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Resumo
O objetivo desta dissertação de mestrado é comparar as capacidades de mapeamento de
tensão e carregamento do sistema para uma variedade de algoritmos de regressão, como
Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Networks (ANN), K-
Nearest Neighbors (KNN), Support Vector Regression (SVR) e Decition Tree (DT). Uma
matriz de sensibilidade à tensão é gerada a partir da matriz Jacobiana do fluxo de potência
para um cenário de carregamento próximo ao ponto instável. A Análise de Componentes
Principais (PCA) é usada para separar o sistema, próximo ao ponto crítico, a fim de
agrupar os barramentos em áreas de controle de tensão coerentes. Para diferentes cenários
de injeção de potência reativa, temos diferentes tensões de barramento que podem ser
mapeadas pelos algoritmos de regressão mencionados acima. Os algoritmos são treinados
com quantidades limitadas de dados, a fim de estabelecer uma comparação justa entre eles.
O presente trabalho mostra que ANFIS e KNN têm um melhor desempenho em tensão
crítica e previsão de carga quando comparados aos demais. Os sistemas de barramento
acadêmico IEEE 14 e 118 são empregados com todos os seus limites considerados, portanto
os resultados podem ser reproduzidos.

Palavras-chaves: Algoritmos de Regressão, ANFIS, KNN, PCA, Áreas de controle de
tensão



Abstract
The aim of this master thesis is to compare voltage and system loading mapping capabili-
ties of a variety of regression algorithms, such as Adaptive Network based Fuzzy Inference
System (ANFIS), Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), Sup-
port Vector Regression (SVR), and Decision Tree (DT). A voltage sensitivity matrix is
generated from the power flow Jacobian matrix for a loading scenario near the unsta-
ble point. Principal Component Analysis (PCA) is used to separate the system, close
to the critical point, in order to group the buses into coherent voltage controlling areas.
For different reactive power injection scenarios, we have different bus voltages that can
be mapped by the aforementioned regression algorithms. The algorithms are trained with
limited amounts of data, in order to establish a fair comparison between them. The present
work shows that ANFIS and KNN have a better performance in critical voltage and load
prediction when compared to the rest. The academic IEEE 14 and 118 bus systems are
employed with all its limits considered, so the results may be reproduced.

Key-words: Regression Algorithms, ANFIS, KNN, PCA, Voltage Controlling Areas.
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1 Introduction

1.1 General
According to an anual Electrical Power Research Institute (EPRI) report on power

supply, it is estimated that the US has an economic loss of approximately $ 104 to $
164 billion dollars due to power supply outages [1]. The reasons for outages can vary
significantly depending on location, climate, infrastructure, etc. The most common factors
that imply in outages are:

1. Ambient dependent factors such as: wind, ice storms, extreme heat, earthquakes,
lightning, etc. It is not uncommon to see tree limbs interfering with low voltage
distribution lines in urban areas, especially in Brazil.

2. Animals are also a major factor in short circuits. A variety of animals rely on
distribution line poles for their nests, namely squirrels and birds.

3. High Power Demand, especially in extreme climate conditions where heating and
cooling is at its peak.

The biggest problems occur when the system is facing high power demand, a condi-
tion where the system is stressed to a point where the boundary between normal operation
and complete voltage collapse are intertwined. These power outages have the potential
of disconnecting millions of civilians from the grid, an energy disruption that can cost
millions of dollars in profit. Indonesia faced a serious power outage leaving roughly 100
million people without electricity for 5 hours due to deficiencies in the power generation
capacity. The outage began at 10 am on August 2005 when power failed along the elec-
trical system that connects Java, Bali, and Madura, causing outages in Java and Bali.
Roughly half of the country relies on this stretch of the power grid for electricity, therefore
it is important to understand what caused the abrupt loss of electricity [2]. Similarly to
Indonesia, India faced what is referred to as the worst power failure up to date [3]. The
power outage started at July 30th 2012, where an estimated 32 gigawatts of generation
capacity went offline. The number of civilians impacted in this sudden energy loss was
above 600 million people, which is close to 10% of the number of people planet’s popula-
tion and it lasted approximately 24 hours. According to the Power Minister Sushilkumar
Shinde, electricity usage was above normal which lead to a cascading effect of generation
loss, leaving millions without power.
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All of the aforementioned incidents are related to voltage stability issues. These
problems have caught the attention of researchers due to several voltage collapse incidents
worldwide. This problem is linked to the lack of reactive power supplies in heavily stressed
systems. In most cases, this is caused by system faults. Thus, voltage collapse and reactive
power planning are intrinsically connected, where suitable conditions of reactive power
reserves are necessary for a secure operation of the system. That being said, electric
power utilities are investing in more stable grids, enhancing the stability margin as well
as improving voltage stability assessment [4, 5]. A lot of good work has been done on
voltage stability analysis in the last three decades, for example [6, 4, 7, 8] to name a few,
and it is still a relevant topic within power systems.

1.2 Voltage Stability
The modern electric power grid, as we know, is constantly being challenged with

a rising increase of load demand. Transmission systems are generally equipped with a
combination of different loads (industrial, commercial, and residential) which fluctuate
energy consumption throughout the day. In normal operation conditions, the system is
deemed stable, and there is an equilibrium between generated and consumed power. Du-
ring the year, the electrical grid faces numerous load scenarios, in which some are less
drastic while other force the system to operate very close to its limit. It is in the latter
condition that small changes in the load pattern may threaten the voltage stability of the
system. Therefore, it is extremely important to identify all insecure operating conditions
in advance for corrective measures and planning of what to do in case of system instabi-
lity. This dispute is known as voltage instability and it is due to the voltage drop when
the system is lacking reactive power supply [7].

There are several solutions involving voltage stability problems, mainly control
changes/additions and even load shedding. Although load shedding is considered a prac-
tical solution, it is still economically expensive and does not solve the core issue. Other
measures, like new control implementation and installation of new generation units are
solutions for the long run and are not implemented immediately. What is valid and can
be implemented in the short run, irrespective of the physical system, are better studies
and computational resources to help the system operator take faster and better decisions.

Traditionally, voltage stability has been studied with the help of model based
methods, and there has been a lot of debate whether quasi-static models output reliable
information of the system. Although time domain simulations are capable of capturing the
events in a chronological order, simulation run-time is still a major bottleneck. Electro-
mechanical transient models also lack the ability of generating indices, which are easily
done through linearized models, such as the continuation power flow [9]. With that in
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mind, there is space for model free approaches in voltage stability studies.

1.3 State of the Art
The following section is a brief overview of some important papers that discuss

machine learning applications in voltage stability topics.

∙ Malbasa et al. [10], addresses an active machine learning technique for monitoring
voltage stability in transmission lines, using standard methods such as Support
Vector Machine (SVM) and Artificial Neural Networks (ANN) for state estimation.
Voltage stability in transmission lines are among the major challenges that system
operators face during daily monitoring and control, therefore researchers have been
refining predictive models for better and more robust state estimations. This is
due to the fact that power systems are frequently operated near its physical limits
for reasons of efficiency and economics. Model-free estimation methods, such as
Machine Learning generated models, are always faced with a recurring drawback
that constantly comes to play, which is data quality. Although phasor measurement
unit (PMU) data is abundant nowadays, the prepossessing step in model-free models
must be done correctly to avoid gruesome estimation errors. Model based methods,
on the other hand are, are only prone to errors that relate to the fidelity of the
model, but they are computationally expensive and can limit the operators ability
to generate precise and fast decisions when needed. It was with this in mind that the
authors proposed an active learning technique of iteratively building a knowledge
base, for optimized size and accuracy. They relied on an interactive selection of the
most representative operation points when building the training data set, making
simulation and decision making efficient and fast.

∙ Zhou et al. [11], addresses an artificial neural network (ANN) based method in
order to estimate long-term voltage stability margins. The traditional continuation
power flow method (CPF), used to determine the load margin in voltage stability
related problems, was proposed by Ajjarapu - Christy in paper [12] and has been
widely referenced as one of the leading investigative papers in voltage stability.
Similarly to the latter work, model based methods have major drawbacks, mainly the
computational burden. This led the research team to propose an ANN based method
that can successfully estimate the voltage stability margin for normal operation and
N-1 contingency situations. Also, with PMU data being abundant, this can lead to
real-time estimation of the system’s state, enabling fast control actions from the
system operator side. The multilayer perceptron (MLP) was the machine learning
method chosen for this study, with data being generated by 3000 random power
flow and load margin continuation power flow simulations. This data was then used
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to train the MLP to estimate voltage stability margins that are unseen by the MLP
during training.

∙ Sajan et al. [13] follows a similar approach as in [11] with the difference of using
a Genetic Algorithm based Support Vector Machine (SVM) approach for online
monitoring of long-term voltage stability. The main reason why machine learning
methods are extremely useful in voltage stability assessments is due to the fact
that traditional CPF methods are not fast enough for real-time voltage stability
evaluation of the system. The authors improved accuracy and minimized the training
time of the training cycle based on SVM parameter filtering using genetic algorithm.
Voltage magnitude and phase angle obtained from PMU data are used as input data
while the voltage stability margin is the estimated output of the SVM algorithm.
The effectiveness of the model was initially tested using the New England 39 bus
system and further elaborated using the Northern Indian system model, where even
for the larger system the model showed to be fast enough for real-time voltage
stability assessment.

∙ Zhang et al. [14] proposes a relatively new and promising learning algorithm called
extreme learning machine (ELM) for prediction of voltage stability margin. The
stability margin of the system is usually measured in terms of active power changes
and the traditional CPF techniques do so by tracing the system P-V curves as
load and generation increase. For online monitoring operation, as mentioned in
all previous papers, model based methods are slow and cannot be used for more
than offline studies. As machine learning becomes more mainstream in all areas of
power system application studies, so does the comparison of model-free algorithms.
The majority of study cases found in voltage stability assessment using machine
learning algorithms are limited to the prediction of voltage stability margins on
different operating points under one specific loading direction. With the increase
of renewable sources being integrated into the system, loading direction based on
forecast starts to become uncertain and thus hinders the estimation capabilities of
the latter cases. The authors address the advantages found in their proposal by
pointing out the fast learning capabilities of ELM voltage stability margin method
when dealing with huge input training data. An ensemble of ELM’s for increased
robustness and accuracy was also showcased in the work.

∙ Cai et al. [15] proposed a novel data-based learning and control method for long-term
voltage stability. Spatial-temporal data is used as the input of their machine learning
model, utilizing principal component analysis as a filter and data size reduction
procedure. Artificial neural network is used to build a classifier to reinforce the
relationship directly between the system dynamics and optimal control actions.
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Simulation results on the 6-bus system, New England 39-bus system and Iceland
189-bus system are given to show the potential of this method for on-line control.

1.4 Motivation
Machine learning tools can be very helpful for the electrical system operator and

utility companies, especially for system planning and online monitoring. In this work, five
different machine learning algorithms are used to map the voltage and loading levels of
the critical bus voltage for changes in the reactive power limits of PV buses of the load in-
creasing system. Principal component analysis (PCA) was used to generate distinguished
voltage controlling areas for the IEEE 14 and 118 bus systems in order to finally compare
the voltage and loading predictions generated by the Adaptive Network based Fuzzy Infe-
rence System (ANFIS), Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN),
Support Vector Regression (SVR), and Decision Tree (DT).

The motivation of the present work is to implement a critical bus voltage and load
mapping tool that can give supplementary advice to the grid operator. All algorithms,
after the training period, are capable of fast prediction calculations due to their trained
hypothesis. As expected from machine learning algorithms, once the algorithm is trained,
one can use it to quickly generate output predictions for different input values. The
reasoning behind the choice of comparing all the aforementioned algorithms for a Critical
Voltage and Load predictive tool is that each and every algorithm has its advantages and
disadvantages, therefore determining the best overall prediction algorithm for our purpose
is key. We wanted to test ANFIS’s results against the other four regression methods to
see if ANFIS is a viable tool in critical voltage and load mapping.

ANN is the most widely used and known machine learning algorithm, known for
its generalization properties, ANFIS is a modified version of the traditional model that
handles well uncertainty and imprecision, KNN is simple and intuitive to understand and
has no explicit model to build, SVR while not as popular as its classification counterpart
has been shown to have good estimation of real-value functions, and DT was proven to
be effective even when provided data with missing values [16, 17, 18, 19].

1.5 Thesis Organization
This work is divided in the following chapters:

∙ Chapter 2 proposes a new method of determining Voltage Area Identification based
on PCA. Both IEEE 14 and 118 bus systems are addressed.

∙ Chapter 3 is a brief explanation of the ANN and ANFIS methods.
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∙ Chapter 4 describes the quasi-static method called Continuation Power Flow which
is used to determine the data structure used in the regression algorithms.

∙ Chapter 5 applies the proposed ideas of chapter 4 to the larger system IEEE 118
bus, as well as comparing the results from all five machine learning algorithms.

∙ Chapter 6 concludes the work done, in this thesis, and highlights the scope for future
research in this area.

∙ Chapter 7 is the list of published papers during the masters program.
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2 Voltage Area Identification

2.1 Introduction
Voltage Stability is a dynamic process dependent strongly on the load profile th-

roughout time. In spite of that, such a problem can be analyzed indirectly with the help
of static power flow equations. As a result of a slow dynamical response, voltage stability
area identification can be evaluated with the continuous power flow equations [6, 20].
The power system can be separated into coherent buses that exhibit similar responses to
reactive power variations. Therefore, the criterion for voltage control area separation is to
group similar buses with similar voltage-reactive power responses. After that, the control
of the voltage levels can be made through reactive power sources in specific areas. Thus,
the compilation of these coherent buses into voltage controlling areas should be simple
and non-overlapping [21].

The purpose of this chapter is to explain how we determined the most critical
buses with respect to voltage stability. The first section 2.2 will explain the Principal
Component Analysis (PCA) method followed by subsection 2.2.1, which is a guided PCA
example that in the authors opinion is helpful to illustrate PCA. Later on in section
2.3, PCA will be used to separate the system into coherent voltage stability buses using
standard test systems IEEE 14 and IEEE 118 bus, which will be the basis for further
chapters along this thesis.

2.2 Principal Component Analysis
Principal Component Analysis (PCA) [14] is one of the oldest and most well-

established technique for dimensionality reduction and multivariate analysis. It is widely
used in Machine Learning applications, including data compression, image processing,
visualization, exploratory data analysis, patterns recognition, and time series prediction.
One of the biggest advantages of PCA is that it is a linear transformation of high dimen-
sionality data into a compressed lower dimensionality matrix. Due to its linear nature,
compression and decompression are easily achieved via matrix multiplication.

PCA has a very useful property, the first principal component possesses the lar-
gest variance among all principal components from the original data matrix, the second
principal component has the second largest variance and so forth [22, 23]. Each principal
component is an eigenvector ∈ R𝑚×1 that is associated with its respective eigenvalue ∈ R,
where 𝑚 is the number of features within the information matrix. The eigenvectors are
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unit vectors that point to different directions and maximize the variance of the projected
information matrix.

To put PCA into perspective, the technique can be thought of as fitting an ellipsoid
into a data matrix in which both have the same dimension. Not all of the fitted ellipsoid’s
axes dimensions are equal, enabling an axis size ranking out of the ellipsoid’s dimensions.
Each principal component points out to the direction of one of these axes, providing
information of the variance along each axis. By omitting the small axes and their respective
principal components, only a few percentage of the information is lost with the reduction
procedure [24].

Consider a data matrix represented as following

𝑀𝑑𝑎𝑡𝑎 =
[︁
𝑥(1) 𝑥(2) 𝑥(3) · · · 𝑥(𝑛)

]︁
(2.1)

𝑥(𝑖) ∈ R𝑚×1 for 𝑖 = 1, · · · , 𝑛 is a column vector in which 𝑛 is the number of examples
and 𝑚 is the number of features in the 𝑀𝑑𝑎𝑡𝑎 matrix. The first step of the PCA algorithm
is data pre-processing, i.e. feature scaling and mean normalization. Scaling ensures that
every feature in the data matrix has comparable range of values and mean normalization
centers the data on the origin. The next step is the computation of the covariance matrix

Σ𝑐𝑜𝑣 = 1
𝑚

𝑛∑︁
𝑖=1

(𝑥(𝑖))(𝑥(𝑖))𝑇 (2.2)

through singular value decomposition (SVD), in order to retrieve the eigenvalues and
the corresponding eigenvectors. Each eigenvector is a unit vector on a different axis,
perpendicular to one another for the n-dimensional data matrix. Once the eigenvalues are
determined, the ratio between the first 𝑘th eigenvalues and the sum of all eigenvalues

𝑉𝑋 =
𝑘∑︁

𝑖=1
𝑆𝑖𝑖

⧸︃
𝑚∑︁

𝑖=1
𝑆𝑖𝑖 (2.3)

quantifies how much of the variance has been retained, i.e, how much of the original
information has been saved. In Eq. (2.3), 𝑆𝑖𝑖 are the diagonal elements of the eigenvalue
matrix, 𝑘 is the number of the chosen principal components and 𝑚 are the number of
features on the data matrix. Once the ratio is determined, the final step in the PCA
algorithm is matrix reduction.

The reduced order data matrix is then expressed as

𝑍 = 𝑈𝑇𝑀𝑑𝑎𝑡𝑎 (2.4)

in which 𝑈 ∈ R𝑚×𝑘 is the reduced order eigenvector matrix.

For the purpose of the present work, instead of using PCA to reduce information
to its principal components, the elements of the principal components are used for Voltage
Area Identification. More details on how to apply PCA and hands-on examples can be
found in [25].
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2.2.1 Visual Representation of PCA

The following example and figures are used to guide the reader through a visual
representation of PCA, which in the authors opinion, is the best way of understanding
such topic. As mentioned in the previous subsection, PCA is a data driven hierarchical
coordinate system that is used to represent the statistical variations in the data set.
Hierarchical in a sense that the algorithm ranks the variance from most to least in this
new coordinate system. This means that we are looking for the dominant combination
of features from the data set that describe as much of the data as possible. It is visually
represented as trying to fit an ellipsoid ∈ R𝑛, where 𝑛 is the dimension of the data’s
features.

With that being said, let’s take a look at the following example. We have a 2D toy
data set, where the data points where randomly generated in Matlab through a Gaussian
distribution. The reason why we chose to have this type of distribution in the data is to
have a compact set of data points for better visual representation. There are 1000 points
generated in plot a) all of which centered at the origin (2, 1). The signal is shown in Fig.
1 a) and the resulting principal components are shown in Fig. 1 b) by the vectors 𝑢1 and
𝑢2.
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Figura 1 – Visual example where: a) data set, and b) ellipsoid and principal components

The number of principle components reflect the dimension of the data set, which
in our case is 2 dimensional. Vectors 𝑢1, and 𝑢2 and both perpendicular to one another
are the principle components of this data set. By visual inspection of Fig. (1) b), it is
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clear that the blue vector 𝑢1 is the one pointing in the direction of the biggest variance
and the red vector 𝑢2 is pointing in the direction of the smallest variance.

2.3 PCA on Power Flow Jacobian
The Newton-Raphson power flow formulation describes the relation between ac-

tive/reactive power mismatch and angular/voltage variations of the system buses respec-
tively. The power flow equation is described as

⎡⎣Δ𝑃
Δ𝑄

⎤⎦ =
⎡⎣𝐻 𝑁

𝑀 𝐿

⎤⎦ ·

⎡⎣Δ𝜃
Δ𝑉

⎤⎦ (2.5)

in which (Δ𝑃,Δ𝑄) represents active and reactive power mismatch vectors respectively,
(Δ𝜃,Δ𝑉 ) represents angular and voltage variation vectors and (𝐻,𝑀,𝑁,𝐿) are partial
derivative submatrices that compose the Jacobian Matrix [26]. Since voltage levels are
dependent on reactive power variance, mapping the relation between voltage and reactive
power can be obtained, once active power variations are disregarded. Therefore, the power
flow equation with Δ𝑃 = 0 becomes

Δ𝑄 = (𝐿−𝑀𝐻−1𝑁)Δ𝑉 (2.6)

in which the difference of the submatrices in Eq. (2.6) is the sensitivity matrix 𝐽𝑆𝑄𝑉

that expresses the effect of reactive power variation on bus voltage. This means that the
inverse of 𝐽𝑆𝑄𝑉 provides the voltage-reactive power sensitivity information matrix. The
𝐽−1

𝑆𝑄𝑉 matrix can be expressed through the right eigenvectors Ψ, left eigenvectors Φ and
the eigenvalues Λ of the 𝐽𝑆𝑄𝑉 matrix, according to

Δ𝑉 = (ΦΛ−1Ψ𝑇 )Δ𝑄 (2.7)

Both eigenvector matrices and the eigenvalue matrix are dimensionally equal and square
[20]. The voltage-reactive power sensitivity matrix can be rewritten as

Δ𝑉
Δ𝑄 ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝∑︁
𝑖=1

𝜃𝑖1𝜓1𝑖

𝜆𝑖

𝑝∑︁
𝑖=1

𝜃𝑖1𝜓2𝑖

𝜆𝑖

· · ·
𝑝∑︁

𝑖=1

𝜃𝑖1𝜓𝑝𝑖

𝜆𝑖
𝑝∑︁

𝑖=1

𝜃𝑖2𝜓1𝑖

𝜆𝑖

𝑝∑︁
𝑖=1

𝜃𝑖2𝜓2𝑖

𝜆𝑖

· · ·
𝑝∑︁

𝑖=1

𝜃𝑖2𝜓𝑝𝑖

𝜆𝑖

... ... . . . ...
𝑝∑︁

𝑖=1

𝜃𝑖𝑝𝜓1𝑖

𝜆𝑖

𝑝∑︁
𝑖=1

𝜃𝑖𝑝𝜓2𝑖

𝜆𝑖

· · ·
𝑝∑︁

𝑖=1

𝜃𝑖𝑝𝜓𝑝𝑖

𝜆𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.8)

in which 𝜃𝑖𝑗 is an element of the right eigenvector, where the first subscript relates to the
eigenvalue 𝑖 and the second one relates to the bus number 𝑗 of the system. Similarly, 𝜓𝑘𝑙

is an element of the left eigenvector, where the first subscript relates to the bus number
𝑘 of the system and the second one relates to the eigenvalue 𝑙.
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Each element in the column 𝜉 (1 ≤ 𝜉 ≤ 𝑝) of the voltage-reactive power sensitivity
matrix, Eq. (2.8), is the voltage sensitivity of a particular bus of the system with respect to
the injection of reactive power at bus 𝜉. Contrarily, each element in the row 𝜁 (1 ≤ 𝜁 ≤ 𝑝) is
the voltage sensitivity of the bus 𝜁 with respect to reactive power injection at a particular
bus throughout the system. In other words, the rows are the voltage sensitivity of a bus
𝜁 with respect to the reactive power injection in all of the buses and the columns are the
voltage sensitivity of all the buses with respect to the reactive power injection at bus 𝜉
[20, 27].

The analysis of the matrix in the RHS of Eq. (2.8) reveals important information
for the PCA implementation. Recalling that the columns of 𝐽−1

𝑆𝑄𝑉 are the voltage sen-
sitivity of all buses with respect to reactive power injection into bus 𝜉, the features of
the data matrix are the rows and the different examples for these features rely on the
columns of the matrix. Since the data is centered through pre-processing, the principal
components multiplied by their respective eigenvalues are vectors that point to maximum
information directions in orthogonal coordinates.

2.3.1 IEEE 14 & 118 bus system voltage area division

The voltage division of the IEEE 14 & 118 bus systems are established near the
region of voltage instability. The response of the system voltage levels throughout the
increase of the load is determined with a continuous power flow analysis. This load is
a variant parameter that depicts the dynamics of the system, therefore the insertion of
load variation reports the increase of the peak demand. More details on the continuation
analysis can be found in review paper [6].

Applying PCA to the Jacobian matrix of the IEEE 14 bus system resulted in an
eigenvector matrix and an diagonal eigenvalue matrix, both square matrices with the same
dimension. The eigenvalue index indicates that the data matrix can be reduced to a one
dimensional model, where the first principal component carries 99.91% of the information
of 𝐽−1

𝑆𝑄𝑉 . This means that the first principal component is more than enough information
to carry out a voltage area division. As a result of pre-processing, all principal components
are centered at the origin and each element of the principal components is a vector that
starts at the origin and points to an axis that is related to a bus.

The result of representing each element (bus) in a bar plot is exhibited in Fig. (2).
An analysis of Fig. (2) shows a clear separation between positive and negative values of
the elements of the principal component. The positive elements are related to the most
voltage-reactive power sensitive buses and the negative elements are related to the least
ones. This attribute is consistent with the tangent vector ranking utilized to determine
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Figura 2 – First Principal Component elements for the IEEE 14 bus system.

the order from most to least critical bus in the system. In this case, bus 14 is the most
voltage sensitive bus while bus 2 is the least voltage sensitive bus of the system. Although
the IEEE 14 bus system can be separated into two different voltage controlling areas, its
compact size allows it to be studied as a unit [18].

The separation of the IEEE 118 bus system into voltage controlling areas with
PCA presents its own difficulties, mainly because the first principal component carries
out 37.99% of the information from the voltage-reactive power sensitivity matrix. This
means that utilizing only the first principal component to divide the system introduces
an 62.01% error, which is extremely imprecise for voltage area division. Nevertheless, it
is possible to sum the product of the first 𝑘 principal components with their respective
eigenvalues in order to improve the voltage separation property of PCA. Instead of poin-
ting to the most dominant characteristics of 𝐽−1

𝑆𝑄𝑉 , as observed with the IEEE 14 bus
system, the vector points to the resulting effect of the 𝑘 most dominant characteristics of
the voltage-reactive power sensitivity matrix. After the summation is done, the resulting
vector is normalized. The sum of the first thirteen principal components of the IEEE 118
allows a single vector representation of 90.25% of the information in the data matrix. This
is feasible as long as the eigenvectors start at the origin, which is made possible through
pre-processing. The distinction in element value and element sign in Fig. (3) identify with
precision the similarity in voltage-reactive power buses. Generally, the majority of buses
of the IEEE 118 system are attached to nearby numbered buses, hence enabling a sepa-
ration of the whole system into 6 distinct areas based on element pattern recognition.
The ordered bus plot in Fig. (2) and Fig. (3) clearly show that the magnitudes and sign
of the modes automatically ranks and separates the buses of the system in per area and
in between areas. The change in mode signal from one bus to next one depicts difference
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Figura 3 – Resulting vector of Principal Components for the IEEE 118 bus system.

in how voltage reacts with regards to reactive power injection into the system. In other
words, there are groups of buses that have their voltages react in a particular way, which
can be seen by the 6 distinct areas from the IEEE 118 bus system modal analysis.

Tabela 1 – Voltage Area Division for the IEEE 118 bus system.

Area Bus Number
1 93 to 112 and 106
2 84 to 92
3 74 to 83 and 118
4 59 to 73, 81 and 116
5 43 to 58
6 1 to 42, 113 to 115 and 117

Throughout all the areas divided by principal components as shown in Tab. 1,
area 1 has the largest element relative to bus number 106 which is the critical bus of
the system. The consequent largest elements are within area 1 which makes it the most
critical area among all. Contrarily, area 6 has the least critical bus among all buses of
the system, justified by the smallest element in the resulting principal component. The
following smallest elements are within area 6, which makes it the least critical among all
areas of the system. The original IEEE 118 bus system reaches its critical voltage point
before all the generators reach their reactive power limits. Therefore not all generation
buses become PV buses at the critical load, which justifies the absence of some elements
in Fig. (3). Although the model lacks a few elements, these elements can be added to the
voltage division areas with reasoning, as seen in Table 1.
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3 Machine Learning Algorithms

3.1 Introduction
So far we have defined the critical voltage buses in both IEEE 14 and 118 bus

systems and their grouping. Bus number 14 is the most critical bus in the IEEE 14 bus
system while bus number 106 is the most critical bus in the IEEE 118 bus system. This
chapter will lay the foundation of two of the five regression algorithms that are tested in
this work, which are ANN and ANFIS. The reason is that the original version of paper [18]
was intended to only draw a comparison between ANN and ANFIS. One of the reviewers
requested more testing with other methods, namely KNN, SVR and DT. The author does
not have proper experience with KNN, SVR, and DT and thus will limit this chapter to
only ANN and ANFIS.

It is important to mention that Adaptive Neuro-Fuzzy Inference System (ANFIS)
method is the method we want to compare against other regression algorithms in order
to check whether or not it is a viable machine learning algorithm for voltage and load
mapping. The reason is that ANFIS is not widely used and exposed in the academia,
although it has great potential due to fuzziness and the ability to generate rules out of
data. The rules, which are verbal expressions, are easily understood and can help system
operators with fast and simple solutions.

3.2 Machine Learning general notion
Artificial Intelligence as best described by Andrew Moore, Former-Dean of the

School of Computer Science at Carnegie Mellon University, is "The science and engineering
of making computers behave in ways that, until recently, we thought required human
intelligence.” Although industry and marketing interchangeably use the term machine
learning and artificial intelligence when it most convenient, there is a big difference in
the philosophy behind them. Machine Learning (ML) is a branch of the greater artificial
intelligence scope that is focused in learning through experience by automatically finding
patterns that explain the relationship between a certain input and output [28]. Figure (4)
illustrates the ranking between the broader artificial intelligence area and one of its most
famous subareas: Machine Learning.

Machine Learning can be divided into two subareas, supervised learning and un-
supervised learning. Supervised learning is an area of machine learning that is focused in
modelling the dependency of an input data set with respect to its output based in labeled
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Figura 4 – Artificial Intelligence and its subareas

information. Unsupervised learning, on the other hand, is an area of machine learning
that is focused in finding structure in unlabeled data.

This chapter is a birds eye view on two of the five machine learning methods used
in this work. The following subsections will briefly describe ANN and ANFIS, in the
following order:

∙ Subsection 3.3 - Artificial Neural Networks (ANN)

∙ Subsection 3.4 - Adaptive Neuro-Fuzzy Inference System (ANFIS)
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3.3 Artificial Neural Networks (ANN)
Artificial Neural Network (ANN) is an artificial intelligence algorithm within the

subarea of Machine Learning that, as the name implies, attempts to simulate the functio-
ning of the human brain. This is done by observing the neurons and their interconnections
in order to process information [24].

Figura 5 – Artificial Neural Network Architecture

Figure (5) is a visual representation of the architecture of perceptron based neural
network, which is one of the machine learning models used in this comparison study. This
neural network implementation has three distinct layers: input layer, hidden layer, and
output layer. It might seem daunting at first but the neural networks is nothing more than
various artificial neurons connected between each other through a pre-defined path. From
the figure above, the reader can observe that there is no elements lacking connections and
that all circle elements are fully linked to all the elements from the previous layer and the
next layer, with the exception of the first and last layers.

The input layer, represented by the green circles in Fig. (5), is the start of the model
where we feed the neural network with the features 𝑥𝑖 that we chose and its set of data.
The hidden layer, represented by the white circles in Fig. (5), is where the computational
power comes from and it represents the neuron itself. Each artificial neuron is labeled as
ℎ𝑗

𝑖 where 𝑖 is the number of neurons within a specific layer 𝑗 of the hidden layer. The
number of layers within the hidden layer is greatly dependent on the complexity of the
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problem. In our example, there are two layers of artificial neurons inside the hidden layer.
The output layer is also a layer of neurons limited to no further connections and used to
output the final weighted signal.

The following subsection describes the classical structure of an ANN and was ex-
tracted from the reference book [29].

3.3.1 Classical ANN

The basic structure of an ANN is the artificial neuron shown in Fig. (6), which
resembles the biological neuron in its shape and function [30].

Figura 6 – Artificial Neuron

The inputs (𝑋) are connected to the neuron through weighted connections emu-
lating the dendrite’s structure, whereas the summation, the bias (𝑏), and the activation
function (𝜃) play the role of the cell body, and the propagation of the output is analogous
to the axon in a biological neuron. Mathematically, a neuron is equivalent to the function:

𝑌 = 𝜃

(︃
𝑛∑︁

𝑖=1
𝑊𝑖𝑋𝑖 + 𝑏

)︃
(3.1)

which can be conveniently modeled, using a matrix form,

𝑌 = 𝜃(𝑊.𝑋 + 𝑏) (3.2)

where 𝑊 =
[︁
𝑊1 𝑊2 · · · 𝑊𝑛

]︁
, and 𝑋 =

[︁
𝑋1 𝑋2 · · · 𝑋𝑛

]︁𝑇
.

The activation function shapes the output or state of the neuron. There are mul-
tiple activation functions in the literature, but we chose to use the sigmoidal activation
function, also known as logistic activation function. It has the following formulation:

Sigmoid function: 𝜃(𝑎) = 1
1 + 𝑒−𝑎

(3.3)
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A neural network is simply an association of cascaded layers of neurons, each with
its own weight matrix, bias vector, and output vector. If an input vector is constituted of
𝑁 inputs and a layer of 𝑀 neurons, 𝑊𝑖𝑗 represents the weight of the connection of the 𝑗
th input to the 𝑖 th neuron of the layer; 𝑌𝑖 and 𝑏𝑖 are, respectively, the output of and the
bias associated with the 𝑗 th neuron. A layer of neurons can be conveniently represented,
using matrix notation, as follows:

𝑊 =

⎡⎢⎢⎢⎣
𝑊11 . . . 𝑊1𝑀

... ... ...
𝑊𝑁1 . . . 𝑊𝑁𝑀

⎤⎥⎥⎥⎦ (3.4)

The row index in each element of this matrix represents the destination neuron of
the corresponding connection, whereas the column index refers to the input source of the
connection. Designating by Y the output of the layer, you can write

𝑌 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑌1
...
𝑌𝑖

...
𝑌𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃
(︁∑︀𝑀

𝑗=1 𝑊1𝑗𝑋𝑗 + 𝑏1
)︁

...
𝜃
(︁∑︀𝑀

𝑗=1 𝑊𝑖𝑗𝑋𝑗 + 𝑏𝑖

)︁
...

𝜃
(︁∑︀𝑀

𝑗=1 𝑊𝑁𝑗𝑋𝑗 + 𝑏𝑁

)︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝜃(𝑊 ·𝑋 + 𝑏)(3.5)

To aid in identifying the layer corresponding to a particular matrix, superscript
indexes are used. Thus, 𝑊 𝑘

𝑛 represents the weight of the connection between the 𝑗 th
neuron in layer 𝑘 -land the 𝑖 th neuron in layer 𝑘, and 𝑌 𝑘

𝑖 is the output of the 𝑖 th neuron
of the 𝑘 th layer. The network output is the output of the last layer (also called the output
layer), and the other layers are called hidden layers. For a network with two hidden layers,
as was illustrated in the previous section in Fig. (5), results in a output function

𝑌𝑜𝑢𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦1

𝑦2

𝑦3
...
𝑦𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝜃

(︁
𝑊 3𝜃

(︁
𝑊 2

(︁
𝜃
(︁
𝑊 1𝑋 + 𝑏1

)︁)︁
+ 𝑏2

)︁
+ 𝑏3

)︁
(3.6)

The training step requires constant update of the weights with gradient descent during
back propagation, and the output 𝑌𝑜𝑢𝑡 should match the target 𝑇𝑖 and minimize the mean
squared error

𝐸 = 1
2

𝑝∑︁
𝑖=1

⃦⃦⃦
𝑌𝑖 − 𝑇 2

𝑖

⃦⃦⃦
(3.7)

where 𝑌𝑖 is the output obtained by propagating input 𝑋 through the network.
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3.4 Adaptive Neural Fuzzy Inference System (ANFIS)
ANFIS is the merge of Artificial Neural Networks (ANN) and Fuzzy Inference

System (FIS). In real world problems, a great deal of information and data are obtained
from the human expert. This set of information allows ANFIS to be used for modelling,
controlling and parameter estimation.

The benefit of using an ANFIS based model in comparison to a fuzzy logic model
is to train the algorithm without relying solely on expert knowledge, and, in comparison
to an ANN, the model does not rely solely in numerical data. In addition ANFIS ba-
sed model compared to other generalization models are: adaptation capability, ability to
generate nonlinear hypothesis and rapid learning capacity [31]. Thus a rule-based fuzzy
logic model is achieved and the rules are developed during the training process. Based
in our data ANFIS constructs a FIS in which the membership function parameters are
obtained through iterations of the algorithm.

The two most commonly used FIS are Mamdani and Sugeno [32], their funda-
mental difference is that Mamdani requires output membership functions while Sugeno
generates linear or constant outputs relying only on the input membership functions. In
the present analysis, the Sugeno-type fuzzy inference system is used because the provided
data comes from numerical simulation of an automatic rule generator [33]. For the des-
cription of ANFIS architecture, it was assumed two inputs: 𝑥1 and 𝑥2. Accordingly two
fuzzy if-then rules for the 1st-order Sugeno Fuzzy Model are expressed as:

Rule 1: If 𝑥1 is 𝐴1 and 𝑥2 is 𝐵1, then 𝑓1 = 𝑝1𝑥1 + 𝑞1𝑥2 + 𝑟1,

Rule 2: If 𝑥1 is 𝐴2 and 𝑥2 is 𝐵2, then 𝑓2 = 𝑝2𝑥+ 𝑞2𝑦 + 𝑟2,

in which 𝐴𝑖 and 𝐵𝑖 are the fuzzy sets, 𝑓𝑖 is the output, and 𝑝𝑖, 𝑞𝑖, and 𝑟𝑖 are the
design parameters that are determined during the training process. The details of the
method below can be found in review paper [34, 35, 36].

Figura 7 – ANFIS arquitecture two-input, two-output first order Sugeno Model.
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The ANFIS architecture with two rules is shown schematically in Fig. (7), and
consists of five layers. The ANFIS algorithm consists of five layers. Layers 2, 3 and 5 are
operation layers meaning that there are no trainable parameters. Layers 1 and 4 consist
of two trainable parameter sets, the antecedent membership function parameters and the
polynomial parameters also denominated consequent parameters.

The structure of ANFIS is described in the following. First of all in order to
compact the formulation, we will define 𝑂𝑗

𝑖 as the output of ith node and jth layer thus,
Layer 1: Membership Functions in which 𝐴𝑖, 𝐵𝑖 are linguistic labels characterized by
respective membership functions related to the input:

𝑂1
𝑖 ≡ 𝜇𝐴𝑖(𝑥), for i=1,2 (3.8)

Layer 2: Calculation of firing strengths by product:

𝑂2
𝑖 ≡ 𝑤𝑖 = 𝜇𝐴𝑖(𝑥1)𝜇𝐵𝑖

(𝑥2), for i=1,2 (3.9)

Layer 3: Firing strengths from previous layer are normalized to determine the strength of
each rule from the total firing strength:

𝑂3
𝑖 ≡ 𝑤𝑖 = 𝑤𝑖

𝑤1 + 𝑤2
, for i=1,2 (3.10)

Layer 4: In the 𝑖th node the contribution of the ith rule to the overall output is calculated:

𝑂4
𝑖 ≡ 𝑤𝑖𝑓𝑖 = 𝑤𝑖(𝑝𝑖𝑥1 + 𝑞𝑖𝑥2 + 𝑟𝑖) (3.11)

in which {𝑝𝑖, 𝑞𝑖, 𝑟𝑖} is the parameter sets mentioned above and 𝑤𝑖 are the normalized firing
strengths from Eq. (3.10).

Layer 5: The total contribution of all inputs from layer 4 is:

𝑂5
𝑖 ≡

𝑛∑︁
𝑖

𝑤𝑖𝑓𝑖 =
∑︀𝑛

𝑖 𝑤𝑖𝑓𝑖∑︀𝑛
𝑖 𝑤𝑖

(3.12)

Training ANFIS requires the use of a gradient descent algorithm to optimize the antece-
dent parameters and the least squares algorithm to determine the consequent parameters.
The use of two different algorithms inside the structure of ANFIS justifies it to be classi-
fied as a hybrid algorithm. The first updated parameters are the consequent {𝑝𝑖, 𝑞𝑖, 𝑟𝑖} and
the antecedent parameters are then updated using back-propagation, just as in Artificial
Neural Networks [37].
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4 Critical Voltage and Load Mapping

4.1 Introduction
So far we have defined the critical voltage buses in both IEEE 14 and 118 bus

systems and their grouping. Bus number 14 is the most critical bus in the IEEE 14 bus
system while bus number 106 is the most critical bus in the IEEE 118 bus system in
chapter 2. In chapter 3, we gave a brief overview on ANN and ANFIS, two of the five
machine learning methods used in this work. This chapter will lay the foundation of
the continuation power flow in section 4.2, which is an extension of the Newton power
flow solver, that continuously traces the voltage level of all buses as loading increases. The
continuation power flow solver is used to determine the Voltage-Load Hatched Area, which
is the boundary from where we will extract the data used in the regression algorithms.
The proposed data structure that is defined in section 4.3 was first implemented for the
IEEE 14 bus system and used in subsequent chapters for the bigger IEEE 118 bus system.
Section 4.4 is devoted to determining the data structure that will be used throughout the
rest of this work. It was initially tested with ANFIS and further explored in chapter 5
with the five regression methods.

4.2 Continuation Power Flow
The traditional Power Flow algorithm is a Newton-Raphson approach to determine

the roots of a nonlinear system. For the case of electrical (nonlinear) systems, the solution
provides the state variables: electrical bus angle and electrical bus voltage [26].

The contribution of all active and reactive power components for each of the 𝑖th
buses is described according to,

𝑃𝐺𝑖 − 𝑃𝐿𝑖 − 𝑃𝑇 𝑖 = 0

𝑄𝐺𝑖 −𝑄𝐿𝑖 −𝑄𝑇 𝑖 = 0
(4.1)

in which subscript 𝐺, 𝐿 and 𝑇 denote bus generation, load and injection, respectively.
Also, the contribution of all active and reactive power injections from the 𝑖th bus to the
𝑗th bus is

𝑃𝑇 𝑖 =
𝑛∑︁

𝑗=1
𝑉𝑖𝑉𝑗𝑦𝑖𝑗 cos (𝛿𝑖 − 𝛿𝑗 − 𝜗𝑖𝑗)

𝑄𝑇 𝑖 =
𝑛∑︁

𝑗=1
𝑉𝑖𝑉𝑗𝑦𝑖𝑗 sin (𝛿𝑖 − 𝛿𝑗 − 𝜗𝑖𝑗)

(4.2)
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in which 𝑉𝑖 and 𝑉𝑗 are the voltages of bus 𝑖 and 𝑗, 𝛿𝑖 and 𝛿𝑗 are the bus angles of bus 𝑖
and 𝑗, respectively, and 𝑦𝑖𝑗 is the (𝑖, 𝑗)𝑡ℎ element of admittance matrix 𝑌𝐵𝑈𝑆.

On the other hand the continuation algorithm is a path-following methodology
used to solve systems of nonlinear equations. For power flow, the purpose of the conti-
nuation method is to achieve continuum power flow solutions for a distinct load change
scenario. The continuation technique in Power Flow problems requires a variant para-
meter that depicts the dynamics of the electrical system. Therefore a load parameter is
inserted into the equation to report the increase of the peak load demand. Throughout
this section we will reproduce shortly the fundamental aspects of the insertion of the load
parameter into the Power Flow equations [38].

The load parameter is represented by 𝜆 and is defined in the range 0 ≤ 𝜆 ≤ 𝜆𝑐

and the limits correspond to base load problem and critical load, respectively. As 𝜆 → 𝜆𝑐,
the root finding procedure goes close to a saddle-node point, and, except for a proper
trajectory, the solution is not determined.

The insertion of the load parameter for each bus of the system into the active and
reactive power equations results in:

𝑃𝐿𝑖 = 𝑃𝐿𝑖0 + 𝜆(𝑘𝐿𝑖𝑆Δ𝑏𝑎𝑠𝑒 cos𝜓𝑖)

𝑄𝐿𝑖 = 𝑄𝐿𝑖0 + 𝜆(𝑘𝐿𝑖𝑆Δ𝑏𝑎𝑠𝑒 sin𝜓𝑖)
(4.3)

where 𝑃𝐿𝑖0 and 𝑄𝐿𝑖0 are the original load at the 𝑖th bus for active and reactive power
respectively, 𝑘𝐿𝑖 is the rate of load change at the 𝑖th bus, 𝜓𝑖 is the power factor angle of
load change at the 𝑖th bus and 𝑆Δ𝑏𝑎𝑠𝑒 is the apparent power chosen to provide appropriate
scaling of 𝜆.

Generation as well can be portrayed with the inclusion of the load parameter, thus
being represented as such

𝑃𝐺𝑖 = 𝑃𝐺𝑖0(1 + 𝜆𝑘𝐺𝑖) (4.4)

in which 𝑃𝐺𝑖0 is the base case active generation in bus 𝑖 and 𝑘𝐺𝑖 is the rate of change in
generation as 𝜆 varies. Substituting Eqs. (4.3) and (4.4) into the power flow Eqs. (4.1)
results in

𝑃𝐺𝑖0(1 + 𝜆𝑘𝐺𝑖) − 𝑃𝐿𝑖0 − 𝜆(𝑘𝐿𝑖𝑆Δ𝑏𝑎𝑠𝑒 cos𝜓𝑖) − 𝑃𝑇 𝑖 = 0

𝑄𝐺𝑖0 −𝑄𝐿𝑖0 − 𝜆(𝑘𝐿𝑖𝑆Δ𝑏𝑎𝑠𝑒 sin𝜓𝑖) −𝑄𝑇 𝑖 = 0
(4.5)

Once the load parameter is accounted for in the power flow equations as identified in Eq.
(4.5), the next step is to apply the continuation algorithm to the reformulated system.

The continuation power flow equations are now expressed as such

𝐹 (𝛿, 𝑉, 𝜆) = 0, 0 ≤ 𝜆 ≤ 𝜆𝑐 (4.6)
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Solving the new power flow equations requires the continuation algorithm to start
from a known solution with the use of a predictor-corrector scheme to find the following
solutions at different load levels. The corrector algorithm is a slightly modified Newton-
Raphson power flow while the predictor algorithm is an appropriately sized step in the
tangent direction of the solution path [39]. The algorithm is stopped when critical point
is reached, which is the point of maximum loading value. The tangent component of 𝜆 is
zero at the critical point and the determinant of the Jacobian matrix is null.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Loading ( ) [pu]

0.5

0.6

0.7

0.8

0.9

1

1.1

V
o

lt
a

g
e

 [
p

u
]

B01

B02

B03

B04

B05

B06

B07

B08

B09

B10

B11

B12

B13

B14

Figura 8 – P-V plot for the IEEE 14 bus system

Figure (8) is the result of running the simulation for the IEEE 14 bus system,
known as the P-V curve. As loading increases voltage declines until reaching the voltage
critical point at 𝜆 = 𝜆𝑐. For the sake of cleanliness only the CPF plot of the IEEE 14 bus
system is displayed in this section.

4.3 IEEE 14 bus Critical Voltage Mapping
We will start by figuring out the best data scheme for voltage and load mapping for

ANFIS. As mentioned previously, ANFIS is the machine learning algorithm that we want
to test others against to check the its viability in voltage and load mapping assessment
tool. That being said, in order to map the voltage in the critical bus using the five
regression methods chosen for this study, a minimum number of data is required to validate
the results,i.e., to achieve small errors by generalization. The analysis begins with two
standard cases: a) the base system and b) the system with double maximum limits of the
reactive power 𝑄𝑚𝑎𝑥 (MVar) of all synchronous generators and compensators. The second
case will be treated as the modified case.
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Figura 9 – Critical Bus #14 PV curve for base and maximum case.

Figure (16) exhibits the result from simulation with those two standard cases.
Both curves cross the limiting voltage at different load parameter values, the base case
crosses the limit voltage at 𝜆 = 0.261 and for the modified case the limit is crossed at
𝜆 = 0.674. The lower limit for the critical bus voltage is 0.95 p.u which is the minimum
value admissible for voltage though out the system.

The increase in 𝑄𝑚𝑎𝑥 results in a larger reactive power range of the PV buses
which justifies the difference in voltage levels for even loading values between the base
case and the modified case.

All other combinations of 𝑄𝑚𝑎𝑥 that are not maximum as mentioned above will
result in P-V curves that are in between the base case and the maximum case. Therefore
it is possible to map all the voltages and load parameters inside the hatched area between
curves depicted in Fig. (10).

If we desire to control the voltage in the critical bus by means of AVR, it is
necessary to obtain the model of the voltage output through the whole variation of 𝑄𝑚𝑎𝑥

up to the maximum value stipulated in the study.

4.4 Data for ANFIS
IEEE 14-bus is the chosen system for these tests. It has 4 PV buses in which the

maximum limit of the reactive powers 𝑄𝑚𝑎𝑥 are changed for every training example. Then,
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Figura 10 – Hatched area between PV max curve and voltage limit.

for each composition of 𝑄𝑚𝑎𝑥 for the PV buses, input data is sorted in a matrix form such
as

𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑄1
3 𝑄1

2 𝑄1
8 𝑄1

6 𝜆1

... ... ... ... ...

... ... ... ... ...
𝑄𝑗

3 𝑄𝑗
2 𝑄𝑗

8 𝑄𝑗
6 𝜆𝑗

... ... ... ... ...

... ... ... ... ...
𝑄𝑚

3 𝑄𝑚
2 𝑄𝑚

8 𝑄𝑚
6 𝜆𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.7)

Equation (5.1) is the input matrix used to train the ANFIS algorithm. For each
example of the training matrix there are 5 inputs (𝑄𝑗

3, 𝑄
𝑗
2, 𝑄

𝑗
8, 𝑄

𝑗
6, 𝜆) in which 𝑄𝑗

𝑖 is the
maximum reactive power injection from PV buses for 𝑖th bus and 𝑗th training example
and 𝜆𝑗 is the power load for the 𝑗th training example. For the sake of compactness, the
cross validation input 𝑋𝑐𝑟𝑜𝑠𝑠𝑣𝑎𝑙 is not presented, but it has the same configuration as the
training input.

The output vector 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 shown in Eq. (5.2) is the voltage tied up to the training
input for each 𝑗th example.

𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =
[︁
𝑈1

𝑐 · · · 𝑈 𝑗
𝑐 · · · 𝑈𝑚

𝑐

]︁𝑇
(4.8)
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The superscript 𝑗 in the elements of 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 denotes the 𝑗th row of
examples from the training set for a set of 𝑚 training examples. For the sake of compact-
ness, the cross validation output 𝑌𝑐𝑟𝑜𝑠𝑠𝑣𝑎𝑙 is not presented, but it has the same configuration
as the training input, whose 𝑘th element is defined as 𝑉 𝑘

𝑐 .

Once the training set is obtained, the next step in the algorithm is to train the
network to minimize the error between hypothesis and actual output. This procedure
determines the antecedent and consequent parameters. The data used for each test is
chosen in order to compare the hypotheses by varying the number of examples and the
training data set.

In the present analysis the comparison index 𝐽 is defined as the average least
square cost function

𝐽 = 1
2𝑛

𝑛∑︁
𝑖=1

(ℎ𝑖 − 𝑉 𝑖
𝑐 )2 (4.9)

in which ℎ𝑖 is the hypothesis generated by the ANFIS algorithm for a specific cross
validation set and 𝑉 𝑖

𝑐 is the output of the cross validation set. The superscript 𝑖 is the
number of the cross validation example with a total of 𝑛 examples.

Notice that to show the evolution of the results of the tests, seen bellow, the
vertical axis of the figures will be presented in different scales.

4.4.1 First Data Test

For the first test, we increase (𝑄𝑗
3, 𝑄

𝑗
2, 𝑄

𝑗
8, 𝑄

𝑗
6) = (50, 40, 24, 24) (IEEE 14-bus) in-

dividually in increments of 10% up to doubling their values. From all information achieved
through the continuation power flow, the useful data is concentrated inside of what we
define as the Voltage-Load Hatched Area (VLHA) as shown in Fig. (10). A specific set of
data is collected to serve as training data. The main idea of this analysis is to obtain the
data at the vertices of the polygon formed by the VLHA and, from those data, predict
critical voltage values for any 𝜆 contained within the hatched area, i.e. in a reduced range
for 𝜆. This procedure accelerates the learning process, consequently the solution is found
with less examples.

Figure (11) shows schematically the idea of choosing data from the vertices of the
VLHA by varying 𝑄𝑚𝑎𝑥 at bus 6. This chosen training set consists of 79 training examples
including the base case. After training with 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, a cross validation set with 16 random
examples was used to determine the effectiveness of the mapping algorithm. This cross
validation set will be used for all tests in order to determine the best (𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔).

Figure (12) shows the difference between the output of the cross validation data
and the hypothesis generated by the ANFIS algorithm. The error between the hypothesis
and the output is large and can be justified by either lack of data examples, model
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Figura 11 – Example of data collected for base case, 40% increase and 100% increase of
reactive power in 𝑄6.
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Figura 12 – Comparison between ℎ𝑖 and 𝑉 𝑖
𝑐 for test 1.

oversimplification or poor choice of training data set. The cost function for the first data
set is 𝐽 = 0.2181.

4.4.2 Second Data Test

For the second test, we repeat the same methodology used in the first test, but
now with new training examples. The second data set consists of 21 examples where
(𝑄𝑗

3, 𝑄
𝑗
2, 𝑄

𝑗
8, 𝑄

𝑗
6) gain simultaneous 10% increments until doubling their original values.

These 21 training examples are obtained from the vertices of the polygons formed by the
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Figura 13 – Comparison between ℎ𝑖 and 𝑉 𝑖
𝑐 for test 2.

second data VLHA, such as in the previous test shown by Fig. (11).

After training with 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, a cross validation set with 16 random examples was
used to determine the effectiveness of the mapping algorithm. Figure (13) shows the
difference between the output of the cross validation data and the hypothesis generated by
the ANFIS algorithm. The error between the hypothesis ℎ𝑖 and the output 𝑉 𝑖

𝑐 invalidates
the use of the second data set as a feasible set of data. The cost function for the second
data set is 𝐽 = 0.3930.

4.4.3 Third Data Test

Again, for the third test, the procedure presented in the first data test is repeated
with new training data set. For this test, the chosen training set consists of 99 examples:
a combination of the first data set with the second data set. The idea is to combine both
training sets and analyze whether more data, by its own, would give better results.

We observed that the increase of the number of examples in the data matrix
shows to be inefficient when generating a valid hypothesis, unless the proper choice for
the training example is adopted. The combined training set resulted in even greater error
between the hypothesis ℎ𝑖 and output 𝑉 𝑖

𝑐 with a cost function value of 𝐽 = 7.2239.

Figure (14) shows the difference between the output of the cross validation data
and the hypothesis generated by the ANFIS algorithm.

4.4.4 Fourth Data Test

For the fourth test each example is the combination between (𝑄𝑗
3, 𝑄

𝑗
2, 𝑄

𝑗
8, 𝑄

𝑗
6) with

gains of 100%, i.e., 𝐶4
1 , 𝐶4

2 , 𝐶4
3 and 𝐶4

4 for all 𝑄𝑚𝑎𝑥. The same methodology used in
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Figura 14 – Comparison between ℎ𝑖 and 𝑉 𝑖
𝑐 for test 3.

previous tests is used for the fourth test, that means that the chosen training set in the
new conditions consists of 31 training examples and the cross validation set is the same
as in previous tests.

Figure (15) shows the difference between the output of the cross validation data
and the hypothesis generated by the ANFIS algorithm. We observed that, by choosing
data that is the combination of 𝑄𝑚𝑎𝑥, the error between the hypothesis ℎ𝑖 and the output
𝑉 𝑖

𝑐 is the smallest among all tests with a cost function value of 𝐽 = 7.657 × 10−4.

This test suggests that with a combination between (𝑄𝑗
3, 𝑄

𝑗
2, 𝑄

𝑗
8, 𝑄

𝑗
6) and selecting

appropriate data we can estimate the critical bus voltage, with a acceptable error, for
any load parameter bounded by VLHA. The reliability of the hypothesis generated by
the ANFIS algorithm is attached to the area of the VLHA, implying that for smaller gain
steps the algorithm will predict the critical bus voltage with greater precision.
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Figura 15 – Comparison between ℎ𝑖 and 𝑉 𝑖
𝑐 for test 4.

4.5 Data selection conclusion
ANFIS for data driven models with a small data set proved to be effective in

predicting the critical bus voltage for the IEEE 14 bus system within the VLHA load
parameter range. The small number of examples within the training data set would lead to
inaccurate results if trained with a traditional ANN. However, it was overcomed with the
addition of fuzziness into the algorithm represented by the input membership functions.

Nevertheless, a proper choice of training data is required in order to model the
critical bus voltage. Now that we have decided on the data structure that best suits ANFIS
for the IEEE 14 bus system, we will extend this idea to the IEEE 118 bus system and
compare it against ANN, KNN, SVR, and DT.
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5 Voltage and Load prediction comparison
for the IEEE 118 bus

5.1 Introduction
Chapters 2 to 4 have discussed the method for dividing the system into coherent

voltage-reactive power buses, briefly mentioned how ANN and ANFIS works and defined
a data structure that was tested for the IEEE 14 bus system and will be used for voltage
load mapping of a bigger system (IEEE 118) in this chapter.

This chapter contains the voltage-load hatched area for the critical bus of the IEEE
118 bus system as well as the result of the comparison tests and a section dedicated to
reviewing and scoring the overall best regression algorithm for the task.

5.2 Voltage-Load Hatched Area for the IEEE 118 system
Critical voltage and load mapping begin with two standard cases: a) the base case

and b) the system with an augmented maximum limit of the reactive power 𝑄𝑚𝑎𝑥 (MVar)
of the synchronous generators and compensators. As mentioned previously, area 1 was
pointed out as the voltage stability critical area, shown by the elements of the resulting
principal component in Fig. (3). The increase in the maximum reactive power limits of
the PV buses yields a greater critical load profile, elevating voltage levels of nearby buses.
Due to the control of the critical bus voltage to be a rather localized problem, reactive
power injection efforts are limited by the area in which the critical bus stands. As a result,
only the PV buses presented in area 1 exhibit significant impact on voltage and critical
load levels of the critical bus. Area 1 of the IEEE 118 bus system has 9 PV buses, of which
4 of them have meaningful impact on the voltage level of the critical bus 106. Following
the procedure mentioned above, the augmented maximum limit system chosen for this
analysis represents an increase of 25% on all the maximum limits of reactive power in
the 4 PV buses (𝑄103, 𝑄104, 𝑄105, 𝑄107). The augmented limit system widens the level of
operable load as well as the critical bus voltage, enabling a representation of the generators
and compensators for the overly stressed system.

Fig. (16) exhibits the result from simulation with those two standard cases, in
which the dot-dash line and the dashed line is the PV curve for the augmented ma-
ximum reactive power limit system and the PV curve for the base case respectively.
Each curve intersects the limiting voltage at different loading points, 𝜆𝑏𝑎𝑠𝑒 = 0.3087 while
𝜆𝑚𝑎𝑥 = 0.3615. The red solid line is the minimum value admissible for voltage through
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Figura 16 – Critical Bus #106 PV curve for base and maximum case.

out the system, given by 0.95 p.u.

The increase in 𝑄𝑚𝑎𝑥 results in a larger reactive power range of the PV buses which
justifies the difference in voltage levels for even loading values between the base case and
the modified case. All other combinations of 𝑄𝑚𝑎𝑥 that are not maximum as mentioned
above will result in PV curves that are in between the base case and the maximum case.
Therefore it is possible to map all the voltages and load parameters bounded by both PV
curves and the limiting system voltage, depicted by the hatched area in Fig. (16), defined
as Voltage-Load Hatched Area (VLHA) [18].

5.3 Data structure for ANN, ANFIS, KNN, SVR & DT
In order to compare the voltage and load prediction capabilities of all the regres-

sion algorithms aforementioned, the first step in the methodology is to determine the data
set. A different voltage prediction methodology for the critical bus of the IEEE 14 bus
system was presented in [18], it is based on data that was acquired from the vertices of the
voltage-load polygon. The proposition is suited for voltage and load predictions because
of the near perfect linear voltage response for the increasing load. Once the extremities
of the curves that form the polygon are known, all other data points within the polygon
can be determined with a linear hypothesis. This polygon is the result of the intersection
of two PV curves with the limiting voltage value of the system.

As mentioned previously, the critical area of the IEEE 118 bus system has nine PV
buses from which four of them have significant impact on the voltage level of the critical
bus 106. Therefore, the training data matrix is the combination between (𝑄𝑗

103, 𝑄
𝑗
104, 𝑄

𝑗
105, 𝑄

𝑗
107)
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with gains of 25%, i.e., the following combinations 𝐶4
1 , 𝐶

4
2 , 𝐶

4
3 and 𝐶4

4 for all 𝑄𝑚𝑎𝑥, resul-
ting in an 𝑁 = 31 example data matrix. For critical voltage output 𝑉106, the input data
is sorted in a matrix form such as

𝑋𝑉𝑡𝑟𝑎𝑖𝑛
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑄1
103 𝑄1

104 𝑄1
105 𝑄1

107 𝜆1

... ... ... ... ...

... ... ... ... ...
𝑄𝑗

103 𝑄𝑗
104 𝑄𝑗

105 𝑄𝑗
107 𝜆𝑗

... ... ... ... ...

... ... ... ... ...
𝑄𝑁

103 𝑄𝑁
104 𝑄𝑁

105 𝑄𝑁
107 𝜆𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.1)

Equation (5.1) is the input matrix used to train ANFIS, ANN, KNN, SVR, and
DT for critical voltage output. For each example of the training matrix there are 5 input
features (𝑄𝑗

103, 𝑄
𝑗
104, 𝑄

𝑗
105, 𝑄

𝑗
107, 𝜆

𝑗) in which 𝑄𝑗
𝑖 is the maximum reactive power injection

from PV buses for 𝑖th bus and 𝑗th training example and 𝜆𝑗 is the power load for the 𝑗th
training example.

As shown below, the output vector 𝑌𝑉𝑡𝑟𝑎𝑖𝑛
is the voltage tied up to the training

input 𝑋𝑉𝑡𝑟𝑎𝑖𝑛
for each 𝑗th example.

𝑌𝑉𝑡𝑟𝑎𝑖𝑛
=
[︁
𝑉 1

106 · · · 𝑉 𝑗
106 · · · 𝑉 𝑁

106

]︁𝑇
(5.2)

Contrarily, for load output 𝜆, the input data matrix 𝑋𝐿𝑡𝑟𝑎𝑖𝑛
is an 𝑁 = 31 exam-

ple data matrix with (𝑄𝑗
103, 𝑄

𝑗
104, 𝑄

𝑗
105, 𝑄

𝑗
107, 𝑉

𝑗
106) input features and an output 𝑌𝐿𝑡𝑟𝑎𝑖𝑛

matrix that refers to the different loads for each example. For the sake of compactness,
(𝑋𝐿𝑡𝑟𝑎𝑖𝑛

, 𝑌𝐿𝑡𝑟𝑎𝑖𝑛
), the testing inputs for critical voltage and load (𝑋𝑉𝑡𝑒𝑠𝑡 , 𝑋𝐿𝑡𝑒𝑠𝑡) are not

presented explicitly, but they exhibit the same configuration as seen in Eqs. (5.1) and
(5.2).

Once the training set is established, the next step in the algorithm is to train the
network to minimize the error between hypothesis and actual output.

Notice that to show the evolution of the results of the tests, seen bellow, the verti-
cal axis of the figures will be presented in different scales. More details on the regression
algorithms with hands-on examples can be found in [16, 17, 35].
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5.4 ANN, ANFIS, KNN, SVR & DT voltage and load prediction
comparison
In order to thoroughly assess the mapping capabilities of the aforementioned re-

gression algorithms, eight different tests were conducted. All of them were initially evalu-
ated with a 10 fold cross validation algorithm checker used to determine the best input
data configuration to hypothesis error ratio. The chosen architecture for the ANN is a
two layer feedforward neural network, in which the hidden layer consists of 3 neurons
with a single output in the output layer. The reason for a single hidden layer is that one
can approximately represent a non-linear function with only one hidden layer, as seen in
[40]. This one hidden layer model is known as an universal approximator. The number
of neurons was determined by a widely used rule of thumb, which is 2/3 the size of the
input layer. It was adopted a tangent sigmoidal transfer function for the hidden layer
and a rectified linear unit (ReLU) transfer function for the output layer. Both transfer
functions meet the standard that the majority of machine learning practitioners follow
for predictive neural networks nowadays.

For the ANFIS, the chosen architecture is based on the Sugeno Fuzzy Inference
System. Each input is attached to two membership functions (MF), resulting in 25 rules
and output membership functions. The choice for the type of input membership function
was also determined via for loop. The best fitting MF would automatically be chosen.
For a fast and simple training, the output membership functions were chosen as constants
instead of linear equations. This reduces significantly the number of parameters to update
in backpropagation, making the algorithm fast.

For KNN, the input data is in a similar format to the ANN algorithm. It is a
non-parametric method, meaning that it makes less assumptions and thus is a more
robust method then parametric algorithms in some cases. They have been shown to be
effective in predicting scenarios where there is limited amount of input data. We chose
to use a standard Euclidean Distance algorithm for boundary detection and 5 neighbors,
determined by square root of the number of training samples, i.e.

√
𝑁 = 31.

For SVR, the input data follows the same model used in ANN and KNN. It’s
characterized by the use of kernels, which in our model was a polynomial kernel. High value
Regularization Parameters often misrepresent the output hypothesis due to its elevated
degree in separating the support vectors. For this reason, we chose a small regularization
value of 𝐶 = 0.5 in order to avoid over-fitting.

And finally for DT, the input data follows the same standard used in all previous
models except ANFIS due to its membership function inputs. Since the training data is
small, we went forth with 3 folds, 1 seed for our root and 2 as our minimum number of
instances.
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All prediction plots will contain the first twenty examples from the fifty example
testing set, which was randomly selected. For a cleaner look, each plot will contain the
two best predictions of all the regression algorithms together with the actual output test
data.
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5.5 Voltage and Load Mapping - First and Second Tests
The first two tests consist in comparing the critical voltage and load mapping

hypothesis of the regression algorithms for unaltered input data as well as unaltered
testing data, obtained from the continuation power flow simulation. Figure (17.a) is the
comparison of ANFIS and SVR critical voltage prediction results in a side by side contrast
with the output prediction of the load for ANFIS and KNN in Fig (17.b). It is worth re-
mentioning that each plot compares the two best predictions out of the total amount of
regression algorithms chosen in this work.
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(a) Prediction comparison for critical voltage.
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(b) Prediction comparison for load.

Figura 17 – Voltage and Load Mapping for unaltered data

Table 2 highlights the algorithms architecture as well as the root mean square
error (RMSE) in tests 1 and 2. The RMSE evaluation method was chosen in order to
plot a Radar Chart to rank the overall best regression algorithm among the five of them,
shown in subsection 4.5 further below. Since the training set is very small, the training
time is insignificant in all regression simulations conducted. For critical voltage mapping,
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all algorithms show similar results when it comes to RMSE evaluation for prediction. On
the other hand, ANFIS had a better performance in load mapping, when compared to
the rest, shown by a 0.00189 value for RMSE.

Tabela 2 – RMSE comparison in unaltered data for ANFIS and ANN.

Critical Voltage
ANFIS ANN KNN SVR DT

Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31
Gauss MF Input Data input Data input Data input # of Folds = 3
Constant Output ReLU output Euclidean Boundary PolyKernel Seed randomize data: 1

25𝑟𝑢𝑙𝑒𝑠 1 hidden layer/ 3 neurons Neighbors: 5 Reg. Parameter (C = 0.5) Min. number of instances: 2
RMSE: 0.00061 RMSE: 0.00069 RMSE: 0.00075 RMSE: 0.00043 RMSE: 0.00064

Load
ANFIS ANN KNN SVR DT

Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31
Gauss MF Input Data input Data input Data input # of Folds = 3
Constant Output ReLU output Euclidean Boundary PolyKernel Seed randomize data: 1

25𝑟𝑢𝑙𝑒𝑠 1 hidden layer/ 3 neurons Neighboors: 5 Reg. Parameter (C = 0.5) Min. number of instances: 2
RMSE: 0.00189 RMSE: 0.01693 RMSE: 0.00751 RMSE: 0.01980 RMSE: 0.01120
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5.6 Voltage and Load Mapping - Third and Forth Tests
The third and forth tests consist in comparing the critical voltage and load map-

ping hypothesis of the regression algorithms for unaltered training data but with a noisy
testing data. This ensures that all techniques are trained with clean data while being
tested with imprecise data, allowing to determine which method has a better interpola-
tion property for the studied case. Both tests try to recreate what would happen when
the machine learning algorithms are trained with simulation data while being tested with
data coming from sensors in the field. The imprecision of the testing data is within a
± 5% range for all 50 examples. Figure (18.a) is the comparison of the two best predic-
tive algorithm results, KNN and SVR, for the output of the critical voltage testing set.
Meanwhile figure (18.b) is the comparison of the two best predictive algorithms results,
ANFIS and KNN, for the output of the load testing set.
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(a) Prediction comparison for critical voltage.
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(b) Prediction comparison for load.

Figura 18 – Voltage and Load Mapping for noisy training data

Also Table 3 highlights the algorithms architecture as well as the RMSE in tests
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3 and 4. For critical voltage mapping, all algorithms show similar results when it comes
to RMSE evaluation.

Contrarily, ANFIS has a better performance in load mapping with KNN being
second best. An interesting remark from these tests is that KNN predictions are well
balanced within the lower limit of the testing values. While other methods sometimes
struggle to accurately predict the lowest values from the testing set, KNN is consistent
and does not under-evaluate. For Critical Voltage mapping, SVR led the output prediction
comparison with a RMSE of 0.00114 - although all regression algorithms aforementioned
had similar predictions error. For Load mapping, ANFIS emerged as the best algorithm
with a RMSE of 0.01660

Tabela 3 – RMSE comparison in noisy data for ANFIS and ANN.

Critical Voltage
ANFIS ANN KNN SVR DT

Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31
Sigmoidal MF Input Data input Data input Data input # of Folds = 3

Constant Output ReLU output Euclidean Boundary PolyKernel Seed randomize data: 1
25𝑟𝑢𝑙𝑒𝑠 1 hidden layer/ 3 neurons Neighboors: 5 Reg. Parameter (C = 0.5) Min. number of instances: 2

RMSE: 0.00158 RMSE: 0.00141 RMSE: 0.00115 RMSE: 0.00114 RMSE: 0.00118
Load

ANFIS ANN KNN SVR DT
Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31
Gauss MF Input Data input Data input Data input # of Folds = 3
Constant Output ReLU output Euclidean Boundary PolyKernel Seed randomize data: 1

25𝑟𝑢𝑙𝑒𝑠 1 hidden layer/ 3 neurons Neighboors: 5 Reg. Parameter (C = 0.5) Min. number of instances: 2
RMSE: 0.01660 RMSE: 0.07102 RMSE: 0.38801 RMSE: 0.02010 RMSE: 0.02042
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5.7 Voltage and Load Mapping - Fifth and Sixth Tests
The fifth and sixth tests consist in comparing the critical voltage and load mapping

hypothesis of the aforementioned regression algorithms for unaltered training data but
now with a lossy testing data. Similarly to the noisy testing set, the lossy testing set is used
to compare the prediction capabilities of the machine learning algorithms when there is a
loss of information from the sensors in the field. The gaps in data were randomly sorted
for all fifty training examples. Both tests try to recreate what would happen when the
different machine learning algorithms are trained with simulation data while being tested
with very poor data coming from the field sensors. Figure (19.a) shows the comparison
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(a) Prediction comparison for critical voltage.
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(b) Prediction comparison for load.

Figura 19 – Voltage and Load Mapping for lossy testing data

of both KNN and ANN algorithm for critical voltage, which for this test showed to be
the best fitting algorithms. Once again, KNN showed its most noticeable characteristic -
it does not under-evaluate the minimum values from the testing set. Figure (19.b) shows
the comparison of both KNN and ANFIS for load mapping, where ANFIS stood out with
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a RMSE of 0.01434. Table 4 highlights the algorithms architecture as well as the RMSE
in tests 5 and 6.

Tabela 4 – RMSE comparison in lossy data for ANFIS and ANN.
Critical Voltage

ANFIS ANN KNN SVR DT
Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31

Sigmoidal MF Input Data input Data input Data input # of Folds = 3
Constant Output ReLU output Euclidean Distance Boundary PolyKernel Seed randomize data: 1

25𝑟𝑢𝑙𝑒𝑠 1 hidden layer/ 3 neurons Number Neighboors: 5 Regularization Parameter (C = 0.5) Minimum number of instances: 2
RMSE: 0.00386 RMSE: 0.00290 RMSE: 0.00113 RMSE: 0.01033 RMSE: 0.00570

Load
ANFIS ANN KNN SVR DT

Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31
Gauss MF Input Data input Data input Data input # of Folds = 3
Constant Output ReLU output Euclidean Distance Boundary PolyKernel Seed randomize data: 1

25𝑟𝑢𝑙𝑒𝑠 1 hidden layer/ 3 neurons Number Neighboors: 5 Regularization Parameter (C = 0.5) Minimum number of instances: 2
RMSE: 0.01434 RMSE: 0.05890 RMSE: 0.01660 RMSE: 0.11440 RMSE: 4.72990
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5.8 Voltage and Load Mapping - Seventh and Eighth Tests
The seventh and eighth tests compare the critical voltage and load mapping hy-

pothesis of all the regression algorithms but with noisy training and testing data. The
noisy training set is used to train the aforementioned algorithms in order to compare the
prediction capabilities of the machine learning regression algorithms. Similarly to tests
3 and 4, the imprecision added to the training and testing data are between a ± 5%
range. Both tests try to recreate what would happen when the different machine learning
algorithms are trained and tested with noisy data coming from the field sensors. Figure
(20.a) show the comparison of the two best predictive algorithms results for the output of
the critical voltage testing set, while Fig. (20.b) exhibits the comparison of the two best
predictive algorithms results for the output of the load testing set.
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(a) Prediction comparison for critical voltage.
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Figura 20 – Voltage and Load Mapping for noisy training and testing data
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Table 5 puts in evidence the algorithms architecture as well as the RMSE for
both tests 7 and 8. KNN had the better critical voltage prediction among all regression
algorithms with a RMSE of 0.03110 while DT had the better load prediction with a RMSE
of 0.01490.

Tabela 5 – RMSE comparison in lossy data for ANFIS and ANN.

Critical Voltage
ANFIS ANN KNN SVR DT

Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31
Sigmoidal MF Input Data input Data input Data input # of Folds = 3

Constant Output ReLU output Euclidean Boundary PolyKernel Seed randomize data: 1
25𝑟𝑢𝑙𝑒𝑠 1 hidden layer/ 3 neurons Neighbors: 5 Reg. Parameter (C = 0.5) Min. number of instances: 2

RMSE: 0.03620 RMSE: 0.05440 RMSE: 0.03110 RMSE: 0.03280 RMSE: 0.03140
Load

ANFIS ANN KNN SVR DT
Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31 Batch Size = 31
Gauss MF Input Data input Data input Data input # of Folds = 3
Constant Output ReLU output Euclidean Boundary PolyKernel Seed randomize data: 1

25𝑟𝑢𝑙𝑒𝑠 1 hidden layer/ 3 neurons Neighboors: 5 Reg. Parameter (C = 0.5) Min. number of instances: 2
RMSE: 0.03863 RMSE: 0.03670 RMSE: 0.02750 RMSE: 0.01680 RMSE: 0.01490
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5.9 Overall Regression Score
All of the regression algorithms chosen for this study were thoroughly tested in

subsections 4.1 to 4.4. We were able to evaluate their efficiency based on the RMSE,
but despite many tests, it is unclear as to how we can rank the precision and prediction
capabilities of the five regression algorithms with the RMSE as it stands.

With this in mind, we propose a scoring method that ranks the overall efficiency
of the algorithms from tests 1 to 8. The score is the total sum of every normalized inverse
RMSE, meaning that an unit score is the best grade an algorithm can achieve while null
being the worst grade. Table 6 shows the score for each algorithm based on the tests,
going from test 1 to 8. A grand total score is then shown at the end of the table, where
the highest number points to the overall best algorithm and the lowest number points to
the worst overall algorithm. It is possible to conclude that both ANFIS and KNN had
three unit grades and that their total sum was approximately 5.93 and 6.02. All other
algorithms weren’t remotely close to their grand total score, meaning that out of the
five algorithms, ANFIS and KNN were clearly superior. KNN has a marginal advantage
compared to ANFIS, although the testing data predictions from ANFIS could be filtered
in order to eliminate the under-evaluated minimum values, which would make it even
more precise.

Tabela 6 – Overall prediction score.

TEST / ALGORITHM ANFIS ANN SVR KNN DT
1. UNALTERED VOLTAGE 0.698908197 0.617875362 1 0.5329175 0.66505577
2. UNALTERED LOAD 1 0.11181787 0.095440505 0.251962933 0.16872518
3. 5% TRAINING VOLTAGE 0.723053875 0.808510638 0.991304348 1 0.96610169
4. 5% TRAINING LOAD 1 0.233680245 0.042772019 0.82979855 0.81273119
5. LOSSY VOLTAGE 0.259081587 0.344827586 0.096805421 1 0.1754386
6. LOSSY LOAD 1 0.243478947 0.125357605 0.863910241 0.00303197
7. 5% TRAIN & TEST VOLTAGE 0.859116022 0.571691176 0.948170732 1 0.99044586
8. 5% TRAIN & TEST LOAD 0.385728841 0.40599455 0.886904762 0.541818182 1
Grand Total 5.925888521 3.337876376 4.186755391 6.020407406 4.78153026
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Figura 21 – Radar chart of the regression algorithms for each test.

Figure (21) is the radar chart of results of each algorithm per test, starting with
unaltered voltage (test 1) and ending at 5% train & test load (test 8). Each color matches
the algorithms that were labeled in the figures from subsections 4.1 to 4.4.



61

6 Conclusion

Based on the present analyses, ANFIS and KNN have a better performance in
critical voltage and load prediction, within the VLHA hatched area, when compared to
SVR, DT and ANN. One of the reasons why ANFIS had a better prediction capability
is that the input membership functions serve as additional input data for the training
process. Also, the simplest ANFIS model with a constant output membership function
rather than a linear one, produces good enough predictions with only two training epochs.
KNN, on the other hand, also proved to work well in situations where training data is
scarce.

Although KNN and ANFIS had similar overall results, there is a clear advantage
on using ANFIS. The added benefit of using ANFIS is having the rules and the mem-
bership functions that map the input to output relationship. These rules and membership
functions allow a simple assessment tool for critical voltage and load, ideal for moments
when there is the need to generate fast results of different scenarios of the system. For
greater systems in which a continuation power flow algorithm can take up several minutes
to generate all PV curves for increasing loads, the ANFIS assessment tool takes a couple
of seconds to run and generate outputs for the desired analysis.

In future work, machine learning algorithms will be used to generate a critical
voltage classification tool for different system loading scenarios as well as implement a
robust PCA algorithm for voltage area division near the critical point in high dimensional
power systems. We will also implement an online critical voltage mapping setup using
ANFIS, since it showed to be practical and gives good estimation of the voltage and load
levels.
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