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Abstract
It is well established that a change in the physical state of a quantum field induces disper-
sions on the velocity of a interacting non-relativistic test particle. Here such a interacting
model is addressed with a finite transition time between states of the field. Underlining
that such induced stochastic motion is different from an usual Brownian motion, as, at
late times, the dispersions are bounded and do not depend on the interaction time, with-
out the need for a dissipative force. Further, we study the case for a massive scalar field at
finite temperatures, thus generalizing previous investigation in [1]. The results presented
here show subvacuum effects even at finite temperature. Nonetheless, novel effects are
also unveiled, as a detailed description of the thermal contribution highlights their dis-
crepancy to the usual Brownian motion and stresses the opposing character of mass and
temperature. The presence of the field mass weakens thermal contributions and temper-
ature hides the characteristic oscillatory pattern of massive fields. Such interplay is even
more relevant in the presence of a boundary, when investigating the distance behavior of
the dispersions and the vacuum versus thermal dominance near the wall. As for higher
masses the vacuum term dominates for larger distances, being able also to create and
interchange in such dominance as the wall is approached.

Key-words: Boundary quantum field theory. Stochastic motion. Massive scalar field.
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Introduction

The Greek philosopher Democritus was one of the first to question about the
vacuum. He proposed that matter was made up of tiny indivisible particles and in between
them there was nothing, otherwise their motion was impossible–for a particle to move it
must leave the space it is now to occupy an adjacent one, which could not be possible
if all spaces were occupied. On the other hand Aristoteles, in his book Physica, argued
that the motion in vacuum was impossible, as there exists no up or down, right or left no
body would be able to move, and so there was no vacuum. Aristotle’s theories dominated
until the end of Medieval times when the question of the existence of the vacuum regain
relevance.

Its existence was then established with the experiment done by Torricelli, in which
he would pour mercury on a glass tube and then turn it upside down in a reservoir also
filled with mercury. The height of the column of mercury was independent of the height of
the glass tube above it, leading him to the conclusion that the space left in the tube was
a vacuum. After that, many experiments were carried out with the vacuum, and many
technologies developed from it [2].

Henceforth, with Rutherford it was established that not only the space between
atoms was empty but the atoms themselves consist mainly of empty space. Further, the
Michelson-Morley experiment, besides setting the ground for the development of special
relativity, showed that there was no such a thing as an aether and the vacuum was the
filling not only of the atoms that composes matter but of the vast Universe in which we
live.

At first quantum mechanics did not added very much to the discussion, as it
describes the dynamics of particles. That changed with the quantum description of rela-
tivistic systems through fields, a mathematical object that exists in every point in space
and in quantum field theory it is the most fundamental object, particles being propagating
perturbations in it. In such formalism we can describe the dynamics of a system with no
particles, i.e., a field in its vacuum state.

Thus, in contrast to the nothingness of the old understanding of vacuum, now
the fields are all over and the vacuum is just the absence of any excitation mode. How-
ever, as a quantum system, the physical state of the field cannot be sharply defined and
the vacuum fluctuates around its mean value. The quantum vacuum fluctuations are a
remarkable outcome of quantizing a field, as in the electromagnetic case, while many re-
sults can be obtained through the interaction of quantized matter with a classical field,
the vacuum fluctuations are characteristic of quantum fields explaining and giving rise
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to many relevant phenomena, such as spontaneous emission, Lamb shift and the Casimir
effect.

Besides the astonishing outcome of a nothingness populated with fluctuations some
relevant questions arose concerning interactions of the vacuum with spacetime [3, 4, 5]:
The existence of a natural cut-off function for the propagating modes; The definition of
an unique vacuum in curved spacetimes; The gravitational effects of quantum fluctuations
and possible quantum fluctuations of the gravitational field.

Moreover, in absence of all fields we are confronted with another idea of empty
space: The Minkowski vacuum. However the existence of a pure Minkowski vacuum implies
the ontological existence of spacetime, even in the absence of all things, which invokes
some problems as the hole argument [6]. Thus, some argue that spacetime could only
exist as a relational ground between interacting entities, being meaningless on its own,
i.e., there is no true vacuum. This question is a leading one concerning the development
of a quantum gravity theory, as the non existence of a pure Minkowski vacuum implies
that the theory must be background independent. There is no easy answer on what is the
vacuum, or even if a total absence of everything really exists. Notwithstanding, we can
see that our interest in the nothingness has always laid in the frontiers of knowledge.

Foremost, in the present work we investigate the stochastic motion induced by
quantum vacuum fluctuations. In Ref. [7] is argued that this motion can be induced by
the pure Minkowski vacuum. However, it was shown in [8, 9] that this effect does not
occur due to the free vacuum fluctuations anti-correlations. Hence, we study the motion
induced by a change in the vacuum state, as for example the introduction of a boundary.
Such a model was originally presented in Ref. [10] as an electrically charged particle
near an infinite reflective wall. There it was shown that some divergences appear near
the boundary and when the interaction time equals a round trip of the photon. Which
were linked back to some idealizations: a sudden transition between the system states,
the perfectly reflective character of the boundary, and the particle non-quantum nature.
This effect was also studied in a Robertson-Walker spacetime, where the change in the
vacuum state occurs due to expansion of the spacetime [11], in analog models of light
propagation in nonlinear materials [12], and in others gravitational scenarios where it was
shown that active and passive fluctuations, i.e., fluctuations of the gravitational field or in
the energy-momentum tensor that curves the spacetime, respectively, lead to fluctuations
of the light-cone [13].

To describe a more realistic model of the boundary induced dispersion a switching
function was introduced in Refs. [14, 15], modelling a smooth transition between states of
the quantum field, and it was shown to regularize all divergences. Further, in Ref. [16] the
quantum character of the particle was addressed, and the late-time regime was regularized.
Also in Ref. [17] a toy model of a (1+1) dimensional scalar field was regularized by
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substituting the point-like particle by a Gaussian wave packet.

Nonetheless, despite curing divergences, the sample function chosen in Ref. [15]
suppressed the residual dispersion of the particle velocities. Thence, in Ref. [18], the effects
of different choices of the sample function were investigated, for a massless scalar field at
(3+1) dimensions, and it was demonstrated that the residual dispersion is related to the
transition time between states.

Furthermore, the velocities dispersions caused by a boundary at finite temperature
were treated for a sudden transition in [19] and with a smooth switching in Ref. [20]. In
the latter was also investigated the late-time regime and the distance behavior, showing
that, when regularized, the vacuum fluctuations can be dominated by thermal fluctuations
near the boundary. Some interesting effects were also revealed in Ref. [1], where we have
fluctuations of a massive scalar field at arbitrary spatial dimensions. There it was remarked
that when the mass is present an oscillatory pattern is revealed, a consequence of the non-
Huygesian character of the field.

In the present work previous result are generalized to the finite temperature case
by the study of a thermal bath near a boundary. Besides, we also investigate the effects
on the particle of a thermal bath of scalar bosons–showing that the resulting dispersions
are different from the usual Brownian motion–, and of the boundary case at finite tem-
perature, as the introduction of a thermal bath can be detached from it. It was noted that
the presence of field mass opposes thermal effects, weakening the thermal contributions
to the fluctuations. Also, subvacuum effects can be present even for finite temperature.
Furthermore, interesting effects concerning the distance behavior of the dispersions are
shown as vacuum versus thermal dominance near the wall is dependant on the mass. So,
for some cases we can have an interchange between vacuum and thermal dominance as
the boundary is approached.

The interest in studying a massive scalar field goes beyond its simpler treatment,
as its existence is known in nature, the Higgs boson, it is of great interest in high energy
physics, also a candidate to the inflation field [21], and for dark matter models [22]. So that
the local thermal behavior of the massive scalar field was studied in detail near a wall in
Ref. [23]. There important quantities as the fields fluctuations and its energy-momentum
tensor were analysed, quantities which are closely related to the fluctuations here studied.

In the present text we begin, in the next Chapter, with a brief review of the
formalism used, introducing quantum systems and quantum statistical mechanics followed
by the quantization of a massive scalar field. In Chapter 2 we study some important
quantities in quantum field theories: The vacuum expectation values of the field, i.e., the
Green functions. Investigate their physical meaning and relations to each other through an
analytic continuation in the complex plane. We also calculated, using the image method
[24], the expectation values in the presence of a reflective boundary. Further, we also
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investigate the Green functions in a statistical ensemble, where it was shown, also through
analytic continuation, that it is analogue to a change in the topology of the complex-space
in which the Green function is defined.

The main results are in Chapter 3. There we present the dispersions of the veloc-
ities of a test particle due to a change in the state of a massive scalar field. First for a
thermal bath, then with the boundary at finite temperature and finally the pure boundary
dispersions at finite temperature. For that we discuss the construction of the model, the
mechanism thorough the sample functions regularize the divergences and their physical
meaning. It is also addressed the differences in the choice of the sample function and how
they affect the dispersions. We were able to show that the dispersions due to the thermal
bath are substantially different from the usual Brownian motion, as there is no need of a
dissipative force for the dispersions to be bounded at late times. Moreover, even at finite
temperatures we saw that the vacuum effects play a major role, and the dispersions can
be negative. Finally, it was noted that the field mass weakens its thermal effects, and the
vacuum contribution gains relevance, creating an interesting dominance behavior as the
boundary is approached.

We work in a (D+1) Minkowski spacetime with metric corresponding to the metric
signature (+ − − −) in four dimensional spacetime. Unless stated otherwise natural
units are used, ~ = 𝑐 = 1, and the Boltzmann constant 𝑘

𝐵
is also set to unity, so that

1K ≃ 4.37 × 102 m−1.
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1 Field Quantization

Quantum mechanics arose from the necessity to explain experimental facts as
black body radiation, the atomic structure, and absorption and emission phenomena.
In this context, Heinsenberg and Schrödinger developed the matrix and wave theories,
respectively, as mathematical frameworks describing quantum dynamics. Latter on, the
main structure of both formulations was conveniently concatenated in an abstract Hilbert
Space ℋ, possessing the structure of a linear vector space [25]. It is interesting to note
that, besides the experimental success of the theory, its foundations remain object of
intense debate.

In the beginning the dynamical evolution of quantum systems, that is, the Schrödinger
equation, could only describe non-relativistic systems–in the sense that they do not obey
special relativity, only galilean relativity. This can be seen by the different roles that time
and position have in the theory. While the position is an operator, time can only be a
parameter.

Furthemore, historically, the introduction of a relativistic equation for the dynam-
ics of the systems has revealed itself to be cumbersome, as the relativistic formulation of
Schrödinger equation, proposed primarily by himself, the Klein-Gordon equation, showed
to be inconsistent with the probabilistic interpretation, as there negative probabilities
appeared.

Was in order to solve this problem that Dirac developed the well known relativistic
equation for the electron, the Dirac equation, in which he was able to find a dynamical
equation consistent with special relativity and the probabilistic interpretation, besides
leading to the correct prediction of the electron magnetic moment.

Dirac’s theory of the relativistic electron proved his validity with the discovery of
the positron, electron’s antiparticle, which was theoretically predicted by him. The need
for a "positive charged electron" came because Dirac’s equation had infinite negative
energy solution for the free relativistic electron, which would make impossible for the
particle to be stable, as it would always decay to a less energetic state. The solution
found by him was to propose that these negative energy state were not occupied by
electrons, but by an opposite charged particle, later found out to be the positron, as the
negative energy states were already occupied, the Pauli exclusion principle would assure
that electrons would not decay.

Dirac’s relativistic theory, however, do not accounted for a complete relativistic
quantum mechanics, as it was not suited to describe bosons, which do not obey Pauli’s
exclusion principle.
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The birth of Quantum Field Theory came simultaneously with these events, with
the quantization of the electromagnetic field, followed by Dirac’s field. The systematic
quantization, as it will be presented here, came first with Heisenberg and Pauli in 1929
[26].

Thence, as in this theory both probability densities 𝜓†
𝜓 and 𝜑

†
𝜑 from Dirac’s

and Klein-Gordon’s equations could be negative–as these quantities, when renormalized,
became negative–these were no longer interpreted as probability densities but just op-
erators, spanning a basis on the Hilbert space, on which each eingenvector represented
a state with a definite number of particles. Since then, QFT has proved to be the most
successful theory in describing the fundamental processes in particles dynamics. For a
complete historical setting of Quantum Field Theory see the first chapter the Ref. [26].

Notwithstanding, QFT was born with many flaws, the rudest being the infinities, as
the vacuum infinite energy and number of particles, many of them could be circumvented
through renormalization and the theory is today practically realizable and experimentally
consistent.

In this chapter we give an outline of the quantum dynamics, introducing also its
thermodynamics through statistical quantum mechanics, giving an example that will be
very useful for what follows: the quantum harmonic oscillator. Forthwith, we quantize a
charged scalar field, following the canonical approach of dividing it into normal modes. As
said, this is an outline of the theory, and, as we try to be the most consistent as possible,
many conceptual jumps are given, in which references are addressed where the reader can
fully be aware of the actual development of the subject.

1.1 Quantum dynamics

In classical theories a physical system with 𝑛 degrees of freedom is a vector in a
2𝑛-manifold (the phase space), in which the observable, a function taking a point from
the manifold to the real line, acts. In contrast, a quantum system is described by a vector
|𝜓⟩ ∈ ℋ, and an observable is now a Hermitian linear operator acting on the Hilbert
space. Through its eigenvectors we construct a basis, {|𝛼𝑖⟩}, and its eigenvalues, {𝛼𝑖}, are
the possible outcomes of a measurement.

Henceforth, operationally, the construction of our Hilbert space comes from the
specification of a complete set of operators through its commutator algebra. To find this
algebra we postulate a correspondence map between the quantum and classical opera-
tors, such that {𝑓, 𝑔} = 𝑖[𝑓, 𝑔]. From which we find the canonical commutation relations
between generalized coordinate and momenta, 𝑞𝑖 and 𝑝𝑖

[𝑞𝑖, 𝑞𝑗] = [𝑝𝑖, 𝑝𝑗] = 0, [𝑞𝑖, 𝑝𝑗] = 𝑖𝛿𝑖𝑗. (1.1)
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Furthermore, these relations fix the representations of such operators, up to unitary
equivalence, and, as every other classical corresponding quantity can be specified through
these operators, we are able to define our system [25].

However, some ambiguities may arise when the dynamical system depends on a
cross product between 𝑞𝑖 and 𝑝𝑖 (which must come first?), when describing observables
with no classical counterpart, and also in the case of systems with infinite degrees of
freedom. In such cases there exists others non-unitary equivalent representations of the
same observables.

The evolution is given by a one-parameter unitary family of operators generated
by the Hamiltonian operator . In the Schrödinger picture

𝑖
𝜕

𝜕𝑡
|𝜓⟩ (𝑡) = �̂� |𝜓⟩ (𝑡), (1.2)

while the operators, �̂�, remain time independent.

In the Heisenberg picture (denoted here by a subscript H)

𝑑

𝑑𝑡
�̂�𝐻 = 𝑖[𝐻,𝑂𝐻 ], (1.3)

while the state vectors, |𝜓⟩𝐻 , remain time independent.

Both are related by the unitary transformations �̂�(𝑡) = exp(−𝑖�̂�𝑡), so that:

�̂�𝐻(𝑡) = �̂�
†(𝑡)�̂��̂�(𝑡), (1.4)

|𝜓⟩ (𝑡) = �̂�(𝑡) |𝜓⟩𝐻 . (1.5)

Finally, despite some (many) conceptual and mathematical problems in the con-
struction, the dynamics of quantum systems gave plenty of experimentally consistent
results and made its way through a plethora of technological devices, asserting to it some
reliability. In this chapter we will describe a simple quantum mechanical system, the quan-
tum harmonic oscillator, which will be of great help in what follows: the quantization of
the scalar field. Which will be done in the most simple way, by decomposing it into its
normal modes, each of them consisting of a quantum mechanical oscillator.

1.2 Quantum statistical mechanics

A real physical system can never be truly isolated from the external world and, in
order to describe realistic settings, one must introduce thermodynamics in the descrip-
tion. For that we use the statistical formulation of quantum mechanics, for a detailed
construction see Ref. [27].
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Therefore, instead of pure state |𝜓𝑛⟩ (an eingenvector of the Hamiltonian with en-
ergy 𝐸𝑛) we must now deal with statistical ensembles, that is, an incoherent superposition
of pure states. This is done through the definition of the density matrix operator 𝜌, with
components

𝜌𝑚𝑛 = ⟨𝜓𝑛| 𝜌 |𝜓𝑚⟩ = 𝛿𝑚𝑛|𝑏𝑛|2, (1.6)

and normalization ∑︁
𝑛

𝛿𝑚𝑛𝜌𝑚𝑛 = 1. (1.7)

The quantity |𝑏𝑛| gives the normalized number of states in our ensemble that have the
energy 𝐸𝑛.

In what follows, as usual, we characterize the system using the Grand Canonical
Ensemble, which is in thermal equilibrium with a reservoir, from which it can exchange
energy and particles. For that we define the density matrix operator

𝜌 = e−𝛽(�̂�−𝜇�̂�)

𝑍
, (1.8)

where 𝛽 = 𝑇−1, 𝜇 being the chemical potential–which accounts for the change in the free
energy due to exchange of particles with the reservoir–, �̂� the operator that gives the
number of particles of the system, and the partition function

𝑍 =
∑︁
𝑛

e−𝛽(𝐸𝑛−𝜇𝑁𝑛). (1.9)

The expectations values in a statistical ensemble are given by

⟨�̂�⟩
𝛽

=
∑︁
𝑛

⟨𝜓𝑛| 𝜌�̂� |𝜓𝑛⟩ = 𝑇𝑟[𝜌�̂�]. (1.10)

Thus, we are now able to describe a quantum system in thermal equilibrium with the
external world.

1.3 Quantum harmonic oscillator

The Hamiltonian of a classical harmonic oscillator is

𝐻 = 𝑝2

2𝑚 + 𝑚𝜔2

2 𝑞2, (1.11)

which is a fairly simple system, in the sense that no ambiguities appears and the quantum
system is fully determined by identifying the generalized coordinates with operators and
imposing the canonical commutation relations (1.1). It is convenient to introduce the
operator

�̂� =
√︂
𝜔𝑚

2 𝑞 + 𝑖

√︃
1

2𝜔𝑚𝑝. (1.12)
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Thus,
[�̂�, �̂�† ] = 𝐼, (1.13)

�̂� = 𝜔
(︂
�̂��̂�

† + 1
2𝐼
)︂
, (1.14)

and

[�̂�, �̂�] = −𝜔�̂�, (1.15)

where 𝐼 is the identity operator.
The time evolution

𝑑

𝑑𝑡
�̂�𝐻(𝑡) = 𝑖[𝐻, �̂�] = −𝑖𝜔�̂�𝐻(𝑡), (1.16)

hence
�̂�𝐻(𝑡) = �̂� e−𝑖𝜔𝑡. (1.17)

The eigenvectors of the number operator �̂� = �̂�
†
�̂�, which are also eingenvectors of �̂�,

provides a useful basis for the space. It can be seen that the eigenvalues of the number
operator, {𝑛}, are non-degenerate, non-negative, and integers (See Ref. [28, 29]). The
energy of each state |𝑛⟩ is

�̂� |𝑛⟩ = 𝐸𝑛 |𝑛⟩ =
(︂
𝑛+ 1

2

)︂
𝜔 |𝑛⟩ . (1.18)

Acting with �̂� and �̂�
† we see that

�̂� |𝑛⟩ =
√
𝑛 |𝑛− 1⟩ , �̂�

† |𝑛⟩ =
√
𝑛+ 1 |𝑛+ 1⟩ . (1.19)

From the expression for the energy and its dependence on the eigenvalues of the number
operator these are interpreted as the number of energy quanta of the oscillator. It follows
that the operators �̂� and �̂�

† annihilate and create a quanta in the system, respectively.
Furthermore, as the eigenvalues must be non-negative and integers, exists a state such
that

�̂� |0⟩ = 0, (1.20)

which is the state with lower energy, denominated vacuum state. From the vacuum we
can construct any other state by successively acting with the creation operator

|𝑛⟩ = (�̂�†)𝑛√
𝑛!

|0⟩ . (1.21)

The generalization to the case of N coupled harmonic oscillators is straightforward. The
complete Hilbert space is the tensor product of N simple harmonic oscillators

ℋ𝑇 = ℋ1 ⊗ ℋ2...⊗ ℋ𝑁 , (1.22)

and the operators now satisfy the commutation relations

[�̂�𝑖, �̂�
†

𝑗 ] = 𝛿𝑖𝑗, [�̂�𝑖, �̂�𝑗] = [�̂�†

𝑖 , �̂�
†

𝑗 ] = 0, (1.23)

where the subscript indicates in which space the operators acts.
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1.4 Quantum scalar field

The core of the present work is to investigate the quantum vacuum effects of a
massive real scalar field in a general Minskoswki spacetime with (𝐷+1) dimensions. Such
a field is a Lorentz invariant which satisfy the Klein-Gordon equation

(2 +𝑚2)𝜑(𝑡, �⃗�) = 0, (1.24)

where 2 is the D’Alembertian: 𝜂𝜇𝜈𝜕𝜇𝜕𝜈 . The above dynamical equation is obtained through
the action of the free field

𝑆𝐹 [𝜑, 𝜕𝜇𝜑] =
∫︁
𝑑𝑡𝑑

𝐷

𝑥ℒ =
∫︁
𝑑𝑡𝑑𝐷𝑥

(︁
𝜕𝜇𝜑𝜕

𝜇𝜑−𝑚2𝜑2
)︁
. (1.25)

Thus, the canonical momenta are

𝜋 = 𝜕ℒ
𝜕(𝜕𝑡𝜑) = 𝜕𝑡𝜑. (1.26)

Finally, the Hamiltonian, obtained through a Legendre transformation, is

𝐻 = 1
2

∫︁
𝑑

𝐷

𝑥
(︁
𝜋

2 + ∇𝜑2 +𝑚2𝜑2
)︁
. (1.27)

Now, in order to describe our system through quantum mechanics, we identify the fields
as operators by imposing the canonical equal time commutation relations

[𝜑(𝑡, �⃗�), �̂�(𝑡, 𝑥′)] = 𝑖𝛿(𝐷)(�⃗�− �⃗�′), (1.28)

all other commutators between the fields vanish. Although some axiomatic construction
of field theories states that the above commutations relations are not well defined, see
Ref. [30], it is well suited for our purposes and this choice does not restrict the results, as
the expectation values are not affected. Furthermore, to construct the basis of our Hilbert
space we decompose the field

𝜑(𝑡, �⃗�) =
∫︁ ∞

−∞
𝑑

𝐷

�⃗� 𝜑�⃗�(𝑡)𝑓�⃗�(�⃗�), (1.29)

from the dynamical equation we find that

1
𝜑�⃗�(𝑡)

𝜕2
𝑡 𝜑�⃗�(𝑡) − 1

𝑓�⃗�(�⃗�)∇2𝑓�⃗�(�⃗�) +𝑚2 = 0, (1.30)

thus
𝜕2
𝑡 𝜑�⃗�(𝑡) = −𝜔2𝜑�⃗�(𝑡), (1.31)

and
∇2𝑓�⃗�(�⃗�) = −(𝜔2 −𝑚2)𝑓�⃗�(�⃗�) = −𝑘2𝑓�⃗�(�⃗�), (1.32)

with 𝜔 =
√
𝑘2 +𝑚2.
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The general solution for equation (1.31) is

𝜑�⃗�(𝑡) = �̂��⃗�e
−𝑖𝜔𝑡 + �̂�

†

�⃗�
e𝑖𝜔𝑡, (1.33)

where the operators must be Hermitian conjugates of each other, as the field is reals. Also,
�̂��⃗� and �̂�†

�⃗�
must be such that the canonical commutation relations, Eq. (1.28), holds, from

which
[�̂��⃗�, �̂�

†

𝑘′ ] = 𝛿
(𝐷)(�⃗� − 𝑘′), (1.34)

and all the others commutators vanish.

The notation gave to them was convenient because they satisfy the commutation
algebra corresponding to the creation and annihilation operators described above for the
harmonic oscillator. Hence, for each label �⃗� we have a vacuum state �̂��⃗� |0⟩ = 0, through
which we construct a Fock space.

Generally, the expansion of the field and its canonically conjugated momenta be-
comes

𝜑(𝑡, �⃗�) =
∫︁
𝑑

𝐷

�⃗�
[︁
�̂��⃗�𝑓�⃗�(�⃗�)e−𝑖𝜔𝑡 + �̂�

†

�⃗�
𝑓

*

�⃗�
(�⃗�)e𝑖𝜔𝑡

]︁
(1.35)

�̂�(𝑡, �⃗�) =
∫︁
𝑑

𝐷

�⃗�(𝑖𝜔)
[︁
�̂�

†

�⃗�
𝑓

*

�⃗�
(�⃗�)e𝑖𝜔𝑡 − �̂��⃗�𝑓�⃗�(�⃗�)e−𝑖𝜔𝑡

]︁
. (1.36)

The functions 𝑓�⃗�(�⃗�) and its complex conjugated forms an orthonormal basis in the space
of solutions of Eq. (1.32). In cartesian coordinates, this solution is the plane wave

𝑓�⃗�(�⃗�) = 𝑁�⃗�e
�⃗�·�⃗�. (1.37)

To find the value of the normalization constant 𝑁�⃗� we calculate the commutator

[𝜑(𝑡, �⃗�), �̂�(𝑡, 𝑥′)] =
∫︁
𝑑

𝐷

�⃗�
∫︁
𝑑

𝐷

�⃗�′𝑖𝜔𝑘𝑁�⃗�𝑁𝑘′

{︁
[�̂��⃗�, �̂�

†

𝑘′ ]e−𝑖(𝜔𝑡−�⃗�·�⃗�)e𝑖(𝜔′𝑡′−𝑘′·𝑥′)

−[�̂�†

�⃗�
, �̂�𝑘′ ]e𝑖(𝜔𝑡−�⃗�·�⃗�)e−𝑖(𝜔′𝑡′−𝑘′·𝑥′)

}︁
[𝜑(𝑡, �⃗�), �̂�(𝑡, 𝑥′)] =

∫︁
𝑑

𝐷

�⃗�2𝑖𝜔𝑘𝑁2
�⃗�
e−𝑖(𝜔Δ𝑡−�⃗�·Δ�⃗�),

(1.38)

the normalization constant must be 𝑁�⃗� = 1/[(2𝜋)𝐷/2√
2𝜔 ]. Then, using the orthogonal

relations for exponential functions, we recover the canonical commutation relations.

Finally, the complete expression for our quantized field

𝜑(𝑡, �⃗�) =
∫︁ 𝑑

𝐷
�⃗�

(2𝜋)
𝐷
2

√
2𝜔

[︁
�̂��⃗�e

−𝑖(𝜔𝑡−𝑘·�⃗�) + �̂�
†

�⃗�
e𝑖(𝜔𝑡−𝑘·�⃗�)

]︁
. (1.39)

Substituting the expansion of the field in terms of the creation and annihilation opera-
tors in the Hamiltonian, given by Eq. (1.27), and using the orthogonal relations of the
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exponential functions we find that

�̂� =
∫︁ 𝑑

𝐷
𝑘

4𝜔2
𝑘

{︁
𝜔𝑘
[︁
�̂��⃗��̂�

†

�⃗�
− �̂��⃗��̂�−⃗𝑘e

−𝑖2𝑡𝜔𝑘 − �̂�
†

�⃗�
�̂�

†

−⃗𝑘e
𝑖2𝑡𝜔𝑘 + �̂��⃗��̂�

†

�⃗�

]︁
+ 𝑘2

[︁
�̂�

†

�⃗�
�̂��⃗� + �̂��⃗��̂�−⃗𝑘e

−𝑖2𝑡𝜔𝑘 + �̂�
†

�⃗�
�̂�

†

−⃗𝑘e
𝑖2𝑡𝜔𝑘 + �̂�

†

�⃗�
�̂��⃗�

]︁
+𝑀2

[︁
�̂�

†

�⃗�
�̂��⃗� + �̂��⃗��̂�−⃗𝑘e

−𝑖2𝑡𝜔𝑘 + �̂�
†

�⃗�
�̂�

†

−⃗𝑘e
𝑖2𝑡𝜔𝑘 + �̂�

†

�⃗�
�̂��⃗�

]︁}︁
=
∫︁
𝑑

𝐷

𝑘
𝜔𝑘
4
[︁
�̂��⃗��̂�

†

�⃗�
+ �̂�

†

�⃗�
�̂��⃗� + �̂��⃗��̂�

†

�⃗�
+ �̂�

†

�⃗�
�̂��⃗�

]︁
=
∫︁
𝑑

𝐷

𝑘𝜔𝑘

[︂
�̂��⃗� + 1

2𝐼
]︂

(1.40)

Therefore, the Hilbert space which contains the system is a tensor product of the Hilbert
spaces for each quantum number 𝑘, on which we construct a Fock space representation.
Hence, one can see that, in a flat spacetime, a quantum field (whose dynamics is governed
by a linear equation) is just infinite coupled harmonic oscillators with a classical spacetime
dependence given by the solutions of the dynamical equation.

As said before, here is just an outline of the theory, where we followed a didactic
approach, encountered in introductory books. However, the canonical commutations re-
lations do not suffices for the quantization of the field, because, as we are dealing with
infinite modes of propagation and, with that, a tensor product of infinite Hilbert spaces,
the Von-Neumann theorem does not apply. Notwithstanding, when dealing with a flat
space-time, Lorentz symmetry defines irreducible representations for the field, and the
problem is solved. For an accurate statement of the problem and how one can construct a
more fundamental quantization so that these problems, and its solutions, become evident
see the first chapters of Wald’s book [5] and the formally constructions of field theories
by Haag [31] and Streater & Wightman [30].
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2 Green Functions

A great deal of problems in physics, after a proper description of the system, is to
solve its dynamical equation. Hence, the problem is reduced to differential equations of
the type

ℒ𝑓(𝑢) = 𝑔(𝑢), (2.1)

where ℒ is a differential operator, and 𝑔(𝑢) is the source of our equation [32]. Thus, for
ℒ linear, as will be our case, we find the integral kernel of ℒ, that is, its Green function,
given by

ℒ𝐺(𝑢, 𝜉) = 𝛿(𝑢− 𝜉). (2.2)

Which is the solution of the dynamical equation for a localized source, giving the influence
on 𝑢 of a point source at 𝜉. Note also that, as on the right hand side we have a distribution,
the Green function is not properly a function, but a distribution. Then, as an extend source
is just the volume integral of point-like sources, we have

𝑓(𝑢) =
∫︁
𝐺(𝑢, 𝜉)𝑔(𝜉)𝑑𝜉, (2.3)

so that, acting with the operator gives

ℒ𝑓(𝑢) =
∫︁

ℒ𝐺(𝑢, 𝜉)𝑔(𝜉)𝑑𝜉 =
∫︁
𝛿(𝑢− 𝜉)𝑔(𝜉)𝑑𝜉 = 𝑔(𝑢). (2.4)

Henceforth, to calculate the Green Functions is an important step to solve the problem.
Furthemore, for our case, the Green function is also associated with important quantities
of the theory, besides enlightening causality and other relevant physical information of
the fields.

Thus, in this chapter, we will define the expectation values that are related to the
Green function of our dynamical equation, see how they are related to each other by an
analytic continuation and how they define important properties of the fields, calculating
also the Green functions in the presence of a boundary. Moreover, we will define it for
systems at finite temperature, and show that the temperature can bee seen as a translation
in imaginary time.

2.1 Green functions at zero temperature

As we have seen, the number states that constitutes the bases of our Fock space
can all be constructed through the successive application of the creation operator in the
vacuum state. Henceforth, the study of the aspects of the quantum vacuum has a central
role in the construction of other quantities in quantum field theories. Accordingly, follow-
ing Ref. [4] we now study the vacuum expectation values of some important quantities



Chapter 2. Green Functions 22

that appears in the theory and, as we will see, are associated with the Green functions of
the Klein-Gordon equation. First, the positive frequency Wightman function:

𝐺
+(𝑡, �⃗�; 𝑡′, �⃗�′) = ⟨0|𝜑(𝑡, �⃗�)𝜑(𝑡′, �⃗�′) |0⟩

=
∫︁ 𝑑

𝐷
�⃗�𝑑

𝐷
�⃗�′

2(2𝜋)𝐷

e𝑖�⃗�·�⃗�e−𝑖�⃗�′·�⃗�′√︁
𝜔𝑘𝜔′

𝑘

⟨0| �̂��⃗��̂�
†

�⃗�′ |0⟩ e−𝑖𝜔𝑘𝑡e𝑖𝜔′
𝑘𝑡

′
,

were we have used that �̂��⃗� |0⟩ = 0. Using the commutation rules for the creation and
annihilation operators, Eq. (1.34), we find

𝐺
+(𝑡, �⃗�; 𝑡′, �⃗�′) =

∫︁ 𝑑
𝐷
�⃗�

2(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�e−𝑖𝜔Δ𝑡

𝜔
. (2.5)

Analogously the negative frequency Wightman function is

𝐺
−(𝑡, �⃗�; 𝑡′, �⃗�′) = ⟨0|𝜑(𝑡′, �⃗�′)𝜑(𝑡, �⃗�) |0⟩

=
∫︁ 𝑑

𝐷
�⃗�

2(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�e𝑖𝜔Δ𝑡

𝜔
,

(2.6)

where we changed �⃗� → −�⃗� to stress that the only difference in the Wightman functions is
in the sign of the frequency, we also used the notation Δ𝑎 = 𝑎−𝑎′. The positive/negative
frequency Wightman function is just a transition amplitude between the creation of a
particle at the point (𝑡, �⃗�)/(𝑡′, �⃗�′) and its detection at (𝑡′, �⃗�′)/(𝑡, �⃗�).

In addition, one sees that in the limit of point coincidence we have the usual
divergence associated with the Minkowski vacuum. Which occurs when 𝑘 → ∞, being a
ultraviolet divergence, i.e., due to high-energy modes.

Another important quantities are the expectation values of the fields commutator
and anti-commutator, given by

𝑖𝐺(𝑡, �⃗�; 𝑡′, �⃗�′) = ⟨0|
[︁
𝜑(𝑡, �⃗�), 𝜑(𝑡′, �⃗�′)

]︁
|0⟩

= 𝐺
+(𝑡, �⃗�; 𝑡′, �⃗�′) −𝐺

−(𝑡, �⃗�; 𝑡′, �⃗�′),
(2.7)

𝐺
(1)(𝑡, �⃗�; 𝑡′, �⃗�′) = ⟨0|

{︁
𝜑(𝑡, �⃗�), 𝜑(𝑡′, �⃗�′)

}︁
|0⟩

= 𝐺
+(𝑡, �⃗�; 𝑡′, �⃗�′) +𝐺

−(𝑡, �⃗�; 𝑡′, �⃗�′),
(2.8)

denoted by the Pauli-Jordan and Hadamard functions, respectively. Also the Feynman
propagator, given by the time ordered product of the fields:

𝑖𝐺
𝐹
(𝑡, �⃗�; 𝑡′, �⃗�′) = ⟨0|𝑇

(︁
𝜑(𝑡, �⃗�)𝜑(𝑡′, �⃗�′)

)︁
|0⟩

= Θ(𝑡− 𝑡′)𝐺+(𝑡, �⃗�; 𝑡′, �⃗�′) + Θ(𝑡′ − 𝑡)𝐺−(𝑡, �⃗�; 𝑡′, �⃗�′).
(2.9)

Finally, the retarded and advanced Green Functions are

𝐺
𝑅
(𝑡, �⃗�; 𝑡′, �⃗�′) = −Θ(𝑡− 𝑡′)𝐺(𝑡, �⃗�; 𝑡′, �⃗�′), (2.10)
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𝐺
𝐴
(𝑡, �⃗�; 𝑡′, �⃗�′) = Θ(𝑡′ − 𝑡)𝐺(𝑡, �⃗�; 𝑡′, �⃗�′). (2.11)

Another interesting remark is that the Feynman propagator is also given by [4]

𝐺
𝐹
(𝑡, �⃗�; 𝑡′, �⃗�′) = −�̄�(𝑡, �⃗�; 𝑡′, �⃗�′) − 𝑖

2𝐺
(1)(𝑡, �⃗�; 𝑡′, �⃗�′), (2.12)

where:
�̄�(𝑡, �⃗�; 𝑡′, �⃗�′) = 1

2 [𝐺
𝐴
(𝑡, �⃗�; 𝑡′, �⃗�′) +𝐺

𝑅
(𝑡, �⃗�; 𝑡′, �⃗�′)] . (2.13)

Note that when �⃗� → �⃗�′ and 𝑡 → 𝑡′ we have 𝐺
𝑅

= −𝐺
𝐴
, so �̄� = 0 and 𝐺

𝐹
= −𝑖𝐺(1)

/2.
Further, the functions 𝐺± satisfy the homogeneous equation, as one can see by

(2(𝑡,�⃗�) +𝑚2)𝐺+(𝑡, �⃗�; 𝑡′, �⃗�′) = ⟨0| (2(𝑡,�⃗�) +𝑚2)𝜑(𝑡, �⃗�)𝜑(𝑡′, �⃗�′) |0⟩ = 0, (2.14)

as the field is a solution of the homogeneous equations. The above results straightforwardly
extend to 𝐺− , 𝐺(1) and 𝑖𝐺, as the operator is linear.

For the advanced and retarded propagators, as they are multiplied by the Heaviside
distribution, we have

(2(𝑡,�⃗�) +𝑚2)𝐺
𝑅
(𝑡, �⃗�; 𝑡′, �⃗�′) = −(2(𝑡,�⃗�) +𝑚2)

[︁
Θ(𝑡− 𝑡′)𝐺(𝑡, �⃗�; 𝑡′, �⃗�′)

]︁
.

= −[𝜕𝑡𝛿(𝑡− 𝑡′)]𝐺(𝑡, �⃗�; 𝑡′, �⃗�′) − 2𝛿(𝑡− 𝑡′)𝜕𝑡𝐺(𝑡, �⃗�; 𝑡′, �⃗�′)

− Θ(𝑡− 𝑡′)(2(𝑡,�⃗�) +𝑚2)𝐺(𝑡, �⃗�; 𝑡′, �⃗�′)

= −[𝜕𝑡𝛿(𝑡− 𝑡′)]𝐺(𝑡, �⃗�; 𝑡′, �⃗�′) − 2𝛿(𝑡− 𝑡′)𝜕𝑡𝐺(𝑡, �⃗�; 𝑡′, �⃗�′),
(2.15)

note that

𝛿(𝑡− 𝑡′)𝜕𝑡𝐺(𝑡, �⃗�; 𝑡′, �⃗�′) = −𝑖𝛿(𝑡− 𝑡′) ⟨0|
[︁
𝜕𝑡𝜑(𝑡, �⃗�), 𝜑(𝑡′, �⃗�′)

]︁
|0⟩

= −𝑖𝛿(𝑡− 𝑡′)
[︁
�̂�(𝑡, �⃗�), 𝜑(𝑡, �⃗�′)

]︁
= −𝛿(𝑡− 𝑡′)𝛿𝐷(�⃗�− �⃗�′).

(2.16)

Also, as we are dealing with a distribution, we must understand that the above expression
only makes sense when integrated together with a suitable function 𝑓 which has a compact
support–see [30] for a proper description of distributions. Thence, note that∫︁

𝑑𝑡[𝜕𝑡𝛿(𝑡− 𝑡′)]𝐺(𝑡, �⃗�; 𝑡′, �⃗�′)𝑓(𝑡) = −
∫︁
𝑑𝑡𝛿(𝑡− 𝑡′)[𝜕𝑡𝐺(𝑡, �⃗�; 𝑡′, �⃗�′)]𝑓(𝑡)

−
∫︁
𝑑𝑡𝛿(𝑡− 𝑡′)𝐺(𝑡, �⃗�; 𝑡′, �⃗�′)𝜕𝑡𝑓(𝑡)

= −
∫︁
𝑑𝑡𝛿(𝑡− 𝑡′)[𝜕𝑡𝐺(𝑡, �⃗�; 𝑡′, �⃗�′)]𝑓(𝑡),

(2.17)

where the Pauli-Jordan function is zero for 𝑡 = 𝑡′ as one can see from the equal time
commutation relations (1.28). Finally, we find

(2(𝑡,�⃗�) +𝑚2)𝐺
𝑅
(𝑡, �⃗�; 𝑡′, �⃗�′) = −𝛿(𝑡− 𝑡′)𝜕𝑡𝐺(𝑡, �⃗�; 𝑡′, �⃗�′) = 𝛿(𝑡− 𝑡′)𝛿𝐷(�⃗�− �⃗�′). (2.18)
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Thus, analogously for the advanced and Feynman propagator we have

(2 +𝑚2)𝐺
𝐴
(𝑡, �⃗�; 𝑡′, �⃗�′) = 𝛿(𝑡− 𝑡′)𝛿𝐷(�⃗�− �⃗�′), (2.19)

(2 +𝑚2)𝐺
𝐹
(𝑡, �⃗�; 𝑡′, �⃗�′) = −𝛿(𝑡− 𝑡′)𝛿𝐷(�⃗�− �⃗�′) (2.20)

Moreover, as we have defined the Green functions, we now examine some proper-
ties of the Wightman functions from which we infer important properties of the fields.
Thence, for space-like intervals, i.e., |Δ�⃗�| > |Δ𝑡|, one can always make |Δ𝑡| = 0 by a
suitable Lorentz transformation. Therefore, as for equal times the Pauli-Jordan function
vanishes, so does the retarded and advanced propagators intervals, ensuring the micro-
causality condition, i.e., there is no signal propagation between events separated by space-
like intervals. Additionally, for time-like intervals, |Δ�⃗�| < |Δ𝑡|, we can make, as before,
|Δ�⃗�| = 0, so that

𝐺
±(𝑡, �⃗�; 𝑡′�⃗�′) =

∫︁ 𝑑
𝐷
𝑘

2(2𝜋)𝐷
e∓𝑖𝜔Δ𝑡

𝜔
∝
∫︁ ∞

0
𝑑𝑘 𝑘𝐷−1 e∓𝑖

√
𝑘2+𝑚2Δ𝑡

√
𝑘2 +𝑚2

=
∫︁ ∞

𝑚
𝑑𝐸 (𝐸2 −𝑚2)𝐷/2−1e∓𝑖𝐸Δ𝑡,

(2.21)

where we substituted 𝐸 =
√
𝑘2 +𝑚2. Moreover, when 𝑚 → 0

𝐺
±(𝑡, �⃗�; 𝑡′�⃗�′) ∝ lim

𝜀→0+

∫︁ ∞

0
𝑑𝐸 𝐸𝐷−2e−(𝜀∓𝑖Δ𝑡)𝐸 = Γ(𝐷 − 1)

(∓Δ𝑡)𝐷−1 . (2.22)

The integration is valid for 𝐷 > 1, where for 𝐷 = 1 we have an infrared divergence, which
will be discussed later. Thence, in the massless regime when 𝐷 is odd the Wightman
functions 𝐺+ and 𝐺

− are equal and their commutator vanishes in the time-like region.
Hence, the retarded and advanced propagator also vanish for time-like intervals, that is,
satisfy the Huygens principle (note that for massive field and when 𝐷 is even that is
not true). Which states that two events can only be causally related when separated by
light-like intervals.

The non-Huygesian character of the massive scalar fields–or massless fields with 𝐷
even–will be extensively exploited in this work. For those fields, in addition to the light-like
signal, the retarded propagator is different from zero for every time-like interval. Which
means that a standing observer will receive a never ending oscillatory signal, in contrast
to an unique light-like signal of the Huygesian fields. As stated in Ref. [1], in the case
of massive fields one can understand this behavior by analyzing the propagation modes
for the scalar field in Equation (1.39), which has the group velocity 𝑣𝑔 = 𝑘/

√
𝑘2 +𝑚2.

The modes then propagates in all possible velocities–below that of the light in vacuum–,
which causes an interference pattern, i.e., oscillations in the propagating signals.

Further, the above defined Green functions are actually distributions in the real
axis, however, through an analytic continuation to the complex plane, we can define
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them as functions of complex numbers, revealing some interesting properties. For that
we introduce a complex variable 𝑧 = 𝑡 + 𝑖𝑠, with 𝑡, 𝑠 ∈ R. Hence, in the complex plane
spawned by Δ𝑧, it is clear from the expressions (2.5) and (2.6) that the functions are only
well defined in the lower and upper half-plane, respectively [33]–as otherwise they diverge
exponentially as Δ𝑠 → ∞.

Moreover, both functions are equal when |Δ�⃗�| > |Δ𝑡|. Then, by the edge-of-the-
wedge theorem–see [30] for a statement and proof of the theorem–both functions are
analytic continuations of each other. Thereby, we can define, for fixed unequal �⃗� and 𝑥′,
a holomorphic function such that

𝒢(𝑧, �⃗�; 𝑧′, �⃗�′) =

⎧⎪⎨⎪⎩ 𝐺
+(𝑧, �⃗�; 𝑧′, �⃗�′) if ImΔ𝑧 < 0,

𝐺
−(𝑧, �⃗�; 𝑧′, �⃗�′) if ImΔ𝑧 > 0.

(2.23)

Note that both equalities holds if ImΔ𝑧 = 0 and Re|Δ𝑧| < |Δ�⃗�|. With poles at Re|Δ𝑧| =
|Δ�⃗�| and, if they don’t obey the Huygens principle, branch cuts for Re|Δ𝑧| > |Δ�⃗�|. We
can write this function as

𝒢(𝑧, �⃗�; 𝑧′, �⃗�′) = 𝑖

(2𝜋)𝐷+1

∫︁
𝑑

𝐷

�⃗�
∫︁
𝑑𝑘0

exp(𝑖𝑘 · Δ�⃗�− 𝑖𝑘0Δ𝑧)
𝑘2

0 − 𝑘2 −𝑚2 . (2.24)

Which is the integral representation of the defined Green functions. Each one given by a
suitable choice of the contour taken to avoid the poles 𝑘0 = ±

√
𝑘2 +𝑚2 in the real line.

For pure imaginary values of Δ𝑧 = 𝑖Δ𝑠, changing the variable 𝑘0 = 𝑖𝜅 we find
that

𝒢(𝑖𝑠, �⃗�; 𝑖𝑠′, �⃗�′) = 𝐺
𝐸
(𝑠, �⃗�; 𝑠′, �⃗�′) = 1

(2𝜋)𝐷+1

∫︁
𝑑

𝐷

�⃗�
∫︁
𝑑𝜅

exp(𝑖𝑘 · Δ�⃗�+ 𝑖𝜅Δ𝑠)
𝜅2 + 𝑘2 +𝑚2

=
∫︁ 𝑑

𝐷
�⃗�

2(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�e−𝑖𝜔|Δ𝑠|

𝜔
, (2.25)

which is the Euclidean Green function, because it satisfies the dynamical Equation (1.24)
on an Euclidean space, that is

(2
𝐸

−𝑚2)𝐺
𝐸
(𝑠, �⃗�; 𝑠′, �⃗�′) = 𝛿(𝑠− 𝑠′)𝛿(𝐷)(�⃗�− �⃗�′), (2.26)

with the elliptic operator

2
𝐸

= 𝜕2

𝜕𝑠2 + 𝜕2

𝜕𝑥2
1

+ ...+ 𝜕2

𝜕𝑥2
𝐷

, (2.27)

that is the D’Alambertian in a D+1-dimensional Euclidean space.

The elliptic operator has an advantage because it has an unique inverse, which
states that the function 𝐺

𝐸
(𝑠, �⃗�; 𝑠′, �⃗�′) is the unique solution to Eq. (2.26) which decays

as |Δ𝑠| → ∞, avoiding the ambiguity in choosing between contours in Eq. (2.24).
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The Euclidean Green function can be turned into the Feynman propagator through
a rigid rotation from the Δ𝑠 axis to the Δ𝑡 axis:

𝐺
𝐸
(−𝑖𝑡, �⃗�; −𝑖𝑡′, �⃗�′) = 𝐺

𝐹
(𝑡, �⃗�; 𝑡′, �⃗�′). (2.28)

Thence, when ambiguities arise, an usual strategy to choose between Green functions is
to change coordinates to an Euclidean space, which, when changed back to the usual
Minkowski spacetime gives the Feynman propagator.

Finally, in order to evaluate the integrals presented in the positive and negative
frequency Wightman functions, Eq. (2.5) and Eq. (2.6), we rewrite it using generalized
spherical coordinates in D-dimensions, where we have that [34]

𝑘1 = 𝑘 cos 𝜃1 ,

𝑘2 = 𝑘 cos 𝜃2 sin 𝜃1 ,

.

.

.

𝑘𝐷−1 = 𝑘 cos 𝜃
𝐷−1

𝐷−2∏︁
𝑖=1

sin 𝜃
𝑖
,

𝑘𝐷 = 𝑘
𝐷−1∏︁
𝑖=1

sin 𝜃
𝑖
,

(2.29)

and the Jacobian is
𝐽 = 𝑘

𝐷−1sin𝐷−2
𝜃1sin𝐷−3

𝜃2 ...sin 𝜃𝐷−2 . (2.30)

Furthermore, without loss of generality, we let |Δ�⃗�| be in the 𝑘1-direction, and the
Wightman functions becomes

𝐺
±(𝑡, �⃗�; 𝑡′, �⃗�′) = 2𝜋

2(2𝜋)𝐷

𝐷−2∏︁
𝑖=2

(︂∫︁ 𝜋

0
𝑑 𝜃

𝑖
sin𝐷−1−𝑖 𝜃

𝑖

)︂ ∫︁ ∞

0
𝑑𝑘𝑘

𝐷−1 e±𝑖𝜔Δ𝑡

𝜔

∫︁ 𝜋

0
𝑑 𝜃1sin𝐷−2 𝜃1e𝑖𝑘|Δ�⃗�|cos 𝜃1

= 1
2𝐷𝜋

𝐷+1
2 Γ(𝐷−1

2 )

∫︁ ∞

0
𝑑𝑘𝑘

𝐷−1 e±𝑖𝜔Δ𝑡

𝜔

∫︁ 𝜋

0
𝑑 𝜃1sin𝐷−2 𝜃1e𝑖𝑘|Δ�⃗�|cos 𝜃1 ,

(2.31)

using that [32]

∫︁ 𝜋

0
𝑑 𝜃1sin𝐷−2 𝜃1e𝑖𝑘|Δ�⃗�|cos 𝜃1 = 𝜋

1
2 Γ
(︂
𝐷 − 1

2

)︂(︃ 2
𝑘|Δ�⃗�|

)︃𝐷
2 −1

𝐽
𝐷
2 −1

(𝑘|Δ�⃗�|), (2.32)

we find that,

𝐺
±(𝑡, �⃗�; 𝑡′, �⃗�′) = 1

2(2𝜋)
𝐷
2 |Δ�⃗�|

𝐷
2 −1

lim
𝜖→0+

∫︁ ∞

0
𝑑𝑘𝑘

𝐷
2 e∓𝑖𝜔(Δ𝑡∓𝑖𝜖)

𝜔
𝐽

𝐷
2 −1

(𝑘|Δ�⃗�|), (2.33)
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where a small number 𝜖 is added to ensure convergence, underlining the distributional
character of the above Green functions.

To solve the above integral, we make the change of coordinates 𝑢 =
√︁

(𝑘/𝑚)2 + 1,
thence
∫︁ ∞

0
𝑑𝑘𝑘

𝐷
2 e∓𝑖𝑚(Δ𝑡∓𝑖𝜖)

√
(𝑘/𝑚)2+1

𝑚
√︁

(𝑘/𝑚)2 + 1
𝐽

𝐷
2 −1

(𝑘|Δ�⃗�|)

= 𝑚
𝐷
2
∫︁ ∞

1
𝑑𝑢
(︁√

𝑥2 − 1
)︁𝐷

2 −1

e∓𝑖𝑚(Δ𝑡∓𝑖𝜖)𝑥𝐽
𝐷
2 −1

(︁
𝑚|Δ�⃗�|

√
𝑥2 − 1

)︁

= 𝑚
𝐷−1

2

√︃
2
𝜋

|Δ�⃗�|
𝐷
2 −1

[︁√︁
(Δ�⃗�)2 − (Δ𝑡∓ 𝑖𝜖)2

]︁𝐷−1
2
𝐾

𝐷−1
2

[︁
𝑚
√︁

(Δ�⃗�)2 − (Δ𝑡∓ 𝑖𝜖)2
]︁
, (2.34)

where we used the result found in Ref. [35] (eq. 6.645.2).

The Wightman functions becomes

𝐺
±(𝑡, �⃗�; 𝑡′, �⃗�′) = lim

𝜖→0+

1
2𝜋

(︂
𝑚

2𝜋𝑖𝜎

)︂𝐷−1
2

𝐾
𝐷−1

2
(𝑖𝑚𝜎), (2.35)

with 𝜎 =
√︁

(Δ𝑡∓ 𝑖𝜖)2 − (Δ�⃗�)2. Note that, despite the above expression seems the same
for 𝐺+ and 𝐺

− , they differ in the sign for 𝜖. Moreover, in the rest of the work, the above
distribution will only be used smeared over differentiable functions defined on compact
domains, which will ensure convergence without the need to take the limit 𝜖 → 0+. Thence,
from now on, we will omit 𝜖 from the expressions for the Green Function, unless stated
otherwise.

As the Wightman functions are just the complex conjugate of one another, the
Hadamard function 𝐺(1), which is the sum of both becomes

𝐺(1)(𝑡, �⃗�; 𝑡′, �⃗�′) = 2𝑅𝑒
[︁
𝐺

±(𝑡, �⃗�; 𝑡′, �⃗�′)
]︁

= 1
𝜋
𝑅𝑒

⎧⎨⎩
(︂

𝑚

2𝜋𝑖𝜎

)︂𝐷−1
2

𝐾
𝐷−1

2
(𝑖𝑚𝜎)

⎫⎬⎭ . (2.36)

In addition, note that, for 𝐷 = 1, we have

𝐺
±(𝑡, �⃗�; 𝑡′, �⃗�′) = 1

2𝜋𝐾0(𝑖𝑚𝜎). (2.37)

Which diverges as 𝑚 → 0, a well known infrared divergence, which is a major problem
for quantum field theories at two dimensions as a definition for the Wightman functions
is crucial for the construction of the theory [33].

The ultraviolet divergence appearing on the light-cone display the well known di-
vergence at the vacuum energy, it is fairly understood that these divergences would not
occur in a more realistic setup, as the high energy modes would activate gravitational
effects. However, Quantum Gravity remains a reverie and, as the observable are con-
structed upon the vacuum expectation values, these must be renormalized. That is, for
every expectation value, the Minkowski vacuum contribution must be subtracted.



Chapter 2. Green Functions 28

At last, in the present work we will be interested in the modified vacuum, caused
by the presence of a reflective boundary at 𝑥1 = 0, in which we impose Dirichlet bound-
ary conditions 𝜑(𝑡, 𝑥1 = 0) = 0. In order to do this one must solve again the dynamical
equation submitted to such conditions. However, we follow here the image charge proce-
dure, proposed by Brown and McClay [24], in which the field of an image charge with
coordinates �̃�1 = −𝑥1 is subtracted from the usual field, so that the boundary conditions
are satisfied.

With that the Wightman functions in the presence of a reflective boundary are

�̃�
±(𝑡, �⃗�; 𝑡′, �⃗�′) = 𝐺

±(𝑡, �⃗�; 𝑡′, �⃗�′) −𝐺
±(𝑡, �⃗�; 𝑡′, ⃗̃𝑥′)

=
∫︁ 𝑑

𝐷
�⃗�

2(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�e∓𝑖𝜔Δ𝑡

𝜔
−
∫︁ 𝑑

𝐷
�⃗�

2(2𝜋)𝐷

e𝑖�⃗�·Δ̂�⃗�e∓𝑖𝜔Δ𝑡

𝜔

= 1
2𝜋

(︂
𝑚

2𝜋𝑖𝜎

)︂𝐷−1
2

𝐾
𝐷−1

2
(𝑖𝑚𝜎) − 1

2𝜋

(︂
𝑚

2𝜋𝑖�̂�

)︂𝐷−1
2

𝐾
𝐷−1

2
(𝑖𝑚�̂�),

(2.38)

where Δ�⃗� → Δ̂�⃗� as 𝑥′
1 → −𝑥′

1 and 𝜎 → �̂� when Δ�⃗� → Δ̂�⃗�. It is clear that this functions
satisfies the boundary condition �̃�

±(𝑡, �⃗�; 𝑡′, �⃗�′) = 0 when 𝑥1 = 0 or 𝑥′
1 = 0.

Further, the boundary condition changes the topology of the space in which 𝐺
∓

acts and, as the renormalization procedure imposes that the contribution from the pure
vacuum must be subtracted, only the image charge will contribute to measurable quanti-
ties.

In the present work we are interested in the effects of the renormalized Hadamard
function

�̃�
(1)

𝑅𝑒𝑛
(𝑡, �⃗�; 𝑡′, �⃗�′) = 2Re�̃�+

𝑅𝑒𝑛
(𝑡, �⃗�; 𝑡′, �⃗�′) = − 1

𝜋
Re

⎧⎨⎩
(︂

𝑚

2𝜋𝑖�̂�

)︂𝐷−1
2

𝐾
𝐷−1

2
(𝑖𝑚�̂�)

⎫⎬⎭ . (2.39)

Physically, when the boundary condition is introduced, the propagation modes of the field
that don’t satisfy it are no more allowed solutions of the dynamical equation. Then, as
the vacuum is subtracted, the modes that were present in the vacuum, but not in the
presence of a plate remain; and they produce measurable effects, as in the Casimir effect
[4]. Also, as the function is constructed to vanish at the plate, it becomes clear that, when
the Minkowski contribution–an infinite quantity–is subtracted from it, what remains is
an infinite quantity at the boundary.

2.2 Green functions at finite temperature

Up to now, we have dealt only with physical systems defined in pure states, mean-
ing that they are isolated. So that, in order to bring more reality to the model, we suppose
the system is in a thermal state in equilibrium with the external world.
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The system, at temperature 𝑇 = 𝛽−1, will now be described by a statistical en-
semble through the density operator defined by Eq. (1.8). Also, as we are dealing with a
relativistic field, particles can be created and destroyed at any time within our system,
hence we assume that there is no exchange of particles with the external reservoir, so the
chemical potential 𝜇 is zero.

It follows that the Wightman function for a scalar field at finite temperature is
simply the expectation value on the statistical ensemble

𝐺
+

𝛽
(𝑡, �⃗�; 𝑡′, �⃗�′) = ⟨𝜑(𝑡, �⃗�)𝜑(𝑡′, �⃗�′)⟩

𝛽
, (2.40)

𝐺
−

𝛽
(𝑡, �⃗�; 𝑡′, �⃗�′) = ⟨𝜑(𝑡′, �⃗�′)𝜑(𝑡, �⃗�)⟩

𝛽
. (2.41)

An important property of quantum fields at finite temperature is the KMS relations [4]:

𝐺
+

𝛽 (𝑡, �⃗�; 𝑡′, �⃗�′) = 𝐺
−

𝛽 (𝑡+ 𝑖𝛽, �⃗�; 𝑡′, �⃗�′). (2.42)

To assert the above expression, first remember that the time evolution of an operator is

𝜑(𝑡, �⃗�) = e𝑖�̂�𝑡𝜑(0, �⃗�)e−𝑖�̂�𝑡. (2.43)

Hence, we have that

𝐺
+

𝛽
(𝑡, �⃗�; 𝑡′, �⃗�′) = ⟨𝜑(𝑡, �⃗�)𝜑(𝑡′, �⃗�′)⟩

𝛽
= 𝑡𝑟[e−𝛽�̂�𝜑(𝑡, �⃗�)𝜑(𝑡′, �⃗�′)]

𝑡𝑟[e−𝛽�̂� ]

= 𝑡𝑟[e−𝛽�̂�𝜑(𝑡, �⃗�)e𝛽�̂�e−𝛽�̂�𝜑(𝑡′, �⃗�′)]
𝑡𝑟[e−𝛽�̂� ]

= 𝑡𝑟[e−𝛽�̂�𝜑(𝑡′, �⃗�′)𝜑(𝑡+ 𝑖𝛽, �⃗�)]
𝑡𝑟[e−𝛽�̂� ]

= 𝐺
−

𝛽
(𝑡+ 𝑖𝛽, �⃗�; 𝑡′, �⃗�′).

(2.44)

Following the steps on Ref. [4], note that for 𝐺, as the commutator is a c-number, the
expectation value is the same as the one in the vacuum

𝑖𝐺
𝛽
(𝑡, �⃗�; 𝑡′, �⃗�′) = ⟨[𝜑(𝑡, �⃗�)𝜑(𝑡′, �⃗�′)]⟩

𝛽

= [𝜑(𝑡, �⃗�)𝜑(𝑡′, �⃗�′)]
∑︁
𝑛

𝛿𝑚𝑛𝜌𝑚𝑛 = [𝜑(𝑡, �⃗�)𝜑(𝑡′, �⃗�′)],

so that 𝑖𝐺
𝛽
(𝑡, �⃗�; 𝑡′, �⃗�′) = 𝑖𝐺(𝑡, �⃗�; 𝑡′, �⃗�′). Nonetheless, it is convenient to use the Pauli-

Jordan function to calculate others Green functions. Note that

𝑖𝐺(𝑡, �⃗�; 𝑡′, �⃗�′) =
∫︁ 𝑑

𝐷
�⃗�

(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�

2𝜔
(︁
e−𝑖𝜔Δ𝑡 − e𝑖𝜔Δ𝑡

)︁

=
∫︁ 𝑑

𝐷
�⃗�

(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�

2𝜔

∫︁
𝑑𝑘0

[︁
𝛿(𝑘0 − 𝜔)e−𝑖𝑘0Δ𝑡 − 𝛿(𝑘0 + 𝜔)e−𝑖𝑘0Δ𝑡

]︁
.

(2.45)
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Where we rewrote it as a Fourier transform

𝑖𝐺(𝑡, �⃗�; 𝑡′, �⃗�′) = 1
2𝜋

∫︁
𝑑𝑘0𝑐(𝑘0, �⃗�, �⃗�

′)e−𝑖𝑘0Δ𝑡, (2.46)

with
𝑐(𝑘0, �⃗�, �⃗�

′) =
∫︁ 𝑑

𝐷
�⃗�

(2𝜋)𝐷−1 e𝑖�⃗�·Δ�⃗�𝛿(𝑘2
0 − 𝜔2) [Θ(𝑘0) − Θ(−𝑘0)] . (2.47)

Forthwith, the Wightman functions can also be rewrote as Fourier transforms

𝐺
±

𝛽
= 1

2𝜋

∫︁
𝑑𝑘0𝑔

±(𝑘0, �⃗�, �⃗�
′)e−𝑖𝑘0Δ𝑡, (2.48)

from which, by using the KMS condition

𝑔
+(𝑘0, �⃗�, �⃗�

′) = 𝑔
−(𝑘0, �⃗�, �⃗�

′)e𝑘0𝛽. (2.49)

Thence, from the definition of the Pauli-Jordan function,

𝑐(𝑘0, �⃗�, �⃗�
′) = 𝑔

+(𝑘0, �⃗�, �⃗�
′) − 𝑔

−(𝑘0, �⃗�, �⃗�
′) = −𝑔−(𝑘0, �⃗�, �⃗�

′)(1 − e𝑘0𝛽), (2.50)

and we have:
𝑔

±(𝑘0, �⃗�, �⃗�
′) = ±𝑐(𝑘0, �⃗�, �⃗�

′)
1 − e∓𝑘0𝛽

. (2.51)

From which we find that

𝐺
±

𝛽
(𝑡, �⃗�; 𝑡′, �⃗�′) = ± 1

2𝜋

∫︁
𝑑𝑘0

𝑐(𝑘0)
1 − e∓𝑘0𝛽

e−𝑖𝑘0Δ𝑡

= ±
∫︁ 𝑑

𝐷
�⃗�

(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�

2𝜔

(︃
e−𝑖𝜔Δ𝑡

1 − e∓𝜔𝛽 − e𝑖𝜔Δ𝑡

1 − e±𝜔𝛽

)︃
.

(2.52)

First, for the positive part

𝐺
+

𝛽
(𝑡, �⃗�; 𝑡′, �⃗�′) =

∫︁ 𝑑
𝐷
�⃗�

(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�

2𝜔

(︃
e−𝑖𝜔Δ𝑡 + e−𝜔𝛽e𝑖𝜔Δ𝑡

1 − e−𝜔𝛽

)︃

=
∫︁ 𝑑

𝐷
�⃗�

(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�

2𝜔

∞∑︁
𝑙=0

e−𝜔𝑙𝛽
(︁
e−𝑖𝜔Δ𝑡 + e−𝜔𝛽e𝑖𝜔Δ𝑡

)︁

=
∫︁ 𝑑

𝐷
�⃗�

(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�

2𝜔

[︃
e−𝑖𝜔Δ𝑡 +

∞∑︁
𝑙=1

(︁
e−𝑖𝜔(Δ𝑡−𝑖𝑙𝛽) + e𝑖𝜔(Δ𝑡+𝑖𝑙𝛽)

)︁]︃
.

(2.53)

Analogously, for the negative part

𝐺
−

𝛽
(𝑡, �⃗�; 𝑡′, �⃗�′) =

∫︁ 𝑑
𝐷
�⃗�

(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�

2𝜔

[︃
e𝑖𝜔Δ𝑡 +

∞∑︁
𝑙=1

(︁
e−𝑖𝜔(Δ𝑡−𝑖𝑙𝛽) + e𝑖𝜔(Δ𝑡+𝑖𝑙𝛽)

)︁]︃
. (2.54)

Finally, the Hadamard function

𝐺
(1)

𝛽
(𝑡, �⃗�; 𝑡′, �⃗�′) = 𝐺

(1)(𝑡, �⃗�; 𝑡′�⃗�′) + 2
∞∑︁
𝑙=1

∫︁ 𝑑
𝐷
�⃗�

(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�

2𝜔
[︁
e−𝑖𝜔(Δ𝑡−𝑖𝑙𝛽) + e𝑖𝜔(Δ𝑡+𝑖𝑙𝛽)

]︁
. (2.55)
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Using the same procedure used to find Eq. (2.33), we can rewrite 𝐺(1) as

𝐺
(1)

𝛽
(𝑡, �⃗�; 𝑡′, �⃗�′) = 𝐺

(1)(𝑡, �⃗�; 𝑡′�⃗�′) + 2
∞∑︁
𝑙=1

1
2(2𝜋)

𝐷
2 |Δ�⃗�|

𝐷
2 −1

×
∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
𝐽

𝐷
2 −1

(𝑘|Δ�⃗�|)
[︁
e−𝑖𝜔(Δ𝑡−𝑖𝑙𝛽) + e𝑖𝜔(Δ𝑡+𝑖𝑙𝛽)

]︁

= 𝐺
(1)(𝑡, �⃗�; 𝑡′�⃗�′) + 1

(2𝜋)
𝐷
2 |Δ�⃗�|

𝐷
2 −1

⎡⎣ −1∑︁
𝑙=−∞

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
e−𝑖𝜔(Δ𝑡+𝑖𝑙𝛽)𝐽

𝐷
2 −1

(𝑘|Δ�⃗�|)

+
∞∑︁
𝑙=1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
e𝑖𝜔(Δ𝑡+𝑖𝑙𝛽)𝐽

𝐷
2 −1

(𝑘|Δ�⃗�|)
⎤⎦ ,

(2.56)

integrating, as was done in Equation (2.33), we find

𝐺
(1)

𝛽
(𝑡, �⃗�; 𝑡′, �⃗�′) = 1

𝜋
Re

⎧⎨⎩
(︂

𝑚

2𝜋𝑖𝜎

)︂𝐷−1
2

𝐾
𝐷−1

2
(𝑖𝑚𝜎)

⎫⎬⎭+
∑︁
𝑙 ̸=0

1
𝜋

(︂
𝑚

2𝜋𝑖𝜎𝑙

)︂𝐷−1
2

𝐾
𝐷−1

2
(𝑖𝑚𝜎𝑙)

=
∞∑︁

𝑙=−∞
𝐺

(1)(𝑡+ 𝑖𝑙𝛽, �⃗�; 𝑡′�⃗�′), (2.57)

with 𝜎𝑙 =
√︁

(Δ𝑡+ 𝑖𝑙𝛽)2 − (Δ�⃗�)2, which is the well known imaginary time summation
formula.

The above formula clearly suggests a periodicity of the function in imaginary time.
In order to state that in a correct manner, we investigate, as before, the behavior of the
function in the complex plane given by Δ𝑧. So, as before, with 𝑧 = 𝑡+ 𝑖𝑠, we have

𝐺
+

𝛽
(𝑧, �⃗�; 𝑧′, �⃗�′) =

∫︁ 𝑑
𝐷
�⃗�

(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�

2𝜔

{︃
e−𝑖𝜔Δ𝑡e𝜔Δ𝑠 +

∞∑︁
𝑙=1

[︁
e−𝜔(𝑙𝛽−Δ𝑠)e−𝑖𝜔Δ𝑡 + e−𝜔(𝑙𝛽+Δ𝑠)e𝑖𝜔Δ𝑡

]︁}︃
,

(2.58)

𝐺
−

𝛽
(𝑧, �⃗�; 𝑧′, �⃗�′) =

∫︁ 𝑑
𝐷
�⃗�

(2𝜋)𝐷

e𝑖�⃗�·Δ�⃗�

2𝜔

{︃
e𝑖𝜔Δ𝑡e−𝜔Δ𝑠 +

∞∑︁
𝑙=1

[︁
e−𝜔(𝑙𝛽+Δ𝑠)e−𝑖𝜔Δ𝑡 + e−𝜔(𝑙𝛽−Δ𝑠)e𝑖𝜔Δ𝑡

]︁}︃
.

(2.59)

Hence, one sees that the functions 𝐺+

𝛽
and 𝐺−

𝛽
are holomorphic in the strips where

0 > Δ𝑠 > −𝛽 and 𝛽 > Δ𝑠 > 0. Moreover, from the KMS condition, the Wightman
functions are defined in the complex plane by intercalating strips in which 𝐺

+ and 𝐺
−

are defined. Note also that the complex-plane is now turned into a cylinder, with the
imaginary axis being a circumference of length equal 2𝛽.

Remember that the Pauli-Jordan function, as a complex number, is the same as
the one for the vacuum, so that results obtained remain valid, i.e, the Huygesian or non-
Huygesian character of the propagators and that the commutator vanishes in space-like
intervals, where both Wightman functions coincide. Then, again by the edge-of-the-wedge



Chapter 2. Green Functions 32

theorem, the functions are analytic continuations of each other, and we can define the
holomorphic function

𝒢
𝛽
(𝑧, �⃗�; 𝑧′, �⃗�′) =

⎧⎪⎨⎪⎩ 𝐺
+

𝛽
(𝑧, �⃗�; 𝑧′, �⃗�′) if 0 >ImΔ𝑧 > −𝛽,

𝐺
−

𝛽
(𝑧, �⃗�; 𝑧′, �⃗�′) if 𝛽 >ImΔ𝑧 > 0.

(2.60)

Which is periodic in the imaginary axis with period 2𝛽. Thus, this function acting on the
space R × R𝐷+1 is just the zero temperature function acting on S1 × R𝐷+1, in which the
imaginary time axis is turned into a circumference.

In addition, the Euclidean function is defined as before, and all its relations with
the others remains the same as for the zero temperature case. However, when the field is
massless, an infrared divergence do not appear only for 𝐷 = 1, as the periodicity in imag-
inary times creates an infrared divergence also for 𝐷 = 2 [33], as 𝐾 1

2
(𝑧) =

√︁
𝜋/(2𝑧) e−𝑧

for 𝐷 = 2 we have that

𝐺
(1)

𝛽
(𝑡, �⃗�; 𝑡′�⃗�′) = Re

[︃
1

2𝜋𝑖𝜎 e−𝑖𝑚𝜎 +
∞∑︁
𝑙=1

1
𝜋𝑖𝜎𝑙

e−𝑖𝑚𝜎𝑙

]︃
, (2.61)

which diverges as 𝑚 → 0. Hence, as for 𝐷 = 1, quantum field theory is not well defined
for 𝐷 = 2 at finite temperature [33]. Which amounts to saying that massless fields at 2
spatial dimensions cannot attain thermal equilibrium.

Finally, in the presence of the boundary at 𝑥1 = 0, just as the case for zero
temperature, we have that

�̃�
±

𝛽
(𝑡, �⃗�; 𝑡′�⃗�′) =

∫︁ 𝑑
𝐷
�⃗�

(2𝜋)𝐷

(︁
e𝑖�⃗�·Δ�⃗� − e𝑖�⃗�·Δ̂�⃗�

)︁
2𝜔

{︃
e∓𝑖𝜔Δ𝑡 +

∞∑︁
𝑙=1

[︁
e−𝑖𝜔(Δ𝑡−𝑖𝑙𝛽) + e𝑖𝜔(Δ𝑡+𝑖𝑙𝛽)

]︁}︃
.

(2.62)
And, the renormalized Hadamard function, that will be used to calculate the dispersion

�̃�
(1)

𝛽,𝑅𝑒𝑛
(𝑡, �⃗�; 𝑡′�⃗�′) = �̃�

(1)

𝑅𝑒𝑛
(𝑡, �⃗�; 𝑡′�⃗�′) +

∑︁
𝑙 ̸=0

⎡⎣ 1
𝜋

(︂
𝑚

2𝜋𝑖𝜎𝑙

)︂𝐷−1
2

𝐾
𝐷−1

2
(𝑖𝑚𝜎𝑙)

− 1
𝜋

(︂
𝑚

2𝜋𝑖�̂�𝑙

)︂𝐷−1
2

𝐾
𝐷−1

2
(𝑖𝑚�̂�𝑙)

⎤⎦ . (2.63)

Where we have excluded the vacuum term, when 𝑙 = 0, in the summations. Note that
a convenient division appears between the terms in the right hand side of the above
equation. First, the modified vacuum contribution, given by Eq. (2.39). Then the pure
thermal part, that is just the renormalized free Hadamard function for a thermal state,
which gives the black-body radiation energy of the gas. And the last is the mixed part,
i.e., the thermal contribution coming from the gas in the presence of a reflective boundary.
Also, from the relation (2.13), in the limit of point coincidence we obtain the Feynman
propagator from the above equation and recover the results presented in Ref. [23], where
the local thermal behavior of a massive scalar field is studied near a reflective wall.
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3 Stochastic Motion due to the Fluctuations
of a Massive Scalar Field

We studied the general aspects of a quantum massive scalar field both at zero and
finite temperature, and now present its effects in an interaction with a test particle. As
said, we investigate the stochastic motion induced by a change in the vacuum state of
the field. The effects of this interaction for the case of a massive scalar field were studied
in [1]. Here we generalize previous results to the finite temperature case, investigating
first the motion due to a change from the Minkowski vacuum to a thermal bath of scalar
bosons, followed by the introduction of a reflective boundary, and, at last, the effect due
to the boundary term at finite temperature.

Moreover, we use switching functions to model the transition between the physical
states of the field, bringing more reality to the model and regularizing divergences. Which
were seen to occur in the original model [10] near the plate and when the interaction
time 𝜏 equals two times the distance to the plate 𝑥, that is, a round trip of the photon.
Such divergences link back to the problems found for the renormalized Green functions
in the presence of a boundary and are connected to the sudden transition implemented
between the states of the field, the perfectly reflective character of the boundary, and the
non-quantum character of the test particle. Finally, we also analyze the behavior of the
velocities dispersions with the distance of the particle to the plate, and show the interplay
between vacuum and thermal contribution to the dispersions as the wall is approached.

3.1 Model of a test particle interacting with a scalar field

The interaction of a particle with a massive scalar field in a Minkowski spacetime
with 𝐷 spatial dimensions is obtained through the action [36]

𝑆[𝜑, 𝜕𝜇𝜑; 𝜏, �⃗�] = 𝑆𝐹 −𝑀
∫︁
𝑑𝑠− 𝑒

∫︁
𝑑𝑠
[︂∫︁

𝑑𝑡𝑑𝐷𝑧 𝜑(𝑡, �⃗�)𝛿(𝑡− 𝜏)𝛿(�⃗� − �⃗�)
]︂
, (3.1)

where 𝑆𝐹 is the action for the free scalar field (1.25), the point (𝜏, �⃗�) being the location
of the test particle, 𝑀 its mass, 𝑒 the coupling charge through which it interacts with
the scalar field, and 𝑑𝑠2 = 𝜂𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 the infinitesimal interval between two events in the
particle worldline.

Notwithstanding, we are interested in a classical non-relativistic test particle.
Thence, to reduce the above action to the Newtonian regime we will, just for now, ex-
plicitly write the constant 𝑐, and assume the particles velocity �⃗� = 𝑑�⃗�/𝑑𝜏 is such that
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|�⃗�| ≪ 𝑐. We have

𝑆[𝜑, 𝜕𝜇𝜑; 𝜏, �⃗�] = 𝑆𝐹 −
∫︁
𝑑𝜏

⎡⎣𝑀𝑐2

√︃
1 − 𝑣2

𝑐2 + 𝑒 𝜑(𝜏, �⃗�)
√︃

1 − 𝑣2

𝑐2

⎤⎦
≃ 𝑆𝐹 +

∫︁
𝑑𝜏
[︂
𝑀

2 𝑣2 − 𝑒 𝜑(𝜏, �⃗�)
]︂

+ 𝒪(𝑣2/𝑐2).
(3.2)

Thence, through the principle of least action, we find the dynamical equation for the test
particle

𝑑𝑣𝑖
𝑑𝜏

= −𝑔𝜕𝜑(𝜏, �⃗�)
𝜕𝑥𝑖

, (3.3)

where we denoted 𝑔 = 𝑒/𝑀 . We assume that the particle position do not change signif-
icantly and that there is no dissipation, as in the original model [10]. Then, quantizing
the field as was described in the previous chapter, the quantum mechanical operator for
the velocity of the particle in the 𝑖-direction becomes

𝑣𝑖(𝜏) = −𝑔
∫︁ 𝜏

0
𝑑𝑡
𝜕𝜑(𝑡, �⃗�)
𝜕𝑥𝑖

. (3.4)

As the test particle will be immersed in the vacuum and in a field at thermal equilibrium,
the mean value of the velocities will be zero, ⟨𝑣𝑖⟩=0. However, quantum fluctuations of
the field cause dispersions in the particle velocities, given by

⟨(Δ𝑣𝑖)2⟩𝐷 = ⟨𝑣2
𝑖 ⟩𝛽 = 𝑔2 lim

𝑥→𝑥′

[︃
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

∫︁ 𝜏

0
𝑑𝑡
∫︁ 𝜏

0
𝑑𝑡′
⟨
𝜑(𝑡, �⃗�)𝜑(𝑡′, �⃗�′)

⟩
𝛽

]︃
. (3.5)

Note also that, in the presence of a classical force, it would not contribute to the disper-
sion, and the above formula would describe the dipersions of the velocities around the
particle classical trajectory [10, 15]. Moreover, as the above equation has a product of
non-commuting operators, the product must be symmetrized to avoid ambiguities, giving

⟨(Δ𝑣𝑖)2⟩𝐷 = 𝑔2

2 lim
𝑥→𝑥′

[︃
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

∫︁ 𝜏

0
𝑑𝑡
∫︁ 𝜏

0
𝑑𝑡′
⟨
𝜑(𝑡, �⃗�)𝜑(𝑡′, �⃗�′) + 𝜑(𝑡′, �⃗�′)𝜑(𝑡, �⃗�)

⟩
𝛽

]︃

= 𝑔2

2 lim
𝑥→𝑥′

[︃
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

∫︁ 𝜏

0
𝑑𝑡
∫︁ 𝜏

0
𝑑𝑡′𝐺

(1)

𝛽,𝑅𝑒𝑛(𝑡, �⃗�; 𝑡′, �⃗�′)
]︃
.

(3.6)

The above expression was renormalized, i.e., the Minkowski vacuum contribution was sub-
tracted. Nonetheless, the dispersions given by Eq. (3.6), when the field is in the presence
of a reflective boundary, was extensively studied for the massless case [15, 17, 18], and for
the massive case at zero temperature [1]. Hence, as said, it was found that for a sudden
transition the dispersion diverge at 𝑥 = 0 and for 𝜏 = 2𝑥.

Henceforth, in order to describe a more realistic system, we introduce a switching
function 𝐹 (𝑡) that models a smooth transition between states of the system. Through
this sample function we are able to regularize the appearing divergences. The interaction
time 𝜏 must remain the same, so that∫︁ ∞

−∞
𝑑𝑡𝐹 (𝑡) = 𝜏. (3.7)
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The expression for the dispersion now becomes

⟨(Δ𝑣𝑖)2⟩𝐷 = 𝑔2

2 lim
𝑥→𝑥′

[︃
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

∫︁ ∞

−∞
𝑑𝑡𝐹 (𝑡)

∫︁ ∞

∞
𝑑𝑡′𝐹 (𝑡′)𝐺(1)

𝛽,Ren(𝑡, �⃗�; 𝑡′, �⃗�′)
]︃
. (3.8)

In the next section we explore some properties of the function 𝐹 (𝑡), how it regu-
larizes the expression by dumping the high energy modes and will give some expressions
for it.

3.2 Smooth switching function

As said, the divergences appearing in QFT are a problem of the theory, and many
ways were encountered to circumvent them. Namely, it is understood that the high energy
modes could not be described by quantum field theory in a flat space-time, as they
would significantly curve it. Thence, a natural cut-off function could appear from these
interactions [3]. However, as a Quantum Gravity theory is not yet present, the arose of
such cuf-off is not clear. Furthermore, in the axiomatic construction of the theory proposed
by Streater & Wightman, see Ref. [30], the quantum fields can only be defined smeared
over test functions that are elements of the Schwartz space 𝒫–the space of differentiable
function that decay rapidly–stating the necessity of smearing the fields in order to obtain a
consistent theory. Thence, in accordance with this axiomatic construction, here the fields
will be defined over switching functions that models a smooth interaction between the
field and the particle, bringing more reality to the system.

These functions, as we will see, suppresses the high-energy modes regularizing
ultraviolet divergences–the infrared divergences, as we will see, are not regularized. Phys-
ically, what happens is that, as the switching is done smoothly, the transition for the
high-energy modes is done adiabatically–compared to the frequency of the modes–and
with that they do not contribute to the dispersions.

Forthwith, in the case of a boundary, applying Dirichlet’s condition for all propa-
gating modes implies an infinite potential barrier (or a perfectly reflective mirror in the
electromagnetic case), which does not exists in nature. As it is changed to a physical
potential, a smooth one, another cut-off function would be introduced. Nonetheless, if
the value of this cut-off is higher then the one introduced by the switching function, the
modes to be discarded by it are already suppressed by the smooth transition. So, the
results presented here would remain completely valid.

Note also that these physical constrains on the propagation modes have no con-
nection to gravitational interactions, and are not defined by a more fundamental theory.
However, the physical constraints presented here discard modes of energy way lower than
the ones that would be affected by gravitational interactions, so that these are irrelevant
for our purpose.
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A suitable choice of switching function is the generalized Lorentzian [37, 38, 15]

𝐹
(1)

𝑛 (𝑡) = 𝑐𝑛[︂
1 +

(︁
2𝑡
𝜏

)︁2𝑛
]︂ , (3.9)

with 𝑐𝑛 = (2𝑛/𝜋)sin(𝜋/2𝑛), in order to satisfy the condition of Eq.(3.7). The behavior of
the function for different values of 𝑛 is depicted in Fig. 1. Note that, the index n indicates
how smooth is the transition and as 𝑛 → ∞ we recover the sudden transition.

Fig. 1 – Behavior of the switching function 𝐹
(1)
𝑛 (𝑡). As 𝑛 grows the transition becomes

abrupter and, when 𝑛 → ∞, we recover the sudden transition.

The transition time 𝜏𝑠 is given by the difference between the nearest points of
maximum curvature of the function, which are the zeros of its third derivative [15]. We
find that

𝜏𝑠 = 𝜏

2

(︂2𝑛− 1
𝑛+ 1

)︂ 1
2𝑛

⎡⎢⎢⎣
⎛⎝1 +

⎯⎸⎸⎷1 − (𝑛+ 1)(𝑛− 1)
(2𝑛+ 1)(2𝑛− 1)

⎞⎠
1

2𝑛

−

⎛⎝1 −

⎯⎸⎸⎷1 − (𝑛+ 1)(𝑛− 1)
(2𝑛+ 1)(2𝑛− 1)

⎞⎠
1

2𝑛

⎤⎥⎥⎦ .
(3.10)

Note that 𝜏𝑠 grows with 𝜏 , and tends to infinity as 𝜏 → ∞, in such case there is no
transition. Hence, this choice of switching function is not suitable to investigate the late-
time regime.

Now, as it will reveal some interesting properties and will be useful later, we
investigate the Fourier transform of 𝐹 (1)

𝑛 (𝑡),

𝐹
(1)

𝑛 (𝜔) =
∫︁ ∞

−∞
𝑑𝑡 e−𝑖𝜔𝑡𝐹

(1)

𝑛 (𝑡) = 𝑖𝜏𝜋𝑐𝑛
2𝑛

2𝑛−1∑︁
𝑞=𝑛

𝜓𝑛,𝑞e−𝑖𝜔𝜏𝜓𝑛,𝑞/2, (3.11)
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with 𝜓𝑛,𝑝 = exp[𝑖(𝜋/2𝑛)(1 + 2𝑝)]. The full derivation is done in Ref. [15].

Furthermore, as the divergences appearing in Eq. (3.6) occurs because of the ul-
traviolet modes, i.e., modes with large values of 𝜔, Fig. 2 clarify how 𝐹

(1)
𝑛 (𝑡) regularizes

the problem: |𝐹 (1)
𝑛 (𝜔)| decreases exponentially with 𝜔–remember that we define it as a

positive quantity–suppressing the high-energy modes contribution to the dispersion.

Fig. 2 – Plot of the Fourier transform of the function 𝐹
(1)
𝑛 (𝑡). The function decreases as

𝜔𝜏 increases.

Accordingly, any function whose Fourier transform exponentially suppresses the
high-energy modes is suitable to regularize the divergences. Thus, we can construct a
switching function, with controllable switching time 𝜏𝑠, following what was done in Ref.
[1].

Starting from the transform of the sudden transition, 𝐹 (0)(𝑡) = Θ(𝑡)Θ(𝜏 − 𝑡),
𝐹

(0)(𝜔) = (1/𝑖𝜔)(1 − e−𝑖𝜔𝜏 ). We introduce a factor 𝒟(𝜔), so that

𝐹 (𝜔) = 1
𝑖𝜔

(1 − e−𝑖𝜔𝜏 )𝒟(𝜔). (3.12)

Which must be bounded as 𝜔 → ∞ and, to satisfy the normalization (3.7), 𝒟(0) = 1.
Additionally, as stated in [1], 𝒟(𝜔) must be continuous, for 𝐹 (𝑡) to be non-negative, and
we should have that 𝐹 (𝑡) = Θ(𝑡)Θ(𝜏 − 𝑡) as 𝜏𝑠 → 0.

The most obvious choice is 𝒟(𝜔) = 𝑒−𝜏𝑠|𝜔|, from which we have the test function

𝐹
(2)

𝜏𝑠
(𝑡) = 1

𝜋

[︂
arctan

(︂
𝑡

𝜏𝑠

)︂
+ arctan

(︂
𝜏 − 𝑡

𝜏𝑠

)︂]︂
, (3.13)

which derivative can be written in terms of Lorentzian functions. This switching was
implemented in [18, 20] and is more accurate to describe the physical situation, as the
interaction and the switching time can be independently set, which makes it also appro-
priate to investigate the late-time regime of the dispersion.
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3.3 Velocity dispersions in a thermal bath

Forthwith, provided with the necessary tools, we calculate the velocity fluctuations
caused by a quantum scalar field. First, we calculate it for a field in thermal equilibrium
at temperature 𝑇 , i.e., a gas of massive scalar bosons. The setup is as follows, the particle
is immersed in a field at zero temperature, then the temperature is raised until the desired
value. The switching function models the interaction between the field and the particle
as they are smoothly taken into and out of equilibrium.

Substituting Expression (2.56) into Eq. (3.8) we have

⟨(Δ𝑣𝑖)2⟩𝐷,thermal = 𝑔2 lim
𝑥→𝑥′

⎡⎣ 𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

∞∑︁
𝑙=1

1
2(2𝜋)

𝐷
2 |Δ�⃗�|

𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
𝐽

𝐷
2 −1

(𝑘|Δ�⃗�|)e−𝜔𝑙𝛽

×
(︂∫︁ ∞

−∞
𝑑𝑡𝐹 (𝑡)

∫︁ ∞

−∞
𝑑𝑡′𝐹 (𝑡′)e−𝑖𝜔Δ𝑡 +

∫︁ ∞

−∞
𝑑𝑡𝐹 (𝑡)

∫︁ ∞

−∞
𝑑𝑡′𝐹 (𝑡′)e𝑖𝜔Δ𝑡

)︂⎤⎦
= 𝑔2 lim

𝑥→𝑥′

⎡⎣ 𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

1
2(2𝜋)𝐷

2 |Δ�⃗�|𝐷
2 −1

∞∑︁
𝑙=1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
2|𝐹 (𝜔)|2𝑒−𝑙𝛽𝜔𝐽𝐷

2 −1(𝑘|Δ�⃗�|)
⎤⎦ .

(3.14)

First, choosing the switching function 𝐹 (1)
𝑛 (𝑡), given by Eq. (3.10), which enables us to

obtain a closed formula, and using Eq. (3.11) we have

⟨(Δ𝑣𝑖)2⟩(1)
𝐷,thermal =

(︂
𝑔𝜏𝜋𝑐𝑛

2𝑛

)︂2
lim
𝑥→𝑥′

[︃
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

1
(2𝜋)𝐷

2 |Δ�⃗�|𝐷
2 −1

2𝑛−1∑︁
𝑝,𝑞=𝑛

∞∑︁
𝑙=1

𝜓𝑛,𝑝𝜓
*
𝑛,𝑞

×
∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
𝑒−𝑖𝜔𝛽𝑎𝑙𝐽𝐷

2 −1(𝑘|Δ�⃗�|)
⎤⎦, (3.15)

with 𝑎𝑙 = (𝜏/2𝛽)(𝜓𝑛,𝑝 − 𝜓*
𝑛,𝑞) − 𝑖𝑙.

By the same procedure used to solve the integral in Eq. (2.33), we solve the above
integral, obtaining the same result with Δ𝑡 → 𝛽𝑎𝑙. Then, note that

lim
𝑥→𝑥′

⎧⎪⎨⎪⎩ 𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

⎡⎢⎣
⎛⎝ 𝑚√︁

|Δ�⃗�|2 − (𝛽𝑎𝑙)2

⎞⎠( 𝐷−1
2 )

𝐾𝐷−1
2

(︂
𝑚
√︁

|Δ�⃗�|2 − (𝛽𝑎𝑙)2
)︂⎤⎥⎦
⎫⎪⎬⎪⎭

= 1
𝛽𝐷+1

⎛⎝ 𝑚𝛽√︁
−𝑎2

𝑙

⎞⎠
𝐷+1

2

𝐾𝐷+1
2

(︂
𝑚𝛽

√︁
−𝑎2

𝑙

)︂
. (3.16)

Thus, the closed expression for the dispersion caused by a thermal bath is

⟨(Δ𝑣𝑖)2⟩(1)
𝐷,thermal = 2𝑔2

𝛽𝐷−1

[︃
(𝜏/𝛽)𝜋𝑐𝑛

2𝑛

]︃2 2𝑛−1∑︁
𝑝,𝑞=𝑛

∞∑︁
𝑙=1

𝜓𝑛,𝑝𝜓
*
𝑛,𝑞

⎛⎝ 𝑚𝛽

2𝜋
√︁

−𝑎2
𝑙

⎞⎠
𝐷+1

2

𝐾𝐷+1
2

(︂
𝑚𝛽

√︁
−𝑎2

𝑙

)︂
.

(3.17)
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Fig. 3 – Velocity dispersions at two and one spatial dimensions, Figures (a) and (b),
respectively, caused by a thermal bath by different values of the mass with 𝑛 = 20.
The behavior for both is similar, increasing the mass weakens the dispersiona
and raises the oscillation frequency. However, for 𝐷 = 1 the magnitudes of the
dispersions are higher.

Note that at zero temperature, when 𝛽 → ∞, and for 𝑚 → ∞ the above dispersions are
exponentially suppressed by the modified Bessel function.

These dispersions for 𝐷 = 1 and 𝐷 = 2 are depicted in Figure 3–for 𝑚 = 0
infrared divergences appears, such situation will be considered next. The representative
curves are similar, the fluctuations grows, until they reach a peak, then start to oscillate,
as a characteristic of the non-Huygesian behavior of the fields, i. e., the interference
pattern due to the existence of signals at arbitrary low group velocities. It appears that
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the dispersion then lowers with 𝜏 . However, as discussed, this choice of sample function is
such that, as 𝜏 increases the switching time 𝜏𝑠 increases as well, lowering the dispersions.

Fig. 4 – Velocity dispersions at three spatial dimensions caused by a thermal bath for
different values of the mass, here 𝑛 = 20. (a) Dispersions for different values of
the mass. (b) Dispersions for a high value of the mass, 𝑚𝛽 = 5, the frequency
of the oscillations increases. The behavior is analogous as for 𝐷 = 2 and 𝐷 = 1.
However, for 𝐷 = 3 the massless limit is well behaved, and we can see that for
Huygesian fields there are no oscillations.

Nonetheless, the dispersion are dependent on 𝑚𝛽 = 𝑚/𝑇 , thence, there is an
opposition between field mass and temperature. As the mass grows the field acquires
more inertia, and therefore reacts less to thermal energy. One can also understand this
as a dissipation of the energy into propagating modes. As, when the field acquires mass,
they travel with slower group velocities, and the fields reacts less to temperature effects.
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For 𝐷 = 3 the behavior is similar, as one can see in Fig. 4. As then the massless
field do not present divergences, we can see the difference in the dispersion when 𝑚 = 0,
a Huygesian field, and for the massive non-Huygesian case. In the former the dispersions
do not present oscillations, in contrast to the latter case. In Fig. 4 (b) one can see how
the increase of the mass raises the frequency of oscillation.

Fig. 5 – Comparison between the thermal dispersions caused by a massless field at 𝐷 = 3,
a Huygesian field, and a massless field at 𝐷 = 4, a non-Huygesian field.

Moreover, as stated before, when 𝐷 is even the fields present a non-Huygesian
behavior even when their mass is zero. In Figure 5 we note that while for the massless field
in 𝐷 = 3 the fluctuations increases until its maximum value and then slowly decreases. In
𝐷 = 4 we note a slight oscillation of the dispersions, which is suppresed by temperature.

Notwithstanding, the introduction of a switching function modeling the interaction
between field and test particle creates a more realistic setup. However, opposing the
boundary case, where divergences appears, the sudden transition case for a thermal bath
is well behaved, as one can see in Fig. 6. While for the sudden transition case the dispersion
grows and then oscillates around its late-time value, the smooth transition attenuates the
dispersion and, for the switching function 𝐹 (1)

𝑛 (𝑡), it decays as 𝜏 grows.

Further, to investigate the infrared divergences that appears note that for 𝐷 = 1
the modified Bessel function appearing in (3.17) is of integer order, so we can use that
𝐾𝑛(𝑧) ≃ 1/2(𝑛− 1)!(2/𝑧)𝑛 when 𝑧 → 0 [32], and we find

⟨(Δ𝑣𝑖)2⟩(1)
1,thermal

𝑚→0= 𝜋

(︃
𝑔𝜏𝑐𝑛
2𝛽𝑛

)︃2 2𝑛−1∑︁
𝑝,𝑞=𝑛

𝜓𝑛,𝑝𝜓
*
𝑛,𝑞𝜓

(1)(1 + 𝑖𝑎0), (3.18)

remember that 𝑎0 = (𝜏/2𝛽)(𝜓𝑛,𝑝 − 𝜓
*
𝑛,𝑞) and the polygamma function 𝜓(𝑚)(𝑥) is given by
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Fig. 6 – Velocity dispersions at one spatial dimension caused by a thermal bath for dif-
ferent values of 𝑛 in 𝐹 (1)

𝑛 (𝑡).

[32]

𝜓
(𝑚)(𝑥) = (−1)𝑚+1 𝑚!

∞∑︁
𝑘=0

1
(𝑘 + 𝑥)𝑚+1 . (3.19)

Then, for 𝐷 = 2 we have a modified Bessel function of order 𝜈 = 3/2, which is 𝐾 3
2
(𝑧) =

(1 + 1/𝑧)
√︁
𝜋/(2𝑧) e−𝑧 [35], and we find

⟨(Δ𝑣)2⟩(1)
2,thermal

𝑚→0= −𝜋

𝛽

[︃
𝑔(𝜏/𝛽)𝑐𝑛

4𝑛

]︃2 2𝑛−1∑︁
𝑝,𝑞=𝑛

𝜓𝑛,𝑝𝜓
*
𝑛,𝑞𝜓

(2)(1 + 𝑖𝑎0). (3.20)

The above sums converge, however, when 𝐷 = 1 the dispersion grows almost linearly with
𝜏 , diverging as 𝜏 goes to infinity.

lim
𝜏→∞

⟨(Δ𝑣𝑖)2⟩(1)
1,thermal

𝑚→0∝
∞∑︁
𝑙=1

lim
𝜏→∞

𝜏 2

[(2𝜏/𝛽)(𝜓𝑛,𝑝 − 𝜓*
𝑛,𝑞) − 𝑖𝑙]2 → ∞. (3.21)

For 𝐷 = 2 the divergence is apparently stabilized

lim
𝜏→∞

⟨(Δ𝑣𝑖)2⟩(1)
2,thermal

𝑚→0∝
∞∑︁
𝑙=1

lim
𝜏→∞

𝜏 2

[(2𝜏/𝛽)(𝜓𝑛,𝑝 − 𝜓*
𝑛,𝑞) − 𝑖𝑙]3 → 0. (3.22)

As we have seen, the chosen switching function 𝐹 (1)
𝑛 (𝑡) is such that the switching time

grows with the interaction time. Thence, in the late-time behavior the switching time goes
to infinity as well and the dispersions are suppressed, causing the apparent regularization.
However, in a physical setup, the switching time must be detached from the interaction
time. So, the above chosen switching function is not suited to investigate the late-time
regime and the infrared divergences.
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3.3.1 Late-time behavior of the thermal dispersions

Hence, in order to investigate the late-time regime, the dispersions are recalculated
using the switching function 𝐹 (2)

𝜏𝑠
(𝑡) given by Eq. (3.13). Substituting in Eq. (3.14)

⟨(Δ𝑣𝑖)2⟩(2)

𝐷,thermal = 𝑔2 lim
𝑥→𝑥′

[︃
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

2
(2𝜋)𝐷

2 |Δ�⃗�|𝐷
2 −1

×
∞∑︁
𝑙=1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔3 (1 − cos(𝜔𝜏))e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷
2 −1(𝑘|Δ�⃗�|)

⎤⎦. (3.23)

Taking the limit 𝜏 → ∞ the integration over the term multiplied by cos(𝜔𝜏) goes to 0,
as it is shown in Ref. [1]. Thus, to solve the integral in the above expression, note that

2
(2𝜋)𝐷

2 |Δ�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔3 e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷
2 −1(𝑘|Δ�⃗�|)

= − 1
𝑚

𝜕

𝜕𝑚

⎡⎣ 2
(2𝜋)𝐷

2 |Δ�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷

2 −1(𝑘|Δ�⃗�|)
⎤⎦

− 2(2𝜏𝑠 + 𝑙𝛽)
(2𝜋)𝐷

2 |Δ�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔2 e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷
2 −1(𝑘|Δ�⃗�|) (3.24)

The first integral is straightforward, as was done in Eq. (2.33), we have

− 1
𝑚

𝜕

𝜕𝑚

⎡⎣ 2
(2𝜋)𝐷

2 |Δ�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷

2 −1(𝑘|Δ�⃗�|)
⎤⎦

= − 4
𝑚(2𝜋)𝐷+1

2

𝜕

𝜕𝑚

⎡⎢⎢⎣
⎛⎝ 𝑚√︁

(2𝜏𝑠 + 𝑙𝛽)2 + |Δ�⃗�|2

⎞⎠
𝐷−1

2

𝐾
𝐷−1

2

(︂
𝑚
√︁

(2𝜏𝑠 + 𝑙𝛽)2 + |Δ�⃗�|2
)︂⎤⎥⎥⎦

= 4
(2𝜋)

𝐷+1
2

⎛⎝ 𝑚√︁
(2𝜏𝑠 + 𝑙𝛽)2 + |Δ�⃗�|2

⎞⎠
𝐷−3

2

𝐾
𝐷−3

2

(︂
𝑚
√︁

(2𝜏𝑠 + 𝑙𝛽)2 + |Δ�⃗�|2
)︂
, (3.25)

Further, derivating we find

lim
�⃗�→�⃗�′

⎡⎢⎢⎣ 𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

⎛⎝ 𝑚√︁
(2𝜏𝑠 + 𝑙𝛽)2 + |Δ�⃗�|2

⎞⎠
𝐷−3

2

𝐾𝐷−3
2

(︂
𝑚
√︁

(2𝜏𝑠 + 𝑙𝛽)2 + |Δ�⃗�|2
)︂⎤⎥⎥⎦

=
(︃

𝑚

2𝜏𝑠 + 𝑙𝛽

)︃𝐷−1
2

𝐾𝐷−1
2

(𝑚(2𝜏𝑠 + 𝑙𝛽)) . (3.26)

Now, for the integral in the second term on the right hand side of Eq. (3.24) note that

lim
�⃗�→�⃗�′

⎡⎣ 𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

𝑘
𝐷
2 −1

|Δ�⃗�|𝐷
2 −1

𝐽𝐷
2 −1(𝑘|Δ�⃗�|)

⎤⎦
= lim

�⃗�→�⃗�′

⎡⎣ 𝑘
𝐷
2

|Δ�⃗�|𝐷
2
𝐽𝐷

2
(𝑘|Δ�⃗�|)

⎤⎦ = 𝑘
𝐷

2𝐷
2 Γ(𝐷2 + 1)

. (3.27)
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So, substituting 𝑢 =
√︁
𝑘2/𝑚2 + 1, gives

lim
�⃗�→�⃗�′

𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

⎡⎣− 2(2𝜏𝑠 + 𝑙𝛽)
(2𝜋)𝐷

2 |Δ�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔2 e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷
2 −1(𝑘|Δ�⃗�|)

⎤⎦
= − (2𝜏𝑠 + 𝑙𝛽)𝑚𝐷

2𝐷−1𝜋
𝐷
2 Γ(𝐷2 + 1)

∫︁ ∞

1
𝑑𝑢

(𝑢2 − 1)𝐷
2

𝑢
e−𝑚(2𝜏𝑠+𝑙𝛽)𝑢

= − (2𝜏𝑠 + 𝑙𝛽)𝑚𝐷

2𝐷−1𝜋
𝐷
2 Γ(𝐷2 + 1)

𝐼(𝐷,𝑚(2𝜏𝑠 + 𝑙𝛽)), (3.28)

where we define

𝐼(𝐷,𝛼) =
∫︁ ∞

1
𝑑𝑢

(𝑢2 − 1)𝐷
2

𝑢
e−𝛼𝑢 = −𝜋

2 cosec
(︂
𝜋

2𝐷
)︂

− 𝛼

2
√
𝜋

Γ
(︂

−𝐷

2 − 1
)︂

Γ
(︂
𝐷

2 + 1
)︂

1𝐹2
[︁
1/2; 3/2, (𝐷 + 3)/2;𝛼2/4

]︁
+ 1
𝛼𝐷

Γ(𝐷)1𝐹2
[︁
−𝐷/2; (1 −𝐷)/2, 1 −𝐷/2;𝛼2/4

]︁
. (3.29)

The generalized Hypergeometric functions are given by [35]

𝑝𝐹𝑞[𝑎1, ..., 𝑎𝑝; 𝑏1, ..., 𝑏𝑞; 𝑧] =
∞∑︁
𝑛=0

(𝑎1)𝑛...(𝑎𝑝)𝑛
(𝑏1)𝑛...(𝑏𝑞)𝑛

𝑧𝑛

𝑛! , (3.30)

with the Pochhammer symbol [35]

(𝑎)0 = 1,

(𝑎)𝑛 = 𝑎(𝑎+ 1)(𝑎+ 2)...(𝑎+ 𝑛− 1), 𝑛 ≥ 1. (3.31)

Finally, the late-time behavior of the dispersion due to a thermal bath of scalar bosons is

lim
𝜏→∞

⟨(Δ𝑣𝑖)2⟩(2)

thermal = 2𝑔2

𝜋𝛽𝐷−1

∞∑︁
𝑙=1

⎧⎨⎩
[︃

𝑚𝛽

2𝜋(2𝜏𝑠/𝛽 + 𝑙)

]︃𝐷−1
2

𝐾𝐷−1
2

(𝑚𝛽(2𝜏𝑠/𝛽 + 𝑙))

−(2𝜏𝑠/𝛽 + 𝑙)(𝑚𝛽)𝐷

2𝐷𝜋𝐷
2 −1Γ(𝐷2 + 1)

𝐼(𝐷,𝑚𝛽(2𝜏𝑠/𝛽 + 𝑙))

⎫⎬⎭ . (3.32)

To investigate the massless regime, first note that transforming the integral back to 𝑘 =
𝑚

√
𝑢2 − 1 in 𝐼(𝐷,𝑚𝛽(2𝜏𝑠/𝛽 + 𝑙)) we have that

𝑚𝐷𝐼(𝐷,𝑚𝛽(2𝜏𝑠/𝛽 + 𝑙)) =
∫︁ ∞

0
𝑑𝑘

𝑘𝐷+1

𝑘2 +𝑚2 e−
√
𝑘2+𝑚2(2𝜏𝑠+𝑙𝛽)

𝑚→0=
∫︁ ∞

0
𝑑𝑘𝑘𝐷−1e−𝑘(2𝜏𝑠+𝑙𝛽) = Γ(𝐷)

𝛽𝐷(2𝜏𝑠/𝛽 + 𝑙)𝐷 . (3.33)

For 𝐷 = 3 the modified Bessel function is of order one, and we can expand as before. We
obtain that

lim
𝜏→∞

⟨(Δ𝑣𝑖)2⟩(2)

3,thermal
𝑚→0= 𝑔2

3𝜋2𝛽2𝜓
(1)(1 + 2𝜏𝑠

𝛽
), (3.34)
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Fig. 7 – Late time behavior of the velocity dispersion with the mass, for 𝐷 = 2 and
for 𝐷 = 3. The residual dispersion decays with the mass and with 𝜏𝑠, rapidly
becoming zero. (a) late-time regime of the dispersions for 𝐷 = 2 where the
divergence in the massless limits is present. (b) late-time regime for 𝐷 = 3, we
see that the function is regular for all masses.

which is half the electromagnetic case [20], as expected as the thermal contribution is
isotropic.

For 𝐷 = 2, we have the function 𝐾 1
2
(𝑧) =

√︁
𝜋/(2𝑧) e−𝑧, and we find

lim
𝜏→∞

⟨(Δ𝑣𝑖)2⟩(2)

2,thermal
𝑚→0= 𝑔2

2𝜋𝛽

∞∑︁
𝑙=1

1
(𝑙 + 2(𝜏𝑠/𝛽)) , (3.35)
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and when 𝐷 = 1

lim
𝜏→∞

⟨(Δ𝑣𝑖)2⟩(2)

1,thermal
𝑚→0= 2𝑔2

𝜋

∞∑︁
𝑙=1

[︂
lim
𝑚→0

𝐾0(𝑚(2𝜏𝑠 + 𝑙𝛽)) − 𝜋
]︂
. (3.36)

Both expressions diverge for any finite value of 𝜏𝑠–remember that lim𝑧→0 𝐾0(𝑧) ≃ lim𝑧→0 𝑙𝑛(2/𝑧).
Thus, we see that even the averaging through a suitable test function cannot regularize
the appearing infrared divergences for field theories when 𝐷 = 1 and 𝐷 = 2 at finite
temperature. In contrast to the apparent regularization done with the switching function
𝐹 (1)
𝑛 (𝑡), that, as we have seen, is not suited to calculate the late-time fluctuations.

In Fig. 7 we see the behavior of the late-time regime for 𝐷 = 2 and for 𝐷 = 3.
In the sudden switching the residual dispersions are bigger, and it decays with mass and
with switching time. For 𝐷 = 2 we see the infrared divergence. When 𝐷 = 1 the behavior
is similar, but it diverges more rapidly when the mass approaches zero.

3.4 Velocity dispersions due to a thermal bath in the presence of
a boundary

Now, we extend our investigation to the interaction of the particle with a thermal
bath of scalar bosons near a boundary, where Dirichlet’s conditions were imposed. Thus,
for a better comprehension we separate each contribution to the dispersion as follows

⟨(Δ𝑣𝑖)2⟩𝐷 = ⟨(Δ𝑣𝑖)2⟩𝐷,thermal + ⟨(Δ𝑣𝑖)2⟩𝐷,vacuum + ⟨(Δ𝑣𝑖)2⟩𝐷,mixed. (3.37)

The thermal part is given in Eq. (3.15), the vacuum term states for the contribution due
to the modified vacuum caused by the presence of the boundary, and the mixed part is
the contribution from the boundary with temperature.

The contribution from the modified vacuum is

⟨(Δ𝑣𝑖)2⟩𝐷,vacuum = 𝑔2

2 lim
𝑥→𝑥′

[︃
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

∫︁ ∞

−∞
𝑑𝑡𝐹 (𝑡)

∫︁ ∞

∞
𝑑𝑡′𝐹 (𝑡′)�̃�(1)

𝑅𝑒𝑛
(𝑡, �⃗�; 𝑡′, �⃗�′)

]︃

= −𝑔2 lim
𝑥→𝑥′

Re
⎡⎣ 𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

1
2(2𝜋)𝐷

2 |Δ̂�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
|𝐹 (𝜔)|2𝐽𝐷

2 −1(𝑘|Δ̂�⃗�|)
⎤⎦ ,

(3.38)

which were studied in Ref. [1]. Then, the contribution from the mixed part

⟨(Δ𝑣𝑖)2⟩𝐷,mixed = 𝑔2

2 lim
𝑥→𝑥′

[︃
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

∫︁ ∞

−∞
𝑑𝑡𝐹 (𝑡)

∫︁ ∞

∞
𝑑𝑡′𝐹 (𝑡′)�̃�(1)

𝛽,𝑅𝑒𝑛
(𝑡, �⃗�; 𝑡′, �⃗�′)

]︃

= −𝑔2 lim
𝑥→𝑥′

⎡⎣ 𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

1
2(2𝜋)𝐷

2 |Δ̂�⃗�|𝐷
2 −1

∞∑︁
𝑙=1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
2|𝐹 (𝜔)|2𝑒−𝑙𝛽𝜔𝐽𝐷

2 −1(𝑘|Δ̂�⃗�|)
⎤⎦ .

(3.39)
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Note that the vacuum term is just half the mixed part with 𝑙 = 0. So that we will carry
over all calculations for the mixed part and then obtain the vacuum contribution. That
said, substituting the Fourier transform of the switching function 𝐹 (1)

𝑛 (𝑡), found in (3.10),
in the above equation

⟨(Δ𝑣𝑖)2⟩(1)
𝐷,mixed = −

(︂
𝑔𝜏𝜋𝑐𝑛

2𝑛

)︂2
lim
𝑥→𝑥′

[︃
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

1
(2𝜋)𝐷

2 |Δ̂�⃗�|𝐷
2 −1

2𝑛−1∑︁
𝑝,𝑞=𝑛

∞∑︁
𝑙=1

𝜓𝑛,𝑝𝜓
*
𝑛,𝑞

×
∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
𝑒−𝑖𝜔𝛽𝑎𝑙𝐽𝐷

2 −1(𝑘|Δ̂�⃗�|)
⎤⎦. (3.40)

Solving the integral is straightforward, as it is equal the one for the thermal part. So, as
was done in Eq. (2.33), we find

1
(2𝜋)𝐷

2 |Δ̂�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
𝑒−𝑖𝜔𝛽𝑎𝑙𝐽𝐷

2 −1(𝑘|Δ̂�⃗�|)

= 1
𝜋

⎛⎝ 𝑚

2𝜋
√︁

|Δ̂�⃗�|2 − 𝑎2
𝑙

⎞⎠
𝐷−1

2

𝐾𝐷−1
2

(︂
𝑚
√︁

|Δ̂�⃗�|2 − 𝑎2
𝑙

)︂
. (3.41)

In the derivation of the above expression note that, because of the anisotropic character
of Δ̂�⃗�, the expression will differ in the direction perpendicular to the boundary. Thence,
for the parallel directions–where we now denote 𝑥 as the distance to the plate–we find

lim
𝑥→𝑥′

⎡⎢⎣ 𝜕

𝜕𝑥‖

𝜕

𝜕𝑥′
‖

⎛⎝ 𝑚√︁
|Δ̂�⃗�|2 − 𝑎2

𝑙

⎞⎠
𝐷−1

2

𝐾𝐷−1
2

(︂
𝑚
√︁

|Δ̂�⃗�|2 − 𝑎2
𝑙

)︂⎤⎥⎦

=
⎛⎝ 𝑚√︁

4𝑥2 − 𝑎2
𝑙

⎞⎠
𝐷+1

2

𝐾𝐷+1
2

(︂
𝑚
√︁

4𝑥2 − 𝑎2
𝑙

)︂
. (3.42)

For the perpendicular direction

lim
𝑥→𝑥′

⎡⎢⎣ 𝜕

𝜕𝑥⊥

𝜕

𝜕𝑥′
⊥

⎛⎝ 𝑚√︁
|Δ̂�⃗�|2 − 𝑎2

𝑙

⎞⎠
𝐷−1

2

𝐾𝐷−1
2

(︂
𝑚
√︁

|Δ̂�⃗�|2 − 𝑎2
𝑙

)︂⎤⎥⎦

= −

⎛⎝ 𝑚√︁
4𝑥2 − 𝑎2

𝑙

⎞⎠
𝐷+1

2

𝐾𝐷+1
2

(︂
𝑚
√︁

4𝑥2 − 𝑎2
𝑙

)︂
+4𝑥2

⎛⎝ 𝑚√︁
4𝑥2 − 𝑎2

𝑙

⎞⎠
𝐷+3

2

𝐾𝐷+3
2

(︂
𝑚
√︁

4𝑥2 − 𝑎2
𝑙

)︂
.

(3.43)

Substituting these results in Equation (3.40) we find

⟨(Δ𝑣‖)2⟩(1)
𝐷,mixed = − 2𝑔2

𝑥𝐷−1

(︃
(𝜏/𝑥)𝜋𝑐𝑛

2𝑛

)︃2 2𝑛−1∑︁
𝑝,𝑞=𝑛

∞∑︁
𝑙=1

𝜓𝑛,𝑝𝜓
*
𝑛,𝑞

⎛⎝ 𝑚𝑥

4𝜋
√︁

1 − 𝛾2
𝑙

⎞⎠
𝐷+1

2

𝐾𝐷+1
2

(︂
2𝑚𝑥

√︁
1 − 𝛾2

𝑙

)︂
,

⟨(Δ𝑣⊥)2⟩(1)
𝐷,mixed = 8𝜋𝑥2⟨(Δ𝑣‖)2⟩(1)

𝐷+2,mixed − ⟨(Δ𝑣‖)2⟩(1)
𝐷,mixed.

(3.44)
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where we have defined 𝛾𝑙 = (𝜏/4𝑥)(𝜓𝑛,𝑝 − 𝜓*
𝑛,𝑞) − 𝑖𝑙(𝛽/2𝑥). Furthermore, as was said, the

vacuum term is just half the above expression with 𝑙 = 0. We then found

⟨(Δ𝑣‖)2⟩(1)
𝐷,vacuum = − 𝑔2

𝑥𝐷−1

(︃
(𝜏/𝑥)𝜋𝑐𝑛

2𝑛

)︃2 2𝑛−1∑︁
𝑝,𝑞=𝑛

𝜓𝑛,𝑝𝜓
*
𝑛,𝑞

⎛⎝ 𝑚𝑥

4𝜋
√︁

1 − 𝛾2
0

⎞⎠
𝐷+1

2

𝐾𝐷+1
2

(︂
2𝑚𝑥

√︁
1 − 𝛾2

0

)︂
,

⟨(Δ𝑣⊥)2⟩(1)
𝐷,vacuum = 8𝜋𝑥2⟨(Δ𝑣‖)2⟩(1)

𝐷+2,vacuum − ⟨(Δ𝑣‖)2⟩(1)
𝐷,vacuum.

(3.45)

Fig. 8 – Fluctuations caused by a thermal bath near a reflective boundary for 𝐷 = 3. Here
we set 𝑛 = 20 and 𝑚𝑥 = 1.(a) Velocity fluctuations in the parallel directions.(b)
Velocity fluctuations in the perpendicular direction.

Also, in order to be able to plot the complete dispersion in terms of 𝜏/𝑥, 𝛽/𝑥, and
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𝑚𝑥 we rewrite the homogeneous thermal contribution as

⟨(Δ𝑣𝑖)2⟩(1)
𝐷,thermal = 2𝑔2

𝑥𝐷−1

(︃
(𝜏/𝑥)𝜋𝑐𝑛

2𝑛

)︃2 2𝑛−1∑︁
𝑝,𝑞=𝑛

∞∑︁
𝑙=1

𝜓𝑛,𝑝𝜓
*
𝑛,𝑞

⎛⎝ 𝑚𝑥

4𝜋
√︁

−𝛾2
𝑙

⎞⎠
𝐷+1

2

𝐾𝐷+1
2

(︂
2𝑚𝑥

√︁
−𝛾2

𝑙

)︂
.

(3.46)

Fig. 9 – Fluctuations caused by a thermal bath near a reflective boundary, for 𝐷 = 2. Here
we set 𝑛 = 20 and 𝑚𝑥 = 1.(a) Velocity fluctuations in the parallel directions.(b)
Velocity fluctuations in the perpendicular direction.

Again, as 𝛽 → ∞, the mixed and thermal contributions are exponentially sup-
pressed and the only remaining is the boundary term at zero temperature, recovering
the results in [1]. Furthermore, when 𝑚 → ∞ all contributions to the dispersions vanish,
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however, as the modified vacuum is the zeroth order term in the summation on powers of
𝑙, the temperature contributions are suppressed earlier. So, for high values of the mass,
only the modified vacuum contribution remains.

From now on, as for the massive field the behavior of the fluctuations is very
similar for different values of 𝐷, we present only the curves for 𝐷 = 2 and 𝐷 = 3, an even
and an odd number of dimensions. Thus, the complete velocity dispersions are shown in
Figures 8 and 9, for 𝐷 = 3 and 𝐷 = 2, respectively.

Initially, the thermal part dominates, but near 𝜏 = 2𝑥 we have the valley associated
with the boundary interaction [1], which have a different sign from the thermal part.
Hence, even in the finite temperature case we are able to encounter negative values for
the dispersions.

Moreover, the spatial dimension does not change the overall behavior. But, for
𝐷 = 2, as the thermal contribution is higher, the valleys are less inclined. Note also that
for 𝛽/𝑥 = 5 the contribution from the temperature are suppressed and we have only the
modified vacuum contribution found in Ref. [1]. Also as 𝑚𝑥 increases, the vacuum term
dominates over the thermal contribution, as we will see more closely in another section.

Lastly, as the effect in the dispersions due to the boundary for different values of 𝑛
is well understood (See Ref. [15]), here we have shown only the curves for 𝑛 = 20. For this
value the divergences are regularized but not greatly weakened, maintaining its principal
features.

3.4.1 Dispersions due to a boundary at finite temperature

In a physical setup, the pure thermal contribution is detached from the boundary
terms. That is, we can propose a situation were the gas is heated before the boundary is
inserted, and both could be switched on with different switching times. Then the thermal
contribution will be only the constant residual fluctuations, which can also be zero for
values of 𝜏𝑠 high enough.

Hence, it is of our interest to investigate the boundary term of the dispersion alone,
defined by

⟨(Δ𝑣𝑖)2⟩𝐷,boundary = ⟨(Δ𝑣𝑖)2⟩𝐷,vacuum + ⟨(Δ𝑣𝑖)2⟩𝐷,mixed. (3.47)

The plots in Fig. 11 and Fig. 10 depict the behavior of the boundary contribution to
the dispersions when the temperature is raised. It is shown that the temperature deepens
and smooths the valleys, in the sense that the curve is less declined, while decreases the
peaks in the perpendicular part, when 𝛽 → ∞ we recover the results in Ref. [1]. Also, in
the perpendicular direction, the temperature effects are smaller, as the curves does not
deviates much from the zero temperature case. Further, for 𝐷 = 2 the temperature effects
are more pronounced then that for 𝐷 = 3.
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Fig. 10 – Dispersion caused by a reflective boundary at finite temperature for 𝐷 = 3. We
set 𝑛 = 20 and 𝑚𝑥 = 1. (a) Velocity dispersions in the parallel directions. (b)
Velocity dispersions in the perpendicular direction. As the temperature increases
the dispersion grows and the peaks are less abrupt.

Nonetheless, as we have seen, mass opposes temperature effects, so that when field
mass is raised the oscillations are pronounced and the magnitude of the dispersions lowers,
Figures 12 and 13. Note that, for high values of mass, temperature effects are suppressed
and we recover the figure presented in Ref. [1], with the vacuum dominating the mixed
contribution. Again, for 𝐷 = 2 the fluctuations are higher and the peaks smoother as for
𝐷 = 3.
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Fig. 11 – Dispersion caused by a reflective boundary at finite temperature for 𝐷 = 2. We
set 𝑛 = 20 and 𝑚𝑥 = 1. (a) Velocity dispersions in the parallel directions. (b)
Velocity dispersions in the perpendicular direction.

3.4.2 Late-time behavior of the dispersions

At last, the late time behavior is again found through the sample function 𝐹 (2)
𝜏𝑠

(𝑡).
Then, taking 𝜏 → ∞, the mixed contribution is

lim
𝜏→∞

⟨(Δ𝑣𝑖)2⟩(2)
𝐷,mixed = −𝑔2 lim

�⃗�→�⃗�′

[︃
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥′
𝑖

2
(2𝜋)𝐷

2 |Δ̂�⃗�|𝐷
2 −1

×
∞∑︁
𝑙=1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔3 e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷
2 −1(𝑘|Δ̂�⃗�|)

⎤⎦ . (3.48)
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Fig. 12 – Dispersion caused by a reflective boundary at finite temperature for 𝐷 = 3.
We set 𝑛 = 20 and 𝛽/𝑥 = 1. (a) Velocity dispersions in the parallel directions.
(b) Velocity dispersions in the perpendicular direction. With the increase of the
mass, the modified vacuum dominates the finite temperature contributions.

We rewrite the integral, as previously, as

2
(2𝜋)𝐷

2 |Δ̂�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔3 e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷
2 −1(𝑘|Δ̂�⃗�|)

= − 1
𝑚

𝜕

𝜕𝑚

⎡⎣ 2
(2𝜋)𝐷

2 |Δ̂�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷

2 −1(𝑘|Δ̂�⃗�|)
⎤⎦

− 2(2𝜏𝑠 + 𝑙𝛽)
(2𝜋)𝐷

2 |Δ̂�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔2 e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷
2 −1(𝑘|Δ̂�⃗�|). (3.49)
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Fig. 13 – Dispersion caused by a reflective boundary at finite temperature for 𝐷 = 2. We
set 𝑛 = 20 and 𝛽/𝑥 = 1. (a) Velocity dispersions in the parallel directions. (b)
Velocity dispersions in the perpendicular direction.

Now, as in Eq. (3.25), we find for the first integral on the right hand side of the above
equation

− 1
𝑚

𝜕

𝜕𝑚

⎡⎣ 2
(2𝜋)𝐷

2 |Δ̂�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔
e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷

2 −1(𝑘|Δ̂�⃗�|)
⎤⎦

= 4
(2𝜋)

𝐷+1
2

⎛⎝ 𝑚√︁
(2𝜏𝑠 + 𝑙𝛽)2 + |Δ̂�⃗�|2

⎞⎠
𝐷−3

2

𝐾
𝐷−3

2

(︂
𝑚
√︁

(2𝜏𝑠 + 𝑙𝛽)2 + |Δ̂�⃗�|2
)︂
. (3.50)
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Evaluating the derivatives in the parallel and perpendicular directions we have

lim
�⃗�→�⃗�′

⎡⎣ 𝜕

𝜕𝑥‖

𝜕

𝜕𝑥′
‖

⎛⎝ 𝑚√︁
(2𝜏𝑠 + 𝑙𝛽)2 + |Δ̂�⃗�|2

⎞⎠
𝐷−3

2

𝐾
𝐷−3

2

(︂
𝑚
√︁

(2𝜏𝑠 + 𝑙𝛽)2 + |Δ̂�⃗�|2
)︂⎤⎦

=
⎡⎣ 𝑚√︁

(2𝜏𝑠 + 𝑙𝛽)2 + 4𝑥2

⎤⎦
𝐷−1

2

𝐾
𝐷−1

2

(︂
𝑚
√︁

(2𝜏𝑠 + 𝑙𝛽)2 + 4𝑥2
)︂
,

and

lim
�⃗�→�⃗�′

⎡⎣ 𝜕

𝜕𝑥⊥

𝜕

𝜕𝑥′
⊥

⎛⎝ 𝑚√︁
(2𝜏𝑠 + 𝑙𝛽)2 + |Δ̂�⃗�|2

⎞⎠
𝐷−3

2

𝐾
𝐷−3

2

(︂
𝑚
√︁

(2𝜏𝑠 + 𝑙𝛽)2 + |Δ̂�⃗�|2
)︂⎤⎦

= −

⎡⎣ 𝑚√︁
(2𝜏𝑠 + 𝑙𝛽)2 + 4𝑥2

⎤⎦
𝐷−1

2

𝐾
𝐷−1

2

(︂
𝑚
√︁

(2𝜏𝑠 + 𝑙𝛽)2 + 4𝑥2
)︂

+ 4𝑥2

⎡⎣ 𝑚√︁
(2𝜏𝑠 + 𝑙𝛽)2 + 4𝑥2

⎤⎦
𝐷+1

2

𝐾
𝐷+1

2

(︂
𝑚
√︁

(2𝜏𝑠 + 𝑙𝛽)2 + 4𝑥2
)︂
.

For the second integral on the right hand side of Eq. (3.48) note that, for the parallel part

lim
�⃗�→�⃗�′

⎡⎣ 𝜕

𝜕𝑥‖

𝜕

𝜕𝑥′
‖

𝑘
𝐷
2 −1

|Δ̂�⃗�|𝐷
2 −1

𝐽𝐷
2 −1(𝑘|Δ̂�⃗�|)

⎤⎦ = 𝑘
𝐷
2

(2𝑥)𝐷
2
𝐽𝐷

2
(2𝑘𝑥). (3.51)

So that, again with 𝑢 =
√︁
𝑘2/𝑚2 + 1, we find that

lim
�⃗�→�⃗�′

𝜕

𝜕𝑥‖

𝜕

𝜕𝑥′
‖

⎡⎣ 2(2𝜏𝑠 + 𝑙𝛽)
(2𝜋)𝐷

2 |Δ̂�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔2 e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷
2 −1(𝑘|Δ̂�⃗�|)

⎤⎦
= (2𝜏𝑠 + 𝑙𝛽)𝑚𝐷/2

(2𝜋)𝐷
2 (2𝑥)𝐷

2

∫︁ ∞

1
𝑑𝑢

(
√
𝑢2 − 1)𝐷

2

𝑢
e−𝑚(2𝜏𝑠+𝑙𝛽)𝑢𝐽𝐷

2
(2𝑚𝑥

√
𝑢2 − 1). (3.52)

For the perpendicular component

lim
�⃗�→�⃗�′

⎡⎣ 𝜕

𝜕𝑥⊥

𝜕

𝜕𝑥′
⊥

𝑘
𝐷
2 −1

|Δ̂�⃗�|𝐷
2 −1

𝐽𝐷
2 −1(𝑘|Δ̂�⃗�|)

⎤⎦ = 4𝑥2 𝑘
𝐷
2 +1

(2𝑥)𝐷
2 +1

𝐽𝐷
2 +1(2𝑘𝑥) − 𝑘

𝐷
2

(2𝑥)𝐷
2
𝐽𝐷

2
(2𝑘𝑥).

(3.53)
Thence

lim
�⃗�→�⃗�′

𝜕

𝜕𝑥⊥

𝜕

𝜕𝑥′
⊥

⎡⎣ 2(2𝜏𝑠 + 𝑙𝛽)
(2𝜋)𝐷

2 |Δ̂�⃗�|𝐷
2 −1

∫︁ ∞

0
𝑑𝑘
𝑘

𝐷
2

𝜔2 e−𝜔(2𝜏𝑠+𝑙𝛽)𝐽𝐷
2 −1(𝑘|Δ̂�⃗�|)

⎤⎦
= (2𝜏𝑠 + 𝑙𝛽)𝑚𝐷/2+1

(2𝜋)𝐷
2 (2𝑥)𝐷

2 +1

∫︁ ∞

1
𝑑𝑢

(
√
𝑢2 − 1)𝐷

2 +1

𝑢
e−𝑚(2𝜏𝑠+𝑙𝛽)𝑢𝐽𝐷

2 +1(2𝑚𝑥
√
𝑢2 − 1)

− (2𝜏𝑠 + 𝑙𝛽)𝑚𝐷/2

(2𝜋)𝐷
2 (2𝑥)𝐷

2

∫︁ ∞

1
𝑑𝑢

(
√
𝑢2 − 1)𝐷

2

𝑢
e−𝑚(2𝜏𝑠+𝑙𝛽)𝑢𝐽𝐷

2
(2𝑚𝑥

√
𝑢2 − 1). (3.54)
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Finally, substituting the above results in Eq. (3.48) we find that

lim
𝜏→∞

⟨(Δ𝑣‖)2⟩(2)
𝐷,mixed = − 2𝑔2

𝜋𝑥𝐷−1

∞∑︁
𝑙=1

⎧⎪⎪⎨⎪⎪⎩
⎡⎣ 𝑚𝑥

4𝜋
√︁

1 + 𝛼2
𝑙

⎤⎦
𝐷−1

2

𝐾
𝐷−1

2

(︂
2𝑚𝑥

√︁
1 + 𝛼2

𝑙

)︂
(3.55)

− 𝛼𝑙(𝑚𝑥)𝐷
2

2𝐷−1𝜋
𝐷
2 −1

∫︁ ∞

1
𝑑𝑢

(
√
𝑢2 − 1)𝐷

2

𝑢
e−2𝑚𝑥𝛼𝑙𝐽𝐷

2
(2𝑚𝑥

√
𝑢2 − 1)

⎫⎬⎭ ,
lim
𝜏→∞

⟨(Δ𝑣⊥)2⟩(2)
𝐷,mixed = 8𝜋𝑥2 lim

𝜏→∞
⟨(Δ𝑣‖)2⟩(2)

𝐷+2,mixed − lim
𝜏→∞

⟨(Δ𝑣‖)2⟩(2)
𝐷,mixed, (3.56)

with 𝛼𝑙 = 𝜏𝑠/𝑥+ 𝑙𝛽/2𝑥. Again, the vacuum contribution is just half the mixed part with
𝑙 = 0. Thus

lim
𝜏→∞

⟨(Δ𝑣‖)2⟩(2)
𝐷,vacuum = − 𝑔2

𝜋𝑥𝐷−1

⎧⎪⎪⎨⎪⎪⎩
⎡⎣ 𝑚𝑥

4𝜋
√︁

1 + (𝜏𝑠/𝑥)2

⎤⎦
𝐷−1

2

𝐾
𝐷−1

2

(︂
2𝑚𝑥

√︁
1 + (𝜏𝑠/𝑥)2

)︂

(3.57)

− (𝜏𝑠/𝑥)(𝑚𝑥)𝐷
2

2𝐷−1𝜋
𝐷
2 −1

∫︁ ∞

1
𝑑𝑢

(
√
𝑢2 − 1)𝐷

2

𝑢
e−2𝑚𝑥(𝜏𝑠/𝑥)𝐽𝐷

2
(2𝑚𝑥

√
𝑢2 − 1)

⎫⎬⎭ ,
lim
𝜏→∞

⟨(Δ𝑣⊥)2⟩(2)
𝐷,vacuum = 8𝜋𝑥2 lim

𝜏→∞
⟨(Δ𝑣‖)2⟩(2)

𝐷+2,vacuum − lim
𝜏→∞

⟨(Δ𝑣‖)2⟩(2)
𝐷,vacuum. (3.58)

We also conveniently rewrite the homogeneous thermal late-time expression, Eq. (3.32),
as

lim
𝜏→∞

⟨(Δ𝑣𝑖)2⟩(2)
𝐷,thermal = 2𝑔2

𝜋𝑥𝐷−1

∞∑︁
𝑙=1

⎡⎣(︂ 𝑚𝑥

4𝜋𝛼𝑙

)︂𝐷−1
2

𝐾
𝐷−1

2
(2𝑚𝑥𝛼𝑙)

− 𝛼𝑙(𝑚𝑥)𝐷

2𝐷−1𝜋
𝐷
2 −1Γ(𝐷2 + 1)

𝐼(𝐷,𝑚𝑥𝛼𝑙)
⎤⎦ . (3.59)

In Figure 14 we plotted the late-time regime of the boundary contribution, oppos-
ing the thermal part, and the total dispersions. Hence, as the boundary contribution is
negative, it lowers the total dispersions, and for both directions we found negative values
for the dispersions. Lowering the mass and raising the temperature raises the curves, and
eventually the contributions of the thermal effect will dominate, eliminating the subvac-
uum signature.

Furthermore, as said, it is possible to detach in a physical setup the thermal from
the boundary part, and. in such case, the late-time could be just the boundary curve in
Fig. 14.

Now we investigate more closely the case of a massless field at three dimensions.
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Fig. 14 – Late-time behavior of the velocity dispersions with 𝜏𝑠, for 𝐷 = 3, 𝑚𝑥 = 1, and
𝛽/𝑥 = 1. The boundary contribution is negative, opposing the thermal part.
The dispersions become negative for some values of 𝜏𝑠/𝛽, a subvacuum effect.

For that, we have

∫︁ ∞

0
𝑑𝑘 𝑘1/2e−𝑘(2𝜏/𝑠+𝑙𝛽)𝐽3/2(2𝑘𝑥) =

√︃
2
𝜋

{︃
1

(2𝑥) 3
2
arctan

(︃
2𝑥

2𝜏𝑠 + 𝑙𝛽

)︃

− 2𝑥(2𝜏𝑠 + 𝑙𝛽)
(2𝑥) 3

2 [4𝑥2 + (2𝜏𝑠 + 𝑙𝛽)2]

}︃
. (3.60)

Using the above integral in the massless limit of equation (3.55) and the limit of the
modified Bessel function used in (3.18) we have

lim
𝜏→∞

⟨(Δ𝑣‖)2⟩(2)
3,mixed

𝑚→0= − 𝑔2

4𝜋2𝑥2

∞∑︁
𝑙=1

[︂
1 − 𝛼𝑙 arctan

(︂ 1
𝛼𝑙

)︂]︂
. (3.61)
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For the perpendicular part, with∫︁ ∞

0
𝑑𝑘 𝑘3/2e−𝑘(2𝜏/𝑠+𝑙𝛽)𝐽5/2(2𝑘𝑥) =√︃

2
𝜋

{︃
3

(2𝑥) 5
2
arctan

(︃
2𝑥

2𝜏𝑠 + 𝑙𝛽

)︃
−5(2𝑥)3(2𝜏𝑠 + 𝑙𝛽) + 3(2𝑥)3(2𝜏𝑠 + 𝑙𝛽)3

(2𝑥) 5
2 [4𝑥2 + (2𝜏𝑠 + 𝑙𝛽)2]2

}︃
. (3.62)

So that

lim
𝜏→∞

⟨(Δ𝑣⊥)2⟩(2)
3,mixed

𝑚→0= − 𝑔2

4𝜋2𝑥2

∞∑︁
𝑙=1

[︃
1 + 2𝛼2

𝑙

1 + 𝛼2
𝑙

− 2𝛼𝑙 arctan
(︂ 1
𝛼𝑙

)︂]︃
. (3.63)

Analogously for the vacuum contribution we find

lim
𝜏→∞

⟨(Δ𝑣‖)2⟩(2)
3,vacuum

𝑚→0= − 𝑔2

8𝜋2𝑥2

[︂
1 − 𝜏𝑠

𝑥
arctan

(︂
𝑥

𝜏𝑠

)︂]︂
, (3.64)

lim
𝜏→∞

⟨(Δ𝑣⊥)2⟩(2)
3,vacuum

𝑚→0= − 𝑔2

8𝜋2𝑥2

[︃
1 + 2(𝜏𝑠/𝑥)2

1 + (𝜏𝑠/𝑥)2 − 2𝜏𝑠
𝑥

arctan
(︂
𝑥

𝜏𝑠

)︂]︃
, (3.65)

which is the result found for the late-time regime in Ref. [18].

3.5 Distance behavior of the velocity fluctuations

The introduction of a perfectly reflective boundary changes the topology of the
space in which the field is defined, as stated before, and when we renormalize the expec-
tation values a divergence appears at the boundary position, in addition to the divergence
for 𝜏 = 2𝑥. Both divergences are regularized by the sample function, as it suppresses the
high-energy modes. In the preceding sections we were able to see how the divergence in
𝜏 = 2𝑥 is regularized, and now study the behavior of the field near the wall.

Hence, to investigate how the dispersion behaves with the distance to the plate,
note that, when 𝑥/𝛽 ≪ 1, we have

√︁
1 − 𝛾2

𝑙 =

⎯⎸⎸⎷1 + 𝛽2

4𝑥2

(︃
𝑙 + 𝑖

𝜏

2𝛽 (𝜓𝑛,𝑝 − 𝜓*
𝑛,𝑞)

)︃
= 𝛽

2𝑥

⎯⎸⎸⎷4𝑥2

𝛽2 +
(︃
𝑙 + 𝑖

𝜏

2𝛽 (𝜓𝑛,𝑝 − 𝜓*
𝑛,𝑞)

)︃

≃ 𝛽

2𝑥

√︃
𝑙 + 𝑖

𝜏

2𝛽 (𝜓𝑛,𝑝 − 𝜓*
𝑛,𝑞) =

√︁
−𝛾2

𝑙 .

So that
⟨(Δ𝑣‖)2⟩(1)

𝐷,mixed ≃ −⟨(Δ𝑣𝑖)2⟩(1)
𝐷,thermal,

and, consequently,

⟨(Δ𝑣⊥)2⟩(1)
𝐷,mixed ≃ ⟨(Δ𝑣𝑖)2⟩(1)

𝐷,thermal − 8𝜋𝑥2⟨(Δ𝑣𝑖)2⟩(1)
𝐷+2,thermal.

Thus, for the dispersion in the parallel direction the mixed and thermal part cancel near
the wall, and we have only the modified vacuum term which does not depend on temper-
ature, as it is shown by the convergence of the curves in Fig. 15. As for the perpendicular
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Fig. 15 – Distance behavior of the parallel dispersions, here 𝑛 = 5, 𝐷 = 3, and 𝑚𝜏 = 1.
On the wall the curves converge, there the dispersions in the parallel directions
does not depend on the temperature.

direction, Fig. 16, the mixed part equals the pure thermal as 𝑥 → 0, and the disper-
sion grows with temperature near the wall. Note that the same behavior is found for the
massless vector field [20].

Fig. 16 – Distance behavior of the perpendicular dispersion, here 𝑛 = 5, 𝐷 = 3, and
𝑚𝜏 = 1. for low temperatures the dispersion oscillates between positive and
negative values, and the dispersion grows with the temperature, at any position.

Now, as was done in Ref. [20] for the electromagnetic field, we investigate the mean
squared velocity near the wall:

⟨𝑣2⟩𝐷,𝛽 =
∑︁
𝑖

⟨𝑣2
𝑖 ⟩𝐷,𝛽 = (𝐷 − 1)⟨(Δ𝑣)2

‖⟩𝐷,𝛽 + ⟨(Δ𝑣)2
⊥⟩𝐷,𝛽. (3.66)
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We define the quantity

𝜂
𝐷

=
⃒⃒⃒⃒
⃒⟨𝑣2⟩𝐷,𝛽 − ⟨𝑣2⟩𝐷

⟨𝑣2⟩𝐷

⃒⃒⃒⃒
⃒ (3.67)

where ⟨𝑣2⟩𝐷 is the the mean squared velocity at 𝑇 = 0. Then, when 𝜂
𝐷
> 1 thermal

effects dominates, and if 𝜂
𝐷
< 1, vacuum effects dominates.

Rewriting Eq. (3.67) we have

𝜂
𝐷

=
⃒⃒⃒⃒
⃒𝐷⟨(Δ𝑣𝑖)2⟩D,thermal + (𝐷 − 2)⟨(Δ𝑣‖)2⟩𝐷,mixed + 8𝜋𝑥2⟨(Δ𝑣‖)2⟩𝐷+2,mixed

(𝐷 − 2)⟨(Δ𝑣‖)2⟩𝐷,vacuum + 8𝜋𝑥2⟨(Δ𝑣‖)2⟩𝐷+2,vacuum

⃒⃒⃒⃒
⃒ (3.68)

we will study the late time regime, for which, when 𝑥 → 0 we find

lim
𝜏→∞

lim
𝑥→0

𝜂(2)
𝐷

=

⃒⃒⃒⃒
⃒⃒ 2 lim𝜏→∞⟨(Δ𝑣𝑖)2⟩(2)

𝐷,thermal

(𝐷 − 2) lim𝜏→∞ lim𝑥→0⟨(Δ𝑣‖)2⟩(2)
𝐷,vacuum

⃒⃒⃒⃒
⃒⃒ (3.69)

Fig. 17 – Vacuum versus thermal dominance in the wall for different values of 𝜏𝑠/𝛽 and
𝑚𝛽, here 𝐷 = 3. For high values of the mass the vacuum always dominate,
independently of the switching time.

Note that, for𝐷 = 2, 𝜂 diverges. However, that just means that lim𝜏→∞⟨(Δ𝑣‖)2⟩𝐷vacuum

vanishes when 𝑥 = 0. Hence, as the thermal part is not zero, it dominates near the wall
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for 𝐷 = 2. When 𝐷 ̸= 2 we have

lim
𝜏→∞

lim
𝑥→0

𝜂(2)
𝐷

=

⃒⃒⃒⃒
⃒⃒ 4
𝐷 − 2
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]︃𝐷−1
2
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2

(𝑚𝛽(2𝜏𝑠/𝛽 + 𝑙))

− (2𝜏𝑠/𝛽 + 𝑙)(𝑚𝛽)𝐷

2𝐷𝜋𝐷/2−1Γ(𝐷2 + 1)
𝐼 (𝐷,𝑚𝛽(2𝜏𝑠/𝛽 + 𝑙))
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×
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[︃

𝑚𝛽

4𝜋(𝜏𝑠/𝛽)

]︃𝐷−1
2

𝐾𝐷−1
2

(2𝑚𝛽(𝜏𝑠/𝛽)) − 2(𝜏𝑠/𝛽)(𝑚𝛽)𝐷

2𝐷𝜋𝐷/2−1Γ(𝐷2 + 1)
𝐼 (𝐷, 2𝑚𝛽(𝜏𝑠/𝛽))
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−1 ⃒⃒⃒⃒
⃒⃒,

(3.70)

which reduces to the expression found for the electromagnetic case in Ref. [20] when
𝑚 → 0.

One can see, from the expression above, that it becomes zero for the sudden
transition, 𝜏𝑠/𝛽 → 0, as there we have the divergence near the boundary from the vacuum
contribution. As 𝜏𝑠/𝛽 increases the divergence is regularized and the value of the vacuum
contribution to the fluctuations is weakened, thence lim𝜏→∞ lim𝑥→0 𝜂3 grows as well, before
it stabilizes for greater values of 𝜏𝑠. Notwithstanding, the mass plays an important role, as
depicted in Fig. 17, it lowers the curve and for masses higher than around 𝑚𝛽 ≃ 1.5 the
vacuum term dominates for any switching time. Such behavior comes from the suppression
of the thermal contribution due to the mass of the field. For 𝐷 = 1 the graph is similar,
but the curve is more inclined.

Fig. 18 – Distance behavior of the vacuum versus thermal dominance for different values
of 𝑚𝛽, here 𝐷 = 3 and 𝜏𝑠/𝛽 = 1. When 𝑚𝛽 = 0.8 thermal effects always
dominate, then, when the mass is increased, vacuum effects begin to dominate
in some regions.

Further, we investigate the distance behavior of 𝜂 as 𝜏 → ∞. As expected, deep
in the bulk 𝑥/𝛽 → ∞, 𝜂 → ∞, i.e., the boundary effects no more contribute to the
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Fig. 19 – Distance behavior of the vacuum versus thermal dominance for different values
of 𝑚𝛽, here 𝐷 = 2 and 𝜏𝑠/𝛽 = 1.

Fig. 20 – Distance behavior of the vacuum versus thermal dominance for different values
of 𝑚𝛽, here 𝐷 = 1 and 𝜏𝑠/𝛽 = 1.

dispersions. When 𝐷 = 3, see Fig. 18, we see that the dominance is highly dependent
of the mass, for 𝑚𝛽 = 0.6 only thermal effects dominate, then, for 𝑚𝛽 = 1 the vacuum
dominates near the wall. However, for intermediary values of the mass, as 𝑚𝛽 = 0.8,
the behavior oscillates: first the thermal part, then the vacuum, and finally the thermal
contribution dominates.

For 𝐷 = 2, Figure 19 thermal effects dominates near the wall for any value of the
mass, as we have seen. When the distance grows, for high values of the mass the vacuum
dominates, after which thermal effects dominate in the bulk.
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Finally, for 𝐷 = 1 the mass plays the same role as before, for low masses only
thermal effects dominates. However, here, the vacuum part contains only one component,
the perpendicular direction, when it is zero a divergence appears, meaning that thermal
effects dominate. Thence, for values of the mass for which vacuum dominates in the
wall, there will always be an interchange in the dominance, as the divergence makes
the thermal part dominates, after which vacuum dominates again and, in the bulk, only
thermal contribution is left, as one can see in Fig. 20.
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Final Remarks

Here we gave a step further on a series of works on stochastic motion induced
by quantum fluctuations by unveiling the effects due to fluctuations of a massive scalar
field at finite temperature. As said, in Ref. [1], it was shown how the non-Huygesian
character of massive fields creates an oscillatory pattern in the dispersions. In the presence
of thermal bath, we were able to see how mass effects opposes ones due to temperature, as
for higher temperatures the oscillatory pattern is weakened, and, in opposition, the mass
weakens the fluctuations. Such interplay between mass and temperature becomes more
relevant in the presence of a reflective boundary. The modified vacuum contribution is
just the zeroth order term in the convergent summation, as the mass grows, the thermal
contribution is suppressed earlier, and the modified vacuum becomes prominent. Further,
it has also interesting consequences concerning the thermal versus vacuum dominance near
the boundary. For fields with higher masses, the distance to the plate for which the pure
vacuum term dominates over thermal ones increases, and for some cases we can even see
an interchange in this dominance as the wall is approached. Also, we demonstrated that, in
a thermal bath near a boundary, subvacuum effects are presented at finite temperatures,
as negative values of the dispersions. The case of a boundary at finite temperature, where
pure thermal effects are considered as a residual dispersion, reveals a remarkable feature:
temperature increases subvacuum effects.

Moreover, the model here investigated accounts for a more realistic situation with
a transition time between different physical states of the system. Whereby the divergences
of previous models [10, 19] are regularized, and the treatment of the quantum field pre-
sented here becomes consistent with the axiomatic construction presented in [30]–as there
observables can only be defined smeared over continuous functions with compact support.

Henceforth, the boundary for the electromagnetic case is just a representation of
a perfectly conductive plate, and for the scalar field it represents an infinite potential
barrier the field is subjected to. Both types of boundaries being overidealizations: neither
perfectly conductive plates nor discontinuous physical potentials exists in nature. Thence,
a different test function, but with the same mathematical features described here, would
arose for realistic boundary conditions. Nonetheless, if the transition time between the
states is such that it discards propagating modes of frequencies lowers than the cut-off
of the boundary, the realistic boundary will not alter the contributing modes, and the
result present here will hold. Also, we have calculated the dispersions in the presence of
a Dirichlet’s wall. However, the result can be drastically changed if Neumann boundary
conditions were used. It was shown in [23] that in such case the mixed and vacuum terms
change by an overall sign. Thence, we could not have subvacuum effects for the parallel
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directions, only in the perpendicular one, as there is not only a valley, but also a peak in
the boundary contributions.

Further, the assumption that the particle position does not significantly change,
i.e, ⟨(Δ𝑥𝑖)2⟩ =

∫︀ 𝜏
0 𝑑 𝑡

∫︀ 𝜏
0 𝑑 𝑡

′⟨𝑣𝑖(𝑡)𝑣𝑖(𝑡′)⟩ ≪ 𝑥2
𝑖 , is discussed in Ref. [17] for a massless scalar

field at (1+1) dimensions and in Refs. [10, 19] for the electromagnetic case, in both cases
it was shown that this assumption restrict the validity of the formulas obtained for the
dispersions. Thence, it is an important next step to carefully investigate the position dis-
persion due to a massive scalar field. Nonetheless, the velocity dispersions for the massless
case acts as an envelope for the massive field. Henceforth, as the position fluctuations is
an integration of velocity correlations, it is expected that it has a greater value for the
massless field. In such case, the regime of validity for massless fields would includes the
massive case. Another remark is that, as the position assumption puts some constrains on
the interaction time, one can think that the late-time result are compromised. Yet, note
that, in the results presented here, after the peak the dispersions oscillate around their
late-time value, rapidly approaching it. So, there can be values of the time which satisfy
the assumptions and in which the system is in its late-time regime.

Regarding backreaction effects due to particle’s emitted radiation, it was shown
in Ref. [10, 15] that, for the electromagnetic case in the presence of a boundary, these
can be negligible compared to the dispersions due to the change of the vacuum state.
Furthermore, the angular spectral density of the radiation emitted as a switching effect
from the introduction of the plate has a well understood behavior [39]. Notwithstanding,
scalar fields radiates in the monopole, whether electromagnetic fields does not. Thus,
they radiate more easily, and this effect should be investigated in an upcoming work.
Together with that, the radiation emitted as a switching effect due to the transition from
the vacuum to a thermal bath must be addressed. In the thermal bath the retarded
propagator is the same as for free vacuum, so we expect no radiation. However, as for
the boundary case, radiation will probably be emitted as a transition effect. Finally, the
radiation of a massive field is known to exponentially decay with distance and mass, hence
we consider the massless case as an upper limiting value.

Thence, we saw that even in the absence of a dissipative force the dispersions
of the velocity components are not only bounded at late-times but depend only on the
transition time, a feature that distinguishes the stochastic motion here discussed from an
usual Brownian motion. For the boundary contributions this behavior is expected [13],
however, we saw that it occurs even for the pure thermal contributions. The fluctuations
are calculated through an integration of a correlation function, i.e,

⟨(Δ𝑣𝑖)2⟩ = 𝑔2
∫︁ 𝜏

0
𝑑𝑡
∫︁ 𝜏

0
𝑑𝑡′𝐶(Δ𝑡),

so that, for thermal-like dispersions (the usual Brownian motion in the absence of the
dissipative force) the correlation function 𝐶(Δ𝑡) is non negative and decays monotonically
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with Δ𝑡 with the relaxation time of the fluid, giving ⟨(Δ𝑣𝑖)2⟩ ∝ 𝜏 , the usual random walk
motion, and a dissipative force is needed [13, 40]. In the present case, back in Eq. (3.6)
with the renormalized thermal Hadamard function (2.57), the correlation function is

𝐶
𝐷

(Δ𝑡) = 1
𝜋

Re
∞∑︁
𝑙=1

lim
�⃗�→�⃗�′

𝜕
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𝑚

2𝜋𝑖𝜎𝑙

)︂𝐷−1
2
𝐾

𝐷−1
2

(𝑖𝑚𝜎𝑙)
]︃

= 2
𝛽𝐷+1 Re

∞∑︁
𝑙=1

⎛⎝ 𝑚𝛽

2𝜋
√︁

−(Δ𝑡/𝛽 + 𝑖𝑙)2

⎞⎠
𝐷+1

2

𝐾
𝐷+1

2

[︂
𝑚𝛽

√︁
−(Δ𝑡/𝛽 + 𝑖𝑙)2

]︂
,

which, as is depicted in Fig. 21, take on negative values, so that the dispersions are
bounded for 𝜏 → ∞, just as for the boundary contribution. Not only are they bounded
but also, for late-time regime, the contributions from the interaction time vanish, as we
saw, and we have left just the switching contribution. Thus, the mean quadratic velocity
does not approaches its equipartion value 𝐷/𝛽𝑀 , as it is inversely proportional to the
quadratic mass of the particle, and, for a fixed temperature 𝑇 , the late-time value depends
on the transition time.

That is due to the fact that, in our model, we have neglected the radiation emitted
by the particle. Because of that, the energy flux goes only in one way, from the field to the
particle, and a thermal equilibrium can never be reached. Therefore, we envisage that,
in a situation in which the particle radiation is taken into account, and the change in
position is not neglected, thermal equilibrium could be reached.

Fig. 21 – Correlation function for the thermal contribution to the velocities dispersions,
here we have 𝑚𝛽 = 1 and 𝐷 = 3. One can see that the correlation takes on
negative values, so that the dispersions become bounded for large values of the
interaction time.

Closing, some remarks are in order concerning the interpretation of the negative
values of the dispersions. The dispersion of a quantity measures how much it deviates
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from its mean value, hence, a negative value is counter intuitive. What happens is that
the dispersions of the particle velocity are lessen when compared to their value when
the interaction began, opposing the usual behavior of a free particle, in which the wave
packet is spread [10]. Moreover, classical contributions from the interaction of the particle
with the boundary must be taken in account, with that positive definite quantities, such
as the kinetic energy, do not become negative, but the dispersions here calculated just
diminishes this classical value [20].
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