;

B) PROPOSED FRAMEWORK - ADVANTAGES AND DISADVANTAGES

Thus, the proposed framework aims to face some of the issues listed above. In fact,
the main focus of the present work is to develop a more complete solution for microgrid
planning/design problems, regarding the concepts of multi-objectivity and sustainability.
Obviously, the proposed solution has pros and cons as listed below.

ADVANTAGES

∙ Considers the reliability as explicit variable on the objective function;

∙ Uses a more appropriate optimization method for multi-objective problem, avoiding
biased solution;

∙ Allows appropriate stochastic sampling, which gives a more robust result;

∙ The optimization process and the Pareto optimality is performed using a mix of
different techniques (a more complete framework);

∙ Indicates the best size of distributed generators;

∙ Allows more effective solutions in the sense of sustainability.

DISADVANTAGES

∙ Less accurate economic model;

∙ Does not indicate the best positioning of distributed generators;

∙ Does not consider power flow analysis;

∙ Still under validation.
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1.3 Objectives
By the way of simplification, most of previous studies on microgrid planning do

not explicit consider the uncertainty on weather-dependent generators and load. Besides
that, they are determined in an parametric and integrated fashion, by solving a single and
complex optimization problem. This indicates a certain contradiction, since an important
part of the problem is simplified, whereas the decomposition of the problem, which can
decrease the complexity [20], is not examined. Furthermore, these works are mainly fo-
cused on capturing some particular aspects of a given MG, especially economic aspects,
rather than a global view [21], leading to an unilateral decision.

As such, the present solution transcends the economic aspect, incorporating other
aspects as pollutant emissions, reliability, and social effects into the same analysis frame-
work, which means a more sustainable decision. To comply with this, it is developed a
distributed architecture which considers uncertainty of DERs and load, and multi-criteria
decisions. The proposed strategy decomposes the complex MG planning problem into
smaller and easier to solve subproblems. Furthermore, the present work contributes sug-
gesting a collection of appropriated tools for each subproblem.

Therefore, the present thesis aims to fulfill some gaps on microgrid planning prob-
lem, promoting a more complete solution in the sustainability point of view.

The list of goals proposed in this research for building the framework are:

∙ Develop statistical models of renewable energy resources and demand given uncer-
tainties inherent in them;

∙ Investigate optimal scheduling of typical scenarios of microgrid considering the min-
imization of capital and operational costs subject to operational constraints;

∙ Assess the relation between RESs penetration and reliability issues;

∙ Analyze the impacts of possible microgrid configurations regarding diversified inter-
ests (environmental, technical, economical, social);

∙ Present a procedural design of a possible commercial software;

∙ Validate the PSO algorithm as a proper solver of multi-criteria microgrid planning
problem.

It is necessary to clarify that the suggested framework identifies tools which can
be used in a standardized way, leading to a global view of microgrid planning problem.
The study does not contemplate an specific investigation of each step. Instead, it suggests
a set of methods and procedures which are commonly used in academic and commercial
solutions.
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In specific terms, the present work aims to facilitate the planning and design of
microgrids suggesting suitable tools dealing with operational, economical, social and envi-
ronmental aspects. In broader terms, the proposed framework seeks to establish a knowl-
edge base and common practices which point to multidisciplinary and flexible approach
of microgrid planning, leading to a sustainable development.

1.4 Main contributions
The current PhD thesis aims at researching appropriate set of tools to deal with

planning of hybrid renewable energy systems in the context of microgrids. In this way,
the main contributions of the present work are disposed herein:

∙ Configuration of a set of tools suitable for the treatment of microgrid planning
problems;

∙ Definition of appropriate composition of hybrid renewable generation mix at a pro-
sumer (producer-consumer) connecting point;

∙ Presentation of a more heterogeneous vision of microgrid planning problem in the
Smart Grid scenarios;

∙ Framework documentation for continuous improvement.

1.5 Document organization
This work is presented in six chapters. Chapter 2 offers a literature review of

the research contributions in the area of microgrid planning. Chapter 3 presents the
theory basis and tools that support the development of the proposed framework. Chapter
4 demonstrates the integration of the framework’s subproblems using a comprehensive
programming approach. Chapter 5 presents simulation results and analysis of possible
microgrid configurations using some data available on public data sets. This chapter
allows to address and comprehend each stage of the framework and to observe the effects
of changing the stakeholders interests and technical parameters. Chapter 6 draws the
conclusions of the work. It also lays a path for researchers to investigate new areas of
microgrid planning.
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2 Literature Review

An overall questionnaire made in the research undertaken in the framework of
EUROPEAN MORE MICROGRIDS project [22] indicates that the customers and system
operators at microgrid pilot test locations were willing to adopt the energy saving and
emission reduction measures. However, they were not very enthusiastic to engage or invest
in new technologies for distributed generation, without any previous experience [23]. It
seems quite unlikely that the grid users will completely change their everyday habits and
shift their daily energy and policies, which implies that more effort needs to be done in
the area of rising awareness of overall benefits/drawbacks of microgrids concept.

The following literature review aims to point some of the particular perspectives
which are still under scientific investigation.

2.1 Optimal planning of distribution systems
Studies about optimal planning of distribution systems have two main goals con-

sidering the time horizon of observation (short-term and long-term horizon). Short-term
problems deals with scheduling of power generation and demand response in day-ahead
or few-hours-ahead energy trading, while long-term take charge of optimal sizing and/or
location of generators. Both approaches mainly aims to provide good quality and reliable
energy while minimizing costs and pollutants emission. The minimization process is sub-
ject to a group of constraints, which forces the optimal solution to obey some rules such
as the generator and grid limitations, acceptable level of pollutant emission, social and
political restrictions, reliability level, meteorological parameters, and so on.

The uncertainty and intermittence of renewable energy sources places as a chal-
lenge to generation scheduling of microgrids. In [24], it is developed a hierarchical frame-
work to handle an economic generation microgrid scheduling considering the intermittent
energy sources. The lower level combines a battery energy-storage system (BESS) with re-
newable energy sources, targeting maximal utilization of renewable power and minimal de-
viation from the schedule, providing an optimal generation plan in the day-ahead market.
The upper level minimizes the total cost of the microgrid by means of genetic algorithm
(GA) to yield an economic generation plan of dispatchable distributed generators (DGs)
based on the lower level. Similarly, [25] addresses a Multi-Objective Particle Swarm Opti-
mization (MOPSO) methodology to solve Energy Resource Management (ERM) problem
in buildings with penetration of Distributed Generation (DG) and Electric Vehicles (EVs),
considering the uncertainty of photovoltaic (PV) generation. The methodology aims to
maximize profits while minimizing CO2 emissions. In [26], the authors assess the benefits
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for the distribution system of scheduling flexible residential loads focusing on electric ve-
hicles (EV). It is proposed an extensive load model and a formulation of a bilevel Mixed
Integer Linear Programming (MILP) optimization problem. The lower level minimizes
individual household electricity bills using dynamic pricing, while the upper level intends
to smooth the power load curve of a typical MV/LV transformer.

For the optimal design problem, the authors in [12] present a mathematical model
and optimization algorithm to identify the optimal microgrid configuration (in terms of
the installed capacities of the generators) and its respective optimal scheduling generation.
The optimal design and placement of DERs is also treated in [10]. The microgrid decision
support tool Distributed Energy Resources Customer Adoption Model (DER-CAM - [27])
is used to determine the optimal installation place, size and type of distributed energy
resources (DERs) while minimizing cost and emission. Similar strategy is seem in [11–13].
The work presented in [11,14,15] executes the planning/design of microgrid also including
indexes of system reliability and equipment outages.

In [28], a possibilistic–probabilistic model was proposed to address the impact of
EVs in distribution systems. The proposed methodology is based on the combination of
fuzzy theory and probability distribution functions (pdfs) employing Monte Carlo simu-
lation (MCS) to model the load in an uncertain manner. After that, an optimal wind dis-
tributed generation planning was investigated employing an intensified hybrid PSO/GA.
Still considering the topic of penetration of EV in distribution systems, the papers [29]
and [30] address the problem of insertion of electric vehicles from the economic dispatch
(ED) point of view, indicating the relevance of vehicle batteries on microgrid operation
optimization.

The economic dispatch, based on unit commitment problems (UCP), and optimal
power flow (OPF) are frequently considered in planning process where uncertainties are
present. Probabilistic methods as Point Estimation Method (PEM) [31, 32] and Latin
Hypercube Sampling combined with Cholesky decomposition (LHS-CD) [33] are some of
the proposed solutions. Besides probabilistic strategies which usually perform a Sequential
Monte Carlo algorithm, a formal approach can aid the process of modeling and simulation
of a microgrid. Highlighted in [21], a MG model is developed based on Stochastic Hybrid
Systems (SHS), capturing the interaction between probabilistic elements and discrete and
continuous dynamics.

2.2 Social aspects of microgrid
Seeking to provide energy to remote and isolated areas, the microgrid appears as a

feasible solution. Traditional efforts to reach these remote communities through central-
ized grid are expensive, logistically complex, time consuming, and ultimately unprofitable
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in many cases. Decentralized microgrids, however, provides a financially feasible solution
[34].

The implementation of microgrids in remote and/or poor places, where the elec-
tricity is low-quality or even non-existent, promotes the discussion upon the benefits that
the MGs technologies bring to sustainable communities, balancing and integrating four
main components: environment, economy, society and culture [35].

As real examples, Brazilian Amazon forest and Red Lake community in Canada
are areas of study in [36] and [35], respectively.

Still considering sustainable solutions, the paper [37] assesses consumer valuation
of different attributes of electricity supply to elucidate the conflict between solar mi-
crogrids and the centralized utility grid in India. Besides that, such paper provides an
insight to support government policies and infrastructures deployment. The study also
contributes significantly to understand the role of microgrids in complementing a central-
ized system and its value as a sustainable energy solution for development. Electricity
reliability, power, price, and hours availability are studied through a choice experiment,
a method uniquely able to disaggregate the willingness to pay for each attribute.

In the matter of good-quality energy brought by MG implementation, in [38] is
conduced an evaluation over reliability and economic indexes considering penetration
of renewable energy in microgrid power systems. The results obtained from this study
have established the substantial influence of renewable sources and storage systems on
the reduction of annualized energy costs and reliability improvement of power system,
representing significant benefits to society. A similar approach is proposed in [39], where it
was identified the most prominent problems and challenges that the electric power systems
faces in developing countries, influencing the decision making process. The authors have
identified two major factors, namely, reliability and cost. To connect these factors, the
authors suggest the reliability parameter of energy not supplied (ENS) and outages charge
rates to monetize the deficit between power generation and demand consumption.

Besides that, some of these before mentioned renewable energy sources will be
installed directly at the premises of the end consumers (e.g. photovoltaic systems), trans-
forming their role to prosumers (producers-consumers) [40]. In summary, the era of re-
newable energy, decentralized energy sources and smart grid technologies will empower all
prosumers, from households to small and medium sized enterprises, as well as larger com-
panies, to integrate their consumption and production of energy in networks that would
function more like ecosystems than markets. This situation will undoubtedly challenge
conventional power generated by centralized power and unidirectionally distributed by
utility companies [41].

Hence, the direction of future research is to conceptualize a model of the electricity
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prosumers and to model prosumer behaviors through computational simulation method
where, by applying different energy policy and intervention into the virtual environment it
is possible to observe and analyze prosumer behavior when changing different inputs. Such
new computational simulation strategies that incorporates social aspects, more specifically
prosumers behavior, in the microgrid planning problem is one of the objectives proposed
in this thesis.

2.3 Microgrid - business case
In general, the microgrid can be owned by the distribution system operator (DSO)

or utility, the customer, or an independent power producer (IPP). In each case, benefits
will be valued differently; the DSO would tend to value technical benefits such as reduced
peak loading, whereas the customer would likely value energy cost reduction [42]. On
the other hand, a free-market IPP-owned model can be operated with the interests of all
stakeholders.

The multi-party energy market, also referred as new paradigm of transactive energy
(TE), is illustrated in [43]. The authors suggest that the IPP-owned microgrid will be
able to participate in retail, wholesale, and bilateral markets when operating in a grid-
connected mode.

There are two major energy transaction-based benefits for microgrids. The first
is based on the fact that wholesale energy prices may be significantly lower than retail
prices, the difference being made up by charges for network usage, service fees, market
charges, retail charges, and taxes. Since the microgrid can deliver power directly to its local
loads without using the main network, this power is not subjected to the same additional
fees, and may be offered to customers at a rate that is higher than wholesale (providing
additional revenue to the IPP) and lower than retail price (providing cost savings to the
customer) [44]. The second major benefit is based on fluctuations in wholesale prices on
the energy market. Microgrids can use intelligent controls to provide peaking power when
market demand and energy prices are high, and they can purchase power from the grid
when demand and energy prices are low.

Following the case of IPP-owner, the authors in [13] propose a systematic approach
and methodology for formulating and quantifying different microgrid business cases. Two
main cases are suggested: (i) IPP owns and runs their own utilities including the electri-
cal system; (ii) there are three stakeholders, named the urban residents acting as both
customers and society, IPP who owns the microgrid system, and the utility or Distributed
System Operator (DSO) who regulates the bidirectional power flow. Also, the proposed
framework defines what are the benefits and beneficiaries of each case. Furthermore, it
investigates the dependency of chosen business case on microgrid technologies and oper-



Chapter 2. Literature Review 33

ation.

Different from most of the operational microgrids with single owner, [45] focuses
on community based multi-party microgrids which involves critical loads and generators
of multiple owners, who has different structures, but, unique operating objectives as cost
reduction, decreasing of pollutants emission, revenues, reliability, remote area electricity
supply, and so on.

2.4 Microgrid to enhance distribution system resilience
Thanks to smart grid (SG) technologies, the conventional power system is about

to transition from a static and centralized grid to a reconfigurable and decentralized grid.
In this context of reconfigurable networks, SG use remotely controlled switches to control
and change the network topology to ensure that desired objectives can be achieved. SG can
provide customers with a greater degree of reliability, and power quality. In this context,
the microgrids appears as an effective solution to sustain the reconfigurable grids, since it
can provide energy to a group of load when an abnormal event occurs at the main grid.

A microgrid can be implemented by using the four-stage approach: demand re-
duction, on-site generation and storage, advanced controls, and grid independence. Local
and master controllers work together to optimize the operation of a microgrid and its
interaction with the main grid, enhancing the reliability and resilience of power genera-
tion. The hierarchical control diagram (primary, secondary, and tertiary control level) is
responsible in islanding operation, grid-connected operation, and the smooth transition
between these two operation modes [46].

In practical meanings, [15] presents a framework for analyzing the resilience of an
electric power grid with integrated microgrids in extreme conditions. The objective of this
paper is to demonstrate that controllable and islandable microgrids can help improve the
resiliency of power grids in extreme conditions. The Markov chain is utilized to represent
the state transition of a power grid with integrated microgrids in these conditions, and
calculate the probability of the system being at contingency state.

The resiliency-oriented MG is also addressed in [47], in which it is presented a two-
stage stochastic linear programming (SLP) framework for optimal scheduling problem.
Stage one characterizes the uncertainties, and stage two generates the possible scenarios.
After that, the SLP is solved using commercial softwares (IBM CPLEX and GAMS IDE).
The optimization process tries to minimize the socioeconomic cost of MG while taking into
account the operation constraints considering two groups of uncertainties, categorized as:
I) normal operation uncertainties (including errors in forecasting wind data, EV operation,
and real-time market prices), and II) contingency-based uncertainties (including random
forced outages, unintentional islanding, and resynchronization events).
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In a more technical programming issue, the paper [48] indicates that sampling
strategies influences the reliability indexes in a power system including RES. Because of
that, an appropriate Monte Carlo simulation using Latin hypercube sampling techniques
are investigated, showing that different techniques can lead to different results and errors.
In the phase of microgrid implementation, these planning errors could reflect in over or
under sized MG systems.

For the specific case of remote microgrids, the reliability assessment is the priority
aspect on the planning process. Regarding the isolated mode of operation, the author’s
work presented in [49], assesses the reliability of a microgrid operating in such mode.
It was used the colored Petri net (CPN) formalism in order to model and simulate the
proposed hybrid microgrid, gathering the reliability indexes.

2.5 Energy management system - suitable formalisms
Two of the key functionalities in microgrid’s energy management system (EMS) are

the optimal scheduling and coordinated operation. Optimal scheduling includes optimal
unit commitment of all dispatchable generation resources, as well as demand management
of flexible load, and coordinated operation. Coordinated operation aims to supervise some
control parameters in order to manage or to constrain power flow in multi-source power
system based on certain generation policy (e.g. lower pollutant emission, lower cost, use
of energy storage system, etc.). Existing EMS functionalities and architectures for mi-
crogrids are extensively investigated and reviewed in [50], which could be classified as
centralized and distributed EMSs. A centralized EMS is especially suitable for a single
owner microgrid with adequate system observability and consistent operation goal, while
decentralized EMS works for community multi-party microgrids.

Since a while, Petri net (PN) modeling has been applied in many specific areas
of power systems, such as power system restoration, protective relay algorithm modeling,
fault diagnosis, reliability analysis, and distribution network reconfiguration. A survey
with these applications can be found in [51]. In the context of microgrids, the PN is
used as formal tool to design and simulate energy management strategies of distribution
systems [52, 53]. The objective of energy management modeling is to validate certain
energy policy by means of numerical simulation before experimental tests.

In [54], the power system modeling and power balancing control for grid-connected
mode is studied. To do so, the PN modeling is used as a formalism to interpret such
scheme. It identifies the constraints of microgrid and presents a coordinated operation
in order to establish an overall power balancing control strategy considering all the dif-
ferent sources. Similar approach is used in [9] and [55] in which a building integrated
photovoltaic system with energy storage is considered. In these papers, the behavioral
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modeling of multi-source power system components is based on discrete PN state model-
ing. Identification of discrete states of each multi-source subsystem allows the subsequent
design of energy management.

Following the same perspective of using Petri net to model coordination, [56–58]
includes a multi-agent event-triggered control for intelligently restructuring the operating
mode of a microgrid ensuring the energy supply with high security, stability and cost
effectiveness. On Petri-net model, the operational mode switching process of each unit
agent depends on, not only its own event-driven discrete behavior, but also on interactive
behaviors with other agents. For instance, when a unit agent needs to change its operation
mode, it needs to send a request to other agents in order to deliberate if its switching
request can be implemented at that time. The interactive behaviors are implemented
based on Foundation for Intelligent Physical Agents - Agent Communication Language
(FIPA-ACL) messages. Such multi-agent approach seems promising for real MG scenarios
implementation.

Considering other formalisms than PN, [21] puts forward a model of a MG that is
based on the framework of Stochastic Hybrid Systems (SHS). It shows that SHS models
can capture the interaction between probabilistic elements and discrete and continuous
dynamics, and thus promise to be able to tame the complexity of distribution systems.
Similar approach is shown in [59], where an hybrid Petri net (HPN) modeling method is
able to describe the discrete and continuous dynamic of microgrid elements. The reachabil-
ity graph of the resulting HPN is generated and used to list all the possible options/choices
at a EMS decision. The formalisms can also aid the deployment process of a EMS con-
troller as shown in [60, 61], in which a finite state machine (FSM) model supports the
development of a software used to control the energy in the microgrid.

As suggested, the EMS is a specific or a group of controllers which aim to coordi-
nate the MG operation in a optimized way. To do that, it is necessary a communication
system to support the interaction among the elements of the microgrid. In this way, the
recent author’s work [62] investigate the impacts of communication network in a micro-
grid context. Such paper, presents a proper CPN modeling and simulation of the islanding
process over the communication point of view. It is observed from this work, modifying
some parameters of critical message transmission can lead a stable operation of EMS to
an unsafe condition.
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3 Fundamentals and Theory Basis

In order to have a solid framework, there is the need of convenient description
of mathematical fundamentals, programming tools, and system modeling. Thereby, this
chapter aims to expose the necessary background concerning the proposed framework
stages.

3.1 Monte Carlo simulation for reliability assessment
Monte Carlo simulation (MCS) generates a random sample of N points for each

uncertain input variable of a model. It selects each point independently from the proba-
bility distribution for that input variable. It generates a sample of N values or scenarios
for each result variable in the model using each of the corresponding N points for each
uncertain input. From this random sample for each result, it estimates statistical measures
such as mean, standard deviation, and probability density curves.

There are two basic techniques utilized in Monte Carlo applications to power
system reliability evaluation. These are known as the sequential and non-sequential tech-
niques. In the non-sequential method, the states of all components are sampled and a
non-chronological system state is obtained. In the sequential approach, the uncertainty
cycles of all components are simulated and a system operating cycle is obtained by com-
bining all the component cycles. Sequential technique permits chronological issues to be
considered and distributions of the reliability indexes can be calculated. This method,
usually requires a larger investment in computing time and effort compared to the non-
sequential technique [63].

Sequential simulation provides the ability to consider the chronological time vary-
ing load and generation profiles, and can be used to obtain extra information that other
techniques are unable to produce, such as probability distributions.

The sequential Monte Carlo approach can be used to model all contingencies and
operating characteristics inherent in the system. The major steps in using the sequen-
tial procedure with time varying loads and generation for composite system reliability
assessment, are as follows:

1. The chronological hourly probabilistic models give the load and generation for the
simulated hour.

2. The simulated operation of the system is assessed.



Chapter 3. Fundamentals and Theory Basis 37

3. Steps 1-2 are successively performed for the entire sequence of system states over
a year. The yearly adequacy indexes are accumulated as 𝐹 (𝑋𝑗) where 𝑋𝑗 is the
sequence of system states in year j and 𝐹 (𝑋𝑗) is the reliability index function over
the year j. In order to evaluate the loss of load probability (LOLP) for instance,
𝐹 (𝑋𝑗) is the sum of durations of all failure states divided by the number of hours
in a year (8760 hours) in the year j.

4. If the coefficient of variation of the chosen index is greater than the tolerance level,
steps 1 - 3 are repeated until convergence is achieved. The coefficient of variation
(𝛽) is calculated as shown in [64]:

𝛽 =

√︁
𝑉 (𝐹 )/𝑁𝑆

𝐸(𝐹 ) (3.1)

where:
V(F) is the variance of the test function;
E(F) is the expected estimate of the test function;
NS is the number of simulated years.

5. The adequacy indexes are estimated as follows, also presented in [64]:

Expected value =

𝑁𝑆∑︀
𝑗=1

𝐹 (𝑋𝑗)

𝑁𝑆
(3.2)

In [63, 65] a proper description is given with a good practical example of MCS in
power system reliability.

3.2 Microgrid composition and modeling
Figure 2 displays the composition of the proposed MG which is considered in the

present work. The MG is connected to the main distribution grid, which feeds the local
power network with electricity. In this work it is assumed that the main distribution
grid is operated by a distribution system operator (DSO). Three local generation sources
are additionally considered: diesel generation set, wind turbine, and photovoltaic (PV)
generation system. The diesel generators are controllable devices, while wind turbine and
PV represent uncontrollable generation devices with a stochastic behavior. Furthermore,
an electrical energy storage is considered in order to give higher flexibility for power
balancing. Also, several electrical loads are connected to the local power network. These
loads are stochastic in nature, but they are controllable, which allows the implementation
of energy shedding policies.
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To coordinate the microgrid operation, the energy management system (EMS)
communicates to all the elements in order to observe the state of each subsystem and
execute certain control action. The EMS will be better discussed in section 4.1. For sake
of simplification, no network topology is discussed in the present thesis.

Local

Power

Network

Main

Grid

Electrical

Loads

Diesel

Generation Set

Electrical

Storage

System

Photovoltaic

System

Wind

Turbine

Microgrid

Energy Management

System

(Centralized Controller)

Electricity flows

Communication flows

Figure 2 – Microgrid composition - prosumer connecting point (adapted from [21])

3.2.1 Wind generation

The output of a wind generator is determined by the average hourly wind speed
at the hub height and the output characteristics of the wind generator. Since wind speed
is a stochastic parameter, the probability of a given wind speed can be estimated if the
probability distribution is known. Once the wind speed is known, the power injected into
the grid can be calculated by means of certain probabilistic model of wind turbine (WT)
power generation. This information is useful for planners to predict accurately wind power
available at the site.

As deduced in [66], hourly wind speed 𝑣 is considered as a random variable and
is modeled using the Weibull probability distribution function (pdf). The mathematical
expression is given by (3.3), where 𝑘 is the shape parameter (𝑘 > 0) and 𝑐 is the scale
parameter (𝑐 > 0). The parameters 𝑘 and 𝑐 can be approximated by (3.4).

𝑓(𝑣) = 𝑘

𝑐

(︂
𝑣

𝑐

)︂𝑘−1
exp

[︃
−

(︂
𝑣

𝑐

)︂𝑘
]︃

(3.3)
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⎧⎪⎨⎪⎩𝑘 =
(︁

𝜎
𝑣𝑚𝑒𝑎𝑛

)︁
𝑐 = 𝑣𝑚𝑒𝑎𝑛

Γ(1+1/𝑘)

(3.4)

where 𝑣𝑚𝑒𝑎𝑛 is the annual mean speed, 𝜎 is the standard deviation based on histor-
ical data of wind speed for a particular site, and Γ(·) represents a Gamma function. For
stochastic sampling process, it is necessary the usage of cumulative distribution function
(cdf) which can be mathematically represented by (3.5).

𝐹 (𝑣) = 1− exp
[︃(︂
−𝑣

𝑐

)︂𝑘
]︃

(3.5)

The wind turbine power output 𝑃𝑊 𝑇 , dependent of wind speed 𝑣, follows 3.6, which
is better described in [67]. From such equation, the profile of a wind turbine generated
power related to wind speed can be better understood in Figure 3. Also, the values for
𝑣𝑖𝑛, 𝑣𝑟, and 𝑣𝑜𝑢𝑡 are adopted from [68], where the values for these parameters are 3 m/s,
11 m/s, and 22 m/s, respectively.

𝑃𝑊 𝑇 (𝑣) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, 𝑣 < 𝑣𝑖𝑛 (𝑎)
𝑎 + 𝑏.𝑣 + 𝑐.𝑣2, 𝑣𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑟 (𝑏)

𝑃𝑟, 𝑣𝑟 ≤ 𝑣 ≤ 𝑣𝑜𝑢𝑡 (𝑐)
0, 𝑣 > 𝑣𝑜𝑢𝑡 (𝑑)

(3.6)

where:
𝑃𝑟 is the wind turbine rated power;
𝑣𝑖𝑛 is the cut in wind speed;
𝑣𝑜𝑢𝑡 is the cut out wind speed;
𝑣𝑟 is the wind speed for rated power;

The terms a, b and c of (3.6) can be calculated using (3.7):

𝑎 + 𝑏.𝑣𝑖𝑛 + 𝑐.𝑣2
𝑖𝑛 = 0 (𝑎)

𝑎 + 𝑏.𝑣𝑟 + 𝑐.𝑣2
𝑣 = 𝑃𝑟 (𝑏)

𝑎 + 𝑏.𝑣𝑐 + 𝑐.𝑣2
𝑐 = 𝑃𝑟.

𝑣3
𝑐

𝑣3
𝑟

(𝑐)
(3.7)

where:

𝑣𝑐 = 𝑣𝑖𝑛 + 𝑣𝑟

2 (3.8)
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Figure 3 – Wind turbine output power profile

3.2.2 Solar generation

The power output of PV system is dependent on stochastic variables as well. For
solar generators, the variables of interest are the radiation and temperature of specific
site.

For long-term planning analysis, the solar radiation is considered as a beta random
variable [32,69,70]. Beta distribution model works to describe the stochastic vibration of
the hourly solar radiance around its mean value.

𝑓(𝑠) = Γ(𝛼 + 𝛽)
Γ(𝛼) + Γ(𝛽) × 𝑠𝛼−1 × (1− 𝑠)𝛽−1, 0 ≤ 𝑠 ≤ 1, 𝛼 and 𝛽 > 0 (3.9)

where 𝑠 represents the solar radiance (𝑘𝑊/𝑚2), 𝛼 and 𝛽 (refer to (3.10)), which are
parameters of Beta pdf, are derived as follows:

⎧⎪⎨⎪⎩𝛽 = (1− 𝜇)×
(︁

𝜇(1−𝜇)
𝜎2 − 1

)︁
𝛼 = 𝜇×𝛽

1−𝜇

(3.10)

The calculation of how much power a PV can generate in one hour is exposed by
3.11, which is adapted from [71]. In [71] it is considered the minute-by-minute DC output
of the solar array. However, since the proposed microgrid (refer to Figure 2) is an AC net-
work, it was necessary to adapt what was suggested in [71] imposing the inverter efficiency
(𝑛𝑖𝑛𝑣) and the photovoltaic panel efficiency (𝑓𝑃 𝑉 ). Such adaptation is first presented in
[68]. It is important to mention that this formulation of power generated by solar arrays
does not consider the geographical aspects nor installation angle of each PV panel.

𝑃𝑃 𝑉 = 𝑛𝑖𝑛𝑣.𝑓𝑃 𝑉 .𝑃𝑆𝑇 𝐶 .
𝐺𝐴

𝐺𝑆𝑇 𝐶

.(1 + (𝑇𝐶 − 𝑇𝑆𝑇 𝐶).𝐶𝑇 ) (3.11)

In this equation the term 𝑛𝑖𝑛𝑣 is the inverter efficiency, once the PV energy pro-
duction is DC power. 𝑓𝑃 𝑉 is the photovoltaic panel efficiency, 𝑃𝑆𝑇 𝐶 is the PV rated power
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in 𝑘𝑊𝑝𝑒𝑎𝑘 on Standard Test Conditions (STC). 𝐺𝐴 is the incident radiation measured
in 𝑘𝑊/𝑚2, and 𝐺𝑆𝑇 𝐶 is the incident radiation over test conditions with the value of 1
𝑘𝑊/𝑚2. The cells temperature is given by 𝑇𝐶 , and 𝑇𝑆𝑇 𝐶 assumes 25 ∘C. 𝐶𝑇 , which as-
sumes the value of −0.004, is the temperature coefficient given in / ∘C. This coefficient is
applied because the dusty and aging.

All this terms are constants, except the cells temperature, which follows the equa-
tion bellow, exposed in [68]:

𝑇𝐶 = 𝑇𝑎 + (𝑁𝑂𝐶𝑇 − 20)
0.8 .𝐺 (3.12)

where 𝑇𝑎 is the ambient temperature, given in ∘C , and G (in 𝑘𝑊/𝑚2) is the global
radiation. NOCT is the Normal Operational Condition Temperature (NOCT), which is
usually 48 ∘C [68].

3.2.3 Electrical energy storage system

Weather-dependent renewable generation has high variability due its random vari-
ables e.g. wind speed, sun radiation, rain, clouds. In order to overcome power generation
variability, energy storage system can be used to make the power system more dispatch-
able and reliable [72]. Because of that, the storage system is included in the MG.

A simplified storage model is considered, which the storage energy 𝐸𝐸𝑆𝑆 is ex-
pressed as:

𝐸𝐸𝑆𝑆(𝑡 + 1) = 𝐸𝐸𝑆𝑆(𝑡) + 𝜂Δ𝑃𝐸(𝑡) (3.13)

where 𝜂 denotes the power exchange efficiency, and 𝑃𝐸 is the power exchanged
between the storage device and the local power network.

3.2.4 Load demand

Electrical loads can also be characterized as a stochastic variable. For the present
work, demand is represented by a normal distribution function 𝑁(𝜇, 𝜎2) [32], where 𝜇 and
𝜎 are the mean and standard deviation of the total load, respectively.

To have representative values of demand of real system, it is used the dynamic
established in the IEEE Reliability Test System (IEEE/RTS) 1996 report [73].

The load profile information provided in IEEE/RTS can be used to calculate sys-
tem hourly loads for one year on a per unit basis, expressed in a chronological fashion.
So, daily, weekly and seasonal patterns can be developed. The load model is sufficient
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for generating capacity and reliability studies such as loss of load or energy expectation
analysis [63].

3.2.5 Diesel generator

A diesel generator consists of an internal combustion engine (ICE) and a syn-
chronous generator coupled on the same shaft. Such systems are widely used as backup
or emergency power in commercial and industrial installations. Diesel generators are also
heavily used in remote locations where it is impractical or expensive to connect to utility
power. They are typically designed to operate at higher efficiencies since, in the long run,
the fuel costs will dominate the initial capital costs.

The generator is either a permanent magnet or a wound-field synchronous ma-
chine. In the case of a permanent magnet generator, the front end consists of a rectifier
and a voltage-source converter to provide the necessary AC voltage at the desired fre-
quency. The presence of a power electronics front end increases the overall cost of the
system and decreases its fault tolerance. However, the presence of the inverter enables
non-synchronous operation of the engine which makes it possible to achieve increased
power density and higher efficiency [74].

For the proposed microgrid, the use of diesel generators is justified by the fact of
their dispatchability feature, which guarantees flexibility and increases the reliability of
the system.

3.3 Petri nets
A Petri net (PN) is an abstract, formal model of information flow. The properties,

concepts and techniques of Petri net are being developed in a search for describing and
studying information processing systems that may exhibit events which are concurrent,
asynchronous, distributed, parallel, nondeterministic, and/or stochastic [75].

The representation of a Petri net model is made by means of a bipartite graph,
comprising two types of nodes, named places and transitions . A place is represented
by a circle and a transition by a filled rectangle (see Figure 4). Places and transitions
are connected by arcs. An arc is directed and connects either a place to a transition or a
transition to a place [76]. The PN graph models the static properties of a system, similarly
to a flowchart. In this context, what distinguishes PN graphs from typical flowcharts is the
capacity of abstraction. Such capacity must be understood as the ability of impose some
interpretation of meaning on each PN element. A common practice is to use the places
as states and the transitions as events. To illustrate this concept, a PN interpretation of
a simple product selling process is demonstrated in Figure 5.
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Place (State)Transition (Event)

Figure 4 – Petri net formalism

In addition to the static properties represented by the graph, a Petri net has
dynamic properties when assuming the execution of the flowchart. The dynamics of a PN
model is represented by the movement of markers, also referred as tokens, between the
places according to the occurrence (firing) of events defined in the transitions. Because
of this, a Petri net with tokens can be defined as marked Petri net. Tokens, which are
graphically represented by filled circles, are information assigned to places to represent
the situation (state) of the network at any given time. The distribution of the tokens in
the places is formalized by the notion of marking, which can be seen either as a function
m(p) representing the number of tokens in place p or as a vector m = (𝑚1, 𝑚2, . . . , 𝑚𝑛),
where m𝑖 is the number of tokens in place 𝑝𝑖. To facilitate the understanding of the present
work, hereafter, the terminology Petri net is used to refer to both static and the dynamic
graph (marked Petri net).

Still regarding the PN dynamics, a transition can only be fired if each of the input
places of this transition contains at least one token. The transition is then said to be
enabled. Firing of a transition 𝑡𝑗 consists in withdrawing a token from each of the input
places of transition 𝑡𝑗 and in adding a token to each of the output places of transition 𝑡𝑗.
Figure 5 exemplifies a simple dynamic of firing a transition. As can be seen, there is 2
tokens in place p1 and 4 tokens in place p2 at the initial marking (Figure 5a). When t2

fires, it is removed one token from each input place (p1 and p2) and is inserted one token
in the output place p3 (Figure 5b). To this example, the initial marking M0 is (2, 4, 0),
and next marking M1 is (1, 3, 1). The observation of all possible markings correspondent
to all possible transition firings allows a comprehension of how the PN model behaves
[75]. Such study is made by what is defined as reachability tree, and it is in the scope of
state space analysis. In section 4.1, the state space analysis will be discussed again.

A formal definition for Petri nets is shown [77]. It is defined that the PN is a
5-tuple, 𝑃𝑁 = {𝑃, 𝑇, 𝐹, 𝑊, 𝑀0} where

∙ 𝑃 = {𝑝1, 𝑝2, · · · , 𝑝𝑚} is the finite set of places;

∙ 𝑇 = {𝑡1, 𝑡2, · · · , 𝑡𝑚} the finite set of transitions;

∙ 𝐹 ⊆ (𝑃 × 𝑇 ) ∩ (𝑇 × 𝑃 ) is a set of arcs (flow relation);

∙ 𝑊 : 𝐹 → {1, 2, 3, · · · } is a weight function (indicates the number of tokens produced
or removed after firing a transition);
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∙ 𝑀0 : 𝑃 → {0, 1, 2, 3, · · · } is the initial marking;

∙ 𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ̸= ∅.

p1 - buyersp2 - products to be sold

t1 - arrival of a buyer

t2 - sale

p3 - products sold

(a) Before firing

p1 - buyersp2 - products to be sold

t1 - arrival of a buyer

t2 - sale

p3 - products sold

(b) After firing

Figure 5 – Petri net dynamics

3.4 Markov Chain
The term "Markov model" is referred to mathematical discrete models in which

the future state of a system depends only on its current state, not on its past history. This
"memoryless" characteristic, called markovian property, implies that all transitions from
one state to another occur at constant rates. Much of the practical importance of Markov
models for reliability analysis is due to the fact that a large class of real-world devices
and systems exhibit essentially constant failure rates, and can therefore be effectively
represented and analyzed using Markov models.

For any given system, a Markov model consists of a list of the possible states of
that system, the possible transition paths between those states, and the rate parameters
of those transitions. For reliability analysis, the transition usually consist of failures and
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repairs. Graphically, a Markov model is composed by two elements named state (bubble)
and transition paths (arrow). Such structure is depicted on Figure 6.

A classical usage of Markov chain in power system is the calculation of reliability
indexes based on generator and/or grid outages [78]. Usually, the two state-model rep-
resents the outage scenario by means of up and down condition of the element, and the
transition between this states is dependent on the mean time between failures (MTBF)
and the mean time to repair (MTTR). After that, the steady-state calculation is per-
formed in order to have the probability of being in each state.

Following, a brief introduction on Markov chains analysis is conduct in order to re-
view some concepts that support the development of this work. For a better understanding
of the topic, it is suggested the readings of [79] and [80].

Up Down

𝜆

𝜇

Figure 6 – Two state Markov chain

3.4.1 Discrete time Markov chain (DTMC)

A Markov process 𝑋𝑡 is a stochastic process with the property that given the
value of 𝑋𝑡, the values of 𝑋𝑣 for 𝑡 < 𝑣 are not influenced by the values of 𝑋𝑢 for 𝑢 < 𝑡.
That means, assuming a set of states S={s1,s2,...s𝑟}, the markovian process starts in one
of these states and moves successively to another regardless of its previous state. For
instance, if the process is currently in state 𝑠𝑖, then it can moves to state 𝑠𝑗 at the next
move with a probability denoted by 𝑝𝑖𝑗. The process can also remain in the state it is in,
and this occurs with probability 𝑝𝑖𝑖. These probabilities are called transition probabilities,
and they do not depend upon which states the process was before the current state.

For a discrete time (discrete time Markov chain (DTMC)), this property is given
by (3.14), and the probability after n-steps is given as (3.15).

𝑃 [𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1, · · · , 𝑋0 = 𝑖0] = 𝑃 [𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖]; 𝑃𝑖𝑗 ≥ 0 (3.14)

𝑝
(𝑛)
𝑖𝑗 = 𝑃 (𝑋𝑚+𝑛 = 𝑗|𝑋𝑚 = 𝑖) (3.15)

where, 𝑝
(𝑛)
𝑖𝑗 is the probability of transition between the states i and j in n-steps.

A Markov chain 𝑋𝑡 with the space of states S, which means, S is the set of
possible values of 𝑋𝑖, and assuming the probability of transition 𝑃𝑘(·, ·), it is given that
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the probability of transition in n-steps can be find from any intermediate state, including
the initial state. Equation (3.16) indicates such relation.

𝑝
(𝑛)
𝑖𝑗 =

∑︁
𝑘∈𝑆

𝑝𝑛−1
𝑘𝑗 𝑝𝑖𝑘 (3.16)

This equation is interpreted in two parts:

∙ the first part of summation represents the probability of moving in (n-1) steps from
state k to state j

∙ the second part of summation represents the probability of transition in just one
step to intermediate state k;

Joining all possible k-states, it is obtained the path from state i to state j in
n-steps. This recursive equation is known as identity of Chapman-Kolmogorov. Another
important notation is the transition matrix P, which gives all the information about the
state transition.

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑝11 𝑝12 · · · 𝑝1𝑗

𝑝21 𝑝22 · · · 𝑝2𝑗

... ... . . . ...
𝑝𝑖1 𝑝𝑖2 · · · 𝑝𝑖𝑗

⎞⎟⎟⎟⎟⎟⎟⎠
In case the probabilities of P be stationary, it is defined that the Markov chain is

homogeneous. Thus, assuming 𝜋 = [𝜋1𝜋2 · · · 𝜋𝑗] as the vector of state probabilities, where
𝜋𝑗 with 𝑗 = 1, 2, ..𝑟 is the probability of being in state 𝑠𝑗, it is possible to prove that:

𝜋𝑛 = 𝜋0

𝑛∏︁
𝑖=1

𝑃𝑖 (3.17)

An analogous form for (3.17) is 𝜋𝑛 = 𝜋0𝑃
(𝑛). These equations represent that the

future state depends on the initial probability distribution and the exponentiation of P.

3.4.2 Continuous time Markov chain (CTMC)

The continuous time Markov chain (CTMC) has an analysis similar to DTMC
provided that the markovian property (3.14) be satisfied.

Given the general case (3.18), and considering 𝑡 = 𝑡 + 𝜏 , then, the relation (3.19)
comes up.

𝑝𝑖𝑗(𝑠, 𝑡) = 𝑃 [(𝑋𝑡 = 𝑗|𝑋𝑠 = 𝑖)], 𝑠 ≤ 𝑡 (3.18)
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𝑝𝑖𝑗(𝑠, 𝑡 + 𝜏) = 𝑃 [(𝑋𝑡+𝜏 = 𝑗|𝑋𝑠 = 𝑖)],∀𝑡 (3.19)

So, from a stochastic process 𝑋(𝑡), 𝑡 ≥ 0 in continuous time, such process is a
CTMC if: (i) the transition probability does not depend on the instant that the counting
time started; (ii) the past information are irrelevant; (iii) the time that the process is
at current state is irrelevant. Based on this, a homogeneous Markov chain is that one in
which the probabilities 𝑝𝑖𝑗(𝑠, 𝑡 + 𝜏) depend just on 𝜏 and not on the instant that it has
occurred. In this case, it is possible to find the probability of the system being on state j
given that at instant t it was on state i. The equation (3.20) shows this consideration.

𝑝
(𝜏)
𝑖𝑗 = 𝑃 [(𝑋𝑡+𝜏 = 𝑗|𝑋𝑠 = 𝑖)], ∀𝑡 (3.20)

So, from (3.20), it is necessary to reconsider the Chapman-Kolmogorov observing
the effects that parameter 𝜏 causes. Admitting the time interval 𝑠 ≤ 𝑡 ≤ 𝑡 + 𝜏 , the
Chapman-Kolmogorov can be rewritten as (3.21). Using the infinitesimal statement on
each probability transition, the rate transition (𝜆𝑖𝑗) can be defined as shown in (3.22).
Derivating (3.21) in relation to 𝜏 , and assuming that the time t is equal to the initial time
s, it reaches the relation (3.23). Thus, the concept of transition probability is replaced by
the concept of transition rate, and in a similar way, the matrix of probability transition
P, is replaced by the transition rate matrix Q.

𝑝
(𝑠,𝑡)
𝑖𝑗 =

∑︁
𝑘∈𝑆

𝑝
(𝑡,𝑡+𝜏)
𝑘𝑗 𝑝

(𝑠,𝑡)
𝑖𝑘 (3.21)

𝜆𝑖𝑗 =
𝑑𝑝

(𝜏)
𝑖𝑗

𝑑𝜏

⃒⃒⃒⃒
𝜏=0

(3.22)

𝑑𝑝
(𝑠,𝑡+𝜏)
𝑖𝑗

𝑑𝜏
=

𝑑𝑝
(𝜏)
𝑖𝑗

𝑑𝜏
=

∑︁
𝑘∈𝑆

𝑝
(𝑠,𝑡)
𝑖𝑘

𝑑𝑝
(𝜏)
𝑘𝑗

𝑑𝜏
=

∑︁
𝑘∈𝑆

𝑝
(𝑠,𝑡)
𝑖𝑘 𝜆𝑘𝑗 (3.23)

𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜆11 𝜆12 · · · 𝜆1𝑗

𝜆21 𝜆22 · · · 𝜆2𝑗

... ... . . . ...
𝜆𝑖1 𝜆𝑖2 · · · 𝜆𝑖𝑗

⎞⎟⎟⎟⎟⎟⎟⎠
Another important property for CTMC is the correlation between mean time that

stochastic process stays on state i before making a transition to other state j, and the
transition rate 𝜆𝑖𝑗. Admitting that 𝑇𝑖𝑗 is the time that the a stochastic process stays
on state i before making a transition to other state j, and also assuming that this time
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spent in i obeys a negative exponential distribution (3.24), then, there exists the relation
𝑇𝑖𝑗 = 1/𝜆𝑖𝑗. This condition can be observed in (3.25) and (3.26).

𝑓(𝑡) = 𝜆𝑒(−𝜆𝑡) (3.24)

∫︁ ∞

0
𝑓(𝑡)𝑑𝑡 = 1 (3.25)

𝑇 𝑖𝑗 =
∫︁ ∞

−∞
𝜆𝑖𝑗𝑒

(−𝜆𝑖𝑗𝑡)𝑑𝑡 = 1
𝜆𝑖𝑗

(3.26)

3.4.3 Steady state analysis

The steady state analysis consists in observing the stochastic process considering
𝑡→∞, in which there is no variation on the probabilities of staying in each state.

3.4.3.1 Steady state for DTMC

An initial probability distribution, defined on 𝑆, specifies the starting state proba-
bility distribution 𝑃 . Usually it is of interest to consider the next possible states, defined
by the analogous transition matrix 𝑃 (𝑛), which indicates the probability for the process
in the 𝑛𝑡ℎ step. The particular case described by 𝑛→∞ is called steady state. Moreover,
the main objective of the steady state analysis is check the probability of the system to
be in certain state of S after a long period of observation. This condition is defined by a
probability vector named steady state vector 𝜋.

The steady state vector represents the stationary condition for a Markov chain. So,
to calculate it, the linear problem (3.27), derived from Champman-Kolmogorov equation,
has to be solved. (3.27) express the relation between the steady state vector 𝜋 and the
probability transition matrix P. Besides, since 𝜋 is a probabilistic solution, it is a simple
conclusion that the summation of 𝜋 must be equal one, as shown in (4.29). So, to calculate
the steady state vector, it is necessary to solve this system of equation.

𝜋 = 𝜋𝑃 (3.27)

∑︁
𝑗∈𝑆

𝜋𝑗 = 1 (3.28)

3.4.3.2 Steady state for CTMC

Assumes that 𝜋
(𝑡)
𝑗 the probability of being on state j after the system has operated

t time unities as shown in (3.29), and 𝜋(𝑡) = [𝜋(𝑡)
0 𝜋

(𝑡)
1 𝜋

(𝑡)
2 · · · ] is the vector of probability
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states. Considering the convenient time 𝑡 + 𝜏 , then, Chapman-Kolmogorov can be ex-
pressed as (3.30). When this equation is derivated in relation to 𝜏 , it results in (3.31)
with its matrix form expressed in (3.32).

𝜋
(𝑡)
𝑗 = 𝑃 (𝑋𝑡 = 𝑗) (3.29)

𝜋
(𝑡+𝜏)
𝑗 =

∑︁
𝑘∈𝑆

𝑝
(𝜏)
𝑘𝑗 𝜋𝑡

𝑘 (3.30)

𝑑𝜋
(𝑡+𝜏)
𝑗

𝑑𝜏
=

∑︁
𝑘∈𝑆

𝜆
(𝜏)
𝑖𝑘 𝜋𝑡

𝑘 (3.31)

𝑑𝜋
(𝑡+𝜏)
𝑗

𝑑𝜏
= 𝜋(𝑡)𝑄 (3.32)

𝑙𝑖𝑚𝑡→∞
𝑑𝜋(𝑡+𝜏)

𝑑𝜏
= 0 (3.33)

For steady state observation (𝑙𝑖𝑚𝑡→∞𝜋(𝑡)), it is expected that 𝜋(𝑡) stabilizes, and
therefore, there is no dependency of 𝜏 anymore, resulting in (3.33). As conclusion, applying
this result in (3.32), the steady state probability vector is given solving the system formed
by (3.34) and (3.35).

0 = 𝜋𝑄 (3.34)

∑︁
𝑗∈𝑆

𝜋𝑗 = 1 (3.35)

A numerical example is given below in order to demonstrate the steady state as-
sessment. Regarding a Markov model for reliability analysis as shown in Figure 6, assumes
a MTBF equals to 10 hours, returning 𝜆 = 0.1 (𝜆 = 1/𝑀𝑇𝐵𝐹 ), and a MTTR equals to
1 hour, returning 𝜇 = 1 (𝜇 = 1/𝑀𝑇𝑇𝑅). Thus, the matrix Q (transition rate matrix) is:

𝑄 =
⎛⎝−𝜆 𝜆

𝜇 −𝜇

⎞⎠ =
⎛⎝−0.1 0.1

1 −1

⎞⎠
Substituting such matrix in (3.34) and considering the condition of normalization

presented in (3.35), the following mathematical system is established:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−0.1𝜋1 + 𝜋2 = 0
0.1𝜋1 − 𝜋2 = 0

𝜋1 + 𝜋2 = 1
(3.36)
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Solving (3.36), the final probability distribution is shown by the vector 𝜋 =
[0.91, 0.09], indicating that the steady state probability of the system being UP is 91%,
and 9% of being DOWN.

3.5 Mixed Integer Linear Programming (MILP)
Mixed integer linear programming is a subset of the broader field of mathematical

programming, which provides a mechanism for optimizing decisions that take place in
complex systems [81].

MILP formulations include a set of variables, which represent actions that can be
taken in the system being modeled. Then, one attempts to optimize (either in the mini-
mization or maximization sense) a function of these variables, which maps each possible
set of decisions into a single score that assesses the quality of the solution. These scores
are often in units of currency representing total cost incurred or revenue gained. The
limitations of the system are included as a set of constraints, which are usually stated
by restricting functions of the decision variables to be equal to, not more than, or not
less than, a certain numerical value. Another type of constraint can simply restrict the
set of values to which a variable might be assigned. Several applications involve decisions
that are discrete (e.g., which generator unit should be committed or decommitted ), while
some other decisions are continuous in nature (e.g., determining how much energy each
generator must dispatch). Evidently, the ability to enumerate all possible values that a
discrete decision can take seems appealing; however, in most applications, the discrete
variables are interrelated, requiring an enumeration of all combinations of values that the
entire set of discrete variables can take. Observe all possible combination is very time
consuming and sometimes impractical.

Therefore, a more efficient technique is required to solve problems containing dis-
crete variables. MILP techniques do not explicitly examine every possible combination of
discrete solutions, but, they examine a subset of possible solutions instead, and use opti-
mization theory to prove that no other solution can be better than the best one found.
This type of technique is referred to as implicit enumeration.

The name integer linear programming (ILP) refers to the class of combinatorial
constrained optimization problems with integer variables, where the objective function is
a linear function and the constraints are linear inequalities [82]. The ILP optimization
problem can be stated in the following general form:

Minimize or maximize 𝑐𝑥 (3.37)

subject to: 𝐴𝑥 ≤ 𝑏 (3.38)
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𝑥 ∈ 𝑍𝑛 (3.39)

where the solution 𝑥 ∈ 𝑍𝑛 is a vector of 𝑛 integer variables: 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ,
and the data are rational given by the 𝑚 × 𝑛 matrix 𝐴, the 1 × 𝑛 matrix 𝑐, and the
𝑚 × 1 matrix 𝑏. This formulation includes also equality constraints, since each equality
constraint can be represented by means of two inequality constraints like those included
in (3.38).

Considering the before mentioned ILP definition, comes that a mixed integer lin-
ear program (MILP) is a linear program with the added restriction that some, but not
necessarily all, of the variables must be integer-valued. Several studies also replace the
term “integer” with “0-1” or “binary” when variables are restricted to take on either 0 or
1 values.

There are, at least, three different approaches for solving integer programming
problems, although they are frequently combined into “hybrid” solution procedures in
computational practice (refer to [82]):

∙ Cutting planes algorithms based on polyhedral combinatorics;

∙ Enumerative approaches and Branch-and-Bound, Branch-and-Cut and Branch-and-
Price methods;

∙ Relaxation and decomposition techniques.

To exemplify the concept of solving a mixed integer linear-programming, a basic
branch-and-bound algorithm is described as follows.

The algorithm starts with the original MILP, not knowing how to solve this prob-
lem directly, it is removed all of the integrality restrictions. As integrality, one can un-
derstand that only integer values are accepted as feasible solution. The resulting LP is
called the linear-programming relaxation of the original MILP. Then it is solved this LP.
If the result satisfies all the integrality restrictions, even though these were not explicitly
imposed, then the MILP is solved. If not, as it is usually the case, the normal procedure is
to pick some variable that is restricted to be integer, but whose value in the LP relaxation
is fractional (unfeasible solutions). For the sake of argument, suppose that this variable
is 𝑥 and its value in the LP relaxation is 5.7. One can excludes this value by, in turn,
imposing the restrictions 𝑥 ≤ 5.0 and 𝑥 ≥ 6.0.

If the original MILP is denoted 𝑃0, then it is possible to denote these two new
MIPLs by 𝑃1, where 𝑥 ≤ 5.0 is imposed, and 𝑃2, where 𝑥 ≥ 6.0 is imposed. The variable
𝑥 is then called a branching variable, and it is said the MILP have been branched on 𝑥,
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Figure 7 – The search space of a mixed integer linear program - MILP tree

producing the two sub-MILPs 𝑃1 and 𝑃2. It should be clear that if one can computes
optimal solutions for each of 𝑃1 and 𝑃2, then it is possible to take the better of these two
solutions, and it will be optimal to the original problem, 𝑃0. In this way 𝑃0 is replaced
by two simpler (or at least more-restricted) MILPs. Applying the same idea to these two
MILPs, solving the corresponding LP relaxations and, if necessary, selecting branching
variables, it is generated what is called a search tree as shown in Figure 7. In other words,
the branch-and-bound algorithm solves a mixed integer linear program by dividing the
search space and generating a sequence of subproblems. The subproblems generated by
the search procedure are called the nodes of the tree, with 𝑃0 designated as the root node.
The leaves of the tree are all nodes that have been branched from 𝑃0. In general, if one
reaches a point at which it is possible to solve or to dispose all leaf nodes, which means
that one can evaluate all feasible solutions, then the solution of original MILP can be
computed (optimal solution). Refer to Figure 7.

For better understanding, it is proposed an example in the context of microgrid
planning. This example is adopted from [81].

The problem is to minimize the capital costs of acquiring equipment for installing
a photovoltaic system for a residence. The equipment is sold in kits ready for installation,
which are composed of inverters and photovoltaic panels. In addition, there are some
specifications and requirements for the project, as shown below:

∙ There are two vendors available: 𝑋 and 𝑌 ;

∙ The equipment is sold in kits that cost $4,000.00 in seller X and $6000.00 in seller
Y;

∙ It is required 5 kits for the residence project;
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∙ It is required an even number of kits purchased from each seller;

∙ It is required that the difference of kits purchased in X and Y be less than or equal to
1. This restriction may be justified on the grounds that the quality of kits provided
by Y are greater than those provided by X.

The prices of kits and the capital costs are considered in thousands of dollars to
facilitate the modeling and solution of the problem. In this way, the mathematical model
can be formulated as follows:

Minimize 𝑧 = 4𝑥 + 6𝑦 (3.40a)

subject to: 2𝑥 + 2𝑦 ≥ 5 (3.40b)

𝑥− 𝑦 ≤ 1 (3.40c)

𝑥, 𝑦 ≥ 0 (3.40d)

The first concept that is discussed in solving MILPs is the relaxations. A relax-
ation of a MILP is a problem such that (a) any solution to the MILP corresponds to
a feasible solution to the relaxed problem, and (b) each solution to the MILP has an
objective function value greater than or equal to that of the corresponding solution to the
relaxed problem. The most commonly used relaxation for an MILP is its LP relaxation,
which is identical to the MILP with the exception that variable integrality restrictions
are eliminated.

So, returning to the proposed problem of installing a photovoltaic system on a
residence, graphically, Figure 8 illustrates the feasible region (set of all feasible solutions)
to the LP relaxation of formulation (3.40). Considering such region, the optimal solution
is found at the point (1.75, 0.75).

Solving the LP relaxation has yielded a fractional, not integer, solution. Thus, such
point (1.75, 0.75) is not a MILP feasible solution. In fact, all feasible solutions have the
characteristic that either 𝑥 ≤ 1 or 𝑥 ≥ 2. Therefore, one can split the problem (3.40) into
two subproblems: one in which 𝑥 ≤ 1 (called region 1), and one in which 𝑥 ≥ 2 (called
region 2). All the solutions to the original MILP are contained in exactly one of these two
new subproblems. This is called branching, and one could also has branched the variable
y instead, by requiring that either 𝑦 ≤ 0 or 𝑦 ≥ 1.

The feasible region of the two new subproblems are depicted in Figure 9. When
𝑥 ≤ 1, the optimal solution is (1, 1.5) with the objective function value 13. When 𝑥 ≥ 2,
the optimal solution is (2,1) with the objective function value of 14. So, since the best
solution happens to be an integer solution in the 𝑥 ≥ 2 region, then, there is no need
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Figure 8 – Feasible region for LP problem (adapted from [81])

for further search in such region. This region is said to be fathomed by integrality. The
solution (2, 1) is stored, and it is called incumbent solution. If no better solution is found,
it will become our optimal solution.

At this point, there is one active region (or “active node” in the context of branch-
and bound trees, which we will describe shortly), which is region 1. An active region is
one that has not been branched on, and that must still be explored, because there is a
possibility that it contains a solution better than the incumbent solution. The region 1
is recursively divided, in which 𝑥 ≤ 1. Since the optimal solution in this region was a
non-integer solution (1, 1.5) , one must branch it, creating two new subproblems: one in
which both 𝑥 ≤ 1 and 𝑦 ≤ 1 (called region 3), and one in which 𝑥 ≤ 1 and 𝑦 ≥ 2 (called
region 4).

However, note that region 3 is empty, because the stipulation that both 𝑥 and 𝑦

are no more than 1 makes it impossible to satisfy (3.40b). Therefore, there are no integer
solutions in this region either, and the searching in region 3 stops. This region is said to
be fathomed by infeasibility. The optimal solution for the linear relaxation of region 4 is
(0.5, 2), with objective function value 14. Still the fact that no best integer solution was
found over region 4, it is known that the best integer solution (if one even exists) has
already an objective function value of 14 or more. However, the incumbent solution has
an objective function value of 14, which allows to say that the best solution in region 4
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Figure 9 – Feasible region of subproblems (adapted from [81])

Figure 10 – Branch-and-bound tree (adapted from [81])

will not improve the incumbent solution that was previously found. Thus, the searching
for the best solution over region 4 stops. Region 4 is said to be fathomed by bound.

Figure 10 depicts a tree representation of this search process, which is called the
“branch-and-bound tree.” Each node of the tree represents a feasible region. Now, there are
no more regions to be examined (no more active nodes), and the algorithm terminates with
the incumbent solution, (2, 1), as an optimal solution. In summary, the decision-maker
must buy 2 kits from seller X and 1 kit from seller Y to guarantee all the requirements of
the residential project, representing an optimized investment of $14,000.00.
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3.6 Particle Swarm Optimization (PSO)
Many different artificial intelligence (AI) techniques have been applied on micro-

grid planning, each one dedicated to solve a specific problem. Genetic algorithm (GA),
PSO and hybrid approaches mixing both techniques, are commonly used on optimiza-
tion problems as economic dispatch, microgrid optimal design, and optimal positioning
of DERs [11, 25, 28, 83, 84]. Artificial neural networks (ANNs) are useful in solving data-
intensive problems where the algorithm or rules to solve the problem are unknown or
difficult to express. For instance, ANN is used to estimate microgrid maximum power
provided by solar [85] and short-term load forecasting [86]. Fuzzy systems use fuzzy sets
to deal with imprecise and incomplete data. In this way, in [87] fuzzy is used to capture
nonlinearities and systematically represent the uncertainties associated with renewable
resources at a certain confidence level, and in [28] it has the function of classify a specific
stochastic parameter, more specifically, traveled distance of electrical vehicles. Also, Fuzzy
techniques can be applied to support a decision-making process in microgrid planning as
shown in [88].

Regarding that the major issue of the proposed framework is establishing the size
of DERs in a manner that the operation costs, reliability and pollutants are minimum, the
PSO seems quite promising, since it is widely applied for global minimization problems
[89]. Besides, the PSO is a technique with versatile algorithms, simple enough to be
accessible for practical applications and easy to implement.

The traditional PSO, a form of swarm intelligence, is a population-based dynamic
optimization algorithm. The objective of computational swarm intelligence is to model
the collaborative behavior of biological populations (behavior of insect colonies and other
animal societies) used to solve complex problems, generally optimization problems [90].

PSO is inspired by the ability of flocks of birds, schools of fish, and herds of
animals to adapt to their environment, find rich sources of food, and avoid predators
by implementing an “information sharing” approaches, hence, developing an evolutionary
advantage [91].

In PSO, the initialization process starts with the generation of a fixed number of
randomly generated particles (potential solutions) scattered in a multidimensional solu-
tion space. A swarm of particles moves around in a multidimensional search space until
they find the optimal solution. Each particle in the swarm represents a candidate solution
to the problem and moves towards the optimal point by appending a velocity with its
position. Using its own experience (pbest) and the experience attained by the neighboring
particles in the swarm (gbest), each particle updates its position during its moving. In
this way, each particle makes use of the pbest and gbest. The update mode is termed
as the velocity of particles. Particles update their positions and velocities in a heuristic
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manner [92].

Suppose that the search space is D dimensional, the 𝑖−𝑡ℎ particle of the population
can be represented by a D-dimensional vector 𝑋𝑖 = (𝑥1

𝑖 , 𝑥2
𝑖 , . . . , 𝑥𝐷

𝑖 )𝑇 . The velocity of this
particle can be represented by another D-dimensional vector 𝑉𝑖 = (𝑣1

𝑖 , 𝑣2
𝑖 , . . . , 𝑣𝐷

𝑖 )𝑇 . The
previously best visited position of 𝑖− 𝑡ℎ particle is denoted by 𝑃𝑖 = (𝑝1

𝑖 , 𝑝2
𝑖 , . . . , 𝑝𝐷

𝑖 )𝑇 and
the best particle in the swarm is denoted by 𝑃𝑔 = (𝑝1

𝑔, 𝑝2
𝑔, . . . , 𝑝𝐷

𝑔 )𝑇 . The update of the
particle position is accomplished computing the following equations (3.41) and (3.42) [91].
(3.41) calculates a new velocity for each particle based on its previous velocity, and (3.42)
updates each particle position in search space.

𝑉 𝑘+1
𝑖𝑑 = 𝑤𝑉 𝑘

𝑖𝑑 + 𝑐1𝑟1[𝑝𝑘
𝑖𝑑(𝑡)− 𝑥𝑘

𝑖𝑑(𝑡)] + 𝑐2𝑟2[𝑝𝑘
𝑔(𝑡)− 𝑥𝑘

𝑖𝑑(𝑡)] (3.41)

𝑥𝑘+1
𝑖𝑑 = 𝑥𝑘

𝑖𝑑(𝑡) + 𝑣𝑘+1
𝑖𝑑 (𝑡 + 1) (3.42)

where 𝑘 = 1, 2, 3, ... is the iteration number; 𝑑 = 1, 2, 3, ..., 𝐷 is the space dimen-
sion; 𝑖 = 1, 2, 3, ..., 𝑁 is the particle index; 𝑁 is the swarm size, 𝑤 is the inertia weight,
which controls the momentum of particle by weighting the contribution of previous veloc-
ity; 𝑐1 and 𝑐2 are positive constants called acceleration coefficients; 𝑟1 and 𝑟2 are random
numbers uniformly distributed between [0,1].

The complete procedure for PSO is:

Step P0: Initialize each solution by randomly generating its position 𝑋0
𝑖 and velocity

𝑉 0
𝑖 , and then calculate the fitness function 𝐹 (𝑋0

𝑖 );

Step P1: Let gen=1 and 𝑃 0
𝑖 = 𝑋0

𝑖 , and then find gbest such that 𝑃 0
𝑔𝑏𝑒𝑠𝑡 ≥ 𝑃 0

𝑖 for all
𝑖;

Step P2: Update the velocity and move to the next position for each solution using
(3.41) and (3.42);

Step P3: If the fitness value of solution 𝑗 is better than pbest, then set the current
fitness value to the new pbest for solution 𝑗;

Step P4: If any pbest is updated and is better than the current gbest, then set gbest
to the current best;

Step P5: If gen < N, then let 𝑔𝑒𝑛 = 𝑔𝑒𝑛 + 1 and go back to Step P2; otherwise,
stop.
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3.7 Pareto frontier - intuitive approach
One way to find good solutions to multi-objective problems is with Pareto op-

timality, named after economist Vilfredo Pareto. Pareto noticed that many economic
solutions helped some people while hurting others. He was interested in finding solutions
that helped some people without hurting anyone else. Solutions like this are now called
“Pareto improvements” [93].

To find such solutions, the first step when solving a multi-objective problem is to
get a handle on the feasible region (design space). After graphing the feasible region and
finding its boundaries in design space, the next step is to convert it to criterion space (refer
to Figure 11). In criterion space, the axes are no longer decision variables (𝑥1, 𝑥2, . . . 𝑥𝑖),
but objective functions ((𝑓1, 𝑓2, . . . 𝑓𝑛)). As last stage, the Pareto points (frontier) is char-
acterized using the concept of dominating points. There is no mathematical "best" point
along the Pareto front. Decision makers would have to get together and figure out how
they wanted to balance their priorities. Another implication of the Pareto front is that
any point in the feasible region that is not on the Pareto front is a bad solution [94–96].

Figure 11 – Design space and criterion space for 2-dimensional problem (adapted
from [97])

A multi-objective optimization problem can be formulated as (3.43) and (3.44):

minimize 𝐹 (𝑥) = (𝑓1(𝑥), . . . , 𝑓𝑚(𝑥))𝑇 (3.43)

subject to 𝑥 ∈ 𝑆, (3.44)

where F(x) is an objective vector, consisting of m-objective functions 𝑓𝑖 : ℜ𝑛 → ℜ
for all i ∈ {1, . . . , 𝑚}. 𝑆 ⊂ ℜ is called the design variable space and is defined as (3.45)

𝑆 = {𝑥 ∈ ℜ𝑛|𝑔𝑗(𝑥) ≤ 0 (𝑗 = 1, . . . , 𝑙), ℎ𝑘(𝑥) = 0 (𝑘 = 1, . . . , 𝑝)} (3.45)
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Here, 𝑔𝑗(𝑥) and ℎ𝑘(𝑥) are inequality and equality constraints, respectively. Multi-
objective optimization problems consist of two definitions that handle the trade-off among
the multiple criteria (objectives). Notably, these definitions are prescribed for minimiza-
tion problems.

Definition 1 (Pareto dominance). For 𝑥1 and 𝑥2 (𝑥1 ̸= 𝑥2), 𝑥1 is said to dominate
𝑥2 if for at least one 𝑖 = 1, . . . , 𝑚, 𝑓𝑖(𝑥1) ≤ 𝑓𝑖(𝑥2) and 𝑓𝑖(𝑥1) < 𝑓𝑖(𝑥2).

Definition 2 (Pareto optimality). Let 𝑥0 ∈ 𝑆. Then, 𝑥0 is Pareto optimal when
there are no other solutions in 𝑆 dominating 𝑥0.

Based on these definitions, the Pareto solution set or non-dominated solution is a
subset of all the Pareto-optimal solutions. So, the basic definition of the Pareto frontier
is that it consists of exactly those alternatives that are not dominated by any other
alternative.

To illustrate such concept, imagine a problem with two objectives (cost and time).
It is said that an alternative A dominates B if A outscores B regardless of the trade-off
between cost and time — that is, it does not matter if A is both cheaper and faster than B.
Obviously, both the cheapest and fastest alternative always belong to the Pareto frontier,
and in fact, they are its endpoints. A simple algorithm to find the other alternatives (if
any) on the Pareto frontier is first sort the alternatives according to one of the objectives
— say, cost. One then starts with the cheapest alternative (which, as noted, always belongs
in the Pareto frontier) and skips successive alternatives in order of increasing cost until
one finds a solution with a higher value. This alternative is then added to the frontier and
the search is restarted from it.

Similar to Figure 11, the Figure 12 illustrates the Pareto front for a 2-dimensional
problem composed by two objective functions (𝐹1 and 𝐹2), which represents the cost and
time in the example above.

Figure 12 – Pareto frontier for 2-dimensional problem (adapted from [93])

A step-by-step description of the algorithm, assuming that A1,. . . ,An are the al-
ternatives in increasing order of cost, goes like this:

1. Let 𝑖 := 1;
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2. Add A𝑖 to the Pareto frontier;

3. Find smallest 𝑗 > 𝑖 such that value (A𝑗) > value (A𝑖);

4. If no such 𝑗 exists, stop. Otherwise let 𝑖 := 𝑗 and repeat from step 2
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4 Proposed Framework

The microgrid planning usually considers long-term forecasting and long-term in-
vestments [98]. Because of that, the time to make a decision in such problem is non-critic.
Thus, the planning process can be executed off-line, and the final decision can be taken
in few minutes, hours or days. However, it is necessary to enumerate a large number of
combined hypothetical situations, leading to an explosion-state problem. In other words,
such problem may become impractical to solve.

The models and searching techniques used on microgrid planning must be appro-
priate in the sense of examining only a preselected set of possible candidate solutions,
avoiding unpractical situations. Briefly explaining, the microgrid planning is a complex
and non-convex problem, requiring some assumptions in order to simplify it.

To illustrate such complexity, the work presented in [20] takes 118–155 min to run
each simulation of a microgrid planning problem which considers investments, operation,
and reliability costs, using commercial software on a high-performance computing server
consisting of four 10-core Intel Xeon E7-4870 2.4 GHz processors. Although the simulation
response time presented in [20] seems quite attractive for the performance point of view,
the authors also identifies the drawbacks of their planning model. In their solution, they
have not considered forecast errors, which could potentially alter the microgrid planning
results. Also, the proposed formulation is determined in an integrated fashion by solv-
ing a single optimization problem. A decomposition method could be employed in this
case to convert such problem into a set of smaller and easier to solve, yet coordinated,
subproblems.

The framework proposed in this thesis decomposes the microgrid planning/design
problem on specific subproblems, which are solved separately by a number of appropriated
tools. After that, the subproblems are associated on a multi-objective function which is
solved using a meta-heuristic approach.

Thus, the present work establishes two main coordinated problems, named opera-
tion optimization and reliability/contingency assessment. The former is based on classical
unit commitment problem (UCP), and the latter is a system reliability analyses. Both are
NP-hard problems [99,100], which means an even more complex problem if reliability and
UCP are considered at the same tool. Because of that, the problems are separated in two
district procedures. UCP is solved usign a MILP approach while reliability problem uses
a combination of Monte Carlo simulation (MCS) and steady state Markov chain analysis.

The proposed framework is an iterative procedure divided in five stages, named
microgrid coordination, operation optimization, reliability assessment, contingency assess-
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ment, and searching mechanism as shown in Figure 13.
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Figure 13 – Microgrid planning framework

The microgrid coordination stage has the function of modeling the philosophy
used by the energy management system (EMS) to control the power balance when the
microgrid is operating on isolated mode. The models of EMS are developed using the
Petri net formalism. Optimization stage performs a minimization of the operation cost and
pollutants emission considering the stochastic variables (generation and load demand) and
operational constraints in grid-connected mode. After that, for given DER composition
(𝑃𝑟,𝑖), it is estimated the reliability indexes by means of a Monte Carlo Simulation (MCS)
considering the EMS philosophy in isolated mode. From the loss of load expectation
(LOLE) reliability index, the contingency probability is calculated using the steady state
analysis of a Markov chain, assessing the distribution power system admitting all possible
mode transition. Finally, the PSO is responsible for searching the best microgrid design
considering a multidimensional space formed by all DER combination.

In this study, it is considered a high-level microgrid system design (tertiary con-
trol). Since the balance of current and voltage is managed at a lower level (primary
control), their associated balance equations are not explicitly shown in the following dis-
cussions.

The author’s paper [101] was the first effort to validate the proposed framework,
trying to join the most important aspects of planning and design of microgrids, as men-
tioned above. In general, the present thesis is a more accurate framework proposal than
such previous work.
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4.1 Microgrid coordination - Energy management system
The main function of this stage is to make a state observation and an event-based

behavior analysis of each component in the microgrid. To do so, the microgrid composed
by a wind turbine (WT), a photovoltaic system (PV), a energy storage system (ESS),
a set of diesel generators, and a group of local loads as already depicted in Figure 2, is
modeled using Petri nets (PN). The models presented here are adapted from [55] and [58].

Besides the individual elements, the PN modeling process aims to demonstrate
the event-based microgrid operation by means of a model which shows the philosophy of
coordinated control. In this way, the microgrid coordinator tries to satisfy the objective
of the microgrid which is the lower emission and economical generation avoiding load
shedding.

4.1.1 PN models of microgrid components

Starting with the wind turbine, it is assumed a three state model. One is the
STOP MODE, in which the generator is off. This state is achieved when the wind speed
is under or above certain limit. The second is defined as Maximum Power Point Tracking
(MPPT), when the turbine power is dependent of wind speed. The last one is the Constant
Output Power (COP), when the wind speed is higher than the rated wind speed and lower
than maximum allowable wind speed. Figure 14 illustrates the PN model while Table 2
describes it.

Table 2 – Wind turbine model description

PN instance Functionality description
Pwt1 Stop Mode
Pwt2 MPPT Operating Mode
Pwt3 Constant Output Power
Twt1 Wind speed𝑚𝑖𝑛 < Wind speed < Wind speed𝑟𝑎𝑡𝑒𝑑

Twt2 Wind speed𝑚𝑖𝑛 > Wind speed or Wind speed > Wind speed𝑚𝑎𝑥

Twt3 Wind speed𝑚𝑖𝑛 < Wind speed < Wind speed𝑟𝑎𝑡𝑒𝑑

Twt4 Wind speed𝑟𝑎𝑡𝑒𝑑 < Wind speed < Wind speed𝑚𝑎𝑥

Twt5 Wind speed𝑚𝑖𝑛 > Wind speed or Wind speed > Wind speed𝑚𝑎𝑥

Photovoltaic generators are described with two states as shown in Figure 15. The
states are MPPT and STOP MODE. The MPPT state has similar meaning as presented
on the wind turbine, but for solar system the power generation is dependent on solar
radiation. Besides that, the PV power output does not have upper solar radiation limits.
Table 3 indicates its dynamics.

In the same way, the diesel generator is represented only by two states (refer to
Figure 16). But, unlike the PVs, diesel generators have a WORKING MODE instead of a
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Pwt1 Pwt2 Pwt3

Twt1

Twt2 Twt3

Twt4

Twt5

STOP MODE MPPT COP

Figure 14 – Petri net model of wind turbine

Table 3 – PV Petri net model description

PN instance Functionality description
Ppv1 MPPT mode
Ppv2 Stop Mode
Tpv1 Solar radiation < Solar radiation𝑚𝑖𝑛

Tpv2 Solar radiation ≥ Solar radiation𝑚𝑖𝑛

Ppv1 Ppv2

Tpv2

Tpv1

MPPT STOP MODE

Figure 15 – Petri net model of photovoltaic panel

MPPT state. That is because they have a dispatchable behavior, which means that they
are controllable elements. Because of such behavior, their operation are dependent on
the microgrid power balance, which means that the diesel generators need to receive the
information from the EMS to turn on or turn off. The Table 4 shows the description for
this model, indicating the dependency of power balance on its dynamics. The variables
P𝑊 𝑇 , P𝑃 𝑉 , P𝑆𝑇 and P𝐿𝑂 represents the produced or consumed power of wind turbine,
photovoltaic system, storage system and load demand, respectively.

The dynamics of energy storage system (ESS) is modeled by a three states Petri
net. The states are named CHARGING, DISCHARGING and IDLE. Its operation is
simple. Whenever the power balance of the renewable generators (P𝐺𝑟) and load (P𝐿𝑂)
is positive, the storage assumes the charging mode absorbing the surplus energy, and
whenever the balance is negative, it assumes the discharging mode delivering the required
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Table 4 – Diesel generator model description

PN instance Functionality description
Pmt1 Working mode
Pmt2 Stop Mode
Tmt1 P𝑊 𝑇 + P𝑃 𝑉 + P𝑆𝑇 - P𝐿𝑂 ≤ 0
Tmt2 P𝑊 𝑇 + P𝑃 𝑉 + P𝑆𝑇 - P𝐿𝑂 > 0

Pmt1 Pmt2

Tmt2

Tmt1

WORKING MODE STOP MODE

Figure 16 – Petri net model of diesel generator

energy. The IDLE state can be reached by two different events, one when the storage
system reaches its maximum capacity, and another when it reaches the minimum capac-
ity. The capacity of the storage is indicated by the state of charge (SOC) index. The
description and logic of ESS operation is shown in Table 5 and Figure 17.

Table 5 – Storage model description

PN instance Functionality description
Pst1 Charging operating mode
Pst2 Discharging operating mode
Pst3 Idle mode
Tst1 SOC > SOC𝑚𝑖𝑛 & P𝐺𝑟 < P𝐿𝑂

Tst2 SOC < SOC𝑚𝑎𝑥 & P𝐺𝑟 > P𝐿𝑂

Tst3 SOC ≤ SOC𝑚𝑖𝑛

Tst4 SOC > SOC𝑚𝑖𝑛 & P𝐺𝑟 < P𝐿𝑂

Tst5 SOC < SOC𝑚𝑎𝑥 & P𝐺𝑟 > P𝐿𝑂

Tst6 SOC ≥ SOC𝑚𝑎𝑥

Last, the load is represented by two states. It is considered only the normal oper-
ation and load curtailment states. The normal condition is assumed when the generation
is higher than the consumption, otherwise the system is put in load shedding state. The
model description is presented in table 6 and the PN dynamics is shown in Figure 18.
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Figure 17 – Petri net model for energy storage system

Table 6 – Load model description

PN instance Functionality description
Plo1 Normal load
Plo2 Cut load
Tlo1 P𝑊 𝑇 + P𝑃 𝑉 + P𝑆𝑇 + P𝐷𝐺 - P𝐿𝑂 < 0
Tlo2 P𝑊 𝑇 + P𝑃 𝑉 + P𝑆𝑇 + P𝐷𝐺 - P𝐿𝑂 ≥ 0

Plo1 Plo2

Tlo2

Tlo1

NORMAL
   LOAD

SHEDDING

Figure 18 – Petri net model of load demand

4.1.2 PN model of microgrid coordinated control - EMS philosophy

4.1.2.1 EMS PN modeling

The coordinated control executed by the energy management system has the func-
tion of manage and control the microgrid operation in isolated mode. In fact, depending
on the event and the current state of MG elements, the coordinator performs some actions
in order to maintain the power balance security, trying to avoid the load curtailment.
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The proposed philosophy of EMS strategy follows the concept of low emission of
pollutants, avoiding the use of fossil fuel in energy generation process (mainly CO2). For
this reason, the first attempt of power balance is using the renewable energy. In case of
power mismatch, the storage system acts, and if the power balance is still negative, as
last resource, the diesel generator is turned on. If all the available generation sources are
not enough to maintain the load balance, the system is placed in the load curtailment
mode.

From the PN modeling of microgrid elements, one can note that the discrete modes
of each element affect the whole system. So, the discrete modes of each device can be
understood as a subset of a global set denominated microgrid. Because of that, the EMS
needs to receive the actual operational mode of all elements in order to execute some
action.

In this way, the subsets with the respective operation mode can be summarized as
follows:

∙ WT → Wind Turbine {Stop: 0; MPPT: 1; COP: 2};

∙ PV → Photovoltaic system {Stop: 0 ; MPPT: 1};

∙ DG → Diesel generator {Stop: 0 ; Working: 1};

∙ ST → Storage {Discharging: -1; Idle: 0; Charging: 1};

∙ LO → Load {Economic: -1; Normal: 1};

The complete microgrid set, defined as M𝑆, is a combination of all subsets (𝑊𝑇 ×
𝑃𝑉 × 𝑆𝑇 × 𝐷𝐺 × 𝐿𝑂). Considering this, the complete M𝑆 set is formed by 3 × 2 ×
×3 × 2 × 2 = 72 operative modes. But, for the proposed EMS philosophy only a small
number of combination is possible. Actually, the microgrid set is reduced to M𝑆* which
has five operating modes (M𝑆* = {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5}). Table 7 shows the new microgrid
set M𝑆*.

Table 7 – Set of microgrid operating modes (M𝑆*)

Microgrid
mode

WT
mode

PV
mode

ST
mode

DG
mode

LO
mode

𝑚1 Unknown Unknown 1 0 1
𝑚2 Unknown Unknown -1 0 1
𝑚3 Unknown Unknown 0 1 1
𝑚4 Unknown Unknown 0 1 -1
𝑚5 Unknown Unknown 0 0 1

After defining the set of microgrid operating modes M𝑆*, the PN model of EMS
coordinated control is described as shown in Figure 19. The description of the event-based
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coordinated control is demonstrated in Table 8. As remarkable note, one can verify that
the proposed model is a Finite State Machine (FSM) since it is in only one state at a
time, which facilitates the model analysis.

Table 8 – Microgrid management model description

PN instance Functionality description
Pco1 Only renewable
Pco2 Discharging storage
Pco3 Diesel generator on
Pco4 Load shedding
Pco5 Full storage (SOC𝑚𝑎𝑥)
Tco1,2 P𝑊 𝑇 + P𝑃 𝑉 - P𝐿 < 0
Tco1,5 SOC = SOC𝑚𝑎𝑥

Tco2,1 P𝑊 𝑇 + P𝑃 𝑉 - P𝐿 > 0
Tco2,3 P𝑊 𝑇 + P𝑃 𝑉 + P𝑆𝑇 - P𝐿 < 0
Tco3,1 P𝑊 𝑇 + P𝑃 𝑉 - P𝐿 > 0
Tco3,4 P𝑊 𝑇 + P𝑃 𝑉 + P𝑆𝑇 + P𝐷𝐺 - P𝐿 < 0
Tco4,3 P𝑊 𝑇 + P𝑃 𝑉 + P𝑆𝑇 + P𝐷𝐺 - P𝐿 > 0
Tco4,1 P𝑊 𝑇 + P𝑃 𝑉 - P𝐿 > 0
Tco5,2 P𝑊 𝑇 + P𝑃 𝑉 + P𝑆𝑇 - P𝐿 > 0
Tco5,3 P𝑊 𝑇 + P𝑃 𝑉 + P𝑆𝑇 - P𝐿 < 0

Pco1

Tco2,1

Tco1,5

Tco3,1

Pco3

Tco3,4

Tco4,3

Tco5,3

Tco2,3

Tco1,2

Tco4,1

Tco5,2
Pco5

Pco2
Pco4

Figure 19 – Petri net model for microgrid energy management system

4.1.2.2 EMS PN analysis

A relevant analysis considering the Petri net formalism is the state space (SS)
assessment, which helps the study of dynamic behavior of a PN model. In order to exem-
plify the dynamics of proposed EMS philosophy, two state transition paths are simulated,
indicating that two different paths reach the same final state (reachability property). Fig-
ure 20 and Figure 21 show the graphics that relates the state path with the elapsed time
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and the fired transition which triggers the state changing. Under these circumstances,
the figures indicate two distinct paths that end up in the same state (place Pco4 - load
shedding).

Describing the first path (Figure 20), the system initializes at place Pco1, indicat-
ing that the microgrid power balance is dependent only of renewable sources (state Only
renewable); after that, the system goes to Discharging storage state (place Pco2), since
at this time (T1 ), the renewable sources were not enough to maintain the power balance;
next, it returns to state Only renewable at T2 ; then, the system is conduced to state
Full storage (SOC𝑚𝑎𝑥), representing that there was more generation than consumption,
besides, it indicates that the excess of produced energy was enough to fulfill the storage
system; at time T4, the demand was bigger than the combination of renewable and stor-
age, and there was the necessity of turning on the diesel generator; finally, it was observed
at time T5 that the system was conduced to place Pco4, showing that the combination
of all renewable sources, storage system, and dispachable generation was not enough to
keep the positive power balance of microgrid. Similar interpretation can be done for the
second path on Figure 21.
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Figure 20 – State dynamics - path 1

So, the dynamics of the EMS philosophy can be investigated over a state space. The
observable state space is defined by means of a reachability tree which is obtained from
the exhaustive search of all possible markings of PN model starting at the initial marking
M0. For the suggested model, the reachability space is a finite state space composed by five
states, and its dynamics can be evaluated considering any sequence of transition firing.

As suggested, the behavioral properties can be investigated by means of reachabil-
ity tree, as shown in Figure 22. Assuming the definitions presented in [77] and considering
the system as a FSM, it is guaranteed that the system is bounded and conservative, since
the number of tokens does not change for all possible markings, and has no dead-locks,
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Figure 21 – State dynamics - path 2

which means that for all possible markings the system has at least one enabled transition.
Such concept can be cleared up observing the dynamics exposed on the reachability graph
(refer to Figure 23).
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Figure 22 – Reachability tree of EMS coordinated control philosophy

From the non-deterministic behavior of the proposed EMS power balance strategy,
it is necessary the usage of an appropriate technique that deals with such characteristic.
Because of that, the Monte Carlo simulation (MCS) is adopted herein. The reliability
assessment using the MCS based on the EMS strategy defined by the PN models will be
better discussed in section 4.3.
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Figure 23 – Reachability graph of EMS coordinated control philosophy

4.2 Optimization of microgrid operation
The optimization of microgrid operation has two main procedures, named stochas-

tic modeling and optimization. The modeling refers to create a representative probabilistic
model of generation and load demand based on historical data and realistic system pa-
rameters. This probabilistic model is iteratively used to sample the stochastic scenarios
that will be applied on optimization process. Besides, the modeling stage concerns on a
exhaustive investigation to promote a proper database of weather variables, electricity
tariffs, capital and maintenance costs of power system equipments and infrastructure,
environmental taxes, fuel costs, and other technical data. The optimization stage is re-
sponsible for executing the mixed integer linear programming (MILP) in order to have
quantitative results for decision making. The MILP program will adjust the microgrid
power generation to minimize the costs and CO2 emission without violating some con-
straints. Figure 24 illustrates these two procedures and the relationship between them.

4.2.1 Stochastic modeling - historical data, curve fitting and sampling

The modeling process of optimization problem consists on observe historical data
(hourly data of weather and load), fit a probabilistic distribution function (pdf) for each
hour of four representative days (one day per year season), and then sample the stochastic
variables which will be inputs to the optimization tools. Similar procedure is seen in [72].

First, it is built a histogram for each hour of certain season day following the his-
torical data of weather and load demand. From this histogram, it is fitted a probabilistic
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Figure 24 – Microgrid optimal operation stage

distribution function considering the appropriate pdf for each stochastic variable as al-
ready discussed in the Section 3.2. Figure 25 shows the histogram and curve fit for the
solar radiation of the 12th hour of a summer day. In the same way, Figure 26, Figure 27,
and Figure 28 represents the histograms and curve fitting of temperature, wind speed,
and load demand respectively. This procedure of curve fitting is made for all 24 hours of
each representative day, which means that such operation is repeated 96 times (24 hours
× 4 season days = 96 hours). Observing such profiles, the results indicates some agree-
ment with what is suggested in the literature [32, 102–104], in which a Beta distribution
is suitable for radiation, a Normal distribution for temperature and load demand, and
Weibull distribution for wind speed.
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Figure 25 – Histogram of radiation of 12th hour of summer day based on historical data

Usually, traditional stochastic programming uses a large time-consuming sampling
process, and because of that it was necessary to found an efficient and low latency sampling
strategy. That is why the concept of representative days was used in this work. Such
approach is already used and disseminated in academia, as shown in papers [28,105].

Real information of wind speed, temperature, and radiation are used to calculate
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Figure 26 – Histogram of temperature of 12th hour of summer day based on historical
data
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Figure 27 – Histogram of wind speed of 12th hour of summer day based on historical data
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Figure 28 – Histogram of load demand of 12th hour of summer day based on historical
data



Chapter 4. Proposed Framework 74

the generated power of renewable sources. The data were provided by Centro de Estudos
e Previsão do Tempo e Clima de Minas Gerais - CEPreMG/UNIFEI. In order to evaluate
the whole year, it was used the 8760 hourly information of wind speed, temperature, and
radiation of the year 2015 in the city of Itajuba - Brazil.

From this database, the curve fitting process is performed and then the stochastic
generation is calculated using the formulation presented in 3.2. The load profiles are
sampled directly from the curve fitting made over the IEEE/RTS database [73]. The
seasonal daily profile of photovoltaic system, wind turbine, and the load consumption is
demonstrated in Figure 29, Figure 30, and Figure 31 respectively.
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Figure 29 – Daily profile of PV output power for each year season

4.2.2 MILP to solve economic power generation

The MILP optimization stage is responsible for the economic microgrid generation
dispatch aiming to reduce the microgrid operational cost and emission. In this way, it is
proposed an objective function which is an attempt to express the business and envi-
ronmental goals in mathematical terms. Such function, composed by decision variables
(power output of dispatchable generators), is subject to a group of operational and tech-
nical constraints. In the present study, the dispatchability is guaranteed by three diesel
generators and the main grid. The size of each diesel generator, as well as the renewable
generators (solar and wind), are defined in each iteration of the PSO procedure, while the
main grid is a fixed parameter. In this way, the economic microgrid generation dispatch
is continuously calculated for each particle of the PSO algorithm.

The MILP process is performed on a horizon of 96 hours (4 days × 24 hours), using
a representative day of each year season (summer, autumn, winter, spring). In practical
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Figure 30 – Daily profile of wind turbine output power for each year season
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Figure 31 – Daily profile of load demand for each year season

meanings, the IBM CPLEX software [106] (embedded MILP solver) will try to find the
best dispatchable generation combination over the 96 hours horizon, returning the lowest
value of objective function.

Briefly describing, the following MILP problem was solved with MATLAB using
the CPLEX solver and the YALMIP [107] interface.
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A) Objective function

Following, it is presented the objective function which models the economical,
technical and environmental interest factors. All parameters and variables are treated as
integer-valued or restricted integer ("binary 0-1" integer).

𝑚𝑖𝑛
∑︁
𝑡∈𝑇

𝑓𝑐𝑎𝑝(𝑡) + 𝑓𝑜𝑝𝑒(𝑡) + 𝑓𝑔𝑟𝑖𝑑(𝑡) + 𝑓𝑚𝑎𝑖𝑛(𝑡) + 𝑓𝑒𝑚𝑖(𝑡) (4.1)

where

𝑓𝑐𝑎𝑝(𝑡) =
∑︁

𝑖∈𝐷,𝐸,𝑅

𝐶𝑐𝑎𝑝,𝑖

𝑇𝑖

· 𝑓𝑐𝑟(𝑟, 𝑛𝑖) (4.2)

𝑓𝑜𝑝𝑒(𝑡) =
∑︁
𝑖∈𝐷

𝐶𝑓
𝑖 · 𝑃𝑖,𝑡 (4.3)

𝑓𝑔𝑟𝑖𝑑(𝑡) = 𝐶𝑔,𝑏𝑢𝑦 · 𝑃𝑔+,𝑡 − 𝐶𝑔,𝑠𝑒𝑙𝑙 · 𝑃𝑔−,𝑡 (4.4)

𝑓𝑚𝑎𝑖𝑛(𝑡) =
∑︁

𝑖∈𝐷,𝐸,𝑅

𝐶𝑚
𝑖 · 𝑥𝑖 (4.5)

𝑓𝑒𝑚𝑖(𝑡) =
∑︁
𝑖∈𝐷

𝜁𝑚
𝑖 · 𝑃𝑖,𝑡 (4.6)

where 𝑓𝑐𝑎𝑝(·) is the capital cost function of DERs, which accounts for the payback
for initial outlay of devices; 𝑓𝑜𝑝𝑒(·) is the operational cost function of DGs, including the
fuel cost; 𝑓𝑔𝑟𝑖𝑑(·) is the energy purchase/sell cost function, and it includes the costs of
exchanging power with the grid; 𝑓𝑚𝑎𝑖𝑛(·) is the maintenance cost of each DER unit 𝑥𝑖;
𝑓𝑒𝑚𝑖(·) represents the tax cost of CO2 emission coming from fossil fuel generators. The
parameter 𝐶𝑐𝑎𝑝,𝑖 is the initial capital cost of device 𝑖; 𝑇𝑖 is the yearly operating hours of
device 𝑖; 𝑓𝑐𝑟 is the capital recovery factor; 𝑟 is the interest rate; and 𝑛𝑖 is the depreciation
period 𝑖 in years.

To evaluate the hourly value capital cost, the initial capital cost is converted to
annual cost with the capital recovery factor, and then to hourly cost with the yearly
operating hours. The capital recovery factor is used to calculate the present value of
annuity, and it is expressed as

𝑓𝑐𝑟(𝑟, 𝑛𝑖) = 𝑟(1 + 𝑟)𝑛𝑖

(1 + 𝑟)𝑛𝑖 − 1 (4.7)
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B) Constraints

For the constraints, it is admitted the power balance constraint in (4.8), the unit
generation limitation in (4.13), the grid limit energy importation/exportation in (4.14),
and the storage operation constraints in (4.15), (4.16), (4.17), (4.18), (4.19), (4.20).

∑︁
𝑖∈𝐷,𝐸,𝑅

𝑃𝑖,𝑡 + 𝑃𝑔+,𝑡 − 𝑃𝑔−,𝑡 = 𝑃𝑙,𝑡 ∀𝑡 ∈ 𝑇 (4.8)

For the unit constraint, when a unit i is switched on (off), it must remains for at
least 𝑇 𝑜𝑛

𝑖 (𝑇 𝑜𝑓𝑓
𝑖 ) consecutive periods. Constraints (4.9) and (4.10) model this aspect for

the initial state, while the constraints (4.11) and (4.12) do the same for the remaining
planning horizon. In (4.9) 𝜃𝑜𝑛

𝑖 represents 𝑚𝑎𝑥{0, 𝑇 𝑜𝑛
𝑖 − 𝑡𝑝𝑟𝑒𝑣

𝑖 }, and 𝜃𝑜𝑓𝑓
𝑖 in (4.12) stands

for 𝑚𝑎𝑥{0, 𝑇 𝑜𝑓𝑓
𝑖 − 𝑡𝑝𝑟𝑒𝑣

𝑖 } [99].

𝑦𝑖,𝑡 = 1, ∀𝑖 ∈ 𝐷 : 𝑦𝑝𝑟𝑒𝑣
𝑖 = 1, 𝑓𝑜𝑟 𝑡 = 0, . . . , 𝜃𝑜𝑛

𝑖 , (4.9)

𝑦𝑖,𝑡 = 0, ∀𝑖 ∈ 𝐷 : 𝑦𝑝𝑟𝑒𝑣
𝑖 = 1, 𝑓𝑜𝑟 𝑡 = 0, . . . , 𝜃𝑜𝑓𝑓

𝑖 . (4.10)

In (4.11) and (4.12), 𝜏 𝑜𝑛
𝑖,𝑡 and 𝜏 𝑜𝑓𝑓

𝑖,𝑡 stand for 𝑚𝑎𝑥{𝑡 − 𝑇 𝑜𝑛
𝑖 + 1, 1} and 𝑚𝑎𝑥{𝑡 −

𝑇 𝑜𝑓𝑓
𝑖 + 1, 1}, respectively.

𝑡∑︁
𝑘=𝜏𝑜𝑛

𝑖,𝑘

𝑢𝑜𝑛
𝑖,𝑘 ≤ 𝑦𝑖,𝑡, ∀𝑖 ∈ 𝐷, ∀𝑡 ∈ 𝑇 ; (4.11)

𝑡∑︁
𝑘=𝜏𝑜𝑛

𝑖,𝑘

𝑢𝑜𝑓𝑓
𝑖,𝑡 ≤ 1− 𝑦𝑖,𝑡, ∀𝑖 ∈ 𝐷, ∀𝑡 ∈ 𝑇 ; (4.12)

𝑃 𝑚𝑖𝑛
𝑖 𝑦𝑖,𝑡 ≤ 𝑃𝑖,𝑡 ≤ 𝑃 𝑚𝑎𝑥

𝑖 𝑦𝑖,𝑡 ∀𝑡 ∈ 𝑇 (4.13)

0 ≤ 𝑃𝑔+,𝑡, 𝑃𝑔−,𝑡 ≤ 𝑃 𝑚𝑎𝑥
𝑔 ∀𝑡 ∈ 𝑇 (4.14)

𝐸𝑏,0 = 0.5 · 𝐸𝑚𝑎𝑥
𝑏 (4.15)

𝑃𝑏,0 = 0 (4.16)

−𝐸𝑖𝑛𝑠𝑡𝑎𝑙𝑙
𝑏 ≤ 𝑃𝑏,𝑡+1 ≤ 𝐸𝑖𝑛𝑠𝑡𝑎𝑙𝑙

𝑏 ∀𝑡 ∈ 𝑇 (4.17)

−𝑃 𝑟𝑎𝑚𝑝
𝑏 ≤ 𝑃𝑏,𝑡+1 − 𝑃𝑏,𝑡 ≤ 𝑃 𝑟𝑎𝑚𝑝

𝑏 ∀𝑡 ∈ 𝑇 (4.18)
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𝐸𝑡+1
𝑏 = 𝐸𝑏,𝑡 − 𝑃𝑏,𝑡+1 ·Δ𝑡 ∀𝑡 ∈ 𝑇 (4.19)

0.2 ≤ 𝐸𝑏,𝑡

𝐸𝑖𝑛𝑠𝑡𝑎𝑙𝑙
𝑏

≤ 1 ∀𝑡 ∈ 𝑇 (4.20)

4.3 Reliability analysis - Monte Carlo simulation
The reliability analysis stage has the function of estimating the distribution power

system reliability indexes when it is operating in isolated mode, especially the loss of load
expectation (LOLE). For this procedure, it is used the Monte Carlo simulation (MCS)
and the EMS philosophy given by the PN model. The suggested MCS approach is simple,
and follows the Algorithm 1. Summarizing, it repeatedly does: (i) sampling of stochastic
data based on distribution probability curve fitting; (ii) executes the power balance anal-
ysis considering the coordinated control modeled by Petri net; (iii) estimates reliability
indexes; (iv) verify stop criteria; (v) estimates the value of transition rate 𝜆2,3 (markovian
transition between the isolated mode to contingency state - refer to Figure 33) based on
LOLE index.

Following [78], the LOLE indicator express the expected hours per year during
which a system capacity shortage occurs. The equation 4.21 denotes the index calculation,
where P𝐺 and P𝐿, are the hourly generation and load consuming, respectively. Also, in this
stage other two reliability indexes are calculated. They are the Loss of Energy Expectation
(LOEE) expressing the expected energy not supplied by the generating units per year,
and Loss of Load Probability (LOLP) which designates the percentage of power balance
mismatch during a certain period, in this case a year. These indexes are calculated as
demonstrated in (4.22) and (4.23).

𝐿𝑂𝐿𝐸(𝑡) =

⎧⎨⎩ 0, 𝑖𝑓 𝑃𝐺 ≥ 𝑃𝐿

1, 𝑖𝑓 𝑃𝐺 < 𝑃𝐿

(4.21)

𝐿𝑂𝐸𝐸(𝑡) =

⎧⎨⎩ 0, 𝑖𝑓 𝑃𝐺 ≥ 𝑃𝐿

𝛿𝐸(𝑡), 𝑖𝑓 𝑃𝐺 < 𝑃𝐿

(4.22)

𝐿𝑂𝐿𝑃 = 𝐿𝑂𝐿𝐸/8760 (4.23)

4.4 Contingency analysis - steady state Markov chain
The contingency analysis indicates the impact that the grid and microgrid fail-

ures/repair rates represents to the reliability of whole distribution system. A Markov
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Input : Stochastic data: weather, load; Stop criteria: Δ
Output: Estimated 𝜆2,3 transition rate
Stochastic data curve fitting;
while NOT Stop Criteria do

for 𝑧 = 1 to 1000 do
for 𝑦 = 1 to 8760 do

Stochastic variables random sampling based on curve fitting
parameters;

Coordinated power balance strategy;
Verify states and actions applied;

end
𝑆(𝑧) ← computation of yearly LOLE;

end
if std (S(z)) / mean(S(z)) < Δ then

Stop Criteria ← TRUE;
end

end
𝜆2,3 ← 𝑚𝑒𝑎𝑛(𝑆(𝑧)) ;
return 𝜆2,3

Algorithm 1: Monte Carlo algorithm

chain model is suggested to observe such impacts. In order to compare the effects of in-
serting a microgrid in the traditional power system (two state Markov chain - Figure 32),
a three state homogeneous Markov chain model is suggested as Figure 33. From the ho-
mogeneous property, it is possible to say that the transition between each state obeys a
negative exponential distribution with rate parameter 𝜆𝑖,𝑗 or 𝜇𝑗,𝑖, where 𝜆 indicates the
failure rate and 𝜇 indicates the repair rate.

Considering the model with microgrid incorporation (Figure 33), the transition
from the grid-connected to isolated mode (𝜆1,2) represents the failure of the main grid
due to an abnormal event, as a fault or an extreme condition such as tropical storms
and flood. Similar concept is applied to the transition between the isolated mode to
contingency state (𝜆2,3), which implies on load curtailment. If the system is on isolated
microgrid mode, then it will return to normal state (grid-connected) with a repair rate
of 𝜇2,1. If it is on contingency state, the microgrid will return to isolated mode or to
grid-connected with rate repair of 𝜇3,2 and 𝜇3,1, respectively. The transition rates 𝜆1,2,
𝜇2,1, 𝜇3,1, and 𝜇3,2 assumes typical values of a distribution system, while 𝜆2,3 comes from
the reliability procedure presented in the section 4.3.

In possession of all markovian transition rate, the steady state analysis is per-
formed, allowing the evaluation of final probability distribution of the system being in
each mode. The final probability distribution is found solving the linear system com-
posed by the equations (4.24) and (4.25), where 𝑄 is the transition rate matrix and
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Figure 32 – Markov model for contingency analysis - traditional power system

Grid
Connected

Isolated
Mode

Contingency

𝜆1,2

𝜇2,1

𝜆2,3

𝜇3,2

𝜇3,1

Figure 33 – Markov model for contingency analysis - incorporating microgrid to power
system

𝜋 = [𝜋1, 𝜋2, . . . , 𝜋𝑗] is the stationary vector [108].

0 = 𝜋𝑄 (4.24)

∑︁
𝑗∈𝑆

𝜋𝑗 = 1 (4.25)

4.5 Particle swarm optimization (PSO) - finding the optimal mi-
crogrid design
Synthesizing the framework proposal, it tries to found the best DER combina-

tion (𝛼𝑖) in which exists an appropriate balance between operation costs (𝐶), pollutants
emission (𝐸), and unreliability (𝑈).

𝑓(𝛼𝑖) = 𝐶(𝛼𝑖) + 𝐸(𝛼𝑖) + 𝑈(𝛼𝑖) (4.26)

So, in practical terms, the PSO will continuously run searching for the best particle
𝛼𝑖, returning an appropriate value for fitness function (4.26). When the stop criteria is
reached, the PSO returns the best DER composition, in other words, the best particle 𝛼𝑖.

Each particle of the PSO is a vector composed by five continuous variables as
shown in (4.27). The position of vector 𝛼𝑖 represents, respectively, the rated power of
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wind turbine (WT), photovoltaic system (PV), diesel generator 1 (DG1), diesel generator
2 (DG2), and diesel generator 3 (DG3).

𝛼𝑖 = ⟨𝑊𝑇, 𝑃𝑉, 𝐷𝐺1, 𝐷𝐺2, 𝐷𝐺3⟩ (4.27)

Considering the multi-objective function (4.26), it is proposed two methodologies
using the PSO for defining the best solution. The first one presents the classical weighted
fitness function, where the PSO returns only one best solution based on such function.
The second performs the PSO to create the design space that will be used to take the
Pareto front.

4.5.1 PSO - weighted fitness function

The particle swarm technique optimizes the planning problem by iteratively trying
to improve a candidate solution with regard to a given measure of quality, also named as
fitness function.

The fitness function indicated in (4.28) is dependent on the DER combination (𝛼𝑖)
of each particle i, and it ponders three different variables - operation cost 𝐶(𝛼𝑖) (MILP
solution); CO2 emission 𝐸(𝛼𝑖) (MILP solution); reliability/ contingency 𝑈(𝛼𝑖) (MCS and
Markov chain solutions). The parameter 𝑤𝑗 is the weight given to each parcel of the
equation. The use of a weighted fitness function is justified since there are important
differences in the willingness and motivations of the stakeholders.

min 𝑓(𝛼𝑖) = 𝑤1𝐶(𝛼𝑖) + 𝑤2𝐸(𝛼𝑖) + 𝑤3𝑈(𝛼𝑖) (4.28)

The upper (𝑋(𝛼)) and lower (𝑋(𝛼)) limits are calculated in an extensive simula-
tion that runs the entire PSO algorithm, searching for all possible values that 𝑓(𝛼𝑖) can
assume. Then, each variable is normalized in order to have the same base of comparison.
The normalization process is shown in (4.29).

𝑋𝑛𝑜𝑟𝑚(𝛼𝑖) = 𝑋(𝛼𝑖)−𝑋(𝛼)
𝑋(𝛼)−𝑋(𝛼)

(4.29)

Although the simplicity of the method, the classical approach of combinatorial
weighting [109] is suggested in this work because it presents low computational time and
solution effectiveness in linear problems [110,111], which is the case of microgrid planning.
Besides, since the concept of the present work is to present some guidelines for microgrid
planning, and not to demonstrate the best techniques, such approach is convenient.

Summarizing, the PSO procedure tries to find the best DER combination (𝛼𝑖)
that results in the minimum value of the fitness function, which ponders some weights
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defined by the decision maker. As an acknowledgment, it is important to clarify that the
definition of weights is absolutely subjective to each stakeholder, which means that the
final decision may not please all parties.

4.5.2 PSO - Pareto front

In this approach, the PSO creates a plenty of feasible solutions (design space) which
is then transformed into the criterion space. After that, the intuitive Pareto front method
is performed in order to take the set of possible solutions. Pareto front characterizes
fundamental tradeoffs between operational costs, CO2 emission, and system reliability.

The usage of Pareto front to find optimal points of multi-objective problems is
widely used as seen in [112–116], supporting its implementation on the proposed approach.

Here, the Pareto based decision-making approach involves generating many po-
tentially preferable Pareto optimal designs, followed by choosing the most attractive one.
This approach has been called Generate First—Choose Later (GF-CL) [93, 117]. An im-
portant benefit of the GF-CL approach is that by generating numerous Pareto solutions
a designer can compare a range of design alternatives, where the range covers different
levels of tradeoff between objectives. One drawback to GF-CL is that generating many
Pareto solutions may be too computationally expensive to justify. For the present work,
the GF-CL approach is performed as shown in Algorithm 2.

Summarizing, the algorithm establishes the set of dominating points (Pareto fron-
tier). Here, one can understand dominating point as the solution which has at least one
negative value when comparing to all feasible solution. Considering two feasible solutions
𝑋 and 𝑌 , where 𝑋 − 𝑌 < 0, it is assumed that 𝑋 dominates 𝑌 (𝑋 ≺ 𝑌 ).

Input : PSO design space 𝑆𝑑 (set of feasible solution)
Output: Pareto solutions 𝑀𝑝

for j = 1 to number of feasible solution in 𝑆𝑑 do
𝑠(𝑗) ← one solution selected from design space;
for i = 1 to number of feasible solution in 𝑆𝑑 do

if i ̸= j then
𝑐(𝑖) = 𝑠(𝑗)− 𝑆𝑑(𝑖) ◁ Comparison of solutions;

end
end
if 𝑠(𝑗) dominates all answers then

𝑠(𝑗) is a Pareto solution;
Save it into output matrix 𝑀𝑝;

end
end
return 𝑀𝑝;
Algorithm 2: Pareto front generation - Generate first-Choose later approach
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The PSO algorithm is the main program of the framework, and it controls the
relationship among each stage. PSO procedure is shown in Figure 34.

4.6 Framework Implementation - Procedural Design
In practical meanings, the framework is a MATLAB-built program, considering

a modular approach. The main program named Particle Swarm Optimization (PSO),
has five modules, called Stochastic Modeling, Sampling, Optimization, Reliability, and
Selection, and the user interface. Some modules also have submodules. The complete
procedural design of this software is presented in Figure 35, which shows the relationship
that each module/submodule has with the user and the PSO main program.

The connection among each module, the user and the main program is made
by means of a simple communication scheme. The communication has three types of
messages. The first one is the user input data, which are vectors and/or matrices with
specific meteorological data, demand profiles, economical data, etc. The second type of
message is the request/reply mechanism, in which the module or the main program requires
the execution of certain function, and it has as reply certain parameter. Such message
is seem, for instance, in the relation between the PSO main program requesting the
stochastic models of load and renewable sources. The last type of message is the data
flow, which has the purpose of transferring certain type of data in the form of matrices or
vectors. This data can be as sampled data, scheduled microgrid generation, best microgrid
configuration, etc. Please, refer to Figure 35 for better understanding.

Until the present moment, this implementation has only academic purposes, and
because of that, no software interface was created. The software was developed using
simple MATLAB scripts. Hence, in the following sections, only the outlines of each module
are described.

4.6.1 Stochastic Modeling

The Stochastic Modeling provides the parameters of a probability distribution
function (pdf) which proper fits to the input data given by the user. Input data refers to
local wind speed, temperature, radiation, and energy consumption. In this work, the data
is hourly sampled. As output, this module returns the pdf parameters.

As shown in Figure 35, these parameters are transfered to the PSO main program
by means of request/reply mechanism. The probabilistic models are used in the Sampling
and Reliability modules to generate random scenarios. Stochastic Modeling module is
executed only once, in the beginning of the PSO main program.

A simple pseudocode (Algorithm 3) is presented in order to demonstrate imple-
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mentation aspects.

Input : User input data (weather or load data (representative days))
Output: Parameters pdf
Parameters pdf ← fit probabilistic distribution function;
return Parameters pdf;

Algorithm 3: Stochastic Modeling module pseudocode

4.6.2 Sampling

The parameters generated by the curve fitting in Stochastic Modeling (Parameters
pdf ) procedure are used in the Sampling module. Here, a matrix 4x96 is generated every
time the Optimization module requests. It is formed by 96 representative values of four
stochastic variables: wind speed, radiation, temperature, and load. Such matrix represents
the data flow between Sampling and PSO main program. The Sampling module is executed
for each particle in each PSO iteration. Because of that, the number of particle must be
appropriate, otherwise, the time to execute this stage will be impractical.

Once again, it is necessary to remember that the sampling procedure can be very
time-consuming, and because of that, it was used the approach of representative days
(refer to Section 4.2.1). Algorithm 4 indicates its pseudocode.

Input : Parameters pdf
Output: Sampled data
for i = 1 to 4 do

for j = 1 to 96 do
Sampled data(i,j) ← generate random(pdf, Parameters pdf);

end
end
return Sampled data;

Algorithm 4: Sampling module pseudocode

4.6.3 Optimization

The optimization module executes the MILP program as previously stated. Before
the MILP execution, it is necessary to call the submodule Power Profile in order to provide
the power generated by the wind turbine and photovoltaic array, and the power consumed
by the load. These stochastic generation and consumption are calculated considering the
formulation presented in Section 3.2, for the 4x96 matrix given by the Sampling procedure.

The Power Profile submodule uses some data given by the user: minimum/maximum
rated power of wind turbine, photovoltaic array and diesel generators, and maximum peak
load. As output, Power Profile returns a 3x96 matrix with the generation profile of wind
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turbine and photovoltaic array, and the consumption profile of load demand. The MILP
program is executed by the IBM CPLEX platform, and its outputs are the microgrid op-
erational daily costs and emission. The MILP submodule also uses information provided
by the user as economical data (tariffs, DER investment cost, etc.) and DER technical
data (generator ramp, SOC limits, generator limits, etc.)

This procedure is performed for each particle in each PSO iteration. The Algorithm
5 indicates the implementation of the Optimization module.

Input : Sampled data, Rated Power Wind Turbine, Rated Power Photovoltaic
Array, Peak Load, Economical data, DER techinical data

Output: Daily Operational Costs, Daily Emission
WT ← Power Profile (WT) ◁ equation (3.6);
PV ← Power Profile (PV) ◁ equation (3.11);
LOAD ← Power Profile (Peak Load);
Daily Operational Costs and Daily Emission ← MILP program (WT,PV,LOAD);
return Daily Operational Costs, Daily Emission;

Algorithm 5: Optimization module pseudocode

4.6.4 Reliability

The reliability module calculates the probability of the system being in contin-
gency, and also calculates the reliability indexes. It executes two procedures that are
connected. First, it performs the Monte Carlo Simulation submodule in order to obtain
the microgrid reliability indexes, especially, the LOLE index. It uses the pdf parameters
calculated in Stochastic Modeling module for sampling the probabilistic scenarios. The
parameters, once again, are transfered by means of request/reply mechanism.

The LOLE index is passed to the Markov Chain Analysis module which calculates
the contingency probability by means of Markov Chain steady state analysis. The MCS is
performed exactly as described in Section 4.3, and the Markov Chain analysis follows the
formulation presented in (4.24) and (4.25). The Reliability module is executed for each
particle in each iteration.

Following, it is presented a pseudocode that implements this module (refer to
Algorithm 6).

Input : Parameters pdf, transition rate 𝜆𝑗,𝑖 and 𝜇𝑗,𝑖

Output: Contingency probability, Reliability Indexes
Reliability Indexes ← Monte Carlo Simulation ◁ algorithm 1;
Contingency Probability ← Markov Chain Analysis ◁ equations (4.24), (4.25);
return Contingency probability, Reliability Indexes;

Algorithm 6: Reliability module pseudocode



Chapter 4. Proposed Framework 86

4.6.5 Selection

At last stage, the module Selection performs the PSO searching algorithm, which
is solved by means of weighted sum or Pareto front. To do so, it is used the concepts
presented in Section 4.5.1 or Section 4.5.2.

After this procedure, the optimal design of the microgrid is finally found. So, the
input data for this module is the operational daily cost, daily emission and contingency
probability of each particle in each iteration. The Selection module refers to the last stage
of the PSO procedure, as indicated in Figure 34.
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Start

User Inputs: MILP parameters,
historical data, transition rates 𝜆 and 𝜇

Generate ramdonly 𝑛𝑝 configurations
(PSO particles (𝛼) initialization)

i = 1

Sampling of stochastic generation and load based on historical data

Execute MILP considering the ith particle

Determine/update 𝛼𝑏𝑒𝑠𝑡

Move particles

𝑖 ≥ 𝑛𝑝

Is convergence
criterion satisfied?

Outputs: Global best design considering
the best particle 𝛼𝑏𝑒𝑠𝑡 or Pareto front

End

No

No

Yes

Yes

Execute MCS reliability assessment
considering the ith particle

Execute Markov chain contingecy assessment
considering the ith particle

Stochastic modeling of uncertain variables (e.g. radiation,
temperature, wind speed, load)

Figure 34 – PSO procedure - framework main program
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5 Simulation

The methodology used throughout this study is mainly based on a number of
assumptions that each lead to a number of limitations and biased considerations. In this
way, the simulation aims to show the results obtained on each step for some considerations.
Moreover, the outcomes of complete framework is also demonstrated.

So, following, the simulation outcomes are divided in three main analysis. First,
it is presented the results of operation optimization stage, observing the influence of
renewable sources penetration and the operational modes of a microgrid (grid-connected
and isolated mode). After, it is examined the dependency of failure and repair rates over
the distribution power system reliability. Finally, the PSO best microgrid searching is
considered in order to complete the global analysis of the framework.

For the proposal of this study, it is assumed a grid-connected IPP-owner microgrid,
which is suitable for an university campus - as Federal University of Itajuba (UNIFEI)
- allowing the energy trading between microgrid and main network. Thus, two cases are
studied. The first one is a base case, where it is presented the results of each stage of
the framework. The base case considers a microgrid configured as presented in 3.2 (one
wind turbine, one photovoltaic system, an energy storage system, and a set of three
diesel generators). The second case studies a specific case of UNIFEI, where the use of
wind turbines is not suitable, and the dispatchable generators are already available and
installed. So, in the UNIFEI case, only PV generators are considered.

5.1 Case study - base case

5.1.1 Input parameters

It was done an exhaustive investigation in order to have the input parameters for
simulation. The database presented in Table 9 is a collection of parameters and costs
given in a number of works and reports which are disposed in the bibliography [12,13,24,
118–122].

Particularly, for the tariffs, it is considered a specific brazilian electricity charging
named Tarifa Branca. Table 10 shows the energy tariffs considering the Tarifa Branca
policy [121,123] and Bandeiras Tarifárias [122] policies.

For simulation, the tariff prices follows the Green flag tariffs of class of user B1 as
shown in Table 10. These prices are properly converted to US$ based on the quotation
R$ → US$ of the day March 26th of 2018.
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Table 9 – Input parameters for simulation

Parameter Value Unit
Peak load 600 kW
Energy storage system capacity 100 kWh
Storage system power 100 kW
Diesel generator 1 200 kW
Diesel generator 2 65 kW
Diesel generator 3 100 kW
Main grid limit 500 kW
Capital Cost PV 4000 $/kW
Capital Cost WT 1882 $/kW
Capital Cost diesel generator 1600 $/kW
Capital Cost storage system (rated power) 423 $/kW
Capital Cost storage system (capacity) 100 $/kWh
Maintenance cost renewable 0.01 $/kWh
Maintenance cost diesel generator 0.016 $/kWh
Maintenance cost storage system 0.01 $/kWh
Selling price 0.08 $/kWh
Buying price 0.16 $/kWh
Fuel cost 0.76 $/L
CO2 emission tax 30 $/kgCO2
Fuel emission rate 2.64 $kg/L
Lifetime of DERs 20 years
Investment interest rate 8 %/year

Table 10 – Tariffs in R$/kWh considering the Tarifa Branca policy - CEMIG March 26th,
2018

Tariffs (Flags) Green flag Yellow flag Red flag
(level 1)

Red flag
(level 2)

B1 - Residential - Peak 0.96096 0.97096 0.99096 1.01096
B1 - Residential - Intermediate 0.61643 0.62643 0.64643 0.66643

B1 - Residential - Out peak 0.38775 0.40775 0.427775 0.44775
B2 - Rural - Peak 0.70001 0.71001 0.73001 0.75001

B2 - Rural - Intermediate 0.44790 0.45790 0.47790 0.49790
B2 - Rural - Out peak 0.28389 0.29389 0.31389 0.33389

B3 - Other classes - Peak 1.00001 1.01001 1.03001 1.05001
B3 - Other classes - Intermediate 0.63986 0.64986 0.66986 0.68986

B3 - Other classes - Out peak 0.40556 0.41556 0.43556 0.45556

5.1.2 Optimal operation of grid-connected microgrid

Following, it is demonstrated the impacts of renewable source penetration (wind
turbine and photovoltaic systems) for a grid-connected microgrid operation. The analysis
take into account two indexes - operation daily cost and CO2 emission.

In an environmental and business point of view, the microgrid with the high pen-
etration of wind turbine seems to be the best solution, since with the increasing of such
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Figure 36 – Analysis of renewable penetration considering daily cost and emission of mi-
crogrid operation considering only WT
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Figure 37 – Analysis of renewable penetration considering daily cost and emission of mi-
crogrid operation considering only PV
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Figure 38 – Analysis of renewable penetration considering daily cost and emission of mi-
crogrid operation considering equal penetration of PV and WT generation

technology the CO2 emission decreases significantly and operation cost becomes negative
when the WT penetration is about 300% (refer to Figure 36). Such behavior is justified
by the low capital cost of wind generators.
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The solution with just PV generation has a trend of increasing the cost operation
with the increasing of solar generation, while emissions decrease. This result can be justi-
fied by the higher capital price, its daily generation profile (only on sun period - day-time),
and green generation (refer to Figure 37). The combination of these two technologies also
indicates a descendant trend, mainly because of the WT (refer to Figure 38). But, in this
case the decay is not so sharp as the pure wind system.

To illustrate the impacts of RES penetration on real daily operation, Figure 39,
40, and 41 show the generation scheduling for a summer day with and without renewable
sources. One can observe in Figure 39 that load demand is sustained by the upstream grid
and storage system during the off-peak period, since the grid tariffs are lower than the
diesel generator costs. But, on peak hours, the generators are turned on with the intention
of overcome the peak tariffs. Besides that, the scheduling indicates a predictable behavior
because of dispatchable generators.

In contrast to this, the system with renewable penetration has an unpredictable
behavior which is justified by the RES stochastic nature. Figure 40 and Figure 41 show
that the microgrid with renewable sources uses less energy from the main grid and in the
case of 150% it can even exports some energy. Once again, it is seem the usage of diesel
generators on peak-time stead of grid importation.

Figure 39 – Electrical power scheduling of the grid-connected microgrid without renew-
able sources for a summer day
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Figure 40 – Electrical power scheduling of the grid-connected microgrid with 100% pen-
etration of renewable sources for a summer day

Figure 41 – Electrical power scheduling of the grid-connected microgrid with 150% pen-
etration of renewable sources for a summer day

5.1.3 Optimal operation of isolated microgrid

For the period of microgrid operating in isolated mode, system operators are ex-
pected to settle on load shedding decision since there is no support from grid. Such decision
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takes into account any or a combination of system security indicator, which can be volt-
age, current, power balance and frequency restraints [124]. As the suggested framework
acts only on strategic plan of microgrid, the power balance is sufficient to characterize
the level of security of the system. So, differently from the grid-connected operation, the
isolated microgrid needs a proper policy of load shedding in order to maintain this indi-
cator in an appropriate level. For the present work, such policy is the EMS philosophy
proposed by the Petri net model shown in 4.1.

Figure 42 – Electrical power scheduling of the isolated microgrid without renewable
sources for a summer day

In the first case, where no renewable energy is considered (refer to Figure 42),
the period of load shedding is too large, what is an obvious behavior since there is no
grid to support the load demand, particularly at peak hours. In contrast, the second case
(refer to Figure 43) where exists the support of renewable sources, the load shedding is
just observed in a very short period at the peak hours, since at this time there is low
power from the sun and the demand is high. Also, this is an expected result, since in the
second scenario there is more generation potential, but, the stochastic behavior of RES
introduces an unpredictable scheduling.

5.1.4 Results of RES penetration in both grid-connected and isolated mode

To summarize the impacts of renewables penetration, the Table 11, 12, and 13
indicates the trend of inserting this kind of generators. For this analysis, it is assumed
the case of a microgrid with equal penetration of WT and PV (half wind and half solar).
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Figure 43 – Electrical power scheduling of the isolated microgrid with 150% renewable
sources for a summer day

Table 11 – Microgrid operational daily cost considering tax over CO2 emission

Mode No renewable
0% penetration

With renewable
150% penetration

With renewable
300% penetration

Grid-connected 2051.21 $ 1686.50 $ 1558.52 $
Isolated 10097.01 $ 3256.54 $ 3558.63 $

Table 12 – Microgrid operational daily cost not considering tax over CO2 emission

Mode No renewable
0% penetration

With renewable
150% penetration

With renewable
300% penetration

Grid-connected 1874.70 $ 1698.58 $ 1393.75 $
Isolated 9712.14 $ 2560.06 $ 2637.43 $

Table 13 – Microgrid daily CO2 emission

Mode No renewable
0% penetration

With renewable
150% penetration

With renewable
300% penetration

Grid-connected 23.67 ton 10.31 ton 5.33 ton
Isolated 20.01 ton 8.96 ton 4.61 ton

As shown in Table 11 and Table 12, the operation cost with grid-connected is
significantly smaller than isolated mode. This justifies that the business model where the
microgrid is operated by IPP and connected to the main network is the most economically
acceptable option. The penetration of renewable energies decreases the operational costs,
but as seen in the 150% and 300% penetration, the uncontrolled increase of RESs may
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not represent a decrease in costs. Therefore, there is the validity of a study that verifies
the optimal insertion of wind and solar generators. Remembering that the percentage of
renewable penetration is related to the peak load (e.g. 600 kW)

Also, the investigation considers the effects of CO2 emission. The metrics used to
measure such impact was economical (cost with tax), shown in Table 11 and Table 12,
and environmental (amount of emitted pollutant) shown in Table 13. It is observed that
the increasing of RES represents a decreasing on CO2, which is an expected result. In
fact, it is seen a linear relationship between RES penetration and CO2 emission.

5.1.5 Reliability assessment

The condition of load shedding is observed only on isolated mode operation. There-
fore, the reliability indexes are calculated only when the system is in this condition. The
analysis performed for reliability take as basis the results of Monte Carlo simulation
(MCS) as proposed in section 4.3.

As presented in Figure 44, 45, and 46, the expected reliability indexes decrease
as the insertion of RES increases. But, such results indicate a tendency of stagnation
for certain level of penetration (negative exponential tendency), and because of that,
an unilateral decision policy can lead to a overestimated microgrid configuration. This
conclusion is confirmed analyzing the cases with 250% and 300% of RES penetration.
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Figure 44 – LOLP index for RES penetration
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Figure 45 – LOLE index for RES penetration
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Figure 46 – LOEE index for RES penetration

5.1.6 Contingency assessment

The section above has considered the quality of the power system reliability ob-
serving just the isolated microgrid operation. But, since the object of this study is the
grid-connected microgrid, then it is necessary to analyze the system as a whole, with all
possible operational states. In this way, the contingency analysis is crucial to evaluate
the effect that microgrid causes in the power system reliability. Besides, the contingency
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assessment explores the effects that rates of failure and repair causes on such system.
It is important to remark that the present work considers only operating failures of the
main grid and microgrid operating in isolated mode. Therefore, equipment and generator
failures are not investigated.

Table 15 and Table 16 depicts the reliability indexes of a traditional power system
scenario without the microgrid (refer to Figure 32), and the scenario with the presence of
microgrid to support the load demand (refer to Figure 33). Besides, it is also considered the
effects that the transition rates of failure/repair of power system causes in such scenarios.

The transition rates can represents typical values of distribution system MTBF
and MTTR. For instance, assumes that a typical value to the upstream grid fails is twice
a year. Then it comes that the MTBF is 0.5 year. Remembering the relation defined
on Markov chain modeling, 𝜆 = 1/𝑀𝑇𝐵𝐹 , one can identifies that 𝜆 = 2. For MTTR,
the concept is the same. Assumes that the time to repair the network when a extreme
event occurs is one day, which represents approximately 0.002739 year, so the relation
𝜇 = 1/𝑀𝑇𝑇𝑅 gives a rate of 365. Table 14 illustrates the concept.

For the investigation of the influence of modifying the failure/repair rates, only the
transitions connecting Grid-Connected state is modified (𝜆, 𝜇, 𝜆1,2, 𝜇2,1), since in the real
world the reinforcement of power system is made, usually, on upstream grid (once again,
refer to Figure 32 and 33). The other transition rate values are assumed from Table 14.
For this investigation, it was considered a microgrid with 150% of renewable penetration
related to the peak load, composed by half solar and half wind.

From the results, the distribution network with the incorporation of microgrid
has always better outcomes than the traditional model. This is justified by the simple
reason that the introduction of microgrid allows the islanding (isolated) operation which
supports the demand using the local generators. For MTBF and MTTR values, it is
founded the best solution when MTBF is 1 per year, and the MTTR is 12 hours (𝜇, 𝜇2,1 =
730). This scenario represents the lowest transition rate between normal operation and
isolated/contingency operation, and it is the highest rate of repairing. In other words, this
scenario has the highest MTBF and the lowest MTTR.

Table 14 – Reliability indexes - typical values for traditional power system

Transition rate Typical value Transition rate value
𝜆, 𝜆1,2 1 year 1

𝜆2,3 12 hours 730
𝜇, 𝜇2,1 1 day 365

𝜇3,1 1 week 52.35
𝜇3,2 1 hour 8760
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Table 15 – Reliability indexes - traditional power system

Transition rate value LOLP [%] LOLE [h/yr] LOEE [MWh/yr]
𝜆 = 1, 𝜇 = 365 0.273 23.917 10.88
𝜆 = 2, 𝜇 = 365 0.545 47.738 21.72
𝜆 = 1, 𝜇 = 730 0.137 11.984 5.46
𝜆 = 2, 𝜇 = 730 0.272 23.858 10.84
𝜆 = 1, 𝜇 = 182 0.546 47.869 21.76
𝜆 = 2, 𝜇 = 182 1.087 95.217 43.34

Table 16 – Reliability indexes - power system incorporating microgrid

Transition rate value LOLP [%] LOLE [h/yr] LOEE [MWh/yr]
𝜆1,2 = 1, 𝜇2,1 = 365 0.030 2.581 1.19
𝜆1,2 = 2, 𝜇2,1 = 365 0.059 5.179 2.35
𝜆1,2 = 1, 𝜇2,1 = 730 0.016 1.372 0.63
𝜆1,2 = 2, 𝜇2,1 = 730 0.031 2.744 1.23
𝜆1,2 = 1, 𝜇2,1 = 182 0.053 4.671 2.11
𝜆1,2 = 2, 𝜇2,1 = 182 0.107 9.335 4.27

5.1.7 PSO best design searching

In order to observe the effects of each aspect identified in the proposed microgrid
design, the following section shows the best plan of individual interests of a decision
maker. To do so, it is performed the PSO searching process, which is applied in two
distinct solvers. The first solver uses the PSO to find a unique best solution, while the
second solver uses it to create the feasible region (design space) that will serve to form
the Pareto front (set of optimal solutions).

To have a global microgrid design, here, it is also considered that the dispatchable
generators (three diesel generators) are also decision variables. So, the space of searching
is a 5-dimensional space.

The parameters used on the PSO are a population of 30 particles, inertia weight
(𝑤) between 0.4 and 0.9, and the acceleration factors (𝑐1,𝑐2) equal to 2. These values
assumes some considerations about PSO parameters better discussed in [125]. Also, for the
Markov chain analysis, it is assumed the following transition rates: 𝜆1,2 = 1; 𝜇2,1 = 365;
𝜇3,1 = 52.35; 𝜇3,2 = 8760. Rate 𝜆2,3 comes from the MCS procedure as described on
chapter 4.

It was performed a sensibility analysis considering the elapsed time and the number
of iteration in relation to the number of particles to choose the appropriate number of
particles. As shown in Figure 47, the elapsed time to solve the PSO algorithm is not
clearly dependent of the number of particles, since there is no pattern that relates the
number of particles and the elapsed time. By the other hand, the number of iteration is
reduced when the number of particles increase, as shown in Figure 48. Because of that,
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the number of 30 particles seems to be appropriate, since it needs lower elapsed time and
lower number of iteration to accomplish the PSO stop criteria.

The complete solution was tested in a Intel Core(TM) i5-3317U CPU @ 1.70GHz
PC. The CPU benchmark test indicates a mean time of 24 minutes for each simulation.
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Figure 47 – Sensibility curve of number of particles and elapsed time
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Figure 48 – Sensibility curve of number of particles and number of iteration

The following sensibility analysis indicates if the weighted sum PSO algorithm has
proper performance. It was investigated five different scenarios for each decision parameter
(cost, emission and unreliability) varying the percentage of one parcel while the others
assume an equal distribution. For instance, the scenario in which the weight of cost is 25%,
the emission and the unreliability parcels assume 37,5% each. The sensibility of the daily
cost varying 𝑤1 is shown in Figure 49. In similar way, the sensibility of the daily emission
varying 𝑤2 is shown in Figure 50. Finally, the sensibility of the annual unreliability index
varying 𝑤3 is shown in Figure 51

The performance of weighted sum PSO algorithm has presented a proper perfor-
mance, since the three parameters decreases as the weights (𝑤1, 𝑤2, and 𝑤3) for given
parcel increases. So, the minimization process executed by the PSO is appropriate.
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Figure 49 – Sensibility curve of daily cost and the value in percentage of weight 𝑤1 (cost)
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Figure 50 – Sensibility curve of daily emission and the value in percentage of weight 𝑤2
(emission)
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Figure 51 – Sensibility curve of annual unreliability and the value in percentage of weight
𝑤3 (unreliability)
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5.1.7.1 PSO - weighted fitness function

For this methodology, the PSO is used to search a unique best solution regarding
the weighted fitness function presented in 4.5.1. To have representative solutions, it is
assumed weights regarding non-biased and unilateral decisions. The assumptions of each
weight and the following best distributed generator combination is shown on Table 17,
where 𝑤1, 𝑤2, and 𝑤3 refers to cost, emission, and reliability, respectively. One must
note that the first weight division represents the non-biased solution, while the last three
indicates an unilateral tendency.

Table 17 – Results for PSO weighted fitness function - best combination of distributed
generator

Weights Wind Turbine
(kW)

Photovoltaic
(kW)

PDG1
(kW)

PDG2
(kW)

PDG3
(kW)

𝑤1 = 0.33, 𝑤2 = 0.33, 𝑤3 = 0.33 450 150 117 42 91
𝑤1 = 0.8, 𝑤2 = 0.1, 𝑤3 = 0.1 450 150 117 42 91
𝑤1 = 0.1, 𝑤2 = 0.8, 𝑤3 = 0.1 450 450 146 65 93
𝑤1 = 0.1, 𝑤2 = 0.1, 𝑤3 = 0.8 450 293 200 55 99

Table 18 – Results for PSO weighted fitness function - planning indicators

Weights Cost ($) Emission (ton) Unreliability (%)
𝑤1 = 0.33, 𝑤2 = 0.33, 𝑤3 = 0.33 1759.11 9.63 0.2294

𝑤1 = 0.8, 𝑤2 = 0.1, 𝑤3 = 0.1 1759.11 9.63 0.2294
𝑤1 = 0.1, 𝑤2 = 0.8, 𝑤3 = 0.1 2074.27 8.10 0.1353
𝑤1 = 0.1, 𝑤2 = 0.1, 𝑤3 = 0.8 1981.39 8.81 0.0876

As seen in Table 17, the first two weight distribution returns the same result. This
may be explained by a local minima in the problem or a bias in the problem formulation
that leads to such result. Ignoring such behavior, one must note that this solution repre-
sents the smallest usage of local sources, which means that, for operational cost point of
view, it is interesting to use the upstream grid as much as possible. The third weight dis-
tribution shows an appropriate response, since the best solution has the maximum usage
of renewables sources. Last combination also has an appropriate response for reliability
sense, as it is uses the greatest amount of dispatchable sources. Such results are reinforced
by the planning indicators shown in Table 18.

5.1.7.2 PSO - Pareto front

It is used the a intuitive method of Pareto frontier [126] to find the best solution.
Once again, it is important to be clear that the optimal solution will depend on the
interest of the decision maker.

To demonstrate such subjective solution, it is suggested four distinct decision poli-
cies. The three first policies indicates an unilateral decision (cost, emission or reliability)
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while the fourth presents a specific policy, which takes into account the concept of us-
ing the most sun energy as possible. Such strategy makes completely sense in brazilian
IPP-owner microgrids, since the government has already approved some incentives to this
technology, as demonstrated by the governmental program "Programa de Desenvolvimento
da Geração Distribuída de Energia Elétrica (ProGD)".

1. best solution regarding the lowest daily operational cost;

2. best solution regarding the lowest daily CO2 emission;

3. best solution regarding the lowest yearly reliability;

4. best solution regarding the lowest usage of wind turbine and highest usage of pho-
tovoltaic systems;

Table 19 – Results for Pareto front - best combination of distributed generator

Policy Wind Turbine
(kW)

Photovoltaic
(kW)

PDG1
(kW)

PDG2
(kW)

PDG3
(kW)

Policy 1 450 150 200 24 100
Policy 2 450 450 200 65 100
Policy 3 450 450 200 65 100
Policy 4 406 221 189 35 100

Table 20 – Results for Pareto front - planning indicators

Policies Cost ($) Emission (ton) Unreliability (%)
Policy 1 1873.27 10.12 0.1529
Policy 2 2098.11 7.15 0.0755
Policy 3 2112.33 7.62 0.0717
Policy 4 1979.06 10.94 0.1441

The best solution regarding each decision policy is shown in Table 19 and Table 20.
As demonstrated in the results, the optimal responses are appropriate. Policies 1, 2, and
3, which represents unilateral decisions, indicates a combination of distributed generators
with the lowest operational cost, CO2 emission, and reliability index, respectively. Policy
4, which represents a more specific condition, also indicates a proper solution, since this
is the only response in which the value of the wind turbine is not 450 kW. This value of
WT rated power is often seen in the solutions because of its installation price and wind
availability.

5.1.7.3 Comparison between weighted function and Pareto front

Observing the results for the proposed optimal decision, both search mechanisms
work properly, but there is some variation between then.
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For the unilateral tendency, it is possible to assess that there is some differences
between the best combination of distributed generators and planning indicators. This
is justified because the weighted PSO tries to find a unique solution, while the Pareto
front tries to find representative points. Also, the former methodology intend to optimize
the problem in a biased way, whereas the latest ignores the best global solution to the
detriment of searching for a solution that does not hurt one aspect while improving the
other.

The graphs shown below, indicates the similarity between this two techniques.
Costs and emission have almost the same pattern, as shown in Figure 52 and Figure 53
respectively, while the reliability presents certain deviation (refer to Figure 54). Thus,
the reliability indexes are more sensible than the other aspects, considering these two
techniques. A more detailed and specific study over the proposed techniques must be
developed in order to identify pros and cons of each solution. However, this is not the
main focus of the present work.

Figure 52 – Comparison between weighted sum and Pareto front techniques - daily oper-
ational costs

Regarding the performance, although both strategies have good answers, in case
of multi-lateral or more specific decision policies the Pareto front presents more fair re-
sponses. For this reason, the following analysis and case of study uses the Pareto front as
the PSO solver mechanism.

5.2 Case study - UNIFEI campus Itajubá
The usage of wind turbine for the UNIFEI campus is not convenient since it

would be necessary to develop a completely new distribution network to support such
power generation technology. In addition, the campus does not have an useful area for
the installation of these generators. In contrast to this, the use of photovoltaic panels is
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Figure 53 – Comparison between weighted sum and Pareto front techniques - daily CO2
emission

Figure 54 – Comparison between weighted sum and Pareto front techniques - annual un-
reliability

entirely justifiable, since the roofs of buildings represent a significant area where rooftop
panels can be installed.

Thus, the configuration of the microgrid considered for this case of study is slightly
different of the base case. It is still a grid-connected microgrid composed by a set of three
different diesel generators, which is considered already installed and available. However,
the wind generator is no longer available. Renewable sources are represented only by
rooftop photovoltaic panels. The microgrid also has an energy storage system, exactly as
the base case.

For the UNIFEI case, the power scheduling is presented in Figure 55. As seem
in this figure, the renewable source impacts mainly the day period. It is a completly
reasonable answer, since it is considered only PV generators. Once again, the dispatchable
source play a significant role in the peak hour.
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Figure 55 – Electrical power scheduling of grid-connected microgrid with best PV set for
a week day in the period of classes - UNIFEI case

5.3 Benchmarking analysis
In order to validate the proposed framework, it was promoted a benchmarking

analysis comparing the PSO with the DER-CAM. Thus, Figure 56 and Figure 57 identify
the similarity between the Pareto front created using the DER-CAM and the proposed
framework solution. As shown, the curves have similar trend, including points with almost
the same value. Essentially, the difference between them is because the DER-CAM uses
𝜀-constrained method [127]. Such method optimizes one of the objective functions using
the other objective functions as constraints, incorporating them in the constraint part of
the model. In each iteration, the 𝜀 changes, also changing the constraints. That is why
the points of DER-CAM curve seems regularly distributed. In contrast to this, the PSO
has a random distribution, which is typical of a meta-heuristic approach.

Numerically, the generational distance (GD) is an appropriate method to assess
the difference between two Pareto curves. In this way, the following analysis indicates the
sensibility of GD considering the number of particle considered in the PSO.

5.3.1 Performance metrics - Generational distance (GD)

In order to give a numerical comparison between DER-CAM and the proposed
framework, it is adopted a useful metric named generational distance (GD) [128, 129].
Generational distance is a way of estimating how far are the elements in the Pareto front
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Figure 56 – Benchmarking analysis - comparison between the proposed PSO and DER-
CAM considering the Pareto front for base case
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Figure 57 – Benchmarking analysis - comparison between the proposed PSO and DER-
CAM considering the Pareto front for UNIFEI case

produced by a test algorithm (PSO solution) from those in the Pareto optimal set (DER-
CAM solution). In other words, the GD procedure calculates the distance between the
PSO curve to the DER-CAM curve. The description and mathematical representation of
this metric is shown below in (5.1).

𝐺𝐷 =

√︁∑︀𝑛
𝑖=1 𝑑2

𝑖

𝑛
(5.1)
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where 𝑛 is the number of non-dominated vectors found by the algorithm being
analyzed (PSO solution) and 𝑑𝑖 is the Euclidean distance (measured in criterion space)
between each of these and the nearest member of the true Pareto front (DER-CAM
solution). It should be clear that a value of 𝐺𝐷 = 0 indicates that all the elements
generated are in the true Pareto front of the problem. Therefore, any other value will
indicate how "far" the proposed solution is from the true Pareto front. Figure 58 illustrates
the GD concept.

Figure 58 – Example illustration of the generational distance (GD) metric (adapted
from [130])

Thus, applying the GD performance metrics in the results of benchmark analysis
presented in Figure 56 and Figure 57, the GD index are calculated and exposed as shown
in Table 21.

Table 21 – Performance metrics - Generational distance (GD)

Case of Study GD index
Case base 230.28

Case UNIFEI 134.45

Table 22 – Benchmark analysis of DER-CAM and PSO Pareto front - case base

Approaches Wind Turbine
(kW)

Photovoltaic
(kW)

PDG1
(kW)

PDG2
(kW)

PDG3
(kW)

DER-CAM 450 150 20 30 100
PSO 450 224 53 86 127

The GD index for case base and case UNIFEI indicates that the distance between
DER-CAM and the proposed framework is quite significant. In fact, the difference of
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Table 23 – Benchmark analysis of DER-CAM and PSO Pareto front - case UNIFEI

Approaches Wind Turbine
(kW)

Photovoltaic
(kW)

PDG1
(kW)

PDG2
(kW)

PDG3
(kW)

DER-CAM 0 770 0 0 0
PSO 0 569 0 0 0

DER-CAM and the PSO in the case base is graphically notorious. In the case UNIFEI,
the answer in both strategies has almost the same pattern, although exists significant dif-
ference in the most extreme points. Such difference is justified because the implementation
of the multi-criteria solver is completely distinct. Also, the MILP formula implemented
in the present framework is a bit more general than the applied in the DER-CAM. The
solution for the best microgrid design has also significant difference as shown in Table 22
and Table 23.

For proper comparison, it is necessary some modifications in the MILP formula in
order to reproduce, exactly, the behavior presented in DER-CAM. Thus, the benchmark
analysis is relevant in the sense of indicating the coherence of the proposed framework,
but it is not completely fair to indicate which of the solutions is ideal, as the methodology
of the DER-CAM and the proposed PSO approach are quite distinct.
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6 Conclusion

This thesis focused on developing a multidisciplinary optimal planning of grid-
connected microgrid systems under uncertainty and multi-criteria decision. In this way,
it was intended to provide a framework with a full package of suitable tools to deal with
such problem.

In reference to microgrid planning, there has been much research which mention
about the uncertainty in the resources, but no models have incorporated the uncertainty
explicitly into the model. The proposed framework addresses the issue of uncertainty in
the resources modeling the parameters and considering them explicitly into the model.

Attending a more sustainable approach, the planning process developed in this
work considers, at the same time, environmental, economical, and technical aspects, which
means a multi-lateral decision.

In this way, the main contribution of this thesis was to present a set of tools
suitable for the treatment of microgrid planning problem, more specifically, for the case
of hybrid renewable generation at a prosumer connecting point. The implementation of
this procedure conduces to results that shows substantial reduction in costs, emission and
unreliability indexes of the distribution power system when considering the insertion of
microgrids based on RES generation.

The results also indicates that a hybrid microgrid composed by distinct generators
(dispatchable and renewable sources) allows a flexible solution. Such flexibility is suitable
for a decision process with divergent stakeholders.

From that, it is possible to say that such framework provides greater security in
the decision-making process.

6.1 Implementation and Results Discussion
The modular approach that was used to build the Matlab program allows decouple

the subproblems in many parts as necessary. Thus, each problem (stochastic modeling,
sampling, mixed integer programming optimization, reliability and PSO algorithm) can
be treated separately and independently without any harm.

The results indicates adequate answers. The sensibility analysis of RES penetra-
tion indicates that the wind turbine seems to be an appropriate solution considering both
cost and emission. The PV penetration indicates a positive effect in reducing CO2 emis-
sion, however, its initial investment costs returns an increase in operational daily costs.
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In conclusion to this, the combination of PV and wind turbine seems to be a proper
arrangement.

Even if there are positive impacts with RES penetration, the unpredictability due
to their stochastic behavior, continues to be a challenge. In the proposed framework,
the stochasticity of such sources was properly managed using stochastic modeling and
appropriate sampling. This strategy guarantees convenient answers.

In similar way, the reliability and contingency analysis have used Monte Carlo
Simulation and Markov chain as tools to solve the reliability issues. The analysis over these
two techniques indicates that both tools are also appropriate to deal with the probabilistic
scenarios caused by the RES penetration.

As main program, the PSO algorithm is quite efficient in returning the best mi-
crogrid design. Also, the Pareto front approach has presented as better strategy than the
weighted sum, since the latter one does not produces flexible multi-lateral answers.

Comparing the proposed framework with DER-CAM (benchmark platform) it was
observed significant difference between them, especially in the base case, where it was
considered five types of generators. Such difference is justified by the fact that the MILP
formulation and the way to solve the multi-criteria problem are quite different. Besides
that, DER-CAM does not consider the reliability explicitly in the multi-criteria formula.
The second case, where it was used only the size of PV as decision variable, the answer in
the DER-CAM has certain similarity with the answer given by the proposed framework.

To have a more fair comparison, it is necessary to implement exactly the MILP
formula presented in DER-CAM and ignore the reliability part of the multi-criteria for-
mulation. A more accurate comparison is offered as a further work.

6.2 Further studies and investigations
As suggested, this thesis is an effort in constructing a multidisciplinary arrange

capable to treat the microgrid planning in a more sustainable way. Since this is the initial
step of a possible commercial software, the framework needs a polished investigation in
some parts.

In technical aspects, the proposed framework has eyes only for the planning stage
of microgrid implementation. In this way, the approach makes some assumptions to re-
duce the complexity of the problem. For instance, the real-time control and protection
of the microgrid are not considered, which means a complete off-line solution. Also, in
the present work it was only used the energy balance as security operation parameter.
A more complete solution must also consider frequency and voltage. As further work,
the framework will properly treat the voltage and frequency security parameters incorpo-
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rating appropriate power flow analysis. Computationally, the PSO and the Monte Carlo
simulation algorithms must be investigated in order to get improvements in simulation
time. The potentials of Petri net modeling should also be explored, in order to develop
generic models of energy management for different stakeholders.

In terms of sustainability, more accurate models for CO2 emission, energy tar-
iffs policy, society participation and global political guidelines must be discussed and
introduced to the framework. To implement such aspects, it is necessary to create a mul-
tidisciplinary research group, which is one of the most interesting points that the this
thesis has revealed.

As a last consideration, the present work has tried to promote a more sustainable
and flexible solution for microgrid planning. It can be said that this objective has been
achieved, although future improvements are necessary.
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