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requisitos necessários para a obtenção do T́ıtulo de Mestre em Ciências em F́ısica.

Itajubá - MG
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Abstract

This work aims to present and discuss the optical analogue models used to study gravita-

tional systems using condensed matter systems. The whole mathematical theory behind

the construction of an analogue optical model and the explicit presentation of two ana-

logue models are provided: Schwarzschild black hole and Morris-Thorne wormhole. A

parametrization of such models is proposed in order to unify them through a free real

parameter β that generates a family of new models, and open the possibility that some

of theses new models could actually be analogue models.

Keywords: Optical Analogue Model, black holes, wormholes.
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Resumo

Este trabalho tem como objetivo apresentar e discutir os modelos análogos ópticos uti-

lizados para estudar sistemas gravitacionais por meio de sistemas de matéria condensada.

Toda teoria matemática por trás da construção de um modelo análogo óptico é apre-

sentada, juntamente com dois modelos: o buraco negro de Schwarzschild e o buraco de

minhoca de Morris-Thorne. Propõe-se uma parametrização de tais modelos de modo a

unificá-los por meio de um parâmetro real livre β que gera uma famı́lia de novos modelos

e abre possibilidade de que alguns desses novos modelos venham a ser modelos análogos.

Palavras-chaves: Modelos análogos ópticos, buracos negros, buracos de minhoca.
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Chapter 1

Introduction

The evolution of physics usually requires the combination of theoretical and experi-

mental results. However, the experimental study is not always easy to perform, as is the

case of the study of gravitational systems (like black holes and wormholes), due to mea-

surement impossibilities. Fortunately, there is a tool that helps in these situations, known

as analogue models: material media inside which the propagation of signals of some type

can be described as curve lines which are null geodesics of some effective geometry.

The analogue models are tools to study particular physical systems with the help

of some other particular physical system which displays similarity in the propagation of

signals. Thus, there is the possibility of studying hardly accessible gravitational systems,

such as black holes and wormholes, by means of systems one can produce in the laboratory.

The first time this was achieved was in the work presented by Gordon [1], who proposed

to describe the refraction index of isotropic medium at rest as an effective change in the

metric properties of the flat (Minkowski) spacetime.

After Gordon’s work, several analogue models for acoustic, hydrodynamic and optical

systems were developed [2–4]. The theme achieved great relevance in 1981 with Unruh’s

proposal [5] of a theoretical hydrodynamic system which was shown to mimic Hawking

radiation of black holes. This issue was recently examined in laboratory by means of

analogue models [6, 7]. Therefore, analogue models are a great tool for the study of

gravitational systems through condensed matter systems, and thus have a wide range of

applications [4].
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The present work aims to provide a measurement of the (quantitative) difference

between a black hole and a wormhole, in order to establish the frontier between these

two models. An interpolation (and extrapolation) is given of the analogue models of two

paradigmatic models of general relativity: the Schwarzschild black hole and the Morris-

Thorne wormhole. In Chapter 2, both these models are presented, with the metric that

describes each structure. That chapter also deals with the theory of analogue models;

that is, it includes all the mathematical apparatus necessary to understand the optical

analogue models which are discussed in this work. The obtention of an effective metric

of the problem is presented in details, which is then used for the comparison with the

gravitational metrics. This effective metric is obtained by using the Hadamard method

of dealing with abruptly varying fields, a technique discussed in details in Section 2.2.2.

In Chapter 3, the analogue models for the two geometries discussed in Chapter 2

are presented. For each model, the corresponding analogue quantities are determined,

namely, the volumetric density of electric charge, the electric permittivity, the electric

displacement vector field and the electric vector field. These quantities, taken altogether,

completely describe the analogue model. Therefore, the subsequent work is solely based

on these quantities.

In Chapter 4, the analogue models developed in Chapter 3 are interpolated, with the

help of a parametrization. The analogous model to a Schwarzschild black hole solution is

interpolated to the analogue of an original analytic extension of an Ellis type of a Morris-

Thorne wormhole, using a real parameter β. This parameter describes which model we

are dealing with: β = 0 describes the Schwarschild case, while β = 1 describes the Morris-

Thorne case. Other (unknown) models then emerge by taking values of β all along the

real line (extrapolation). The results of the parametrization are presented as a numerical

analysis of the generated class of models.

Chapter 5 collects the conclusions, together with a few devised future perspectives and

developments this work may have. After the bibliographic list of references, Appendix

A provides the relevant material for the proposed analytic extension of Morris-Thorne

wormhole solution to the so called “internal region”; while Appendix B presents the
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Mathematica
TM R© c© code for the numerical analysis performed in Chapter 4.

Geometric units are employed throughout (such that the speed of light in vacuum

is c = 1 and Newtonian gravitational constant is G = 1), and spacetimes are taken as

Lorentzian geometries with (+ − −−) signature. Einstein convention on implicit sums

over repeated indices is assumed and comma (,) represents partial derivative with respect

to the spacetime coordinates: X,µ := ∂µX.
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Chapter 2

Gravitational solutions and the

theory of electromagnetic analogue

models

In this chapter, the basics for the development of this work is presented: Karl Schwarz-

schild obtained a gravitational solution representing a spherically symmetric black hole

(in 1916), while Michael S. Morris and Kip S. Thorne obtained a solution describing a

wormhole (in 1987). After the review on the two gravitational solutions, the mathematic

theory behind the electromagnetic analogue models (in terms of Hadamard’s approach to

deal with abruptly varying fields) is discussed.

2.1 Gravitational solutions

2.1.1 Schwarzschild solution

The Schwarzschild solution was proposed in 1916 [8] as the first exact solution to the

Einstein field equations. These field equations are composed by 10 coupled non-linear

second order partial differential equations, which renders the analytical resolution process

rather impractical. Schwarzschild’s proposal consists of a very simple physical system: a

static (and stationary), massive, electrically neutral, spherically symmetric body deprived
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of rotation. This model is a paradigm, and brings forward the mathematical concept of a

black hole.

Schwarzschild proposed that the spacetime metric should have coefficients that depend

only on the radial coordinate r, due to sphericall symmetry. Therefore, he proposed the

most general static spherically symmetric form for the spacetime invariant line element

as [9]

ds2 = A(r) dt2 −B(r) dr2 − r2 dθ2 − r2 sin2 θ dφ2. (2.1)

The functions A(r) and B(r) are obtained by solving Einstein equations in empty space

and comparing with Newtonian gravity in the limit of large distances r → ∞ (the New-

tonian limit). In this way, Schwarzschild found

ds2
(S) =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2 dθ2 − r2 sin2 θ dφ2. (2.2)

From the theory of general relativity, the metric of spacetime can be read from the line

element, since ds2 = gµνdx
µdxν . Therefore, Schwarzschild metric in matrix form reads

g(S)
µν =



1− 2M

r
0 0 0

0 −
(

1− 2M

r

)−1

0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ


. (2.3)

Schwarzschild solution was important not only because it was the first solution to Einstein

field equations, but also because it predicted the existence of black holes. According to

the theory of general relativity, gravity is the effect from the deformation of spacetime,

so that a massive body will distort spacetime so strongly as it is shown in Figure 2.1.

This geometry has a limit at which nothing can escape its gravitational pull. This limit

is called the event horizon and, for Schwarzschild solution, its value is r = R where

R = 2M. (2.4)
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Figure 2.1: Spacetime deformation by a massive compact object. For the sake of easy
visualization, spacetime is here depicted as a surface, and its Schwarzschild radius (the
event horizon) appears as a circunpherence line in the diagram. (Reproduced [10] without
permission).

It is apparent from Equation (2.2) that this geometry has two singularities: one at

r = R, (that is, where the coordinate r is equal to the ‘radius’ R of the event horizon), and

another at r = 0 . The singularity at r = R is removable, that is, the singularity disappears

when another coordinate system is employed, so this singularity is not physical in status,

but merely a mathematical one. The singularity presented in r = 0 is physical, that is, it

cannot be removed by changing coordinates whatsoever, since there are scalar invariants

(such as RαβµνRαβµν) which diverge at r = 0. No scalar invariant of Schwarzschild

geometry diverge at the event horizon r = R.

2.1.2 Morris-Thorne Solution

Michael S. Morris and Kip S. Thorne developed a solution in 1987 [11], which describes

what is called a wormhole. The standard analytic extension of such structure is shown in

Figure 2.2. There is still no experimental evidence to support the existence of wormholes

in the real world; however, the theory of general relativity predicts their existence in

nature.

Morris-Thorne presented a metric for the description of wormholes, so that the line

6



Figure 2.2: Basic diagram of a wormhole. Spacetime is depicted as a 2D surface for visu-
alization purposes. The wormhole is a structure formed by two “mouths” connected by a
“throat”, so that two different far appart regions of the universe can be connected to one
another, allowing matter to fastly travel back and forth between them. Parameter l mea-
sures the “distance” from the wormhole throat. (Reproduced [11] without permission.)

element in spherical coordinates is [11]

ds2
(MT ) = e2Φ(r)dt2 −

[
1− b(r)

r

]−1

dr2 − r2 dθ2 − r2 sin2 θ dφ2, (2.5)

where b(r) and Φ(r) are functions to be determined. The b(r) function determines the

spatial shape of the wormhole, thus usually called “shape function” while Φ(r) determines

the gravitational redshift, thus called the “redshift function” (more informations about

Φ(r) and b(r) can be found in the literature [12]). Given the expression of the invariant

line element presented in Equation (2.5), the matrix form of the Morris-Thorne metric is

g(MT )
µν =



e2Φ(r) 0 0 0

0 −
[
1− b(r)

r

]−1

0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ


. (2.6)

The Morris-Thorne metric and the Schwarzschild metric present two identical correspond-

ing components (g
(S)
22 = g

(MT )
22 and g

(S)
33 = g

(MT )
33 ).

The two presented solutions are of great importance in the development of this work.
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When one seeks an analogous model, it is necessary to define to which gravitational object

the analogy is intended. In this work, the analogue models of both Schwarzschild and

Morris-Thorne solutions are recalled from the literature [13, 14]. The present work pro-

vides generalizations and unification of these two models in one single family of analogue

models (or, at least, of presumably analogue models).

2.2 Electromagnetic analogue models

In this section, the theory about analogue models is presented in order to obtain

the effective metric for the optical problem. Initially, Maxwell electrodynamics is briefly

presented, together with the constitutive relations, responsible for the description of the

eventually nonlinear character of the theory. Then, a brief presentation of Hadamard

method is given, under the hupothesis that the light propagation in the material medium

takes place in the regime of geometrical optics. Finally, the optical effective metric is

formally obtained.

2.2.1 Nonlinear electrodynamics

Maxwell electromagnetic theory is described by a set of four 3-vector partial differential

equations, which determines the behavior of the electric ~E and magnetic ~B fields, as well

as their respective inductions ~D (electric displacement) and ~H (magnetic induction).

Maxwell’s equations, which are usually presented in vector notation

~∇ · ~D = 4πρ, (2.7)

~∇ · ~B = 0, (2.8)

~∇× ~E + ∂t ~B = 0, (2.9)

~∇× ~H − ∂t ~D = 4π ~J, (2.10)

can be rewritten in partially covariant form; that is, covariant upon linear transformations

of coordinates. Thus, the four vector Equations (2.7)–(2.10) are reduced to two tensor-like

8



equations in flat Minkowski spacetime, which are [15]

∂µP
µν = 4π Jν , (2.11)

∂µN
µν = 0, (2.12)

where P µν is the anti-symmetric polarization tensor, to be defined in Equation (2.16),

while Jν = (ρ, ~J) is the current density 4-vector, and Nµν is the dual of the Faraday

tensor F µν , defined by

Nµν =
1

2
ηµναβF

αβ, (2.13)

where ηµναβ is the Levi-Civita pseudo-tensor defined as

ηµναβ =
√
−η εµναβ, (2.14)

where η is the determinant of the Minkowski metric and εµναβ is the Levi-Civita symbol.

The tensors F µν and P µν can be specified with the help of a normalized time-like vector

field vµ (the four-velocity vector of the observer) comoving with the laboratory, as [16]

F µν = Eµvν − Eνvµ + ηµναβB
αvβ, (2.15)

P µν = Dµvν −Dνvµ + ηµναβH
αvβ, (2.16)

where by a time-like quadrivector field vµ is meant vµv
µ > 0, and by normalized is meant

|vµvµ| = 1. The electromagnetic fields and the observer vector field satisfy

vµEµ = 0, vµBµ = 0, vµDµ = 0, vµHµ = 0, (2.17)

that is, the electromagnetic fields and their corresponding inductions are all space-like

vectors. That is, they all have negative quadratic norms

EµEµ = −E2, BµBµ = −B2, DµDµ = −D2, HµHµ = −H2. (2.18)

9



The fundamental fields and their inductions are related by the constitutive relations

Dλ = ελ
νEν , (2.19)

Hλ = (µ−1)λ
νBν . (2.20)

The constitutive relations determine the degree of nonlinearity of the theory, and this

depends on the behavior of the electric permittivity ελ
ν and magnetic permeability µλ

ν .

If both these quantities take constant values, the corresponding electrodynamic theory is

said to be linear; otherwise, it is then said to be nonlinear (that is, with these quantities

eventually being depend on the field intensity). More aspects regarding nonlinearity can

be found in the literature [17]. In order to obtain the effective metric, a very simple

nonlinear case, in which the magnetic permeability is taken to be constant value (equal

to µ0 of vacuum), and the electric permittivity is a function of the intensity of the electric

field E only. In this way, the constitutive relations for the proposed material medium

read

Dλ = ε(E)Eλ, (2.21)

Hλ =
1

µ0

Bλ. (2.22)

Such constitutive relations are then inserted in Equations (2.11) and (2.12), in order to

obtain the effects of nonlinearity of the material medium.

2.2.2 Hadamard method for abruptly varying fields

The Hadamard method [18] is an important tool regarding the study of light prop-

agation. It amounts to calculate the step (or “leap”) that some functions may present,

when evaluated at both sides of a distinguished hypersurface Σ (in this case, the hyper-

surface is the wave-front) [19]. Although the system being dealt with is electromagnetic,

the method is valid for more general contexts (more about the Hadamard method can be

found in the literature [20]).

Let Σt be a 2-dimensional surface that delimits two disjoint regions as shown in Fi-

10



gure 2.3. Such a surface is the instantaneous projection at time t of the mentioned

hypersurface Σ onto 3-space, and is called the wave-front.

Figure 2.3: Σt is the instantaneous (wave-front) hypersurface which separates two globally
defined disjoint regions: x − δ represents the region in which that surface Σt has passed
already, while x+ δ represents the region in which that surface Σt is still arrive.

The method then evaluates the step of any physical tensor quantity Z across the

hypersurface Σ as

[Z(x)]Σ := lim
δ→0+

[Z(x+ δ)− Z(x− δ)]. (2.23)

Hadamard showed that, if [Z(x)]Σ = 0, then necessarily there exists a tensor f̄ with

the same rank of Z(x), and satisfying the same algebraic identities as Z(x), such that

[∂νZ(x)]Σ = f̄kν , where kν is everywhere orthogonal to Σ. If the hypersurface Σ is given

by φ(x) = 0, then kν = ∇νφ. That is, the gradient of any zero-step quantity across Σ has

a step across Σ which must be proportional to the wave vector kν .

Care should be taken with the possible confusion between step and “discontinuity”.

Since nothing has been said about the function ∂νZ at Σ [21].

Therefore, this method can be applied to the fields Eµ and Bµ. Considering that the

fields have no step across the hypersurface Σ (that is, [Eµ]Σ = 0 and [Bµ]Σ = 0), then

Hadamard theorem yields

[∂νEµ]Σ = eµkν , (2.24)

[∂νBµ]Σ = bµkν , (2.25)

11



where eµ and bµ are space-like vector fields which carry all the information on the polar-

ization of the Eµ and Bµ fields, respectively.

2.2.3 The optical effective metric

Suppose a material medium with nonlinear electromagnetic behavior. The problem is

that of light propagation inside such medium in the limit of small wave-lenghts (known as

geometrical optics limit), described with the aid of Hadamard’s approach. The resulting

dispersion relation is expressed as an effective optical metric. Initially, the dual tensor Nµν

is expressed as a function of the electric Eµ and magnetic Bµ fields from Equations (2.13)

and (2.15). With the help of the identity ηµναβη
αβρσ = 2(δρνδ

σ
µ − δρµδσν ), this tensor reads

Nµν = Bµvν −Bνvµ + ηµναβE
αvβ. (2.26)

The Substitution of tensors P µν and Nµν from Equations (2.16) and (2.26) in Maxwell

Equations (2.11) and (2.12) yields

Dµ,µ v
ν +Dµvν ,µ−Dν ,µ v

µ +Dνvµ,µ +ηµναβ(Hα,µ v
β +Hαvβ,µ ) = 4π Jν , (2.27)

Bµ,µ v
ν +Bµvν ,µ−Bν ,µ v

µ +Bνvµ,µ +ηµναβ(Eα,µ v
β + Eαvβ,µ ) = 0. (2.28)

For the sake of simplicity of this work, it is assumed that vµ,ν = 0, which means that the

4-velocity of the observer does not vary throughout spacetime. With this simplification,

Equations (2.27) and (2.28) read

Dµ,µ v
ν −Dν ,µ v

µ + ηµναβH
α,µ v

β = 4π Jν , (2.29)

Bµ,µ v
ν −Bν ,µ v

µ + ηµναβE
α,µ v

β = 0. (2.30)

The contraction of Equations (2.29) and (2.30) with vν yields scalar equations

(εEµ),µ v
νvν − (εEν),µ v

µvν +
1

µ0

ηµναβB
α,µ v

βvν = 4π Jνvν , (2.31)
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Bµ,µ v
νvν −Bν ,µ v

µvν + ηµναβE
α,µ v

βvν = 0. (2.32)

The terms that involve ηµναβv
βvν vanish. That is ηµναβ is antisymmetric upon the inter-

change of the indices β and ν, while the product vβvν is symmetric. Equations (2.31) and

(2.32) read

εEν ,ν +ε′
EαEν

E
Eα,ν = 4π Jνvν , (2.33)

Bν ,ν = 0, (2.34)

where the prime (’) in Equation (2.33) refers to the ordinary derivative with respect to

the argument, which in this case is the magnitude E of the electric field.

On the other hand, contraction of Equations (2.29) and (2.30) with the projector

hµν = ηµν − vµvν onto the 3-space which is orthogonal to the observer vµ gives

− εĖλ − ε′EµvαEµ,α
E

Eλ +
1

µ0

vρBσ,β η
λβρσ = 4π Jγh

γλ, (2.35)

Ḃλ + vρEσ,β η
λρσβ = 0, (2.36)

where Ėλ means partial derivative of Eλ with respect to the time coordinate t (and

similarly for Ḃλ).

Equations (2.33)–(2.36) completely describe the electrodynamics inside the proposed

material medium. The induced optics, in the limit of small wave-lenghts known as ge-

ometrical optics, can be obtained from these equations with the help of the Hadamard

method set in Section 2.2.2. The step of Equations (2.33)–(2.36) across the hypersurface

Σ shall then be evaluated. The step of Equation (2.33) is

ε[Eν ,ν ]Σ + ε′
EαEν

E
[Eα,ν ]Σ = 4π [Jν ]Σ vν . (2.37)

With the use of Equation (2.24), and assuming that

[Jν ]Σ = 0, (2.38)
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Equation (2.37) then gives

εeαkα +
e′

E
EαEβeαkβ = 0. (2.39)

The step of Equation (2.34) is

[Bν ,ν ]Σ = 0, (2.40)

reduced, with the help of Equation (2.25), to

bαkα = 0. (2.41)

The step of Equation (2.35)

− ε[Ėλ]Σ −
ε′

E
EµvαEλ[Eµ,α ]Σ +

1

µ0

vρη
λβρσ[Bσ,β ]Σ = 4π [Jγ]Σ hγλ, (2.42)

can be rewritten with the help of

Ėλ =
∂Eλ

∂t
= vνEλ,ν , (2.43)

the step evaluation of which is [Ėλ]Σ = eλkνv
ν . Therefore

εeλkνv
ν +

ε′

E
vαEµEλeµkα −

1

µ0

ηλβρσvρbσkβ = 0. (2.44)

Finally, the step of Equation (2.36) is

[Ḃλ]Σ + ηλβρσvρ[Eσ,β ]Σ = 0, (2.45)

reduced from Equations (2.24) and (2.25) to

bλkνv
ν + ηλβρσvρeσkβ = 0. (2.46)

For kλv
λ 6= 0, Equations (2.39) and (2.41) can be obtained by Equations (2.44) and (2.46).

Therefore, Equations (2.44) and (2.46) form a set which completely describes the behavior
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and propagation of the wave vector kµ.

Effective optical metrics for the problem can be obtained from the set of Equa-

tions (2.44) and (2.46). Equation (2.46) can be solved for bλ as

bλ = −ηλ
βρσvρeσkβ
kνvν

, (2.47)

thus rendering evident the linear polarization of the propagating light-ray. Substitution

of Equation (2.47) in Equation (2.44) gives

µ0εv
µkµe

λ +
µ0ε
′

E
vαkαE

µeµE
λ +

1

vµkµ
vρvφkβkγeδη

λβρ
αη

αγφδ = 0. (2.48)

The above equation presents a term with the product ηλβραη
αγφδ. The product can be

expressed as a function of the metric ηµν with the help of the identity [22]

ηζνσαη
γφδα = δγν (δφζ δ

δ
σ − δφσδδζ) + δγζ (δφσδ

δ
ν − δφν δδσ) + δγσ(δφν δ

δ
ζ − δ

φ
ζ δ

δ
ν). (2.49)

By substituting Equation (2.49) in Equation (2.48), it can be shown that this term be-

comes

vρvφkβkγeδη
λβρ

αη
αγφδ = kνkνe

λ − kνkλeν + kνkσv
σ(eνv

λ − vνeλ). (2.50)

Equation (2.48) similarly reduces to

εvνkνe
λ +

ε′

E
vαkαE

µeµE
λ +

eλ[kνkν − (kνvν)
2]− kνeνkσhσλ

µ0vβkβ
= 0. (2.51)

On the other hand, from Equation (2.39), the contraction eνkν can be eliminated in

terms of eαE
αEβkβ, and substitution of this in Equation (2.51) yields Fresnel eigenvalue

Equation (2.52)

Zα
βe

β = 0, (2.52)

where Zα
β is known as generalized Fresnel matrix [23] and, which can be expressed as a
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function of the normalized vector lµ = Eµ/E as

Zα
β = ε(δαβ − vαβ )− ε′Elαlβ −

1

µ0vph2

(
δαβ − vαvβ −

hαµkµhβνk
ν

hρσkρkσ

)
, (2.53)

where vph = 1/
√
µε. Non-trivial solutions of the eigenvalue Equation (2.52) require a

degenerate spatial projection of Fresnel matrix Zα
β as

det
(3)

Zα
β = 0. (2.54)

Equation (2.54) has two solution known as the ordinary mode and the extraordinary

mode. The ordinary mode is described by the Gordon metric [24]

g̃ρβ = vρvβ(µ0ε− 1) + ηρβ, (2.55)

and the extraordinary mode is described by generalized Gordon metric

g̃ρβ = vρvβ(µ0ε+ µ0ε
′E − 1) + ηρβ − ε′

εE
EβEρ, (2.56)

where ηρβ is the Minkowski metric of the flat spacetime.

The focus of this work regards solely the extraordinary mode represented in Equa-

tion (2.56). This equation involves the matrix inverse (or contravariant) of the effective

metric of the problem. In order to get the (covariant) effective metric, one just needs to

solve for g̃νρ in the equation

g̃µν g̃νρ = δµρ . (2.57)

The solution of Equations (2.56) and (2.57) for the optical effective metric is

g̃µν = ηµν −
[
1− 1

µ0ε(ξ + 1)

]
vµvν +

(
ξ

ξ + 1

)
lµlν , (2.58)

where ξ = Eε′/ε.

Equation (2.58) gives the mathematical description of the propagation of the light-ray

with the extraordinary polarization inside the dielectric material. The explicit construc-
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tion of the optical analogue models of interest from it are presented in Chapter 3.
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Chapter 3

Analogue models for Schwarzschild

and Morris-Thorne

With the effective metric at hand, as obtained in Chapter 2, the optical analogue

models of interest can be built. This chapter is dedicated to the construction and dis-

cussion of an analogous model of the analytically extended Schwarschild black hole, and

of an analogous model of the somehow analytically extended Ellis type of Morris-Thorne

wormhole. Both are partially known in the literature: the extended Schwarzschild model

is known [14] for a different constitutive relation µ ∼ ε−3, while the standard Ellis model

[25] of a Morris-Thorne wormhole is endowed here with an original analytic extension.

3.1 Analogue model for the Schwarzschild black hole

The effective metric can be compared with different geometries, in order to obtain the

corresponding analogous model. This comparison is valid due to the discussion presented

in Chapter 2, since the light beam propagates within the material medium along effectively

null lines1. The effective metric, determined from Equation (2.58) can be expressed in

1With respect to the effective metric, such curve lines are not only null (or light-like) in character,
but also geodesics in nature [26].
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components as the diagonal matrix

g̃µν = diag

(
µ0(ε+ ε′E),−ε+ ε′E

ε
,− 1

r2
,− 1

r2 sin2 θ

)
, (3.1)

that can be compared directly with the Schwarzschild black hole metric

gµν = diag

(
A,− 1

A
,−r2,−r2 sin2 θ

)
, (3.2)

where A = A(r) = 1−R/r, with R being the gravitational (Schwarzschild) radius2 of the

black hole.

The comparison is made by matching each component of the effective metric with the

corresponding component of the metric of interest. In this case, the non-trivial matching

equations are

g̃00 = g00, g̃11 = g11, g̃22 = g22, g̃33 = g33. (3.3)

Such comparisons relate the electromagnetic quantities (derived from the effective

metric) to the gravitational quantities (derived from the black hole metric). The result is

[14]

E =
E0R

|r −R|
, (3.4)

ρ =
ε0E0R

r2
, (3.5)

D =
ε0E0R

r
, (3.6)

ε = ε0

∣∣∣∣1− R

r

∣∣∣∣ , (3.7)

where E0 is the strength E of electric field evaluated at r = r0, with r0 being any given

positive constant. Equations (3.4)–(3.7) were obtained in the literature [14] using the fact

that the magnetic permeability has a functional dependence µ ∼ ε−3. However, the results

in Equations (3.4)–(3.7) can be utilized here because the fundamental interest is to analyze

the electromagnetic quantities near the horizon R and, around it, all the observable fields

2The standard nomenclature of “Schwarzschild radius” for the singular value of the radial coordinate
r is rather misleading, since this coordinate r measures the lenght of circunpherences but not their radii.
The expression “radial coordinate”, when applied to such r, is similarly misleading.
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(i.e., the electric displacement D and the electric density of charge ρ, aside from the

magnetic induction Hλ) present a regular behavior in the horizon, and Equations (3.4)–

(3.7) can be used. The electromagnetic quantities presented in Equations (3.4)–(3.7)

above provide a direct relationship between the gravitational model and the optical model

analogous to it. All of these quantities are expressed in terms of the “radial” coordinate

r, having the value of the “radius” of the event horizon denoted by R. Note that the

equations are valid for both internal r < R and external r > R regions. Another important

feature is the functional dependence of the electromagnetic quantities, all of which are

functions of the “radial” coordinate r only (due to spherical symmetry of the material

medium). That is, the problem is strictly radial. In this way, the material medium being

dealt with must display spherical symmetry.

3.2 Analogue model for the Morris-Thorne wormhole

An analogous model of the Morris-Thorne wormhole can similarly be constructed,

upon comparison of the effective metric from Equation (3.1) with the metric of interest

gµν = diag

[
e2Φ(r),−

(
1− b(r)

r

)−1

,−r2,−r2 sin2 θ

]
. (3.8)

Simplifying choices can be applied to the metric above. Such choices involve the quantities

Φ(r) and b(r), which were presented in Chapter 2.

A Gaussian time coordinate t can be used for simplicity, which means

Φ(r) = 0. (3.9)

Regarding b(r), it is here assumed the Ellis model [25]

b(r) =
n2

r
, (3.10)

where n is the minimum lenght for the r coordinate from within the accessible region

of the wormhole (we shall call n as the “minimum radius” of the wormhole for brevity,
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despite the fact that it is not a radial measure).

With these restrictions for Φ(r) and b(r), the Morris-Thorne metric Equation (3.8)

reads

gµν = diag

[
1,−

(
1− n2

r2

)−1

,−r2,−r2 sin2 θ

]
. (3.11)

It is worth to stress that, in Equation (3.11), the radial coordinate r is defined only for

values r > n, that is, for values of r larger than the minimum radius n; this spacetime

region is here termed as the “external” region. Equation (3.11) give the functional form for

the gravitational potential as V ∼ r−2 in Ellis type of Morris-Thorne model. The Raissner-

Nordström model [27] has the same functional form for the gravitational potential for the

Coulomb interaction (that is, by formally dropping out the term of mass in this model);

however, with the opposite sign.

3.2.1 External Region r > n

Since the Morris-Thorne metric from Equation (3.11) is valid only for the external

region r > n, the electromagnetic analogue quantities are defined only in this region. A

direct comparison between the effective metric and the gravitational metric yields [13]

ε

ε0
=

1

1 + ξ
, (3.12)

ξ = −n
2

r2
. (3.13)

Equations (3.12) and (3.13) above specify the electric permittivity ε as a function of the

radial coordinate r:

ε(r) = ε0

(
r2

r2 − n2

)
. (3.14)

Equation (3.13) is an ordinary first-order differential equation for the electric field, which

can be easily solved in order to obtain the electric field E(r), since

ξ = −n
2

r2
=
Eε′

ε
=
E

ε

dε

dE
=
E

ε

dε/dr

dE/dr
. (3.15)
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Thus, a simple substitution in Equation (3.15) of the explicit form for the total derivative

of ε(r), which can be calculated from Equation (3.14), yields

dE

E
=

2r

r2 − n2
dr. (3.16)

The solution of Equation (3.16) for the electric field is

E(r) = E0

(
r2 − n2

r2
0 − n2

)
, (3.17)

where r0 > n is as an arbitrary integration constant called “accessible radius”, and E0 is

the value of the electric field at r = r0. The constitutive relation D(r) = ε(r)E(r) then

yields the electric displacement as

D(r) =
ε0E0r

2

(r2
0 − n2)

. (3.18)

Consequently, the volumetric density of electric charges ρ is given by Gauss law

~∇ · ~D =
1

r2

d

dr

[
r2D(r)

]
= 4πρ, (3.19)

which gives

ρ(r) =
ε0
π

(
E0

r2
0 − n2

)
r. (3.20)

This set of Equations (3.14), (3.17), (3.18) and (3.20) determine all four electromagnetic

quantities which are important for the physical description of the optical analogue model.

Recall that Equations (3.14), (3.17), (3.18) and (3.20) are valid only for the external

region r > n of the wormhole.

3.2.2 Internal Region r < n

The material provided in this section was not known in the literature.

The effective metric given in Equation (3.11) is only valid for the external region

r > n. This work aims to compare the Schwarzschild analogue model with the Ellis type
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of Morris-Thorne analogue model. However, the gravitational Schwarzschild geometry is

valid in r > 0, while the gravitational geometry for Ellis type of Morris-Thorne is valid in

r > n. Therefore, it is necessary to extend the Ellis type of Morris-Thorne model for r > 0.

In order to achieve this goal, an analytic extension of the metric from Equation (3.11)

is required, so that it can describe the whole r > 0 coordinate domain. A convenient

analytic extension of the metric is

gµν = diag

[
1,−

∣∣∣∣1− n2

r2

∣∣∣∣−1

,−r2,−r2 sin2 θ

]
. (3.21)

See Appendix A for details. The metric in Equation (3.21) is expressed in a way that is

valid for both external and internal regions, in complete similitude with Equation (3.2).

The analogue electromagnetic quantities are similarly obtained by direct comparison

between the effective metric in Equation (3.1) and the extended Morris-Thorne metric in

Equation (3.21) as

ε

ε0
=

1

1 + ξ
, (3.22)

ξ + 1 =

∣∣∣∣1− n2

r2

∣∣∣∣ , (3.23)

so that the electric permittivity reads

ε(r) = ε0

∣∣∣∣1− n2

r2

∣∣∣∣−1

. (3.24)

The electric field E(r) is then obtained from differential Equation (3.23). In the internal

region, such differential equation becomes

ξ =
n2

r2
− 2 =

Eε′

ε
=
E

ε

dε

dE
=
E

ε

dε/dr

dE/dr
. (3.25)

The total derivative with respect to the r coordinate of the electric permittivity ε is

immediately determined by Equation (3.24). Therefore, Equation (3.25) gives

dE

E
=

2rn2

(n2 − r2)(n2 − 2r2)
dr, (3.26)
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from which the electric field is

E = E0

(
2r2

0 − n2

r2
0 − n2

)(
r2 − n2

2r2 − n2

)
, (3.27)

where r0 > n is as arbitrary integration constant. E0 is the value of the external electric

field at r = r0 as described in Section 3.2.1. The electric displacement D(r) is given by

the constitutive relation as

D(r) = ε0E0

(
2r2

0 − n2

r2
0 − n2

)(
r2

n2 − 2r2

)
. (3.28)

In order to complete the set of electromagnetic quantities for the analogue model, Gauss

law from Equation (3.19) yields

ρ =
ε0E0

π

(
2r2

0 − n2

r2
0 − n2

)[
(n2 − r2)r

(n2 − 2r2)2

]
. (3.29)

Thus, all the four electromagnetic quantities for the analogue model are known at the

internal region as well. Thus, with this generalization of the Ellis model for the Morris-

Thorne metric, a more complete and general model was constructed than the one previ-

ously known in the literature [13]. Chapter 4 unifies these two analogue models developed

so far: the model for a Schwarzschild black hole and the model for a Ellis type of a Morris-

Thorne wormhole.
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Chapter 4

Parametrization of analogue models

The aim of this chapter is to provide a unified view of the two analogue models

worked out in Chapter 3, thus further generalizing these models. A real parametrization

is provided, in order to obtain a family of physical systems which are here being proposed

as candidates of analogue models. Some important features about the models become

apparent from them, allowing one to address the fundamental question of the present

work: how to measure the difference between (the analogues of) a black hole and a

wormhole?

4.1 The parametrization of the models

The parametrization is presented as a form of unification between the optical analogue

models that were described in this work. This unification provides a family described by

a parameter β which can assume any real value. A whole new class of possibly analogue

models emmerges as a result.

For the analogue of a Schwarzschild black hole, the electric permittivity is

ε = ε0

∣∣∣∣1− R

r

∣∣∣∣ , r > 0, (4.1)

while for the analogue of the Ellis type of a Morris-Thorne wormhole, the electric permit-
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tivity behaves as

ε = ε0

∣∣∣∣1− R2

r2

∣∣∣∣−1

, r > 0, (4.2)

where, for the sake of unification, it is convenient to define

R = n, (4.3)

in Equation (4.2).

The proposal is to unify the electric permittivity from Equations (4.1) and (4.2) of

these two models with the help of an arbitrary real parameter β. The correspondence

β = 0 to Schwarzschild black hole and β = 1 to Morris-Thorne wormhole is arbitrarily

adopted here. Therefore, a possible parametrization of Equations (4.1) and (4.2) is

ε = ε0

∣∣∣∣∣1−
(
R

r

)1+β
∣∣∣∣∣
1−2β

. (4.4)

Note that Equation (4.4) above reduces to Equation (4.1) for β = 0, and to Equation (4.2)

for β = 1.

The same procedure yields the parametrization of the electric charge density ρ. For

the analogue of a Schwarzschild black hole, one has

ρ =
ε0E0R

r2
, r > 0, (4.5)

where R is given by Equation (2.4) and, for the analogue of the Ellis type of a Morris-

Thorne wormhole,

ρ =



ε0
π

(
E0

r2
0 −R2

)
r, r > R;

ε0E0

π

(
2r2

0 −R2

r2
0 −R2

)[
(R2 − r2)r

(R2 − 2r2)2

]
, r < R,

(4.6)

where R is given by Equation (4.3), and r0 > R is an integration constant to be determined

from the boundary conditions. For the parametrization, the arbitrary choice r0 = 2R is
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taken, in order to provide explicit calculations. Therefore, Equation (4.6) reduces to

ρ =



ε0E0

3πR2
r, r > R;

7ε0E0

3π

[
(R2 − r2)r

(R2 − 2r2)2

]
, r < R.

(4.7)

Equations (4.5) and (4.7) can be parametrized as

ρ =
ε0E0r

3β−2

(3π)βR3β−1

{
1 + βΘ(R− r)

[
7R2(R2 − r2)

(R2 − 2r2)2
− 1

]}
, (4.8)

where Θ(R− r) is the Heaviside step function, defined as

Θ(x) =


0, x < 0;

1/2, x = 0;

1, x > 0.

(4.9)

Note that Equation (4.8) above reduces to Equation (4.5) for β = 0, and to Equation (4.7)

for β = 1. However, since Equations (4.4) and (4.8) were both imposed by hand, there is

no a priori guarantee that the resulting system of equations is physically compatible.

The parametrization for the electric displacement D is given by Gauss law using the

parametrized density of electric charge ρ, while the parametrization of the electric field E

is then given from the use of the parametrized constitutive relation for D and ε. Thus, the

set of Equations (4.4) and (4.8) is the focus of this work, and provides the unification of the

two analogous models discussed in this work: Schwarzschild black hole and Morris-Thorne

wormhole. In addition to unifying these two models, such set proposes the existence of a

whole new family of optical models, since the parameter β can assume any real value.

Note that Equation (4.7) have a nonzero step at r = R. The presence of this non-zero

step violates Equation (2.38), thus appearing to invalidate the provided analysis of the

model. Fortunately, this is not the case, but only amounts to bother one with the need to

deal with Dirac-delta distributions in the calculations: the resulting effective geometry is

kept safely unchanged wherever Equation (2.38) is fulfilled — that is, almost everywhere
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but at r = R.

The electric displacement ~D can be obtained from Gauss law expressed in Equa-

tion (3.19). Due to spherical symmetry, the magnitude D of the electric displacement

vector field depends only on the radial coordinate. Thus, solving Gauss Equation (3.19)

in this case is a simple task: the electric charge density can be integrated over 3-space

in order to obtain the total electric charge. For such integration, the parametrized ex-

pression for the electric charge density from Equation (4.8) is used. Since this integration

does not depend on the angular coordinates, the integral is

Q = 4π

∫ r

0

ρ(r′) r′
2
dr′, (4.10)

for the function Q = Q(r) which evaluates the total amount of electric charge enclosed by

a sphere of area 4πr2. Explicit evaluation of the integral in Equation (4.10) can only be

solved numerically, as it involves special functions. The numerically integrated expression

formally diverges at r = 0, which is obviously inconsistent. In order to regularize such

spurious divergence, it is proposed that the material medium of interest should have a

small “hole” of radius x at its center; that is, it should be filled with another different

material, in order to allow the regular behavior of the electromagnetic quantities.

This “hole” is necessary in order to get rid of the spurious divergence in the total

charge Q from Equation (4.10). The expectation is that the value of x can be taken as

small as possible, in order to vanish x→ 0+ after all calculations were performed.

The material medium is then divided into 3 disjoint domains:

Region1 : 0 < r < x;

Region2 : x < r < R;

Region3 : r > R.

Figure 4.1 gives a schematic idea of the proposed profile for the material medium.

The electric permittivity ε and the volumetric density of electric charge ρ for all the 3
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Figure 4.1: Profile of the proposed medium as a slab of area 4πr2 surrounded by vacuum,
with an internal “hole” of area 4πx2. Material medium was divided in 3 regions: Region
1 (r < x), Region 2 (x < r < R), and Region 3 (r > R).

regions above have the general expressions

ε = [ε1 − ε2] Θ(x− r)Θ(R− r) + [ε2 − ε3] Θ(R− r) + ε3, (4.11)

ρ = [ρ1 − ρ2] Θ(x− r)Θ(R− r) + [ρ2 − ρ3] Θ(R− r) + ρ3. (4.12)

The electric permittivity ε1 and the volumetric density of electric charges ρ1 for Region 1

are, for simplicity, taken as constant quantities which agree with their corresponding inner

limit from Region 2. Therefore, these quantities ε1 and ρ1 are evaluated from Region 2 as

ε1 = ε2|r→x+ , (4.13)

ρ1 = ρ2|r→x+ . (4.14)

Therefore, the parameters in Equations (4.11) and (4.12) are given by

Region 1


ε1 = ε0

[(
R

x

)1+β

− 1

]1−2β

, 0 < r < x;

ρ1 =
ε0E0x

3β−2

(3π)βR3β−1

{
1 + β

[
7R2(R2 − x2)

(R2 − 2x2)2
− 1

]}
, 0 < r < x;

(4.15)
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Region 2


ε2 = ε0

[(
R

r

)1+β

− 1

]1−2β

, x < r < R;

ρ2 =
ε0E0r

3β−2

(3π)βR3β−1

{
1 + β

[
7R2(R2 − r2)

(R2 − 2r2)2
− 1

]}
, x < r < R;

(4.16)

Region 3


ε3 = ε0

[
1−

(
R

r

)1+β
]1−2β

, r > R;

ρ3 =
ε0E0r

3β−2

(3π)βR3β−1
, r > R.

(4.17)

Note that Equations (4.11) and (4.12) hold almost everywhere but at r = x and r = R;

that is, the model constructed in this work does not provide the accurate mathematical

expressions at the interfaces of these three regions.

4.2 Results from the parametrization

The numerical behavior of the parametrized physical quantities built in the previous

Section 4.1 provides a consistent unification of the two analogue models carried out in

Chapter 3.

4.2.1 The volumetric density of electric charge

The volumetric density of electric charge ρ is given by Equation (4.8), and it depends

on the radial coordinate r and on the parameter β. Such representation is shown in

Figure 4.2. The volumetric density of electric charge is constant throughout Region 1

(that is, for r < x). For this reason, the plot of ρ1 is not shown in Figure 4.2. The figure

displays the parametrized behavior of the volumetric density of electric charge in Regions

2 and 3 (that is, for x < r < R and r > R respectively).

For Region 2, two distinct behavior for the volumetric density of charge ρ occur: it

may have either positive or negative values, depending on the value of the parameter β.

An abrupt step of the volumetric density of electric charge occurs at the interface

between Regions 2 and 3 . This “leap” decreases in magnitude for large values of the

parameter β, while for small values of it the step is amplified.
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Figure 4.2: The parametrized volumetric density ρ of electric charge, with the choice
R = 1 and x = 1/

√
2, where this latter arises from Equation (4.18) below.

4.2.2 The total electric charge

Formal integration of Equation (4.10) was calculated in the Mathematica
TM R© c© plat-

form, and the mathematical convergence requires an artificial restriction on the possible

values of x and R. Such restriction is

x = R/
√

2. (4.18)

The total electric charge contained inside a sphere of area 4πr2 is then obtained as the re-

sult of this integral. The numerical behavior of the total electric charge can be represented

as a surface with parameters r and β, as shown in Figure 4.3.

Figure 4.3: The amount of electric charge contained inside a sphere of area 4πr2 calculated
by Equation (4.10), which the same choice R = 1 and x = 1/

√
2 for the parameters as in

the previous diagram.
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The most interesting behavior of this plot is the algebraic sign of the total electric

charge, since there are regions with positive values, and regions with negative values for

it. Abrupt changes of behavior for the total electric charge occur for both r = x and

r = R, precisely at the interfaces between these three regions. Note that the restriction

imposed by integration in Equation (4.10) is clearly displayed in the plot: at r = 1/
√

2,

there exists a “divergence” of the total electric charge.

4.2.3 The electric permittivity

The parametrized electric permittivity from Equation (4.4) is graphically presented in

Figure 4.4.

Figure 4.4: The normalized electric permittivity ε/ε0, with the same choice R = 1 and
x = 1/

√
2 for the parameters as adopted in the two previous diagrams. Assuming a fixed

value for the parameter β, then ε/ε0 is obviously a constant in Region 1, as shown in
the plot. The lack of data at r = R and r = x is graphically interpreted as deprived of
physical meaning.

The ratio ε/ε0 have a very interesting behavior in these three regions. As show in

Figure 4.4, there exists a smooth (or nearly smooth, at least) transition on the ratio ε/ε0

for some special values of β: ε/ε0 > 1 holds for β > 1/2, while ε/ε0 < 1 holds for β < 1/2.

The electric permittivity from Equation (4.4), as shown in Figure 4.4, deserves to be

analyzed separately in Region 1. For this Region, the electric permittivity is given by

Equation (4.4) in the limit r → x+. With the substitution of x from Equation (4.18), it

follows

ε = ε0

(
2

1+β
2 − 1

)1−2β

. (4.19)
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Figure 4.5 depicts Equation (4.19).
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ϵ0

Figure 4.5: Electric permittivity ratio ε/ε0 as function of the parameter β for Region 1
(r < x). Dashed lines were included for the sake of easy visualization of the distinguished
value 1 of this quantity.

In Region 1, ε is constant for each value of β. In general, for conventional materials

found in nature, such as common glass, one has ε > ε0. This behavior is represented

appropriately in Figure 4.5 for the range 1/2 < β < 1. However, for values of β that

are outside from this range (namely, for either β > 1 or β < 1/2), the peculiar ε < ε0

behavior occurs. Materials that exhibit electric permittivity with values lower than the

vacuum one are not found in nature. Thus, such materials must be manufactured in the

laboratory, and today are better known as metamaterials. For both β = 1/2 and β = 1

cases, it follows ε = ε0 exactly, as shown in Figure 4.5 explicitly.

In Region 2 (x < r < R), the electric permittivity varies from point to point according

to the radial coordinate r, a given by Equation (4.17). The numerical behavior of the

electric permittivity ε is most interesting at the Region 2. The electric permittivity given

from Equation (4.17) is then plotted as a function of r and β in Figure 4.6, which displays

an interesting behavior. Note that, for small values of the parameter β, the behavior of

the ratio ε/ε0 is independent of the radial coordinate, that is

lim
β→−∞

ε/ε0 = 0. (4.20)
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Figure 4.6: Electric permittivity ratio ε/ε0 as a function of r and β for the Region 2
(x < r < R). For any fixed value of β such that β > 1/2, the ratio ε/ε0 presents two
distinct behaviors according with the value of the coordinate r: ε/ε0 � 1 for the limit
r → +∞ and ε/ε0 ' 1 for r → 0+.

However, for any given value of β, two qualitatively distinct behavior for the electric

permittivity occur, according with r. For large values of the coordinate r, the material

displays a finite magnitude of the electric displacement vector field ~D, even in the absence

of the external (applied) electric field ~E. At the regions where the cordinate r assume

small values, the material presents a fairly weak polarization, instead.
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Chapter 5

Conclusions

In this work, the construction of two optical analogue models, based on two well-

known gravitational models, was presented: the Schwarzschild black hole model and the

Ellis type of the Morris-Thorne wormhole model. A parametrization of these two analogue

models was introduced, in order to obtain a class of (possibly analogue) models in terms

of an arbitrary real parameter β. For each specific value of β, one has a different physical

candidate of an analogue model. Note that the models for β = 0 and β = 1 are already

known. However, the models for the other values of β are not known yet.

Mathematical convergence considerations (of the integral which evaluates the electric

charge from Gauss law) require a finite size “hole” at the center of the sample. For

simplicity, throughout this internal hole region, both the electric permitivity and the

volumetric density of electric charge were taken as constants.

This work sought to quantify the difference between a black hole and a wormhole.

These differences can be obtained by analyzing the behavior of analogue quantities ac-

cording to the variation of the parameter β. The wormhole model is provided as the β = 1

case and, according with the plot of the electric permittivity, ε/ε0 > 1. For β = 0, the

black hole model is reproduced, and for this model ε/ε0 < 1. Analyzing the plot of the

electric permittivity in Figures 4.4, 4.5 and 4.6, it is apparent that ε/ε0 > 1 for β > 1/2,

and ε/ε0 < 1 for β < 1/2. Therefore, the value of β = 1/2 is proposed as responsi-

ble for the interface between the two analogue structures, and provides the quantitative

distinction between an analogue black hole and an analogue wormhole.
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This work aimed to construct a parametrization which unifies an analogue model of

a Schwarzschild black hole and as analogue model for the Ellis type of a Morris-Thorne

wormhole. With such parametrization at hand, it is possible to investigate a new class of

models that are different from those obtained for the values β = 0 and β = 1. For other

values, it is not yet known which structure are being dealt with, thus opening possibilities

for future studies.

36



Bibliography

[1] W. Gordon, “Zur lichtfortpflanzung nach der relativitätstheorie”, Annalen der Physik

377, 421 (1923).

[2] F. de Felice, “On the Gravitational field acting as an optical medium”, Gen. Rel.

Grav. 2, 347 (1971).

[3] J. Plebanski, “Electromagnetic waves in gravitational fields”, Phys. Rev. 118, 1396

(1960).
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mique (Paris: A. Hermann, 1903).

[19] A. Papapetrou, Lectures on general relativity (D. Reidel, Dordrecht, Holland, 1974).

[20] D. D. Pereira, Estudo comparativo entre o formalismo eikonal e o formalismo das

ondas de choque (Universidade Federal de Itajubá, 2009, In Portuguese).
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Appendix A

An analytic extension of

Morris-Thorne analogue geometry

The Ellis model [25] for the Morris-Thorne solution [11], representing a wormhole, is

given in standard (Gaussian spherical-like) coordinates as

gµν = diag

[
1,−

(
1− n2

r2

)−1

,−r2,−r2 sin θ

]
, (A.1)

which holds for r > n. Thus, such n is called the minimum ‘radius’ of the model. The

corresponding invariant line element is

ds2 = dt2 − dr2

(
1− n2

r2

)−1

− r2 dθ2 − r2 sin2 θ dφ2. (A.2)

In order to extend such geometry for r < n, one follows similar procedure as the Kruskal-

Szèckeres extension of Schwarzschild geometry (see the literature [28]) Thus, angular co-

ordinates θ, φ are preserved, but time-like and “radial” coordinates should be respectively

replaced by partially conformal coordinates v, u, as

d̂s
2

= [f(u, v)]2 (dv2 − du2)− r2(dθ2 + sin2 θ dφ2). (A.3)
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Comparison between the two metrics, that are in different coordinate systems, is given

by the tensorial law

gµν =
∂x̂α

∂xµ
∂x̂β

∂xν
ĝαβ. (A.4)

The 0-0, 1-1 and 0-1 components of Equation (A.4) are, respectively

f 2

[(
∂v

∂x0

)2

−
(
∂u

∂x0

)2
]

= 1, (A.5)

f 2

[(
∂v

∂x1

)2

−
(
∂u

∂x1

)2
]

= −
(

1− n2

r2

)−1

, (A.6)

∂v

∂x0

∂v

∂x1
=

∂u

∂x0

∂u

∂x1
. (A.7)

Another change of variables of the form

F (ξ) =
1

f 2(r)
, (A.8)

in the previous equations yields

(
dξ

dr

)2

=

(
1− n2

r2

)−1

, (A.9)

or, equivalently,

dξ

dr
= ±

(
1− n2

r2

)−1/2

. (A.10)

The solutions of the first-order ordinary differential Equation (A.10) give ξ as a function

of the “radial” coordinate r in the form

ξ = ±
√
r2 − n2. (A.11)

Note that this solution is only valid for r > n.

For the range 0 < r < n, the quantity ξ given by Equation (A.11) takes complex values,

which is prohibited. Therefore, an improvement in the expression for ξ′2 is required. Thus,
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for the proposed ‘internal’ region, one has

(
dξ

dr

)2

=

(
n2

r2
− 1

)−1

, (A.12)

the solution of which is

ξ = ∓
√
n2 − r2. (A.13)

Note that the algebraic signs in Equations (A.11) and (A.13) are opposite to one another.

The two solutions, external represented by Equation (A.11) and internal represented by

Equation (A.13) can be graphically represented as shown in Figure A.1.
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r
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Figure A.1: The standard analytic extension of the Ellis model of Morris-Thorne geometry
is depicted in both solid and dashed curves. The maximally extended manifold being pro-
posed, which includes Ellis-Morris-Thorne solution in Equation (A.1) as a sub-manifold,
is either the solid and dotted lines — the lower signs in Equations (A.11) and (A.13) —
or the dashed and dot-dashed lines — the upper signs in Equations (A.11) and (A.13).
— Lenght units are such that n = 1.

The proposed analytic extension intends to relate Equations (A.9) and (A.12). In

this way, it becomes evident the need for the use of the absolute value function in the

expression for ξ′2 (
dξ

dr

)2

=

∣∣∣∣1− n2

r2

∣∣∣∣−1

, (A.14)

with solutions

ξ = ±
√
|r2 − n2| sgn(r − n). (A.15)
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The two algebraic signs in Equation (A.15) correspond to two alternatives for the analytic

extension of Morris-Thorne geometry to the ‘inner’ region r < n: either the + sign

(depicted in Figure A.1 as dashed and dot-dashed lines), or else the - sign (depicted as

solid and dotted lines in Figure A.1). Thus, the analytic extension of Morris-Thorne

proposed by Equation (A.15) induces in Equation (A.1) a modification in the “radial”

component of the metric. Therefore, the here proposed maximal extension of Ellis type

of Morris-Thorne metric is

gµν = diag

[
1,−

∣∣∣∣1− n2

r2

∣∣∣∣−1

,−r2,−r2 sin2 θ

]
. (A.16)
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Appendix B

The Mathematica
TM R© c© code

This appendix B provides the algorithmic code used in the Mathematica
TM R© c© plataform

which generates the plots shown in Chapter 4.
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121.95121951219534` × 0.71`-3+3 β -3.0246` (-1 + β) + 0.008199999999999985`

(-1 + 3 β)
função 2F1 hipergeométrica

Hypergeometric2F11, -

3

2

(-1 + β),
1

2

(5 - 3 β), 0.9918666931164452`

Sin
3 π β

2

 -
1

-1 + 2 y2
y
-3+3 β -6 y2 (-1 + β) + -1 + 2 y2 (-1 + 3 β)

função 2F1 hipergeométrica

Hypergeometric2F1

4 appB.nb

Printed by Wolfram Mathematica Student Edition



1, -

3

2

(-1 + β),
1

2

(5 - 3 β),
1

2 y2


seno

Sin
3 π β

2

 , {y, 0, 1.5}, {β, -0.5, 1.2}

appB.nb 5

Printed by Wolfram Mathematica Student Edition


	Dedicatória
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Contents
	Introduction
	Gravitational solutions and analogue models
	Gravitational solutions
	Schwarzschild solution
	Morris-Thorne Solution

	Electromagnetic analogue models
	Nonlinear electrodynamics
	Hadamard method for abruptly varying fields
	The optical effective metric


	Analogue models for Schwarzschild and Morris-Thorne
	Analogue model for the Schwarzschild black hole
	Analogue model for the Morris-Thorne wormhole
	External Region r>n
	Internal Region r<n


	Parametrization of analogue models
	The parametrization of the models
	Results from the parametrization
	The volumetric density of electric charge
	The total electric charge
	The electric permittivity


	Conclusions
	Bibliography
	An analytic extension of Morris-Thorne analogue geometry
	The Mathematica™®© code

