Lista de Ilustrações

Figura 1.1.	Estrutura cúbica simples do espinélio	21
Figura 1.2.	Representação dos sítios	21
Figura 1.3.	Produção mundial das ferritas magnéticas entre 1975-2010	22
Figura 1.4.	Materiais magnéticos na China: Vendas e previsão atual, 2002 e 2007	24
Figura 1.5.	Ferritas de zinco e Níquel para transformadores de flyback	25
Figura 1.6.	Ferritas de manganês e zinco (Mn-Zn)	25
Figura 1.7.	Ferritas para núcleos de tranformadores	26
Figura 1.8.	Ferritas de manganês e zinco para núcleos de transformadores	26
Figura 3.1.	Pós metálicos	31
Figura 3.2.	Esquema como ocorre o tipo de conformação de uma prensa uniaxial	33
Figura 3.3.	Fluxograma esquemático do processamento dos materiais cerâmicos	36
Figura 3.4.	Distribuição do campo magnético de um imã indicado por linhas de força	38
Figura 3.5.	Os elétrons em rotação conferem propriedades magnéticas ao átomo	40
Figura 3.6.	Elétron gira em torno do seu próprio eixo	40
Figura 3.7.	Momentos magnéticos paramagneticos	43
Figura 3.8.	Momentos magnéticos ferromagneticos	44
Figura 3.9.	Momentos magnéticos ferrimagneticos	45
Figura 3.10	Momentos magnéticos antiferromagneticos	46
Figura 3.11	. Representação esquemática de domínios em um material magnético	50
Figura 3.12	. Gráfico de um ciclo de histerese de um material magnético	51
Figura 3.13	. Materiais magnéticos moles	54
Figura 3.14	. materiais magnéticos duros	54
Figura 3.15	.Difração de raio X para os planos de átomos (A-A' e B-B')	56
Figura 3.16	Representação de diagramas de bandas de energia.	58
Figura 3.17	Nível de impureza de um semicondutor do tipo n e p	63
Figura 3.18	. Excitação de um estado doador e nível receptor	64
Figura 3.19	A formação de um polaron	68
Figura 3.20	. Potencial de um par de íons durante o processo de saltos	69

Figura 4.1.	Balança Analítica (Mettler AE 240)	74
Figura 4.2.	Almofariz e pistilo de ágata	75
Figura 4.3.	Molde metálico	76
Figura 4.4.	Prensa hidráulica Uniaxial	77
Figura 4.5.	Pastilhas da ferrita de MgGa _{2-x} Fe _x O ₄	77
Figura 4.6.	Ligação das partículas	78
Figura 4.7.	Forno tipo Mufla para temperaturtas até 1200 °C	78
Figura 4.8.	Magnetômetro de amostra vibrante	79
Figura 4.9.	Difratômetro de raio -x	80
Figura 4.10	Arranjo experimental da caracterização elétrica	83
Figura 4.11	Vista em planta no interior do forno	84
Figura 4.12	Unidade mediadora de alta tensão	84
Figura 5.1.	Espectros de difração de raio X das amostras de MgGa _{2-x} Fe _x O ₄	86
com x=0,0	02 e x=0,01	
Figura 5.2.	Espectros de difração de raio X das amostras de MgGa _{2-x} Fe _x O ₄	86
com x=0,0	2 e x=0,03	
Figura 5.3. com x=0,04	Espectros de difração de raio X das amostras de MgGa _{2-x} Fe _x O ₄ e x=0,05	87
Figura 5.4. com x=0,0	Espectros de difração de raio X das amostras de MgGa _{2-x} Fe _x O ₄ 6 e x=0,08	87
Figura 5.5. com x=0,10	Espectros de difração de raio X das amostras de MgGa _{2-x} Fe _x O ₄ e x=0,15	88
Figura 5.6. com x=0,2	Espectros de difração de raio X das amostras de MgGa _{2-x} Fe _x O ₄ 0 e x=0,25	88
Figura 5.7. x=0,30 e x=	Espectros de difração de raio X das amostras de MgGa _{2-x} Fe _x O ₄ =0,35	89
Figura 5.8.	Parâmetro da rede (a) em função da concentração de íons de ferro (x)	89
Figura 5.9.	Isotermas magnéticas, a temperatura ambiente	91
Figura 5.10	. Magnetização de saturação em função da concentração de íons de ferro	92
Figura 5.11	. Suscetibilidade magnética de campo alto em função da concentração de ferro	92
Figura 5.12	. Curva termomagnéticas	94

Figura 5.13. Ciclo de histerese para a amostra com x=0,02	95
Figura 5.14. Ciclo de histerese para a amostra com x=0,03	96
Figura 5.15. Ciclo de histerese para a amostra com x=0,04	96
Figura 5.16. Ciclo de histerese para a amostra com x=0,15	97
Figura 5.17. Ciclo de histerese para a amostra com x=0,20	97
Figura 5.18. Ciclo de histerese para a amostra com x=0,30	98
Figura 5.19. Ciclo de histerese para a amostra com x=0,35	98
Figura 5.20. Gráfico da Curva corrente (I) Versus Voltagem (V) para x=0,15	100
Figura 5.21. Gráfico da Curva corrente (I) Versus Voltagem (V) para x=0,20	100
Figura 5.22. Gráfico da Curva corrente (I) Versus Voltagem (V) para x=0,25	101
Figura 5.23. Gráfico da Curva corrente (I) Versus Voltagem (V) para x=0,30	101
Figura 5.24.Gráfico da Curva corrente (I) Versus Voltagem (V) para x=0,35	102
Figura 5.25.Gráfico da Curva corrente (I) Versus Voltagem (V) para x=0,02	103
Figura 5.26.Gráfico da Curva corrente (I) Versus Voltagem (V) para x=0,08	103
Figura 5.27.Gráfico da Curva corrente (I) Versus Voltagem (V) para x=0,15	104
Figura 5.28.Gráfico da Curva corrente (I) Versus Voltagem (V) para x=0,20	104
Figura 5.29.Gráfico da Curva corrente (I) Versus Voltagem (V) para x=0,25	105
Figura 5.30.Gráfico da Curva corrente (I) Versus Voltagem (V) para x=0,30	105
Figura 5.31.Gráfico de Arrhenius para a amostra com x=0,02	106
Figura 5.32. Gráfico do modelo de saltos de alcance variado em 3 D e tunelamento	
limitado pela energia de portadores de carga para x=0,02	107
Figura 5.33.Gráfico de Arrhenius para a amostra com x=0,08	107
Figura 5.34. Gráfico do modelo de saltos de alcance variado em 3 D e tunelamento	
limitado pela energia de portadores de carga para x=0,08	108
Figura 5.35.Gráfico de Arrhenius para a amostra com x=0,15	108
Figura 5.36.Gráfico do modelo de saltos de alcance variado em 3 D e tunelamento	
limitado pela energia de portadores de carga para x=0,15	109
Figura 5.37.Gráfico de Arrhenius para a amostra com x=0,20	109
Figura 5.38.Gráfico do modelo de saltos de alcance variado em 3 D e tunelamento	
limitado pela energia de portadores de carga para x=0,20	110
Figura 5.39.Gráfico de Arrhenius para a amostra com x=0,25	110
Figura 5.40.Gráfico do modelo de saltos de alcance variado em 3 D e tunelamento	
limitado pela energia de portadores de carga para x=0,25	111
Figura 5.41.Gráfico de Arrhenius para a amostra com x=0,30	111

Figura 5.42. Gráfico do modelo de saltos de alcance variado em 3 D e tunelamento	
limitado pela energia de portadores de carga para x=0,30	112
Figura 5.43.Condutividade elétrica em função da temperatura com $x=0,30$	113
Figura 5.44.Condutividade elétrica em função da temperatura com x=0,35	113