Universidade Federal de Itajubá Instituto de Engenharia Mecânica Programa de Pós-Graduação em Engenharia Mecânica

Eudes Müller D'Oliveira Santos

Otimização multiobjetivo de uma usina termelétrica de ciclo combinado nas condições de projeto e fora de projeto

Itajubá – MG, dezembro de 2021

Eudes Müller D'Oliveira Santos

Otimização multiobjetivo de uma usina termelétrica de ciclo combinado nas condições de projeto e fora de projeto

Tese submetida ao Programa de Pós-Graduação em Engenharia Mecânica (PPGEM), da Universidade Federal de Itajubá (UNIFEI), na área de concentração térmica, fluidos e máquinas de fluxo (TFMF), como requisito parcial para o Título de Doutor em Ciências em Engenharia Mecânica.

Orientador: Professor Doutor Marco Antônio

Rosa do Nascimento

Coorientador: Professor Doutor Sandro Barros Ferreira

CIP - Catalogação na Publicação

S237o	Santos, Eudes Müller D'Oliveira Otimização multiobjetivo de uma usina termelétrica de ciclo combinado nas condições de projeto e fora de projeto / Eudes Müller D'Oliveira Santos Itajubá, 2021. 167 f.
	Orientador: Marco Antônio Rosa do Nascimento. Coorientador: Sandro Barros Ferreira. Tese (doutorado) - Universidade Federal de Itajubá, Instituto de Engenharia Mecânica, Programa de PósGraduação em Engenharia Mecânica, 2021.
	1. Otimização multiobjetivo. 2. Usina termelétrica de ciclo combinado. 3. Algoritmo genético. 4. Enxame de partícula. 5. Recozimento simulado. I. Nascimento, Marco Antônio Rosa do, orient. II. Ferreira, Sandro Barros, coorient. III. Título.

Eudes Müller D'Oliveira Santos

Otimização multiobjetivo de uma usina termelétrica de ciclo combinado nas condições de projeto e fora de projeto

Tese submetida ao Programa de Pós-Graduação em Engenharia Mecânica (PPGEM), da Universidade Federal de Itajubá (UNIFEI), na área de concentração térmica, fluidos e máquinas de fluxo (TFMF), como requisito parcial para o Título de Doutor em Ciências em Engenharia Mecânica.

Aprovada em, <u>10</u> de <u>dezembro</u> de <u>2021</u>.

Banca Examinadora

Professor Doutor Marco Antônio Rosa do Nascimento (Orientador) Universidade Federal de Itajubá (UNIFEI)

Professor Doutor Sandro Barros Ferreira (Coorientador)

GT2 Tecnologia

Professor Doutor José Antônio Perrella Balestieri Universidade Estadual Paulista (UNESP)

Professor Doutor Celso Eduardo Tuna Universidade Estadual Paulista (UNESP)

Professora Doutora Lucilene de Oliveira Rodrigues Universidade Federal de Itajubá (UNIFEI)

Professor Doutor Lourival Jorge Mendes Neto Universidade Federal de Itajubá (UNIFEI)

Itajubá - MG, dezembro de 2021

Agradecimentos

Agradeço a meu pai Nelson, minha mãe Maria Aparecida, meu irmão Felipe, minha irmã Lis, meus sobrinhos Arthur e Lucas, toda minha família, minha noiva Daniela e sua família, e minha filha Denise por todo apoio e incentivo.

Agradeço a todos professores que tive ao longo da minha vida, desde os professores da minha Graduação em Engenharia Mecânica na UFSJ, os professores do Programa de Pós-Graduação em Engenharia da Energia da UFSJ, e os professores do Programa de Pós-Graduação em Engenharia Mecânica da UNIFEI, em especial à Sebastião, Genésio, Rogério, Christian e José Carlos, e de forma mais especial ao meu orientador Professor Doutor Marco Antônio Rosa do Nascimento e coorientador Professor Doutor Sandro Barros Ferreira, pela orientação, compreensão e ensinamento ao longo de todo o curso.

Agradeço a todos os funcionários da UNIFEI pelo comprometimento com o funcionamento dessa instituição.

Agradeço aos amigos da turma 2016/2 do PPGEM e aos amigos do GETEC, por todos os momentos compartilhados ao longo do curso.

Agradeço a CAPES, pelo apoio financeiro através da bolsa de estudo do programa de demanda social.

Resumo

Há uma busca constante pela maior disponibilidade de recursos energéticos, uma vez que a energia é um item vital para o desenvolvimento de um país. Projeções para a demanda de eletricidade até 2030 sinalizam para seu aumento, no qual 20% do total da geração de eletricidade será proveniente de usinas termelétricas de ciclo combinado a gás natural, considerada uma das tecnologias mais desenvolvidas para produção de eletricidade. Dada a relevância do combustível gás natural e das usinas termelétricas de ciclo combinado na matriz elétrica e energética, é importante o uso dos recursos disponíveis da forma mais eficiente. Nesta tese foram analisadas três técnicas de otimização (algoritmo genético, enxame de partícula e recozimento simulado) aplicadas a uma usina termelétrica de ciclo combinado em regime permanente, nas condições de projeto e fora de projeto, para realização de uma otimização multiobjetivo. O método proposto foi aplicado previamente no sistema de cogeração CGAM para validação e posteriormente aplicado na usina termelétrica de ciclo combinado. Análises termodinâmica, exergética tradicional e avançada, e econômica foram empregadas. O programa GateCycleTM em conjunto com a ferramenta CycleLink foram utilizados para simulação do modelo do sistema energético na condição de projeto e nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%. As funções objetivo minimizadas foram o custo de eletricidade e a taxa de destruição de exergia inevitável total. As variáveis de decisão foram razão de pressão do compressor de ar, eficiência isentrópica do compressor de ar, eficiência isentrópica da turbina a gás, temperatura dos gases de exaustão na entrada da turbina a gás, vazão mássica de combustível para o queimador suplementar, eficiência isentrópica da turbina a vapor e eficiência isentrópica da bomba. O programa modeFRONTIERTM foi utilizado para aplicação das três técnicas de otimização a fim de avaliar as funções objetivo. Os dois sistemas energéticos foram otimizados com cada uma das técnicas de otimização em todas as condições analisadas. Não houve uma técnica unânime no desempenho em todas as condições. Na condição de projeto a UTE de ciclo combinado apresentou custo de eletricidade 11,11% menor e exergia destruída inevitável 23,48% menor, ao aplicar a técnica de enxame de partícula na busca pelos melhores valores das variáveis de decisão, sendo o algoritmo de melhor desempenho nesta condição específica. Em todas as demais condições uma solução ótima também foi obtida.

Palavras-chave: Otimização multiobjetivo, usina termelétrica de ciclo combinado, sistema de cogeração CGAM, algoritmo genético, enxame de partícula e recozimento simulado.

Abstract

There is a constant search for greater availability of energy resources since energy is a vital item for the development of a country. Projections for electricity demand until 2030 point to an increase, in which 20% of the total electricity generation will come from combined cycle power plants with natural gas, considered one of the most developed technologies for electricity production. Given the relevance of natural gas fuel and combined cycle power plants in the electrical and energy matrix, it is important to use available resources in the most efficient way. In this Thesis, three optimization techniques were analyzed (genetic algorithm, particle swarm and simulated annealing) applied to a combined cycle power plant in steady state, under design and off-design conditions, to perform a multi-objective optimization. The proposed method was previously applied in the CGAM cogeneration system for validation and later applied in the combined cycle power plant. Thermodynamic, traditional and advanced exergetic, and economic analyzes were employed. The GateCycleTM software together with the CycleLink tool were used to simulate the energy system model in design and in the partial loads of 90%, 80%, 70%, 60%, 50% and 40%. The minimized objective functions were the electricity cost and the total unavoidable exergy destruction rate. The decision variables were air compressor pressure ratio, isentropic air compressor efficiency, isentropic gas turbine efficiency, exhaust gas temperature at the inlet of the gas turbine, mass flow of fuel to the duct burner, isentropic efficiency of the steam turbine and isentropic pump efficiency. The modeFRONTIERTM software was used to apply the three optimization techniques in order to evaluate the objective functions. The two energy systems were optimized with each of the optimization techniques in all analyzed conditions. There was no unanimous technique in performance under all conditions. In the design condition, the combined cycle power plant presented an electricity cost 11.11% lower and an inevitable destroyed exergy 23.48% lower, when applying the particle swarm technique in the search for the best values of the decision variables, being the algorithm of better performance in this specific condition. In all other conditions an optimal solution was also obtained.

Keywords: Multi-objective optimization, combined cycle power plant, CGAM cogeneration system, genetic algorithm, particle swarm and simulated annealing.

Lista de ilustrações

Figura 3.1 – Estrutura do sistema de cogeração do CGAM.	
Figura 3.2 – Estrutura da usina termelétrica de ciclo combinado	
Figura 3.3 – Representação esquemática das parcelas da exergia destruída na análise	exergética
avançada	42
Figura 3.4 – Custo do compressor de ar, câmara de combustão e turbina a gás	47
Figura 3.5 – Custo do compressor de ar, câmara de combustão e turbina a gás até a	potência de
150.000 kW.	
Figura 3.6 – Fluxograma do algoritmo genético.	56
Figura 3.7 – Fluxograma do recozimento simulado	59
Figura 3.8 – Fluxograma do enxame de partícula.	61
Figura 4.1 – Ícone do bloco GAS	65
Figura 4.2 – Ícone do bloco GTCOMP.	65
Figura 4.3 – Ícone do bloco HEATX.	65
Figura 4.4 – Ícone do bloco GTCOMB	67
Figura 4.5 – Ícone do bloco GTTURB.	67
Figura 4.6 – Ícone do bloco EVAP	67
Figura 4.7 – Ícone do bloco ECON.	68
Figura 4.8 – Ícone do bloco DRUM	68
Figura 4.9 – Ícone do bloco SOURCE.	68
Figura 4.10 – Ícones do bloco SINK e EXH	68
Figura 4.11 – Sistema de cogeração CGAM.	69
Figura 4.12 – Mapa de um compressor de ar	70
Figura 4.13 – Ícone do bloco BURNER	75
Figura 4.14 – Ícone do bloco SPHT	75
Figura 4.15 – Ícone do bloco DEAR	76
Figura 4.16 – Ícone do bloco PUMP	77
Figura 4.17 – Ícone do bloco CONDSR	77
Figura 4.18 – Ícone do bloco ST	78
Figura 4.19 – UTE de ciclo combinado	77
Figura 4.20 – Estrutura para o estudo de otimização.	
Figura 5.1 – Taxa de exergia destruída em cada componente do sistema CGAM na c	ondição de
projeto	

Figura 5.2 - Fracionamento da taxa de exergia destruída no sistema CGAM na condição de
projeto90
Figura 5.3 - Taxa de exergia destruída endógena e exógena em cada componente do sistema
CGAM na condição de projeto91
Figura 5.4 – Taxa de exergia destruída evitável e inevitável em cada componente do sistema
CGAM na condição de projeto91
Figura 5.5 - Zoom na taxa de exergia destruída evitável e inevitável do compressor de ar do
sistema CGAM na condição de projeto92
Figura 5.6 – Combinações das parcelas da exergia destruída no sistema CGAM na condição de
projeto
Figura 5.7 - Taxa de exergia destruída em cada componente do sistema CGAM na condição
fora de projeto93
Figura 5.8 - Taxa de exergia destruída endógena e exógena em cada componente do sistema
CGAM na condição fora de projeto96
Figura 5.9 - Taxa de exergia destruída evitável e inevitável em cada componente do sistema
CGAM na condição fora de projeto97
Figura 5.10 – Soluções do algoritmo genético para o sistema CGAM na condição de projeto.
Figura 5.11 – Zoom na região com maior quantidade de soluções do algoritmo genético para o
sistema CGAM na condição de projeto102
Figura 5.12 – Soluções do enxame de partícula para o sistema CGAM na condição de projeto.
Figura 5.13 – Zoom na região com maior quantidade de soluções do enxame de partícula para
o sistema CGAM na condição de projeto104
Figura 5.14 – Soluções do recozimento simulado para o sistema CGAM na condição de projeto.
Figura 5.15 – Zoom na região com maior quantidade de soluções do recozimento simulado para
o sistema CGAM na condição de projeto106
Figura 5.16 - Soluções do algoritmo genético para o sistema CGAM na condição de carga
parcial de 90%
Figura 5.17 – Zoom na região com maior quantidade de soluções do algoritmo genético para o
sistema CGAM na condição de carga parcial de 90%110
Figura 5.18 – Soluções do enxame de partícula para o sistema CGAM na condição de carga
parcial de 90%111

Figura 5.19 – Zoom na região com maior quantidade de soluções do enxame de partícula para
o sistema CGAM na condição de carga parcial de 90%112
Figura 5.20 - Soluções do recozimento simulado para o sistema CGAM na condição de carga
parcial de 90%113
Figura 5.21 – Zoom na região com maior quantidade de soluções do recozimento simulado para
o sistema CGAM na condição de carga parcial de 90%114
Figura 5.22 - Taxa de exergia destruída em cada componente da UTE de ciclo combinado na
condição de projeto121
Figura 5.23 - Fracionamento da taxa de exergia destruída da UTE de ciclo combinado na
condição de projeto121
Figura 5.24 - Taxa de exergia destruída de cada componente da UTE de ciclo combinado na
condição fora de projeto123
Figura 5.25 - Zoom na taxa de exergia destruída de cada componente da UTE de ciclo
combinado na condição fora de projeto123
Figura B.1 - Sistema térmico hipotético152
Figura B.2 - Relação esperada entre custo de investimento e exergia destruída para o k-ésimo
componente de um sistema térmico155

Lista de tabelas

Tabela 3.1 – Taxa de exergia do recurso e produto para o sistema CGAM
Tabela 3.2 – Taxa de exergia do recurso e produto para a UTE de ciclo combinado40
Tabela 3.3 – Classificação da estimativa de custo44
Tabela 3.4 - Valores das constantes das equações de custo para o compressor de ar, câmara de
combustão e turbina a gás47
Tabela 3.5 – Variação do custo do compressor de ar, câmara de combustão e turbina a gás48
Tabela 3.6 - Valores das constantes das equações de custo para o pré-aquecedor de ar, caldeira
de recuperação de calor e desaerador49
Tabela 3.7 - Valores das constantes das equações de custo para a turbina a vapor, condensador
e bomba50
Tabela 3.8 – Índice de custo de equipamento Marshall e Swift
Tabela 3.9 - Custo fixo e variável de operação e manutenção. 52
Tabela 4.1 – Valores dos parâmetros para o ciclo híbrido
Tabela 4.2 – Parâmetros do tempo de execução nó agendador
Tabela 4.3 – Parâmetros do algoritmo MOSA
Tabela 4.4 – Parâmetros do algoritmo NSGA-II
Tabela 4.5 – Parâmetros do algoritmo MOPSO
Tabela 4.6 - Limites inferior e superior para as variáveis de decisão. 86
Tabela 5.1 – Temperatura e pressão do CGAM e CGAM _{GC} na condição de projeto
Tabela 5.2 – Parâmetros do CGAM e CGAM _{GC} na condição de projeto
Tabela 5.3 - Parâmetros do CGAM _{GC} na condição fora de projeto
Tabela 5.4 – Valores de exergia do sistema CGAM na condição de projeto
Tabela 5.5 – Fracionamento da taxa de exergia destruída no sistema CGAM na condição fora
de projeto94
Tabela 5.6 – Custo de eletricidade do sistema CGAM98
Tabela 5.7 – Custo dos componentes do sistema CGAM
Tabela 5.8 – Solução ótima do sistema CGAM na condição de carga parcial de 80%115
Tabela 5.9 – Solução ótima do sistema CGAM na condição de carga parcial de 70%116
Tabela 5.10 – Solução ótima do sistema CGAM na condição de carga parcial de 60%116
Tabela 5.11 – Solução ótima do sistema CGAM na condição de carga parcial de 50%116
Tabela 5.12 – Solução ótima do sistema CGAM na condição de carga parcial de 40%117
Tabela 5.13 – Temperatura e pressão da UTECC e UTECC _{GC} na condição de projeto118
Tabela 5.14 - Parâmetros da UTECC _{GC} na condição de projeto e fora de projeto119

Tabela 5.15 – Valores de exergia da UTECC na condição de projeto	120
Tabela 5.16 - Taxa de exergia destruída endógena e exógena de cada componente da U	TE de
ciclo combinado na condição de projeto	122
Tabela 5.17 - Taxa de exergia destruída evitável e inevitável de cada componente da U	TE de
ciclo combinado na condição de projeto	122
Tabela 5.18 - Fracionamento da taxa de exergia destruída da UTE de ciclo combina	do na
condição fora de projeto	125
Tabela 5.19 – Fracionamento da taxa de exergia destruída dos equipamentos da UTE de	e ciclo
combinado na condição de carga parcial de 90% e 80%	125
Tabela 5.20 – Fracionamento da taxa de exergia destruída dos equipamentos da UTE de	e ciclo
combinado na condição de carga parcial de 70%, 60%, 50% e 40%	126
Tabela 5.21 – Custo de eletricidade da UTE de ciclo combinado	127
Tabela 5.22 – Custo dos componentes da UTE de ciclo combinado	127
Tabela 5.23 – Solução ótima da UTE de ciclo combinado na condição de projeto	128
Tabela 5.24 – Solução ótima da UTE de ciclo combinado em carga parcial de 90%	129
Tabela 5.25 – Solução ótima da UTE de ciclo combinado em carga parcial de 80%	130
Tabela 5.26 – Solução ótima da UTE de ciclo combinado em carga parcial de 70%	131
Tabela 5.27 – Solução ótima da UTE de ciclo combinado em carga parcial de 60%	132
Tabela 5.28 – Solução ótima da UTE de ciclo combinado em carga parcial de 50%	133
Tabela 5.29 – Solução ótima da UTE de ciclo combinado em carga parcial de 40%	134

Lista de abreviaturas e siglas

AACE	Associação para o Desenvolvimento da Engenharia de Custos (em inglês,
	Association for the Advancement of Cost Engineering)
AP	Alta pressão
В	Bomba
BP	Baixa pressão
CAC	Resfriamento do ar de resfriamento (em inglês, cooling air cooler)
CCE	Eficiência do ciclo combinado (em inglês, combined cycle efficiency)
CER's	Relações de estimativa de custo (em inglês, cost estimation relationships)
CF	Vazão corrigida (em inglês, corrected flow)
CGAM	Christos, George, Antonio e Michael
CL	Linha de choque (em inglês, choke line)
CMV	Variação do mapa do compressor (em inglês, compressor map variable)
COE	Custo de eletricidade (em inglês, cost of electricity)
Cond	Condensado
CRC	Caldeira de recuperação de calor
CS	Velocidade corrigida (em inglês, corrected speed)
De	Desaerador
DOE	Planejamento dos experimentos (em inglês, design of experiments)
Ec	Economizador
EES	Engineering equation solver
EPE	Empresa de Pesquisa Energética
ESTIC	Resfriamento evaporativo do ar de entrada com resfriamento da palheta da
LSTIC	turbina (em inglês, steam injection gas turbine with evaporative inlet air cooler)
Ev	Evaporador
FAR	Fração de ar de resfriamento
FFC	Controle do fluxo de combustível (do inglês, fuel flow control)
FRC	Fator de recuperação de capital
GTE	Eficiência da turbina a gás (do inglês, gas turbine efficiency)
HEI	Heat Exchange Institute
IADWC	Associação internacional para as propriedades de água e vapor (em inglês,
IAP W S	International association for the properties of water and steam)
IC	Índice de custo

IEA	Agência Internacional de Energia (em inglês, International Energy Agency)
IGVC	Controle das palhetas-guias de entrada variável (em inglês, variable inlet guide
	vanes control)
M&S	Marshall e Swift
MCDM	Método de tomada de decisão multicritério (em inglês, multi-criteria decision
	making)
MOPSO	Otimização de enxame de partículas multiobjetivo (em inglês, multi-objective
	particle swarm optimization)
MOGA	Recozimento simulado multiobjetivo (em inglês, multi-objective simulated
MOSA	annealing)
NCF	Vazão corrigida normalizada (em inglês, normalized corrected flow)
NCS	Velocidade corrigida normalizada (em inglês, normalized corrected speed)
NE	Eficiência normalizada (em inglês, normalized efficiency)
NPR	Razão de pressão normalizada (em inglês, normalized pressure ratio)
NSGA II	Algoritmo genético de ordenação não dominada II (em inglês, non-dominated
NSOA-II	sorting genetic algorithm II)
NTU	Número de unidades de transferência (em inglês, number of transfer units)
PCI	Poder calorífico inferior
PF	Fator de desempenho (em inglês, performance factor)
Pr	Pré-aquecedor
PR	Razão de pressão (em inglês, pressure ratio)
PRef	Ponto de referência
Pro	Produto
R	Recurso
RPM	Rotação por minuto
SCE	Eficiência do ciclo a vapor (do inglês, steam cycle efficiency)
SEC	Correção da velocidade para eficiência (em inglês, speed correction for
	efficiency)
SL	Linha de surge (em inglês, surge line)
SPECO	Specific exergy costing
Su	Superaquecedor
TIT	Temperatura de entrada na turbina (em inglês, turbine inlet temperature)

- TOPSISTécnica de ordenação de preferência por similaridade com a solução ideal (em
inglês, technique for order preference by similarity to ideal solution)
- UTE('s) Usina(s) termelétrica(s)
- VEC Fator de correção da eficiência do ângulo da palheta (em inglês, *vane angle efficiency correction factor*)

Lista de símbolos

Letras latinas

<i>4-E</i>	Energia, exergia, exergoeconomia e economia
Ėx	Taxa de exergia [kW]
k	k-ésimo componente do sistema
Т	Temperatura
ṁ	Vazão mássica [kg/s]
h	Entalpia específica [kJ/kg]
S	Entropia específica [kJ/(kg.K)]
x_i	Fração molar do componente i da mistura
ex_i^q	Exergia química padrão do componente i da mistura
R_M	Constante universal dos gases [kJ/(kg.K)]
Ŵ	Potência [kW]
С	Custo de compra [\$]
ho	Número de horas de operação da usina anualmente [horas]
Ċ	Taxa de custo [\$/h]
0&M	Custo de operação e manutenção
Cte	Constante
Р	Pressão
E^2	Erro ao quadrado
SQ_E	Soma do quadrado dos erros
U	Coeficiente global de transferência de calor
ΔTLM	Diferença de temperatura média logarítmica
Ż	Taxa de transferência de calor [kW]
C_{P_PC}	Calor específico a pressão constante dos produtos da combustão [kJ/(kg.K)]
c _{Comb}	Custo do combustível por unidade de energia [\$/kJ]
F	Função objetivo
$f_i(x)$	Função objetivo genérica
E	Pertence a
\mathbb{R}^{n}	Conjunto dos números naturais pertencente ao conjunto dos números reais
X	Vetor de decisão
x_i	Variáveis de decisão do vetor de decisão

n	Tamanho da população no algoritmo genético
	Tamanho do enxame no algoritmo de enxame de partícula
q	Comprimento da cadeia de número binário que representa a variável de decisão
F_i	Aptidão da i-ésima cadeia na população de tamanho n
P_i	Probabilidade para o operador de reprodução
P_C	Probabilidade de cruzamento
P_m	Probabilidade de mutação
Pt	Probabilidade de transição
Κ	Constante de Boltzmann
r	Número aleatório para limite da variação da função objetivo
Tin	Temperatura inicial
t	Pseudo tempo para as iterações
t_f	Tempo final
<i>it_{Max}</i>	Número máximo de iterações
P_{in}	Probabilidade inicial
T_{f}	Temperatura final
X^{Inf}	Limite inferior para população inicial do enxame
X^{Sup}	Limite superior para população inicial do enxame
X_j^i	Partícula na posição j e iteração i
V^i_j	Velocidade da partícula na posição j e iteração i
<i>c</i> ₁ <i>e c</i> ₂	Taxas de aprendizado cognitivo (individual) e social (grupo)
$r_1 e r_2$	Números aleatórios distribuídos uniformemente no intervalo 0 e 1
Ċt	Taxa de capacidade térmica
A_1	Área de transferência de calor
Ζ	Fator de compressibilidade
MM	Massa molecular
$\varDelta P$	Perda de pressão
f	Fator de atrito
l	Comprimento do tubo
D	Diâmetro do tubo
\overline{V}	Velocidade média
Re	Número de Reynolds
G _{Max}	Velocidade da vazão na região de menor área

N_1	Número de linhas de tubos
A_2	Termo em função da geometria
Nu	Número de Nusselt
Pr	Número de Prandtl
С, п е т	Constantes para o cálculo do número de Nusselt
A_3	Área da turbina
C_q	Coeficiente de vazão
v	Volume específico
r	Razão de pressão na saída
r^{Cr}	Razão de pressão crítica
l _{min}	Comprimento mínimo de perturbação
N_2	Número das variáveis com código real
L	Comprimento da cadeia de DNA das variáveis de código binário

Letras gregas

η	Eficiência
Ψ	Eficiência racional
$\phi_j(x)$	Função de restrição de igualdade genérica
$\psi_k(x)$	Função de restrição de desigualdade genérica
ΔE	Variação nos níveis de energia
γ	Constante real
Δf	Variações nos valores da função objetivo
β	Taxa de resfriamento
α	Fator de resfriamento
max∆f	Variação máxima da função objetivo
θ	Termo de inércia
3	Efetividade de transferência de calor
α_l	Ângulo relativo da palheta
ρ	Massa específica
v	Viscosidade cinemática
μ_w	Viscosidade na parede
μ_b	Velocidade bulk da vazão
Ω	Carga do combustor
σ	Constante aplicada na Eq. (4.25)

δ	Razão de expansão
λ	Constante aplicada na Eq. (4.27)
Subscritos	

Π	Segunda Lei		
D_Tot	Destruição total		
0	Ambiente de referência		
	Inicial		
f	Física		
q	Química		
D_k	Destruição no k-ésimo componente		
<i>R_k</i>	Recurso no k-ésimo componente		
<i>P_k</i>	Produto no k-ésimo componente		
R_Tot	Recurso total		
P_Tot	Produto total		
Per_Tot	Perda total		
ex_Tol	Exergia total		
ex_PQ	Exergia para processos químicos		
ex_PT	Exergia para processos térmicos		
k	k-ésimo componente do sistema		
Comb	Combustível		
F	Fixo		
V	Variável		
CA	Compressor de ar		
CC	Câmara de combustão		
TG	Turbina a gás		
a	ar		
is_CA	Isentrópica do compressor de ar		
S_CC	Saída da câmara de combustão		
E_CC	Entrada da câmara de combustão		
PC	Produtos da combustão		
is_TG	Isentrópica da turbina a gás		
E_TG	Entrada da turbina a gás		
S_TG	Saída da turbina a gás		

CER	Relação de estimativa de custo (em inglês, cost estimation relationship)
PAA	Pré-aquecedor de ar
CRC	Caldeira de recuperação de calor
DE	Desaerador
EQ	Entrada quente
SQ	Saída quente
Ec	Economizador
Ev	Evaporador
Su	Superaquecedor
V	Vapor
SF	Saída frio
EF	Entrada frio
AACRC	Água de alimentação da caldeira de recuperação de calor
TV	Turbina a vapor
Cond	Condensador
В	Bomba
AI	Ano de interesse
AR	Ano de referência
Q	Quente
F	Fria
Р	Ponto de projeto
IS	Isentrópica
LT	Lado do tubo
LG	Lado do gás
е	entrada
Sobrescritos	
Evit	Evitável
Endo	Endógena
Exo	Exógena
Endo,Evit	Endógena evitável
Endo,Ine	Endógena inevitável
Exo,Evit	Exógena evitável
Exo,Ine	Exógena inevitável

Ine Inevitável

*	Parâmetro	de (estagnação
---	-----------	------	------------

1 Introdução	
1.1 Relevâncias e justificativas	21
1.2 Objetivos	23
1.3 Estrutura do trabalho	24
2 Revisão bibliográfica	25
3 Fundamentação	
3.1 Sistemas térmicos	
3.1.1 Sistema de cogeração CGAM	
3.1.2 Usina termelétrica de ciclo combinado	
3.2 Análise exergética	
3.2.1 Análise exergética convencional	
3.2.2 Análise exergética avançada	41
3.3 Análise econômica	
3.4 Função objetivo	
3.5 Otimização	53
3.5.1 Algoritmo genético	54
3.5.2 Recozimento simulado	
3.5.3 Enxame de partícula	
3.5.4 Método de tomada de decisão	61
4 Metodologia	63
4.1 GateCycle [™]	63
4.1.1 Modelagem do sistema CGAM na condição de projeto	64
4.1.2 Modelagem do sistema CGAM na condição fora de projeto	
4.1.3 Modelagem da UTE de ciclo combinado na condição de projeto	74
4.1.4 Modelagem da UTE de ciclo combinado na condição fora de projeto	
4.1.5 CycleLink	79
4.2 modeFRONTIER [™]	
4.2.1 Nó planejamento dos experimentos	
4.2.2 Nó agendador	
4.2.2.1 Recozimento simulado multiobjetivo	
4.2.2.2 Algoritmo genético de classificação não dominado II	
4.2.2.3 Otimização de enxame de partículas multiobjetivo	
4.2.3 Nós: excel, entrada, saída, objetivo e fim	

Sumário

5 Resultados	
5.1 Modelagem do sistema CGAM	
5.1.1 Análise exergética	
5.1.2 Análise econômica	
5.1.3 Otimização	
5.2 Modelagem da usina termelétrica de ciclo combinado	118
5.2.1 Análise exergética	119
5.2.2 Análise econômica	127
5.2.3 Otimização	127
6 Conclusões	135
6.1 Sugestões de trabalhos futuros	137
Referências bibliográficas	139
Apêndice A – Resumo da literatura revisada	144
Apêndice B – Análise exergética avançada	
Apêndice C – Método de tomada de decisão TOPSIS	156

1 Introdução

A energia, proveniente de variadas fontes, é usada direta ou indiretamente em todos os segmentos de uma sociedade, desempenhando um papel vital para o desenvolvimento econômico em qualquer país. O crescimento da matriz energética mundial demonstra a busca constante por uma maior disponibilidade de recursos energéticos. De 1990 a 2016, a disponibilidade de recursos energéticos mundial apresentou um crescimento médio de 1,76% ao ano. Neste mesmo período, o Brasil apresentou um crescimento médio de 2,82% ao ano (IEA, 2019).

Em 2016, do montante total de energia consumida, foram empregadas para geração de eletricidade 18,77% no mundo e 18,83% no Brasil. Analisando a matriz elétrica mundial, dos 25.045,07 TWh de eletricidade gerados em 2016, 23,13% foram provenientes do gás natural. No Brasil, foram gerados 578,49 TWh de eletricidade, sendo 9,76% provenientes do gás natural. Ao longo das últimas três décadas, a matriz elétrica mundial manteve sua predominância não renovável. O gás natural apresentou o aumento mais significativo, de 6,86%. A matriz elétrica brasileira é o oposto da mundial, apresentando uma predominância de fontes renováveis, mas que apresentou diminuição ao longo das últimas três décadas. O gás natural apresentou o aumento mais significativo, de 9,64% (IEA, 2019)

Hu *et al.* (2017) apresentaram uma projeção do aumento da demanda de eletricidade até 2030 na qual 20% do total da geração de eletricidade será atendida por usinas termelétricas (UTE's) de ciclo combinado a gás natural. Em 2015, o Brasil tinha uma capacidade instalada de 12.388 MW provenientes de usinas termelétricas a gás natural, sendo 6.999 MW procedente de UTE's a gás natural do tipo ciclo combinado (TOLMASQUIM, 2016).

Boyaghchi e Molaie (2015a) consideram as UTE's de ciclo combinado uma das tecnologias mais desenvolvidas para geração de eletricidade, com alta confiabilidade, eficiência térmica e potência de saída quando comparadas com ciclos isolados Brayton e Rankine. Aliado a essas características, tem-se a menor emissão de CO₂, devido ao uso do gás natural como combustível, o melhor combustível fóssil quando comparado com carvão e óleo de petróleo do ponto de vista ambiental (BALKU, 2017).

A operação de UTE's em condições ótimas é alcançada através do emprego de métodos de otimização para a definição dos parâmetros operacionais que resultem nos melhores indicadores de desempenho, econômico e ambiental. Três entre os muitos métodos de otimização que apresentam boa aplicabilidade na investigação dos melhores valores dos parâmetros operacionais de sistemas térmicos são: (i) algoritmo genético, que é um método de

otimização bio-inspirado, desenvolvido segundo a teoria evolucionária de Charles Darwin; (ii) recozimento simulado, que tem sua origem na analogia entre o processo físico de resfriamento de um metal em estado de fusão; e (iii) enxame de partículas, que também é um método bio-inspirado, desenvolvido de acordo com observações do comportamento social de espécies de pássaros.

1.1 Relevâncias e justificativas

Dada a condição finita das fontes naturais em conjunto com o crescimento da demanda, é importante o uso dos recursos disponíveis de forma mais eficiente. Assim, fica evidente a relevância da energia e de estudos na área de sistemas energéticos, mais especificamente em usinas termelétricas de ciclo combinado a gás natural.

Entre as alternativas para o uso eficiente dos recursos energéticos em usinas termelétricas de ciclo combinado, tem-se: (i) desenvolvimento e aplicação de novas tecnologias; (ii) adaptação das usinas existentes; e (iii) otimização das condições operacionais. As duas primeiras alternativas requerem investimentos elevados, tornando a terceira mais atraente.

A otimização é o ramo da ciência que oferece técnicas para definição do melhor valor de uma ou mais variáveis que atendam ao critério de uma ou mais funções objetivo. Diferentes técnicas de otimização são encontradas na literatura. De acordo com Lizarazu (2016), a escolha do método mais eficiente para uma determinada aplicação não é uma tarefa fácil. Os resultados obtidos podem variar em função de diversos fatores inerentes a cada algoritmo em particular ou à aplicação, pois cada um deles utiliza parâmetros distintos, os quais devem ser ajustados de modo que ocorra a convergência dos resultados.

Padilha (2006) apresenta os métodos evolucionários de estratégia de busca não determinísticas, baseados na observação do comportamento e na experiência acumulada de alguns processos, normalmente derivados da natureza. Diferenciam-se dos métodos tradicionais de otimização por geralmente não estarem fundamentados em conceitos matemáticos e nem utilizarem informação do gradiente da função objetivo para determinação da direção de procura do procedimento iterativo de otimização, apresentando boas chances de não se limitarem em ótimos locais. Com isso, a característica dos métodos evolucionários de manipularem a cada iteração um conjunto de possíveis soluções para o problema de otimização, conjugada à natureza estocástica de busca pelo valor ótimo da função objetivo, conferem a esses métodos a capacidade de explorarem todo o domínio das possíveis soluções em busca do ótimo global.

Devido à esta característica, as técnicas pertencentes à classe dos métodos estocásticos foram selecionadas para aplicação no estudo de otimização proposto nesta tese.

Segundo Patel, Savsani e Tawhid (2019) um grande número de metaheurísticas foram desenvolvidas e utilizadas significativamente desde as últimas duas décadas. Essas metaheurísticas provaram sua eficácia para resolver muitos problemas de otimização práticos, reais e desafiadores. No entanto, não há metaheurísticas mais adequadas para otimizar todos os tipos de problemas. Portanto, pode-se esperar que um algoritmo supere outro na avaliação de um objetivo, mas pode ter um desempenho ruim na avaliação de um objetivo diferente. Essa foi a base para desenvolvimento do presente estudo.

Para o estudo de otimização de uma usina termelétrica de ciclo combinado proposto nesta tese, foram selecionadas as técnicas pertencentes à classe dos métodos estocásticos, (algoritmo genético, recozimento simulado e enxame de partículas), uma vez que já foram aplicadas a problemas de engenharia, conforme revisão bibliográfica, e são métodos anteriormente implementados na base do ambiente de otimização multiobjetivo utilizado no presente trabalho.

Os trabalhos apresentados na revisão bibliográfica avaliam objetivos energéticos, exergéticos, econômicos e ambientais. A análise simultânea dos objetivos exergéticos e econômicos, considerando uma análise exergética avançada, não foi encontrado. Em uma busca na base de dados Scopus, na modalidade documentos, com o termo exergia avançada (em inglês, advanced exergy), encontram-se 218 documentos, sendo que só a partir do ano 2013 mais de 10 documentos por ano foram publicados, atingindo o número máximo de 33 documentos em 2019. Ao buscar os termos exergia avançada e otimização (em inglês, optimization), encontram-se 46 documentos, sendo o primeiro registro no ano de 2007 com 3 documentos e o número máximo de 9 documentos em 2019. Com a pesquisa dos termos exergia avançada, otimização e ciclo combinado (em inglês, combined cycle), encontram-se 5 documentos, sendo o primeiro registro no ano de 2010. Destes cinco documentos, somente em Boyaghchi e Molaie (2015b) é realizada uma otimização multiobjetivo com uma das funções objetivo pertencentes a análise exergética avançada. Os autores utilizaram a função objetivo taxa de destruição de exergia evitável total em conjunto com a função objetivo de emissão de gás carbônico. Diante disto, a otimização multiobjetivo das funções taxa de custo total e taxa de destruição de exergia inevitável total será uma contribuição para a literatura, uma vez que ainda não foram aplicadas.

Da análise da matriz elétrica, pode ser observado o aumento das fontes renováveis intermitentes, por exemplo, eólica e solar. O caráter intermitente impacta no regime de operação

das usinas termelétricas, levando-as a operarem em cargas parciais. Sob condições de carga parcial, a usina se afasta das condições de projeto e, portanto, a eficiência diminui. Assim, o estudo de usinas nas condições fora de projeto é de importância prática, sendo relevante a otimização dos parâmetros operacionais nestas condições.

O sistema de cogeração CGAM foi selecionado para a realização da primeira etapa do estudo, fase destinada a validar o método proposto, e para maior familiaridade e conhecimento da interação dos programas utilizados. Verificada a viabilidade das análises propostas no CGAM, será feita a aplicação em uma usina termelétrica de ciclo combinado obtida na literatura.

Com os resultados obtidos neste trabalho, pretende-se contribuir com a literatura especifica da área, apresentando um estudo comparativo entre três técnicas de otimização, definindo qual a melhor para aplicação em UTE de ciclo combinado a gás natural, considerando a operação, em regime permanente, na condição de projeto e fora de projeto, e na inédita avaliação concomitante dos objetivos econômico e exergético.

1.2 Objetivos

O objetivo geral desta tese é aplicar três técnicas de otimização (algoritmo genético, enxame de partícula e recozimento simulado) a uma usina termelétrica de ciclo combinado a gás natural, em regime permanente, nas condições de projeto e fora de projeto.

A aplicação das técnicas de otimização visa avaliar os melhores valores das variáveis de decisão que atendam aos critérios das funções objetivo. A comparação das três técnicas de otimização se dará através do desempenho computacional e da avaliação do mínimo e máximo das funções objetivo.

Como objetivos específicos, tem-se:

- a) definição do sistema de cogeração CGAM para validação do método proposto e definição da UTE de ciclo combinado para aplicação do método;
- b) modelagem e simulação, nas condições de projeto e fora de projeto, do sistema CGAM e UTE de ciclo combinado obtida na literatura;
- c) definição das funções objetivo. A primeira função objetivo proposta é a de custo do combustível, manutenção e operação dos equipamentos e a outra função objetivo é a parcela de exergia inevitável.
- d) definição das variáveis de decisão, a saber: razão de pressão do compressor de ar, eficiência isentrópica do compressor de ar e da turbina a gás, temperatura do ar na saída do pré-aquecedor de ar e temperatura dos gases de exaustão na entrada da turbina a gás,

para o sistema CGAM, e razão de pressão do compressor de ar, eficiência isentrópica do compressor de ar, eficiência isentrópica da turbina a gás, temperatura dos gases de exaustão na entrada da turbina a gás, vazão mássica de combustível para o queimador suplementar, eficiência isentrópica da turbina a vapor e eficiência isentrópica da bomba, para a UTE de ciclo combinado.

1.3 Estrutura do trabalho

Esta tese foi dividida em capítulos. Neste primeiro capítulo foi apresentando o crescimento da matriz energética, o consumo de energia para geração de eletricidade, a geração de eletricidade proveniente da fonte gás natural, o potencial das UTE's de ciclo combinado para geração de eletricidade, a relevância, justificativa e objetivos da pesquisa desenvolvida.

Apresenta-se no capítulo 2 uma revisão bibliográfica da literatura encontrada principalmente no banco de dados do periódico CAPES e em trabalhos de livre acesso encontrados na internet.

No capítulo 3 apresentam-se a fundamentação e o equacionamento das análises termodinâmica e econômica, as variáveis de decisão, as funções objetivo e as técnicas de otimização empregadas.

No capítulo 4 apresenta-se o método proposto a ser utilizada nesse estudo, demonstrando a modelagem do CGAM e da UTE de ciclo combinado no GateCycleTM, a exportação para a planilha eletrônica e a otimização com cada técnica no modeFRONTIERTM.

No capítulo 5 apresentam-se os resultados da modelagem e simulação do sistema CGAM e da UTE de ciclo combinado. Além dos resultados da otimização com as três técnicas de otimização.

No capítulo 6 apresentam-se as conclusões do estudo desenvolvido e as sugestões para trabalhos futuros.

2 Revisão bibliográfica

Este capítulo destina-se a apresentar trabalhos da literatura pertinentes ao tema desenvolvido nesta tese. Assim, são revisados trabalhos na área de otimização de sistemas de conversão de energia, ressaltando os tipos de análises e as técnicas de otimização aplicadas, os tipos de usinas analisadas, as linguagens e programas utilizados, as funções objetivo e as variáveis de decisão adotadas, e os resultados encontrados.

Uma revisão da literatura pertinente a análises 4-E (energia, exergia, exergoeconomia e economia) em usinas termelétricas foi encontrada em Kumar (2017). O autor dividiu a análise de acordo com o tipo de usina, queima de carvão, queima de gás, sistema de cogeração e ciclo combinado. Nos trabalhos englobando ciclo combinado, foram encontrados: (i) análises energéticas, exergéticas convencionais e avançadas, exergoeconômicas, econômicas e ambientais; (ii) estudos de otimização; (iii) avaliações do efeito da variação de diferentes parâmetros, por exemplo, temperatura ambiente, carga parcial, razão de pressão e temperatura na turbina a gás, pressão da caldeira e taxa de fluxo de combustível, no desempenho do ciclo; e (iv) análises de usinas termelétricas de ciclo combinado reais com diferentes configurações, por exemplo, queima suplementar, níveis de pressão, ciclo de Rankine orgânico, célula a combustível, ciclo de refrigeração por absorção, captura de CO₂, híbrido com concentrador solar e gaseificação integrada de biomassa. Os resultados apresentados indicaram que, a queima suplementar aumentou a perda total de exergia resultando na diminuição da eficiência exergética, a integração de uma usina de turbina a gás com célula combustível apresentou potencial de dobrar a eficiência do ciclo, na turbina a gás a câmara de combustão tem maior perda de exergia em comparação a outros componentes, no ciclo a vapor a maior perda de exergia ocorreu na caldeira devido a geração de entropia e o processo de combustão incompleta no dispositivo.

A partir da revisão de Kumar (2017), na qual indica trabalhos da literatura aplicando análises energéticas, exergéticas convencionais e avançadas, exergoeconômicas, econômicas e ambientais, foi encontrado em Zhu *et al.* (2016) a análise do desempenho termodinâmico e análise econômica de um ciclo combinado a gás natural com três configurações distintas para captura e armazenamento de CO₂. As análises foram realizadas empregando o programa Aspen Plus e as configurações para captura e armazenamento de CO₂ foram: (i) descarbonização por pré-combustão; (ii) descarbonização com *calcium-looping process*; e (iii) descarbonização com *chemical-looping combustion*. As simulações foram realizadas para avaliar a influência das variáveis, razão vapor/gás natural e oxigênio/gás natural, no desempenho termodinâmico de cada configuração. Os resultados revelaram que os valores ótimos dos parâmetros, razão vapor/gás natural e oxigênio/gás natural, foram 2,0 e 0,65, respectivamente. A análise econômica baseada em: capital de investimento, custos de manutenção e operação, valor presente líquido, período de retorno e taxa interna de retorno, indicou a configuração *chemical-looping combustion* como a melhor.

Uma análise exergoeconômica de uma usina termelétrica de ciclo combinado foi apresentada em Sahin *et al.* (2016). Os autores realizaram os estudos alterando as condições de operação, temperatura ambiente e umidade relativa, para diferentes razões de pressão. As simulações foram realizadas utilizando o pacote PEACE do programa GT PRO. O desempenho da usina termelétrica foi investigado com base nos indicadores eficiência energética, eficiência exergética, custo nivelado da eletricidade e investimento total. Um caso base foi selecionado para a análise, sendo escolhida a turbina com razão de pressão de 10. Para esse caso, aumento na temperatura ambiente diminui a eficiência energética e exergética e aumenta o custo da eletricidade. A diminuição nas eficiências foi mais significativa para temperaturas maiores que 40°C. Aumento na umidade resulta na diminuição das eficiências, porém em menor escala do que a influência da temperatura. No custo de eletricidade a influência da umidade não é significante. As mesmas análises foram repetidas para turbinas com faixa de razão de pressão de 8 a 16,2. O aumento na razão de pressão da turbina, respeitando os limites metalúrgicos dos materiais, resulta em aumento da eficiência energética e exergética, aumento no custo de investimento e diminuição no custo nivelado de eletricidade.

A aplicação da técnica da análise exergética avançada foi encontrada em Fallah *et al.* (2016). As análises foram realziadas em um ciclo de turbina a gás com injeção de vapor, no qual é aplicado a técnica de resfriamento evaporativo do ar de entrada com resfriamento da palheta da turbina (em inglês, *steam injection gas turbine with evaporative inlet air cooler -* ESTIG). O programa EES foi utilizado para simulação do ciclo e a validação do modelo se deu através de comparação com resultados encontrados na literatura. Da análise de sensibilidade, uma condição ótima foi obtida. Para a máxima eficiência de Segunda Lei, no valor de 47%, a temperatura na entrada da turbina de 1.400°C, razão de pressão de 36, temperatura na entrada da câmara de combustão de 616,9°C, temperatura na saída da turbina de 538,2°C, temperatura na chaminé de 151,3°C, temperatura do vapor de 488,2°C, temperatura de *pinch point* dos gases de exaustão de 264,2°C, fração do ar de resfriamento de 0,2885, razão ar-combustível de 0,02425 e razão vapor-ar de 0,18. Para o máximo trabalho líquido, no valor de 31,3 MW, a temperatura na entrada da turbina de 1.400°C, razão de pressão de 15,4, temperatura na entrada da câmara de combustão de 420,2°C,

temperatura na saída da turbina de 715,5°C, temperatura na chaminé de 89,42°C, temperatura do vapor de 665,5°C, temperatura de *pinch point* da água de 199,7°C, temperatura de *pinch point* dos gases de exaustão de 219,7°C, fração do ar de resfriamento de 0,2895, razão arcombustível de 0,0317 e razão vapor-ar de 0,3128.

Estudos de otimização foram indicados na revisão de Kumar (2017). Um programa computacional para análise energética, exergética, exergoeconômica e exergoambiental, e realização de otimização multiobjetivo de uma usina termelétrica de ciclo combinado com dois níveis de pressão e queima suplementar foi desenvolvido por Ganjehkaviri et al. (2014). O código do programa computacional foi desenvolvido no Matlab. Foram consideradas três funções objetivo, sendo elas, eficiência exergética a ser maximizada, taxa de custo total do produto do sistema e impacto ambiental a ser minimizada, e emissão de dióxido de carbono a ser minimizada. A otimização foi realizada com um algoritmo genético. Para validar o programa computacional, os resultados da simulação foram comparados com dados reais da usina termelétrica de ciclo combinado Shahid Salimi Neka, localizada no Irã, e a divergência máxima foi de 4%. Foram selecionadas 12 variáveis de decisão. O resultado da otimização foi apresentado pela fronteira de Pareto. O conceito de ponto de equilíbrio foi utilizado na seleção do ponto ótimo. Com os valores ótimos das variáveis de decisão, a eficiência aumentou 6% e as emissões de CO₂ diminuíram 5,63%. Os autores também estudaram o efeito da variação dos parâmetros econômicos na sustentabilidade, emissão de dióxido de carbono e consumo de combustível.

O programa computacional, funções objetivo e algoritmo de otimização encontrados em Ganjehkaviri *et al.* (2014) foram utilizados por Ganjehkaviri, Mohd Jaafar e Hosseini (2015) para avaliar o efeito do título do vapor na saída da turbina a vapor na potência de saída do ciclo combinado. Foram considerados três cenários, título de vapor de 88% (caso 1), 80% (caso 2) e sem restrição (caso 3). O caso 2 apresenta título de vapor muito baixo, não sendo um valor usual, mas Ganjehkaviri, Mohd Jaafar e Hosseini (2015) realizaram o estudo nessa condição. Foram selecionadas 15 variáveis de decisão. Comparando os valores das funções objetivo com o ponto de projeto, no caso 1 o custo aumentou 42%, a eficiência aumentou 7% e a emissão reduziu 8%. No caso 2 o custo reduziu 14%, a eficiência aumentou 9% e a emissão reduziu 9%. No caso 3 o custo reduziu 17%, a eficiência aumentou 8% e a emissão reduziu 8%. Para o caso mais realista, título de vapor de 88%, os parâmetros do ciclo da turbina a gás aumentam, exceto a eficiência do compressor. O fluxo de massa do ciclo de vapor diminui especialmente para o fluxo de massa de baixa pressão, enquanto as eficiências dos componentes no ciclo inferior aumentam. Estudos de otimização aplicando a técnica de algoritmo genético foram realizados por Boyaghchi e Molaie (2015b), Kotowicz, Job e Brzęczek (2015), Shamoushaki, Ehyaei e Ghanatir (2017), Ghiasi *et al.* (2020) e Gu *et al.* (2021).

Boyaghchi e Molaie (2015b) desenvolveram em Matlab o algoritmo genético de ordenção não dominada II (em inglês, *non-dominated sorting genetic algorithm II* - NSGA-II). Os autores aplicaram a análise de exergia avançada na usina termelétrica de ciclo combinado com dois níveis de pressão e queima suplementar, Shahid Salimi Neka, localizada no Irã. Foi realizado um estudo paramétrico para avaliar o efeito da temperatura de entrada na turbina, razão de compressão e taxa de vazão de combustível na queima suplementar, na taxa de destruição de exergia e emissão de CO₂. O sistema foi otimizado maximizando a taxa total de destruição de exergia evitável de todo o sistema e minimizando a quantidade de emissão de CO₂. A taxa total de destruição de exergia que pode ser reduzida ao considerar hipóteses de melhorias nos componentes do sistema. Foram selecionadas 3 variáveis de decisão para aplicar no processo de otimização. Os parâmetros do algoritmo genético foram tamanhos de população de 50, probabilidade de cruzamento de 0,7, probabilidade de mutação de 0,4 e máxima geração de 50. Os resultados da otimização multiobjetivo indicaram melhorias de 10,6% e 8,3% na taxa de destruição de exergia evitável e emissão de CO₂, respectivamente.

Um ciclo a vapor padrão com caldeira de recuperação de calor de três níveis de pressão e reaquecimento otimizado utilizando algoritmo genético foi encontrado em Kotowicz, Job e Brzęczek (2015). Os autores modelaram o ciclo de turbina a gás com resfriamento do ar de resfriamento (em inglês, *cooling air cooler* – CAC) das palhetas da turbina a gás, usando o programa GateCycleTM. Foram selecionadas 12 variáveis de decisão. Os parâmetros do algoritmo genético foram tamanho da população igual a 20, mínimo número de iterações igual a 1.000, condição de parada sendo 300 iterações sem melhoria do resultado da função objetivo, probabilidade de cruzamento igual a 0,25, probabilidade de mutação igual 0,003 e comprimento do código binário de variáveis de decisão igual a 10. Foram analisados três cenários diferentes, conservativo, otimista e superotimista, sendo as diferenças nas eficiências isentrópicas do compressor e turbina, e na temperatura da palheta da turbina.

Shamoushaki, Ehyaei e Ghanatir (2017) realizaram uma análise termodinâmica e de exergia em um ciclo híbrido de célula combustível e turbina a gás. Também realizaram a otimização multiobjetivo com o algoritmo NSGA-II no Matlab. Foram adotadas duas funções objetivo, a taxa de custo total, incluindo a taxa de custo do combustível, taxa de custo do investimento e compra do equipamento e a taxa de custo do impacto ambiental, e eficiência de

exergia do ciclo, em que o objetivo era minimizar e maximizar, respectivamente. Foram usadas 8 variáveis de decisão. Os autores consideraram a utilização do método iterativo multiobjetivo difuso para encontrar o ponto ótimo, o cálculo do tempo do período de retorno e a investigação nas mudanças dos parâmetros, aplicados a um ciclo híbrido, como a inovação da pesquisa desenvolvida. Para validar, foram feitas comparações com o trabalho de Tse, Galinaud e Martinez-Botas (2007 *apud* SHAMOUSHAKI, EHYAEI e GHANATIR, 2017, p. 523) sendo a diferença máxima ocorrendo na potência gerada, com valor de 4,9%. Da solução de Pareto da otimização multivariável pelo algoritmo NSGA-II, três pontos, A, B e C, foram especificados e através do método iterativo multiobjetivo difuso o ponto B foi selecionado. Na otimização do ciclo, o tamanho da população foi de 35 e o número de gerações de 150.

Ghiasi *et al.* (2020) realizaram a otimização multiobjetivo de uma UTE de ciclo combinado, considerando três funções objetivo: (i) a eficiência de Segunda Lei (η_{II}); (ii) a razão da taxa de destruição de exergia evitável total e da taxa de destruição de exergia total ($Ex_{D_{-}Tot}^{Evit}/Ex_{D_{-}Tot}$); e (iii) a emissão de CO₂. A modelagem e simulação da usina foi realizada no software EES, validada com os dados encontrados em Açikkalp, Aras e Hepbasli (2014) e de acordo com os autores, os resultados de todos os parâmetros apresentaram boa concordância. Para o processo de otimização, foram selecionadas duas variáveis de decisão, TIT e PR, e aplicado o método NSGA-II, com probabilidade de cruzamento de 0,7, probabilidade de mutação de 0,4, tamanho de população de 75 e 20 gerações. O estudo de otimização foi aplicado em quatro condições da fração de ar de resfriamento (FAR) das pás da turbina: no intervalo entre 0 e 0,15 com variação de 0,05. Não se observou uma condição que apresentou os melhores valores das três funções objetivo. O melhor valor da emissão de CO₂ foi 330,25 kg/MWh na condição de FAR igual a 0, para TIT igual a 1.359,83°C e PR igual a 18,44. Os melhores valores das funções objetivo η_{II} e $Ex_{D_{-}Tot}^{Evit}/Ex_{D_{-}Tot}$, foram 0,6515 e 0,6546, respectivamente, na condição de FAR igual a 0,05, para TIT igual a 1.385,26°C e PR igual a 16,86.

Gu *et al.* (2021) enfatizaram o estudo do desempenho e a otimização de usinas termelétricas de ciclo combinado, a fim de obter orientações teóricas para economia de energia ao operar UTE's. Ressaltaram as vantagens de método de exergia em relação ao método de energia, na análise do desempenho de UTE's, ao considerar a quantidade e qualidade da energia. No artigo, foi aplicado o algoritmo genético NSGA-II para pesquisar a condição ótima de uma UTE de ciclo combinado de 200 MW. Os autores destacaram a ampla utilização do algoritmo evolutivo NSGA-II no campo da otimização multiobjetivo. Para o estudo de otimização foram definidas 11 variáveis de decisão e três funções objetivo: (i) eficiência

exergética; (ii) custo total, incluindo custo de combustível, custo de investimento e custo da exergia perdida; e (iii) emissão de CO₂. Os resultados da otimização indicaram que a emissão de CO₂ diminuiu com o aumento da eficiência exergética, com uma relação aproximadamente linear. O custo total aumentou suavemente com o aumento da eficiência exergética até 52,3% e para valores acima deste, o custo total aumentou mais rapidamente. Quando relacionado com as emissões de CO₂, o custo total diminuiu drasticamente com o aumento das emissões de 230 para 232 kg/MWh, para valores superiores a este, o custo total diminuiu gradualmente. Nas condições ótimas, a eficiência exergética aumentou 7,96%, o custo total diminuiu 8,53% e a emissão de CO₂ diminuiu 6,96%.

Um estudo de simulação e otimização de uma usina termelétrica de ciclo combinado com turbina a gás com três níveis de pressão e reaquecimento em carga parcial foi realizado por Liu e Karimi (2018). Segundo os autores poucos estudos nessa condição foram realizados. A simulação foi desenvolvida no programa GateCycleTM e a otimização no Matlab com o algoritmo enxame de partícula. A interface entre GateCycleTM e Matlab foi feita através da ferramenta CycleLink. Foram 7 variáveis de decisão e a carga parcial variou na faixa de 40 a 100%. A função objetivo a ser maximizada foi a eficiência do ciclo combinado (do inglês, *combined cycle efficiency* - CCE). Além da otimização, a usina foi analisada avaliando duas políticas operacionais, controle do fluxo de combustível (do inglês, *fuel flow control* – FFC) e controle das palhetas-guias de entrada variável (em inglês, *variable inlet guide vanes control* - IGVC). Comparando o resultado das três estratégias, otimização das 7 variáveis, FFC e IGVC, a estratégia de otimização apresentou a melhor CCE, com valor 0,93% maior do que IGVC e 2,63% maior do que FFC. A estratégia FFC prioriza a eficiência da turbina a gás (do inglês, *gas turbine efficiency* - GTE) e a IGVC prioriza a eficiência do ciclo a vapor (do inglês, *steam cycle efficiency* – SCE), enquanto a estratégia de otimização prioriza o melhor dos dois ciclos.

As técnicas de otimização algoritmo genético e enxame de particulas empregadas pelos autores citados previamente nesse capitulo, foram combinadas em um algoritmo híbrido por Mahmoodabadi, Ghavimi e Mahmoudi (2015), para otimizar o sistema CGAM. O algoritmo gera aleatoriamente a população inicial (tamanho de 30) e avalia os valores de aptidão. Cromossomos selecionados aleatoriamente são alterados pelos operadores do algoritmo genético (cruzamento tradicional, cruzamento múltiplo e mutação). Os cromossomos alterados passam a ser tratados como um enxame, no qual cada cromossomo corresponde a uma partícula. Em todas as iterações, o peso da inércia, os fatores de aprendizado e as probabilidades do operador são calculados. O processo iterativo se repete até que o critério de parada seja atendido. Duas funções objetivo foram definidas considerando aspectos termodinâmicos, econômicos e ambientais. A função objetivo de eficiência exergética foi maximizada e a função objetivo da taxa de custo total foi minimizada. Foram selecionados os parâmetros, razão de pressão, eficiência do pré-aquecedor de ar e temperatura dos produtos da combustão na entrada da turbinaa a gás, como variáveis de decisão. Os resultados ilustraram que menores razões de equivalência geram efeitos mais desejáveis no desempenho do sistema, tanto no âmbito econômico, exergético e ambiental.

Balku (2017) desenvolveu no Matlab um modelo para simulação e otimização de uma usina termelétrica de ciclo combinado. Nesse estudo, o autor resolveu dois problemas de otimização. No primeiro, a função objetivo foi a eficiência térmica. No segundo, a função objetivo foi a razão entre a potência líquida e a exergia destruída, nomeada de eficiência de energia-exergia. Esta função objetivo foi definida pelo autor como sendo um novo termo de eficiência que não foi encontrado em estudos prévios. Para realizar a simulação e otimização, foram definidos 20 parâmetros, dos quais 9 foram selecionados como variáveis de decisão com restrições mínimas e máximas. O problema de otimização foi resolvido através do subprograma fmincon do Matlab, que implementa quatro algoritmos diferentes: (i) ponto interior; (ii) programação quadrática sequencial; (iii) conjunto ativo; e (iv) região de confiança reflexiva. O primeiro problema de otimização é resolvido pelo algoritmo conjunto ativo e o segundo é resolvido pelo algoritmo do ponto interior. Os resultados da simulação indicaram que a eficiência térmica foi de 44,50% e que 80,83% da destruição de exergia ocorreu na câmara de combustão. O resultado da otimização para a primeira função objetivo mostrou um aumento de 22,55% para a eficiência térmica e de 58,44% para a eficiência de energia-exergia. Para a segunda função objetivo, os resultados foram um aumento de 23,49% para a eficiência térmica e 61,65% para a eficiência de energia-exergia.

Nami, Mahmoudi e Nemati (2017) propuseram e analisaram em detalhe um novo sistema de cogeração, incluindo uma turbina a gás, um gerador de vapor de recuperação de calor e um ciclo de CO₂ supercrítico, do ponto de vista exergoeconômico. Foram identificadas as variáveis de decisão através de um estudo paramétrico, em seguida foi definida uma função objetivo, baseada na soma dos custos associados ao investimento de capital, destruição total de exergia e impacto ambiental, para otimização do desempenho do sistema. Na análise exergoeconômica, os autores utilizaram o método *specific exergy costing* (SPECO). A simulação para o desempenho do sistema foi desenvolvida usando o programa EES. A otimização exergoeconômica foi obtida utilizando o *direct search method* do programa EES. Foram utilizados dados encontrados em Bejan, Tsatsaronis e Moran (1996) e Akbari e

Mahmoudi (2014) para validar o modelo de simulação desenvolvido, sendo considerado bom pelos autores.

O Apêndice A apresenta uma tabela resumindo os resultados desta revisão. Nele são apresentadas a revista da publicação e a classificação CAPES. São listados o tipo de ciclo, capacidade e combustível. Além da forma como o ciclo foi modelado, discute-se se os resultados foram validados e apresentam-se os programas empregados. Por fim, as técnicas de otimização, variáveis de decisão com os limites inferior e superior, e as funções objetivo, adotadas pelos autores são especificadas.

Os resultados almejados com o desenvolvimento desta tese vão contribuir para a literatura fornecendo um estudo em que três técnicas de otimização são comparadas ao serem aplicadas em uma usina termelétrica de ciclo combinado a gás natural, sendo realizada análise exergética avançada nas condições de projeto e fora de projeto.
3 Fundamentação

Neste capítulo apresentam-se os fundamentos teóricos nos quais esta tese se baseia, consistindo no sistema CGAM, na usina termelétrica de ciclo combinado, na análise exergética convencional e avançada, na análise econômica, nas funções objetivo e nas técnicas de otimização.

O estudo de otimização desenvolvido nesta tese foi dividido em cinco etapas:

- Definição do sistema a ser estudado;
- Modelagem deste sistema;
- Simulação do modelo;
- Definição de duas funções objetivo;
- Aplicação de três técnicas de otimização para avaliação das funções objetivo.

O sistema selecionado para ser estudado foi uma usina termelétrica de ciclo combinado encontrada na literatura. Porém, antes de aplicar o estudo proposto na UTE de ciclo combinado, foi realizado o estudo no sistema de cogeração CGAM, como mencionado no Capítulo 1. Optou-se pelo CGAM por ser um sistema concebido para a finalidade de comparar diferentes métodos aplicados a uma base em comum. Na Seção 3.1 apresenta-se a descrição do sistema CGAM e da UTE de ciclo combinado.

A modelagem estudada é composta por análises termodinâmica, exergética e econômica. Para a análise termodinâmica, foi utilizado o programa GateCycleTM. No Capítulo 4 será apresentado como o programa foi utilizado e como é o seu procedimento para o balanço de massa e energia, e de cálculo das propriedades termodinâmicas. Os fundamentos das análises exergética e econômica são descritos nas Seções 3.2 e 3.3, respectivamente.

A simulação do modelo na condição de projeto e nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40% foi executada no programa GateCycleTM por meio da ferramenta CycleLink. No Capítulo 4 será apresentado como as simulações foram realizadas.

Duas funções objetivo foram definidas a partir das análises exergética e econômica e são demonstradas na Seção 3.4.

As técnicas de otimização algoritmo genético, recozimento simulado e enxame de partículas foram aplicadas. Os fundamentos teóricos dos algoritmos de otimização são demonstrados na Seção 3.5. Para aplicação das técnicas foi utilizado o programa modeFRONTIERTM e no Capítulo 4 será demonstrado como o programa foi utilizado.

3.1 Sistemas térmicos

Nesta seção são apresentados os dois sistemas térmicos avaliados no presente trabalho. O primeiro, o sistema CGAM, utilizado para avaliação prévia do método proposto em um sistema térmico mais simples, em comparação ao segundo, a usina termelétrica de ciclo combinado.

3.1.1 Sistema de cogeração CGAM

O CGAM é um sistema de cogeração que fornece 30 MW de potência e 14 kg/s de vapor saturado a 20 bar. É composto de uma turbina a gás, de um pré-aquecedor de ar que usa parte da energia térmica dos produtos da combustão expandido na turbina a gás para elevar a temperatura do ar comprimido que sai do compressor e é fornecido para a câmara de combustão, e uma caldeira de recuperação de calor onde o vapor saturado é produzido. A estrutura do sistema é apresentada na Figura 3.1.

Figura 3.1 – Estrutura do sistema de cogeração do CGAM. Fonte: Adaptado de Valero *et al.* (1994), p. 281.

As condições ambientes do ar são definidas como temperatura de 298,15 K, pressão de 1,013 kPa, umidade relativa de 60%, frações molares de 0,2059, 0,7748, 0,0003 e 0,0190 para O₂, N₂, CO₂ e H₂O, respectivamente, e massa molecular de 26,648 kg/kmol. O combustível é o gás natural, considerado metano, com poder calorífico inferior igual a 50.000 kJ/kg e massa molecular de 16,043 kg/kmol. O ar e os produtos da combustão se comportam como gases ideais com calor específico constante. Na câmara de combustão, a eficiência térmica é de 98% e a perda pressão é de 5%. No pré-aquecedor de ar a perda de pressão é de 5% para o ar e 3% para os gases de exaustão. Na caldeira de recuperação de calor a perda de pressão é de 5% (VALERO *et al.*, 1994).

3.1.2 Usina termelétrica de ciclo combinado

A usina termelétrica de ciclo combinado de 415,1 MW, consiste em um ciclo superior de gás e um ciclo inferior de vapor com caldeira de recuperação de calor de dois níveis de pressão e queima suplementar. A usina é composta por dois compressores de ar, duas câmaras de combustão, duas turbinas a gás, dois queimadores suplementares, duas caldeiras de recuperação de calor, dois desaeradores, uma turbina a vapor, um condensador e cinco bombas. A estrutura da UTE é apresentada na Figura 3.2.

Em operação nas condições nominais, o ar ambiente a 293,15 K entra no compressor de ar, com razão de pressão de 10:1, no ponto 1 e é comprimido até o ponto 2 (BOYAGHCHI e MOLAIE, 2015b). O ar comprimido é misturado com gás natural (metano) para realizar a combustão na câmara de combustão. Os produtos da combustão que deixam a câmara de combustão no ponto 3 são entregues a turbina a gás, onde se expandem até o ponto 4 para gerar potência. Os produtos da combustão entram na turbina a gás a 1.244,15 K (BOYAGHCHI e MOLAIE, 2015b).

A fim de aumentar a potência líquida, um queimador suplementar é instalado na caldeira de recuperação de calor. O combustível usado no queimador suplementar também é o gás natural. Os produtos da combustão que expandem na turbina a gás, fluem para a caldeira de recuperação de calor para produzir o vapor superaquecido para acionar a turbina a vapor.

Cada caldeira de recuperação de calor consiste em um pré-aquecedor (Pr), um desaerador (De) e dois níveis de pressão, alta pressão (AP) e baixa pressão (BP). No nível de alta pressão, o circuito é composto por uma bomba de alta pressão (B-AP), dois economizadores (Ec1-AP e Ec2-AP), um evaporador (Ev-AP) e um superaquecedor (Su-AP). No nível de baixa pressão, o circuito é composto por uma bomba de baixa pressão (B-BP), um evaporador (Ev-AP) e um superaquecedor (Su-AP). No nível de baixa pressão, o circuito é composto por uma bomba de baixa pressão (B-BP), um evaporador (Ev-BP) e um superaquecedor (Su-BP).

O pré-aquecedor está localizado na extremidade mais fria do percurso do gás na caldeira de recuperação de calor e absorve energia da corrente de gás para pré-aquecer o condensado antes da entrada no desaerador. O desaerador aquece o condensado até a temperatura de saturação correspondente à pressão do seu tambor. O economizador pré-aquece a água para se aproximar da temperatura de saturação. O evaporador converte o líquido saturado em vapor saturado. O vapor saturado é enviado ao superaquecedor para produzir vapor superaquecido para a turbina a vapor. Após a expansão do vapor superaquecido na turbina a vapor, a corrente de baixa pressão é condensada e transportada pela bomba de extração de condensado (B-Cond) para completar o ciclo.

Figura 3.2 – Estrutura da usina termelétrica de ciclo combinado. Fonte: Adaptado de Boyaghchi e Molaie (2015b), p. 2269.

3.2 Análise exergética

A análise exergética baseada na Primeira e na Segunda Lei da Termodinâmica é uma ferramenta importante para avaliação de sistemas de energia, uma vez que revela as ineficiências dos processos termodinâmicos. É uma ferramenta amplamente aplicada na busca pela melhor compreensão dos processos e quantificação das fontes de ineficiências. Contudo, a análise exergética convencional não fornece informação sobre a interação de componentes, ou seja, as parcelas endógenas e exógenas, e o potencial real para melhoria, ou seja, as parcelas inevitável e evitável de um sistema de conversão de energia. A análise exergética avançada é uma abordagem que explica e calcula as diferentes parcelas da taxa de destruição exergética em cada componente de um sistema de energia.

Os termos e a técnica da análise exergética avançada foram desenvolvidos no Instituto de Engenharia de Energia da Universidade Técnica de Berlim (MOROSUK e TSATSARONIS, 2019). O início do desenvolvimento da metodologia é encontrado em Tsatsaronis (1999). Em Tsatsaronis e Park (2002) foram apresentados os conceitos de taxa de destruição exergética inevitável e evitável. Em Kelly (2008) e Kelly, Tsatsaronis e Morosuk (2009) foram apresentados as técnicas para calcular os valores da taxa de destruição exergética endógena (ou seja, a parte da taxa de destruição exergética no componente k causado pelas irreversibilidades desse componente) e exógena (isto é, a parte da taxa de destruição exergética dentro do componente k causado pelas irreversibilidades dos componentes restantes). Em Morosuk e Tsatsaronis (2009), foi explicada a abordagem de equilíbrio exergético para sistemas de reações químicas.

A aplicação da análise exergética avançada necessita da base da análise exergética convencional. Assim, na Seção 3.2.1 é apresentado o princípio da análise exergética convencional e na Seção 3.2.2 o princípio da análise exergética avançada.

3.2.1 Análise exergética convencional

Em um balanço de exergia de uma análise exergética convencional, é assumido que a superfície de controle de cada componente está na temperatura do ambiente de referência (T_0), e então, não há perda de exergia associada com o componente k, somente no nível de todo o sistema (BOYAGHCHI e MOLAIE, 2015b).

A exergia pode ser dividida em partes física, química, cinética e potencial. Uma vez que as mudanças na velocidade e elevação são pequenas, as partes cinética e potencial são desprezíveis (BOYAGHCHI e MOLAIE, 2015b). Assim, a taxa de exergia fica definida como apresentada na Eq. (3.1).

$$\dot{Ex} = \dot{Ex}_f + \dot{Ex}_q \tag{3.1}$$

na qual Ex é a taxa de exergia em kW; os subscritos f e q referem-se a taxa de exergia física e química, respectivamente.

As taxas de exergia física e química são calculadas como apresentadas nas Eqs. (3.2) e (3.3).

$$\vec{E}x_f = \dot{m}.[(h - h_0) - T_0.(s - s_0)]$$
(3.2)

na qual \dot{m} é vazão mássica em kg/s; h é a entalpia específica em kJ/kg; T é a temperatura em K; s é a entropia específica em kJ/(kg.K); O subscrito 0 refere-se ao ambiente de referência.

$$\dot{Ex}_q = \dot{m}.\left[\sum_{i=1}^n x_i.ex_i^q + R_M.T_0.\sum_{i=1}^n x_i.\ln x_i\right]$$
 (3.3)

na qual x_i é a fração molar do componente *i* da mistura; ex_i^q é a exergia química padrão do componente *i* da mistura; R_M é a constante universal dos gases em kJ/(kg.K); O limite superior *n* refere-se ao n-ésimo componente da mistura.

Na análise exergética, é utilizada a definição de recurso (R) e produto (Pro), ambos expressos em termos de exergia. Em um sistema térmico, cada equipamento apresenta um propósito, o resultado almejado pela aplicação do k-ésimo equipamento do sistema representa o conceito de produto. O recurso é compreendido como o insumo necessário para que o k-ésimo equipamento cumpra com o seu propósito (BEJAN, TSATSARONIS e MORAN, 1996). A seguir apresentam-se os componentes que compõem os sistemas térmicos em estudo, com suas respectivas funcionalidades, para definição do recurso e produto de cada componente.

O compressor de ar e a bomba têm a finalidade de transportar fluidos, para isso, necessitam vencer a perda de carga do circuito, assim, o produto é o aumento de exergia entre a entrada e saída do componente. A potência requerida para aumentar a pressão do fluido escoando no equipamento é o recurso (BEJAN, TSATSARONIS e MORAN, 1996).

A turbina a gás e a vapor, têm a finalidade de gerar potência, à medida que produtos da combustão e vapor, respectivamente, expandem no equipamento. Desta forma, tem-se que o produto é a potência gerada, e o recurso é a diminuição na exergia do fluido ao expandir entre a entrada e saída do componente (BEJAN, TSATSARONIS e MORAN, 1996).

No pré-aquecedor de ar, o ar comprimido será aquecido pela energia contida nos produtos da combustão que expandiram na turbina a gás. Então, o produto do componente é o aumento de exergia entre a entrada e saída da corrente de ar, e o recurso é a exergia entre a entrada e saída da corrente dos produtos da combustão (BEJAN, TSATSARONIS e MORAN, 1996).

A caldeira de recuperação de calor tem o objetivo de produzir vapor, a partir da água de alimentação que passa através das distintas seções da caldeira, pré-aquecedor, economizador, evaporador, superaquecedor e tubulão. O produto do componente, aumento de exergia entre o vapor produzido e a água de alimentação, é obtido ao extrair energia térmica dos produtos da combustão fluindo pelo dispositivo (BEJAN, TSATSARONIS e MORAN, 1996).

Na câmara de combustão, ocorre a reação química entre o ar e combustível, que são os recursos do dispositivo, resultando nos produtos da combustão (BEJAN, TSATSARONIS e MORAN, 1996).

Em um desaerador, dois ou mais fluidos são misturados para obter a saída em uma condição desejada. O processo de desaeração consiste na remoção dos gases que estão presentes na água, pois a existência de gases dissolvidos provoca corrosão das superfícies de alguns componentes. Também possui a função de aquecimento regenerativo do condensado e de reservatório de água de alimentação para o sistema (BEJAN, TSATSARONIS e MORAN, 1996).

No condensador ocorre a transformação do vapor expandido na turbina a vapor para o estado líquido, fazendo o uso de água como fluido para o resfriamento (BEJAN, TSATSARONIS e MORAN, 1996).

A Tabela 3.1 apresenta a taxa de exergia do recurso e produto de cada componente para o sistema CGAM de acordo com os fluxos da Figura 3.1.

Recurso	Produto
\dot{Ex}_{15}	$\vec{Ex}_2 - \vec{Ex}_1$
$Ex_{3} + Ex_{16}$	$\dot{Ex_4}$
$\dot{Ex}_4 - \dot{Ex}_5$	$\dot{Ex_{14}}$
$\dot{Ex_5} - \dot{Ex_6}$	$\dot{Ex_3} - \dot{Ex_2}$
$Ex_6 - Ex_8$	$E\dot{x}_{13} - E\dot{x}_9$
$\dot{Ex}_6 - \dot{Ex}_7$	$\dot{Ex}_{10} - \dot{Ex}_9$
$\dot{Ex_7} - \dot{Ex_8}$	$E\dot{x}_{12} - E\dot{x}_{11}$
$Ex_{10} + Ex_{12}$	$\vec{Ex}_{11} + \vec{Ex}_{13}$
	Recurso \vec{Ex}_{15} $\vec{Ex}_3 + \vec{Ex}_{16}$ $\vec{Ex}_4 - \vec{Ex}_5$ $\vec{Ex}_5 - \vec{Ex}_6$ $\vec{Ex}_6 - \vec{Ex}_8$ $\vec{Ex}_6 - \vec{Ex}_7$ $\vec{Ex}_7 - \vec{Ex}_8$ $\vec{Ex}_{10} + \vec{Ex}_{12}$

Tabela 3.1 – Taxa de exergia do recurso e produto para o sistema CGAM.

Fonte: Elaborado pelo autor.

A Tabela 3.2 apresenta a taxa de exergia do recurso e produto de cada componente para a usina termelétrica de ciclo combinado de acordo com os fluxos da Figura 3.2.

Componentes	Recurso	Produto
Compressor de ar	\dot{Ex}_{32}	$\vec{Ex}_2 - \vec{Ex}_1$
Câmara de combustão	$Ex_{2} + Ex_{34}$	Ex_3
Turbina a gás	$\dot{Ex}_3 - \dot{Ex}_4$	\dot{Ex}_{31}
CRC	$\vec{Ex}_4 - \vec{Ex}_{13}$	$(\vec{Ex}_{19} + \vec{Ex}_{24}) - \vec{Ex}_{14}$
Queimador suplementar	$\vec{Ex}_{4} + \vec{Ex}_{35}$	Ėx ₅
Superaquecedor (Su-BP)	$\vec{Ex}_8 - \vec{Ex}_9$	$Ex_{26} - Ex_{18}$
Superaquecedor (Su-AP)	$\dot{Ex}_5 - \dot{Ex}_6$	$\dot{Ex}_{25} - \dot{Ex}_{23}$
Evaporador (Ev-BP)	$\dot{Ex_9} - \dot{Ex_{10}}$	$\dot{Ex_{18}} - \dot{Ex_{17}}$
Evaporador (Ev-AP)	$\dot{Ex}_6 - \dot{Ex}_7$	$\dot{Ex}_{23} - \dot{Ex}_{22}$
Economizador (Ec1-AP)	$Ex_{10} - Ex_{11}$	$Ex_{21} - Ex_{20}$
Economizador (Ec2-AP)	$\dot{Ex_7} - \dot{Ex_8}$	$\dot{Ex}_{22} - \dot{Ex}_{21}$
Pré-aquecedor (Pr)	$\dot{Ex}_{12} - \dot{Ex}_{13}$	$\dot{Ex_{15}} - \dot{Ex_{14}}$
Desaerador	$\dot{Ex}_{11} - \dot{Ex}_{12}$	$\dot{Ex_{16}} - \dot{Ex_{15}}$
Turbina a vapor	$(\vec{E}x_{25} + \vec{E}x_{26}) - \vec{E}x_{27}$	<i>Ex</i> ₃₃
Condensador	$\dot{Ex}_{30} - \dot{Ex}_{29}$	$\dot{Ex}_{27} - \dot{Ex}_{28}$
Bomba (B-Cond)	\dot{W}_{B-Cond}	$\dot{Ex_{14}} - \dot{Ex_{28}}$
Bomba (B-BP)	\dot{W}_{B-BP}	$\vec{Ex}_{17} - \vec{Ex}_{16}$
Bomba (B-AP)	\dot{W}_{B-AP}	$\vec{Ex}_{20} - \vec{Ex}_{16}$

Tabela 3.2 – Taxa de exergia do recurso e produto para a UTE de ciclo combinado.

Fonte: Elaborado pelo autor.

A taxa de destruição de exergia no componente k é calculada pela diferença entre a taxa de exergia do recurso no componente k e a taxa de exergia do produto no componente k, como apresentada na Eq. (3.4).

$$\vec{E}x_{D_k} = \vec{E}x_{R_k} - \vec{E}x_{P_k}$$
(3.4)

na qual os subscritos D_k , R_k e P_k referem-se a taxa de destruição de exergia, taxa de exergia do recurso e taxa de exergia do produto, no k-ésimo componente do sistema, respectivamente.

A taxa de destruição de exergia total no sistema é calculada como na Eq. (3.5).

$$\vec{E}x_{D_Tot} = \vec{E}x_{R_Tot} - \vec{E}x_{P_Tot} - \vec{E}x_{Per_Tot}$$
(3.5)

na qual os subscritos D_Tot , R_Tot , P_Tot e Per_Tot referem-se a taxa de destruição de exergia total no sistema, taxa de exergia total do recurso, taxa de exergia total do produto e taxa de perda de exergia total de todo o sistema para o ambiente, respectivamente.

A eficiência de exergia, a porcentagem de exergia fornecida ao sistema que é recuperada no produto do sistema, é calculada como na Eq. (3.6).

$$\eta_{ex_Tot} = \frac{Ex_{P_Tot}}{Ex_{R_Tot}}$$
(3.6)

na qual $\eta_{ex_{Tot}}$ é a eficiência de exergia total.

De acordo com Jaramillo (2011), na literatura são encontradas diferentes formas para a eficiência de exergia adequadas para avaliar o desempenho de conversão de energia. Em

Szargut, Morris e Steward (1988) a eficiência de exergia é definida como grau de perfeição. Para análise de processos químicos foi definida a expressão apresentada na Eq. (3.7).

$$\eta_{ex_PQ} = \frac{exergia \ dos \ produtos \ úteis}{exergia \ de \ alimentação}$$
(3.7)

na qual $\eta_{ex_{PQ}}$ é a eficiência de exergia para processos químicos.

Também em Szargut, Morris e Steward (1988) é apresentada a Eq. (3.8), similar à definida anteriormente, porém para análise de processos térmicos.

$$\eta_{ex_PT} = \frac{exergia \, \acute{u}til \, produzida}{exergia \, consumida} \tag{3.8}$$

na qual $\eta_{ex_{PT}}$ é a eficiência de exergia para processos térmicos.

Em Kotas (1985), a eficiência de exergia é definida como eficiência racional, apresentada na Eq. (3.9), sendo a razão entre os somatórios da exergia de saída e da exergia de entrada.

$$\psi = \frac{\sum exergia \ de \ saída}{\sum exergia \ de \ entrada}$$
(3.9)

na qual ψ é a eficiência racional.

3.2.2 Análise exergética avançada

Na análise exergética avançada, a exergia destruída é dividida em parcelas endógena, exógena, evitável e inevitável, além das combinações, endógena-evitável, endógena-inevitável, exógena-evitável e exógena-inevitável, como mostra a Figura 3.3. No Apêndice B é apresentado o conceito da divisão da exergia destruída da análise exergética avançada. Esta compreensão da divisão da exergia destruída é encontrada nos trabalhos de Tsatsaronis (1999), Tsatsaronis e Park (2002), Kelly (2008), Kelly, Tsatsaronis e Morosuk (2009), e Morosuk e Tsatsaronis (2019).

A taxa de destruição de exergia endógena do componente k é causada pelas irreversibilidades do próprio componente k. Para calcular o seu valor, é definido um ciclo híbrido no qual o componente k opera sob condições reais e todos os outros componentes restantes operam sob condições ideais (sem irreversibilidades). O número de ciclos híbridos que devem ser desenvolvidos para a análise é igual ao número de componentes do sistema. O ciclo híbrido do componente k fornece a taxa de destruição de exergia endógena desse componente (BOYAGHCHI e MOLAIE, 2015a).

Figura 3.3 – Representação esquemática das parcelas da exergia destruída na análise exergética avançada. Fonte: Adaptado de Kelly (2008), p. 32.

Após calcular a taxa de destruição de exergia endógena do componente k, a sua taxa de destruição de exergia exógena, $\dot{Ex}_{D_{-}k}^{Exo}$, que é causada pelas ineficiências nos componentes remanescentes impostos ao componente k, pode ser estimada subtraindo sua taxa de destruição de exergia endógena de sua taxa de destruição de exergia real, $\dot{Ex}_{D_{-}k}$, dada pela Eq. (3.10).

$$\vec{E}x_{D_{-k}}^{Exo} = \vec{E}x_{D_{-k}} - \vec{E}x_{D_{-k}}^{Endo}$$
(3.10)

na qual os sobrescritos *Exo* e *Endo* referem-se as parcelas exógena e endógena, respectivamente, da taxa de destruição de exergia no componente *k* em kW.

Restrições econômicas, tecnológicas e físicas, mesmo nas melhores circunstâncias, causam taxa de destruição exergética. A parte da taxa de destruição da exergia que não pode ser reduzida, mesmo com hipóteses de melhoria, é chamada de taxa de destruição de exergia inevitável, $\vec{Ex}_{D_k}^{Ine}$ e a outra parte que pode ser reduzida é a taxa de destruição de exergia evitável, $\vec{Ex}_{D_k}^{Ine}$ como mostrado na Eq. (3.11).

$$\vec{E}x_{D\ k}^{Evit} = \vec{E}x_{D\ k} - \vec{E}x_{D\ k}^{Ine}$$
(3.11)

na qual os sobrescritos *Evit* e *Ine* referem-se as parcelas evitável e inevitável, respectivamente, da taxa de destruição de exergia no componente *k* em kW

Para estimar a taxa de destruição de exergia inevitável, novamente é definido um ciclo híbrido no qual todos os componentes operam sob condições quase ideais (com o mínimo de irreversibilidades). Valores para os parâmetros na condição de mínimo de irreversibilidades são encontradas em Petrakopoulou *et al.* (2012).

De acordo com a Eq. (3.12), a taxa de destruição de exergia inevitável de cada componente é resultado da multiplicação da taxa de exergia do produto em condições reais, \vec{Ex}_{P_k} , pelo termo $(\vec{Ex}_D/\vec{Ex}_P)_k^{Ine}$ que é a razão da taxa de destruição de exergia e taxa de exergia do produto do componente *k* em suas condições inevitáveis.

$$\vec{E}x_{D_k}^{Ine} = \vec{E}x_{P_k} \times \left(\vec{E}x_D / \vec{E}x_P\right)_k^{Ine}$$
(3.12)

Após a determinação da magnitude da taxa de destruição de exergia inevitável é possível computar a taxa de destruição de exergia evitável de acordo com a Eq. (3.11).

Para calcular a parte endógena inevitável da taxa de destruição de exergia dentro do componente k, a razão da taxa de destruição de exergia e a taxa de exergia do produto desse componente k em suas condições inevitáveis e a taxa de exergia do produto em seu ciclo híbrido deve ser obtida conforme Eq. (3.13).

$$\vec{E}x_{D_k}^{Endo,Ine} = \vec{E}x_{P_k}^{Endo} \times \left(\vec{E}x_D/\vec{E}x_P\right)_k^{Ine}$$
(3.13)

na qual o sobrescrito *Endo,Ine* refere-se a parcela endógena inevitável da taxa de destruição de exergia no componente *k* em kW.

A parte exógena inevitável da taxa de destruição de exergia é calculada com a diferença entre as Eqs. (3.12) e (3.13).

$$\vec{Ex}_{D_{k}}^{Exo,Ine} = \vec{Ex}_{D_{k}}^{Ine} - \vec{Ex}_{D_{k}}^{Endo,Ine}$$
(3.14)

na qual o sobrescrito *Exo,Ine* refere-se a parcela exógena inevitável da taxa de destruição de exergia no componente *k* em kW.

As partes endógenas e exógenas evitáveis das taxas de destruição de exergia são calculadas subtraindo as taxas de destruição de exergia endógena e exógena inevitáveis, respectivamente das taxas de destruição de exergia endógena e exógena total, como mostrado nas Eqs. (3.15) e (3.16).

$$\vec{E}x_{D_k}^{Endo,Evit} = \vec{E}x_{D_k}^{Endo} - \vec{E}x_{D_k}^{Endo,Ine}$$
(3.15)

$$\dot{Ex}_{D_{k}}^{Exo,Evit} = \dot{Ex}_{D_{k}}^{Exo} - \dot{Ex}_{D_{k}}^{Exo,Ine}$$
 (3.16)

na qual os sobrescritos *Endo*, *Evit* e *Exo*, *Evit* referem-se as parcelas endógena evitável e exógena evitável, respectivamente, da taxa de destruição de exergia no componente k em kW.

3.3 Análise econômica

Na análise econômica é avaliado o custo de eletricidade (em inglês, *cost of electricity* – COE), segundo Gülen (2020), a métrica mais amplamente utilizada ao avaliar economicamente

a geração de energia elétrica. A formulação do custo de eletricidade, apresentada na Eq. (3.17), é a soma dos custos de capital, combustível, operação e manutenção.

$$COE = \frac{FRC \times \sum C_k}{\dot{W} \times ho} + \frac{\dot{C}_{comb}}{\dot{W}} + \frac{O\&M_F}{ho} + O\&M_V$$
(3.17)

na qual *FRC* é o fator de recuperação de capital anual em %; C_k é o custo de compra do k-ésimo componente em \$; \dot{W} é a potência líquida em kW; *ho* representa o número de horas de operação da usina anualmente; \dot{C}_{comb} é a taxa de custo associada ao combustível em \$/h; $O\&M_F$ é o custo fixo de operação e manutenção em \$/kW; $O\&M_V$ é o custo variável de operação e manutenção em \$/kW.h.

O custo de eletricidade pode ser interpretado como o preço pelo qual a eletricidade deve ser comercializada para cobrir todas as despesas de geração fixas e variáveis, e para corresponder ao retorno da empresa implícito no fator de recuperação de capital, assumindo um valor de 14,9%, taxa equivalente a um investimento de três anos de baixo risco (GÜLEN, 2020).

O cálculo do custo dos equipamentos de uma usina termelétrica transcende o conhecimento técnico e depende do acesso a informações dos fabricantes dos equipamentos e empreiteiras de engenharia. Informações como *know-how* e acesso a banco de dados com preços de equipamentos, mão-de-obra e materiais necessários para construção do equipamento são essenciais para o cálculo do custo dos equipamentos (GÜLEN, 2020).

Na ausência das informações citadas no parágrafo anterior, é possível utilizar relações de estimativa de custo (em inglês, *cost estimation relationships* – CER's). São relações desenvolvidas no ambiente acadêmico, que estimam o custo dos equipamentos em função dos parâmetros de projeto.

A fim de verificar os valores obtidos pelas relações de estimativa de custo, é analisada a classificação da estimativa de custo de acordo com a prática recomendada internacional, número 18R-97, da Associação para o Desenvolvimento da Engenharia de Custos (em inglês, *Association for the Advancement of Cost Engineering* – AACE), de acordo com Gülen (2020). A Tabela 3.3 apresenta as classes e a variação percentual aceitável de cada classe de acordo com AACE (2019).

Classe	Variação percentual negativa	Variação percentual positiva
5	de -20% até -50%	de +30% até +100%
4	de -15% até -30%	de +20% até +50%
3	de -10% até -20%	de +10% até +30%
2	de -5% até -15%	de +5% até +20%
1	de -3% até - 10%	de +3% até +15%

Tabela 3.3 – Classificação da estimativa de custo.

Fonte: Adaptado de AACE (2019).

As classes indicadas na Tabela 3.3 são baseadas no nível de avanço do projeto, o propósito do estudo desenvolvido e o método aplicado. As faixas de variações percentuais negativas e positivas, são uma indicação da distância entre os valores do custo real e do custo estimado. Uma estimativa de custo classificada na classe 5 indica um projeto incipiente, entre 0% e 2% de conclusão, com propósito de estudo teórico e aplicação de modelos paramétricos com fator de capacidade na estimativa do custo. A classe 4 indica um projeto com nível de conclusão entre 1% e 15%, com propósito de estudos teóricos ou de viabilidade e aplicação de modelos paramétricos por equipamento. A classe 3 indica um projeto com nível de conclusão entre 10% e 40%, com propósito de autorização e controle de orçamento e aplicação de custos unitários semidetalhados. As classes 2 e 1, apresentam diferenças no nível de conclusão, entre 30% e 75% na classe 2 e entre 65% e 100% na classe 1. As duas classe mais precisas apresentam finalidades de controle e conferência dos custos apresentados por um projeto e aplicam custos unitários detalhados.

Para obtenção do custo de compra, em \$, do compressor de ar (C_{CA}), câmara de combustão (C_{CC}) e turbina a gás (C_{TG}) são utilizadas as relações desenvolvidas por Valero *et al.* (1994) apresentadas nas Eqs. (3.18), (3.19) e (3.20).

$$C_{CA} = \left(\frac{Cte_1 \times \dot{m}_a}{Cte_2 - \eta_{is_CA}}\right) \times PR \times \ln(PR)$$
(3.18)

$$C_{CC} = \left(\frac{Cte_3 \times \dot{m}_a}{Cte_4 - \frac{P_{S_CC}}{P_{E_CC}}}\right) \cdot \left[1 + e^{(Cte_5 \times TIT - Cte_6)}\right]$$
(3.19)

$$C_{TG} = \left(\frac{Cte_7 \times \dot{m}_{PC}}{Cte_8 - \eta_{is_TG}}\right) \times \ln\left(\frac{P_{E_TG}}{P_{S_TG}}\right) \left[1 + e^{(Cte_9 \times TIT - Cte_{10})}\right]$$
(3.20)

na qual Cte_1 , Cte_2 , Cte_3 , Cte_4 , Cte_5 , Cte_6 , Cte_7 , Cte_8 , Cte_9 e Cte_{10} são constantes com seus valores apresentados na Tabela 3.4; o subscrito *a* refere-se a ar; η_{is_CA} é a eficiência isentrópica do compressor de ar; *P* é a pressão; o subscrito *S_CC* refere-se a saída da câmara de combustão; o subscrito *E_CC* refere-se a entrada da câmara de combustão; o subscrito *PC* refere-se a produtos da combustão; η_{is_TG} é a eficiência isentrópica da turbina a gás; o subscrito *E_TG* refere-se a entrada da turbina a gás; e o subscrito *S_TG* refere-se a saída da turbina a gás.

As Eqs. (3.18), (3.19) e (3.20) desenvolvidas com referência em valores do ano de 1994 foram atualizadas com referência em valores do ano de 2019. Os primeiros ajustes feitos foram das constantes Cte₆ e Cte₁₀, de acordo com a máxima temperatura de entrada na turbina a gás (TIT). O custo de compra da câmara de combustão e turbina a gás, obtidos pelas Eqs. (3.19) e (3.20), respectivamente, são fortemente influenciados pelo termo mostrado na Eq. (3.21), para câmara de combustão, e na Eq. (3.22), para a turbina a gás, em decorrência da função exponencial.

$$\left[1 + e^{(Cte_5 \times TIT - Cte_6)}\right] \tag{3.21}$$

$$\left[1 + e^{(Cte_9 \times TIT - Cte_{10})}\right] \tag{3.22}$$

Para os valores das constantes apresentados em Valero *et al.* (1994), as Eqs. (3.19) e (3.20) podem ser aplicadas até a máxima temperatura de entrada na turbina a gás (TIT), nos valores apresentados nas Eqs. (3.23) e (3.24), para a câmara de combustão e turbina a gás, respectivamente, valores pertinentes com tecnologia da época.

$$TIT = Cte_6/Cte_5 = 26,4/0,018 = 1.466,7 K$$
(3.23)

$$TIT = Cte_{10}/Cte_9 = 54,4/0,036 = 1.511,1 K$$
(3.24)

Segundo Gülen (2020), a tecnologia atual permite temperatura no valor de 1.873,15 K. Assim, as constantes Cte_6 e Cte_{10} assumem os valores apresentados nas Eqs. (3.25) e (3.26), respectivamente.

$$Cte_6 = Cte_5 \times TIT = 0,018 \times 1.873,15 = 33,7167$$
 (3.25)

$$Cte_{10} = Cte_9 \times TIT = 0,036 \times 1.873,15 = 67,4334$$
 (3.26)

Após atualizar as constantes Cte₆ e Cte₁₀ de acordo com o avanço tecnológico entre os anos de 1994 e 2019, foi feita a atualização das outras constantes das Eqs. (3.18), (3.19) e (3.20) com referência em valores do ano de 2019 usando os custos reais dos equipamentos obtidos no *Gas Turbine World* (2019). Ressalta-se que na prática um motor a gás não é analisado separadamente em compressor de ar, câmara de combustão e turbina a gás, como apresentado nas Eqs. (3.18), (3.19) e (3.20).

O ajuste foi feito por meio da ferramenta solver do Excel. Foi determinado o erro ao quadrado (E^2) entre o custo real (C_{REAL}) e o custo calculado pelas relações de estimativa de custo (C_{CER}), conforme Eq. (3.27). Posteriormente foi determinada a soma do quadrado dos erros (SQ_E), de acordo com a Eq. (3.28). Definidos os dois parâmetros, foi utilizado o *solver* do Excel para minimizar a soma do quadrado dos erros variando os valores das constantes Cte₁, Cte₂, Cte₃, Cte₄, Cte₅, Cte₇, Cte₈ e Cte₉.

$$E^2 = (C_{Real} - C_{CER})^2$$
(3.27)

$$SQ_E = \sum (C_{Real} - C_{CER})^2 \tag{3.28}$$

Ao realizar o procedimento descrito no parágrafo anterior, foram obtidos os valores atualizados com referência do ano de 2019 para as constantes das Eqs. (3.18), (3.19) e (3.20), conforme apresentado na Tabela 3.4.

turonna a gas.					
Constante	Referência do ano de 1994	Referência do ano de 2019			
Cte ₁ [\$/(kg.s)]	39,5000	58,1924			
Cte ₂ [-]	0,9000	0,9223			
Cte ₃ [\$/(kg.s)]	25,6000	188,5106			
Cte ₄ [-]	0,9950	0,9989			
Cte ₅ [1/K]	0,0180	0,0174			
Cte_6 [-]	26,4000	33,7167			
Cte ₇ [\$/(kg.s)]	266,3000	682,4806			
Cte ₈ [-]	0,9200	0,9200			
Cte ₉ [1/K]	0,0360	0,0300			
Cte ₁₀ [-]	54,4000	67,4334			

Tabela 3.4 – Valores das constantes das equações de custo para o compressor de ar, câmara de combustão e turbina a gás

Fonte: Elaborado pelo autor.

Os valores reais e calculados pelas relações de estimativa de custo com referência dos anos de 1994 e 2019, para a soma do custo do compressor de ar, câmara de combustão e turbina a gás, são apresentados na Figura 3.4. Para melhor visualização, na Figura 3.5, são apresentadas as somas dos custos dos componentes até a potência de 150.000 kW. Também são apresentados nas Figuras 3.4 e 3.5 os limites inferior e superior da classe 5. Optou-se por representar os limites da classe 5 por ser a classificação de maior variação percentual admissível.

Fonte: Elaborado pelo autor.

Ao analisar a Figura 3.4 até a potência de 210.000 kW, dos 30 pontos disponíveis, observa-se que os pontos calculados com as relações de estimativa de custo com referência do ano de 1994, 15 pontos extrapolam os limites inferior e superior da classe 5 e os 15 pontos restantes, em sua maioria apresentam a variação percentual próxima aos limites inferior e

superior. Por sua vez, com as relações de estimativa de custo com referência do ano de 2019, os 30 pontos apresentam a variação percentual entre os limites inferior e superior da classe 5.

Para potência superior a 210.000 kW, todos os pontos obtidos pelas relações de estimativa de custo com referência do ano de 1994, extrapolam em muito o limite superior e inferior, devido a limitação da temperatura de entrada na turbina a gás, citado previamente. Os pontos obtidos pelas relações de estimativa de custo com referência do ano de 2019, encontramse dentro dos limites permissíveis da classe 5.

A variação percentual dos valores obtidos pelas relações de estimativa de custo com referência do ano de 1994 e 2019 em relação ao custo real, para a faixa de potência do sistema CGAM (30.000 kW) e para a faixa de potência da turbina a gás da usina termelétrica de ciclo combinado (130.000 kW), são apresentados na Tabela 3.5.

l'adeia 5.5 – variação do cusio do compressor de ar, camara de combusião e turbina a gas.					
Potência [kW]	Variação percentual CER 1994	Variação percentual CER 2019			
29.845	-45,34%	-21,08%			
30.892	-49,98%	-26,06%			
117.000	-53,92%	-20,60%			
144 090	-45 00%	-9.49%			

Fonte: Elaborado pelo autor.

De acordo com a Tabela 3.5, os valores encontrados pelas relações de estimativa de custo com referência do ano de 2019, para a faixa de potência do sistema CGAM, os dois pontos são da classe 4. Para a faixa de potência da turbina a gás da usina termelétrica de ciclo combinado, apresenta um ponto pertencente a classe 4 e o outro a classe 1, a de menor variação percentual admissível. Ao classificar a estimativa do custo, ressalta-se a importância de atualizar as relações de estimativa de custo, uma vez que os valores obtidos com as relações de estimativa de custo com referência do ano de 1994, estão no limite e em um ponto até excede a variação percentual máxima aceitável da classe 5.

Para obtenção do custo de compra, em \$, do pré-aquecedor de ar (C_{PAA}) e caldeira de recuperação de calor (C_{CRC}), são utilizadas as relações desenvolvidas por Valero *et al.* (1994) e apresentadas nas Eqs. (3.29) e (3.30). Para o custo do desaerador (C_{DE}), é utilizada a relação apresentada por Cavalcanti (2017) conforme Eq. (3.31). Ressalta-se, que a relação apresentada em Cavalcanti (2017) é a relação para o custo da caldeira de recuperação de calor descartando os termos referentes ao evaporador e superaquecedor.

$$C_{PAA} = Cte_{11} \left(\frac{\dot{m}_{PC} \times (h_{EQ} - h_{SQ})}{(U) \times (\Delta TLM)_{PAA}} \right)^{0,6}$$
(3.29)

$$C_{CRC} = Cte_{12} \times \left[\left(\frac{\dot{Q}_{EC}}{(\Delta TLM)_{EC}} \right)^{0,8} + \left(\frac{\dot{Q}_{Ev}}{(\Delta TLM)_{Ev}} \right)^{0,8} + \left(\frac{\dot{Q}_{Su}}{(\Delta TLM)_{Su}} \right)^{0,8} \right]$$
(3.30)
+ $Cte_{13} \times \dot{m}_{V} + Cte_{14} \times \dot{m}_{PC}^{-1,2}$

$$C_{DE} = Cte_{12} \times \left[\left(\frac{\dot{Q}_{EC}}{(\Delta T L M)_{EC}} \right)^{0,8} \right] + Cte_{14} \times \dot{m}_{PC}^{1,2}$$
(3.31)

na qual Cte₁₁, Cte₁₂, Cte₁₃ e Cte₁₄ são constantes com seus valores apresentados na Tabela 3.6; os subscritos EQ e SQ são, respectivamente, entrada quente e saída quente; U é o coeficiente global de transferência de calor com valor de 0,018 kW/(m².K); ΔTLM é a diferença de temperatura média logarítmica em K; os subscritos *PAA*, *Ec*, *Ev* e *Su* referem-se ao préaquecedor de ar, economizador, evaporador e superaquecedor, respectivamente; \dot{Q} é a taxa de transferência de calor em kW; o subscrito *V* refere-se a vapor.

Tabela 3.6 - Valores das constantes das equações de custo para o pré-aquecedor de ar, caldeira de recuperação de calor e desaerador.

Constante	Referência do ano de 1994			
Cte_{11} [\$/(m ^{1,2})]	2.290			
Cte ₁₂ [\$/(kW/K) ^{0,8}]	3.650			
Cte_{13} [\$/(kg.s)]	11.820			
$Cte_{14} [\$/(kg/s)^{1,2}]$	658			

Fonte: Elabora pelo autor.

A diferença de temperatura média logarítmica é calculada pela Eq. (3.32).

$$\Delta TLM = \frac{(T_{EQ} - T_{SF}) - (T_{SQ} - T_{EF})}{\ln\left(\frac{(T_{EQ} - T_{SF})}{(T_{SQ} - T_{EF})}\right)}$$
(3.32)

na qual os subscritos SF e EF são, respectivamente, saída frio e entrada frio.

A taxa de transferência de calor no economizador é calculada pela Eq. (3.33).

$$\dot{Q}_{Ec} = \dot{m}_{AACRC} \times (h_{SF} - h_{EF}) \tag{3.33}$$

na qual o subscrito AACRC refere-se a água de alimentação da caldeira de recuperação de calor.

As taxas de transferência de calor no evaporador e superaquecedor são calculadas pelas Eqs. (3.34) e (3.35), respectivamente.

$$\dot{Q}_{E\nu} = \dot{m}_{PC} \times C_{P_PC} \times \left(T_{EQ} - T_{SQ}\right) \tag{3.34}$$

$$\dot{Q}_{Su} = \dot{m}_{PC} \times C_{P_PC} \times \left(T_{EQ} - T_{SQ}\right) \tag{3.35}$$

na qual $C_{P PC}$ é o calor específico a pressão constante dos produtos da combustão em kJ/(kg.K).

Para obtenção do custo de compra, em \$, da turbina a vapor (C_{TV}), condensador (C_{Cond}) e bomba (C_B) são utilizadas as relações propostas por Bejan, Tsatsaronis e Moran (1996) e encontradas em Baghernejad e Yaghoubi (2011), apresentadas nas Eqs. (3.36), (3.37) e (3.38).

$$C_{TV} = Cte_{15} \times \dot{W}_{TV}^{0,7} \tag{3.36}$$

$$C_{cond} = Cte_{16} \times \dot{m}_V \tag{3.37}$$

$$C_B = Cte_{17} \times W_B^{0,71} \tag{3.38}$$

na qual os subscritos TV, Cond e B referem-se a turbina a vapor, condensador e bomba, respectivamente; e Cte₁₅, Cte₁₆ e Cte₁₇ são constantes com seus valores apresentados na Tabela 3.7.

 Tabela 3.7 - Valores das constantes das equações de custo para a turbina a vapor, condensador e bomba.

 Constante
 Referência do ano de 2010

Constante	Referencia do ano de 2010
$Cte_{15} [\$/(kW^{0,7})]$	6.000
$Cte_{16}[(\$.s)/kg]$	1.773
$Cte_{17} [\$/(kW^{0,71})]$	3.540

Fonte: Elabora pelo autor.

Os custos do pré-aquecedor de ar, caldeira de recuperação de calor e desaerador obtidos pelas Eqs. (3.29), (3.30) e (3.31), respectivamente, desenvolvidas com referência em valores do ano de 1994 e os custos da turbina a vapor, condensador e bomba obtidos pelas Eqs. (3.36), (3.37) e (3.38), respectivamente, desenvolvidas com referência em valores do ano de 2010, foram atualizadas com referência em valores do ano de 2017.

Diferentemente do compressor de ar, câmara de combustão e turbina a gás, que foram atualizados usando os custos reais obtidos em *Gas Turbine World* (2019), para o pré-aquecedor de ar, caldeira de recuperação de calor, desaerador, turbina a vapor, condensador e bomba não existe uma fonte de publicação similar ao *Gas Turbine World* (2019) para obtenção dos custos reais. Segundo Gülen (2020), na ausência de valores reais, a utilização de índice de custo (IC) para atualizar os valores é a abordagem mais indicada.

O índice de custo é um indicador de inflação usado para corrigir o custo do equipamento para o ano de interesse. A partir do custo conhecido no ano de referência das Eqs. (3.29), (3.30), (3.31), (3.36), (3.37) e (3.38), o custo equivalente em um determinado ano de interesse (C_{AI}) é

calculado multiplicando o custo conhecido no ano de referência (C_{AR}) pela razão entre o índice de custo no ano de interesse (IC_{AI}) e o índice de custo no ano de referência (IC_{AR}), conforme Eq. (3.39).

$$C_{AI} = C_{AR} \times \left(\frac{IC_{AI}}{IC_{AR}}\right) \tag{3.39}$$

Muitos tipos diferentes de índices de custo são encontrados na literatura. Alguns podem ser utilizados para estimar os custos de equipamentos e outros se aplicam especificamente a mão de obra, construção, materiais ou outros campos especializados. Para sistemas térmicos, o índice de custo de equipamento Marshall e Swift (M&S) é o mais recomendado (BEJAN, TSATSARONIS e MORAN, 1996). A Tabela 3.8 apresenta os valores do índice de custo entre os anos 1994 e 2017, publicados por EPE (2018).

rabela 5.8 – mulee de custo de equipamento Marshan e 5 witt.							
Ano	M&S	Ano	M&S	Ano	M&S	Ano	M&S
1994	994,63	2000	1.090,24	2006	1.328,12	2012	1.569,95
1995	1.032,34	2001	1.094,24	2007	1.403,44	2013	1.584,08
1996	1.042,29	2002	1.103,90	2008	1.437,14	2014	1.615,76
1997	1.060,20	2003	1.123,41	2009	1.538,24	2015	1.599,60
1998	1.064,18	2004	1.193,66	2010	1.490,66	2016	1.614,00
1999	1.068,16	2005	1.266,67	2011	1.514,45	2017	1.655,96

Tabela 3.8 – Índice de custo de equipamento Marshall e Swift.

Fonte: EPE (2018).

A taxa de custo associada ao combustível é obtida pela Eq. (3.40).

$$\dot{C}_{Comb} = c_{Comb} \times \dot{m}_{Comb} \times PCI \times 3.600 \tag{3.40}$$

na qual c_{Comb} é o custo do combustível por unidade de energia em \$/kJ; 3.600 é o fator de conversão de segundos para hora.

O custo do combustível por unidade de energia, considerando o preço praticado pelo Programa Prioritário Termelétrico é de 0,00000394 \$/kJ (MME, 2019).

Na operação e manutenção de um sistema térmico incorrem custos fixos e variáveis. Os custos fixos são aqueles que independem da carga de operação, e incluem os gastos com manutenção corretiva dos equipamentos, com materiais de reposição, nos contratos de serviços e administrativos (EIA, 2020). Os custos variáveis são aqueles que variam de acordo com a carga de operação, e incluem os gastos de consumíveis como água, produtos químicos e lubrificantes, e com o descarte de efluentes. Incluem também o custo médio anual da manutenção preventiva dos equipamentos (EIA, 2020).

A Tabela 3.9 apresenta o custo de operação e manutenção fixo e variável para o sistema de cogeração e a UTE de ciclo combinado, com referência no ano de 2019. São apresentados os valores para um sistema de cogeração de 25.000 kW, pois foi a potência mais próxima ao sistema CGAM para o qual os dados foram encontrados, a mesma lógica é válida para a UTE de ciclo combinado. Os valores para o sistema de cogeração são uma projeção a partir dos

valores praticados no ano de 2015 (EIA, 2017) e para a UTE de ciclo combinado são os valores praticados no ano de 2019 (EIA, 2020).

rabela 3.9 - Custo fixo e variavel de operação e manutenção.				
Sistema de cogeração de 25.000 kW UTE de ciclo combinado de 430.000 kW				
O&M _F	20,34 \$/kW	14,10 \$/kW		
O&M _V	0,0066 \$/kWh	0,0026 \$/kW.h		
Easter Adaptedo do ELA (2017) o ELA (2020)				

Tabela 3.9 - Custo fixo e variável de operação e manutenção.

Fonte: Adaptado de EIA (2017) e EIA (2020).

3.4 Função objetivo

Para o estudo de otimização multiobjetivo, duas funções objetivo são definidas e analisadas. A primeira função objetivo proposta (F_1), baseada na análise econômica apresentada na Seção 3.3, é a função do custo de eletricidade, Eq. (3.41). A função objetivo F_1 é minimizada.

$$F_1 = COE \tag{3.41}$$

A segunda função objetivo proposta (F_2), Eq. (3.42), baseada na análise exergética apresentada na Seção 3.2, é a função da taxa de destruição de exergia inevitável total. A função objetivo F_2 também é minimizada.

$$F_2 = \vec{E} x_{D_Tot}^{Ine} = \sum \vec{E} x_{D_k}^{Ine}$$
(3.42)

As funções objetivo apresentadas nas Eqs. (3.41) e (3.42) são dependentes dos vários parâmetros que compõem os sistemas térmicos em análise. Em um estudo de otimização, uma etapa importante é definir entre todos os parâmetros quais serão as variáveis de decisão.

Para o sistema de cogeração CGAM, as variáveis de decisão definidas foram a razão de pressão do compressor de ar, eficiência isentrópica do compressor de ar, temperatura do ar na saída do pré-aquecedor de ar, eficiência isentrópica da turbina a gás e temperatura de entrada da turbina a gás, as mesmas adotadas em Valero *et al.* (1994).

Para a usina termelétrica de ciclo combinado, as variáveis de decisão foram definidas de acordo com o procedimento aplicado por Ghiasi *et al.* (2020), no qual são selecionadas como variáveis de decisão os parâmetros que apresentem efeitos consideráveis nas variações das funções objetivo. Para isto, é realizada uma análise de sensibilidade, na qual incrementos e reduções de 10% são aplicados a cada um dos parâmetros e as variações nas funções objetivo são calculadas. Os parâmetros que apresentaram variações consideráveis nas funções objetivo foram selecionados como variáveis de decisão. Assim, foram definidas as variáveis de decisão razão de pressão do compressor de ar, eficiência isentrópica do compressor de ar, eficiência a gás, temperatura dos gases de exaustão na entrada da turbina a gás, vazão mássica de combustível para o queimador suplementar, eficiência isentrópica da turbina a vapor e eficiência isentrópica da bomba.

3.5 Otimização

De acordo com Patel, Savsani e Tawhid (2019), as técnicas de otimização podem ser classificadas em dois tipos distintos: (i) técnicas tradicionais de otimização; e (ii) técnicas avançadas de otimização.

As técnicas tradicionais de otimização são compostas por algoritmos determinísticos com regras específicas para passar de uma solução para outra. Esses algoritmos estão em uso há algum tempo e embora tenham sido empregadas para resolver problemas de otimização de sistemas térmicos, apresentam as seguintes limitações: (i) não são boas em um amplo espectro de domínios problemáticos; (ii) não são adequadas para resolver problemas multimodais, pois tendem a obter uma solução ótima local; (iii) não são ideais para resolver problemas de otimização multiobjetivo; e (iv) não são adequadas para resolver problemas que envolvem um grande número de restrições (PATEL, SAVSANI e TAWHID, 2019).

As técnicas avançadas de otimização são técnicas de natureza estocástica, com regras de transição probabilísticas. São técnicas comparativamente novas e ganham popularidade devido a certas características que os algoritmos determinísticos não possuem. Os métodos de otimização que serão avaliados são: (i) algoritmo genético; (ii) enxame de partículas; e (iii) recozimento simulado.

O algoritmo genético é baseado nos princípios da genética e seleção natural, sendo considerado um algoritmo evolutivo. Os elementos básicos da genética natural (reprodução, cruzamento e mutação), são usados no procedimento de busca genética. O algoritmo de otimização de enxame de partículas reproduz o comportamento desses organismos sociais. Cada partícula (ou indivíduo) de um enxame se comporta de maneira distribuída, usando sua própria inteligência e a inteligência coletiva ou de grupo do enxame. O recozimento simulado é baseado na simulação de recozimento térmico de sólidos aquecidos criticamente. O enxame de partícula é baseado no comportamento de uma colônia ou enxame de seres vivos, como insetos, formigas, cupins, abelhas, vespas, bando de pássaros, ou cardume de peixes (RAO, 2009).

Um problema genérico de otimização pode ser descrito de forma matemática conforme as Eqs. (3.43), (3.44), (3.45) e (3.46).

$$Min \ ou \ Max \ f_i(x) \ com \ x \in \mathbb{R}^n \qquad i = 1, 2, \dots, M$$
(3.43)

Sujeito a:

 $\phi_j(x) = 0$ j = 1, 2, ..., J (3.44)

$$\psi_k(x) \le 0$$
 $k = 1, 2, ..., K$ (3.45)

As funções $f_i(x)$, $\phi_i(x) \in \psi_k(x)$ são dependentes das variáveis de decisão do vetor "X".

$$X = [x_1, x_2, \dots, x_n]^T$$
(3.46)

na qual os componentes x_i do vetor de decisão X são denominadas variáveis de decisão. As funções $f_i(x)$ onde i = 1, 2, ..., M são denominadas de funções objetivo. O espaço englobado pelas variáveis de decisão é chamado de espaço de busca R^n e o espaço formado pelos valores das funções objetivo é chamado de espaço da solução. As igualdades ϕ_j e as desigualdades ψ_k são chamadas de restrições.

3.5.1 Algoritmo genético

A solução de um problema de otimização por algoritmo genético começa com uma população aleatória de cadeias formando os vetores de decisão. O tamanho n da população é geralmente fixo. Cada vetor de decisão é avaliado para encontrar seu valor de aptidão. A população é operada por três operadores, reprodução, cruzamento e mutação, para produzir uma nova população. A nova população é avaliada para encontrar os valores de aptidão e testada para a convergência do processo. Um ciclo de reprodução, cruzamento e mutação e avaliação dos valores de aptidão são conhecidos como uma geração em algoritmo genético. Se o critério de convergência não for satisfeito, a população é operada iterativamente pelos três operadores e a nova população resultante é avaliada quanto aos valores de aptidão. O procedimento é continuado através de várias gerações até que o critério de convergência seja satisfeito e o processo seja terminado (RAO, 2009).

As variáveis de decisão são representadas por cadeias de números binários ou números reais. Cada variável de decisão x_i onde i = 1, 2, ..., n é codificada em uma cadeia de comprimento q, formando um vetor de decisão de comprimento q.n. A função objetivo é chamada função de aptidão em consonância com o princípio de sobrevivência do mais apto (RAO, 2009).

A reprodução é a primeira operação aplicada à população para selecionar boas sequências de caracteres da população para formar o acasalamento. Por selecionar boas cadeias de caracteres da população, o operador reprodução também é chamado de operador seleção. O operador de reprodução é usado para escolher cadeias acima da média da população atual e inserir suas cópias múltiplas para o acasalamento com base em uma probabilidade proporcional à sua aptidão. Então, se F_i denota a aptidão da i-ésima cadeia na população de tamanho n, a probabilidade P_i de selecionar a i-ésima cadeia para o acasalamento é dada pela Eq. (3.47).

$$P_i = \frac{F_i}{\sum_{j=1}^n F_j} \qquad i = 1, 2, ..., n \qquad (3.47)$$

Após a reprodução, o operador cruzamento é implementado. O objetivo do cruzamento é criar novas cadeias trocando informações entre as cadeias do acasalamento. Muitos operadores de cruzamento têm sido utilizados na literatura. Na maioria dos operadores de cruzamento, duas correntes individuais são selecionadas aleatoriamente a partir das cadeias geradas pelo operador reprodução para o acasalamento e algumas partes das correntes são trocadas entre si. Uma abordagem comumente usada, conhecida como operador de cruzamento de ponto único, um local de cruzamento é selecionado aleatoriamente ao longo do comprimento da cadeia, e os dígitos binários (alelos) localizados no lado direito do local de cruzamento são substituídos entre as duas cadeias. As duas cadeias selecionadas para participação nos operadores de cruzamento são conhecidas como cadeias pai e as cadeias geradas são conhecidas como cadeias filhas.

As cadeias filhas geradas usando um local de cruzamento aleatório podem ou não ser melhores que suas cadeias pai em termos de seus valores de aptidão. Se forem melhores que seus pais, contribuirão para uma melhoria mais rápida do valor médio de aptidão da nova população. Por outro lado, se as cadeias filhas criadas forem piores que suas cadeias pai, isso não deve ser uma grande preocupação para o sucesso dos algoritmos genéticos porque as cadeias filhas ruins não sobreviverão por muito tempo, pois elas são menos prováveis de serem selecionadas no próximo estágio de reprodução.

Durante o cruzamento não são usadas todas as cadeias do acasalamento. Algumas cadeias de acasalamento boas são preservadas como parte da população para a próxima geração. Uma probabilidade de cruzamento, P_C, é usada na seleção dos pais. Assim, apenas 100.P_C por cento das cadeias do acasalamento serão usadas no operador de cruzamento, enquanto 100.(1-P_C) por cento das cadeias serão retidas para nova geração da população.

Após o operador cruzamento criar novas cadeias com melhores valores de aptidão para as novas gerações, o operador mutação é aplicado às novas cadeias com uma pequena probabilidade de mutação P_m . O operador de mutação altera o dígito binário (valor do alelo) de 1 para 0 e vice-versa. O operador de mutação pode ser implementado pelo operador mutação de ponto único ou dígito-a-dígito. Na mutação de ponto único, um local de mutação é selecionado aleatoriamente ao longo do comprimento da cadeia e o dígito binário nesse local é então alterado de 1 para 0 ou 0 para 1 com uma probabilidade de P_m . Na mutação dígito-adígito, cada binário da cadeia é considerado em sequência, e alterado de 1 para 0 ou 0 para 1 com uma probabilidade P_m .

O propósito da mutação é gerar uma cadeia na vizinhança da cadeia atual, realizando assim uma busca local em torno da solução atual, para salvaguardar contra uma perda prematura

de material genético importante em uma determinada posição e manter a diversidade na população.

Em resumo, o operador de reprodução seleciona boas cadeias para o acasalamento, o operador de cruzamento recombina as sub-cadeias de cadeias boas do acasalamento para criar as cadeias da próxima geração de população e o operador de mutação altera a cadeia localmente. O uso destes três operadores gera sucessivamente novas gerações com melhores valores de aptidão média da população. Observa-se que, se quaisquer cadeias ruins forem criadas em qualquer estágio do processo, elas serão eliminadas pelo operador de reprodução na próxima geração. Os algoritmos genéticos foram usados com sucesso para resolver uma variedade de problemas de otimização na literatura.

A Figura 3.6 apresenta o fluxograma do algoritmo genético, na qual podem ser observadas as etapas para avaliação de uma função genérica de aptidão F $(x_1, x_2, x_3, ..., x_n)$ pela técnica do algoritmo genético.

Figura 3.6 – Fluxograma do algoritmo genético. Fonte: Elaborado pelo autor.

3.5.2 Recozimento simulado

A ideia básica do algoritmo de recozimento simulado é usar a pesquisa aleatória em termos de uma cadeia de Markov, que não apenas aceita alterações que melhoram a função objetivo, mas também mantém algumas alterações que não são ideais. Em um problema de minimização, quaisquer movimentos ou mudanças melhores que diminuam o valor da função objetivo f serão aceitos, no entanto, algumas mudanças que aumentam o valor da função objetivo também serão aceitas com probabilidade *Pt*. Essa probabilidade *Pt*, chamada de probabilidade de transição, é determinada pela Eq. (3.48).

$$Pt = exp^{-\Delta E/K.T} \tag{3.48}$$

na qual ΔE é a variação nos níveis de energia; K é a constante de Boltzmann; T é a temperatura para controle do processo de recozimento.

As variações nos níveis de energia são vinculadas com as alterações na função objetivo através de uma constante real γ de valor igual a um de acordo com a Eq. (3.49).

$$\Delta E = \gamma. \Delta f \tag{3.49}$$

Assim, a probabilidade Pt se torna $Pt(\Delta f, T) = exp^{-\Delta f/K.T}$. Definindo um número r aleatório como limite, se Pt > r, a variação é aceita.

A escolha da temperatura inicial correta é de importância crucial. Para uma dada alteração Δf , se T for muito elevada (T tendendo ao infinito), então *Pt* tende a um, o que significa que quase todas as alterações serão aceitas. Se T for muito baixa (T tendendo a zero), então *Pt* tende a zero, o que significa que uma alteração Δf maior que zero raramente será aceita, portanto, a diversidade da solução ficará limitada.

Sendo T muito elevada, o sistema estará em um estado de alta energia na paisagem topológica e os mínimos não serão alcançados com facilidade. Se T for muito baixa, o sistema pode ficar preso no mínimo local, não necessariamente no mínimo global, e não há energia suficiente para o sistema saltar do mínimo local para explorar outros mínimos, incluindo o mínimo global. Portanto, uma temperatura inicial adequada deve ser calculada.

Outra questão importante é como controlar o processo de recozimento ou resfriamento para que o sistema esfrie gradualmente de uma temperatura mais alta para finalmente congelar até um estado mínimo global. Existem diferentes formas de controlar a taxa de resfriamento ou a diminuição da temperatura. Dois esquemas de recozimento (ou de resfriamento) comumente usados são o recozimento linear e geométrico. Para um cronograma de resfriamento linear, tem-se a equação (3.50).

$$\Gamma = T_{in} - \beta t \tag{3.50}$$

na qual T_{in} é a temperatura inicial; t é o pseudo tempo para as iterações; β é a taxa de resfriamento.

A taxa de resfriamento deve ser selecionada de modo que a temperatura T tenda a zero quando o tempo t tender ao tempo final t_f ou ao número máximo de iterações, it_{Max} . A taxa de resfriamento pode ser calculada conforme a Eq. (3.51).

$$\beta = \frac{T_{in} - T}{t_f} \tag{3.51}$$

Para um cronograma de resfriamento geométrico, a diminuição na temperatura T_{in} ocorre por um fator de resfriamento α , com valor entre zero e um, como mostra a Eq. (3.52). Valores usuais do fator de resfriamento estão entre 0,75 e 0,95 (YANG, 2010).

$$T(t) = T_{in} \cdot \alpha^t$$
 $t = 1, 2, ..., t_f$ (3.52)

A fim de encontrar uma temperatura inicial T_{in} adequada, pode-se usar alguma informação disponível sobre a função objetivo. Se a variação máxima da função objetivo for conhecida, a temperatura inicial pode ser estimada para uma dada probabilidade inicial P_{in} pela Eq. (3.53).

$$T_{in} \approx -\frac{max\Delta f}{lnP_{in}} \tag{3.53}$$

Se a variação máxima da função objetivo não for conhecida, pode-se iniciar avaliações a partir de uma temperatura muito elevada (para que quase todas as alterações sejam aceitas) e reduzir a temperatura rapidamente até que cerca de 50% ou 60% dos piores movimentos sejam aceitos e, em seguida, usar essa temperatura como a nova temperatura inicial para um processo de resfriamento adequado.

A temperatura final, na teoria deve ser zero, para que nenhum movimento pior possa ser aceito. No entanto, se T_f tende a zero, avaliações desnecessárias serão realizadas. Assim, é selecionado um valor muito pequeno, variando entre 10^{-10} e 10^{-5} , de acordo com a qualidade exigida das soluções e das restrições de tempo.

A Figura 3.7 apresenta o fluxograma do recozimento simulado, na qual podem ser observadas as etapas para avaliação de uma função genérica de aptidão $F(x_1, x_2, x_3, ..., x_n)$ pela técnica do recozimento simulado.

Figura 3.7 – Fluxograma do recozimento simulado. Fonte: Elaborado pelo autor.

3.5.3 Enxame de partícula

A solução de um problema de otimização por enxame de partícula começa com a definição do tamanho (n) do enxame, ou seja, da definição do número de partículas. Um tamanho de 20 a 30 partículas é usual (RAO, 2009).

Em seguida deve ser gerada aleatoriamente a população inicial de X entre os limites inferior X^{Inf} e superior X^{Sup}, como X₁, X₂, ..., X_n. A partícula e velocidade na posição (j) e iteração (i) são definidas como Xⁱ_j e Vⁱ_j, respectivamente. Assim, as partículas geradas inicialmente são denominadas X₁(0), X₂(0), ..., X_N(0). Os vetores X_j(0) com j = 1, 2, ... n, são chamados de partículas ou vetores de coordenadas de partículas. Nesse ponto são avaliados os valores da função objetivo correspondentes às partículas como, f[X₁(0)], f[X₂(0)], ..., f[X_n(0)].

Inicialmente, todas as partículas se moverão para o ponto ideal com uma velocidade assumida como zero na iteração i igual a um. Na i-ésima iteração, deve-se definir dois parâmetros importantes usados por uma partícula j típica, são eles: o melhor valor histórico de $X_j(i)$ (coordenadas da j-ésima partícula na iteração atual i), $P_{Melhor, j}$, ou seja, o valor mais alto da função objetivo, f $[X_j(i)]$, encontrado pela partícula j em todas as iterações anteriores. E o melhor valor histórico de $X_j(i)$ (coordenadas de todas as partículas até a iteração), G_{Melhor} , ou seja, o valor mais alto da função objetivo, f $[X_j(i)]$, encontrado pela partículas até a iteração de anteriores por qualquer uma das *n* partículas.

A velocidade da partícula j na i-ésima iteração é encontrada pela Eq. (3.54).

$$V_{j}(i) = V_{j}(i-1) + c_{1} \cdot r_{1} \cdot \left[P_{Melhor, j} - X_{j}(i-1) \right] + c_{2} \cdot r_{2} \cdot \left[G_{Melhor} - X_{j}(i-1) \right] com j = 1, 2, ..., N$$
(3.54)

na qual c_1 e c_2 são as taxas de aprendizado cognitivo (individual) e social (grupo), respectivamente, e r_1 e r_2 são números aleatórios distribuídos uniformemente no intervalo 0 e 1. Os parâmetros c_1 e c_2 denotam a importância relativa da memória (posição) da partícula para a memória (posição) do enxame. Os valores de c_1 e c_2 são geralmente assumidos como 2, de modo que $c_1.r_1$ e $c_2.r_2$ garantem que as partículas sobrevoem o alvo na metade do tempo.

A posição ou coordenada da j-ésima partícula na iteração i-ésima é definida pela equação (3.55).

$$X_{i}(i) = X_{i}(i-1) + V_{i}(i) \ com \ j = 1, 2, \dots, N$$
(3.55)

Após a definição dos parâmetros é verificada a convergência da solução atual. Se as posições de todas as partículas convergirem para o mesmo conjunto de valores, presume-se que o método tenha convergido. Se o critério de convergência não for atendido, prossegue-se com o processo iterativo, calculando os novos valores para $P_{Melhor, j}$, G_{Melhor} e a posição e velocidade para a iteração i = i +1. O processo iterativo continua até que todas as partículas convirjam para a mesma solução ideal.

Verifica-se que geralmente as velocidades das partículas aumentam muito rapidamente e o máximo da função objetivo é ignorado. Portanto, um termo de inércia, θ , é adicionado para reduzir a velocidade. Normalmente, supõe-se que o valor de θ varie linearmente de 0,9 a 0,4 à medida que o processo iterativo progride. A velocidade da j-ésima partícula, com o termo de inércia, é assumida como na Eq. (3.56).

$$V_{j}(i) = \theta . V_{j}(i-1) + c_{1} . r_{1} . \left[P_{Melhor, j} - X_{j}(i-1) \right] + c_{2} . r_{2} . \left[G_{Melhor} - X_{j}(i-1) \right] com j = 1, 2, ..., N$$
(3.56)

O peso de inércia θ foi originalmente introduzido para atenuar as velocidades ao longo do tempo (ou iterações), permitindo que o enxame convergisse de forma mais precisa e eficiente. Um valor maior de θ promove a exploração global e um valor menor promove uma pesquisa local. Assim, um grande valor de θ faz com que o algoritmo explore constantemente novas áreas sem muita pesquisa local e, portanto, falha em encontrar o verdadeiro ideal. Para alcançar um equilíbrio entre a exploração global e local para acelerar a convergência para o verdadeiro ótimo, foi utilizado um peso de inércia cujo valor diminui linearmente com o número da iteração de acordo com a Eq. (3.57).

$$\theta_i = \theta_{Max} - \left(\frac{\theta_{Max} - \theta_{Min}}{it_{Max}}\right).i$$
(3.57)

na qual θ_{Max} e θ_{Min} são os valores iniciais e finais do peso da inércia, respectivamente, e it_{Max} é o número máximo de iterações usado. Os valores de θ_{Max} igual a 0,9 e θ_{Min} igual a 0,4 são comumente usados.

A Figura 3.8 apresenta o fluxograma do enxame de partícula, na qual podem ser observadas as etapas para avaliação de uma função genérica de aptidão $F(x_1, x_2, x_3, ..., x_n)$ pela técnica do enxame de partícula.

Fonte: Elaborado pelo autor.

Os fundamentos apresentados no decorrer deste capítulo estão sendo aplicados para o desenvolvimento desta tese. Os princípios que fundamentam a análise exergética convencional e avançada, e a análise econômica são utilizados na definição das funções objetivo, que por sua vez são otimizadas através do uso das técnicas de otimização.

3.5.4 Método de tomada de decisão

Ao aplicar as técnicas algoritmo genético, recozimento simulado e enxame de partícula para a otimização multiobjetivo do sistema de cogeração CGAM é obtido um conjunto de solução. A seleção da solução ótima dentre as disponíveis no conjunto de solução pode ser feita de forma arbitrária pelo analista ou por um método de tomada de decisão. A fim de ter um respaldo científico na escolha da solução ótima, é empregado um método de tomada de decisão.

Na literatura são encontrados vários métodos de tomada de decisão multicritério (em inglês, *multi-criteria decision-making* - MCDM), sendo a técnica de ordenação de preferência por similaridade com a solução ideal (em inglês, *technique for order preference by similarity to ideal solution* - TOPSIS) muito empregada para estudos em sistemas térmicos. Como não é o propósito do presente trabalho avaliar os diferentes métodos, aplicou-se o TOPSIS por sua aplicação consolidada na área e sua simples implementação.

No método de tomada de decisão TOPSIS são definidas duas soluções não existentes, denominadas melhor solução e pior solução, que indicam o limite inferior e superior das funções objetivo. A melhor solução é a que apresenta o menor valor para o custo de eletricidade e exergia destruída inevitável. A pior solução é a que apresenta o maior valor das funções objetivo. A solução ótima selecionada é a que apresenta a menor distância espacial para a melhor solução e a maior distância espacial para a pior solução (HWANG e YOON, 1981). Os fundamentos do método TOPSIS são apresentados no Apêndice C.

4 Metodologia

Este capítulo apresenta como os programas GateCycleTM e modeFRONTIERTM foram utilizados para o desenvolvimento desta tese nas etapas de modelagem do sistema CGAM e da UTE de ciclo combinado, simulação dos modelos e aplicação das técnicas de otimização.

O GateCycleTM é um programa para projeto e avaliação de desempenho de usinas termelétricas nas condições de projeto e fora de projeto. Apresenta uma interface gráfica intuitiva com modelos analíticos detalhados para os processos termodinâmicos, de transferência de calor e de mecânica dos fluidos em usinas termelétricas, permitindo estudos de projeto e simulação de diferentes complexidades. Os ciclos são projetados interativamente selecionando os ícones dos equipamentos em uma caixa de ferramentas e conectando-os graficamente. Verificações lógicas garantem que as conexões sejam feitas corretamente. Uma vez que os equipamentos são selecionados e as especificações do projeto para o equipamento são inseridas, o modelo pode ser simulado (GENERAL ELECTRIC COMPANY, 2013).

Primeiramente, foi utilizado o GateCycleTM para análise termodinâmica do sistema CGAM e da UTE de ciclo combinado. Posteriormente, foi utilizada a ferramenta CycleLink, que permite exportar os modelos desenvolvidos para uma planilha eletrônica, na qual foram adicionadas as análises exergética e econômica baseadas nos fundamentos das Seções 3.2 e 3.3, e as funções objetivo apresentadas na Seção 3.4. As simulações na condição de projeto e fora de projeto na faixa de carga de 40% a 90% foram executadas na planilha eletrônica. Na Seção 4.1 apresenta-se em detalhes a configuração do programa aplicado neste estudo.

O modeFRONTIER[™] é um ambiente de otimização multiobjetivo e de projeto que combina uma plataforma abrangente de integração de processos com algoritmos de otimização de ponta e avançados recursos de pós-processamento (ESTECO, 2007). O programa modeFRONTIER[™] foi utilizado para aplicação das técnicas de otimização. Na Seção 4.2 apresenta-se em detalhes a configuração do programa aplicado neste estudo.

Os programas estão sendo executados num computador com sistema operacional Windows 7 Professional de 64 Bits, processador Intel® Core™ i5-2.400, CPU 3,10 GHz e memória RAM de 4,00 GB.

4.1 GateCycleTM

O programa fornece várias opções de cálculos, ou seja, existe mais de um tipo de entrada que pode ser fornecida ao programa para realizar a simulação do modelo. Para a reprodução dos sistemas térmicos analisados nesta tese, na condição de projeto, foram utilizadas as variáveis de decisão como dados de entrada e fixadas as potências líquidas, em 30 MW para o sistema CGAM e 415,1 MW para a UTE de ciclo combinado, ambas controladas pela vazão mássica de ar através de uma macro.

Alguns dados não estão associados a nenhum ícone de equipamento, são dados gerais que são fornecidos na seção de propriedades do sistema. A composição do ar ambiente, constituída por oxigênio, nitrogênio, água, dióxido de carbono e argônio, foi definida com as frações molares nos valores de 0,2056, 0,7662, 0,0188, 0,0003 e 0,0092, respectivamente. Foi definida a fração molar do combustível gás natural, considerado somente metano (CH₄), no valor de 1,0000 e o poder calorífico inferior no valor de 50.000 kJ/kg.

Também foram especificados o método IAPWS-IF97 para determinação das propriedades da água e vapor e o método NASA para determinação das propriedades dos gases. O programa apresenta métodos reais de correção das propriedades dos gases, porém usá-los envolve uma troca de maior precisão em detrimento de maior tempo de execução, para os sistemas térmicos desta tese, este tempo altera de 2 segundos para 20 segundos no sistema CGAM e de 3 segundos para 48 segundos na UTE de ciclo combinado. Como a execução no GateCycleTM se repete a cada iteração no processo de otimização, o tempo de execução 10 e 16 vezes maior exigiria um recurso computacional demasiado. Além disso, em pressões abaixo de 20 bar, caso dos dois sistemas térmicos desta tese, as melhorias de precisão das propriedades reais do gás não compensam o aumento do tempo do cálculo (GENERAL ELECTRIC COMPANY, 2013), as melhorias nas propriedades foram inferiores a 0,10%, optando-se por não realizar as correções, considerando assim gás ideal. Na Subseção 4.1.1 é apresentado a modelagem do sistema CGAM e na Subseção 4.1.3 a modelagem da UTE de ciclo combinado.

4.1.1 Modelagem do sistema CGAM na condição de projeto

O bloco GAS, apresentado na Figura 4.1, representa a adição de uma corrente de gás arbitrária para o sistema, podendo ser combustível, ar ou outro gás qualquer (GENERAL ELECTRIC COMPANY, 2013). O ar de admissão do compressor e o combustível fornecido para a câmara de combustão foram representados por este bloco.

Para o ar de admissão do compressor, o bloco foi configurado para receber a informação da composição do ar, definido previamente no sistema. Foram inseridos os parâmetros de pressão, temperatura e umidade relativa com os valores de 101,30 kPa, 298,15 K e 60%, respectivamente. O bloco calcula a vazão mássica de ar, de acordo com a macro para a potência líquida de 30 MW.

Para o combustível fornecido para a câmara de combustão, o bloco foi configurado para receber as informações da composição do combustível e o poder calorifico inferior, também definidos previamente no sistema. O bloco calcula a vazão mássica de combustível.

Figura 4.1 – Ícone do bloco GAS. Fonte: General Electric Company (2013).

O bloco GTCOMP, apresentado na Figura 4.2, modela o desempenho do compressor variando a eficiência politrópica até atingir o valor dos dados de entrada (GENERAL ELECTRIC COMPANY, 2013). Foram fornecidos como dados de entrada as variáveis de decisão, eficiência isentrópica e razão de pressão do compressor, nos valores de 84,68% e 8,5234 (VALERO *et al.*, 1994).

Figura 4.2 – Ícone do bloco GTCOMP. Fonte: General Electric Company (2013).

O bloco HEATX, apresentado na Figura 4.3, representa um trocador de calor, onde calor pode ser transferido entre duas correntes quaisquer, gás-gás, gás-água, água-vapor etc. (GENERAL ELECTRIC COMPANY, 2013). O pré-aquecedor de ar, onde ocorre transferência de calor entre a corrente de ar fornecida para câmara de combustão e os produtos da combustão expandido na turbina a gás, foi representado por este bloco. Foram fornecidos a variável de decisão de temperatura do ar na saída do pré-aquecedor no valor de 914,28 K, o coeficiente global de transferência de calor no valor de 0,018 kW/(m².K) e as perdas de pressão na corrente de ar e na corrente dos produtos da combustão, nos valores de 5% e 3%, respectivamente (VALERO *et al.*, 1994). A análise no componente é feita baseada na metodologia da efetividade-NTU.

Figura 4.3 – Ícone do bloco HEATX. Fonte: General Electric Company (2013).

O método da efetividade-NTU, apresentado por Kays e London (1984), define o parâmetro efetividade de transferência de calor, Eq. (4.1), como a razão entre a taxa de transferência de calor real e a taxa de transferência de calor máxima.

$$\varepsilon = \frac{\dot{Q}_{Real}}{\dot{Q}_{Max}} \tag{4.1}$$

na qual ε é a efetividade de transferência de calor; \dot{Q}_{Real} é a taxa de transferência de calor real; \dot{Q}_{Max} é a taxa de transferência de calor máxima.

A taxa máxima de transferência de calor ocorre quando o fluido saindo do trocador de calor está na mesma temperatura do outro fluido entrando no equipamento. Para um trocador de calor adiabático e calor específico constante, a taxa máxima de transferência de calor é definido pela Eq. (4.2).

$$\dot{Q}_{Max} = \dot{C}t_{Min} \left(T_{EQ} - T_{SF} \right) \tag{4.2}$$

na qual *Ċt* é a taxa de capacidade térmica; O subscrito *Min* refere-se a mínima.

A taxa de capacidade térmica mínima é o menor valor calculado pelas Eqs. (4.3) e (4.4), entre a taxa de capacidade térmica da linha de corrente quente e fria.

$$\dot{C}t_Q = m_Q.\,\mathcal{C}_{P_Q} \tag{4.3}$$

$$\dot{C}t_F = m_F \cdot C_{P F} \tag{4.4}$$

na qual os subscritos Q e F referem-se a linha de corrente quente e fria, respectivamente.

A efetividade de transferência de calor é uma função dependente do número de unidades de transferência (em inglês, *number of transfer units* - NTU), razão entre as capacidades térmicas da linha de corrente quente e fria, e da geometria do trocador de calor. Em Kays e London (1984) são encontradas as relações de efetividade e NTU para as diferentes geometrias de trocador de calor.

O número de unidades de transferência é definido pela Eq. (4.5).

$$NTU = \frac{U.A_1}{\dot{C}t_{Min}} \tag{4.5}$$

na qual NTU é o número de unidades de transferência; A_1 é a área de transferência de calor.

O bloco GTCOMB, apresentado na Figura 4.4, modela o desempenho de uma câmara de combustão (GENERAL ELECTRIC COMPANY, 2013). Foram fornecidas a variável de decisão de temperatura dos produtos da combustão na entrada da turbina a gás no valor de 1.492,63 K, a perda de pressão ao longo do equipamento de 5% e a eficiência da câmara de combustão de 98% (VALERO *et al.*, 1994). O bloco GAS que representa o combustível

fornecido para a câmara de combustão varia a vazão mássica de combustível até atingir a temperatura dos produtos da combustão na saída do combustor especificada neste bloco.

Figura 4.4 – Ícone do bloco GTCOMB. Fonte: General Electric Company (2013).

O bloco GTTURB, apresentado na Figura 4.5, modela o desempenho de uma turbina a gás (GENERAL ELECTRIC COMPANY, 2013). Foi fornecido como dado de entrada a variável de decisão, eficiência isentrópica da turbina, no valor de 87,86% (VALERO *et al.*, 1994).

Figura 4.5 – Ícone do bloco GTTURB. Fonte: General Electric Company (2013).

O bloco EVAP, apresentado na Figura 4.6, representa um evaporador, que é um trocador de calor, onde energia é extraída de uma corrente quente de gás e transferido para uma corrente de água para gerar vapor (GENERAL ELECTRIC COMPANY, 2013). Foram fornecidos os valores de 1,64 K para a diferença de temperatura *pinch-point*, de 2.000 kPa para a pressão e 5% de perda de pressão na corrente dos produtos da combustão (VALERO *et al.*, 1994).

Figura 4.6 – Ícone do bloco EVAP. Fonte: General Electric Company (2013).

O bloco ECON, apresentado na Figura 4.7, representa um economizador, que é um trocador de calor, onde energia é extraída de uma corrente quente de gás e transferida para uma corrente de água líquida para elevar a temperatura da água (GENERAL ELECTRIC COMPANY, 2013). Foram fornecidos a diferença de temperatura *approach* de 15 K e 5% de perda de pressão na corrente dos produtos da combustão (VALERO *et al.*, 1994) como dados de entrada.

Figura 4.7 – Ícone do bloco ECON. Fonte: General Electric Company (2013).

O bloco DRUM, apresentado na Figura 4.8, modela o desempenho de um tubulão, onde vapor saturado é produzido a partir de uma corrente de água/vapor, geralmente proveniente de uma caldeira (GENERAL ELECTRIC COMPANY, 2013). Foi fornecida a pressão de 2.000kPa (VALERO *et al.*, 1994).

Figura 4.8 – Ícone do bloco DRUM. Fonte: General Electric Company (2013).

O bloco SOURCE, apresentado na Figura 4.9, representa a água de alimentação para a caldeira (GENERAL ELECTRIC COMPANY, 2013). Foram fornecidos os dados de pressão e temperatura da água de alimentação para a caldeira, nos valores de 2.000 kPa e 298,15 K, respectivamente (VALERO *et al.*, 1994). O bloco calcula a vazão mássica de água de alimentação.

Figura 4.9 – Ícone do bloco SOURCE. Fonte: General Electric Company (2013).

O bloco SINK, apresentado na Figura 4.10A, e o bloco EXH, apresentado na Figura 4.10B, representam o vapor saturado e os gases de exaustão, respectivamente (GENERAL ELECTRIC COMPANY, 2013). Não há necessidade de fornecer dados de entrada.

A - Ícone do bloco SINK. Figura 4.10 – Ícones do bloco SINK e EXH. Fonte: General Electric Company (2013).
Após a seleção de cada componente, conectá-los entre si e configurado os dados de entrada, o modelo na condição de projeto é simulado. O sistema de cogeração CGAM modelado no GateCycleTM é apresentado na Figura 4.11.

Figura 4.11 – Sistema de cogeração CGAM. Fonte: Elaborado pelo autor, a partir do uso do *software* GateCycle[™] (GE, 2013).

4.1.2 Modelagem do sistema CGAM na condição fora de projeto

Para a simulação do modelo na condição fora de projeto, algumas alterações devem ser feitas. Primeiro deve ser alterada a macro para a potência líquida de 27 MW, 24 MW, 21 MW, 18 MW, 15 MW e 12 MW, referente às cargas na faixa de 90% a 40%.

O desempenho do compressor na condição fora de projeto é definido pelo seu mapa, que relaciona a velocidade, vazão mássica, razão de pressão e eficiência. Um mapa genérico de um compressor de ar é apresentado na Figura 4.12, na qual NCF é a vazão corrigida normalizada (em inglês, *normalized corrected flow*), NPR é a razão de pressão normalizada (em inglês, *normalized pressure ratio*), NCS é a velocidade corrigida normalizada (em inglês, *normalized corrected speed*), CMV é a variação do mapa do compressor (em inglês, *compressor map variable*), NE é a eficiência normalizada (em inglês, *normalized efficiency*), PRef é o ponto de referência, SL é a linha de *surge* (em inglês, *surge line*) e CL é a linha de choque (em inglês, *choke line*).

Figura 4.12 – Mapa de um compressor de ar. Fonte: Adaptado de General Electric Company (2013).

A vazão corrigida é calculada pela Eq. (4.6):

$$CF = \frac{m}{P} \cdot \sqrt{\frac{T.Z.R_M}{MM}}$$
(4.6)

na qual *CF* é a vazão corrigida (em inglês, *corrected flow*); *Z* é o fator de compressibilidade; *MM* é a massa molecular; Todos os parâmetros se referem à entrada do compressor.

A vazão corrigida normalizada é a razão entre a vazão corrigida e a vazão corrigida na condição de projeto, calculado pela Eq. (4.7).

$$NCF = \frac{CF}{CF_P} \tag{4.7}$$

na qual o subscrito P refere-se ao ponto de projeto.

A velocidade corrigida normalizada usada na leitura do mapa do compressor é determinada pela Eq. (4.8).

$$NCS = \frac{CS}{CS_P} = \frac{RPM}{RPM_P} \sqrt{\frac{T_P \cdot Z_P \cdot MM}{T \cdot Z \cdot MM_P}}$$
(4.8)

na qual CS é a velocidade corrigida (em inglês, corrected speed); RPM é a rotação por minuto.

A razão de pressão normalizada é calculada pela Eq. (4.9).

$$NPR = \frac{PR - 1}{PR_P - 1} \tag{4.9}$$

na qual PR é a razão de pressão (em inglês, pressure ratio).

A eficiência normalizada é calculada pela Eq. (4.10).

$$NE = \frac{\eta_{IS}}{\eta_{IS_P}} \tag{4.10}$$

na qual o subscrito IS refere-se a isentrópica.

Para o compressor é fornecida a razão de pressão como dado de entrada. O modelo do programa aplica a Eq. (4.11) de vazão derivada a partir de um compressor de velocidade constante em substituição ao mapa do compressor (GENERAL ELECTRIC COMPANY, 2013).

$$\frac{RPM}{RPM_P} = \frac{CS}{CS_P} \cdot \sqrt{\frac{T.Z.MM_P}{T_P.Z_P.MM}}$$
(4.11)

A eficiência isentrópica é determinada pela Eq. (4.12).

$$\eta_{IS} = \eta_{IS_{Max}} \cdot \left(1 - SEC \cdot \left| \frac{CS - CS_{\eta_{IS_{Max}}}}{CS_{\eta_{IS_{Max}}}} \right| \right) \cdot PF \cdot (1 - \alpha_1 \cdot VEC)$$
(4.12)

na qual SEC é a correção da velocidade para eficiência (em inglês, *speed correction for efficiency*); $CS_{\eta_{Max}}$ é a velocidade corrigida no ponto de eficiência máxima do compressor, *PF* é um fator de desempenho (em inglês, *performance factor*); α_1 é o ângulo relativo da palheta; *VEC* é o fator de correção da eficiência do ângulo da palheta (em inglês, *vane angle efficiency correction factor*).

A eficiência isentrópica máxima é calculada pela Eq. (4.13).

$$\eta_{IS_Max} = \frac{\eta_{IS_P}}{1 - SEC. \left| \frac{CS - CS_{\eta_{IS_Max}}}{CS_{\eta_{IS_Max}}} \right|}$$
(4.13)

A Eq. (4.12) foi desenvolvida para englobar a mudança de eficiência do compressor em um mapa do compressor de maneira simplificada, não havendo a necessidade de entrar no mapeamento completo do compressor durante as análises. À medida que a velocidade corrigida se aproxima da velocidade corrigida com eficiência máxima, o compressor se aproxima do ponto de referência no mapa (Figura 4.12). Esse ponto de referência não está no ponto de projeto, mas a uma velocidade corrigida mais baixa.

Os parâmetros *VEC* e *SEC* são termos de correção incluídos para determinar a redução na eficiência devido ao fechamento da palheta de guia e mostrar como a eficiência do compressor varia ao longo de uma linha de operação normal em função da velocidade corrigida, respectivamente.

Para a simulação do pré-aquecedor de ar, do evaporador e economizador, na condição fora de projeto, o desempenho do equipamento também é calculado pela técnica da efetividade-

NTU. No procedimento, também são usados os dados de área de superfície, coeficiente de transferência de calor, perda de pressão e vazão mássica calculadas na condição de projeto.

A perda de pressão no lado do tubo na condição fora de projeto é desenvolvida a partir da correlação apresentada por Mironer (1979), conforme Eq. (4.14).

$$\Delta P_{LT} = -f_{LT} \cdot \frac{l}{D} \cdot \frac{\bar{V}^2}{2} \cdot \rho \tag{4.14}$$

na qual ΔP é a perda de pressão; f é o fator de atrito; l é o comprimento do tubo; D é o diâmetro do tubo; \overline{V} é a velocidade média; ρ é a massa específica; O subscrito *LT* refere-se a lado do tubo.

O fator de atrito no lado do tubo é definido pela Eq. (4.15) apresentada por Kays e Crawford (1980).

$$f_{LT} = 0,046. \, Re^{-0.2} \tag{4.15}$$

na qual Re é o número de Reynolds.

Assim, a perda de pressão no lado do tubo na condição fora de projeto é dada pela Eq. (4.16).

$$\frac{\Delta P_{LT}}{\Delta P_{LT_P}} = \left(\frac{m}{m_P}\right)^x \cdot \left(\frac{T}{T_P}\right)^y \cdot \left(\frac{P}{P_P}\right)^z \cdot \left(\frac{\nu}{\nu_P}\right)^a$$
(4.16)

na qual v é a viscosidade cinemática; os valores dos expoentes x, y, z e a foram adquiridos de fabricantes de trocadores de calor e são fornecidos na base de dados do programa.

A perda de pressão no lado do gás na condição fora de projeto é desenvolvida a partir da correlação apresentada por Holman (1976), conforme Eq. (4.17).

$$\Delta P_{LG} = \frac{2.f_{LG}.G_{MAx}^2.N_1}{\rho}.\left(\frac{\mu_w}{\mu_b}\right)^{0.14}$$
(4.17)

na qual G_{Max} é a velocidade da vazão na região de menor área; N_1 é o número de linhas de tubos; μ_w é a viscosidade na parede; μ_b é a velocidade *bulk* da vazão; O subscrito *LG* refere-se a lado do gás.

O fator de atrito no lado do gás é definido pela Eq. (4.18) apresentada por Holman (1976).

$$f_{LG} = A_2. Re_{Max}^{-0.16} \tag{4.18}$$

na qual A_2 é um termo em função da geometria.

Assim, a perda de pressão no lado do tubo na condição fora de projeto é dada pela Eq. (4.19).

$$\frac{\Delta P_{LG}}{\Delta P_{LG_P}} = \left(\frac{m}{m_P}\right)^{1,84} \cdot \left(\frac{T}{T_P}\right)^1 \cdot \left(\frac{P}{P_P}\right)^{-1}$$
(4.19)

No ponto de projeto, o coeficiente global de transferência de calor é um dado de entrada. No ponto fora de projeto, o coeficiente global de transferência de calor é assumido como sendo dominado pelas resistências convectivas no lado do gás do trocador de calor. Esta hipótese é aceitável, uma vez que, a razão entre o coeficiente de transferência de calor interno e externo é de 100 para 1 no evaporador e economizador (ERBES, 1986 e PHILLIPS, 1986). Assumindo que a vazão sobre os tubos é turbulenta, a Eq. (4.20) é usada para calcular o coeficiente de transferência de calor. Essa relação é válida para o número de Reynolds na faixa de 4 a 400.000.

$$Nu = C. Re^n. Pr^m \tag{4.20}$$

na qual Nu é o número de Nusselt; Pr é o número de Prandtl; C, n e m são constantes.

Fazendo a razão entre o ponto de projeto e fora de projeto, considerando a fraca dependência da viscosidade, número de Prandtl e condutividade térmica em relação a temperatura (ERBES, 1986), é obtida a Eq. (4.21) para o cálculo do coeficiente global de transferência de calor na condição fora de projeto.

$$\frac{U}{U_P} = \left(\frac{m}{m_P}\right)^n \tag{4.21}$$

na qual n é uma constante no valor de 0,8.

Na simulação da câmara de combustão na condição fora de projeto, a perda de pressão é calculada pela Eq. (4.22) (WALSH e FLETCHER, 2004)

$$\frac{\Delta P_{CC}}{\Delta P_{CC_P}} = \left[\left(\frac{m_e \times \sqrt{T_e}}{P_e} \right) \middle/ \left(\frac{m_e \times \sqrt{T_e}}{P_e} \right)_P \right]^2 \tag{4.22}$$

na qual o subscrito e refere-se aos parâmetros na entrada.

A eficiência da câmara de combustão é determinada pela Eq. (4.23) (KURZKE, 2015.

$$(1 - \eta_{CC}) = \left(1 - \eta_{CC_P}\right) \times \left(\frac{\Omega}{\Omega_P}\right)^{1,6}$$
(4.23)

na qual Ω é a carga do combustor definida pela Eq (4.24).

$$\Omega = \frac{m_e}{P_e^{1,8} \times exp(T_e/300)}$$
(4.24)

A operação da turbina a gás na condição fora de projeto é descrita pela Eq. (4.25). É assumido que a operação ocorre sempre na condição de *choking* (PALMER, ERBES e PECHTL, 1993 e REYNOLDS e PERKINS, 1977).

$$\sigma \times \frac{m_e \times \sqrt{T_e^*}}{A_{3e} \times P_e^*} = constante \tag{4.25}$$

na qual σ é uma constante, definida pela Eq. (4.26); A₃ é a área da turbina; o sobrescrito * indica um parâmetro de estagnação.

$$\sigma = \sqrt{\frac{\gamma}{R_{pc}} \times \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}$$
(4.26)

A eficiência na condição fora de projeto é estimada pela fórmula semiempírica apresentada na Eq. (4.27) (LU e LIN, 1996 e ZHANG *et al.*, 2016).

$$\frac{\eta_{TG}}{\eta_{TG_P}} = \frac{RPM}{RPM_P} \times \sqrt{\frac{T_{e_P}}{T_e}} \times \sqrt{\frac{\delta_P^{(\gamma-1)/\gamma} - 1}{\delta^{(\gamma-1)/\gamma} - 1}} \times \left[\lambda - (\lambda - 1) \times \frac{RPM}{RPM_P} \times \sqrt{\frac{T_{e_P}}{T_e}} \times \sqrt{\frac{\delta_P^{(\gamma-1)/\gamma} - 1}{\delta^{(\gamma-1)/\gamma} - 1}}\right]^2$$
(4.27)

na qual δ é a razão de expansão; λ é uma constante conhecida.

Durante a simulação na condição fora de projeto, o desempenho do tubulão é modelado da mesma forma que na condição de projeto.

4.1.3 Modelagem da UTE de ciclo combinado na condição de projeto

Para a modelagem da UTE de ciclo combinado segue-se procedimento semelhante ao do sistema CGAM descrito na Subseção 4.1.1. Os componentes em comum aos dois sistemas térmicos não serão apresentados novamente, somente os valores dos parâmetros específicos para a UTE de ciclo combinado.

Os componentes da UTE de ciclo combinado que não foram utilizados no sistema CGAM são: queimador suplementar, superaquecedor, bomba, desaerador, condensador e turbina a vapor.

O bloco GAS representa o ar de admissão do compressor e o combustível fornecido para a câmara de combustão e para o queimador suplementar. Para o ar de admissão do compressor, foram inseridos os parâmetros de pressão, temperatura e umidade relativa nos valore de 101,3 kPa, 293,15 K e 60%, respectivamente (BOYAGHCHI e MOLAIE, 2015b). A vazão mássica de ar é calculada de acordo com a macro para a potência líquida de 415,1 MW (BOYAGHCHI e MOLAIE, 2015b). Para o combustível fornecido para a câmara de combustão e queimador suplementar, o bloco foi configurado para receber as informações da composição do combustível e o poder calorífico inferior definidos previamente no sistema. O bloco calcula a vazão mássica de combustível.

Para o bloco GTCOMP que modela o desempenho do compressor são fornecidos os valores de 87% para a eficiência isentrópica e 10 para a razão de pressão (BOYAGHCHI e MOLAIE, 2015b). Para o bloco GTCOMB que modela o desempenho da câmara de combustão

são fornecidos os valores de 1.244,15 K para a temperatura dos produtos da combustão na entrada da turbina a gás, 5% para a perda de pressão ao longo do equipamento e 98% para a eficiência da câmara de combustão (BOYAGHCHI e MOLAIE, 2015b). Para o bloco GTTURB que modela o desempenho da turbina a gás é fornecido o valor de 89% para a eficiência isentrópica (BOYAGHCHI e MOLAIE, 2015b).

O bloco BURNER, apresentado na Figura 4.13, representa um queimador suplementar, onde combustível é queimado no fluxo dos produtos da combustão para a caldeira de recuperação de calor com a finalidade de aumentar a temperatura e assim aumentar a quantidade de vapor produzido na caldeira de recuperação de calor (GENERAL ELECTRIC COMPANY, 2013). Foram fornecidos como dados de entrada a vazão mássica de combustível no valor de 0,8 kg/s, a eficiência do queimador suplementar no valor de 93% e a perda de pressão ao longo do componente no valor de 3% (BOYAGHCHI e MOLAIE, 2015b). O bloco calcula o aumento de temperatura de acordo com a vazão mássica de combustível especificada.

Figura 4.13 – Ícone do bloco BURNER. Fonte: General Electric Company (2013).

O bloco SPHT, apresentado na Figura 4.14, representa um superaquecedor, que é um trocador de calor, onde energia é extraída de uma corrente quente de gás e transferido para uma corrente de vapor para aquecer acima da temperatura de saturação (GENERAL ELECTRIC COMPANY, 2013). A CRC contém dois superaquecedores, um em cada nível de pressão. Foram inseridas as temperaturas de saída do vapor de 778,057 K para o Su-AP e 512,523 K para o Su-BP, e as perdas de pressão na corrente de vapor e na corrente dos produtos da combustão, nos valores de 5% e 3%, respectivamente (BOYAGHCHI e MOLAIE, 2015b).

Figura 4.14 – Ícone do bloco SPHT. Fonte: General Electric Company (2013).

O bloco EVAP representa o evaporador. A CRC contém dois evaporadores, um em cada nível de pressão. Para o Ev-AP foram fornecidos os valores de 13 K para a diferença de temperatura *pinch-point*, 10.146 kPa para a pressão e 3% de perda de pressão na corrente dos produtos da combustão (BOYAGHCHI e MOLAIE, 2015b). Para o Ev-BP foram fornecidos os valores de 13 K para a diferença de temperatura *pinch-point*, 1.049 kPa para a pressão e 3% de perda de pressão na corrente dos produtos da combustão na corrente dos produtos da combustão (BOYAGHCHI e MOLAIE, 2015b).

O bloco ECON representa o economizador e o pré-aquecedor. A CRC contém dois economizadores no nível de alta pressão. Para o Ec1-AP foram fornecidos a diferença de temperatura *approach* de 7,0000 K e as perdas de pressão na corrente de vapor e na corrente dos produtos da combustão, nos valores de 5% e 3%, respectivamente (BOYAGHCHI e MOLAIE, 2015b). Para o Ec2-AP foram fornecidos a diferença de temperatura *approach* de 19 K, e as perdas de pressão na corrente de vapor e na corrente dos produtos da combustão, nos valores de 5% e 3%, respectivamente (BOYAGHCHI e MOLAIE, 2015b). Para o Pr foram fornecidos a diferença de temperatura *approach* de 19 K, e as perdas de pressão na corrente de vapor e na corrente dos produtos da combustão, nos valores de 5% e 3%, respectivamente (BOYAGHCHI e MOLAIE, 2015b). Para o Pr foram fornecidos a diferença de temperatura *approach* de 30 K e as perdas de pressão na corrente de vapor e na corrente dos produtos da combustão, nos valores de 5% e 3%, respectivamente (BOYAGHCHI e MOLAIE, 2015b).

O bloco DRUM representa o tubulão. A CRC contém dois tubulões, um em cada nível de pressão. Foram fornecidos a pressão de 10.146 kPa para o Tub-AP e 1.049 kPa para o Tub-BP (BOYAGHCHI e MOLAIE, 2015b). O bloco DEAR, apresentado na Figura 4.15, modela o desempenho de um desaerador. A CRC contém um desaerador. Foi inserida a pressão 1.073,5 kPa para o De (BOYAGHCHI e MOLAIE, 2015b).

Figura 4.15 – Ícone do bloco DEAR. Fonte: General Electric Company (2013).

O bloco PUMP que representa a bomba é apresentado na Figura 4.16. A UTE de ciclo combinado tem duas bombas para cada CRC, uma em cada nível de pressão, e uma bomba de condensado. Para a B-AP foram fornecidos a pressão na saída, a eficiência isentrópica, e vazão mássica, nos valores de 11.046 kPa, 80% e 49,557 kg/s, respectivamente (BOYAGHCHI e MOLAIE, 2015b). Para a B-BP foram fornecidos a pressão na saída, a eficiência isentrópica, e vazão mássica, nos valores de 1.049 kPa, 80% e 10,878 kg/s, respectivamente (BOYAGHCHI e MOLAIE, 2015b). Para a B-Cond foram fornecidos a pressão na saída, a eficiência isentrópica, e vazão mássica, nos valores de 1.049 kPa, 80% e 10,878 kg/s, respectivamente (BOYAGHCHI e MOLAIE, 2015b). Para a B-Cond foram fornecidos a pressão na saída, a eficiência

isentrópica, e vazão mássica, nos valores de 1.130 kPa, 80% e 120,87 kg/s, respectivamente (BOYAGHCHI e MOLAIE, 2015b).

Figura 4.16 – Ícone do bloco PUMP. Fonte: General Electric Company (2013).

O bloco CONDSR que representa um condensador é apresentado na Figura 4.17. Nele, água é usada para resfriar o vapor da saída da turbina de baixa pressão até a condição de líquido saturado (GENERAL ELECTRIC COMPANY, 2013). Para o CONDSR é fornecido a pressão na saída do condensador no valor de 10 kPa (BOYAGHCHI e MOLAIE, 2015b). A água de resfriamento é representada pelo bloco SOURCE, sendo fornecidos os dados de vazão mássica da água, pressão e temperatura, nos valores de 3.780 kg/s, 101,3 kPa e 299,56 K (BOYAGHCHI e MOLAIE, 2015b). A saída da água de resfriamento é representada pelo bloco SINK e não há a necessidade de fornecer dados de entrada.

Figura 4.17 – Ícone do bloco CONDSR. Fonte: General Electric Company (2013).

No condensador, o coeficiente global de transferência de calor, a ser utilizado nos cálculos do método da efetividade-NTU, é definido pelas correlações da nona edição do método HEI (*Heat Exchange Institute*). O cálculo é baseado na Eq. (4.28). As tabelas dos métodos para consulta dos valores das constantes são disponíveis em *Heat Exchange Institute* (1995 apud GENERAL ELECTRIC COMPANY, 2013).

$$U = C_1 \times C_2 \times C_3 \times C_4 \tag{4.28}$$

na qual C_1 é uma constante baseado no diâmetro externo do tubo e na velocidade da água de resfriamento através dos tubos; C_2 é um fator de correção para a temperatura da água de resfriamento; C_3 é uma constante dependente do material do tubo e espessura; e C_4 é o fator de limpeza.

O bloco ST, apresentado na Figura 4.18, modela o desempenho de uma turbina a vapor (GENERAL ELECTRIC COMPANY, 2013). Para a TV-AP foi fornecido como dado de entrada a variável de decisão eficiência isentrópica no valor de 88% (BOYAGHCHI e MOLAIE, 2015b). Para a TV-BP foi fornecido como dado de entrada a variável de decisão eficiência isentrópica no valor de 90% (BOYAGHCHI e MOLAIE, 2015b).

Figura 4.18 – Ícone do bloco ST. Fonte: General Electric Company (2013).

Após a seleção de cada componente, conectá-los entre si e configurado os dados de entrada, o modelo na condição de projeto é simulado. A UTE de ciclo combinado modelada no GateCycleTM é apresentado na Figura 4.19.

Figura 4.19 – UTE de ciclo combinado. Fonte: : Elaborado pelo autor, a partir do uso do *software* GateCycleTM (GE, 2013).

4.1.4 Modelagem da UTE de ciclo combinado na condição fora de projeto

Para a simulação do modelo na condição fora de projeto, algumas alterações devem ser feitas. Primeiro deve ser alterada a macro para a potência líquida de 373,59 MW, 332,08 MW, 290,57 MW, 249,06 MW, 207,55 MW e 166,04 MW, referente as cargas na faixa de 90% a 40%.

Os desempenhos dos componentes em comum aos dois sistemas térmicos na condição fora de projeto, compressor de ar, câmara de combustão, turbina a gás, evaporador, economizador e tubulão, não serão apresentados novamente, uma vez que já foram descritos na Subseção 4.1.2. Dos componentes específicos da UTE de ciclo combinado, são eles, queimador suplementar, superaquecedor, bomba, desaerador, condensador e turbina a vapor, o desempenho do superaquecedor é o mesmo do procedimento dos equipamentos de transferência de calor apresentados na Subseção 4.1.2. O queimador suplementar e desaerador, são modelados da mesma forma que na condição de projeto.

Na simulação da bomba na condição fora de projeto, os dados da vazão e *head* são lidos na condição de projeto e utilizados nas curvas da bomba para prever o seu desempenho na condição fora de projeto.

O desempenho do condensador na condição fora de projeto é calculado com a área da superfície do condensador fixa, definida na condição de projeto. A vazão da água de resfriamento é mantida a mesma da condição de projeto, uma vez que a bomba opera com vazão constante. O método HEI também é utilizado no cálculo do coeficiente global de transferência de calor.

O desempenho da turbina a vapor na condição fora de projeto é descrito pela equação de Stodola modificada e pelo método Spencer Cotton Cannon (GENERAL ELECTRIC COMPANY, 2013). As características externas e internas da turbina a vapor são consideradas separadamente. As características externas referem-se à capacidade de passagem de fluxo da turbina em resposta às variações na temperatura do vapor de entrada, pressão e fluxos de extração e admissão. As características internas referem-se a variações na eficiência com mudanças nas condições de operação da turbina (GENERAL ELECTRIC COMPANY, 2013).

A equação de Stodola modificada (ERBES, 1986) é apresentada na Eq. (4.29). Essa relação é aplicada a cada seção da turbina a vapor, alta e baixa pressão. Primeiro, a Eq. (4.29) é usada para calcular o coeficiente de vazão na condição de projeto. Posteriormente, na execução fora do projeto, um procedimento de cálculo iterativo de ordem reversa com base na Eq. (4.29) é usado para determinar a distribuição de pressão em cada seção da turbina a vapor.

$$m_{e} = C_{q} \times \sqrt{\frac{P_{e}}{v_{e}}} \sqrt{1 - \left(\frac{r - r^{Cr}}{1 - r^{Cr}}\right)^{2}}$$
(4.29)

na qual C_q é o coeficiente de vazão; v é o volume específico; r é razão de pressão na saída; r^{Cr} é a razão de pressão crítica.

O método Spencer, Cotton e Cannon é aplicado para o cálculo da eficiência da turbina a vapor na carga parcial. O método apresenta uma série de curvas baseadas em dados coletados em testes de turbinas a vapor que corrigem a eficiência, a saber: correção da eficiência para a vazão volumétrica; correção da eficiência para o estágio de regulação; correção da eficiência para a razão de pressão; correção da eficiência para as condições iniciais; correção da eficiência para o estágio de regulação a carga parcial; correção da eficiência para a carga parcial; correção da eficiência para a substituição de 1800 rpm na seção de baixa pressão; e correção da eficiência para a média das iterações (SPENCER, COTTON e CANNON, 1963).

4.1.5 CycleLink

Após a configuração dos parâmetros para a modelagem na condição de projeto e fora de projeto, a ferramenta CycleLink foi utilizada para exportar os dados para uma planilha eletrônica do Excel. Através desta ferramenta, os modelos dos sistemas térmicos desenvolvidos no programa podem ser simulados na planilha eletrônica, na qual foram adicionadas as equações para a análise exergética e econômica, além das funções objetivo.

Conforme Subseção 3.2.2 do capítulo de fundamentação, para o cálculo da taxa de destruição de exergia evitável, é preciso estimar a taxa de destruição de exergia inevitável definindo um ciclo híbrido no qual todos os componentes operam sob condições quase ideais. Assim, para os modelos configurados conforme descrito anteriormente neste capítulo são alterados os parâmetros apresentados na Tabela 4.1 para caracterizar o ciclo híbrido (MOSSI IDRISSA e GONI BOULAMA, 2019).

Parâmetros	Sistema CGAM	UTE de ciclo combinado
Eficiência isentrópica do compressor de ar	0,9800	0,9800
Perda de pressão da corrente de ar no PAA	0,0050	-
Perda de pressão da corrente dos produtos da combustão no PAA	0,0050	-
Eficiência da câmara de combustão	1,0000	1,0000
Perda de pressão na câmara de combustão	0,0050	0,0050
Eficiência isentrópica da turbina a gás	0,9800	0,9800
Eficiência do queimador suplementar	-	0,9700
Perda de pressão no queimador suplementar	-	0,0030
Perda de pressão na seção do Su / Ev / Ec	0,0050	0,0050
Eficiência isentrópica da turbina a vapor	-	0,9700
Eficiência isentrópica da bomba	-	0,9500
Perda de pressão no condensador	-	0,0030

Tabela 4.1 – Valores dos parâmetros para o ciclo híbrido.

Fonte: Elaborado pelo autor.

4.2 modeFRONTIERTM

Para utilizar o modeFRONTIERTM, primeiro é preciso montar a estrutura para o estudo de otimização. No programa, cada etapa necessária em um cálculo de otimização é representada por um nó, nomenclatura utilizada no programa. A estrutura para o estudo de otimização, composta pela conexão dos diferentes nós, cada qual com sua funcionalidade, é apresentada na Figura 4.20. Nesta tese, a estrutura para o estudo de otimização é composta pelos nós: (i) planejamento dos experimentos (em inglês, *design of experimetns – DOE*); (ii) agendador (em inglês, *scheduler*); (iii) excel; (iv) entrada (em inglês, *input*); (v) saída (em inglês, *output*); (vi) objetivo (em inglês, *objective*); e (vii) fim (em inglês, *exit*).

Figura 4.20 – Estrutura para o estudo de otimização. Fonte: Esteco (2007).

4.2.1 Nó planejamento dos experimentos

O nó inicial para o projeto de otimização é o nó planejamento dos experimentos. Nele é selecionado o algoritmo a ser usado para criar a população inicial das variáveis de decisão que serão fornecidas aos algoritmos de otimização. Foi selecionado o algoritmo *Random*, que é baseado na teoria matemática da geração de números aleatórios (ESTECO, 2007). A população gerada pelo algoritmo *Random* é espalhada uniformemente entre os limites inferior e superior

das variáveis de decisão. O tamanho da população foi definido como 20, representando um compromisso entre capacidade computacional e espaço de busca.

4.2.2 Nó agendador

A saída do nó *DOE* é conectado a entrada do nó agendador. Nele é selecionado o algoritmo de otimização que vai determinar a estratégia para selecionar as variáveis de decisão geradas no nó DOE e como gerar novas variáveis de decisão (ESTECO, 2007). Os algoritmos de otimização selecionados são: (i) algoritmo genético de classificação não dominado II; (ii) enxame de partícula multiobjetivo; e (iii) recozimento simulado multiobjetivo. Os parâmetros necessários para configurar os algoritmos de otimização selecionados são apresentados nas Subseções 4.2.2.1, 4.2.2.2 e 4.2.2.3.

No nó agendador ainda é necessário configurar os parâmetros do tempo de execução para o loop das análises (ESTECO, 2007). O número de avaliações simultâneas de projeto é o número de avaliações executas em paralelo ao mesmo tempo. Será executada uma análise de cada vez. A caixa de seleção "salvar erros" no banco de dados define se os erros devem ser arquivados ou descartados. A caixa de seleção "avaliar variáveis repetidas" define se os pontos repetidos devem ser reavaliados ou se serão reutilizados os valores já armazenados no banco de dados. A caixa de seleção "salvar variáveis repetidas no banco de dados" define se os pontos repetidos devem ser salvos no banco de dados mesmo que já estejam presentes. A caixa de seleção "avaliar projetos inviáveis" verifica a viabilidade das restrições nas variáveis de entrada. Havendo pelo menos uma restrição inviável, a variável não será avaliada e definida como erro. A caixa "limpar diretório das variáveis na saída" define a política de limpeza do diretório do programa, apresentando as opções de nunca remover os diretórios dos projetos, sempre remover o diretório dos projetos e não remover nas falhas, opção que limpa o diretório nos projetos bem-sucedidos e não limpa quando apresenta falhas. As configurações apresentadas na Tabela 4.2 foram selecionadas de modo a poder ver a evolução do processo de otimização pelos algoritmos e de viabilizar a depuração das atividades.

Tabela 4.2 – Parâmetros do tempo de execução nó agendador.				
Número de avaliações simultâneas de	1			
projeto				
Salvar erros no banco de dados	Sim			
Avaliar variáveis repetidas	Sim			
Salvar variáveis repetidas no banco de dados	Sim			
Avaliar projetos inviáveis	Sim			
Limpar diretório das variáveis	Não limpar quando houver falha			

Fonte: Elaborado pelo autor.

4.2.2.1 Recozimento simulado multiobjetivo

O algoritmo recozimento simulado multiobjetivo (em inglês, *multi-objective simulated annealing* – MOSA) é baseado no trabalho de Kirkpatrick, Gelatt Jr. e Vecchi (1983). Para o cálculo de otimização através deste algoritmo, devem ser fornecidos no modeFRONTIERTM alguns dados de entrada para sua configuração, são eles:

- Número de iterações: este valor define o tamanho máximo da execução.
- Temperatura inicial (T₀): a temperatura é um parâmetro normalizado e sua evolução temporal é governada pelo programador de temperatura. Após uma fase quente inicialmente (T > 0), segue-se uma fase fria (T = 0). Na fase quente, a temperatura passa de seu valor inicial T₀ para zero, seguindo uma curva de diminuição quadrática. Temperaturas iniciais mais altas implicam maior robustez, mas no limite T₀ → 1 a evolução inicial é quase aleatória e é gasto muito tempo antes que o algoritmo comece a convergir. Pelo contrário, temperaturas mais baixas implicam uma maior convergência, mas há uma perda na robustez do algoritmo. De fato, no limite T₀ → 0, temos uma rápida "extinção" em vez de um "recozimento", o algoritmo converge rapidamente, mas adere à ótimos locais. O valor padrão é T₀ = 0,1, representando um bom compromisso entre robustez e convergência.
- Fração de Iterações Quentes: este valor determina a importância relativa da fase quente e da fria. Mais iterações na fase quente implicam uma maior robustez; pelo contrário, mais iterações na fase fria implicam uma maior convergência. O valor padrão é 0,5.
- Comprimento Mínimo de Perturbação (l_{min}): o parâmetro de comprimento de perturbação, governado pelo Programador de Comprimento de Perturbação é um parâmetro normalizado sem dimensão. Representa o comprimento do vetor de perturbação espacial, expresso em unidades da diagonal de um hipercubo unitário no espaço das variáveis N-dimensionais (para levar em consideração adequadamente a dimensionalidade do problema). O usuário especifica o comprimento mínimo de perturbação, l_{min}, ou seja, o valor que caracteriza a fase fria. O valor inicial l₀ é então calculado consequentemente, por conveniência, como a média geométrica entre o valor mínimo l_{min} e o valor máximo possível (ou seja, 1). O valor de l_{min} determina a propagação da distribuição de pontos no espaço das variáveis. Valores mais altos aumentam a robustez do algoritmo, no entanto, no limite l_{min} → 1, a evolução se torna totalmente aleatória. Pelo contrário, valores mais baixos implicam uma maior convergência; mas no limite l_{min} → 0 o algoritmo novamente apresenta um mau desempenho, sendo a evolução dos indivíduos isolados espacialmente limitada à vizinhança das posições iniciais dos pontos DOE. O valor padrão é l_{min} = 0,05 e mostrou um bom desempenho em muitos exemplos práticos.

 Viabilidade dos pontos: se todos os pontos forem permitidos, a perturbação espacial pode trazer um ponto para a região viável, permitindo explorar o espaço além do limite imposto por uma possível restrição. Se pontos inviáveis não forem permitidos, a perturbação espacial não permite que os pontos perturbados ultrapassem o limite imposto por uma restrição, ganhando eficiência no algoritmo, uma vez que apenas os pontos possíveis são avaliados.

Na Tabela 4.3 apresentam-se os valores configurados para os parâmetros do algoritmo MOSA.

Tabela 4.3 – Parâmetros do algoritmo MOSA.	
Parâmetros	Valor padrão do programa
Número de iterações [1 - 5000]	100
Temperatura inicial $[0,0-1,0]$	0,1
Fração de iterações quentes $[0, 1 - 1, 0]$	0,5
Parâmetros avançados	Valor padrão do programa
Comprimento mínimo de perturbação [0,000001 – 1,0]	0,05
Viabilidade dos pontos [Todos os pontos permitidos – Sem pontos inviáveis]	Sem pontos inviáveis
Fonte: Elaborado pelo autor.	

4.2.2.2 Algoritmo genético de classificação não dominado II

O algoritmo genético de classificação não dominado II (em inglês, *non-dominated sorting genetic algorithm II* – NSGA II) é baseado no trabalho de Deb *et al.* (2000). Para o cálculo de otimização através deste algoritmo, devem ser fornecidos no modeFRONTIERTM alguns dados de entrada para sua configuração, são eles:

- Número de gerações: esse valor define o tamanho máximo da execução.
- Probabilidade de cruzamento: este parâmetro especifica a probabilidade de ocorrência do operador cruzamento clássico. No caso de variáveis codificadas em binários, o operador cruzamento troca algum material genético entre dois indivíduos, cortando as cadeias binárias de *DNA* em um local aleatório e colando os segmentos opostos pertencentes aos diferentes indivíduos. Para variáveis codificadas reais, o NSGA-II usa um operador de cruzamento binário simulado (DEB e AGRAWAL, 1995). Esse operador emula o comportamento do cruzamento binário clássico, manipulando diretamente as variáveis codificadas reais, sem a necessidade de codificar as variáveis contínuas em qualquer base binária arbitrária.
- Probabilidade de mutação para vetores com código real: esse valor fornece a probabilidade de que variáveis com código real sejam alteradas aleatoriamente. Como no caso do operador cruzamento aplicado às variáveis com código real, o operador mutação para variáveis com código real é um operador de mutação binário simulado, imitando o comportamento do operador binário no campo de variáveis contínuas. O valor máximo permitido para esse parâmetro é P_m = 1/N₂, onde N₂ é o número das variáveis com código real. Se um valor

excedente for definido (por exemplo, o valor padrão 1), o algoritmo redefine o valor do parâmetro para P_m , lançando uma mensagem de aviso. É seguro usar o valor padrão 1 e deixar a redução ocorrer.

- Probabilidade de mutação para sequências de caracteres binárias: esse valor fornece a probabilidade de que variáveis codificadas em binários sejam alteradas aleatoriamente. O valor máximo permitido para esse parâmetro é P_m = 1/L, em que L é o comprimento da cadeia de *DNA* das variáveis de código binário. Se um valor excedente for definido (por exemplo, o valor padrão 1), o algoritmo redefine o valor do parâmetro para P_m, lançando uma mensagem de aviso. É seguro usar o valor padrão 1 e deixar a redução ocorrer.
- Índice de distribuição para cruzamento com código real: o operador índice de distribuição para cruzamento binário simulado é um parâmetro que define o formato da distribuição de probabilidade do operador cruzamento. Para valores pequenos, é provável que pontos distantes dos pais sejam escolhidos, enquanto para valores grandes, apenas pontos mais próximos dos pais provavelmente serão escolhidos (DEB e AGRAWAL, 1995). Portanto, valores pequenos implicam uma pesquisa ampla e aumentam a robustez do algoritmo; pelo contrário, grandes valores limitam a busca a uma região estreita, obtendo melhor precisão (exatidão) na solução.
- Índice de distribuição para mutação codificada em real: o significado deste parâmetro é análogo ao descrito acima. O operador índice de distribuição para mutação binária simulada define o formato da distribuição de probabilidade para o operador mutação. Para valores pequenos, é provável que o ponto aleatoriamente perturbado esteja longe do ponto original não perturbado, enquanto para valores grandes, é provável que o ponto aleatoria grandes, é provável que o ponto perturbado esteja mais próximo do ponto original.
- Tipo de cruzamento para variáveis de código binário: duas seleções, simples ou uniforme, são possíveis para este campo. A simples é o operador usual de cruzamento clássico. Esse operador corta as sequências binárias de *DNA* de dois indivíduos em um único local aleatório e cola os segmentos opostos pertencentes aos diferentes indivíduos. O operador uniforme varre as sequências binárias de *DNA* dos dois pais, executando uma seleção aleatória entre os valores de dois *bits* para cada local.

Os valores configurados para os parâmetros do algoritmo NSGA-II são apresentados na Tabela 4.4.

Parâmetros	Valor padrão do programa
Número de gerações [1 - 5000]	100
Probabilidade de cruzamento $[0,0-1,0]$	0,9
Probabilidade de mutação para vetores com código real [0,0 – 1,01]	1,0
Probabilidade de mutação para cadeias binárias [0,0 – 1,0]	1,0
Parâmetros avançados	Valor padrão do programa
Índice de distribuição para cruzamento com código real [0,5 – 100,0]	20,0
Índice de distribuição para mutação com código real [0,5 – 500,0]	20,0
Tipo de cruzamento para variáveis de código binário [Simples – Uniforme]	Simples

Tabela 4.4 – Parâmetros do algoritmo NSGA-IL

Fonte: Elaborado pelo autor.

4.2.2.3 Otimização de enxame de partículas multiobjetivo

O algoritmo de otimização de enxame de partículas multiobjetivo (em inglês, multiobjective particle swarm optimization – MOPSO) é baseado no trabalho de Mostaghim (2004). Para o cálculo de otimização através deste algoritmo, devem ser fornecidos no modeFRONTIERTM alguns dados de entrada para sua configuração, são eles: (i) o número de gerações; e (ii) a turbulência.

Uma pequena turbulência aumenta a robustez do algoritmo. É um parâmetro que representa a probabilidade de adicionar uma pequena perturbação aos pontos. Na Tabela 4.5 apresentam-se os valores configurados para os parâmetros do algoritmo MOPSO.

Tabela 4.5 – Parametros do algoritmo MOPSO.				
Parâmetros	Valor padrão do programa			
Número de gerações [1 - 5000]	100			
Turbulência [0,0 – 0,9]	0,2			

Tabala 4.5 Darâmatras de algoritmo MODSO

Fonte: Elaborado pelo autor.

4.2.3 Nós: excel, entrada, saída, objetivo e fim

O Nó do Excel armazena e configura pastas de trabalho e macros escritas na linguagem VBA do Microsoft® Excel. Também define os arquivos e as variáveis a serem enviadas de um nó para outro (ESTECO, 2007). Neste nó foi inserida a planilha eletrônica obtida a partir da aplicação da ferramenta CycleLink, com o modelo do sistema simulado. É necessário informar as células nas quais as variáveis de decisão se encontram, para possibilitar que os nós de entrada insiram na planilha os valores das variáveis e o sistema seja simulado nesta condição. Também é necessário informar as células nas quais as funções objetivo foram calculadas, para possibilitar que os nós saídas recebam os valores e realizem a análise de maximização e minimização das funções objetivo.

O nó de entrada identifica a variável de decisão. O papel do DOE e do algoritmo de otimização é o de gerar um conjunto de valores para os nós de entrada. Para a configuração deste nó deve ser especificado:

- Os limites inferior e superior que podem ser atribuídos às variáveis pelo DOE e pelos algoritmos de otimização.
- O número de valores (um número inteiro) entre os valores inferiores e superiores (incluídos) permitidos para a variável. Um valor "0" para a base indica que qualquer valor real entre os limites inferior e superior é legal (ou seja, a variável é contínua). Foi selecionado para aceitar qualquer valor real.
- A distância (um valor real) entre dois valores legais sucessivos para a variável. Um valor "0" para a etapa indica que qualquer valor real entre os limites inferior e superior é legal (ou seja, a variável é contínua). Também foi selecionado para aceitar qualquer valor real.

Na Tabela 4.6 apresentam-se os limites inferior e superior para as variáveis de decisão do sistema CGAM e da UTE de ciclo combinado.

	Sistema	CGAM	UTE de ciclo combinado		
Variável	Limite	Limite	Limite	Limite	
	inferior	superior	inferior	superior	
Razão de pressão	4	20	3	20	
Eficiência isentrópica do compressor	0,75	0,90	0,70	0,94	
Temperatura de saída da corrente de ar do PAA	700 [K]	1.100 [K]	-	-	
Eficiência isentrópica da turbina a gás	0,75	0,92	0,70	0,94	
Temperatura de entrada na turbina a gás	1.100 [K]	1.650 [K]	1.000 [K]	1.500 [K]	
Vazão mássica de combustível para o QS	-	-	0,0 [kg/s]	1,0 [kg/s]	
Eficiência isentrópica da bomba	-	-	0,60	0,90	
Eficiência isentrópica da turbina a vapor	-	-	0,70	0,94	

Tabela 4.6 - Limites inferior e superior para as variáveis de decisão.

Fonte: Adaptado de Pires (2010) e Boyaghchi e Molaie (2015).

O nó de saída recebe o valor da função objetivo calculado na planilha eletrônica e passa este dado ao nó objetivo que por sua vez irá ser parâmetro de como o DOE e os algoritmos de otimização devem agir para minimizar ou maximizar o dado analisado. Neste estudo, como foram definidas duas funções objetivos, dois nós de saída e objetivo foram usados. O primeiro recebe o valor da função custo que deve ser minimizado e o segundo o valor da função de exergia destruída evitável que deve ser maximizado. O nó fim identifica o fim das análises quando os objetivos são atingidos.

5 Resultados

Neste capítulo, são apresentados os resultados da modelagem do sistema CGAM e da usina termelétrica de ciclo combinado, nas condições de projeto e fora de projeto, no programa GateCycleTM. Também são apresentadas as análises exergética e econômica, além dos resultados obtidos pela aplicação das técnicas de otimização no sistema CGAM e na UTE de ciclo combinado.

5.1 Modelagem do sistema CGAM

A fim de validar a modelagem do sistema CGAM no programa GateCycleTM, são calculadas as variações entre os valores dos parâmetros (temperatura e pressão), obtidos a partir da simulação no programa GateCycleTM e os valores dos parâmetros apresentados em Valero *et al.* (1994).

A Tabela 5.1 apresenta os valores da temperatura e pressão, na condição de projeto, e as respectivas variações. Para a temperatura, as maiores variações foram nos pontos 2, 5 e 6, com valores inferiores a 2,15%. Para a pressão, todos os pontos apresentaram variações inferiores a 0,05%.

rabeia 5.1 – remperatura e pressao do COANT e COANGE na condição de projeto.						
Donto*	CGAM**	CGAM _{GC} ***	Variação [0/]	CGAM**	CGAM _{GC} ***	Variação [0/]
1 01110	T [K]	T [K]	Vallação [70]	P [kPa]	P [kPa]	Vallação [70]
1	298,15	298,15	$0,00^{****}$	101,30	101,30	$0,00^{****}$
2	595,51	588,57	-1,16	863,40	863,42	0,00
3	914,28	914,28	$0,00^{****}$	820,20	820,25	0,01
16	1.000,00	298,15	$0,00^{****}$	1.000,00	1.000,00	$0,00^{****}$
4	1.492,63	1.492,63	$0,00^{****}$	779,20	779,24	0,00
5	987,90	1.008,99	2,13	109,90	109,88	-0,02
6	718,76	703,61	-2,11	106,60	106,58	-0,02
7	487,16	487,17	0,00	102,63	102,58	-0,05
8	400,26	403,34	0,77	101,30	101,30	0,00
9	298,15	298,15	$0,00^{****}$	2.000,00	2.000,00	$0,00^{****}$
10	470,56	470,53	0,00	2.000,00	2.000,00	$0,00^{****}$
11	485,52	485,53	0,00	2.000,00	2.000,00	$0,00^{****}$
12	485,52	485,53	0,00	2.000,00	2.000,00	$0,00^{****}$
13	485,52	485,53	0,00	2.000,00	2.000,00	$0,00^{****}$

Tabela 5.1 – Temperatura e pressão do CGAM e CGAM_{GC} na condição de projeto

Fonte: Elaborado pelo autor. *Pontos referentes a Figura 3.1

**Valores dos parâmetros obtidos em Valero *et al.* (1994).

****Valores dos parâmetros obtidos através do programa GateCycleTM.

****O parâmetro neste ponto foi um dado de entrada no programa GateCycleTM, por isto a variação de 0,00%, uma vez que foram inseridos no programa os valores iguais aos apresentados por Valero *et al.* (1994).

A Tabela 5.2 apresenta a comparação de outros parâmetros importantes do sistema

CGAM na condição de projeto. Os parâmetros apresentados são os disponíveis em Valero et

al. (1994). Entre estes parâmetros, a maior variação foi da vazão mássica de combustível e vazão mássica de vapor saturado, respectivamente -14,61% e -6,64%.

Parâmetros	CGAM*	CGAM _{GC} **	Variação [%]
Potência da turbina a gás [kW]	59.692,50	59.974,25	0,47
Potência do compressor de ar [kW]	29.692,50	29.356,54	-1,13
Potência líquida [kW]	30.000,00	30.005,36	0,02
Diferença de temperatura pinch-point [K]	1,64	1,64	$0,00^{***}$
Vazão mássica de ar [kg/s]	99,46	97,88	-1,58
Vazão mássica de combustível [kg/s]	1,63	1,52	-6,64
Vazão mássica de produtos da combustão [kg/s]	101,08	99,40	-1,66
Vazão mássica de vapor saturado [kg/s]	14,00	11,95	-14,61

Tabela 5.2 - Parâmetros do CGAM e CGAM_{GC} na condição de projeto.

Fonte: Elaborado pelo autor.

*Valores dos parâmetros obtidos em Valero et al. (1994).

**Valores dos parâmetros obtidos através do programa GateCycleTM.

^{***}O parâmetro neste ponto foi um dado de entrada no programa GateCycleTM, por isto a variação de 0,00%, uma vez que foram inseridos no programa os valores iguais aos apresentados por Valero *et al.* (1994).

Como verificado nas Tabelas 5.1 e 5.2, todos os parâmetros apresentaram variações aceitáveis em seus valores, permitindo-se assim validar a modelagem do sistema CGAM no programa GateCycleTM.

A Tabela 5.3 apresenta os valores de alguns parâmetros importantes, obtidos a partir da simulação no programa GateCycleTM para a condição fora de projeto nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%.

Donômatrica	Carga				
Parametros	90%	80%	70%		
Potência da turbina a gás [kW]	54.120,36	49.440,93	44.698,65		
Potência do compressor de ar [kW]	27.120,47	25.442,01	23.712,39		
Potência líquida [kW]	26.999,89	23.998,91	20.986,26		
Eficiência térmica do ciclo [%]	38,32	36,99	35,43		
Heat rate [-]	2,61	2,70	2,82		
Vazão mássica de ar [kg/s]	92,11	86,25	80,22		
Vazão mássica de combustível [kg/s]	1,41	1,30	1,18		
Vazão mássica de vapor saturado [kg/s]	11,37	10,76	10,13		
Parâmetros	60%	50%	40%		
Potência da turbina a gás [kW]	39.952,58	35.158,18	30.244,27		
Potência do compressor de ar [kW]	21.957,21	20.149,58	18.253,02		
Potência líquida [kW]	17.995,37	15.008,59	11.991,25		
Eficiência térmica do ciclo [%]	33,61	31,42	28,68		
Heat rate [-]	2,98	3,18	3,49		
Vazão mássica de ar [kg/s]	74,12	67,85	61,30		
Vazão mássica de combustível [kg/s]	1,07	0,96	0,84		
Vazão mássica de vapor saturado [kg/s]	9,49	8,81	8,10		

Tabela 5.3 - Parâmetros do CGAM_GC na condição fora de projeto.

Fonte: Elaborado pelo autor.

5.1.1 Análise exergética

A Tabela 5.4 apresenta os valores de exergia dos pontos do esquema do sistema CGAM, na condição de projeto.

	Tabela 5.4 – Valores de exergia do sistema CGAM na condição de projeto.						
Ponto [*]	Exergia física específica [kJ/kg]	Exergia química específica [kJ/kg]	Exergia total específica [kJ/kg]	Exergia total [kW]			
1	0,0000	0,0000	0,0000	0,0000			
2	272,3111	0,0000	272,3111	26.654,6785			
3	465,2017	0,0000	465,2017	45.535,4199			
4	1.093,5813	12,8429	1.106,4242	109.981,3782			
5	453,0146	12,8429	465,8574	46.307,4158			
6	196,3173	12,8429	209,1601	20.791,0511			
7	55,8236	12,8429	68,6665	6.825,6283			
8	19,3827	12,8429	32,2255	3.203,3012			
9	1,9793	0,0000	1,9793	23,6615			
10	158,3861	0,0000	158,3861	1.893,4142			
11	184,0951	0,0000	184,0951	2.279,6823			
12	914,0179	0,0000	914,0179	11.318,4484			
13	914,0179	0,0000	914,0179	10.926,5526			

Fonte: Elaborado pelo autor.

*Pontos referentes a Figura 3.1

A Figura 5.1 indica a taxa de exergia destruída de cada componente do sistema CGAM na condição de projeto obtida por meio da análise de exergia convencional. O componente com maior taxa de exergia destruída é a câmara de combustão, com o equivalente a 41,34% do total de exergia destruída em todo o ciclo e uma eficiência exergética de 88,47%. A maior taxa de exergia destruída ocorre na câmara de combustão devido à reação química e a grande diferença de temperatura entre o combustível, comburente e produtos da combustão.

O segundo componente com maior taxa de destruição de exergia, com o equivalente a 19,28% do total de exergia destruída em todo o ciclo e uma eficiência exergética de 61,99%, é a caldeira de recuperação de calor, composta pelo evaporador, economizador e tubulão.

O terceiro componente com maior taxa de destruição de exergia é o pré-aquecedor de ar, com o equivalente a 19,14% do total de exergia destruída em todo o ciclo e uma eficiência exergética de 73,99%. O quarto componente é a turbina a gás, com o equivalente a 14,13% do total de exergia destruída em todo o ciclo e uma eficiência exergética de 92,31%. O quinto componente é o compressor de ar, com o equivalente a 6,10% do total de exergia destruída em todo o ciclo e uma eficiência exergética de 92,65%.

Figura 5.1 – Taxa de exergia destruída em cada componente do sistema CGAM na condição de projeto. Fonte: Elaborado pelo autor.

Aplicando a análise de exergia avançada, são obtidas as parcelas endógena, exogéna, inevitável e evitável, de acordo com Figura 5.2. O fracionamento da exergia destruída proporciona uma melhor visualização e entendimento do comportamento dos componentes do sistema, de forma isolada e em conjunta, fornecendo dados para estabelecer uma ordem de prioridade para melhoria do sistema. Do montante de 34.667,17 kW de exergia destruída, 20.695,20 kW é endógena e 13.971,97 kW é exógena, Figura 5.2A. A parcela endógena maior que a exógena, indica que a relação entre os componentes do ciclo é fraca. O montante inevitável é de 26.388,35 kW e o evitável, que indica o real potencial de melhoria, é de 8.278,82 kW, Figura 5.2B. O quantitativo de exergia endógena maior que a exógena, indica que a exergia destruída de sineficiências dos próprios componentes isoladamente e em conjunto com o quantitativo de exergia evitável, reitera a possibilidade de melhoria do sistema por meio de intervenção nos componentes.

Figura 5.2 - Fracionamento da taxa de exergia destruída no sistema CGAM na condição de projeto. Fonte: Elaborado pelo autor.

A Figura 5.3 apresenta as parcelas endógena e exógena da exergia destruída de cada equipamento. A turbina a gás é o componente que apresenta maior percentual de exergia destruída endógena, 90,87%, seguido do compressor de ar, câmara de combustão, préaquecedor de ar e caldeira de recuperação de calor, com os valores de 69,78%, 66,79%, 58,83% e 20,81%, respectivamente.

A Figura 5.4 apresenta as parcelas evitável e inevitável da exergia destruída de cada equipamento. O compressor de ar é o componente que apresenta maior percentual de exergia destruída evitável, 98,43%, seguido da turbina a gás, pré-aquecedor de ar, caldeira de recuperação de calor e câmara de combustão, com os valores de 37,48%, 25,05%, 19,03% e 8,78%, respectivamente. Na Figura 5.5 é feito um *zoom* para melhor visualização da parcela inevitável no compressor de ar.

Figura 5.3 – Taxa de exergia destruída endógena e exógena em cada componente do sistema CGAM na condição de projeto.

Figura 5.4 – Taxa de exergia destruída evitável e inevitável em cada componente do sistema CGAM na condição de projeto. Fonte: Elaborado pelo autor.

91

Figura 5.5 – Zoom na taxa de exergia destruída evitável e inevitável do compressor de ar do sistema CGAM na condição de projeto. Fonte: Elaborado pelo autor.

A partir da análise de exergia avançada, ainda é possível definir as porcentagens evitável e inevitável das parcelas endógena e exógena e vice-versa, conforme Figura 5.6. Do montante de 20.695,20 kW da parte endógena, 15.791,58 kW é inevitável e 4.903,62 kW é evitável. O total de 13.971,99 kW da parte exógena é fracionada em 10.596,77 kW inevitável e 3.375,20 kW evitável. A parte inevitável de 26.388,35 kW é dividia em 15.791,58 kW de forma endógena e 10.596,77 kW de forma exógena. Do montante de 8.278,82 kW da parcela evitável, 4.903,62 kW é endógena e 3.375,20 é exógena.

ura 5.6 – Combinações das parcelas da exergia destruída no sistema CGAM na condição de projeto Fonte: Elaborado pelo autor. A taxa de exergia destruída de cada componente do sistema CGAM na condição fora de projeto, obtida por meio da análise de exergia convencional, pode ser observada na Figura 5.7. Assim como na condição de projeto, a câmara de combustão é o componente com maior taxa de exergia destruída, seguido do pré-aquecedor de ar, caldeira de recuperação de calor, turbina a gás e compressor de ar.

15.000

■90% ■80% ■70% ■60% ■50% ■40%

Figura 5.7 - Taxa de exergia destruída em cada componente do sistema CGAM na condição fora de projeto. Fonte: Elaborado pelo autor.

A câmara de combustão representa 40,49%, 39,50%, 38,36%, 36,99%, 35,35% e 33,30% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 88,76%, 89,08%, 89,45%, 89,88%, 90,39% e 91,01%, respectivamente.

O pré-aquecedor de ar representa 19,81%, 20,58%, 21,51%, 22,58%, 23,89% e 25,52% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 74,21%, 74,42%, 74,61%, 74,80%, 74,99% e 75,15%, respectivamente.

A caldeira de recuperação de calor representa 19,62%, 20,02%, 20,46%, 20,99%, 21,63% e 22,39% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 62,13%, 62,24%, 62,38%, 62,49%, 62,59% e 62,70%, respectivamente.

A turbina a gás representa 13,79%, 13,41%, 12,95%, 12,44%, 11,85% e 11,12% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%,

respectivamente. A eficiência exergética apresenta os valores de 92,41%, 92,53%, 92,68%, 92,84%, 93,03% e 93,27%, respectivamente.

O compressor de ar representa 6,28%, 6,48%, 6,72%, 6,98%, 7,29% e 7,66% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 92,54%, 92,42%, 92,28%, 92,13%, 91,96% e 91,76%, respectivamente.

Com a variação da carga, de 90% para 40%, a exergia destruída na câmara de combustão e turbina a gás diminuiu com a diminuição da carga parcial, enquanto para o pré-aquecedor de ar, caldeira de recuperação de calor e compressor de ar, aumentou com a diminuição da carga parcial. A relação inversa da exergia destruída e carga de operação dos componentes préaquecedor de ar, caldeira de recuperação de calor e compressor de ar é devido ao aumento da variação de temperatura nestes componentes à medida que a carga parcial diminui.

Na Tabela 5.5 podem ser observados os valores das parcelas endógena, exogéna, inevitável e evitável de todo o ciclo e suas respectivas porcentagens, obtidos a partir da análise de exergia avançada nas cargas parciais. Tanto no fracionamento endógeno e exógeno, quanto no fracionamento evitável e inevitável, a mesma tendência observada na carga nominal é constatada nas cargas parciais, ou seja, predominância da parcela endógena em relação a exógena, e predominância da parcela inevitável em relação a evitável, exceto na carga de 40%, na qual a parcela exógena é maior que a parcela endógena. Nota-se também que o percentual das parcelas endógena e inevitável apresentam uma relação direta com a carga de operação. O percentual das parcelas exógena e evitável apresentam uma relação inversa.

Corrao -		Exerg	jia destruída		
Carga	Real	Endógena	%	Exógena	%
90%	32.212,07	18.843,21	58,49	13.368,86	41,50
80%	29.745,68	16.989,31	57,12	12.756,36	42,88
70%	27.243,29	15.138,19	55,57	12.105,11	44,43
60%	24.744,88	13.294,11	53,72	11.450,77	46,27
50%	22.216,68	11.447,44	51,53	10.769,24	48,47
40%	19.623,87	9.604,09	48,94	10.019,78	51,06
Corgo		Exerg	a destruída		
Carga	Real	Evitável	%	Inevitável	%
90%	32.212,07	7.911,03	24,56	24.301,04	75,44
80%	29.745,68	7.552,52	25,39	22.193,16	74,61
70%	27.243,29	7.179,34	26,35	20.063,95	73,65
60%	24.744,88	6.811,47	27,53	17.933,41	72,47
50%	22.216,68	6.435,00	28,96	15.781,68	71,03
40%	19.623,87	6.198,47	31,59	13.425,39	68,41

Tabela 5.5 – Fracionamento da taxa de exergia destruída no sistema CGAM na condição fora de projeto.

Fonte: Elaborado pelo autor.

Na carga parcial de 40%, nota-se a inversão da parcela majoritária, passando a parcela exógena apresentar maior valor em relação a parcela endógena, fato que ocorre devido ao aumento da variação de temperatura, consequentemente aumento da exergia destruída endógena e diminuição da exergia destruída exógena, ocorrer nos componentes que apresentam menor exergia destruída. No balanço dos cinco componentes do sistema, a parcela exógena resulta em um valor maior do que a parcela endógena, o que ocasiona o comportamento atípico do sistema na carga parcial de 40% em relação às outras cargas parciais.

A Figura 5.8 apresenta as parcelas endógena e exógena da exergia destruída de cada equipamento. Em todas as faixas de carga parcial, a turbina a gás é o componente que apresenta o maior percentual de exergia destruída endógena, com valores entre 90,18% - 84,21%, seguida do compressor de ar, com valores entre 68,88% - 63,11%. Na faixa de carga parcial entre 90% - 70%, a câmera de combustão é o terceiro componente, com valores entre 65,04% - 60,32%, seguida do pré-aquecedor de ar, com valores entre 59,22% - 59,98%. Na faixa de carga parcial entre 60% - 40%, o pré-aquecedor de ar é o terceiro componente, com valores entre 60,35% e 60,99%, seguido da câmera de combustão, com valores entre 57,09% - 47,51%. Por fim, em todas as faixas de carga parcial, a caldeira de recuperação de calor é o componente que apresenta o menor percentual de exergia destruída endógena, com valores entre 20,06% - 16,04%.

A Figura 5.9 apresenta as parcelas evitável e inevitável da exergia destruída de cada equipamento. Em todas as faixas de carga parcial, o compressor de ar é o componente que apresenta o maior percentual de exergia destruída evitável, com valores entre 97,75% - 91,91%, seguido da turbina a gás, com valores entre 38,38% - 41,14%. Na faixa de carga parcial entre 90% - 60%, o pré-aquecedor de ar é o terceiro componente, com valores entre 24,39% - 21,49%, seguido da caldeira de recuperação de calor, com valores entre 19,05% - 18,59%, e por último a câmera de combustão com valores entre 10,02% - 18,17%. Na carga parcial de 50% e 40%, a câmera de combustão é o terceiro componente, com valores de 22,56% e 31,01%, seguida do pré-aquecedor de ar, com valores de 20,44% e 19,31%, e por último a caldeira de recuperação de calor com valores de 18,48% e 18,40%.

Nesta seção foram apresentados os resultados das análises de exergia convencional e avançada. Enquanto a análise de exergia convencional fornece a exergia destruída em cada componente, a análise de exergia avançada indica o quanto da exergia destruída pode realmente ser evitada em um determinado componente, além de mostrar a interação entre os componentes. A partir das análises de exergia, é possível determinar duas ordens de melhoria dos componentes: (i) sequência decrescente de exergia destruída nos componentes pela análise de exergia convencional: CC, CRC, PAA, TG e CA; e (ii) sequencia decrescente de exergia

destruída evitável nos componentes pela análise de exergia avançada: CA, TG, PAA, CRC e CC. Ambas ordens de priorização levam a otimização do sistema, a vantagem do fracionamento da exergia destruída nas parcelas endógena, exógena, evitável e inevitável, é a quantificação da exergia destruída que pode ser evitada.

■ 90% ■ 80% ■ 70% ■ 60% ■ 50% ■ 40%

Figura 5.8 - Taxa de exergia destruída endógena e exógena em cada componente do sistema CGAM na condição fora de projeto. Fonte: Elaborado pelo autor.

■90% ■80% ■70% ■60% ■50% ■40%

Figura 5.9 - Taxa de exergia destruída evitável e inevitável em cada componente do sistema CGAM na condição fora de projeto. Fonte: Elaborado pelo autor.

5.1.2 Análise econômica

Na análise econômica é considerado o custo de eletricidade, composto pelas parcelas de custo de capital, combustível, operação e manutenção. A Tabela 5.6 apresenta os valores individuais de cada parcela nas cargas analisadas.

Darâmatras	Carga						
Farametros	100%	90%	80%	70%	60%	50%	40%
Custo de capital [\$/kW.h]	0,0051	0,0057	0,0064	0,0073	0,0085	0,0102	0,0127
Custo de combustível [\$/kW.h]	0,0359	0,0370	0,0383	0,0400	0,0422	0,0452	0,0495
Custo de O&M fixo [\$/kW.h]				0,0025			
Custo de O&M variável [\$/kW.h]				0,0066			
COE [\$/kW.h]	0,0501	0,0518	0,0538	0,0564	0,0598	0,0645	0,0713
$E_{1} = (1 + E_{1}) + (1 + E$							

Tabela 5.6 – Custo de eletricidade do sistema CGAM.

Fonte: Elaborado pelo autor.

Em todas as cargas analisadas o custo de combustível é a maior parcela. Seu percentual varia de 71,62% em carga nominal até 69,35% em carga de 40%. A menor parcela é o custo de operação e manutenção fixo. Seu percentual varia de 5,07% até 3,57%, entre as cargas de 100% e 40%.

Nas cargas de 100% até 80%, a segunda maior parcela é o custo de operação e manutenção variável, representando 13,16% em carga nominal e 12,26% em carga de 80%. Nas cargas de 70% até 40%, a segunda maior parcela é o custo de capital, representando 12,87% e 17,83%, respectivamente.

A terceira maior parcela é o custo de capital, que varia de 10,14% na carga de 100% até 11,81% na carga de 80%. Para as cargas de 70% até 40%, a terceira maior parcela é o custo de operação e manutenção variável, o equivalente a 11,69% e 9,25%, respectivamente.

Na operação em carga parcial, o custo de eletricidade aumenta em relação ao custo de eletricidade na carga nominal. É identificado um crescimento de 3,32% até 42,24%, entre as cargas de 90% e 40%, respectivamente. Embora, o custo de combustível represente a maior parcela do custo de eletricidade em todas as cargas, a parcela que apresenta maior crescimento é o custo de capital, que aumenta de 11,11% até 150%, entre as cargas de 90% e 40%, respectivamente, e a parcela do custo de combustível aumenta de 3,06% até 37,73%, entre as cargas de 90% e 40%, respectivamente.

A Tabela 5.7 apresenta os custos de cada componente do sistema CGAM. Os componentes compressor de ar, câmara de combustão e turbina a gás na prática não são adquiridos separadamente, assim, seus custos são apresentados combinados no componente motor a gás.

Tabela 5.7 – Custo dos componentes do sistema CGAM.	
Componentes	Custo [\$]
Motor a gás	4.965.492,22
Caldeira de recuperação de calor	1.827.612,26
Pré-aquecedor de ar	1.399.228,98

Fonte: Elaborado pelo autor.

5.1.3 Otimização

A seleção da solução ótima para o sistema de cogeração CGAM, a partir do conjunto de soluções obtidos com as técnicas de otimização algoritmo genético, recozimento simulado e enxame de partícula, foi obtida por meio da aplicação do método de tomada de decisão TOPSIS, conforme descrito na Seção 3.5.4 e Apêndice C.

As Figuras 5.10, 5.12 e 5.14 apresentam o conjunto de soluções obtidas pelas técnicas algoritmo genético, enxame de partícula e recozimento simulado, respectivamente, para o sistema CGAM na condição de projeto. Nelas são identificadas a melhor e pior solução, a solução original e a solução ótima. Para uma melhor visualização, as Figuras 5.11, 5.13 e 5.15 apresentam um *zoom* na região com maior quantidade de soluções.

A solução ótima obtida por meio da técnica algoritmo genético apresentou os valores de 0,8816 para eficiência isentrópica do compressor de ar, 8,0626 para razão de pressão do compressor de ar, 965,98 K para a temperatura dos produtos da combustão na saída do préaquecedor de ar, 1.649,00 K para a temperatura de entrada na turbina a gás e 0,8965 para a eficiência isentrópica da turbina a gás.

Com os valores ótimos das variáveis de decisão, o sistema CGAM apresentou custo de eletricidade 2,99% menor, com valor de 0,0486 \$/kW.h, e exergia destruída inevitável 17,67% menor, com valor de 21.724,24 kW.

Na condição ótima do algoritmo genético, a exergia destruída real diminuiu 10,47%, com valor de 31.039,23 kW. Deste montante, 18.079,71 kW é endógena, 12.959,53 kW é exógena, 21.724,24 kW é inevitável e 9.314,99 kW é evitável.

A solução ótima obtida por meio da técnica enxame de partícula apresentou os valores de 0,8652 para eficiência isentrópica do compressor de ar, 8,0969 para razão de pressão do compressor de ar, 984,93 K para a temperatura dos produtos da combustão na saída do préaquecedor de ar, 1.649,36 K para a temperatura de entrada na turbina a gás e 0,8851 para a eficiência isentrópica da turbina a gás.

Com os valores ótimos das variáveis de decisão, o sistema CGAM apresentou custo de eletricidade 4,39% menor, com valor de 0,0479 \$/kW.h, e exergia destruída inevitável 14,47% menor, com valor de 22.570,23 kW.

Na condição ótima do enxame de partícula, a exergia destruída real diminuiu 8,91%, com valor de 31.579,63 kW. Deste montante, 18.088,07 kW é endógena, 13.491,56 kW é exógena, 22.570,28 kW é inevitável e 9.009,36 kW é evitável.

A solução ótima obtida por meio da técnica recozimento simulado apresentou os valores de 0,8721 para eficiência isentrópica do compressor de ar, 9,7795 para razão de pressão do compressor de ar, 928,37 K para a temperatura dos produtos da combustão na saída do préaquecedor de ar, 1.630,88 K para a temperatura de entrada na turbina a gás e 0,8977 para a eficiência isentrópica da turbina a gás.

Com os valores ótimos das variáveis de decisão, o sistema CGAM apresentou custo de eletricidade 2,19% menor, com valor de 0,0490 \$/kW.h, e exergia destruída inevitável 14,55% menor, com valor de 22.547,74 kW.

Na condição ótima do recozimento simulado, a exergia destruída real diminuiu 10,54%, com valor de 31.012,60 kW. Deste montante, 19.034,35 kW é endógena, 11.978,25 kW é exógena, 22.547,74 kW é inevitável e 8.464,86 kW é evitável.

O tempo de processamento demandado pelas três técnicas de otimização foram: 8h30min12s para o algoritmo genético, 10h46min58s para o enxame de partícula e 10h24min14s para o recozimento simulado. A solução ótima ocorreu na iteração 523, 1.970 e 945 paras as técnicas algoritmo genético, enxame de partícula e recozimento simulado, respectivamente.

Ao comparar a solução ótima encontrada por cada técnica, o algoritmo genético encontrou uma solução que apresentou maior redução na função objetivo exergia destruída inevitável enquanto o enxame de partícula encontrou uma solução que apresentou maior redução na função objetivo custo de eletricidade. Em relação ao tempo de processamento, o algoritmo genético apresentou melhor desempenho ao demandar menos tempo de processamento, seguido do recozimento simulado e enxame de partícula. Em relação à iteração da solução ótima, o algoritmo genético foi a técnica que apresentou mais eficiência na busca da solução ótima, seguido do recozimento simulado e enxame de partícula.

Figura 5.11 – Zoom na região com maior quantidade de soluções do algoritmo genético para o sistema CGAM na condição de projeto. Fonte: Elaborado pelo autor.

Figura 5.13 – Zoom na região com maior quantidade de soluções do enxame de partícula para o sistema CGAM na condição de projeto. Fonte: Elaborado pelo autor.

Figura 5.15 – Zoom na região com maior quantidade de soluções do recozimento simulado para o sistema CGAM na condição de projeto. Fonte: Elaborado pelo autor.

Assim como na condição de projeto, as Figuras 5.16, 5.18 e 5.20, apresentam o conjunto de soluções obtidas pelas técnicas algoritmo genético, enxame de partícula e recozimento simulado, respectivamente, para o sistema CGAM na condição fora de projeto. Nelas também são identificadas a melhor e pior solução, a solução original e a solução ótima. Para uma melhor visualização, as Figuras 5.17, 5.19 e 5.21 apresentam um *zoom* na região com maior quantidade de soluções.

A solução ótima obtida por meio da técnica algoritmo genético apresentou os valores de 8,4488 para razão de pressão do compressor de ar, 1.584,66 K para a temperatura de entrada na turbina a gás e 0,8645 para a eficiência isentrópica da turbina a gás. Com os valores ótimos das variáveis de decisão, o sistema CGAM apresentou custo de eletricidade 1,16% menor, com valor de 0,0512 \$/kW.h, e exergia destruída inevitável 5,86% menor, com valor de 22.877,89 kW. Na condição ótima do algoritmo genético, a exergia destruída real diminuiu 3,70%, com valor de 31.017,95 kW. Deste montante, 17.731,76 kW é endógena, 13.286,18 kW é exógena, 22.877,89 kW é inevitável e 8.140,05 kW é evitável.

A solução ótima obtida por meio da técnica enxame de partícula apresentou os valores de 8,7960 para razão de pressão do compressor de ar, 1.617,41 K para a temperatura de entrada na turbina a gás e 0,8857 para a eficiência isentrópica da turbina a gás. Com os valores ótimos das variáveis de decisão, o sistema CGAM apresentou custo de eletricidade 1,35% menor, com valor de 0,0511 \$/kW.h, e exergia destruída inevitável 8,28% menor, com valor de 22.288,84 kW. Na condição ótima do enxame de partícula, a exergia destruída real diminuiu 5,82%, com valor de 30.337,81 kW. Deste montante, 17.597,48 kW é endógena, 12.740,34 kW é exógena, 22.288,84 kW é inevitável e 8.048,97 kW é evitável.

A solução ótima obtida por meio da técnica recozimento simulado apresentou os valores de 8,1547 para razão de pressão do compressor de ar, 1.455,88 K para a temperatura de entrada na turbina a gás e 0,8800 para a eficiência isentrópica da turbina a gás. Com os valores ótimos das variáveis de decisão, o sistema CGAM apresentou custo de eletricidade 1,35% menor, com valor de 0,0511 \$/kW.h, e exergia destruída inevitável 1,53% menor, com valor de 23.929,43 kW. Na condição ótima do recozimento simulado, a exergia destruída real diminuiu 1,79%, com valor de 31.634,69 kW. Deste montante, 19.316,82 kW é endógena, 12.317,87 kW é exógena, 23.929,42 kW é inevitável e 7.705,27 kW é evitável.

O tempo de processamento demandado pelas três técnicas de otimização foram: 15h13min51s para o algoritmo genético, 17h19min41s para o enxame de partícula e 16h48min04s para o recozimento simulado. A solução ótima ocorreu na iteração 1.600, 1.650 e 1.540 paras as técnicas algoritmo genético, enxame de partícula e recozimento simulado, respectivamente.

Ao comparar a solução ótima encontrada por cada técnica, o algoritmo genético encontrou uma solução que apresentou maior redução na função objetivo custo da eletricidade enquanto o enxame de partícula encontrou uma solução que apresentou maior redução na função objetivo exergia destruída inevitável. Em relação ao tempo de processamento, o algoritmo genético apresentou melhor desempenho ao demandar menos tempo de processamento, seguido do recozimento simulado e enxame de partícula. Em relação à iteração da solução ótima, o recozimento simulado foi a técnica que apresentou mais eficiência na busca da solução ótima, seguido do algoritmo genético e enxame de partícula.

A solução ótima de cada método de otimização é obtida determinando os valores das variáveis de decisão que minimizem as funções objetivo. A determinação adequada da faixa de valores das variáveis de decisão, na qual o algoritmo de otimização pode realizar a busca pela variável ótima, garante a aplicabilidade da configuração encontrada pelo estudo de otimização. As variáveis que na prática não possam ser controladas com a precisão inerente do método matemático, na ordem de grandeza de décimo de milésimo, é utilizada como um indicativo do valor aproximado a ser utilizado na operação do sistema térmico. Com o resultado do estudo de otimização é possível operar o sistema térmico de forma mais eficiente do ponto de vista energético e econômico. A redução do custo de eletricidade reflete em lucro para o empreendedor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

A seguir são apresentados os resultados da otimização para o sistema CGAM nas cargas parciais de 80%, 70%, 60%, 50% e 40%. Optou-se por apresentar de forma tabelada pela quantidade de gráficos que seriam apresentados. Assim, nas Tabelas 5.6, 5.7, 5.8, 5.9 e 5.10, são apresentados os valores das variáveis de decisão, do custo de eletricidade, da exergia destruída, e das parcelas inevitável, evitável, endógena e exógena da exergia destruída, na solução ótima, além do tempo de processamento e a iteração da solução ótima, de cada uma das técnicas aplicadas.

A Tabela 5.8 apresenta a solução ótima na carga parcial de 80%. O resultado do algoritmo genético reduziu em 2,04% o custo da eletricidade e em 10,03% a exergia destruída inevitável. O resultado do enxame de partícula reduziu em 1,67% o custo da eletricidade e em 9,51% a exergia destruída inevitável. O resultado do recozimento simulado reduziu em 1,67% o custo da eletricidade e em 7,42% a exergia destruída inevitável.

	AG	EP	RS
Razão de pressão do CA [-]	8,6448	8,7960	7,6617
TIT [K]	1.649,98	1.631,67	1.616,52
Eficiência isentrópica da TG [-]	0,8779	0,8893	0,8398
COE	0,0527	0,0529	0,0529
EX_D_Real	27.570,00	27.670,05	28.855,45
Ex_D_Inevit	19.967,99	20.083,62	20.545,88
Ex_D_Evit	7.602,01	7.586,43	8.309,57
Ex_D_Endo	15.451,55	15.736,42	15.119,25
Ex_D_Exo	12.118,45	11.933,62	13.736,21
Tempo de processamento	16h24min00s	20h05min20s	18h26min14s
Iteração da solução ótima	1.630	1.620	1.924

Tabela 5.8 - Solução ótima do sistema CGAM na condição de carga parcial de 80%.

Fonte: Elaborado pelo autor.

A Tabela 5.9 apresenta a solução ótima na carga parcial de 70%. O resultado do algoritmo genético reduziu em 0,71% o custo da eletricidade e em 4,32% a exergia destruída inevitável. O resultado do enxame de partícula reduziu em 1,42% o custo da eletricidade e em 7,04% a exergia destruída inevitável. O resultado do recozimento simulado reduziu em 1,60% o custo da eletricidade e em 7,89% a exergia destruída inevitável.

A Tabela 5.10 apresenta a solução ótima na carga parcial de 60%. O resultado do algoritmo genético reduziu em 4,68% o custo da eletricidade e em 6,83% a exergia destruída inevitável. O resultado do enxame de partícula reduziu em 0,67% o custo da eletricidade e em 4,01% a exergia destruída inevitável. O resultado do recozimento simulado reduziu em 2,17% o custo da eletricidade e em 8,19% a exergia destruída inevitável.

	AG	EP	RS
Razão de pressão do CA [-]	8,4488	8,5229	7,6078
TIT [K]	1.558,71	1.601,96	1.646,28
Eficiência isentrópica da TG [-]	0,8646	0,8692	0,8304
COE	0,0560	0,0556	0,0555
Ex_D_Real	26.603,43	25.974,19	26.560,68
Ex_D_Inevit	19.197,14	18.651,91	18.480,83
Ex_D_Evit	7.406,29	7.322,28	8.079,85
Ex_D_Endo	14.532,44	14.149,63	13.190,53
Ex_D_Exo	12.070,99	11.824,56	13.370,15
Tempo de processamento	16h32min36s	19h41min02s	17h52min05s
Iteração da solução ótima	1.720	1.490	1.124
Fonte: Elaborado pelo autor.			

Tabela 5.9 – Solução ótima do sistema CGAM na condição de carga parcial de 70%.

Tabela 5.10 – Solução ótima do sistema CGAM na condição de carga parcial de 60%.

	AG	EP	RS
Razão de pressão do CA [-]	8,4949	8,5221	8,3317
TIT [K]	1.604,68	1.547,51	1.612,08
Eficiência isentrópica da TG [-]	0,8642	0,8715	0,8617
COE	0,0570	0,0594	0,0585
Ex_D_Real	23.681,16	24.204,66	23.294,09
Ex_D_Inevit	16.708,84	17.213,41	16.463,49
Ex_D_Evit	6.972,32	6.991,25	6.830,59
Ex_D_Endo	12.398,68	12.923,74	12.243,51
Ex_D_Exo	11.282,48	11.280,93	11.050,58
Tempo de processamento	17h24min49s	19h28min07s	18h01min37s
Iteração da solução ótima	1.920	1.380	1.040

A Tabela 5.11 apresenta a solução ótima na carga parcial de 50%. O resultado do algoritmo genético reduziu em 1,86% o custo da eletricidade e em 8,26% a exergia destruída inevitável. O resultado do enxame de partícula reduziu em 1,24% o custo da eletricidade e em 4,33% a exergia destruída inevitável. O resultado do recozimento simulado reduziu em 1,55% o custo da eletricidade e em 6,87% a exergia destruída inevitável.

rubblu 5.11 Boluçub billiu ub bi	stenna e or nor na eona	içuo de ediga pareiai	ue 5070.
	AG	EP	RS
Razão de pressão do CA [-]	8,7339	8,4926	8,0570
TIT [K]	1.608,55	1.519,14	1.635,54
Eficiência isentrópica da TG [-]	0,8876	0,8855	0,8304
COE	0,0633	0,0637	0,0635
Ex_D_Real	20.929,97	21.495,69	21.546,68
Ex_D_Inevit	14.477,78	15.098,90	14.697,38

6.452,19

10.790,09

10.139,88

16h51min12s

1.900

6.396,79

11.367,21

10.128,47

19h14min09s

1.870

6.849,29

10.249,39 11.297,28

18h27min12s

1.950

Tabela 5.11 - Solução ótima do sistema CGAM na condição de carga parcial de 50%.

Fonte: Elaborado pelo autor.

Ex_D_Evit

Ex_D_Endo

Ex_D_Exo

Tempo de processamento

Iteração da solução ótima

A Tabela 5.12 apresenta a solução ótima na carga parcial de 40%. O resultado do algoritmo genético reduziu em 2,24% o custo da eletricidade e em 9,46% a exergia destruída inevitável. O resultado do enxame de partícula reduziu em 0,28% o custo da eletricidade e em 2,47% a exergia destruída inevitável. O resultado do recozimento simulado reduziu em 1,54% o custo da eletricidade e em 6,98% a exergia destruída inevitável.

	AG	EP	RS
Razão de pressão do CA [-]	8,6786	8,5233	8,3890
TIT [K]	1.649,99	1.521,21	1.637,45
Eficiência isentrópica da TG [-]	0,8761	0,8730	0,8430
COE	0,0697	0,0711	0,0702
Ex_D_Real	18.375,71	19.453,59	18.913,48
Ex_D_Inevit	12.292,86	13.240,89	12.628,97
Ex_D_Evit	6.082,85	6.212,69	6.284,56
Ex_D_Endo	8.802,37	9.551,04	8.740,67
Ex_D_Exo	9.573,34	9.902,55	10.172,81
Tempo de processamento	15h49min02s	17h27min51s	17h14min56s
Iteração da solução ótima	1.530	1.480	1.920

Tabela 5.12 – Solução ótima do sistema CGAM na condição de carga parcial de 40%.

Fonte: Elaborado pelo autor.

Ao comparar a solução ótima encontrada por cada técnica, nas cargas parciais de 80%, 50% e 40%, o algoritmo genético encontrou uma solução que apresentou maior redução nas duas funções objetivo. Na carga parcial de 70%, o recozimento simulado encontrou uma solução que apresentou maior redução nas duas funções objetivo. E na carga parcial de 60%, o recozimento simulado encontrou uma solução que apresentou maior redução nas duas funções objetivo. E na carga parcial de 60%, o recozimento simulado encontrou uma solução que apresentou maior redução na função objetivo exergia destruída inevitável enquanto o algoritmo genético encontrou uma solução que apresentou maior redução na função objetivo custo da eletricidade.

Em relação ao tempo de processamento, assim como na condição de projeto e em carga parcial de 90%, apresentados anteriormente, o algoritmo genético apresentou melhor desempenho ao demandar menos tempo de processamento, seguido do recozimento simulado e enxame de partícula, nas cargas parciais de 80%, 70%, 60%, 50% e 40%.

Em relação à iteração da solução ótima, nas cargas parciais de 80%, 50% e 40%, o enxame de partícula foi a técnica que apresentou mais eficiência na busca da solução ótima, seguido do algoritmo genético e recozimento simulado. Nas cargas parciais de 70% e 60%, o recozimento simulado foi a técnica que apresentou mais eficiência na busca da solução ótima, seguido do enxame de partícula e algoritmo genético.

5.2 Modelagem da usina termelétrica de ciclo combinado

Assim como realizado para o sistema CGAM, a modelagem da UTE de ciclo combinado no programa GateCycleTM também foi validada, calculando as variações entre os valores dos parâmetros obtidos a partir da simulação no programa GateCycleTM e os valores dos parâmetros apresentados em Ganjehkaviri *et al.* (2014). A Tabela 5.13 apresenta os valores da temperatura e pressão, na condição de projeto, e a variação destes parâmetros.

Danta*	UTECC**	UTECC _{GC} ***	Maria e a [0/]	UTECC**	UTECC _{GC} ***	Variação [0/]
Ponto	T [K]	T [K]	variação [%]	P [kPa]	P [kPa]	variação [%]
1	292,85	293,15	0,10%	100,00	101,30	1,30%
2	593,94	599,47	0,93%	1.007,08	1.013,00	0,59%
3	1.244,20	1.244,15	-0,00%	1.008,39	962,35	-4,56%
4	773,15	785,72	1,63%	96,38	107,66	11,70%
5	836,99	842,46	0,65%	96,49	104,43	8,23%
6	751,35	763,16	1,57%	96,59	103,98	7,65%
7	587,61	598,18	1,79%	96,75	103,54	7,02%
8	518,39	525,65	1,40%	96,99	103,09	6,28%
9	515,81	521,88	1,18%	97,35	102,65	5,44%
10	479,59	468,12	-2,39%	97,45	102,21	4,88%
11	461,97	425,34	-7,93%	97,63	101,77	4,24%
15	399,38	395,34	-1,01%	1.130,00	1.073,50	-5,00%
17	424,31	456,15	7,50%	1.117,16	1.128,00	0,97%
18	455,11	455,12	0,00%	1.049,00	1.049,00	0,00%
19	521,57	512,52	-1,73%	963,39	996,55	3,44%
20	423,78	383,69	-9,46%	11.051,52	11.046,00	-0,05%
21	454,43	461,12	1,47%	10.876,18	10.493,69	-3,52%
22	571,98	579,18	1,26%	10.827,08	9.969,01	-7,92%
23	583,39	585,18	0,31%	9.893,12	10.146,00	2,56%
24	792,32	778,06	-1,80%	9.597,34	9.638,70	0,43%
27	316,91	319,58	0,84%	11,00	10,31	-6,28%
28	316,91	318,98	0,65%	10,00	10,00	0,00%

Tabela 5.13 – Temperatura e pressão da UTECC e UTECC_{GC} na condição de projeto.

Fonte: Elaborado pelo autor. *Pontos referentes a Figura 3.2

**Valores dos parâmetros obtidos em Ganjehkaviri *et al.* (2014).

****Valores dos parâmetros obtidos em Ganjenkavin er al. (2014).

****O parâmetro neste ponto foi um dado de entrada no programa GateCycleTM, por isto a variação de 0,00%, uma vez que foram inseridos no programa os valores iguais aos apresentados por Ganjehkaviri *et al.* (2014).

A Tabela 5.14 apresenta os valores de alguns parâmetros importantes, obtidos a partir da simulação no programa GateCycleTM para a condição de projeto em carga nominal e nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%.

Darâmatras	Carga			
Parametros	100%	90%	80%	70%
Potência da turbina a gás [kW]	121.377,10	101.965,60	83.693,80	65.922,20
Potência da turbina a vapor [kW]	183.444,60	175.129,34	169.840,76	163.585,41
Potência requerida pelas bombas [kW]	7.322,34	1.938,99	1.878,35	1.757,38
Potência líquida [kW]	415.207,70	373.619,10	331.953,30	290.400,80
Eficiência térmica do ciclo [%]	46,46	45,58	44,40	43,05
Heat rate [-]	2,15	2,19	2,25	2,32
Vazão mássica de ar [kg/s]	509,21	462,70	417,36	371,41
Vazão mássica de combustível na CC [kg/s]	8,61	7,84	7,08	6,31
Vazão mássica de vapor para a TV-AP [kg/s]	141,08	136,09	130,76	124,10
Vazão mássica de vapor para a TV-BP [kg/s]	170,72	160,54	151,21	140,97
Parâmetros	60%	50%	40%	-
Potência da turbina a gás [kW]	48.780,20	31.941,91	15.548,14	-
Potência da turbina a vapor [kW]	156.394,77	148.072,56	139.112,98	-
Potência requerida pelas bombas [kW]	1.643,06	1.508,26	1.321,76	-
Potência líquida [kW]	249.184,30	207.486,70	166.105,20	-
Eficiência térmica do ciclo [%]	41,48	39,65	37,67	-
Heat rate [-]	2,41	2,52	2,65	-
Vazão mássica de ar [kg/s]	324,93	276,25	224,44	-
Vazão mássica de combustível na CC [kg/s]	5,53	4,71	3,85	-
Vazão mássica de vapor para a TV-AP [kg/s]	116,35	107,04	94,03	-
Vazão mássica de vapor para a TV-BP [kg/s]	129,84	117,02	100,47	-

Tabela 5.14 - Parâmetros da UTECC_{GC} na condição de projeto e fora de projeto.

5.2.1 Análise exergética

A Tabela 5.15 apresenta os valores de exergia dos pontos do esquema da UTE de ciclo combinado, na condição de projeto.

Ponto [*]	Exergia física específica [kJ/kg]	Exergia química específica [kJ/kg]	Exergia total específica [kJ/kg]	Exergia total [kW]
1	0,0434	0,0521	0,0955	48,6195
2	291,8507	0,0521	291,9028	148.641,4739
3	853,2938	15,4524	868,7462	449.864,7083
4	264,5797	15,4524	280,0322	145.009,6549
5	307,6463	17,4049	325,0542	168.583,5596
6	240,1224	17,4079	257,5303	133.563,4752
7	117,8709	17,4079	135,2788	70.159,9238
8	69,6787	17,4079	87,0866	45.165,9288
9	63,2789	17,4079	80,6868	41.846,7917
10	31,0767	17,4079	48,4846	25.145,6945
11	7,9174	17,4079	25,3253	13.134,4919
15	56,0609	0,0000	56,0609	4.785,3323
17	134,9900	0,0000	134,9900	1.999,8368
18	825,0578	0,0000	825,0578	12.222,9829
19	872,3395	0,0000	872,3395	12.923,4461
20	51,7535	0,0000	51,7535	3.650,7495
21	147,2694	0,0000	147,2694	10.388,5465
22	395,7982	0,0000	395,7982	27.920,0363
23	1.059,5529	0,0000	1.059,5529	76.793,6491
24	1.417,7257	0,0000	1.417,7257	100.007,9225
27	140,0878	0,0000	140,0878	23.915,6720
28	19,1675	0,0000	19,1675	3.272,2593

Tabela 5.15 – Valores de exergia da UTECC na condição de projeto.

Fonte: Elaborado pelo autor. *Pontos referentes a Figura 3.2

A Figura 5.22 indica a taxa de exergia destruída de cada componente da UTE de ciclo combinado na condição de projeto obtida por meio da análise de exergia convencional. O componente com a maior taxa de exergia destruída é a câmara de combustão, com o equivalente a 55,19% do total de exergia destruída em todo o ciclo e uma eficiência exergética de 77,29%. O segundo componente com a maior taxa de destruição de exergia, com o equivalente a 14,94% do total de exergia destruída em todo o ciclo e uma eficiência exergética de 75,29%, é a caldeira de recuperação de calor, composta pelo superaquecedor, evaporador, economizador, préaquecedor, desaerador e tubulão. O terceiro componente com a maior taxa de destruição de exergia destruíção de exergia é a turbina a gás, com o equivalente a 10,83% do total de exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência de exergia destruíção de exergia é a turbina a gás, com o equivalente a 10,83% do total de exergia destruída em todo o ciclo e uma eficiência de exergia destruída em todo o ciclo e uma eficiência de exergia destruíção de exergia é a turbina a gás, com o equivalente a 10,83% do total de exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência de exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o cic

O quarto componente é o queimador suplementar, com o equivalente a 6,96% do total de exergia destruída em todo o ciclo e uma eficiência exergética de 91,00%. O quinto componente é a turbina a vapor, com o equivalente a 4,63% do total de exergia destruída em todo o ciclo e uma eficiência exergética de 89,02%. O sexto componente é o compressor de ar,

com o equivalente a 3,73% do total de exergia destruída em todo o ciclo e uma eficiência exergética de 94,32%. O sétimo componente é o condensador, com o equivalente a 3,41% do total de exergia destruída em todo o ciclo e uma eficiência exergética de 55,85%. E o oitavo componente é a bomba, com o equivalente a 0,31% do total de exergia destruída em todo o ciclo e uma eficiência exergia destruída em todo o ciclo

Figura 5.22 – Taxa de exergia destruída em cada componente da UTE de ciclo combinado na condição de projeto. Fonte: Elaborado pelo autor.

A Figura 5.23 indica as parcelas endógena, exógena, inevitável e evitável, obtidas a partir da aplicação da análise de exergia avançada. Do montante de 478.947,17 kW de exergia destruída, 414.434,99 kW é endógena e 64.512,17 kW é exógena, Figura 5.23A. A parcela endógena maior que a exógena, indica que a relação entre os componentes do ciclo é fraca. O montante inevitável é de 415.775,71 kW e o evitável, que indica o real potencial de melhoria, é de 63.171,47 kW, Figura 5.23B.

A Tabela 5.16 apresenta as parcelas endógena e exógena da exergia destruída de cada equipamento. A caldeira de recuperação de calor, queimador suplementar, câmara de combustão, compressor de ar e a turbina a gás, são os componentes que apresentam o maior

percentual de exergia destruída endógena, 96,43%, 90,05%, 87,17%, 86,30% e 85,91%, respectivamente, seguidos da turbina a vapor, condensador e bomba, com os valores de 72,54%, 51,16% e 39,16%, respectivamente.

Favinamentes	Exergia destruída [kW]	
Equipamentos	Endógena	Exógena
Compressor de ar	15.438,41	2.450,28
Câmara de combustão	230.411,05	33.915,64
Turbina a gás	44.569,58	7311,92
Queimador suplementar	30.012,77	3.315,68
Caldeira de recuperação de calor	68.989,78	2.554,10
Turbina a vapor	16.078,87	6.086,37
Bomba	584,38	907,97
Condensador	8.350,16	7.970,21

Tabela 5.16 - Taxa de exergia destruída endógena e exógena de cada componente da UTE de ciclo combinado na condição de projeto.

Fonte: Elaborado pelo autor.

A Tabela 5.17, mostra as parcelas evitável e inevitável da exergia destruída de cada equipamento. A câmara de combustão é o componente que apresenta maior percentual de exergia destruída inevitável, 99,48%, seguido da bomba, queimador suplementar, caldeira de recuperação de calor, condensador, turbina a gás, turbina a vapor e compressor de ar, com os valores de 98,11%, 96,23%, 95,72%, 64,34%, 60,16%, 40,99% e 0,05%, respectivamente.

Tabela 5.17 - Taxa de exergia destruída evitável e inevitável de cada componente da UTE de ciclo combinado na condição de projeto.

Equinamentes	Exergia destruída [kW]		
Equipamentos	Evitável	Inevitável	
Compressor de ar	17.880,63	8,06	
Câmara de combustão	1.375,33	262.951,36	
Turbina a gás	20.667,30	31.214,21	
Queimador suplementar	1.255,69	32.072,76	
Caldeira de recuperação de calor	3.064,04	68.479,83	
Turbina a vapor	13.080,40	9.084,84	
Bomba	28,21	1.464,14	
Condensador	5.819,86	10.500,51	

Fonte: Elaborado pelo autor.

A taxa de exergia destruída de cada componente da UTE de ciclo combinado na condição fora de projeto, obtida por meio da análise de exergia convencional, pode ser observada na Figura 5.24. Na Figura 5.25 é feito um *zoom* para melhor visualização da taxa de exergia destruída na bomba.

Figura 5.24 - Taxa de exergia destruída de cada componente da UTE de ciclo combinado na condição fora de projeto.

■ 90% ■ 80% ■ 70% ■ 60% ■ 50% ■ 40%

Fonte: Elaborado pelo autor.

O compressor de ar representa 3,56%, 3,56%, 3,54%, 3,55%, 3,53% e 3,51% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 94,27%, 94,19%, 94,11%, 93,99%, 93,84% e 93,60%, respectivamente.

A câmara de combustão representa 52,26%, 51,68%, 50,91%, 50,37%, 49,11% e 47,56% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%,

60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 77,07%, 76,55%, 76,57%, 76,24%, 75,81% e 75,22%, respectivamente.

A turbina a gás representa 9,55%, 8,75%, 7,83%, 6,92%, 5,75% e 4,38% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 91,75%, 92,01%, 92,33%, 92,69%, 93,18% e 93,87%, respectivamente.

O queimador suplementar representa 7,55%, 8,12%, 8,81%, 9,15%, 10,24% e 11,85% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 90,38%, 90,13%, 89,82%, 89,88%, 89,38% e 88,65%, respectivamente.

A caldeira de recuperação de calor representa 18,11%, 18,71%, 19,49%, 20,38%, 21,52% e 22,56% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 72,43%, 72,79%, 73,02%, 73,08%, 73,27% e 74,03%, respectivamente.

A turbina a vapor representa 4,63%, 4,87%, 5,12%, 5,37%, 5,69% e 6,10% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 89,08%, 89,16%, 89,25%, 89,35%, 89,49% e 89,79%, respectivamente.

A bomba representa 0,19%, 0,19%, 0,20%, 0,23%, 0,22% e 0,24% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 62,12%, 62,86%, 62,23%, 56,93%, 57,46% e 53,76% respectivamente.

O condensador representa 4,14%, 4,13%, 4,11%, 4,03%, 3,95% e 3,79% do total de exergia destruída em todo o ciclo, nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%, respectivamente. A eficiência exergética apresenta os valores de 55,80%, 55,69%, 55,54%, 55,34%, 55,07% e 54,66%, respectivamente.

Na Tabela 5.18 podem ser observados os valores das parcelas endógena, exogéna, inevitável e evitável de todo o ciclo e suas respectivas porcentagens, obtidos a partir da análise de exergia avançada nas cargas parciais. Tanto no fracionamento endógeno e exógeno, quanto no fracionamento evitável e inevitável, a mesma tendência observada na carga nominal é constatada nas cargas parciais, ou seja, predominância da parcela endógena em relação a exógena, e predominância da parcela inevitável em relação a evitável. Nota-se também que o percentual das parcelas endógena e inevitável apresentam uma relação direta com a carga de operação. O percentual das parcelas exógena e evitável apresentam uma relação inversa.

Carros		Exergia	a destruída		
Carga -	Real [kW]	Endógena [kW]	%	Exógena [kW]	%
90%	459.155,99	375.540,04	81,79	83.615,95	18,21
80%	420.215,35	342.853,78	81,59	77.361,57	18,41
70%	381.052,56	309.763,35	81,29	71.289,21	18,72
60%	340.691,79	276.227,72	81,08	64.464,07	18,92
50%	299.434,58	240.997,22	80,48	58.437,36	19,52
40%	254.199,92	206.495,04	81,23	47.704,87	18,77
Corres		Exergia	a destruída		
Carga	Real [kW]	Evitável [kW]	%	Inevitável [kW]	%
90%	459.155,99	67.280,56	14,65	391.875,44	85,35
80%	420.215,35	61.544,22	14,65	358.671,13	85,35
70%	381.052,56	56.121,30	14,73	324.931,26	85,27
60%	340.691,79	46.055,08	13,52	294.636,71	86,48
50%	299.434,58	40.609,24	13,56	258.825,34	86,44
40%	254.199,92	34.196,90	13,46	220.003,01	86,55

Tabela 5.18 - Fracionamento da taxa de exergia destruída da UTE de ciclo combinado na condição fora de

As Tabelas 5.16 e 5.17, mostram as parcelas endógena, exógena, evitável e inevitável da exergia destruída de cada equipamento da UTE de ciclo combinado nas cargas parciais de 90%, 80%, 70%, 60%, 50% e 40%.

Tabela 5.17 Tracionamento da taxa de exergia destruída dos equipamentos da 6.12 de eleio combinado na
condição de carga parcial de 90% e 80%.

Carga parcial de 90%				
Equipamentos		Exergia d	lestruída	
Equipamentos	Endógena [kW]	Exógena [kW]	Evitável [kW]	Inevitável [kW]
Compressor de ar	14.472,69	1.881,11	16.196,73	157,07
Câmara de combustão	213.009,54	26.967,77	1.606,96	238.370,36
Turbina a gás	38.457,77	5.412,12	17.505,36	26.364,53
Queimador suplementar	29.512,89	5.162,67	600,17	34.075,39
Caldeira de recuperação de calor	55.707,98	27.445,32	13.056,15	70.097,16
Turbina a vapor	15.868,48	5.387,35	12.570,49	8.685,33
Bomba	591,18	270,62	24,43	837,37
Condensador	7919,49	11.088,99	5.720,26	13.288,22
	Carga parc	ial de 80%		
	Exergia destruída			
Equipamentos	Endógena [kW]	Exógena [kW]	Evitável [kW]	Inevitável [kW]
Compressor de ar	13. 156,08	1.787,79	14.627,91	315,96
Câmara de combustão	191.584,18	25.584,14	1.303,79	215.864,53
Turbina a gás	31.837,05	4.912,98	14.887,44	21.862,58
Queimador suplementar	28.932,13	5.185,84	978,17	33.139,79
Caldeira de recuperação de calor	53.751,63	24.853,41	12.437,63	66.167,41
Turbina a vapor	15.575,93	4.879,76	12.131,50	8.324,19
Bomba	547,65	263,14	44,99	765,79
Condensador	7.469,12	9.894,51	5.132,78	12.230,86

Fonte: Elaborado pelo autor.

	Carga parc	ial de 70%			
	Exercia destruída				
Equipamentos	Endógena [kW]	Exógena [kW]	Evitável [kW]	Inevitável [kW]	
Compressor de ar	11 821 49	1 672 65	13 016 95	477.18	
Câmara de combustão	169 768 93	24 207 00	955 29	193 020 63	
Turbina a gás	25 466 70	4 388 45	12 366 59	17 488 56	
Queimador suplementar	28 330 42	5 230 21	1 366 43	32 203 10	
Caldeira de recuperação de calor	28.330,42 51 763 13	3.239,21	12 200 02	52.203,19	
Turbina a vapor	15 160 41	4 352 34	12.290,92	7 014 35	
Pomba	507.40	4.352,34	5 25	7.914,35	
Bolliba	507,49	257,05	5,25	11 122 12	
Condensador	0.944,77	0.099,02	4.321,40	11.123,15	
	Carga parc	Tai de 60%	d		
Equipamentos		Exergia		I '44 1 (1) (1)	
	Endogena [KW]	Exogena [KW]	Evitavel [KW]		
Compressor de ar	10.451,83	1.644,93	10.712,49	1.384,27	
Câmara de combustão	147.577,50	24.026,27	6.742,67	164.861,10	
Turbina a gás	19.469,01	4.117,75	7.199,99	16.386,77	
Queimador suplementar	27.727,59	3.455,89	572,49	30.610,99	
Caldeira de recuperação de calor	49.554,52	19.870,48	6.309,46	63.115,54	
Turbina a vapor	14.608,56	3.673,68	10.715,50	7.566,73	
Bomba	487,93	298,70	42,27	744,36	
Condensador	6.350,77	7.376,35	3.760,19	9.966,93	
	Carga parc	ial de 50%			
Equipamentos		Exergia	destruída		
	Endógena [kW]	Exógena [kW]	Evitável [kW]	Inevitável [kW]	
Compressor de ar	9.034,56	1.529,45	9.139,59	1.424,40	
Câmara de combustão	124.620,85	22.430,47	5.649,96	141.401,36	
Turbina a gás	13.706,78	3.519,61	5.359,77	11.866,62	
Queimador suplementar	27.117,93	3.533,71	578,91	30.072,73	
Caldeira de recuperação de calor	46.565,51	17.860,75	6.761,15	57.665,10	
Turbina a vapor	13.874,78	3.158,57	9.995,29	7.038,05	
Bomba	455,81	202,31	0,16	657,97	
Condensador	5.620,99	6.202,49	3.124,39	8.699,09	
	Carga parc	ial de 40%			
		Exergia	destruída		
Equipamentos	Endógena [kW]	Exógena [kW]	Evitável [kW]	Inevitável [kW]	
Compressor de ar	7.545,14	1.388,09	7.470,41	1.462,82	
Câmara de combustão	100.535,98	20.365,666	4.585,50	116.316,14	
Turbina a gás	8.372,88	2.771,51	3.591,41	7.552,99	
Queimador suplementar	30.072,67	59,24	1.336,59	28.795,32	
Caldeira de recuperação de calor	41.965,12	15.378,13	5.686,70	51.656,55	
Turbina a vapor	12.871,79	2.624,38	9.048,32	6.447,85	
Bomba	424,20	187,02	53,84	557,37	
Condensador	4.707.26	4.930.84	2.424.13	7.213.97	
	, = =	,	,		

Tabela 5.20 – Fracionamento da taxa de exergia destruída dos equipamentos da UTE de ciclo combinado na condição de carga parcial de 70%, 60%, 50% e 40%.

5.2.2 Análise econômica

A Tabela 5.21 apresenta os valores individuais de cada parcela que compõem o custo de eletricidade, nas diferentes cargas analisadas.

Dorêmetres				Carga			
Parametros	100%	90%	80%	70%	60%	50%	40%
Custo de capital [\$/kW.h]	0,0074	0,0082	0,0093	0,0106	0,0124	0,0148	0,0185
Custo de combustível [\$/kW.h]	0,0305	0,0311	0,0319	0,0329	0,0342	0,0358	0,0377
Custo de O&M fixo [\$/kW.h]				0,0018			
Custo de O&M variável [\$/kW.h]				0,0026			
COE [\$/kW.h]	0,0423	0,0437	0,0456	0,0479	0,0509	0,0550	0,0605

Tabela 5.21 – Custo de eletricidade da UTE de ciclo combinado.

Fonte: Elaborado pelo autor.

Em todas as cargas analisadas o custo de combustível é a maior parcela. Seu percentual varia de 72,10% em carga nominal até 62,21% em carga de 40%. A segunda maior parcela é o custo de capital, representando 17,49% em carga nominal e 30,53% em carga de 40%. A terceira maior parcela é o custo de operação e manutenção variável, representando 6,15% em carga nominal e 4,29% em carga de 40%. A menor parcela é o custo de operação e manutenção fixo. Seu percentual varia de 4,26% até 2,97%, entre as cargas de 100% e 40%.

Na operação em carga parcial, o custo de eletricidade aumenta em relação ao custo de eletricidade na carga nominal. É identificado um crescimento de 3,31% até 43,26%, entre as cargas de 90% e 40%, respectivamente, em relação a carga nominal. Na análise das parcelas que compõem o custo de eletricidade, o custo de capital apresenta o maior crescimento, de 10,81% até 150,00%, entre as cargas de 90% e 40%, respectivamente, em relação a carga nominal. O custo de combustível apresenta aumento entre 1,97% e 23,61%, respectivamente.

A Tabela 5.22 apresenta os custos de cada componente da UTE de ciclo combinado. Os componentes compressor de ar, câmara de combustão e turbina a gás na prática não são adquiridos separadamente, assim, seus custos são apresentados combinados no componente motor a gás.

Tabela 5.22 – Custo dos componentes da UTE de ciclo combinado.				
Componentes	Custo [\$]			
Motor a gás	81.624.863,36			
Caldeira de recuperação de calor	24.303.540,95			
Desaerador	4.826.564,75			
Turbina a vapor	48.305.100,58			
Condensador	2.941.684,77			
Bombas	3.268.082,18			

Fonte: Elaborado pelo autor.

5.2.3 Otimização

A seleção da solução ótima para a UTE de ciclo combinado, a partir do conjunto de soluções obtidos com as técnicas de otimização algoritmo genético, recozimento simulado e

enxame de partícula, também foi obtida por meio da aplicação do método de tomada de decisão TOPSIS.

Os resultados da otimização para a UTE de ciclo combinado são apresentados de forma tabelada, com os valores das variáveis de decisão, do custo de eletricidade, das parcelas de exergia destruída, do tempo de processamento e da iteração da solução ótima, de cada uma das técnicas aplicadas.

A Tabela 5.23 apresenta a solução ótima na condição de projeto. Com os valores ótimos das variáveis de decisão para o algoritmo genético, a UTE de ciclo combinado apresentou custo de eletricidade 8,04% menor, exergia destruída inevitável 20,98% menor e exergia destruída real 16,00% menor. Com os valores ótimos das variáveis de decisão para o enxame de partícula, o custo de eletricidade reduziu 11,11%, a exergia destruída inevitável reduziu 23,48% e a exergia destruída real reduziu 19,42%. Com os valores ótimos das variáveis de decisão para o recozimento simulado, o custo de eletricidade reduziu 9,93%, a exergia destruída inevitável reduziú 22,86% e a exergia destruída real reduziu 19,24%.

Tabela 5.23 – Solução ótima da UTE de ciclo combinado na condição de projeto.

	AG	EP	RS
Eficiência isentrópica do CA [-]	0,8600	0,8717	0,8656
Razão de pressão do CA [-]	19,9996	17,2729	18,4988
TIT [K]	1.4999,99	1.500,00	1.497,89
Eficiência isentrópica da TG [-]	0,8968	0,8911	0,8960
Vazão mássica de combustível para o QS [kg/s]	0,1749	0,0213	0,1123
Eficiência isentrópica da TV [-]	0,8803	0,9400	0,9382
Eficiência isentrópica da bomba [-]	0,7436	0,8314	0,7299
COE [\$/kW.h]	0,0389	0,0376	0,0381
Ex_D_Real [kW]	402.290,43	385.940,09	386.782,56
Ex_D_Inevit [kW]	328.533,54	318.166,79	320.728,62
Ex_D_Evit [kW]	73.761,95	67.773,30	66.053,94
Ex_D_Endo [kW]	344.062,71	338.258,39	339.116,84
Ex_D_Exo [kW]	58.227,72	47.681,69	47.665,72
Tempo de processamento	20h10min18s	20h35min01s	20h24min56s
Iteração da solução ótima	1.980	1.340	1.860

Fonte: Elaborado pelo autor.

Ao comparar a solução ótima encontrada por cada técnica, apresentada na Tabela 5.23, o enxame de partícula encontrou uma solução que apresentou a maior redução, tanto na função objetivo custo de eletricidade, quanto na função objetivo exergia destruída inevitável. Em relação ao tempo de processamento, o algoritmo genético apresentou melhor desempenho ao demandar menos tempo de processamento, seguido do recozimento simulado e enxame de partícula, embora a diferença do tempo de processamento não foi significativa. Em relação à iteração da solução ótima, o enxame de partícula foi a técnica que apresentou mais eficiência na busca da solução ótima, seguido do recozimento simulado e algoritmo genético.

A Tabela 5.24 apresenta a solução ótima em carga parcial de 90%. Com os valores ótimos das variáveis de decisão para o algoritmo genético, a UTE de ciclo combinado apresentou custo de eletricidade 3,89% menor, exergia destruída inevitável 10,57% menor e exergia destruída real 10,15% menor. Com os valores ótimos das variáveis de decisão para o enxame de partícula, o custo de eletricidade reduziu 5,03%, a exergia destruída inevitável reduziu 10,65% e a exergia destruída real reduziu 10,63%. Com os valores ótimos das variáveis de decisão para o recozimento simulado, o custo de eletricidade reduziu 4,81%, a exergia destruída inevitável reduziu 9,17% e a exergia destruída real reduziu 9,43%.

	AG	EP	RS
Razão de pressão do CA [-]	8,7399	7,0177	7,1790
TIT [K]	1.399,99	1.399,62	1.373,06
Eficiência isentrópica da TG [-]	0,8898	0,8952	0,8916
Vazão mássica de combustível para o QS [kg/s]	0,0857	0,0000	0,0360
Eficiência isentrópica da bomba [-]	0,7525	0,7615	0,7843
COE [\$/kW.h]	0,0420	0,0415	0,0416
Ex_D_Real [kW]	412.564,28	410.337,13	415.843,07
Ex_D_Inevit [kW]	350.469,78	350.121,49	355.929,53
Ex_D_Evit [kW]	62.094,49	60.215,63	59.913,54
Ex_D_Endo [kW]	351.208,81	353.014,16	356.733,63
Ex_D_Exo [kW]	61.355,48	57.322,97	59.109,44
Tempo de processamento	19h01min09s	18h44min04s	17h46min51s
Iteração da solução ótima	1.900	1.500	1.900

Tabela 5.24 –	Solução ótima	da UTE de cic	lo combinado em	carga parcial de 90%.
	•			

Fonte: Elaborado pelo autor.

Ao comparar a solução ótima encontrada por cada técnica, apresentada na Tabela 5.24, o enxame de partícula encontrou uma solução que apresentou a maior redução, tanto na função objetivo custo de eletricidade, quanto na função objetivo exergia destruída inevitável. Em relação ao tempo de processamento, o recozimento simulado apresentou melhor desempenho ao demandar menos tempo de processamento, seguido do enxame de partícula e algoritmo genético. Em relação à iteração da solução ótima, o enxame de partícula foi a técnica que apresentou mais eficiência na busca da solução ótima, e o algoritmo genético e recozimento simulado apresentaram o mesmo desempenho.

A Tabela 5.25 apresenta a solução ótima em carga parcial de 80%. Com os valores ótimos das variáveis de decisão para o algoritmo genético, a UTE de ciclo combinado apresentou custo de eletricidade 4,61% menor, exergia destruída inevitável 5,57% menor e exergia destruída real 9,86% menor. Com os valores ótimos das variáveis de decisão para o

enxame de partícula, o custo de eletricidade reduziu 5,48%, a exergia destruída inevitável reduziu 10,78% e a exergia destruída real reduziu 10,50%. Com os valores ótimos das variáveis de decisão para o recozimento simulado, o custo de eletricidade reduziu 5,04%, a exergia destruída inevitável reduziu 10,37% e a exergia destruída real reduziu 9,99%.

Ao comparar a solução ótima encontrada por cada técnica, apresentada na Tabela 5.25, o enxame de partícula encontrou uma solução que apresentou a maior redução, tanto na função objetivo custo de eletricidade, quanto na função objetivo exergia destruída inevitável. Em relação ao tempo de processamento, o recozimento simulado apresentou melhor desempenho ao demandar menos tempo de processamento, seguido do enxame de partícula e algoritmo genético. Em relação à iteração da solução ótima, o recozimento simulado foi a técnica que apresentou mais eficiência na busca da solução ótima, seguido do enxame de partícula e algoritmo genético.

	AG	EP	RS
Razão de pressão do CA [-]	7,8931	7,0486	7,1732
TIT [K]	1.399,99	1.400,00	1.399,53
Eficiência isentrópica da TG [-]	0,8905	0,8948	0,8911
Vazão mássica de combustível para o QS [kg/s]	0,0701	0,0000	0,0191
Eficiência isentrópica da bomba [-]	0,8060	0,8863	0,7661
COE [\$/kW.h]	0,0435	0,0431	0,0433
Ex_D_Real [kW]	378.788,01	376.073,94	378.231,06
Ex_D_Inevit [kW]	338.688,03	320.011,35	321.467,36
Ex_D_Evit [kW]	40.099,98	56.062,59	56.763,69
Ex_D_Endo [kW]	323.110,95	322.917,92	323.737,64
Ex_D_Exo [kW]	55.677,06	53.156,02	54.493,41
Tempo de processamento	20h44min11s	19h18min50s	17h39min05s
Iteração da solução ótima	1.920	1.860	1.260

Tabela 5.25 – Solução ótima da UTE de ciclo combinado em carga parcial de 80%.

Fonte: Elaborado pelo autor.

A Tabela 5.26 apresenta a solução ótima em carga parcial de 70%. Com os valores ótimos das variáveis de decisão para o algoritmo genético, a UTE de ciclo combinado apresentou custo de eletricidade 4,80% menor, exergia destruída inevitável 3,66% menor e exergia destruída real 9,87% menor. Com os valores ótimos das variáveis de decisão para o enxame de partícula, o custo de eletricidade reduziu 5,43%, a exergia destruída inevitável reduziu 5,44% e a exergia destruída real reduziu 9,93%. Com os valores ótimos das variáveis de decisão para o recozimento simulado, o custo de eletricidade reduziu 4,80%, a exergia destruída inevitável reduziu 4,41% e a exergia destruída real reduziu 8,64%.

	AG	EP	RS
Razão de pressão do CA [-]	7,9610	7,0000	7,2147
TIT [K]	1.399,99	1.394,36	1.375,92
Eficiência isentrópica da TG [-]	0,8913	0,8906	0,8846
Vazão mássica de combustível para o QS [kg/s]	0,0686	0,0000	0,0218
Eficiência isentrópica da bomba [-]	0,8215	0,8309	0,6527
COE [\$/kW.h]	0,0456	0,0453	0,0456
Ex_D_Real [kW]	343.438,62	343.216,07	348.144,20
Ex_D_Inevit [kW]	313.031,86	307.228,09	310.602,19
Ex_D_Evit [kW]	30.406,75	35.987,98	37.542,00
Ex_D_Endo [kW]	290.998,44	288.066,04	294.294,87
Ex_D_Exo [kW]	52.440,18	55.150,02	53.849,33
Tempo de processamento	21h04min10s	20h38min02s	18h42min40s
Iteração da solução ótima	1.920	1.190	1.600

Tabela 5.26 – Solução ótima da UTE de ciclo combinado em carga parcial de 70%.

Ao comparar a solução ótima encontrada por cada técnica, apresentada na Tabela 5.26, o enxame de partícula encontrou uma solução que apresentou a maior redução, tanto na função objetivo custo de eletricidade, quanto na função objetivo exergia destruída inevitável. Em relação ao tempo de processamento, o recozimento simulado apresentou melhor desempenho ao demandar menos tempo de processamento, seguido do enxame de partícula e algoritmo genético. Em relação à iteração da solução ótima, o enxame de partícula foi a técnica que apresentou mais eficiência na busca da solução ótima, seguido do recozimento simulado e algoritmo genético.

A Tabela 5.27 apresenta a solução ótima em carga parcial de 60%. Com os valores ótimos das variáveis de decisão para o algoritmo genético, a UTE de ciclo combinado apresentou custo de eletricidade 4,52% menor, exergia destruída inevitável 11,17% menor e exergia destruída real 8,82% menor. Com os valores ótimos das variáveis de decisão para o enxame de partícula, o custo de eletricidade reduziu 3,73%, a exergia destruída inevitável reduziu 7,76% e a exergia destruída real reduziu 5,55%. Com os valores ótimos das variáveis de decisão para o recozimento simulado, o custo de eletricidade reduziu 5,11%, a exergia destruída inevitável reduziu 9,00% e a exergia destruída real reduziu 11,01%.

	AG	EP	RS
Razão de pressão do CA [-]	8,1448	7,5346	7,0499
TIT [K]	1.399,99	1.344,93	1.368,80
Eficiência isentrópica da TG [-]	0,8817	0,8590	0,8863
Vazão mássica de combustível para o QS [kg/s]	0,1229	0,0000	0,0411
Eficiência isentrópica da bomba [-]	0,7545	0,6801	0,6929
COE [\$/kW.h]	0,0486	0,0490	0,0483
Ex_D_Real [kW]	310.643,48	321.771,57	310.016,12
Ex_D_Inevit [kW]	261.711,52	271.772,98	262.194,35
Ex_D_Evit [kW]	48.931,97	49.998,59	47.821,76
Ex_D_Endo [kW]	265.069,96	267.620,48	262.857,84
Ex_D_Exo [kW]	45.573,52	54.151,10	47.158,28
Tempo de processamento	21h45min40s	22h43min20s	19h46min40s
Iteração da solução ótima	1.480	1.230	980

Tabela 5.27 – Solução ótima da UTE de ciclo combinado em carga parcial de 60%.

Ao comparar a solução ótima encontrada por cada técnica, apresentada na Tabela 5.27, o recozimento simulado encontrou uma solução que apresentou a maior redução na função objetivo custo de eletricidade e o algoritmo genético encontrou uma solução que apresentou a maior redução na função objetivo exergia destruída inevitável. Em relação ao tempo de processamento, o recozimento simulado apresentou melhor desempenho ao demandar menos tempo de processamento, seguido do algoritmo genético e enxame de partícula. Em relação à iteração da solução ótima, o recozimento simulado foi a técnica que apresentou mais eficiência na busca da solução ótima, seguido do enxame de partícula e o algoritmo genético.

A Tabela 5.28 apresenta a solução ótima em carga parcial de 50%. Com os valores ótimos das variáveis de decisão para o algoritmo genético, a UTE de ciclo combinado apresentou custo de eletricidade 4,73% menor, exergia destruída inevitável 11,33% menor e exergia destruída real 8,89% menor. Com os valores ótimos das variáveis de decisão para o enxame de partícula, o custo de eletricidade reduziu 3,82%, a exergia destruída inevitável reduziu 7,95% e a exergia destruída real reduziu 4,58%. Com os valores ótimos das variáveis de decisão para o recozimento simulado, o custo de eletricidade reduziu 5,64%, a exergia destruída inevitável reduziu 11,37% e a exergia destruída real reduziu 9,23%.

	AG	EP	RS
Razão de pressão do CA [-]	8,3237	7,3497	7,0916
TIT [K]	1.399,97	1.397,49	1.396,54
Eficiência isentrópica da TG [-]	0,8825	0,8162	0,8875
Vazão mássica de combustível para o QS [kg/s]	0,2015	0,0193	0,1392
Eficiência isentrópica da bomba [-]	0,7048	0,7584	0,6552
COE [\$/kW.h]	0,0524	0,0529	0,0519
Ex_D_Real [kW]	272.810,85	285.726,59	271.789,86
Ex_D_Inevit [kW]	229.492,05	238.243,73	229.383,56
Ex_D_Evit [kW]	43.318,79	47.482,86	42.406,30
Ex_D_Endo [kW]	229.851,07	232.190,21	230.526,36
Ex_D_Exo [kW]	42.959,78	53.536,38	41.263,49
Tempo de processamento	22h47min0s	23h15min50s	21h19min0s
Iteração da solução ótima	1.160	1.780	1.200

Tabela 5.28 – Solução ótima da UTE de ciclo combinado em carga parcial de 50%.

Ao comparar a solução ótima encontrada por cada técnica, apresentada na Tabela 5.28, o recozimento simulado encontrou uma solução que apresentou a maior redução, tanto na função objetivo custo de eletricidade, quanto na função objetivo exergia destruída inevitável. Em relação ao tempo de processamento, o recozimento simulado apresentou melhor desempenho ao demandar menos tempo de processamento, seguido do algoritmo genético e enxame de partícula. Em relação à iteração da solução ótima, o algoritmo genético foi a técnica que apresentou mais eficiência na busca da solução ótima, seguido do recozimento simulado e enxame de partícula.

A Tabela 5.29 apresenta a solução ótima em carga parcial de 40%. Com os valores ótimos das variáveis de decisão para o algoritmo genético, a UTE de ciclo combinado apresentou custo de eletricidade 4,80% menor, exergia destruída inevitável 11,78% menor e exergia destruída real 8,80% menor. Com os valores ótimos das variáveis de decisão para o enxame de partícula, o custo de eletricidade reduziu 3,14%, a exergia destruída inevitável reduziu 10,94% e a exergia destruída real reduziu 7,51%. Com os valores ótimos das variáveis de decisão para o recozimento simulado, o custo de eletricidade reduziu 5,62%, a exergia destruída inevitável reduziu 11,48% e a exergia destruída real reduziu 8,87%.

	AG	EP	RS
Razão de pressão do CA [-]	8,4904	10,7093	7,0158
TIT [K]	1.399,98	1.391,76	1.389,98
Eficiência isentrópica da TG [-]	0,8817	0,8810	0,8854
Vazão mássica de combustível para o QS [kg/s]	0,1181	0,0000	0,0311
Eficiência isentrópica da bomba [-]	0,7008	0,7470	0,6444
COE [\$/kW.h]	0,0576	0,0586	0,0571
Ex_D_Real [kW]	231.826,71	235.100,02	231.648,85
Ex_D_Inevit [kW]	194.093,02	195.933,83	194.736,66
Ex_D_Evit [kW]	37.733,68	39.166,18	36.912,19
Ex_D_Endo [kW]	194.858,44	195.553,39	196.618,85
Ex_D_Exo [kW]	36.968,27	39.546,62	35.029,99
Tempo de processamento	22h54min20s	21h56min00s	21h29min40s
Iteração da solução ótima	1.420	1.170	1.720

Tabela 5.29 – Solução ótima da UTE de ciclo combinado em carga parcial de 40%.

Ao comparar a solução ótima encontrada por cada técnica, apresentada na Tabela 5.29, o recozimento simulado encontrou uma solução que apresentou a maior redução na função objetivo custo de eletricidade e o algoritmo genético encontrou uma solução que apresentou a maior redução na função objetivo exergia destruída inevitável. Em relação ao tempo de processamento, o recozimento simulado apresentou melhor desempenho ao demandar menos tempo de processamento, seguido do enxame de partícula e algoritmo genético. Em relação à iteração da solução ótima, o enxame de partícula foi a técnica que apresentou mais eficiência na busca da solução ótima, seguido do algoritmo genético e recozimento simulado.

6 Conclusões

Os resultados obtidos após a aplicação do método proposto no sistema de cogeração CGAM e na usina termelétrica de ciclo combinado demonstraram as vantagens e desvantagens de cada técnica na otimização multiobjetivo, determinaram os valores ótimos das variáveis de decisão nas condições de projeto e fora de projeto, e permitiram um melhor conhecimento do comportamento dos dois sistemas energéticos em diferentes condições.

Foram obtidos resultados otimizados para os dois sistemas térmicos, em todas as condições operacionais analisadas. Para o sistema de cogeração CGAM, na condição de projeto, o algoritmo genético apresentou o melhor desempenho na busca da solução ótima para a função objetivo exergia destruída inevitável e o enxame de partícula para a função objetivo custo de eletricidade. Em relação ao tempo de processamento, o algoritmo genético apresentou o melhor desempenho, seguido do recozimento simulado e enxame de partícula. Com os valores ótimos das variáveis de decisão obtidos por meio do AG, o valor da exergia destruída inevitável reduziu 17,67% e com os valores ótimo das variáveis de decisão obtidos por meio do AG, o valor da exergia destruída inevitável reduziu u 4,39%.

Ao utilizar os dois sistemas térmicos, o sistema de cogeração para testar o método proposto, e a UTE de ciclo combinado para aplicação final do método, é possível obter um melhor entendimento do comportamento das técnicas de otimização, verificando se a complexidade do sistema a ser otimizado influencia ou não no desempenho da técnica de otimização, uma vez que as funções objetivo são as mesmas.

Para a UTE de ciclo combinado, na condição de projeto, o enxame de partícula apresentou o melhor desempenho na busca da solução ótima para a funções objetivo exergia destruída inevitável e custo de eletricidade. Em relação ao tempo de processamento, o algoritmo genético apresentou o melhor desempenho, seguido do recozimento simulado e enxame de partícula. Com os valores ótimos das variáveis de decisão obtidos por meio do EP, o valor da exergia destruída inevitável reduziu 23,48% e o valor do custo de eletricidade reduziu 11,11%.

Comparando o desempenho das técnicas de otimização em cada sistema térmico na condição de projeto, verifica-se o mesmo desempenho em relação ao tempo de processamento, indicando que a complexidade do sistema térmico não interferiu no desempenho do algoritmo da técnica de otimização. Porém, na UTE de ciclo combinado, o melhor resultado para cada função objetivo foi obtido pela mesma técnica de otimização, o enxame de partícula.

Na condição de carga parcial de 90%, no sistema de cogeração, o enxame de partícula apresentou o melhor desempenho na busca da solução ótima para a função objetivo exergia

destruída inevitável e o algoritmo genético para a função objetivo custo de eletricidade. Em relação ao tempo de processamento, o algoritmo genético apresentou o melhor desempenho, seguido do recozimento simulado e enxame de partícula. Com os valores ótimos das variáveis de decisão obtidos por meio do EP, o valor da exergia destruída inevitável reduziu 8,28% e com os valores ótimo das variáveis de decisão obtidos por meio do AG, o valor do custo de eletricidade reduziu 1,16%. Na UTE de ciclo combinado, o enxame de partícula apresentou o melhor desempenho na busca da solução ótima para a funções objetivo exergia destruída inevitável e custo de eletricidade. Em relação ao tempo de processamento, o recozimento simulado apresentou o melhor desempenho, seguido do enxame de partícula e algoritmo genético. Com os valores ótimos das variáveis de decisão obtidos por meio do EP, o valor da exergia destruída inevitável reduziu 10,65% e o valor do custo de eletricidade reduziu 5,03%.

Com os resultados na condição de carga parcial de 90%, é interessante observar que a mudança na complexidade dos equacionamentos para a modelagem fora de projeto influenciou os resultados no sistema de cogeração, uma vez que em carga nominal o AG obteve o melhor resultado para a exergia destruída inevitável e o EP obteve o melhor resultado para o custo de eletricidade, e em carga parcial o resultado se inverteu. Na UTE de ciclo combinado não houve mudança no desempenho das técnicas de otimização decorrente da mudança de carga nominal para carga parcial, o EP em ambas as análises apresentou os melhores resultados. No tempo de processamento, para o sistema de cogeração não houve alteração, o algoritmo genético demandou o maior tempo, seguido do recozimento simulado e enxame de partícula, tanto em carga nominal quanto em carga parcial de 90%. Para a UTE de ciclo combinado houve alteração, enquanto em carga nominal o AG demandou mais tempo, seguido do RS e EP, em carca parcial de 90%, o RS demandou mais tempo, seguido do EP e AG.

Nas cargas parciais de 80%, 50% e 40%, no sistema de cogeração, o AG apresentou o melhor desempenho na busca da solução ótima para a função objetivo exergia destruída inevitável e para a função objetivo custo de eletricidade. Em relação ao tempo de processamento, o AG apresentou o melhor desempenho, seguido do RS e EP. Em termos qualitativos para o tempo de processamento, os resultados nas cargas parciais de 70%, 60% 50% e 40% foram semelhantes à carga parcial de 80% e 90%. Na carga parcial de 70%, a diferença no resultado, foi que o RS apresentou o melhor desempenho na busca da solução ótima para as duas funções objetivo. Na carga parcial de 60%, a diferença no resultado, foi que o AG apresentou o melhor desempenho na busca da solução ótima para a função objetivo custo de eletricidade e o RS apresentou o melhor desempenho na busca da solução ótima para a função objetivo custo de eletricidade e o RS apresentou o melhor desempenho na busca da solução ótima para a função objetivo exergia destruída inevitável.

Na UTE de ciclo combinado, entre as cargas parciais de 80% a 40% houve uma diferença maior em relação ao sistema de cogeração. Nas cargas parciais de 80% e 70% o EP apresentou o melhor desempenho na busca da solução ótimas para as duas funções objetivo. Nas cargas parciais de 60% e 40%, o AG apresentou o melhor desempenho na busca da solução ótima para a função objetivo exergia destruída inevitável e o RS para a função objetivo custo de eletricidade. Na carga parcial de 50% o RS apresentou o melhor desempenho na busca da solução ótimas para as duas funções objetivo. Em relação ao tempo de processamento, em todas as cargas parciais de 80% a 40%, o RS apresentou o melhor desempenho. Nas cargas parciais de 80%, 70% e 40%, o RS foi seguido do EP e AG e nas cargas parciais de 60% e 50%, o RS foi seguido do AG e EP.

Uma das parcelas que compõem o custo de eletricidade é o custo de capital, que contabiliza os custos dos equipamentos dos sistemas térmicos. No sistema de cogeração CGAM, o custo de capital totaliza \$8.192.333,46. Deste valor, o conjunto compressor de ar, câmara de combustão e turbina a gás representam 60,61%, a caldeira de recuperação de calor 22,31% e o pré-aquecedor de ar 17,08%.

Na UTE de ciclo combinado, o custo de capital totaliza \$165.269.836,59, sendo que o conjunto compressor de ar, câmara de combustão e turbina a gás representam 49,39%, a turbina a vapor 29,23%, a caldeira de recuperação de calor 14,71%, o desaerador 2,92%, a bomba 1,98% e o condensador 1,78%.

Podem-se destacar alguns pontos de contribuição deste trabalho para a literatura específica da área, são eles: (i) um estudo de comparação de três técnicas de otimização (algoritmo genético, enxame de partícula e recozimento simulado) aplicados em uma usina termelétrica de ciclo combinado a gás natural; (ii) a análise exergética avançada na modelagem do sistema energético; e (iii) a simulação na condição fora de projeto. Essas contribuições viabilizaram as análises exergética e econômica dos sistemas térmicos, uma melhor compreensão do comportamento individual dos componentes, e a determinação dos pontos operacionais ótimos na condição de projeto e fora de projeto que resultem em melhores oportunidades financeiras para o empreendedor.

6.1 Sugestões de trabalhos futuros

O estudo desenvolvido nesta tese aplicou três métodos de otimização entre um universo de métodos desenvolvidos e disponíveis na literatura. Assim, sugere-se para trabalhos futuros a aplicação de técnicas diferentes ao algoritmo genético, enxame de partícula e recozimento
simulado, aplicados ao mesmo sistema térmico desta tese, para criação de uma base de dados ampla para comparação do maior número possível de métodos de otimização.

Além de aplicação de diferentes métodos, sugere-se a combinação de dois métodos para criação de técnicas híbridas que combinem o melhor da individualidade de cada técnica.

Uma variação ao estudo desenvolvido nesta tese pode ser realizada alterando as variáveis de decisão e as funções objetivo, podendo avaliar outros aspectos além do exergético e econômico, como por exemplo aspectos ambientais.

No presente trabalho foram utilizados dois programas, como sugestão poderia ser desenvolvida a programação para modelagem, simulação e otimização em um código aberto, para melhor alcance das análises apresentadas.

Uma análise a ser adicionada é a realização de uma análise de incertezas dos diferentes parâmetros empregados no desenvolvimento dessa tese.

Com as sugestões acima, os seguintes trabalhos podem ser desenvolvidos: (i) Otimização multiobjetivo de uma usina termelétrica de ciclo combinado nas condições de projeto e fora de projeto com aplicação de novas técnicas de otimização; (ii) Otimização multiobjetivo de uma usina termelétrica de ciclo combinado nas condições de projeto e fora de projeto com aplicação de técnicas de otimização híbridas; (iii) Otimização exergética, econômica e ambiental de uma usina termelétrica de ciclo combinado nas condições de projeto e fora de projeto; e (iv) Desenvolvimento de um código computacional para modelagem, simulação e otimização de uma usina termelétrica de ciclo combinado nas condições de projeto e fora de projeto.

Referências bibliográficas

AÇIKKALP, E.; ARAS, H.; HEPBASLI, A. Advanced exergy analysis of an electricitygenerating facility using natural gas. **Energy Conversion and Management**, v. 82, p. 146– 153, 2014.

AKBARI, A. D.; MAHMOUDI, S. M. S. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle. **Energy**, v. 78, p. 501–512, 2014. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.energy.2014.10.037>.

AKBARPOUR GHIASI, R.; FALLAH, M.; LOTFAN, S.; ROSEN, M. A. A new approach for optimization of combined cycle system based on first level of exergy destruction splitting. **Sustainable Energy Technologies and Assessments**, v. 37, n. November 2019, p. 100600, 2020. Elsevier. Disponível em: https://doi.org/10.1016/j.seta.2019.100600>.

ASSOCIATION FOR THE ADVANCEMENT OF COST ENGINEERING. International Recommended Practice No. 18R-97, Cost Estimate Classification System. 2019.

BALKU, Ş. Analysis of combined cycle efficiency by simulation and optimization. **Energy Conversion and Management**, v. 148, p. 174–183, 2017.

BEJAN, A.; TSATSARONIS, G.; MORAN, M. Thermal Design and Optimization. New York: John Wiley& Sons, Inc., 1996.

BOYAGHCHI, F. A.; MOLAIE, H. Sensitivity analysis of exergy destruction in a real combined cycle power plant based on advanced exergy method. **Energy Conversion and Management**, v. 99, p. 374–386, 2015a. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.enconman.2015.04.048>.

BOYAGHCHI, F. A.; MOLAIE, H. Advanced exergy and environmental analyses and multi objective optimization of a real combined cycle power plant with supplementary firing using evolutionary algorithm. **Energy**, v. 93, p. 2267–2279, 2015b. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.energy.2015.10.094>.

CAVALCANTI, E. J. C. Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system system. **Renewable and Sustainable Energy Reviews**, v. 67, p. 507–519, 2017.

DEB, K.; AGRAWAL, R. B. Simulated binary crossover for continuous search space. **Complex Systems**, v. 9, p. 115–148, 1995.

DEB, K.; AGRAWAL, S.; PRATAP, A.; MEYARIVAN, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 1917, p. 849–858, 2000.

EMPRESA DE PESQUISA ENERGÉTICA. Compilação de correlações de custos de equipamentos - Instalações Industriais de Gás Natural. 2018.

ERBES, M. R. Phased Construction of Integrated Coal Gasification Combined-Cycle Power Plants, 1986.

ESTECO. Manual do programa modeFRONTIER., 2007.

FALLAH, M.; SIYAHI, H.; GHIASI, R. A.; *et al.* Comparison of different gas turbine cycles and advanced exergy analysis of the most effective. **Energy**, v. 116, p. 701–715, 2016. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.energy.2016.10.009>.

GANJEHKAVIRI, A.; MOHD JAAFAR, M. N.; AHMADI, P.; BARZEGARAVVAL, H. Modelling and optimization of combined cycle power plant based on exergoeconomic and environmental analyses. **Applied Thermal Engineering**, v. 67, n. 1–2, p. 566–578, 2014. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.applthermaleng.2014.03.018>.

GANJEHKAVIRI, A.; MOHD JAAFAR, M. N.; HOSSEINI, S. E. Optimization and the effect of steam turbine outlet quality on the output power of a combined cycle power plant. **Energy Conversion and Management**, v. 89, p. 231–243, 2015. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.enconman.2014.09.042>.

GAS TURBINE WORLD. Gas Turbine World 2019 GTW Handbook. , 2019. Fairfield - CT: A Pequeot Publication. Disponível em: <www.gasturbineworld.com>. .

GENERAL ELECTRIC COMPANY. Manual do programa GateCycle., 2013.

GU, H.; CUI, X.; ZHU, H.; SI, F.; KONG, Y. Multi-objective optimization analysis on gassteam combined cycle system with exergy theory. **Journal of Cleaner Production**, v. 278, p. 123939, 2021. Elsevier Ltd. Disponível em: https://doi.org/10.1016/j.jclepro.2020.123939>.

GÜLEN, S. C. Gas Turbine Combined Cycle Power Plants. CRC Press, 2020.

HOLMAN, J. P. Heat Transfer. Fourth ed. New York: McGraw-Hill Book Company, 1976.

HU, Y.; XU, G.; XU, C.; YANG, Y. Thermodynamic analysis and techno-economic evaluation of an integrated natural gas combined cycle (NGCC) power plant with post-combustion CO2 capture. **Applied Thermal Engineering**, v. 111, p. 308–316, 2017. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.applthermaleng.2016.09.094>.

HWANG, C.-L.; YOON, K. Multiple Attribute Decision Making - Methods and Applications - A State of the Art Survey. In: M. Beckmann; H. P. Künzi (Eds.); Lecture Notes in Economics and Mathematical Systems. **Anais...** p.259, 1981. New York: Springer-Verlag Berlin Heidelberg.

HEAT EXCHANGE INSTITUTE. Standards for Steam Surface Condensers - 9th Edition. , 1995. Cleveland, OH: Heat Exchange Institute.

INTERNATIONAL ENERGY AGENCY. World Energy Outlook 2019. 2019.

JARAMILLO, J. C. B. Otimização Exergoeconômica De Sistema Tetra- combinado de trigeração, 2011.

KAYS, W. M.; CRAWFORD, . . E. Convective Heat and Mass Transfer. Second ed. New York: McGraw-Hill Book Company, 1980.

KAYS, W. M.; LONDON, A. L. **Compact Heat Exchangers**. Third ed. New York: McGraw-Hill Book Company, 1984.

KELLY, S. Energy Systems Improvement based on Endogenous and Exogenous Exergy Destruction, 2008.

KELLY, S.; TSATSARONIS, G.; MOROSUK, T. Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts. **Energy**, v. 34, n. 3, p. 384–391, 2009.

KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. Optimization by simulated annealing. **Science**, v. 220, n. 4598, p. 671–680, 1983.

KOTAS, T. J. The Exergy Method of Thermal Plant Analysis. Butterworths, 1985.

KOTOWICZ, J.; JOB, M.; BRZECZEK, M. The characteristics of ultramodern combined cycle power plants. **Energy**, v. 92, p. 197–211, 2015.

KUMAR, R. A critical review on energy, exergy, exergoeconomic and economic (4-E) analysis of thermal power plants. **Engineering Science and Technology, an International Journal**, v. 20, n. 1, p. 283–292, 2017. Karabuk University. Disponível em: http://dx.doi.org/10.1016/j.jestch.2016.08.018>.

KURZKE, J. GasTurb 12 - Design and off-design performance of gas turbines. , 2015.

LIU, Z.; KARIMI, I. A. Simulation and optimization of a combined cycle gas turbine power plant for part-load operation. **Chemical Engineering Research and Design**, v. 131, p. 29–40, 2018. Institution of Chemical Engineers. Disponível em: http://dx.doi.org/10.1016/j.cherd.2017.12.009>.

LIZARAZU, M. S. D. Otimização Multiobjetivo Aplicada à Eficiência Energética de Torres de Resfriamento, 2016.

M., B.; YAGHOUBI, A. Multi-objective exergoeconomic optimization of an Integrated Solar Combined Cycle System using evolutionary algorithms. **INTERNATIONAL JOURNAL OF ENERGY RESEARCH**, v. 35, p. 601–615, 2011.

MAHMOODABADI, M. J.; GHAVIMI, A. R.; MAHMOUDI, S. M. S. Optimization of power and heating systems based on a new hybrid algorithm. **Alexandria Engineering Journal**, v. 54, n. 3, p. 343–350, 2015. Faculty of Engineering, Alexandria University. Disponível em: http://dx.doi.org/10.1016/j.aej.2015.04.011.

MIRONER, A. Engineering Fluid MEchanics. New York: McGraw-Hill Book Company, 1979.

MOROSUK, T.; TSATSARONIS, G. Advanced exergy analysis for chemically reacting systems - Application to a simple open gas-turbine system. **International Journal of Thermodynamics**, v. 12, n. 3, p. 105–111, 2009.

MOROSUK, T.; TSATSARONIS, G. Advanced exergy-based methods used to understand and improve energy-conversion systems. **Energy**, v. 169, p. 238–246, 2019. Elsevier Ltd. Disponível em: https://doi.org/10.1016/j.energy.2018.11.123>.

MOSSI IDRISSA, A. K.; GONI BOULAMA, K. Advanced exergy analysis of a combined Brayton/Brayton power cycle. **Energy**, v. 166, p. 724–737, 2019. Elsevier Ltd. Disponível em: https://doi.org/10.1016/j.energy.2018.10.117>.

MOSTAGHIM, S. Multi-Objective Evolutionary Algorithms - Data Structures, Convergence and Diversity, 2004.

NAMI, H.; MAHMOUDI, S. M. S.; NEMATI, A. Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2). **Applied Thermal Engineering**, v. 110, p. 1315–1330, 2017. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.applthermaleng.2016.08.197>.

PADILHA, R. DE S. OTIMIZAÇÃO DE UM SISTEMA DE COGERAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE GRADIENTE, EVOLUCIONÁRIO E HÍBRIDO: UM ESTUDO COMPARATIVO, 2006.

PALMER, C. A.; ERBES, M. R.; PECHTL, P. A. GateCycle performance analysis of the LM250 gas turbines utilizing low heating value fuels. ASME Cogen Turbo Power. Anais..., 1993.

PATEL, V. K.; SAVSANI, V. J.; TAWHID, M. A. Thermal system optimization: A population-based metaheuristic approach. 2019.

PETRAKOPOULOU, F.; TSATSARONIS, G.; MOROSUK, T.; CARASSAI, A. Conventional and advanced exergetic analyses applied to a combined cycle power plant. **Energy**, v. 41, n. 1, p. 146–152, 2012. Elsevier Ltd.

PHILLIPS, J. N. A Study of the)ff-Design Performance of Integrated Coal Gasification Combined-Cycle Power Plants, 1986.

RAO, S. S. Engineering Optimization. Fourth ed. John Wiley & Sons, Inc., 2009.

REYNOLDS, W. C.; PERKINS, H. C. Engineering Thermodynamics. McGrawHill, 1977.

SAHIN, A. Z.; AL-SHARAFI, A.; YILBAS, B. S.; KHALIQ, A. Overall performance assessment of a combined cycle power plant: An exergo-economic analysis. **Energy Conversion and Management**, v. 116, p. 91–100, 2016. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.enconman.2016.02.079>.

SHAMOUSHAKI, M.; EHYAEI, M. A.; GHANATIR, F. Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant. **Energy**,

v. 134, p. 515–531, 2017. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.energy.2017.06.058>.

SPENCER, R. C.; COTTON, K. C.; CANNON, C. N. A Method for Predicting the Performance of Steam Turbine-Generators. , 1974.

SZARGUT, J.; MORRIS, D. R.; STEWARD, F. R. Exergy Analysis of Thermal, Chemical and Metallurgical Processes. Hemisphere Publishing Corporation, 1988.

TOLMASQUIM, M. T. Energia Termelétrica: Gás Natural, Biomassa, Carvão, Nuclear. 1^a ed. Rio de Janeiro: Empresa de Pesquisa Energética (EPE), 2016.

TSATSARONIS, G. Strengths and limitations of exergy analysis. In: A. Bejan; E. Mamut (Eds.); Thermodynamic Optimization of Complex Energy Systems. **Anais...** v. 69, p.93–100, 1999. Romênia: IOS Press and Kluwer Academic Publishers.

TSATSARONIS, G.; PARK, M. H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems. **Energy Conversion and Management**, v. 43, n. 9–12, p. 1259–1270, 2002.

TSE, L.; GALINAUD, F.; MARTINEZ-BOTAS, R. F. Integration of solid oxide fuel cell into a gas turbine. **ASME turbo expo power for land: sea and air.**, 2007.

U.S. ENERGY INFORMATION ADMINISTRATION (EIA). Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies. U.S Energy Information Administration, , n. February, p. 212, 2020.

VALERO, A.; LOZANO, M. A.; SERRA, L.; *et al.* CGAM problem: Definition and conventional solution. **Energy**, v. 19, n. 3, p. 279–286, 1994.

WALSH, P. P.; FLETCHER, P. Gas Turbine Performance. Second ed. Oxford, 2004.

YANG, X.-S. Engineering Optimization - An Introduction with Metaheuristic Applications. New Jersey: Wiley, 2010.

ZHU, L.; CHEN, H.; FAN, J.; JIANG, P. Thermo-economic investigation: an insight tool to analyze NGCC with calcium-looping process and with chemical-looping combustion for CO2 capture. **INTERNATIONAL JOURNAL OF ENERGY RESEARCH**, v. 40, p. 1908–1924, 2016.

Apêndice A – Resumo da literatura revisada

Trabalho	Revista	Classificação CAPES	Tipo de ciclo	Capacidade da usina	Combustível	Linguagem	Validação	Programa	Técnicas de otimização
Ganjehkaviri <i>et</i> al. (2014)	Applied Thermal Engineering	A1	UTE de ciclo combinado com dois níveis de pressão e queima suplementar	415,1 MW	Gás natural	Matlab	Sim	-	Algoritmo genético modificado
Ganjehkaviri <i>et al.</i> (2015)	Energy, Conversion and Management	A1	UTE de ciclo combinado com dois níveis de pressão e queima suplementar	415,1 MW	Gás natural	Matlab	Sim	-	Algoritmo genético modificado
Boyaghchi e Molaie (2015b)	Energy	A1	UTE de ciclo combinado com dois níveis de pressão e queima suplementar	420 MW	Gás natural	Matlab	Sim	EES	NSGA-II
Kotowicz <i>et al.</i> (2015)	Energy	A1	UTE de ciclo combinado	-	Gás natural	-	-	-	Algoritmo genético
Mahmoodabadi et al. (2016)	Alexandria Engineering Journal	-	Sistema CGAM	30 MW	Gás natural	-	-	-	Algoritmo genético Enxame de partícula
Fallah <i>et al.</i> (2016)	Energy	A1	Sistema de turbina a gás	100 MW	Gás natural	-	Sim	EES	-
Sahin <i>et al.</i> (2016)	Energy, Conversion and Management	A1	Ciclo combinado	-	-	-	Sim	GT PRO PEACE	OPI
Zhu <i>et al.</i> (2016)	International Journal of Energy Research	A2	Ciclo combinado com captura de CO ₂	-	Gás natural	-	-	Aspen Plus	-
Balku (2017)	Energy, Conversion and Management	A1	Ciclo combinado	-	Gás natural	Matlab	-	-	Processo iterativo utilizando o subprograma "fmincon" e os algoritmos ponto interior, SQP, conjunto ativo e região de confiança reflexiva.

Liu e Karimi (2017)	Chemical Engineering Research and Design	A2	Ciclo combinado com três níveis de pressão	393,6 MW	Não fala	Matlab	-	Gatecycle Cyclelink	PSO
Nami <i>et al.</i> (2017)	Applied Thermal Engineering	A1	Sistema de cogeração	-	-	-	Sim	EES	Direct search method
Shamoushaki <i>et al.</i> (2017)	Energy	A1	Ciclo combinado híbrido de célula combustível e turbina a gás	-	Gás natural	Matlab	Sim	-	NSGA-II Método iterativo multi- objetivo difuso
Ghiasi <i>et al.</i> (2020)	Sustainable Energy Technologies and Assessments	B3	Ciclo combinado com dois níveis de pressão	48,8 MW	Gás natural	Matlab	Sim	EES	NSGA-II
Gu et al. (2021)	Journal of Cleaner Production	A1	UTE de ciclo combinado com dois níveis de pressão	200 MW	Gás natural	-	-	-	NSGA-II

Trabalho	Variáveis de decisão	Limites das variáveis de decisão	Restrições
	Razão de pressão do compressor r_c	>3 e <20	TIT<1500K limite de temperatura do
	Eficiência isentrópica do compressor	>0.7 e <0.94	material
	η_{C}		r_{c} <0,9 Disponibilidade comercial
	Temperatura de saída da câmara de	>1000 e <1500K	η_{C} <0,9 Disponibilidade comercial
	combustão TIT		$\eta_{GT} < 0.9$ Disponibilidade comercial
	Eficiência da turbina a gás η_{GT}	>0,7 e <0,94	$P_{main} < 110$ bar Disponibilidade comercial
	Fluxo de combustível do queimador	>0 e <1 kg/s	$0,75 < \eta_{ST} < 0,9$ Disponibilidade comercial
	complementar $\dot{m}_{f,DB}$	-	$0,75 < \eta_{Pump} < 0,9$ Disponibilidade
Contribution of al	Fluxo de massa de vapor de baixa	>5 e <15 kg/s	comercial
Ganjenkaviri <i>et al.</i>	pressão \dot{m}_{LP}		\dot{m}_{DB} <2 kg/s Limite de temperatura do
(2014)	Fluxo de massa de vapor de alta	>50 e <100 kg/s	superaquecedor
	pressão \dot{m}_{HP}	-	$5 < P_{Cond} < 15$ bar Limitação da eficiência
	Eficiência da bomba η_{Pump}	>0,6 e <0,9	térmica
	Eficiência da turbina a vapor η_{ST}	>0,7 e <0,94	T_{main} < 550°C Limitação da temperatura
	Pressão do condensador P_{Cond}	>0,05 e <0,15 bar	do material
	Pressão do primeiro estágio da bomba	>5 e <15 bar	$T_{13>}120^{\circ}$ C Para evitar a formação de ácido
	de alimentação $P_{1 \text{ st } FP}$		sulfúrico nos gases de exaustão
	Pressão do segundo estágio da bomba	>90 e <120 bar	5 <pp<30°c da="" da<="" lei="" limitação="" segunda="" td=""></pp<30°c>
	de alimentação $P_{2nd FP}$		Termodinâmica
	Razão de pressão do compressor	>3 e <20	TIT<1500K limite de temperatura do
	Eficiência isentrópica do compressor	>0,75 e <0,94	material
	Temperatura de saída da câmara de	>1000 e <1500K	r < 0.9 Disponibilidade comercial
	combustão		n < 0.9 Disponibilidade comercial
	Eficiência da turbina a gás	>0,75 e <0,94	$\eta_C < 0.9$ Disponibilidade comercial
	Fluxo de combustível do queimador	>0 e <1 kg/s	$P_{GT} < 0.9$ Disponibilidade comercial
	complementar		$P_{main} < 110$ bar Disponibilidade comercial
	Pinch point na seção de alta pressão	>1 e <8	$0.75 < n_{ST} < 0.9$ Disponibilidade
Ganjehkaviri et al.	Pinch point na seção de baixa pressão	>10 e <32	0,75<7 _{Pump} <0,9 Disponionidade
(2015)	Fluxo de massa de vapor de baixa	>5 e <15 kg/s	comercial
	pressão		m_{DB} <2 kg/s Limite de temperatura do
	Fluxo de massa de vapor de alta	>50 e <100 kg/s	super aquecedor
	pressão		$5 < P_{cond} < 15$ bar Limitação da eficiência
	Pressão do primeiro estágio da bomba	>5 e <15 bar	$\frac{1}{550\%}$
	de alimentação		I _{main} <550°C Limitação da temperatura
	Pressão do segundo estágio da bomba	>90 e <120 bar	$\frac{120\%}{2}$
	de alimentação		$I_{13}>120$ °C Para evitar a formação de acido sulfúriças nos coses de evenetão
	Pressão da bomba de condensado	>2 e <8 bar	summeo nos gases de exaustão

	Eficiência da bomba	>0,6 e <0,9	5 <pp<30°c da="" da<="" lei="" limitação="" segunda="" td=""></pp<30°c>
	Eficiência da turbina a vapor	>0,75 e <0,94	Termodinâmica
	Pressão do condensador	>0,05 e <0,15 bar	
	Temperatura de entrada na turbina TIT	≥950 e ≤1250 Temperatura mínima para funcionamento do	
		ciclo Rankine e temperatura máxima suportada pelas pás da	
Boyaghchi e Molaie		TG	
(2015b)	Razão de compressão r_c	≥6 e ≤18 Restrições físicas e econômicas	-
	Taxa de vazão de combustível na	≥ 0.5 kg/s e ≤ 2 kg/s De acordo com a literatura	
	queima suplementar \dot{m}_{DB}		
Malana dala P	Razão de pressão do compressor	>7 e <16	
Manmoodabadi et	Eficiência do pré-aquecedor de ar	>0,6 e < 0,9	-
<i>al.</i> (2016)	Temperatura de entrada na turbina a gás	>1400 e < 1650 K	
$\mathbf{S}_{\mathbf{r}}$ is a $\mathbf{r}_{\mathbf{r}}$ (2016)	Temperatura ambiente	>15 e <40°C	
Sanin <i>et al</i> . (2016)	Umidade relativa	>4 e <90%	-
	Pressão de entrada na turbina de alta	≥10 MPa e ≤18 MPa	
	pressão		
	Pressão de entrada na turbina de	≥1 MPa e ≤5 MPa	
	pressão intermediária		
	Pressão de entrada na turbina de baixa	≥0,3 MPa e ≤1 MPa	
	pressão		
	Temperatura de entrada na turbina de	≥500°C e ≤600°C	
	alta pressão		
Votowioz et al	Temperatura de entrada na turbina de	≥500°C e ≤600°C	
(2015)	baixa pressão		-
(2013)	Diferença de temperatura no	≥5°C e ≤20°C	
	superaquecedor de pressão		
	intermediária		
	Pinch point de alta pressão	≥5°C e ≤20°C	
	Pinch point de pressão intermediária	≥5°C e ≤20°C	
	Pinch point de baixa pressão	≥5°C e ≤20°C	
	Approach de alta pressão	≥5°C e ≤20°C	
	Approach de pressão intermediária	≥5°C e ≤20°C	
	Approach do desaerador	≥10°C e ≤50°C	
	Razão de pressão do compressor r_c	≥2 e ≤16 Limitação comercial e valores típicos para a	
		tecnologia típica	
Shamoushaki et al.	Temperatura de entrada na câmara de	≥800 K e ≤1100 K Limitação comercial e valores típicos	_
(2017)	combustão T_4	para a tecnologia típica	-
	Temperatura de entrada na turbina a gás	≥1200 K e ≤1800 K Limitação comercial e valores típicos	
	T_5	para a tecnologia típica	

	Eficiência isentrópica do compressor	≥0,7 e ≤0,9 Limitação comercial e valores típicos para a	
	η_c	tecnologia típica	
	Eficiência isentrópica da turbina a gás	≥0,7 e ≤0,92 Limitação comercial e valores típicos para a	
	η_{TG}	tecnologia típica	
	Fator de utilização do combustível U_f	$\geq 0,6 e \leq 0,9$ Valores típicos para a tecnologia	
	Densidade da corrente <i>j</i>	$\geq 0,2 e \leq 6$ Valores típicos para a tecnologia	
	Relação vapor carbono S/C	$\geq 2 e \leq 4$ Valores tipicos para a tecnologia	
	Ângulo do IGV $\Delta \alpha$		Temperatura do estágio 1 da turbina \leq
	Fluxo de combustível m_f		850°C
	Fluxo de ar de resfriamento para o		Temperatura do estágio 2 da turbina \leq
	estágio t da turbina $m_{CB,t}$		
	Fluxo de água para o		1 emperatura do estagio 3 da turbina \leq
Liu e Karimi (2017)	dessuperaquecedor m_{DS1}	-	/30°C
	Fluxo de água para o		Temperatura do vapor de alta pressao \leq
	dessuperaquecedor m_{DS2}		JUJ C Temperatura do vanor de reaguecimento <
	Fluxo de água de recirculação m_{RP}		565°C
	Fluxo de água do by-pass m_{bp}		Temperatura dos gases de exaustão da
			caldeira > 99 7°C para prevenir corrosão
Balku (2017)	$T_7, r_6, P_1, P_2, T_{11}, P_4, T_5, G/V e A/C$	-	
	Razão de pressão do compressor r_c	>6 e <20	
Ghiasi et al. (2020)	Temperatura de saída da câmara de	>1.373,15 K e <1.673,15 K	-
	combustão TIT		
	Razão de pressão do compressor	<22	
	Eficiência isentrópica do compressor	>0,75 e <0,90	
	Temperatura de entrada da turbina a gás	<1.550 K	
Gu <i>et al.</i> (2021)	Eficiência isentrópica da turbina a gás	>0,75 e <0,90	
	Temperatura do vapor principal	<850 K	
	Pressão de vapor principal	<8 MPa	_
	Temperatura na seção de baixa pressão	<850 K	
	Pressão na seção de baixa pressão	<8 MPa	
	Eficiência isentrópica da turbina a	>0,75 e <0,90	
	vapor		
	Pressão do condensador	>4 e <15 kPa	
	Eficiência isentrópica da bomba	>0,75 e <0,90	

Trabalho

Função objetivo

Ganjehkaviri et al. (2014)

$$\eta_{Total} = \frac{W_{net}}{\dot{m}_{f \ CCPP} \times PCI \times \xi}$$
$$\dot{C}_{Total} = \dot{C}_F + \sum_{K} \dot{Z}_K + \dot{C}_{Env} + \dot{C}_D$$
$$\varepsilon = \frac{\dot{m}_{CO_2}}{\dot{W}_{net}}$$

$$\eta_{Total} = \frac{\dot{W}_{net}}{\dot{m}_{f \ CCPP} \times PCI \times \xi}$$

Ganjehkaviri *et al.* (2015)
$$\dot{C}_{Total} = \dot{C}_F + \sum_K \dot{Z}_K + \dot{C}_{Env} + \dot{C}_D$$
$$\varepsilon = \frac{\dot{m}_{CO_2}}{\dot{W}_{net}}$$

Boyaghchi e Molaie		
(2015b)		

$$\vec{E}x_{D,Tot}^{AV} = \sum_{n} \vec{E}x_{D,K}^{AV}$$
$$\varepsilon_{CO_2} = \frac{\dot{m}_{CO_2}}{\dot{W}_{net}}$$

$$\eta_{total} = \frac{\dot{W}_{Net} + \dot{m}_9(e_9 - e_8)}{\dot{m}_f \times LHV \times \xi}$$
$$\dot{C}_{Tot} = \dot{C}_F + \sum_K \dot{Z}_K + \dot{C}_{env}$$

$$\eta_{th} = \frac{\dot{W}_{gt} + \dot{W}_{st}}{\dot{Q}_{in}}$$

 $\eta_{ex} = \frac{(Exergia \ total \ que \ sai)}{(Exergia \ total \ que \ entra)} = 1 - \frac{(Perdas \ por \ irreversibilidades)}{(Exergia \ total \ que \ entra)}$ Sahin et al. (2016) $COE = \frac{\sum_{t=1}^{n} \frac{I_t + OM_t + F_t}{(1+\delta)^t}}{\sum_{t=1}^{n} \frac{E_t}{(1+\delta)^t}}$

Kotowicz et al. (2015)

Potência elétrica do ciclo a vapor

Shamoushaki et al. (2017)

$$\dot{C}_{Tot} = \dot{C}_f + \sum \dot{Z}_K + \sum \dot{C}_{D,K} + \dot{C}_{env}$$
$$\eta_{ex}^{CYC} = \frac{\dot{W}_{net}}{(e^{ph} + e^{ch})}$$

$$C = \frac{nct}{\dot{m}_{fuel} \left(e_f^{ph} + e_f^{ch} \right)}$$

Liu e Karimi (2017)	$m_f(\Delta lpha, m_{CB,t}, m_{DS1}, m_{DS2}, m_{RP}, m_{bp})$
Balku (2017)	$\eta_t = \frac{\dot{W}_{liq \ planta}}{\dot{Q}_{ent}}$ $\eta_{enex} = \frac{\dot{W}_{liq \ planta}}{\dot{X}_{dest}}$
Ghiasi <i>et al.</i> (2020)	$\eta_{II} = \frac{\dot{W}_{liq}}{\dot{E}_{f}}$ $Ex_{D,Tot}^{Evit} / Ex_{D,Tot}$

 $\varepsilon_{CO_2} = \frac{\dot{m}_{CO_2}}{\dot{W}_{liq}}$

150

 $\eta_{II} = \frac{\dot{W}_{liq}}{\dot{E}_f}$ $\dot{C}_{Tot} = \dot{C}_f + \sum \dot{Z}_K + \sum \dot{C}_{D,K}$ Gu et al. (2021) $\varepsilon_{CO_2} = \frac{\dot{m}_{CO_2}}{3.600 \times \dot{W}_{liq}}$

Apêndice B – Análise exergética avançada

Parcelas endógena e exógena

Para ilustrar a ideia da divisão da exergia destruída em partes endógena e exógena, é analisado o sistema térmico hipotético apresentado na Figura B.1. O sistema é composto de três componentes em série, A, B e C. Neste sistema, o produto de um componente é o recurso do componente seguinte, assim: (i) o recurso de A é o recurso total do sistema; (ii) o produto de A é o recurso de B; (iii) o produto de B é o recurso de C; (iv) o produto de C é o produto total do sistema. Nesta análise, o produto total do sistema é mantido constante e não há perda de exergia.

$$\vec{E}x_{R,A} = \vec{E}x_{R,Total}$$

$$\vec{A}$$

$$\vec{E}x_{P,A} = \vec{E}x_{R,B}$$

$$\vec{B}$$

$$\vec{E}x_{P,B} = \vec{E}x_{R,C}$$

$$\vec{C}$$

$$\vec{E}x_{P,C} = \vec{E}x_{P,Total} = Cte$$

Figura B.1 - Sistema térmico hipotético. Fonte: Adaptado de Kelly (2008), p. 8.

A exergia destruída no componente C é calculada pela Eq. (B1).

$$\vec{E}x_{D,C} = \vec{E}x_{R,C} - \vec{E}x_{P,C} \tag{B1}$$

A eficiência exergética no componente C é calculada pela Eq. (B2).

$$\varepsilon_C = \frac{Ex_{P,C}}{Ex_{R,C}} \tag{B2}$$

Isolando o termo de exergia do recurso na Eq. (B3), tem-se:

$$\vec{E}x_{R,C} = \frac{\vec{E}x_{P,C}}{\varepsilon_C}$$
(B3)

Substituindo a Eq. (B3) na Eq. (B1), tem-se:

$$\vec{E}x_{D,C} = \frac{\vec{E}x_{P,C}}{\varepsilon_C} - \vec{E}x_{P,C}$$
(B4)

Colocando em evidência o termo de exergia do produto na Eq. (B4), tem-se:

$$\vec{Ex}_{D,C} = \vec{Ex}_{P,C} \times \left(\frac{1}{\varepsilon_C} - 1\right)$$
 (B5)

Como apresentado na Figura B.1, $\vec{E}x_{P,C} = \vec{E}x_{P,Total}$. Substituindo este termo na Eq. (B5), tem-se:

$$\dot{Ex}_{D,C} = \dot{Ex}_{P,Total} \times \left(\frac{1}{\varepsilon_C} - 1\right)$$
 (B6)

Análogo ao apresentado para o componente C, a exergia destruída no componente B é calculada pela Eq. (B7).

$$\vec{E}x_{D,B} = \vec{E}x_{R,B} - \vec{E}x_{P,B} \tag{B7}$$

A eficiência exegética no componente B é calculada pela Eq. (B8).

$$\varepsilon_B = \frac{\dot{E}x_{P,B}}{\dot{E}x_{R,B}} \tag{B8}$$

Isolando o termo de exergia do recurso na Eq. (B8), tem-se:

$$\dot{Ex}_{R,B} = \frac{Ex_{P,B}}{\varepsilon_B} \tag{B9}$$

Substituindo a Eq. (B9) na Eq. (B7), tem-se:

$$\vec{E}x_{D,B} = \frac{\vec{E}x_{P,B}}{\varepsilon_B} - \vec{E}x_{P,B}$$
(B10)

Colocando em evidência o termo de exergia do produto na Eq. (B10), tem-se:

$$\vec{Ex}_{D,B} = \vec{Ex}_{P,B} \times \left(\frac{1}{\varepsilon_B} - 1\right)$$
 (B11)

Como apresentado na Figura B.1 e Eq. (B3), $\vec{E}x_{P,B} = \vec{E}x_{R,C} = \vec{E}x_{P,C}/\varepsilon_C = \vec{E}x_{P,Total}/\varepsilon_C$. Substituindo este termo na Eq. (B11), tem-se:

$$\vec{E}x_{D,B} = \frac{\vec{E}x_{P,Total}}{\varepsilon_C} \times \left(\frac{1}{\varepsilon_B} - 1\right)$$
 (B12)

Análogo ao apresentado para os componentes C e B, a exergia destruída no componente A é calculada pela Eq. (B13).

$$\vec{E}x_{D,A} = \vec{E}x_{R,A} - \vec{E}x_{P,A} \tag{B13}$$

A eficiência exegética no componente A é calculada pela Eq. (B14).

$$\varepsilon_A = \frac{Ex_{P,A}}{Ex_{R,A}} \tag{B14}$$

Isolando o termo de exergia do recurso na Eq. (B14), tem-se:

$$\vec{Ex}_{R,A} = \frac{\vec{Ex}_{P,A}}{\varepsilon_A} \tag{B15}$$

Substituindo a Eq. (B15) na Eq. (B13), tem-se:

$$\vec{Ex}_{D,A} = \frac{\vec{Ex}_{P,A}}{\varepsilon_A} - \vec{Ex}_{P,A}$$
(B16)

Colocando em evidência o termo de exergia do produto na Eq. (B16), tem-se:

$$\dot{Ex}_{D,A} = \dot{Ex}_{P,A} \times \left(\frac{1}{\varepsilon_A} - 1\right) \tag{B17}$$

Como mostrado na Figura B.1 e nas Eqs. (B3) e (B9), $\vec{E}x_{P,A} = \vec{E}x_{R,B} = \vec{E}x_{P,B}/\varepsilon_B = \vec{E}x_{R,C}/(\varepsilon_B \times \varepsilon_C) = \vec{E}x_{P,Total}/(\varepsilon_B \times \varepsilon_C)$. Substituindo este termo na Eq. (B17), tem-se:

$$\vec{Ex}_{D,A} = \frac{\vec{Ex}_{P,Total}}{\varepsilon_B \times \varepsilon_C} \times \left(\frac{1}{\varepsilon_A} - 1\right)$$
(B18)

Observa-se na Eq. (B6), que a exergia destruída no componente C só é dependente das irreversibilidades do próprio componente. Diferentemente do componente C, a exergia destruída nos componentes B e A, Eqs. (B12) e (B18), respectivamente, não dependem só das próprias irreversibilidades. No componente B é dependente das irreversibilidades dos componentes B e C, e no componente A é dependente das irreversibilidades dos componentes A, B e C.

Quando a exergia destruída em um componente depende das irreversibilidades dos outros componentes do sistema, a destruição de exergia nesse componente é composta pelas parcelas endógena e exógena, conforme Eq. (B19).

$$\dot{Ex}_{D,k} = \dot{Ex}_{D,k}^{Endo} + \dot{Ex}_{D,k}^{Exo}$$
(B19)

A exergia destruída endógena do k-ésimo componente $(\vec{E}x_{D,k}^{Endo})$ é definida como a parte da exergia destruída no k-ésimo componente que é devido apenas às irreversibilidades do késimo componente quando todos os componentes restantes operam da maneira ideal. A exergia destruída exógena ($\vec{E}x_{D,k}^{Exo}$) é a parte restante da exergia destruída no k-ésimo componente.

Parcelas evitável e inevitável

Para ilustrar a ideia da divisão da exergia destruída em parcelas evitável e inevitável, é analisada a relação entre custo de investimento por unidade de exergia do produto $(\dot{Z}_k/\dot{E}_{P,k})$ e exergia destruída por unidade de exergia do produto $(\dot{E}_{D,k}/\dot{E}_{P,k})$, mostrado na Figura B.2. A área sombreada ilustra a faixa de variação do custo de investimento devido as incertezas e múltiplas soluções técnicas de projeto que podem estar disponíveis.

Figura B.2 – Relação esperada entre custo de investimento e exergia destruída para o k-ésimo componente de um sistema térmico. Fonte: Adaptado de Kelly (2008), p. 11.

Como a Figura B.2 apresenta, o custo de investimento por unidade de exergia do produto aumenta com a diminuição da exergia destruída por unidade de exergia do produto. Este é o comportamento normal do custo exibido pelos componentes de um sistema térmico.

Devido às limitações tecnológicas existentes, como, disponibilidade e custo dos materiais, e métodos de fabricação, um valor máximo da eficiência exergética do k-ésimo componente não pode ser excedido, independentemente do valor de investimento. Essa eficiência é obtida no ponto em que o custo do investimento se torna extremamente grande, matematicamente falando infinito. Este ponto determina a destruição inevitável de exergia por unidade de exergia do produto, como mostrado na Figura B.2. Em aplicações práticas, esse termo é determinado pela seleção apropriada dos parâmetros termodinâmicos mais importantes do k-ésimo componente, para obter a menor taxa de exergia destruída possível. Para um projeto A do mesmo tipo de componente com o valor de exergia do produto $\dot{E}_{P,k}$, a razão $(\dot{E}_D/\dot{E}_P)_k^{Ine}$ pode ser usada para calcular a exergia destruída inevitável $\dot{E}_{D,k}^{Ine}$, conforme Eq. (B20).

$$\dot{Ex}_{D,k}^{Ine} = \dot{Ex}_{P,k} \times \left(\frac{\dot{Ex}_D}{\dot{Ex}_P}\right)_k^{Ine}$$
(B20)

Apêndice C – Método de tomada de decisão TOPSIS

Método de tomada de decisão TOPSIS

Para aplicação do método TOPSIS, primeiramente é definida a matriz de decisão A_{mxn} que contém m soluções associadas a n funções objetivo. Os elementos a_{ij} da matriz de decisão representam o conjunto de soluções obtidos a partir da aplicação da técnica de otimização, do qual a solução ótima será selecionada. A matriz de decisão A_{mxn} é apresentada na Eq. (C1).

$$A_{m \times n} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$
(C1)

Definida a matriz de decisão, executa-se as etapas a seguir para a implementação do método TOPSIS.

• Etapa 1 – Definir a matriz de decisão normalizada.

Os elementos a_{ij} de cada coluna da matriz de decisão correspondem aos valores das funções objetivo. Geralmente, estes valores apresentam grandezas e dimensões diferentes. Neste trabalho, a função objetivo custo de eletricidade apresenta valores na ordem de 10⁻⁴ e a exergia destruída inevitável na ordem de 10⁴, nas unidades de \$/kW.h e kJ/kg, respectivamente. Como no método de tomada de decisão estes valores precisam ser comparados entre si, é necessário colocá-los em uma base comum. A normalização do vetor de cada função objetivo propicia esta base em comum.

A normalização do vetor é feita dividindo-se cada elemento do vetor por sua norma, conforme Eq. (C2).

$$b_{ij} = a_{ij} / ||a_{ij}|| = a_{ij} / \sqrt{\sum_{i=1}^{m} a_{ij}^2}$$
 (C2)

Após a normalização dos vetores das funções objetivo, a matriz de decisão normalizada $B_{m x n}$ apresentada na Eq. (C3) é definida. Os elementos b_{ij} apresentam valores entre 0 e 1, e $\sum_{i=1}^{m} b_{ij}^2 = 1 \text{ com } j = 1, 2, ..., n.$

$$B_{m x n} = \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{bmatrix}$$
(C3)

• Etapa 2 – Definir a matriz de peso.

A matriz de peso C_{1xn} , apresentada na Eq. (C4), é utilizada caso seja necessário priorizar alguma função objetivo no processo de tomada de decisão, funcionando como um fator de

ponderação. Os elementos c_{ij} representam o peso de cada função objetivo e $\sum_{j=1}^{n} c_j = 1$. Neste trabalho, as funções objetivo tem pesos iguais.

$$C_{1 x n} = \begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix}$$
(C4)

• Etapa 3 – Definir a matriz de decisão normalizada ponderada.

A matriz de decisão normalizada ponderada $D_{m \times n}$, apresentada na Eq. (C5), é obtida ao multiplicar a matriz de peso pela matriz de decisão normalizada.

$$D_{m \times n} = \begin{bmatrix} c_1 b_{11} & \cdots & c_n b_{1n} \\ \vdots & \ddots & \vdots \\ c_1 b_{m1} & \cdots & c_n b_{mn} \end{bmatrix} = \begin{bmatrix} d_{11} & \cdots & d_{1n} \\ \vdots & \ddots & \vdots \\ d_{m1} & \cdots & d_{mn} \end{bmatrix}$$
(C5)

• Etapa 4 – Definir a melhor solução e a pior solução.

A melhor solução e a pior solução, são dois pontos não existentes, que indicam o limite inferior e superior das funções objetivo, e servem de ponto de referência para comparar os pontos do conjunto de soluções.

Neste trabalho, como as funções objetivo são minimizadas, a melhor solução é definida pelo menor valor do elemento d_{ij} da matriz de decisão normalizada para cada função objetivo, de acordo com a Eq. (C6).

$$E_{1xn}^{+} = \begin{bmatrix} \min_{i} d_{i1} | i = 1, 2 \dots m & \cdots & \min_{i} d_{in} | i = 1, 2 \dots m \end{bmatrix}$$

$$E_{1xn}^{+} = \begin{bmatrix} d_{1}^{+} & \cdots & d_{n}^{+} \end{bmatrix}$$
(C6)

A pior solução é definida pelo maior valor do elemento d_{ij} da matriz de decisão normalizada para cada função objetivo de acordo com a Eq. (C7).

$$E_{1xn}^{-} = \begin{bmatrix} \max_{i} d_{i1} | i = 1, 2 \dots m & \cdots & \max_{i} d_{in} | i = 1, 2 \dots m \end{bmatrix}$$

$$E_{1xn}^{-} = \begin{bmatrix} d_{1}^{-} & \cdots & d_{n}^{-} \end{bmatrix}$$
(C7)

• Etapa 5 – Calcular a distância euclidiana entre as soluções

Definida a melhor solução e a pior solução, é preciso calcular a distância de cada ponto do conjunto de solução para elas, uma vez que este é o parâmetro adotado pelo método para a tomada de decisão. A distância euclidiana de cada solução em relação a melhor solução e a pior solução, são calculadas com as Eqs. (C8) e (C9), respectivamente.

$$f_{i1}^{+} = \sqrt{\sum_{j=1}^{n} (d_{ij} - d_j^{+})^2} \qquad \text{com } i = 1, 2 \dots m \qquad (C8)$$
$$f_{i2}^{-} = \sqrt{\sum_{j=1}^{n} (d_{ij} - d_j^{-})^2} \qquad \text{com } i = 1, 2 \dots m \qquad (C9)$$

Após calcular a distância, a matriz de distância F_{m x 2}, apresentada na Eq. (C10), é obtida.

$$F_{m \, x \, 2} = \begin{bmatrix} f_{11}^+ & f_{12}^- \\ \vdots & \vdots \\ f_{m1}^+ & f_{m2}^- \end{bmatrix}$$
(C10)

• Etapa 6 – Calcular a proximidade relativa à melhor solução

Calculada as distâncias na etapa anterior, nesta etapa é calculada a proximidade relativa à melhor solução de acordo com a Eq. (C11).

$$g_{i1} = \frac{f_{i2}^{-}}{(f_{i1}^{+} + f_{i2}^{-})} \qquad \qquad \text{com } i = 1,2 \dots m \qquad (C11)$$

Por fim, é obtida a matriz de proximidade relativa à melhor solução $G_{m x 1}$, apresentada na Eq. (C12). Os elementos g_{ij} apresentam valores entre 0 e 1. Quanto mais próximo de 1, menor a distância para a melhor solução e maior a distância para a pior solução. A solução ótima é selecionada de acordo com o maior valor do elemento g_{ij} .

$$G_{m x 1} = \begin{bmatrix} g_{11} \\ \vdots \\ g_{m1} \end{bmatrix}$$
(C12)