Universidade Federal de Itajubá

Dissertação de Mestrado

REDUÇÃO DE SOBREDIMENSIONAMENTO DE MOTORES DE INDUÇÃO TRIFÁSICOS COM BASE EM NOVA PADRONIZAÇÃO DE POTÊNCIAS

Ênio Camilo de Lima

Itajubá, novembro de 2004.

Universidade Federal de Itajubá

Dissertação de Mestrado

REDUÇÃO DE SOBREDIMENSIONAMENTO DE MOTORES DE INDUÇÃO TRIFÁSICOS COM BASE EM NOVA PADRONIZAÇÃO DE POTÊNCIAS

Dissertação submetida à Universidade Federal de Itajubá como parte dos requisitos necessários à obtenção do grau de Mestre em Ciências em Engenharia Elétrica.

Por:

Ênio Camilo de Lima

Orientador: Prof. Dr. José Policarpo Gonçalves de Abreu

Co-orientadores: Prof. Dr. Jamil Haddad

Prof. Dr. Jocélio Souza de Sá

Itajubá, novembro de 2004.

AGRADECIMENTOS

Primeiramente agradeço ao meu bom DEUS que me deu a benção de concluir mais este curso.

Ao professor José Policarpo Gonçalves de Abreu pela orientação geral e pela oportunidade de participar do Grupo de Estudos em Qualidade da Energia Elétrica desta Universidade.

Em especial ao professor Jocélio Souza de Sá, pela grande pessoa que é, paciente e amigo, o qual se privou de momentos de lazer para exercer o papel de grande orientador e professor.

Ao professor Jamil Haddad pelo apoio acadêmico e pelas orientações.

Ao professor Luiz Francisco Pontin pelas orientações concedidas relativas ao assunto "cálculo diferencial e integral".

A Sebastião Lauro Nau, Cláudio José Martins e Sólon Brum Silveira, todos da empresa WEG SA, pelas relevantes informações prestadas.

A Robson da Silva Freitas da Associação Brasileira da Indústria Eletroeletrônica
 - ABINEE pelas informações relativas ao mercado de motores no Brasil.

A Maria José do Amaral, Marcelo Francisco Alves e professores do Centro Federal de Educação Tecnológica de Pernambuco - CEFET/PE que me incentivaram e apoiaram durante o período de estudo.

À minha querida Keila Karinne Santiago, que me deu forças durante todo o tempo que estive distante.

Aos meus queridos pais, Manoel Camilo de Lima e Rosa Pereira de Lima, que me proporcionaram a educação necessária para chegar até aqui.

Aos casais Lílian Cristina Pacheco Lira e Fábio Pereira de Lira, Rodrigo Marcos da Silva Oliveira e Cristiane Jardim de Souza, Ricardo Lamoglia Almeida e Leila de Andrade Lamoglia Almeida, pela amizade e apoio dados nesse período de estudo.

RESUMO

Nesta dissertação pretende-se, a partir de dados obtidos junto à Associação Brasileira da Indústria Eletro-eletrônica (ABINEE) e através de um grande fabricante de motores elétricos, estimar a quantidade de motores de indução trifásicos em operação na faixa mais expressiva no Brasil, com a finalidade de propor ações que visem a redução do sobredimensionamento de motores.

Inicialmente, é feito um levantamento estatístico da quantidade de motores elétricos no mercado brasileiro e elaboram-se equações para o cálculo das perdas em motores de indução trifásicos a partir de dados de catálogos de fabricantes.

Também é feito um estudo sobre o sobredimensionamento de motores em acionamentos elétricos. Como contribuição, sugere-se nesse estudo, uma nova constante para análise de motores, a qual se denominou constante de sobredimensionamento necessário.

Apresentam-se estimativas do número de motores em operação por potência em função da carga, calculam-se perdas ocasionadas pelo uso de motores sobredimensionados e indicam-se meios alternativos de reduzir o sobredimensionamento.

Na proposta de otimização das potências padronizadas sugere-se a fabricação de uma faixa mais estreita de potências.

Todos os esforços utilizados neste trabalho tiveram como objetivo principal reduzir o sobredimensionamento nos acionamentos e, como conseqüência, minimizar as perdas nos motores elétricos trifásicos em operação em nosso país.

Grande parte dos dados necessários foi obtido através de um grande fabricante de motores elétricos, outros foram estimados de forma otimizada, a fim de reduzir erros.

As potências de motores sugeridas para nova padronização, foram então utilizadas na substituição dos motores atuais, de acordo com condições pré-estabelecidas, bem como foram calculadas as perdas ocasionadas por esta substituição. Conclui-se que as ações sugeridas nesta dissertação levam a uma razoável economia de energia elétrica. Desta forma, a conservação não levaria à perda da qualidade da energia elétrica.

ABSTRACT

This dissertation aims at reducing motors over sizing. To pursue this goal it is necessary at first to know the amount of three-phase induction motors operating in Brazil, taking into account the widest range as possible. Thus, data obtained from the Brazilian Association of Electric-Electronics Industry (ABINEE) and from a major electric motors manufacturer have been of great importance. When not possible, other data were estimated in order to reduce the incidence of possible errors.

Initially, a statistic survey of the amount of electric motors in Brazil has been carried out. Then, equations for calculating three-phase induction motors losses, based exclusively upon manufacturers catalog data, have been obtained. Also, from a detailed study on motor over sizing, a new constant for motor analysis, which has been named 'necessary over sizing constant', has been suggested.

Estimations about how many motors as a function of the rated power and of the load are operating in Brazil are presented. Losses caused by the use of over sized motors are calculated and alternative ways of reducing over sizing are also shown.

Efforts have been made in order to reduce motor over sizing in electric drives. Thus, three-phase motor losses would be certainly minimized. In such a way, the narrowness of the distance between rated powers of three-phase motor power range in our country has been suggested as a proposal for optimize standardized motors performance.

Motor rated powers suggested for a probable new standardization, have been then used instead of the current ones according to pre-established conditions. Related losses caused by these substitutions have been also calculated. The conclusion is that procedures suggested in this dissertation lead to a reasonable saving of electric energy, although, and most importantly, electric power quality should not be affected at all.

SUMÁRIO

AGRA	ADECIMENTOS	ii
RESU	MO	iii
ABST	RACT	iv
SUMÁ	ÁRIO	v
SIMB	OLOGIA	viii
FIGUI	RAS	xii
TABE	LAS	xiii
CAPÍ	ГULO I	1
1.0	CONSIDERAÇÕES INICIAIS	1
1.1	OBJETIVO DA DISSERTAÇÃO	3
1.2	ESTRUTURA DA DISSERTAÇÃO	4
CAPÍ	ΓULO 2	5
LEVA	NTAMENTO ESTATÍSTICO DE DADOS SOBRE MOTORES DE INDUÇÃO TRIFÁSICOS	5
2.0	CONSIDERAÇÕES INICIAIS	5
2.1	ANÁLISES DOS DADOS ESTATÍSTICOS	8
2.2	ESTIMATIVA DO NÚMERO DE MOTORES DE 1,5 A 10 [cv], EM OPERAÇÃO NO BRASIL	11
2.3	O MERCADO DE MOTORES DE ALTO RENDIMENTO	17
2.4	VENDAS DE MOTORES POR NÚMERO DE PÓLOS	18
2.5	CONSIDERAÇÕES FINAIS	19
CAPÍ	TULO 3	20
PERD	AS DE ENERGIA EM MOTORES DE INDUÇÃO TRIFÁSICOS	20
3.0	CONSIDERAÇÕES INICIAIS	20
3.1	AS PERDAS NOS MOTORES DE INDUÇÃO TRIFÁSICOS	20
3.2	EQUACIONAMENTO DAS PERDAS NO MOTOR PARA CONDIÇÕES NOMINAIS	21
3.3	EQUACIONAMENTO DAS PERDAS NO MOTOR FORA DAS CONDIÇÕES NOMINAIS	26
3.4	CONSIDERAÇÕES FINAIS	35
CAPÍ	ΓULO 4	36
SOBR	EDIMENSIONAMENTO EM MOTORES DE INDUÇÃO TRIFÁSICOS	36
4.0	CONSIDERAÇÕES INICIAIS	36
4.1	O SOBREDIMENSIONAMENTO NECESSÁRIO	36
4.2	MOTOR OPERANDO EM REGIME INTERMITENTE	37
4.3	EXEMPLO DO DIMENSIONAMENTO DE UM MOTOR EM REGIME INTERMITENTE	49
4.4	CARGA VARIÁVEL	55
4.5	FATOR DE SOBREDIMENSIONAMENTO NECESSÁRIO	55
4.6	CARREGAMENTO DE MOTORES DE INDUÇÃO TRIFÁSICOS	57
4.7	CONSIDERAÇÕES FINAIS	58
CAPÍ	TULO 5	59

ANA	LÍSE DA REDUÇAO DE SOBREDIMENSIONAMENTO DE MOTORES DE INDUÇAO TRIFAS	COS
COM	I BASE EM NOVA PADRONIZAÇÃO DE POTÊNCIAS	59
5.0	CONSIDERAÇÕES INICIAIS	59
5.1	PADRONIZAÇÃO E NORMALIZAÇÃO DOS MOTORES	59
5.2	ANÁLISE DOS MOTORES NA FAIXA DE 1,5 A 10 [cv]	63
5.3	CÁLCULO DA ECONOMIA DE ENERGIA COM A UTILIZAÇÃO DAS NOVAS POTÊN	CIAS
PADI	RONIZADAS	65
5.4	ANÁLISE DO USO DAS NOVAS POTÊNCIAS	70
5.5	CONSIDERAÇÕES FINAIS	86
CAPÍ	ÍTULO 6	87
6.0	CONTRIBUIÇÕES E CONCLUSÕES	87
6.1	SUGESTÕES PARA NOVOS TRABALHOS	89
ANE	XO I	90
CÁLO	CULO DO TEMPO DE PARTIDA	90
I.0	CONSIDERAÇÕES INICIAIS	90
I.1	MOMENTO DE INÉRCIA E CONJUGADO MOTOR	90
I.2	CÁLCULO DO TEMPO DE PARTIDA	92
ANE	XO II	100
CÁLO	CULO DA CORRENTE DE OPERAÇÃO PARA NOVAS POTÊNCIAS DE MOTORES PADRÃO	100
II.0	ESTIMATIVA DA CORRENTE DE OPERAÇÃO PARA MOTORES PADRÃO	NÃO
PADI	RONIZADOS	100
II.1	CÁLCULO DA CORRENTE PARA 50% DE CARGA - MOTORES PADRÃO	100
II.2	CÁLCULO DA CORRENTE PARA 75% DE CARGA - MOTORES PADRÃO	102
II.3	CÁLCULO DA CORRENTE NOMINAL - MOTORES PADRÃO	104
II.4	CÁLCULO DA CORRENTE DE OPERAÇÃO - MOTORES PADRÃO	105
ANE	XO III	108
CÁLO	CULO DA CORRENTE DE OPERAÇÃO PARA NOVAS POTÊNCIAS PARA MOTORES DE A	LTO
RENI	DIMENTO	108
O.III	ESTIMATIVA DA CORRENTE DE OPERAÇÃO PARA MOTORES DE ALTO RENDIME	NTO
NÃO	PADRONIZADOS	108
III.1	CÁLCULO DA CORRENTE PARA 50% DE CARGA - MOTORES DE ALTO RENDIMENTO	108
III.2	CÁLCULO DA CORRENTE PARA 75% DE CARGA - MOTORES DE ALTO RENDIMENTO	110
III.3	CÁLCULO DA CORRENTE NOMINAL - MOTORES DE ALTO RENDIMENTO	112
III.4	CÁLCULO DA CORRENTE DE OPERAÇÃO - MOTORES DE ALTO RENDIMENTO	114
ANE	XO IV	116
IV.0	A TOLERÂNCIA DOS DADOS DE FABRICANTES SEGUNDO NBR 7094/1996	116
ANE	XO V	119
V.0	MATERIAIS UTILIZADOS NO NÚCLEO DOS MOTORES	119
ANE	XO VI	122

VI.0	TABELAS DE POTÊNCIA DE PERDAS NO FERRO E POTÊNCIA DE PERDAS I	MECÂNICAS
NOS I	MOTORES DE INDUÇÃO TRIFÁSICOS	122
REFE	RÊNCIAS BIBLIOGRÁFICAS	124

SIMBOLOGIA

A	Pator que define à transmissão de caior do
enrolamento do estator para o meio	ambiente [W/°C]
C	
$\cos \varphi_N$	Fator de potência nominal
$\cos \varphi_{(0,50.P_N)}$	Fator de potência para 0,50.P _N
$\cos \varphi_{(0,75.P_N)}$	Fator de potência para 0,75.P _N
D _{UM}	Dias utilizados por mês
$E_{R\$}$	
<i>F</i> _{SN}	Fator de sobredimensionamento necessário
<i>h</i> _{FD}	Horas de funcionamento por dia [h]
<i>I</i> _{1N}	
<i>I</i> _P	
<i>I</i> ₂	
<i>I</i> _{2N}	Corrente nominal do circuito equivalente ao rotor [A]
I _{op}	
I _{op(50%)}	Corrente de operação para 50% da carga nominal [A]
I _{op(75%)}	Corrente de operação para 75% da carga nominal [A]
J	
$J_{\scriptscriptstyle M}$	
J_{AC}	Momento de inércia do acoplamento e redutor [kgm²]
$J_{\mathcal{C}}$	Momento de inércia da carga [kgm²]
K_{fe} Fator c	que relaciona as perdas no ferro e as perdas totais nominais
K_1 Fator c_1	que relaciona as perdas nominais por efeito Joule no estator
e as perdas totais nominais	
K_2 Fator α	que relaciona as perdas nominais por efeito Joule no rotor
e as perdas totais nominais	
<i>M</i>	Conjugado [Nm]

<i>M</i> _N	
M _P	
<i>M</i> _K	
<i>M</i> _{CN}	
<i>M</i> _C	
<i>m</i> _{UA}	
<i>n</i> _{IN}	
n_N	Velocidade de rotação nominal [rpm]
n	Velocidade de rotação [rpm]
<i>n_C</i>	Velocidade de rotação da carga [rpm]
<i>n_{CN}</i>	Velocidade de rotação nominal da carga [rpm]
N^o_M	
$\eta_{\scriptscriptstyle N}$	
$\eta_{\scriptscriptstyle (0,75.P_{\scriptscriptstyle N})}$	
$\eta_{\scriptscriptstyle (0,50.P_{\scriptscriptstyle N})}$	
p	
P_N	
<i>P_C</i>	Potência da carga [W]
$P_{C\min(i-1)}$	90% da potência nominal do motor imediatamente inferior [cv]
$\sum P_{PN}$	
	Perdas nominais por efeito <i>Joule</i> no estator [W]
	Perdas por efeito <i>Joule</i> no estator [W]
	Perdas no estator [W]
	Perdas nominais no estator [W]
	Perdas no estator durante a partida do motor [W]
	Perdas no estator durante a operação do motor após a partida [W]
r_{J2N}	Perdas nominais por efeito <i>Joule</i> no rotor [W]

P_{J2}	Perdas por efeito <i>Joule</i> no rotor [W]
P_{J0}	Perdas por efeito Joule em vazio [W]
$P_0 \dots$	Perdas a vazio [W]
P_{fe}	
P_{mec}	
P_{af}	Perdas de alta freqüência [W]
P_{Eco}	Economia em potência elétrica por unidade de motor trocada [W]
$\sum P_{P_0}$	Perdas totais do motor de 10 [cv] para uma condição de carga [W]
$\sum P_{P_0}$	
$q \dots$	
$R_2 \dots$	
$R\$_{(kW)}$	Custo do kWh [R\$]
$s_N \dots$	
s	Escorregamento [%] ou [pu]
s_K	Escorregamento máximo [%] ou [pu]
t	Tempo [s]
t_p	Tempo de partida [s]
t _{op}	
t _d	Tempo de permanência desligado [s]
T_{PT}	Tempo de partida total [s]
t_{P1}	Tempo de partida de $s = 1$ até $s = s_K[s]$
t_{P2}	
T_A	
T_R	
τ	Elevação de temperatura do enrolamento do estator em relação à ambiente [°C]
$ au_{adm}$.	Temperatura admissível [°C]
τ_d	Elevação de temperatura ao final do tempo em que o motor permanece desligado [°C]
τ,	Elevação de temperatura ao final do tempo de partida [°C]

$ au_{op}$	Elevação de temperatura ao final do tempo de operação, após a partida [°C]
$U_{\scriptscriptstyle \Lambda}$,Tensão nominal [V]

FIGURAS

Figura 1 – Distribuição do consumo de energia elétrica por setor ano base 20022
Figura 2 – Distribuição dos segmentos consumidores no setor industrial – Eletrobrás
Figura 3 – Consumo de energia elétrica por região no Brasil ano base 20023
Figura 4 – Evolução das vendas de motores de indução trifásicos no período de 1980 a 2003. 7
Figura 5 – Evolução da comercialização de motores no período de 1989 a 19968
Figura 6 - Evolução da comercialização de motores trifásicos no período de 1997 a 20039
Figura 7 - Estimativa do percentual de motores de indução trifásicos no Brasil na faixa entre
1,5 e 10 [cv]
Figura 8 – Estimativa da quantidade de motores de 1,5 a 10 [cv] no Brasil
Figura 9 - Percentuais de vendas de motores de alto rendimento - ano base 2003 - para faixa
de potência de 1,5 a 10 [cv]
Figura 10 – Percentual de vendas por pólos de motores trifásicos padrão
Figura 11 – Percentual de vendas por pólos de motores de alto rendimento
Figura 12 - Evolução da temperatura durante as etapas de operação do motor em regime
intermitente
Figura 13 - Primeiro motor de indução do tipo gaiola
Figura 14 - Linha de tendência para corrente com 50% da carga de motores padrão 100
Figura 15 – Linha de tendência para corrente com 75% da carga em motores padrão de 1,5 a
10 [cv]
Figura 16 - Linha de tendência para corrente nominal de motores padrão de 1,5 a 10[cv] 104
Figura 17 - Linha de tendência e a equação para o cálculo da corrente de operação do motor
de indução trifásico padrão de 10 [cv]
Figura 18 – Linha de tendência para corrente com 50% da carga de motores de 1,5 a 10 [cv].
Figura 19 – Linha de tendência para corrente com 75% da carga para motores de alto
rendimento
Figura 20 – Linha de tendência para corrente nominal de motores de alto rendimento 112
Figura 21 - Linha de tendência e a equação para o cálculo da corrente de operação do motor
de indução trifásico de alto rendimento de 10 [cv]
Figura 22– Estator e rotor de aço silício

TABELAS

Tabela 1- Valores referentes as unidades de motores de indução trifasicos comercializadas	s na
década de 80	6
Tabela 2- Valores referentes às unidades de motores de indução trifásicos comercializadas	s na
década de 90	6
Tabela 3- Valores referentes às unidades de motores de indução trifásicos comercializadas	s no
período de 2000 a 2003	7
Tabela 4- Porcentagens das vendas de motores de indução trifásicos de 1989 a 1996	10
Tabela 5- Porcentagens das vendas de motores de indução trifásicos no período de 199	∋ 7 a
2003	10
Tabela 6- Vendas de motores de indução trifásicos de 1,5 [cv] no ano de 2003	11
Tabela 7- Vendas de motores de indução trifásicos de 2 [cv] no ano de 2003	12
Tabela 8 - Vendas de motores de indução trifásicos de 3 [cv] no ano de 2003	12
Tabela 9 - Vendas de motores de indução trifásicos de 4 [cv] no ano de 2003	12
Tabela 10 - Vendas de motores de indução trifásicos de 5 [cv] no ano de 2003	12
Tabela 11 - Vendas de motores de indução trifásicos de 6 [cv] no ano de 2003	13
Tabela 12- Vendas de motores de indução trifásicos de 7,5 [cv] no ano de 2003	13
Tabela 13- Vendas de motores de indução trifásicos de 10 [cv] no ano de 2003	13
Tabela 14- Percentuais de vendas por potência referente ao ano de 2003	14
Tabela 15- Percentuais e quantidade de motores no mercado brasileiro com base no ano	o de
2003	14
Tabela 16- Número de motores de indução comercializados nos últimos 15 anos e seus	
volumes por potência estimados a partir dos percentuais da Tabela 15	15
Tabela 17- Valores de potência em vazio ($P_{fe} + P_{mec} + P_{J0}$) e corrente em vazio em motore	s de
indução trifásicos padrão	23
Tabela 18- Valores de potência em vazio ($P_{fe} + P_{mec} + P_{J0}$) e corrente em vazio em motore	s de
indução trifásicos de alto rendimento	24
Tabela 19- Valores de K_{fe} para motores de indução trifásicos padrão	25
Tabela 20- Valores de K_{fe} para motores de indução trifásicos de alto rendimento	26
Tabela 21- Valores de K ₁ para motores de indução trifásicos padrão	28

Tabela 22- Valores de K ₁ para motores de indução trifasicos de alto rendimento
Tabela 23- Valores de K ₂ para motores de indução trifásicos padrão
Tabela 24- Valores de K_2 para motores de indução trifásicos de alto rendimento31
Tabela 25- Composição da temperatura em relação à classe de isolamento
Tabela 26- Constantes de tempo de aquecimento e de resfriamento e potências associadas às
carcaças padronizadas
Tabela 27- Constantes de tempo de aquecimento e de resfriamento e potências associadas às
carcaças padronizadas
Tabela 28- Constantes de tempo de aquecimento e de resfriamento e potências associadas às
carcaças padronizadas na fabricação de motores de 6 pólos
Tabela 29- Constantes de tempo de aquecimento e de resfriamento e potências associadas às
carcaças padronizadas na fabricação de motores de 8 pólos
Tabela 30- Constantes de sobredimensionamento necessário dos motores de indução trifásicos
padronizados
Tabela 31- Séries de Renard
Tabela 32- Valores normalizados no Brasil e a Série de Renard – R40
Tabela 33- Limites máximo e mínimo da potência de carga para motores padronizados 63
Tabela 34- Limites máximo e mínimo da potência e fator de sobredimensionamento necessário
para novas potências
Tabela 35- Comparação entre as novas potências sugeridas e a série R40
Tabela 36- Distribuição de cargas para as novas faixas de potências
Tabela 37- Quantidade estimada de motores distribuída para cada potência
Tabela 38- Cálculo das perdas associadas aos motores de 10 [cv] e 8,0[cv]
Tabela 39- Cálculo das perdas associadas aos motores de 7,5 [cv] e 6,7[cv]
Tabela 40- Cálculo das perdas associadas aos motores de 6,0 [cv] e 5,5[cv]79
Tabela 41- Cálculo das perdas associadas aos motores de 5,0 [cv] e 4,5 [cv]
Tabela 42- Cálculo das perdas associadas aos motores de 4,0 [cv] e 3,5[cv]
Tabela 43- Cálculo das perdas associadas aos motores de 3,0 [cv] e 2,5[cv]
Tabela 44- Cálculo das perdas associadas aos motores de 2,0 [cv] 1,8 [cv]
Tabela 45- Resultado da economia das perdas para diversas potências
Tabela 46- Valores de catálogo para motores de alto rendimento padronizados atualmente 84
Tabela 47- Valores estimados de P_0 ($P_{fe} + P_{mec} + P_{J0}$) para novas potências sugeridas 85

Tabela 48- Economia proporcionada pelo uso de novas potências
Tabela 49- Cálculo do erro entre a fórmula convencional e a fórmula gerada a partir da linha
de tendência
Tabela 50- Estimativa da corrente para motores entre 1,5 e 10 [cv] com 50% de carga 101
Tabela 51- Comparação entre métodos de cálculo da corrente para 75% da carga nominal . 103
Tabela 52- Estimativa da corrente para motores padrão entre 1,5 e 10 [cv] com 75% da carga
nominal
Tabela 53- Erro percentual simples apresentado pela equação (II-3)
Tabela 54- Estimativa da corrente para motores padrão entre 1,5 e 10 [cv] para carga nominal
Tabela 55- Equações da corrente de operação obtidas a partir da linha de tendência para
motores padrão
Tabela 56- Comparação dos cálculos da corrente de operação de motores de alto rendimento
(AR) de 1,5 a 10 [cv]
Tabela 57- Valores estimados para corrente de motores com 50% de carga para motores de
alto rendimento
Tabela 58- Comparação dos cálculos da corrente de operação para motor de alto rendimento
com 75% da carga nominal
Tabela 59- Valores estimados para corrente de motores de alto rendimento com 75% de carga,
para as novas potências
Tabela 60- Erro percentual simples apresentado pela equação (III-3)
Tabela 61- Valores das correntes nominais para motores de alto rendimento estimados para a
nova faixa de potência sugerida
Tabela 62- Equações para determinação da corrente de operação para motores A.R 115
Tabela 63- Tolerância no rendimento de motores segundo NBR 7094/1996 116
Tabela 64- Perdas calculadas e fornecidas pelo fabricante
Tabela 65- Valores das perdas considerando a tolerância no rendimento
Tabela 66- Designações e aplicações do aço elétrico tipo GNO
Tabela 67- Perdas em vazio medidas nos motores de 10 [cv], 1750 rpm, 4 pólos, 220/380V e
60 Hz, confeccionados com material ferromagnético nacional [18]
Tabela 68- Perdas no ferro e mecânicas motores padrão
Tabela 69- Perdas no ferro e mecânicas para motores de alto rendimento

REDUÇÃO DE SOBREDIMENSIONAMENTO DE MOTORES DE INDUÇÃO TRIFÁSICOS COM BASE EM NOVA PADRONIZAÇÃO DE POTÊNCIAS

CAPÍTULO I

1.0 CONSIDERAÇÕES INICIAIS

A geração de energia hidrelétrica no Brasil equivale a aproximadamente 88% [1] de toda a energia elétrica produzida¹. A água acumulada nos reservatórios das usinas, principal insumo para a produção de energia elétrica, em algumas épocas torna-se escassa, ocasionando problemas de geração. Basta lembrar que em 2001 ocorreu racionamento de energia elétrica em algumas regiões do Brasil, o que levou a sociedade a repensar a utilização da energia de forma mais eficiente. Supõe-se que no Brasil, ocorre um grande desperdício de energia elétrica devido à forma inadequada de utilização de máquinas e de equipamentos elétricos industriais, bem como à baixa qualidade de alguns materiais utilizados na produção destes componentes² [2].

Ressalta-se que o maior consumidor de energia elétrica no Brasil é o setor industrial, conforme mostrado nas figuras a seguir.

A Figura 1 mostra a distribuição do consumo de energia elétrica por setor no Brasil [1]. A Figura 2 mostra que no setor industrial, os motores elétricos são responsáveis por 51% do consumo de energia elétrica industrial [24]. Das Figuras 1 e 2 e do consumo total de energia fornecido pela Eletrobrás, conclui-se que os motores elétricos são responsáveis por parte razoável (aproximadamente 23%) de toda energia elétrica consumida no Brasil.

¹ A Eletrobrás através de boletins anuais fornece dados de geração de energia elétrica, facilmente obtidos através do seu site (www.eletrobras.gov.br).

² Trabalho realizado pelos professores José Roberto Moreira e José Guilherme Moreira de Souza do Instituto de Eletrotécnica e Energia da Universidade de São Paulo. Apresentam considerações sobre os materiais utilizados em motores no Brasil, afirma-se que são projetados e produzidos para minimizar o custo inicial e não maximizar a eficiência da máquina elétrica.

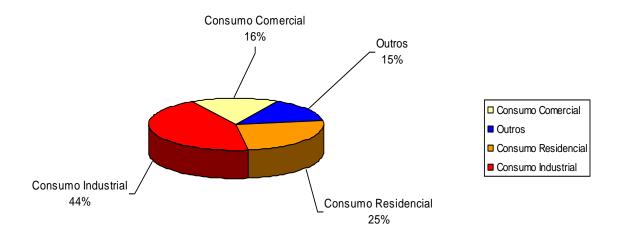


Figura 1 – Distribuição do consumo de energia elétrica por setor ano base 2002

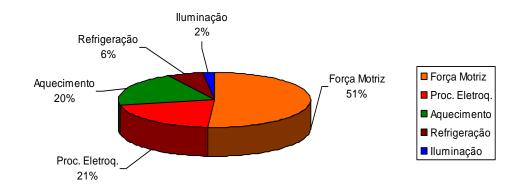


Figura 2 – Distribuição dos segmentos consumidores no setor industrial – Eletrobrás

A título exemplificativo, verifica-se que o consumo total de energia elétrica na indústria no ano de 2002 foi de 127.626 GWh [1], sendo que dessa energia os motores elétricos consumiram cerca de 65089 GWh (considerando 51% do consumo total industrial), isto equivale a aproximadamente o consumo total das regiões sul e centro-oeste neste mesmo ano, conforme mostra a Figura 3 a seguir.

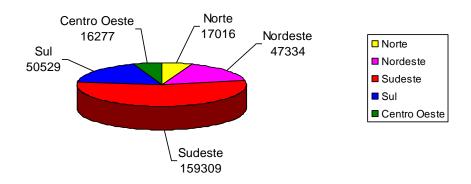


Figura 3 – Consumo de energia elétrica por região no Brasil ano base 2002.

Uma conclusão óbvia é que o motor elétrico é o equipamento com maior potencial para o combate ao desperdício de energia na indústria. Observar que a redução do consumo seria mais efetiva se as máquinas acionadas (cargas) fossem mais eficientes. O consumo real dos motores deve-se apenas às perdas. A maior parte da energia elétrica é apenas convertida em energia mecânica. O desperdício, muitas vezes, resulta da qualidade da matéria prima usada na construção dos motores e da utilização de motores sobredimensionados que operam com rendimento menor que o nominal.

Por isso, este trabalho preocupa-se em demonstrar que o sobredimensionamento em vários casos foi necessário em função das potências padronizadas para os motores de indução trifásicos.

Será também avaliada a economia de energia elétrica resultante da proposta de novas potências nominais, complementando aquelas já existentes.

Observa-se, ainda, que as viabilidades técnica e comercial da implantação destas novas potências não serão abordadas neste estudo, pois envolvem técnicas e custos de fabricação, que são de conhecimento apenas dos fabricantes de motores elétricos.

1.1 OBJETIVO DA DISSERTAÇÃO

Os objetivos desta dissertação são:

• determinar as causas que levam ao sobredimensionamento dos motores;

• estimar o número atual de motores de indução trifásicos em operação no Brasil.

O principal deles é:

 demonstrar que a introdução de novas potências padronizadas reduz o sobredimensionamento e leva à economia de energia elétrica.

Para alcançar esses objetivos, foi necessário o cumprimento das seguintes etapas:

- i. estimar, através de dados obtidos no mercado consumidor e de fabricantes de motores elétricos, o número de motores de indução trifásicos em operação no Brasil;
- ii. quantificar o desperdício de energia resultante do sobredimensionamento;
- iii. demonstrar que a introdução de novas potências nominais leva a uma sensível economia de energia elétrica.

1.2 ESTRUTURA DA DISSERTAÇÃO

A dissertação encontra-se estruturada em seis capítulos.

O primeiro capítulo situa o problema de uma forma geral.

No segundo capítulo são fornecidos os dados estatísticos dos motores de indução trifásicos em funcionamento no Brasil.

No terceiro capítulo é analisado o comportamento das perdas de motores de indução trifásicos em função da potência da carga, utilizando-se, basicamente de dados fornecidos em catálogos de fabricantes.

No quarto capítulo é estabelecido o conceito de sobredimensionamento, que pode ser quantificado através de um fator denominado "fator de sobredimensionamento necessário".

No quinto capítulo é demonstrada a economia de energia elétrica através da proposta de novas potências nominais para os motores.

No sexto capítulo são apresentadas as conclusões e sugestões para novos trabalhos.

CAPÍTULO 2

LEVANTAMENTO ESTATÍSTICO DE DADOS SOBRE MOTORES DE INDUÇÃO TRIFÁSICOS

2.0 CONSIDERAÇÕES INICIAIS

Tornou-se necessário estimar o número de motores atualmente em funcionamento no Brasil, para analisar e determinar as perdas associadas aos motores de indução trifásicos sobredimensionados.

Tomou-se como fonte para obtenção destes dados, a Associação Brasileira da Indústria Eletroeletrônica (ABINEE) ³, que através de boletins trimestrais fornece a quantidade de motores de indução trifásicos comercializados no mercado brasileiro.

Foi possível então, através destes dados, obterem-se os números referentes às quantidades de motores introduzidos no mercado interno no período de 1980 a 2003 [3]. Essas informações, com base nos dados da ABINEE, são fornecidas por faixa de potência, através da quantidade de motores:

- até 1 [cv];
- acima de 1 até 10 [cv];
- acima de 10 até 40 [cv];
- acima de 40 até 100 [cv];
- acima de 100 até 300 [cv];
- acima de 300 [cv].

A partir destes dados foi possível calcular o percentual médio de motores para cada faixa de potência.

Para viabilizar os objetivos desta dissertação era necessário, no entanto, chegar-se a quantidade de motores por potência e não apenas por faixa de potência. Contou-se, então, com a colaboração de um grande fabricante de motores nacional.

As Tabelas 1, 2 e 3, a seguir, apresentam as quantidades de motores vendidas por faixa

de potência na década de 80, 90 e no período de 2000 a 2003.

Tabela 1-Valores referentes às unidades de motores de indução trifásicos comercializadas na década de 80

Faixa	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
Até 1 cv	344491	291164	200247	209572	222660	254420	284703	301113	348315	320501
Acima de 1 até 10cv	571798	467760	303940	299342	339502	382030	502042	529309	633500	587707
Acima de 10 até 40cv	74967	62738	39359	36407	47963	54912	70245	76280	78408	84710
Acima de 40 até 100 cv	12985	11165	7978	6801	9118	9603	13621	12958	12748	13907
Acima de 100 até 300 cv	3720	3533	2843	2180	3062	3193	4023	3886	4048	4732
Acima de 300 cv	64	90	77	73	169	185	191	175	396	322

Tabela 2-Valores referentes às unidades de motores de indução trifásicos comercializadas na década de 90

Faixa	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Até 1cv	274952	256421	227869	235828	328353	443169	356815	396482	335721	354510
Acima										
de 1 até 10 cv	495607	465252	421557	446430	537670	716855	600791	711519	704677	676130
Acima										
de 10 até 40 cv	61228	54891	58401	59077	77947	98614	88195	113125	132524	115207
Acima										
de 40 até 100 cv	11401	8713	10585	11340	14544	19390	17798	23024	25621	22203
Acima										
de 100 até 300 cv	3862	3200	3591	3700	4951	7395	6778	9695	10981	9224
Acima										
de 300 cv	233	187	183	272	360	548	686	892	1236	945

³ Todos os fabricantes de motores nacionais informam à ABINEE a comercialização de motores ocorrida trimestralmente no Brasil.

Tabela 3-Valores referentes às unidades de motores de indução trifásicos comercializadas no período de 2000 a 2003

Faixa	2000	2001	2002	2003
Até 1cv	449907	433287	403204	404317
Acima de 1 até 10cv	770264	760608	758017	779439
Acima de 10 até 40cv	132125	132857	136692	152191
Acima de 40 até 100cv	26461	28356	28093	31247
Acima de 100 até 300cv	10360	11451	12.348	13338
Acima de 300	917	1253	1281	1525

A Figura 4, a seguir, mostra a evolução dessas vendas neste mesmo período⁴. Observa-se que em todos os anos analisados os motores na faixa de 1,5 a 10 [cv] representaram a maior quantidade comercializada.

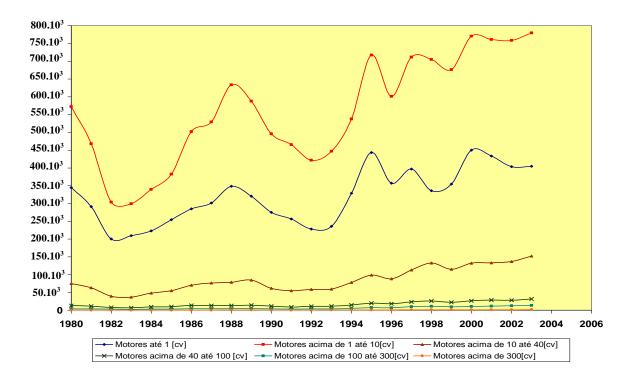


Figura 4 – Evolução das vendas de motores de indução trifásicos no período de 1980 a 2003.

⁴ Os dados foram todos obtidos junto à ABINEE e relatam a comercialização de motores dos últimos 23 anos no Brasil.

2.1 ANÁLISES DOS DADOS ESTATÍSTICOS

A partir da massa de dados fornecida pela ABINEE, procurou-se determinar a faixa mais representativa de potência de motores, que atendesse aos objetivos principais desta dissertação, ou seja, estimar o efeito do sobredimensionamento de motores e estabelecer recomendações que levem a uma otimização do consumo de energia.

A seguir, apresenta-se nas Figuras 5 e 6, abaixo, a análise do período de 1989 até 2003, admitindo-se uma vida útil de 15 anos para os motores.

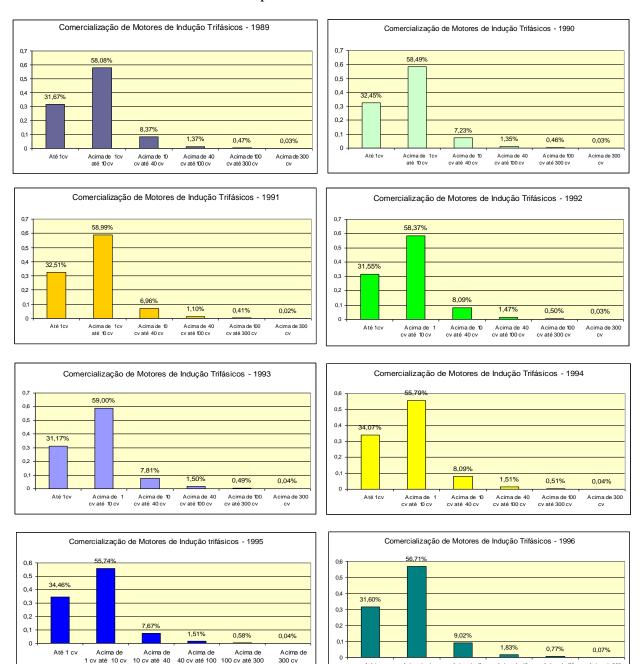


Figura 5 – Evolução da comercialização de motores no período de 1989 a 1996.

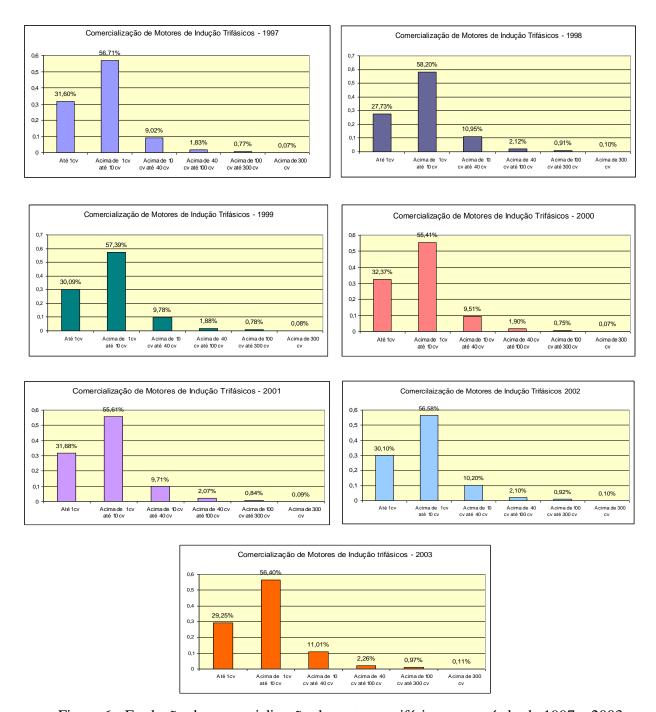


Figura 6 - Evolução da comercialização de motores trifásicos no período de 1997 a 2003

Continuam-se as análises através das Tabelas 4 e 5, a seguir, que demonstram os resultados dos gráficos apresentados nas Figuras 5 e 6 acima.

Faixa	1989	1990	1991	1992	1993	1994	1995	1996
Até 1 cv	31,67%	32,45%	32,51%	31,55%	31,17%	34,07%	34,46%	33,31%
Acima de 1 até 10 cv	58,08%	58,49%	58,99%	58,37%	59,00%	55,79%	55,74%	56,09%
Acima de 10 até 40 cv	8,37%	7,23%	6,96%	8,09%	7,81%	8,09%	7,67%	8,23%
Acima de 40 até 100 cv	1,37%	1,35%	1,10%	1,47%	1,50%	1,51%	1,51%	1,66%
Acima de 100 até 300 cv	0,47%	0,46%	0,41%	0,50%	0,49%	0,51%	0,58%	0,63%
Acima de	0,03%	0,03%	0,02%	0,03%	0,04%	0,04%	0,04%	0,06%

Tabela 4-Porcentagens das vendas de motores de indução trifásicos de 1989 a 1996.

Tabela 5-Porcentagens das vendas de motores de indução trifásicos no período de 1997 a 2003.

Faixa	1997	1998	1999	2000	2001	2002	2003
Até 1 cv	31,60%	27,73%	30,09%	32,37%	31,68%	30,10%	29,25%
Acima de 1 até 10 cv	56,71%	58,20%	57,39%	55,41%	55,61%	56,58%	56,40%
Acima de 10 até 40 cv	9,02%	10,95%	9,78%	9,51%	9,71%	10,20%	11,01%
Acima de 40 até 100 cv	1,83%	2,12%	1,88%	1,90%	2,07%	2,10%	2,26%
Acima de 100 até 300 cv	0,77%	0,91%	0,78%	0,75%	0,84%	0,92%	0,97%
Acima de 300 cv	0,07%	0,10%	0,08%	0,07%	0,09%	0,10%	0,11%

A partir dos dados acima apresentados, tem-se que:

300 cv

- Para motores até 1,0 [cv], tem-se um valor mínimo de 27,73%, e um valor máximo de 34,46% do total de motores comercializados no período analisado.
- Para os motores acima de 1,0 até 10 [cv], tem-se um valor mínimo de 55,41%, e um valor máximo de 59% do total de motores comercializados no período analisado.
- Para motores acima de 10 até 40 [cv], tem-se um valor mínimo de 6,96%, e um valor máximo de 11,01% dos motores comercializados no período analisado.
- Para motores acima de 40 até 100 [cv], tem-se um valor mínimo de 1,47%, e um

valor máximo de 2,30% dos motores comercializados no período analisado.

- Para motores acima de 100 até 300 [cv], tem-se um valor mínimo de 0,41%, e um valor máximo de 0,97% dos motores comercializados no período analisado.
- Para motores acima de 300 [cv], tem-se um valor entre 0,03% a 0,11% dos motores comercializados no período analisado.

Conclui-se, então, que aproximadamente 57,2% dos motores em operação no Brasil, têm sua potência entre 1,5 e 10 [cv].

Desta forma, adotou-se esta faixa de potência para análise das conseqüências do sobredimensionamento, bem como as sugestões para reduzi-lo.

2.2 ESTIMATIVA DO NÚMERO DE MOTORES DE 1,5 A 10 [cv], EM OPERAÇÃO NO BRASIL

Para uma estimativa confiável do número de motores na faixa de 1,5 a 10 [cv], foram obtidos com um grande fabricante, dados de vendas de motores referentes ao ano de 2003.

Os dados obtidos contemplaram as potências de 1,5; 2,0; 3,0; 4,0; 5,0; 6,0; 7,5 e 10 [cv], tanto para motores padrão (M.P.), quanto para motores de alto rendimento (A.R.), que ora apresenta-se nas Tabelas 6 a 13, abaixo.

Tabela 6-Vendas de motores de indução trifásicos de 1,5 [cv] no ano de 2003

Pn [cv]	Pólos	Qtde. A.R.	% de A.R.	Qtde. M.P.	% M.P.	Total
1,5	2	178	1,50	11708	98,50	11886
1,5	4	1670	7,43	20795	92,57	22465
1,5	6	183	2,38	7496	97,62	7679
1,5	8	57	4,01	1366	95,99	1423
1,5	10	_	<u> </u>	1	100	1

Tabela 7-Vendas de motores	de inducão trifásicos	de 2 [cv]	l no ano de 2003.

Pólos	Qtde. A.R.	% de A.R.	Qtde. M.P.	% M.P.	Total
2	381	0,99	38154	99,01	38535
4	2192	5,52	37523	94,48	39715
6	296	6,46	4283	93,54	4579
8	83	5,28	1490	94,72	1573
	2 4 6	2 381 4 2192 6 296	2 381 0,99 4 2192 5,52 6 296 6,46	2 381 0,99 38154 4 2192 5,52 37523 6 296 6,46 4283	2 381 0,99 38154 99,01 4 2192 5,52 37523 94,48 6 296 6,46 4283 93,54

Tabela 8 - Vendas de motores de indução trifásicos de 3 [cv] no ano de 2003.

Pn [cv]	Pólos	Qtde. A.R.	% de A.R.	Qtde. M.P.	% M.P.	Total
3	2	569	1,78	31352	98,22	31921
3	4	2339	8,09	26562	91,91	28901
3	6	540	6,99	7183	93,01	7723
3	8	80	10,67	670	89,33	760
			,		,	

Tabela 9 - Vendas de motores de indução trifásicos de 4 [cv] no ano de 2003.

Pn [cv]	Pólos	Qtde. A.R.	% de A.R.	Qtde. R.N.	% R.N.	Total
4	2	260	2.69	600 7	06.22	7.07
4	2	260	3,68	6807	96,32	7.067
4	4	777	5,97	12245	94,03	13.022
4	6	147	5,20	2682	94,80	2.829
4	8	80	16,70	399	83,30	479
4	10	_	_	39	100	39

Tabela 10 - Vendas de motores de indução trifásicos de 5 [cv] no ano de 2003.

Pn [cv]	Pólos	Qtde. A.R.	% de AR	Qtde. M.P.	% M.P.	Total
5	2	509	2,25	22137	97,75	22646
5	4	2716	11,62	20663	88,38	23379
5	6	502	15,48	2741	84,52	3243
5	8	41	5,38	721	96,62	762

Tabela 11 - Vendas de motores de indução trifásicos de 6 [cv] no ano de 2003

Pn [cv]	Pólos	Qtde. A.R.	% de A.R.	Qtde. M.P.	% M.P.	Total
6	2	246	28,15	628	71,85	874
6	4	371	16,53	1874	83,47	2245
6	6	55	11,90	407	88,10	462
6	8	4	15,38	22	84,62	26
6	8	4	15,38	22	84,62	26

Tabela 12-Vendas de motores de indução trifásicos de 7,5 [cv] no ano de 2003

Pn [cv]	Pólos	Qtde. A.R.	% de A.R.	Qtde. M.P.	% M.P.	Total
5.5	2	004	7. 07	14120	04.12	15021
7,5	2	882	5,87	14139	94,13	15021
7,5	4	1803	12,90	12172	87,10	13975
7,5	6	278	11,91	2056	88,09	2334
7,5	8	54	12,65	373	87,35	427
7,5	10	1	10	9	90	10

Tabela 13-Vendas de motores de indução trifásicos de 10 [cv] no ano de 2003

Pn [cv]	Pólos	Qtde. A.R.	% de A.R.	Qtde. M.P.	% M.P.	Total
10	2	538	6,75	7434	93,25	7972
10	4	1501	14,57	8799	85,43	10300
10	6	328	19,20	1380	80,80	1708
10	8	53	17,38	252	82,62	305
10	10	1	1,92	51	96,08	52

Apresenta-se a seguir, nas Tabelas 14 e 15, as informações fornecidas pelo fabricante de motores consultado para este estudo, bem como os dados de comercialização de motores no Brasil, fornecido pela ABINEE, para o exercício de 2003.

Considerando-se os mesmos percentuais do montante comercializado pelo fabricante, apresentados na Tabela 14, sobre os valores da ABINEE, obteve-se uma estimativa das quantidades de motores por potência no Brasil para o ano de 2003.

Ressalte-se que, o fabricante responsável pelas informações detém 80% do mercado de motores comercializados no Brasil.

O valor percentual das vendas das diversas potências de motores na faixa em estudo permaneceu praticamente constante⁵ no decorrer dos últimos 15 anos, o que permite calcular o total do número de motores existentes no Brasil, através da utilização dos percentuais do ano de 2003, apresentados na Tabela 15 abaixo.

Tabela 14 – Percentuais de vendas por potência referente ao ano de 2003 para um grande fabricante nacional.

Pn [cv]	Percentual	Quantidade
1,5	13,32%	43.454
2,0	25,86%	84.402
3,0	21,24%	69.305
4,0	7,18%	23.436
5,0	15,33%	50.030
6,0	1,11%	3.607
7,5	9,73%	31.767
10	6,23%	20.337
Total	100,00%	326.338
Fabricant	326.338	

Tabela 15 – Percentuais e quantidade de motores no mercado brasileiro com base no ano de 2003.

Pn [cv]	Percentual	Quantidade
1,5	13,32%	103.821
2,0	25,86%	201.562
3,0	21,24%	165.552
4,0	7,18%	55.964
5,0	15,33%	119.488
6,0	1,11%	8.652
7,5	9,73%	75.839
10	6,23%	48.559
Total	100,00%	779.439
AB	779.439	

A implicação destes números será vista a partir da página 65.

⁵ Os gráficos apresentados nas Figuras 4 e 5 e as conclusões estabelecidas nos mesmos, mostram que nessa faixa de potência, durante os 15 anos analisados houve uma pequena variação da percentagem (55,41% a 59%).

A Tabela 16, abaixo, apresenta o volume de vendas dos últimos 15 anos⁶ e ao final demonstra a quantidade total de cada potência.

Tabela 16 - Número de motores de indução comercializados nos últimos 15 anos e seus volumes por potência estimados a partir dos percentuais da Tabela 15.

Ano	Volume	1,5[cv]	2[cv]	3[cv]	4[cv]	5[cv]	6[cv]	7,5[cv]	10[cv]
1989	587.707	78.283	151.981	124.829	42.197	90.095	6.524	57.184	36.614
1990	495.607	66.015	128.164	105.266	35.585	75.977	5.501	48.223	30.876
1991	465.252	61.972	120.314	98.819	33.405	71.323	5.164	45.269	28.985
1992	421.557	56.151	109.014	89.538	30.268	64.625	4.679	41.017	26.263
1993	446.430	59.464	115.446	94.821	32.054	68.438	4.955	43.438	27.813
1994	537.670	71.618	139.041	114.201	38.605	82.425	5.968	52.315	33.497
1995	716.855	95.485	185.378	152.260	51.470	109.894	7.957	69.750	44.660
1996	600.791	80.025	155.364	127.608	43.137	92.101	6.669	58.457	37.429
1997	711.519	94.774	183.998	151.126	51.087	109.076	7.898	69.231	44.328
1998	704.677	93.863	182.229	149.673	50.596	108.027	7.822	68.565	43.901
1999	676.130	90.061	174.847	143.610	48.546	103.651	7.505	65.787	42.123
2000	770.264	102.599	199.190	163.604	55.305	118.081	8.550	74.947	47.987
2001	760.608	101.313	196.693	161.553	54.612	116.601	8.443	74.007	47.386
2002	758.017	100.968	196.023	161.002	54.426	116.204	8.414	73.755	47.224
2003	779.439	103.821	201.562	165.552	55.964	119.488	8.652	75.839	48.559
Total	9.432.523	1.256.412	2.439.250	2.003.468	677.255	1.446.006	104.701	917.784	587.646

Para melhor visualização e entendimento dos dados obtidos na Tabela 16, apresentam-se a seguir as Figuras 7 e 8, sendo que a Figura 7 mostra a estimativa do percentual de motores por potência e a Figura 8 mostra a estimativa da quantidade de motores, ambas na faixa de 1,5 a 10 [cv] no Brasil.

-

⁶ O volume de motores apresentados na Tabela 16 foi informado pela ABINEE.

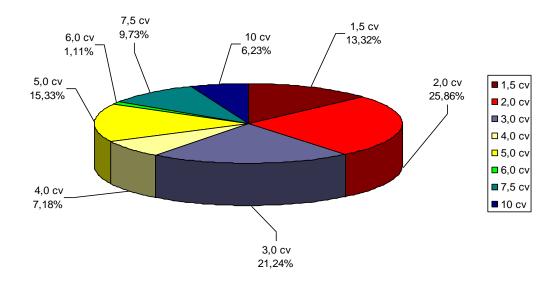


Figura 7 - Estimativa do percentual de motores de indução trifásicos no Brasil na faixa entre 1,5 e 10 [cv]

Figura 8 – Estimativa da quantidade de motores de 1,5 a 10 [cv] no Brasil.

Salienta-se que, como se pode observar na Tabela 16, o volume total de motores estimado na faixa de 1,5 a 10[cv] no Brasil, entre 1989 e 2003, é de 9.432.523 motores. A partir do número de motores estimados para cada potência é possível calcular as perdas associadas a cada uma.

2.3 O MERCADO DE MOTORES DE ALTO RENDIMENTO

No Brasil, a partir do ano de 1990, começou-se a fabricação de motores de alto rendimento. Os referidos motores apresentam uma melhoria de até quatro pontos percentuais se comparados a motores padrão (catálogo de fabricantes). Ainda assim, em 1996 os motores de alto rendimento representavam apenas aproximadamente 1% do total de motores vendidos no Brasil (Geller et al. 1997a) [2].

Com os dados obtidos diretamente de um grande fabricante de motores, observou-se que os percentuais de vendas de motores de indução trifásicos de alto rendimento ainda são pouco expressivas para algumas potências no mercado brasileiro. A Figura 9, abaixo, apresenta, com base no ano de 2003, os percentuais comercializados de motores de alto rendimento.

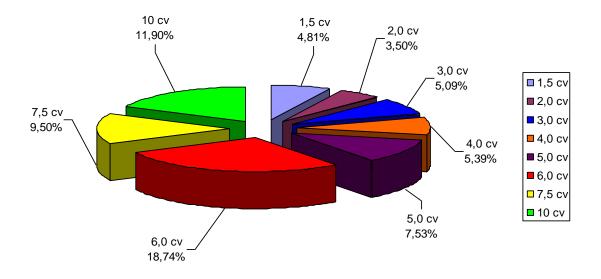


Figura 9 – Percentuais de vendas de motores de alto rendimento - ano base 2003 - para faixa de potência de 1,5 a 10 [cv]

Saliente-se que, somando-se a quantidade de motores de indução trifásicos vendidos no Brasil pelo citado fabricante no ano de 2003, tem-se a quantidade total de 326.338, sendo que, desse total, 19.715 correspondem à quantidade de motores de alto rendimento (conforme Tabelas 6 a 13). Desta forma, conclui-se que apenas 6% dos motores comercializados no Brasil são de alto rendimento, por isso, podendo-se observar um mercado pouco evoluído ao longo dos anos.

□ 8 pólos

2.4 VENDAS DE MOTORES POR NÚMERO DE PÓLOS

4 pólos

47%

Relativamente às vendas de motores por número de pólos, apresenta-se nas Figuras 10 e 11 abaixo, o percentual de vendas de motores de indução trifásicos com base no ano de 2003.

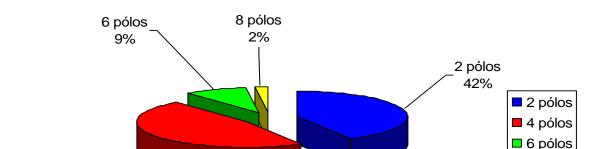
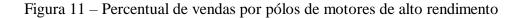
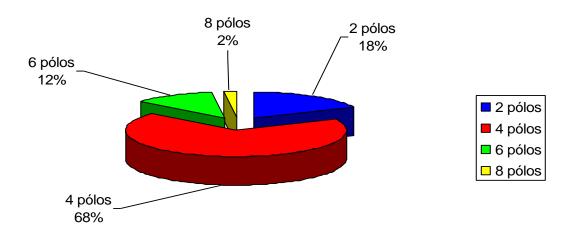




Figura 10 – Percentual de vendas por pólos de motores trifásicos padrão

Da análise das Figuras anteriores, pode-se confirmar que os motores do tipo padrão e de alto rendimento de 4 e 2 pólos, nesta ordem, são os mais comercializados.

2.5 CONSIDERAÇÕES FINAIS

Neste capítulo, pode-se observar que o mercado de motores de indução trifásicos para faixa de 1,5 a 10 [cv] em termos percentuais é o mais relevante, alcançando uma média de 57,2% dos motores comercializados.

Também verificou-se que os motores de 2 e 3 [cv] são os mais vendidos (correspondendo a 25,86% e 21,24% respectivamente), e que os motores de 6,0 [cv] são os que apresentam a menor quantidade comercializada (apenas 1,11%).

Quanto à comercialização relativa ao número de pólos, tem-se a maior quantidade destinada aos motores de 4 e 2 pólos, nesta ordem.

Os motores de alto rendimento ainda são pouco relevantes (6%) na comercialização de motores de indução trifásicos.

Com a estimativa do número de motores ora apresentada, será possível calcular as perdas ocasionadas por cada potência, assunto que será abordado no próximo capítulo. No referido capítulo serão apresentadas às equações utilizadas para o cálculo das perdas nominais e fora das condições nominais.

CAPÍTULO 3

PERDAS DE ENERGIA EM MOTORES DE INDUÇÃO TRIFÁSICOS

3.0 CONSIDERAÇÕES INICIAIS

Todo motor fortemente sobredimensionado ou subcarregado opera com rendimento menor que o nominal. Isto significa, basicamente, um desperdício de energia. Para quantificar esse desperdício deve-se determinar o comportamento das perdas do motor em função da potência da carga.

Em razão disso serão apresentadas, a seguir, equações que permitam determinar esse comportamento. Contudo, é importante observar que todo equacionamento é feito a partir de dados constantes em catálogos de fabricantes ou disponibilizados pelos mesmos.

Ressalte-se, que no Anexo V, será apresentado um estudo relacionado às perdas no ferro, de forma a relatar a importância do material ferromagnético utilizado na fabricação de motores elétricos.

3.1 AS PERDAS NOS MOTORES DE INDUÇÃO TRIFÁSICOS

As perdas em motores de indução trifásicos podem ser divididas, basicamente, em quatro partes, são elas:

- Perdas por efeito *Joule* no estator (P_{I1})
- Perdas por efeito *Joule* no rotor (P_{J2})
- Perdas no ferro (P_{fe})
- Perdas mecânicas (P_{mec})

Conforme afirmado anteriormente, a determinação dessas perdas é feita com base em dados de fabricantes, quais sejam:

P_N - potência nominal em [W]

U_N - tensão nominal em [V]

n_N – velocidade de rotação nominal em [rpm]

I_P – corrente de partida em [A]

M_P – conjugado de Partida em [Nm]

M_K – conjugado máximo em [Nm]

 η_N – rendimento nominal em [pu] ou [%]

 $\eta_{(0,75. \text{ PN})}$ – rendimento para $0,75.P_N$ em [pu] ou [%]

 $\eta_{(0,50. \, PN)}$ – rendimento para $0,50.P_N$ em [pu] ou [%]

 $\cos \phi_N$ – fator de potência nominal

 $\cos \varphi_{(0.50,PN)}$ – fator de potência para $0.50.P_N$

 $cos \ \phi_{(0,75.PN)}-$ fator de potência para $0,75.P_N$

 $J_{\rm M}$ – momento de inércia do motor em [kgm²]

3.2 EQUACIONAMENTO DAS PERDAS NO MOTOR PARA CONDIÇÕES NOMINAIS

O rendimento nominal de um motor de indução trifásico é definido pela equação abaixo, que ora será identificada como equação "(3.1)" a seguir:

$$\eta_N = \frac{P_N}{P_N + \sum P_{PN}} \tag{3.1}$$

onde:

P_N – potência nominal em [W]

 $\sum P_{PN}$ - perdas totais nominais em [W]

 $\eta_{\scriptscriptstyle N}$ - rendimento nominal em [pu] ou [%]

Desta forma, as perdas totais nominais são dadas pela equação a seguir, neste chamada como equação "(3.2)" [5]:

$$\sum P_{PN} = P_N \left(\frac{1}{\eta_N} - 1 \right) \tag{3.2}$$

As perdas totais nominais $\sum P_{PN}$ são dadas por:

$$\sum P_{PN} = P_{J1N} + P_{J2N} + P_{fe} + P_{mec} \tag{3.3}$$

onde:

P_{JIN} -perdas nominais por efeito *Joule* no estator em [W]

 P_{J2N} - perdas nominais por efeito *Joule* no rotor em [W]

 P_{fe} - perdas no ferro [W]

 P_{mec} - Perdas mecânicas [W]

O cálculo de cada parte das perdas pode ser efetuado conforme se mostra a seguir, através da equação "(3.4)", pela qual podem ser calculadas as perdas nominais no rotor (P_{J2N}) [5].

$$P_{J2N} = s_N . P_N . \frac{n_{1N}}{n_N} \tag{3.4}$$

onde:

 s_N - escorregamento nominal da máquina em [pu]

 n_N - velocidade nominal [rpm]

 $n_{IN}\,$ - velocidade síncrona nominal em [rpm]

As perdas nominais a vazio para motores padrão podem ser obtidas a partir da Tabela 17 (dados fornecidos por um fabricante de motores no Brasil). A Tabela 18 fornece os valores correspondentes aos motores de alto rendimento. As perdas em vazio são calculadas conforme equação a seguir:

$$P_0 = P_{fe} + P_{mec} + P_{J0} (3.5)$$

onde:

 P_0 - Perdas em vazio

 P_{fe} - perdas no ferro

 $P_{\it mec}$ - perdas mecânicas

 P_{J0} - perdas por efeito Joule em vazio

Tabela 17 - Valores de potência em vazio ($P_{\it fe}+P_{\it mec}+P_{\it J0}$) e corrente em vazio em motores de indução trifásicos padrão

			N	MOTORE	S PADR	ÃO		
Pn [kW]	II P	ÓLOS	IV PÓLOS		VI P	ÓLOS	VIII	PÓLOS
[K 44]	Io [A]	Po [W]	Io [A]	Po [W]	Io [A]	Po [W]	Io [A]	Po [W]
0,75	1,3	130	1,9	160	2,8	160	3,3	220
1,1	2	190	2,8	210	4,6	220	5,4	300
1,5	2,1	185	4	220	5	220	5,2	270
2,2	4,2	250	4,3	240	6,4	300	5,9	300
3	4,1	320	5,8	380	6,8	300	8,9	370
3,7	4	350	7,3	250	8,8	370	9	480
4,5	4,8	330	7	350	9,5	380	11,4	370
5,5	8,4	380	10	320	11	460	15	460
7,5	9	500	14	550	15	480	19	600
9.2	10.5	620	16.8	650	15	550	13	560
11	14	700	17	650	20	570	17	600
15	16	900	21	850	30	750	20	650
18,5	18	900	26	800	18	750	36	1050
22	24	1000	30	900	26	930	33	1100
30	28	1500	36	1300	36	1100	38	1200
37	32	1500	42	1200	50	2200	60	1700
45	38	2800	50	1700	45	1850	70	1800
55	44	3000	60	2200	76	2400	76	2300
75	50	3000	85	3200	110	3500	117	3200
90	70	5000	94	5000	114	3400	121	3300
110	72	6400	115	4500	140	4500	144	3300
132	100	6700	120	5800	180	5000	184	4300
150	110	5000	160	6000	240	6000	240	5200
185	150	6500	200	7000	210	6500	280	6200

Tabela 18-Valores de potência em vazio ($P_{fe} + P_{mec} + P_{J0}$) e corrente em vazio em motores de indução trifásicos de alto rendimento

D.,			MOTO	RES DE A	LTO REN	DIMENTO)	
Pn	II P	ÓLOS	IV P	ÓLOS	VI PO	ÓLOS	VIII P	ÓLOS
[kW]	Io [A]	Po [W]	Io [A]	Po [W]	Io [A]	Po [W]	Io [A]	Po [W]
0,75	1,5	96	1,8	110	2,4	100	3,4	170
1,1	1,8	110	2,5	150	3,2	125	4,6	180
1,5	2,7	120	3,8	150	5	170	5,6	190
2,2	3,2	160	4	180	6,7	220	5,5	170
3	4,5	195	5,8	220	7	220	7,2	270
3,7	5,5	340	7,25	270	8,8	230	9	350
4,5	5	300	8	200	10,2	280	12,8	350
5,5	8	400	10,4	260	12,6	310	16,2	420
7,5	9	380	12,5	400	15,5	360	21	450
9.2	9.5	500	14.8	400	15	380	17.2	430
11	11	350	18	450	21	450	24,2	530
15	16	600	26	600	30	700	28	650
18,5	15	700	28	600	21	700	34	800
22	24	800	28	850	28	700	35	900
30	36	1200	28	900	42	930	49	1100
37	41	1350	42	1000	48	1300	60	1350
45	39,7	2100	60	1200	68	1600	68	1400
55	50	2400	58	1800	80	1900	73	2300
75	56	2500	100	1900	84	2500	110	2700
90	72	3800	100	2700	110	2600	121	2700
110	88	4300	110	3200	130	2500	170	3000
132	92	4500	120	3500	150	2800	196	3600
150	100	5500	134	2500	190	3600	246	4100
185	134	6300	210	5500	240	5500	290	5000

As perdas nominais por efeito Joule no estator podem ser calculadas a partir da equação "(3.6)" abaixo:

$$P_{J1N} = \sum P_{PN} - P_{J2N} - P_{f_e} - P_{mec} \tag{3.6}$$

Determina-se neste estudo constantes relacionadas às perdas em motores. Considerando as perdas em vazio, para análise do motor em funcionamento, considera-se apenas as perdas no ferro e as perdas mecânicas, define-se a constante K_{fe} que representa o percentual das perdas no ferro relativo as perdas totais nominais, conforme mostra a equação "(3.7)", que se segue:

$$K_{fe} = \frac{P_{fe}}{\sum P_{PN}}$$
 (3.7)

onde:

 $K_{\it fe}$ - fator que relaciona as perdas no ferro com as perdas totais nominais

 $\sum P_{PN}$ - perdas totais nominais em [W]

As Tabelas 19 e 20 apresentam os valores de $K_{\it fe}$ para motores padrão e de alto rendimento.

Tabela 19-Valores de $K_{\it fe}$ para motores de indução trifásicos padrão

P _N (kW)	II pólos	IV pólos	VI pólos	VIII pólos
0,75	0,244	0,332	0,209	0,165
1,10	0,218	0,353	0,235	0,170
1,50	0,208	0,240	0,225	0,239
2,20	0,213	0,230	0,171	0,202
3,00	0,187	0,214	0,181	0,238
3,70	0,211	0,165	0,226	0,253
4,50	0,211	0,326	0,202	0,222
5,50	0,307	0,229	0,213	0,258
7,50	0,256	0,292	0,233	0,278
9,20	0,249	0,290	0,267	0,272
11,0	0,277	0,258	0,341	0,288
15,0	0,249	0,292	0,372	0,269
18,5	0,241	0,304	0,232	0,355
22,0	0,301	0,298	0,354	0,233
30,0	0,224	0,270	0,399	0,233
37,0	0,261	0,280	0,302	0,235
45,0	0,262	0,318	0,275	0,255
55,0	0,231	0,299	0,282	0,270
75,0	0,236	0,338	0,350	0,363
90,0	0,281	0,287	0,289	0,269
110	0,241	0,327	0,346	0,264
132	0,193	0,333	0,270	0,303
150	0,207	0,365	0,299	0,423
185	0,230	0,371	0,348	0,363

Tabela 20 - Va	lores de K_{ϵ_0}	para motores	de indução	trifásicos	de alto	rendimento

P _N (kW)	II pólos	IV pólos	VI pólos	VIII pólos
0,75	0,220	0,261	0,195	0,132
1,10	0,172	0,234	0,155	0,162
1,50	0,212	0,212	0,180	0,222
2,20	0,150	0,171	0,147	0,180
3,00	0,160	0,188	0,191	0,176
3,70	0,214	0,211	0,217	0,207
4,50	0,203	0,172	0,214	0,158
5,50	0,260	0,203	0,239	0,180
7,50	0,193	0,258	0,190	0,201
9,20	0,195	0,295	0,186	0,141
11,0	0,233	0,249	0,236	0,166
15,0	0,243	0,286	0,330	0,172
18,5	0,237	0,298	0,173	0,216
22,0	0,194	0,244	0,267	0,161
30,0	0,239	0,185	0,321	0,168
37,0	0,254	0,174	0,224	0,233
45,0	0,195	0,241	0,217	0,161
55,0	0,177	0,286	0,212	0,176
75,0	0,155	0,264	0,218	0,163
90,0	0,284	0,282	0,206	0,192
110	0,201	0,375	0,199	0,197
132	0,135	0,244	0,210	0,232
150	0,161	0,264	0,243	0,414
185	0,185	0,333	0,333	0,212

3.3 EQUACIONAMENTO DAS PERDAS NO MOTOR FORA DAS CONDIÇÕES NOMINAIS

Considerando-se motores operando fora das condições nominais, o equacionamento será como se segue.

As perdas no estator e no rotor dependem da corrente, conforme mostram as equações identificadas abaixo como (3.8), (3.9), (3.10) e (3.11):

$$P_{J1} = P_{J1N} \left(\frac{I_{op}}{I_{1N}} \right)^2 \tag{3.8}$$

$$P_{J1} = K_1 \cdot \sum P_{PN} \cdot \left(\frac{I_{op}}{I_{1N}}\right)^2 \tag{3.9}$$

$$P_{J2} = P_{J2N} \left(\frac{I_2}{I_{2N}}\right)^2 \tag{3.10}$$

$$P_{J2} = K_2 \cdot \sum P_{PN} \cdot \left(\frac{I_2}{I_{2N}}\right)^2 \tag{3.11}$$

onde:

P_{J1} – perdas por efeito *Joule* no estator em [W]

P_{J1N} - perdas nominais por efeito *Joule* no estator em [W]

I_{op} – corrente de operação em [A]

I_{1N} – corrente nominal em [A]

P_{J2} - perdas por efeito *Joule* no rotor em [W]

P_{J2N} - perdas nominais por efeito *Joule* no rotor em [W]

I₂ – corrente de operação do rotor em [A]

 I_{2N} – corrente nominal no rotor em [A]

 K_1 – fator que relaciona as perdas nominais por efeito Joule no estator com as perdas totais nominais

 K_2 – fator que relaciona as perdas nominais por efeito Joule no rotor com as perdas totais nominais

A relação entre as perdas nominais por efeito *Joule* no estator e as perdas totais nominais será dada pela equação denominada "(3.12)" a seguir:

$$K_1 = \frac{P_{J1N}}{\sum P_{PN}} \tag{3.12}$$

As Tabelas 21 e 22 apresentam os valores relativos à K₁, calculados a partir de dados fornecidos por um fabricante de motores no Brasil.

Tabela 21 - Valores de $K_1\, para$ motores de indução trifásicos padrão

P _N (kW)	II pólos	IV pólos	VI pólos	VIII pólos
0,75	0,249	0,096	0,196	0,241
1,1	0,120	0,079	0,214	0,115
1,5	0,197	0,146	0,326	0,125
2,2	0,328	0,270	0,310	0,268
3	0,267	0,169	0,369	0,288
3,7	0,242	0,309	0,294	0,186
4,5	0,364	0,267	0,376	0,396
5,5	0,363	0,320	0,331	0,311
7,5	0,348	0,223	0,380	0,240
9,2	0,349	0,259	0,309	0,344
11	0,378	0,348	0,340	0,360
15	0,377	0,269	0,355	0,337
18,5	0,404	0,333	0,350	0,357
22	0,340	0,386	0,357	0,331
30	0,410	0,334	0,360	0,423
37	0,388	0,400	0,156	0,306
45	0,188	0,311	0,359	0,366
55	0,183	0,243	0,252	0,390
75	0,319	0,222	0,212	0,380
90	0,169	0,085	0,330	0,409
110	0,146	0,250	0,146	0,491
132	0,129	0,236	0,194	0,337
150	0,357	0,217	0,160	0,211
185	0,306	0,205	0,318	0,311

Tabela 22 - Valores de K₁ para motores de indução trifásicos de alto rendimento

P _N (kW)	II pólos	IV pólos	VI pólos	VIII pólos
0,75	0,246	0,112	0,293	0,304
1,1	0,237	0,140	0,380	0,255
1,5	0,297	0,325	0,206	0,184
2,2	0,307	0,307	0,277	0,391
3	0,296	0,232	0,252	0,226
3,7	0,157	0,124	0,323	0,204
4,5	0,247	0,337	0,323	0,347
5,5	0,205	0,264	0,335	0,298
7,5	0,362	0,231	0,365	0,318
9,2	0,331	0,331	0,354	0,358
11	0,453	0,265	0,387	0,346
15	0,345	0,202	0,334	0,387
18,5	0,337	0,310	0,299	0,354
22	0,354	0,185	0,345	0,415
30	0,309	0,376	0,305	0,399
37	0,314	0,397	0,308	0,346
45	0,231	0,417	0,232	0,405
55	0,271	0,253	0,247	0,295
75	0,348	0,372	0,266	0,372
90	0,130	0,291	0,337	0,397
110	0,184	0,234	0,328	0,437
132	0,241	0,283	0,356	0,338
150	0,144	0,408	0,303	0,235
185	0,149	0,191	0,244	0,288

A relação entre as perdas nominais por efeito *Joule* no rotor e as perdas totais nominais será dada pela equação denominada "(3.13)" abaixo:

$$K_2 = \frac{P_{J2N}}{\sum P_{PN}} \tag{3.13}$$

Tabela 23-Valores de $K_2\,para$ motores de indução trifásicos padrão

P _N (kW)	II pólos	IV pólos	VI pólos	VIII pólos
0,75	0,171	0,180	0,181	0,189
1,1	0,249	0,180	0,186	0,129
1,5	0,277	0,163	0,154	0,198
2,2	0,172	0,198	0,192	0,186
3	0,212	0,212	0,205	0,176
3,7	0,196	0,292	0,181	0,193
4,5	0,221	0,274	0,181	0,156
5,5	0,186	0,253	0,195	0,176
7,5	0,181	0,184	0,217	0,200
9,2	0,179	0,197	0,253	0,210
11	0,164	0,197	0,219	0,220
15	0,137	0,209	0,219	0,294
18,5	0,181	0,230	0,277	0,184
22	0,201	0,201	0,215	0,209
30	0,119	0,187	0,235	0,209
37	0,133	0,206	0,187	0,230
45	0,124	0,187	0,187	0,230
55	0,154	0,225	0,168	0,129
75	0,149	0,193	0,168	0,129
90	0,093	0,154	0,168	0,139
110	0,117	0,162	0,202	0,139
132	0,141	0,179	0,202	0,170
150	0,112	0,193	0,202	0,193
185	0,134	0,144	0,132	0,173

Tabela 2/L	Valores de K. nara	motores de indução	trifácione de	alto rendimento
1 aucia 2 4 -	valores de R ₂ para	i motores de madção	unasicos uc	and rendificino

P _N (kW)	II pólos	IV pólos	VI pólos	VIII pólos
0,75	0,201	0,192	0,174	0,167
1,1	0,292	0,259	0,239	0,165
1,5	0,298	0,150	0,220	0,219
2,2	0,281	0,229	0,235	0,188
3	0,304	0,298	0,279	0,264
3,7	0,200	0,341	0,241	0,239
4,5	0,264	0,303	0,241	0,176
5,5	0,224	0,310	0,231	0,191
7,5	0,206	0,230	0,265	0,220
9,2	0,206	0,230	0,294	0,244
11	0,244	0,283	0,236	0,244
15	0,195	0,312	0,236	0,244
18,5	0,228	0,284	0,283	0,257
22	0,228	0,302	0,262	0,171
30	0,152	0,225	0,283	0,230
37	0,162	0,232	0,225	0,251
45	0,149	0,173	0,248	0,251
55	0,149	0,225	0,248	0,149
75	0,164	0,193	0,202	0,149
90	0,144	0,193	0,202	0,164
110	0,144	0,213	0,241	0,164
132	0,150	0,213	0,241	0,193
150	0,160	0,238	0,241	0,223
185	0,145	0,178	0,167	0,209

Para o cálculo das perdas fora das condições nominais, é necessário o cálculo da corrente de operação do motor. A corrente de operação do motor pode ser determinada a partir dos dados de catálogo do motor, se a potência da carga for de 75% ou de 50% da potência nominal, conforme as equações "(3.14)" e "(3.15)".

$$I_{OP(75\%)} = \frac{0.75.P_N}{\sqrt{3.U_N.\eta_{(0.75.P_N)}}.\cos\varphi_{(0.75.P_N)}}$$
(3.14)

$$I_{OP(50\%)} = \frac{0.5 \cdot P_N}{\sqrt{3} \cdot U_N \cdot \eta_{(0.50 \cdot P_N)} \cdot \cos \varphi_{(0.50 \cdot P_N)}}$$
(3.15)

onde:

 P_N - potência nominal em [W]

 U_N - tensão nominal em [V]

 $I_{\mathit{OP}(75\%)}$ - corrente de operação para 75% da carga nominal em [A]

 $\eta_{\scriptscriptstyle (0,75.P_{\scriptscriptstyle N})}$ - rendimento para 0,75.P_N em [pu] ou [%]

 $I_{\mathit{OP}(50\%)}$ - corrente de operação para 50% da carga nominal em [A]

 $\eta_{(0,50.P_N)}$ - rendimento para 0,50.P_N em [pu] ou [%]

Caso o motor acione uma carga cuja potência seja diferente de 50% ou 75% da potência nominal, a corrente de operação poderá ser definida por interpolação matemática a partir de valores de catálogos, o Anexo II e III apresentará o método utilizado na determinação da corrente de operação.

Como as equações (3.10) e (3.11) envolvem a corrente nominal do rotor, dado este não disponível pelo fabricante, é necessário determinar uma equação que envolva dados disponíveis pelos fabricantes. Sendo assim, com relação à corrente do circuito equivalente ao rotor, sabese que:

$$M = \frac{180}{2.\pi n} I_2^2 \cdot \frac{R_2}{s} \tag{3.16}$$

Assim tem-se:

$$I_2^2 = \frac{2.\pi . n.M.s}{180.R_2} \tag{3.17}$$

Para a condição nominal, tem-se:

$$I_{2N}^{2} = \frac{2.\pi . n_{N}. M_{N}. s_{N}}{180.R_{2}}$$
(3.18)

onde:

M - conjugado em [Nm]

 R_2 - resistência equivalente ao circuito do rotor em [Ω]

 I_2 - corrente do circuito equivalente ao rotor em [A]

s - escorregamento em [pu] ou [%]

n - velocidade de rotação em [rpm]

I_{2N} – corrente nominal do circuito equivalente ao rotor em [A]

 n_N – velocidade de rotação nominal em [rpm]

M_N – conjugado nominal em [Nm]

 s_N – escorregamento nominal em [pu] ou [%]

Dividindo-se a equação (3.17) por (3.18), resulta em:

$$\left(\frac{I_2}{I_{2N}}\right)^2 = \frac{n}{n_N} \cdot \frac{M}{M_N} \cdot \frac{s}{s_N} \tag{3.19}$$

Para pequenas variações de cargas, consequentemente de rotação, a relação $\frac{n}{n_N}$ se aproxima de 1, logo:

$$\left(\frac{I_2}{I_{2N}}\right)^2 = \frac{M}{M_N} \cdot \frac{s}{s_N} \tag{3.20}$$

A equação 3.20 é uma aproximação do caso real.

Na faixa de operação do motor em regime permanente pode-se escrever :

$$\frac{M}{M_N} = \frac{s}{s_N} \tag{3.21}$$

Resultando, para pequenas variações de rotação, em:

$$\left(\frac{I_2}{I_{2N}}\right)^2 = \left(\frac{M}{M_N}\right)^2 \tag{3.22}$$

Assim, conclui-se que a relação entre a corrente de operação do rotor e sua corrente nominal, em função da carga no eixo da máquina, pode ser aproximadamente dada pela equação:

$$\left(\frac{I_2}{I_{2N}}\right)^2 = \left(\frac{P_C}{P_N}\right)^2 \tag{3.23}$$

Substituindo a equação (3.23) em (3.10) e (3.11), têm-se as equações abaixo:

$$P_{J2} = P_{J2N} \cdot \left(\frac{P_C}{P_N}\right)^2 \tag{3.24}$$

$$P_{J2} = K_2 \cdot \sum P_{PN} \cdot \left(\frac{P_C}{P_N}\right)^2 \tag{3.25}$$

Como as perdas em vazio ($P_{\it fe}+P_{\it mec}$) podem ser consideradas independentes da potência da carga, as perdas totais do motor operando fora das condições nominais serão dadas aproximadamente por:

$$\sum P_{P} = \sum P_{PN} \cdot \left[K_{1} \cdot \left(\frac{I_{OP}}{I_{1N}} \right)^{2} + K_{2} \cdot \left(\frac{P_{C}}{P_{N}} \right)^{2} + K_{fe} \right] + P_{mec}$$
(3.26)

As potências de perdas no ferro e mecânicas foram fornecidas em forma de tabela por um fabricante de motores (anexo VI).

3.4 CONSIDERAÇÕES FINAIS

Neste capítulo, mostrou-se o equacionamento utilizado para o cálculo das perdas associadas aos motores de indução trifásicos, tanto para condições nominais quanto para fora das condições nominais.

No capítulo 4 será demonstrado quando é necessário o sobredimensionamento de motores, bem como será analisado o regime intermitente mostrando que a necessidade de sobredimensionamento nesse regime é praticamente inevitável.

Com a finalidade de facilitar os cálculos da temperatura alcançada por motores operando em regime intermitente, serão, ainda, apresentadas as tabelas de constantes de tempo de aquecimento e resfriamento, além de um exemplo de dimensionamento de motores em regime intermitente.

Na última parte do capítulo 4, definir-se-á o fator de sobredimensionamento necessário para os motores de indução trifásicos, que tem por objetivo, analisar o estado de sobredimensionamento de motores.

CAPÍTULO 4

SOBREDIMENSIONAMENTO EM MOTORES DE INDUÇÃO TRIFÁSICOS

4.0 CONSIDERAÇÕES INICIAIS

Teoricamente, é considerado sobredimensionado todo motor que aciona uma carga de potência menor que sua potência nominal.

Como existe situações em que o sobredimensionamento não pode ser evitado, um dos objetivos deste trabalho é caracterizar claramente essa situação, pretendendo-se, ainda, definir as condições para as quais o sobredimensionamento é necessário, criando condições para posteriormente atingir o objetivo desta dissertação.

4.1 O SOBREDIMENSIONAMENTO NECESSÁRIO

A potência nominal de um motor de indução trifásico é definida de modo que três condições sejam atendidas, quais sejam:

- não deve ser ultrapassada a temperatura do enrolamento do estator que é definida pela classe de isolamento do motor;
- ii. a diferença de temperatura não deve provocar danos mecânicos entre as superfícies superior e inferior das barras do rotor durante os processos de partida e frenagem elétrica;
- iii. o motor deve fornecer o conjugado solicitado pela carga em condições normais ou anormais pré-definidas.

Cumpre observar que, na maioria dos casos a primeira condição, ora indicada na alínea "i" acima, é a que definirá a potência nominal do motor de indução, isto porque a ultrapassagem da temperatura limite, definida pela classe de isolamento, provocará o envelhecimento do material isolante dos enrolamentos podendo levar o motor à queima.

A título exemplificativo, mostra-se na Tabela 25 as elevações de temperaturas admissíveis para as diversas classes de isolamento.

Tabela 25 - Composição da temperatura em relação à classe de isolamento.

Classe de Isolamento	A	E	В	F	H
Temperatura ambiente	40°C	40 °C	40 °C	40 °C	40°C
Elevação da temperatura pelo método da resistência	60°C	75°C	$80^{\circ}\mathrm{C}$	105°C	125°C
Diferença entre o ponto mais quente e a temperatura média	5°C	5°C	10 °C	10 °C	15°C
Temperatura total do ponto mais quente	105°C	120°C	130°C	155°C	180°C

Considerando-se que a temperatura limite definida pela classe de isolamento não deve ser ultrapassada, há duas condições, mais freqüentes, que levam à especificação do motor com potência nominal maior que a potência da carga (motor sobredimensionado):

- i. motor operando em regime intermitente;
- ii. motor operando em regime contínuo, porém com a potência da carga podendo variar.

4.2 MOTOR OPERANDO EM REGIME INTERMITENTE

Um motor opera em regime intermitente quando a elevação da temperatura no enrolamento do estator é definida principalmente pelas perdas provocadas pela corrente de partida.

Como a corrente de partida equivale de 2,5 a 8,8 vezes a corrente nominal do motor (variação obtida em catálogo de fabricante), as perdas provocadas por essa corrente, podem alcançar até 77 vezes as perdas provocadas pela corrente nominal no enrolamento do estator.

Considerando-se o motor um corpo homogêneo, a elevação de temperatura do enrolamento do estator é definida pela equação a seguir:

$$\frac{d\tau}{dt} + \frac{A.\tau}{C} = \frac{P_{P(e)}}{C} \tag{4.1}$$

onde:

 $P_{P(e)}$ - perdas no estator em [W]

C – capacidade calorífica em [cal/°C]

A – fator que define a transmissão de calor do enrolamento do estator para o meio ambiente em [W/°C]

au - elevação de temperatura do enrolamento do estator em relação à temperatura ambiente em [°C]

t - tempo em [s]

Integrando a equação (4.1), em termos de 't', tem-se:

$$t = -\frac{C}{A}\ln(P_{P(e)} - A.\tau) + K \tag{4.2}$$

onde:

K - constante de integração calculada para t=0

Calculando-se 'K', tem-se:

$$K = -\frac{C}{A} \left[\ln(P_{P(e)} - A.\tau_0) \right] \tag{4.3}$$

Substituindo-se (4.2) em (4.3), tem-se:

$$t = -\frac{C}{A} \cdot \left[\ln(P_{P(e)} - A \cdot \tau) - \ln(P_{P(e)} - A \cdot \tau_0) \right]$$
(4.4)

$$-\frac{A}{C}t = \ln\frac{P_{P(e)} - A.\tau}{P_{P(e)} - A.\tau_0}$$
 (4.5)

Assim, tem-se:

$$e^{-\frac{A}{C}t} = \frac{P_{P(e)} - A.\tau}{P_{P(e)} - A.\tau_0}$$
(4.6)

$$\tau = \frac{P_{P(e)}}{A} (1 - e^{-\frac{A}{C}t}) + \tau_0 e^{-\frac{A}{C}t}$$
(4.7)

Condição comum é a elevação de temperatura inicial ser zero. Isto significa que a temperatura inicial do motor é igual à temperatura ambiente, assim:

$$\tau = \frac{P_{P(e)}}{A} (1 - e^{-\frac{A}{C}t}) \tag{4.8}$$

Valores particulares de 't':

$$t = \infty \implies \tau = \frac{P_{P(e)}}{A} \tag{4.9}$$

O máximo valor de elevação de temperatura leva ao equilíbrio térmico. Como $t = \frac{C}{A}$ é constante para cada motor e possui uma dimensão de tempo, é denominado de "Constante de Tempo de Aquecimento". Assim:

$$\tau = \frac{P_{P(e)}}{A} (1 - e^{-\frac{A}{C} \cdot \frac{C}{A}}) = 0,632. \frac{P_{P(e)}}{A}$$
(4.10)

A equação (4.10) representa o tempo que o motor gasta para atingir 63,2% do valor final da temperatura correspondente a sua operação em estado de equilíbrio térmico. Desta forma chega-se a equação a seguir:

$$\tau = \frac{P_{P(e)}}{A} (1 - e^{\frac{-t}{T_A}}) \tag{4.11}$$

A Figura 12, a seguir, mostra o comportamento da elevação de temperatura durante as diversas etapas de operação, para um motor que opera em regime intermitente, já atingido o regime permanente.

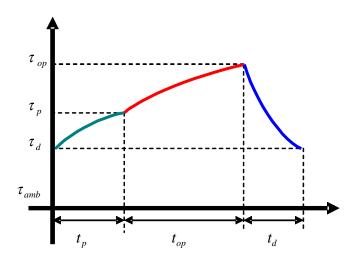


Figura 12 - Evolução da temperatura durante as etapas de operação do motor em regime intermitente

Na Figura 12, tem-se:

 $\tau_{\scriptscriptstyle d}\,$ - elevação de temperatura ao final do tempo em que o motor permanece desligado;

 $\tau_{_{p}}\,$ - elevação de temperatura ao final do tempo de partida;

 $\tau_{\scriptscriptstyle op}$ - elevação de temperatura ao final do tempo de operação, após a partida;

 t_p - tempo de partida;

 $t_{\it op}$ - tempo de operação após a partida;

 t_d - tempo de permanência desligado.

Aplicando-se a equação (4.11) às diversas etapas de operação demonstradas na Figura 12, têm-se as seguintes equações:

• Elevação de temperatura ao final do tempo de partida, conforme equação:

$$\tau_{p} = \tau_{d} \cdot e^{-\frac{t_{p}}{T_{A}}} + \frac{P_{P(e)_{p}}}{A} \cdot \left(1 - e^{\frac{-t_{p}}{T_{A}}}\right) \tag{4.12}$$

 Elevação de temperatura ao final do tempo de operação após a partida, conforme equação:

$$\tau_{op} = \tau_p \cdot e^{-\frac{t_{op}}{T_A}} + \frac{P_{P(e)op}}{A} \cdot (1 - e^{-\frac{t_f - t_p}{T_A}})$$
(4.13)

 Elevação de temperatura ao final do tempo de permanência desligado, conforme equação:

$$\tau_d = \tau_{op}.e^{-\frac{t_d}{T_R}} \tag{4.14}$$

onde:

 $P_{P(e)op}$ - perdas no estator durante a operação do motor após a partida em [W]

 $P_{P(e)p}$ - perdas no estator durante a partida do motor em [W]

 $T_{\scriptscriptstyle A}$ - constante de tempo de aquecimento do motor em [s]

 T_R - constante de tempo de resfriamento do motor em [s]

Substituindo-se a equação (4.14) em (4.12), tem-se:

$$\tau_{p} = \tau_{op} \cdot e^{-\left(\frac{t_{d}}{T_{R}} + \frac{tp}{T_{A}}\right)} + \frac{P_{P(e)p}}{A} \cdot \left(1 - e^{\frac{-t_{p}}{T_{A}}}\right)$$
(4.15)

Substituindo (4.12) em (4.13), tem-se:

$$\tau_{op} = \left[\tau_{op}.e^{-\left(\frac{t_d}{T_R} + \frac{tp}{T_A}\right)} + \frac{P_{P(e)p}}{A}.\left(1 - e^{\frac{-t_p}{T_A}}\right)\right].e^{-\frac{t_{op}}{T_A}} + \frac{P_{P(e)op}}{A}.(1 - e^{-\frac{t_{op}}{T_A}})$$
(4.16)

$$\tau_{op} = \tau_{op}.e^{-\left(\frac{t_d}{T_R} + \frac{tp}{T_A}\right)}.e^{-\frac{t_{op}}{T_A}} + \frac{P_{P(e)p}}{A}.\left(1 - e^{-\frac{t_p}{T_A}}\right).e^{-\frac{t_{op}}{T_A}} + \frac{P_{P(e)op}}{A}.(1 - e^{-\frac{t_{op}}{T_A}})$$
(4.17)

$$\tau_{op} = \tau_{op}.e^{-\left(\frac{t_d}{T_R} + \frac{t_p + t_{op}}{T_A}\right)} + \frac{P_{P(e)p}}{A}.\left(1 - e^{-\frac{t_p}{T_A}}\right).e^{-\frac{t_{op}}{T_A}} + \frac{P_{P(e)op}}{A}.(1 - e^{-\frac{t_{op}}{T_A}})$$
(4.18)

$$\tau_{op} = \frac{P_{P(e)p}}{A} \cdot \left(1 - e^{\frac{-t_p}{T_A}}\right) \cdot e^{\frac{-t_{op}}{T_A}} + \frac{P_{P(e)op}}{A} \cdot (1 - e^{-\frac{t_{op}}{T_A}})$$

$$1 - e^{-\frac{\left(\frac{t_d}{T_R} + \frac{t_p + t_{op}}{T_A}\right)}{T_A}}$$
(4.19)

A elevação de temperatura admissível pelo enrolamento e definida pela sua classe de isolamento, é aquela que é alcançada com o motor operando em regime contínuo nas condições nominais. A temperatura admissível será então definida por:

$$\tau_{adm} = \frac{P_{P(e)_N}}{A} \tag{4.20}$$

onde:

 $\tau_{\it adm}$ - temperatura admissível em [°C].

 $P_{P(e)_N}$ - perdas nominais no estator em [W].

A - fator que define a transmissão de calor do enrolamento do estator para o meio ambiente em [W/°C]

As perdas $P_{P(e)}$ resultam, uma parte, das perdas no ferro do estator, e das perdas por efeito Joule no enrolamento do estator.

Admitindo-se um cálculo conservativo para $P_{P(e)}$, as perdas serão dadas por:

$$P_{P(e)} = P_{fe} + P_{J1} (4.21)$$

onde:

 $P_{P(e)}$ - perdas no estator em [W]

 $P_{\rm fe}$ - perdas no ferro em [W]

 P_{J1} - perdas por efeito Joule no estator em [W]

Tomando-se estas perdas em função das perdas totais nominais, obtem-se:

$$P_{fe} = K_{fe} \cdot \sum P_{PN} \tag{4.22}$$

$$P_{J1} = K_1 \cdot \sum P_{PN} \tag{4.23}$$

Para operação com carga nominal, a seguinte equação:

$$P_{P(e)N} = K_{fe} \cdot \sum P_{PN} + K_1 \cdot \sum P_{PN}$$
(4.24)

Para operação com carga diferente da nominal, utiliza-se a equação:

$$P_{P(e)op} = K_{fe} \cdot \sum P_{PN} + K_1 \cdot \sum P_{PN} \cdot \left(\frac{I_{OP}}{I_{1N}}\right)^2$$
(4.25)

A razão entre as equações (4.15) e (4.16), resulta em:

$$\frac{P_{P(e)op}}{P_{P(e)N}} = \frac{K_{fe} + K_1 \cdot \left(\frac{I_{OP}}{I_{1N}}\right)^2}{K_{fe} + K_1}$$
(4.26)

Durante a partida do motor, desconsiderando-se a influência das perdas por atrito e ventilação, a razão entre essas perdas é dada por:

$$\frac{P_{P(e)p}}{P_{P(e)N}} = \frac{K_{fe} + K_1 \cdot \left(\frac{I_p}{I_{1N}}\right)^2}{K_{fe} + K_1}$$
(4.27)

Dividindo-se as equações (4.5), (4.6) e (4.10) por (4.11) e considerando as equações (4.17) e (4.18), tem-se :

$$\frac{\tau_d}{\tau_{adm}} = \frac{\tau_{op}}{\tau_{adm}} e^{\frac{t_d}{T_R}} \tag{4.28}$$

$$\frac{\tau_{p}}{\tau_{adm}} = \frac{\tau_{op}}{\tau_{adm}} e^{-\left(\frac{t_{d}}{T_{R}} + \frac{tp}{T_{A}}\right)} + \frac{K_{fe} + K_{1} \cdot \left(\frac{I_{p}}{I_{1N}}\right)^{2}}{K_{fe} + K_{1}} \cdot \left(1 - e^{\frac{-t_{p}}{T_{A}}}\right)$$
(4.29)

$$\frac{\tau_{op}}{\tau_{adm}} = \frac{K_{fe} + K_{1} \cdot \left(\frac{I_{p}}{I_{1N}}\right)^{2}}{K_{fe} + K_{1}} \cdot \left(1 - e^{\frac{-t_{p}}{T_{A}}}\right) \cdot e^{\frac{-t_{op}}{T_{A}}} + \frac{K_{fe} + K_{1} \cdot \left(\frac{I_{OP}}{I_{1N}}\right)^{2}}{K_{fe} + K_{1}} \cdot (1 - e^{\frac{-t_{op}}{T_{A}}})$$

$$\frac{1 - e^{-\left(\frac{t_{d}}{T_{R}} + \frac{t_{p} + t_{op}}{T_{A}}\right)}}{1 - e^{-\left(\frac{t_{d}}{T_{R}} + \frac{t_{p} + t_{op}}{T_{A}}\right)}}$$
(4.30)

onde:

 $\tau_{\scriptscriptstyle d}$ - elevação de temperatura ao final do tempo em que o motor permanece desligado em $[^{\rm o}{\rm C}]$

 τ_p - elevação de temperatura ao final do tempo de partida em [°C]

 $\tau_{\it op}\,$ - elevação de temperatura ao final do tempo de operação após a partida em [°C]

 t_p - tempo de partida em [s]

 t_{op} - tempo de operação após a partida em [s]

 t_d - tempo de permanência desligado em [s]

 $P_{P(e)p}$ - perdas no estator durante a partida do motor em [W]

 $P_{P(e)N}$ - perdas nominais no estator em [W]

 $P_{P(e)op}$ - perdas no estator durante a operação do motor após a partida em [W]

 T_A - constante de tempo de aquecimento em [s]

 T_R - constante de tempo de resfriamento em [s]

 K_{fe} - Fator que relaciona as perdas no ferro e as perdas totais nominais

 K_1 - Fator que relaciona as perdas nominais por efeito *Joule* no estator e as perdas totais nominais

A definição da potência nominal do motor vai obedecer ao seguinte roteiro:

- 1. Conhecida a potência da carga P_C escolhe-se um motor cuja potência nominal seja compatível;
- 2. A partir de dados do motor e da carga determina-se o tempo de partida (Anexo I);
- 3. Conhecidos o número de ligações por hora (SD) e o grau de intermitência (ED) determina-se os tempos de funcionamento (t_f) e o de permanência desligado (t_d) sabendo-se que:

$$t_{total} = \frac{3600}{SD} \tag{4.31}$$

$$ED = \frac{t_f}{t_f + t_d} \tag{4.32}$$

4. Determina-se o tempo de operação (t_{op}) após conhecidos t_f e t_p :

$$t_{op} = t_f - t_p \tag{4.33}$$

- Conhecida a potência da carga determina-se a corrente de operação a partir das equações determinadas no Anexo II e III;
- 6. Conhecidos os dados nominais do motor utilizam-se os fatores K_{fe} e K_1 (conforme Tabelas 19 a 22 do capítulo 3);
- 7. As perdas do estator na partida e de operação após a partida serão dadas por:

$$P_{J(e)p} = K_{fe} + K_1 \cdot \left(\frac{I_p}{I_{1N}}\right)^2 \tag{4.34}$$

$$P_{J(e)op} = K_{fe} + K_1 \cdot \left(\frac{I_{op}}{I_{1N}}\right)^2 \tag{4.35}$$

8. As constantes de tempo⁷ de aquecimento (T_A) e de resfriamento (T_R) , podem ser obtidas a partir das Tabelas 26, 27, 28 e 29 para motores de 2, 4, 6 e 8 pólos.

Tabela 26 - Constantes de tempo de aquecimento e de resfriamento e potências associadas às carcaças padronizadas

			Motor de II	Pólos				
Carcaça	T _A (min)	T _A (seg.)	T _R (min)	T _R (seg.	.)	Potêno	cias [kV	7]
63	9,36	561,6	14,04	842,4	0,12	0,18	0,25	0,37
71	9,81	588,6	14,715	882,9	0,55	0,75		
80	12,21	732,6	18,315	1098,9	1,1	1,5		
90	13,58	814,8	20,37	1222,2	2,2	3,0		
100	16,08	964,8	24,12	1447,2	3,7	_	_	
112	16,69	1001,4	25,035	1502,1	4,5	5,5		
132	18,97	1138,2	28,455	1707,3	7,5	9,2	11	_
160	21,83	1309,8	32,745	1964,7	15	18,5	22	
180	24,58	1474,8	36,87	2212,2	_	_	_	
200	29,76	1785,6	44,64	2678,4	30	37		
225	34,37	2062,2	51,555	3093,3	45	55		
250	36,03	2161,8	54,045	3242,7	75			
280	40,45	2427	60,675	3640,5	90	110	_	
315	45,32	2719,2	67,98	4078,8	132	150	185	
355	57,3	3438	85,95	5157	220	260	_	

-

⁷ Os valores das constantes de tempo de aquecimento nas Tabelas 26, 27, 28 e 29, foram informados por um fabricante de motores elétricos. Os valores das constantes de resfriamento foram calculados a partir da equação (4.25).

Tabela 27 - Constantes de tempo de aquecimento e de resfriamento e potências associadas às carcaças padronizadas

Motor de IV Pólos								
Carcaça	T _A (min)	T _A (seg.)	T _R (min)	T _R (seg.)	Potências [kW]			
63	12,96	777,6	19,44	1166,4	0,12	0,18	0,25	
71	14,01	840,6	21,015	1260,9	0,37	0,55		
80	14,78	886,8	22,17	1330,2	0,75	1,1		
90	16,56	993,8	24,84	1490,4	1,5	2,2		
100	17,52	1051,2	26,28	1576,8	3,0	3,7		_
112	18,93	1135,8	28,395	1703,7	4,5	5,5		
132	20,64	1238,4	30,96	1857,6	7,5	9,2	11	
160	23,41	1404,6	35,115	2106,9	15	18,5		
180	25,22	1513,2	37,83	2269,8	22	_		_
200	30,72	1843,2	46,08	2764,8	30	37		
225	33,12	1987,2	49,68	2980,8	45	55		_
250	34,89	2093,4	52,335	3140,1	75			
280	39,69	2381,4	59,535	3572,1	90	110		_
315	43,41	2604,6	65,115	3906,9	132	150	185	
355	56,18	3370,8	84,27	5056,2	220	260	_	

Tabela 28 - Constantes de tempo de aquecimento e de resfriamento e potências associadas às carcaças padronizadas na fabricação de motores de 6 pólos

		N	Iotor de VI	Pólos				
Carcaça	T _A (min)	T_A (seg.)	T _R (min)	T _R (seg.)		Potências [kW]		
63	14,47	868,2	21,705	1302,3	0,12	_	_	_
71	16,34	980,4	24,51	1470,6	0,18	0,25		
80	18,19	1091,4	27,285	1637,1	0,37	0,55		
90	18,73	1123,8	28,095	1685,7	0,75	1,1		
100	20,03	1201,8	30,045	1802,7	1,5	2,2		
112	21,97	1318,2	32,955	1977,3	3,0			
132	23,71	1422,6	35,565	2133,9	3,7	4,5	5,5	7,5
160	27,99	1679,4	41,985	2519,1	9,0	11	15	
180	32,27	1936,2	48,405	2904,3	18,5			
200	35,01	2100,6	52,515	3150,9	22	30		
225	41,11	2466,6	61,665	3699,9	37	_		
250	42,65	2559	63,975	3838,5	45	55		
280	48,51	2910,6	72,765	4365,9	75	90		
315	50,26	3015,6	75,39	4523,4	110	132	150	
355	66,26	3975,6	99,39	5963,4	185	220	260	

Tabela 29 - Cons	tantes de tempo d	e aquecimento	e de resfriamento	e potências	associadas às
	carcaças padroniz	adas na fabrica	ção de motores de	e 8 pólos	

Motor de VIII Pólos								
Carcaça	T _A (min)	T _A (seg.)	T _R (min)	T _R (seg.)	Potências			
63	_	_	_	_	_	_	_	_
71	17,83	1069,8	26,745	1604,7	0,12			
80	18,84	1130,4	28,26	1695,6	0,18	0,25	_	
90	21,85	1311	32,775	1966,5	0,37	0,55	0,75	
100	23,11	1386,6	34,665	2079,9	1,1		<u> </u>	
112	23,33	1399,8	34,995	2099,7	1,5			
132	30,37	1822,2	45,555	2733,3	2,2	3,0	3,7	
160	34,11	2046,6	51,165	3069,9	4,5	5,5	7,5	
180	40,48	2428,8	60,72	3643,2	9,2	11	15	
200	39,68	2380,8	59,52	3571,2	18,5			
225	39,69	2381,4	59,535	3572,1	22	30		
250	43,68	2620,8	65,52	3931,2	37	45		
280	49,94	2996,4	74,91	4494,6	55	75		
315	59,07	3544,2	88,605	5316,3	90	110		
355	67,29	4037,4	100,94	6056,1	132	150	185	220

9. A constante de tempo de resfriamento $^8\,\,T_{R}\,$ é dada por:

$$T_R = (1, 4 \ a \ 1, 5).T_A$$
 (4.36)

- 10. Substituindo-se estes valores nas equações (4.19), (4.20) e (4.21) obtém-se o perfil de temperatura mostrado na Figura 12 (página 38).
- 11. Para que o motor seja adequado em termos de potência, deverá satisfazer as seguintes condições:

$$\frac{\tau_{op}}{\tau_{adm}} < 1 \tag{4.37}$$

$$\frac{\tau_p}{\tau_{adm}} < 1 \tag{4.38}$$

⁸ Referência - Elektrische Antriebe – Prof. Dr. Ing. Adolf Leonhard – Editora Ferdinand Enke Verlag – Stuttgart -1962.

4.3 EXEMPLO DO DIMENSIONAMENTO DE UM MOTOR EM REGIME INTERMITENTE

A título exemplificativo, especifica-se a potência nominal de um motor que deve acionar uma carga com os seguintes dados:

$$\begin{split} P_{C} &= 4,0 (kW) \\ SD &= 30 \\ ED &= 50 \\ P_{N} &= 4,5 \left[kW\right]; \ n_{1N} = 1720 \left[rpm\right]; I_{p} = 8,0.I_{N}; I_{N} = 20 \left[A\right]; \ \eta_{N} = 85,5\%; \cos \varphi_{N} = 0,84 \\ J_{M} &= 0,01741 \left\lceil kgm^{2} \right\rceil \ J_{C} = 20*J_{M} \Rightarrow J_{C} = 0,3482 \left\lceil kgm^{2} \right\rceil, \ J = 0,3656 \left\lceil kgm^{2} \right\rceil \end{split}$$

A partir de uma lista técnica de fabricantes pretende-se verificar se a potência do motor (dados acima) está indicada corretamente para o acionamento. Para tanto, tem-se a seguinte solução:

Para que sejam determinadas as durações das diversas etapas de operação do motor, efetua-se o seguinte cálculo:

Como SD = 50, resulta:

$$t_{total} = \frac{3600}{SD} = \frac{3600}{50} = 72[s]$$

$$t_f + t_d = 72 \left[s \right]$$

Como ED = 0,4

$$ED = \frac{t_f}{t_f + t_d} \Rightarrow t_f = 0.4*72$$

$$t_f = 28,8 [s]$$

$$t_d = 43, 2 [s]$$

A partir do Anexo I calcula-se o tempo de partida:

$$t_{p} = 7,4[s]$$

$$t_{op} = 21, 4[s]$$

Da Tabela 27 (capítulo 4) obtem-se:

$$T_A = 1135,8[s]$$

$$T_R = 1703,7 [s]$$

Das Tabelas 19 e 21(capítulo 3), tem-se:

$$K_{fe} = 0.326$$

$$K_1 = 0,267$$

Para um motor de 6,0 [cv] (4,5 [kW]), na Tabela 55 (Anexo II) tem-se a seguinte equação para corrente de operação:

Iop = 0,8556.
$$\left(\frac{P_C}{P_N}\right)^2 + 9,9253. \left(\frac{P_C}{P_N}\right) + 5,7927$$

Iop = 0,8556.
$$\left(\frac{4}{4,5}\right)^2 + 9,9253. \left(\frac{4}{4,5}\right) + 5,7927$$

$$Iop=15,29[A]$$

A equação II-1 do Anexo II é utilizada para o cálculo da corrente nominal, conforme segue:

$$I_{1N} = 3,0929.P_N^{0,9369}$$

$$I_{1N} = 3,0929.6^{0,9369}$$

$$I_{1N} = 16,57[A]$$

Utilizando-se as equações (4.29) e (4.30) é possível determinar se o motor em questão pode ser utilizado nesse acionamento, através dos seguintes cálculos:

$$\frac{\tau_{op}}{\tau_{adm}} = \frac{K_{fe} + K_{1} \cdot \left(\frac{I_{p}}{I_{1N}}\right)^{2} \cdot \left(1 - e^{\frac{-t_{p}}{T_{A}}}\right) \cdot e^{\frac{-t_{op}}{T_{A}}} + \frac{K_{fe} + K_{1} \cdot \left(\frac{I_{OP}}{I_{1N}}\right)^{2}}{K_{fe} + K_{1}} \cdot (1 - e^{\frac{-t_{op}}{T_{A}}})}{1 - e^{\frac{-\left(\frac{t_{d}}{T_{R}} + \frac{t_{p} + t_{op}}{T_{A}}\right)}{T_{A}}}}$$

$$\frac{\tau_{op}}{\tau_{adm}} = \frac{\frac{0,326+0,267.\left(8\right)^{2}}{0,326+0,267}.\left(1-e^{\frac{-7.4}{1135.8}}\right).e^{-\frac{21.4}{1135.8}} + \frac{0,326+0,267.\left(\frac{15,29}{16,57}\right)^{2}}{0,326+0,267}.(1-e^{-\frac{21.4}{1135.8}})}{1-e^{-\left(\frac{43.2}{1703.7} + \frac{7.4+21.4}{1135.8}\right)}}$$

$$\frac{\tau_{op}}{\tau_{adm}} = 4,13$$

$$\begin{split} \frac{\tau_{p}}{\tau_{adm}} &= \frac{\tau_{op}}{\tau_{adm}}.e^{-\left(\frac{t_{d}}{T_{R}} + \frac{tp}{T_{A}}\right)} + \frac{K_{fe} + K_{1}.\left(\frac{I_{p}}{I_{1N}}\right)^{2}}{K_{fe} + K_{1}}.\left(1 - e^{\frac{-t_{p}}{T_{A}}}\right) \\ \frac{\tau_{p}}{\tau_{adm}} &= 2,17.e^{-\left(\frac{43,2}{1703,7} + \frac{7,4}{1135,8}\right)} + \frac{0,326 + 0,267.\left(8\right)^{2}}{0,326 + 0,267}.\left(1 - e^{\frac{-7,4}{1135,8}}\right) \\ \frac{\tau_{p}}{\tau_{adm}} &= 4,02 \end{split}$$

Como as condições $\frac{\tau_{op}}{\tau_{adm}} < 1$ e $\frac{\tau_p}{\tau_{adm}} < 1$ não foram satisfeitas, conclui-se que o motor de 4,5 [kW] não poderá ser utilizado nesse acionamento.

O próximo motor a ser testado é o de 7,5[cv] (5,5 [kW]), os dados de catálogo para este motor são os seguintes:

$$\begin{split} P_{N} &= 5,5 \; [kW]; \; n_{1N} = 1740 \; [rpm]; \; I_{p} = 7,0.I_{N}; \; I_{N} = 20 \; [A]; \; \eta_{N} = 88\%; \cos \varphi_{N} = 0,82 \\ J_{M} &= 0,01741 \; [kgm^{2}] \; J_{C} = 20*J_{M} \implies J_{C} = 0,3482 \; \Big[kgm^{2} \Big], \; J = 0,3656 \; [kgm^{2}] \end{split}$$

Para este motor resulta um tempo de partida $t_p = 1,97 [s]$, calculado a partir do Anexo I. Como SD = 50, resulta:

$$t_{total} = \frac{3600}{SD} = \frac{3600}{50} = 72 [s]$$
$$t_f + t_d = 72 [s]$$

Como ED = 0,4, tem-se:

$$ED = \frac{t_f}{t_f + t_d} \Rightarrow t_f = 0.4*72$$

$$t_f = 28.8 [s]$$

$$t_d = 43.2 [s]$$

Como
$$t_p = 1,97 [s]$$
:

$$t_{op} = 26,83 [s]$$

Da Tabela 27 (capítulo 4), obtem-se:

$$T_A = 1135,8 [s]$$

$$T_R = 1703,7 [s]$$

Das Tabelas 19 e 21 (capítulo 3), tem-se:

$$K_{fe} = 0,229$$

$$K_1 = 0,267$$

Utilizando-se a Tabela 55 (Anexo II), para um motor de 7,5 [cv] (5,5 [kW]), tem-se a seguinte equação para corrente de operação:

$$Iop = 0.8147. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 13.013. \left(\frac{P_{C}}{P_{N}}\right) + 6.6001$$

$$Iop = 0.8147. \left(\frac{4.0}{5.5}\right)^2 + 13.013. \left(\frac{4.0}{5.5}\right) + 6.6001$$

$$Iop = 15,49[A]$$

A equação II-1 do Anexo II é utilizada para o cálculo da corrente nominal, como se segue:

$$I_{1N} = 3,0929.P_{N}^{0,9369}$$

$$I_{1N} = 3,0929.7,5^{0,9369}$$

$$I_{1N} = 20,42 [A]$$

Utilizando-se as equações (4.20) e (4.21), é possível determinar se o motor em questão poderá ser utilizado nesse acionamento, através dos seguintes cálculos:

$$\frac{\tau_{op}}{\tau_{adm}} = \frac{\frac{K_{fe} + K_{1} \cdot \left(\frac{I_{P}}{I_{1N}}\right)^{2}}{K_{fe} + K_{1}} \cdot \left(1 - e^{\frac{-t_{p}}{T_{A}}}\right) \cdot e^{\frac{-t_{op}}{T_{A}}} + \frac{K_{fe} + K_{1} \cdot \left(\frac{I_{OP}}{I_{1N}}\right)^{2}}{K_{fe} + K_{1}} \cdot (1 - e^{\frac{-t_{op}}{T_{A}}})}{1 - e^{\frac{-\left(\frac{t_{d}}{T_{R}} + \frac{t_{p} + t_{op}}{T_{A}}\right)}{T_{A}}}}$$

$$\frac{\tau_{op}}{\tau_{adm}} = \frac{\frac{0,229 + 0,320.(8)^{2}}{0,229 + 0,320}.\left(1 - e^{\frac{-1.97}{1135.8}}\right).e^{-\frac{26.83}{1135.8}} + \frac{0,229 + 0,320.\left(\frac{15,49}{20,42}\right)^{2}}{0,229 + 0,320}.(1 - e^{-\frac{26.83}{1135.8}})}{1 - e^{-\left(\frac{43.2}{1703.7} + \frac{1.97 + 26.83}{1135.8}\right)}}$$

$$\frac{\tau_{op}}{\tau_{adm}} = 1,36$$

$$\begin{split} \frac{\tau_{p}}{\tau_{adm}} &= \frac{\tau_{op}}{\tau_{adm}}.e^{-\left(\frac{t_{d}}{T_{R}} + \frac{tp}{T_{A}}\right)} + \frac{K_{fe} + K_{1}.\left(\frac{I_{p}}{I_{1N}}\right)^{2}}{K_{fe} + K_{1}}.\left(1 - e^{\frac{-t_{p}}{T_{A}}}\right) \\ \frac{\tau_{p}}{\tau_{adm}} &= 2,17.e^{-\left(\frac{43.2}{1703.7} + \frac{1.97}{1135.8}\right)} + \frac{0,427 + 0,320.\left(8\right)^{2}}{0,427 + 0,320}.\left(1 - e^{\frac{-1.97}{1135.8}}\right) \\ \frac{\tau_{p}}{\tau_{adm}} &= 1,35 \end{split}$$

Como as condições $\frac{\tau_{op}}{\tau_{adm}} < 1$ e $\frac{\tau_p}{\tau_{adm}} < 1$ não foram satisfeitas, o motor de 5,5 [kW] não poderá ser utilizado nesse acionamento.

Verifica-se agora o motor de 7,5 (kW), tem-se que os dados de catálogo para este motor são os seguintes:

$$\begin{split} P_{N} &= 7,5 \left[kW\right]; \ n_{1N} = 1760 \left[rpm\right]; I_{p} = 8,0.I_{N}; \ I_{N} = 26,6 \left[A\right]; \ \eta_{N} = 89\%; \cos \varphi_{N} = 0,83\\ J_{M} &= 0,04652 \left\lceil kgm^{2} \right\rceil, \ J_{C} = 0,3482 \left\lceil kgm^{2} \right\rceil, \ J = 0,3656 \left\lceil kgm^{2} \right\rceil \end{split}$$

Para este motor resulta um tempo de partida calculado conforme Anexo I. $t_p = 0.917 \, [s]$.

Como SD = 50, resulta:

$$t_{total} = \frac{3600}{SD} = \frac{3600}{50} = 72[s]$$

$$t_f + t_d = 72 \left[s \right]$$

Como ED = 0.4, tem-se:

$$ED = \frac{t_f}{t_f + t_d} \Longrightarrow t_f = 0.4*72$$

$$t_f = 28,8 [s]$$

$$t_d = 43, 2 [s]$$

Como
$$t_p = 0.91 [s]$$

$$t_{op} = 27,88 [s]$$

Da Tabela 27 (capítulo 4), tem-se:

$$T_A = 1238, 4 [s]$$

$$T_R = 1857, 6[s]$$

Das Tabelas 19 e 21 (capítulo 3), tem-se:

$$K_{fe} = 0,292$$

$$K_1 = 0,223$$

Utilizando-se a Tabela 55 (anexo II) para um motor de 10 [cv] (7,5 [kW]), tem-se a seguinte equação para corrente de operação:

$$Iop = 0,6974. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 18,288. \left(\frac{P_{C}}{P_{N}}\right) + 7,7613$$

Iop = 0,6974.
$$\left(\frac{4,0}{7,5}\right)^2 + 18,288. \left(\frac{4,0}{7,5}\right) + 7,7613$$

$$Iop = 17,71[A]$$

A equação II-1 do Anexo II, é utilizada para o cálculo da corrente nominal, conforme segue:

$$I_{1N} = 3,0929.P_N^{0,9369}$$

$$I_{1N} = 3,0929.10^{0,9369}$$

$$I_{1N} = 26,74[A]$$

Utilizando-se as equações (4.20) e (4.21), é possível determinar se o motor em questão poderá ser utilizado nesse acionamento, como se segue:

$$\frac{\tau_{op}}{\tau_{adm}} = \frac{\frac{0,292+0,223.\left(8\right)^{2}}{0,292+0,223}.\left(1-e^{\frac{-0.914}{1238.4}}\right).e^{-\frac{27.88}{1238.4}} + \frac{0,292+0,223.\left(\frac{17.71}{26.74}\right)^{2}}{0,292+0,223}.(1-e^{-\frac{2.88}{1238.4}})}{1-e^{-\left(\frac{43.2}{1857.6} + \frac{0.914+27.88}{1238.4}\right)}}$$

$$\frac{\tau_{op}}{\tau_{adm}} = 0,82$$

$$\frac{\tau_p}{\tau_{adm}} = 0,97.e^{-\left(\frac{43.2}{1857.6} + \frac{0.914}{1238.7}\right)} + \frac{0,292 + 0,223.\left(8\right)^2}{0,292 + 0,223}.\left(1 - e^{\frac{-0.914}{1135.8}}\right)$$

$$\frac{\tau_p}{\tau_{adm}} = 0.81$$

Como as condições $\frac{\tau_{op}}{\tau_{adm}} < 1$ e $\frac{\tau_p}{\tau_{adm}} < 1$ foram satisfeitas, o motor de 7,5 [kW] é o indicado para uso nesse acionamento.

4.4 CARGA VARIÁVEL

Na grande maioria dos acionamentos a carga não pode ser considerada constante, mesmo que seu comportamento independa da velocidade. Isto significa que não é aconselhável, mesmo para um motor operando em regime contínuo, ter sua potência nominal igual à potência da carga. Usualmente o motor é especificado em termos de potência, de modo que a potência da carga seja no máximo igual a 90% da potência nominal do motor.

4.5 FATOR DE SOBREDIMENSIONAMENTO NECESSÁRIO

Conforme analisado anteriormente, mesmo com o acionamento operando em regime contínuo é recomendável que a potência da carga seja um pouco menor que a potência nominal do motor. Como este trabalho tem por objetivo propor novas potências intermediárias às padronizadas, para reduzir o sobredimensionamento necessário dos motores que operam em regime contínuo, é importante diferenciar o sobredimensionamento necessário daquele que poderia ter sido evitado.

Neste estudo, será adotada como condição normal de especificação a potência da carga

com até 90% da potência nominal do motor⁹, ou seja:

$$1 \ge \frac{P_C}{P_N} \ge 0.9 \tag{4.28}$$

Convém observar que existem alguns casos de motores operando em regime de curta duração nos quais a potência da carga pode ser maior que a potência do motor. Contudo, por tratar-se da mesma forma que o regime intermitente, de uma condição especial, não será considerado nesta análise.

Para definir o sobredimensionamento necessário, resolveu-se fixar como condição normal:

$$P_{C} = 0, 9.P_{N} \tag{4.29}$$

Considerando ainda o fato de que existe uma faixa padronizada e com valores discretos para as potências nominais dos motores, podem ocorrer situações nas quais a potência da carga obrigatoriamente seja menor que 90% da potência nominal do motor.

Para caracterizar estas situações definiu-se neste trabalho o fator de sobredimensionamento necessário $F_{\it SN}$, dado por:

$$F_{SN} = \frac{P_{C\min(i-1)}}{P_N} \tag{4.30}$$

 $P_{C_{\min(i-1)}}$ - 90% da potência nominal do motor imediatamente inferior ao analisado

 P_N - potência nominal do motor em análise

A título exemplificativo, tome-se o motor com potência nominal 10 [cv]. Pela condição adotada, este motor deve acionar uma carga cuja potência nominal seja no máximo 9 [cv].

O motor imediatamente abaixo do motor de 10 [cv] tem potência nominal 7,5 [cv]. Como a potência máxima da carga admissível para este motor é de 6,75 [cv], ou seja 90% de sua carga nominal, para toda carga de potência variando entre 6,75 [cv] e 9 [cv] o motor

⁹ Considerar no máximo 90% da carga nominal trata-se apenas de uma questão de bom senso. Considerando que as redes de alimentação em muitos casos possuem uma série de anormalidades e que uma carga sempre apresenta variações, isso garantiria um melhor funcionamento do motor e uma maior durabilidade sem, no entanto interferir no rendimento do mesmo.

adequado será o de 10 [cv].

Para pior condição de sobredimensionamento necessário o motor de 10 [cv] estará acionando uma carga de 6,75 [cv]. Logo o fator de sobredimensionamento necessário para o motor de 10 [cv] será:

$$F_{SN} = \frac{6,75}{10} = 0,675$$

A Tabela 30, a seguir, define o fator de sobredimensionamento necessário para a faixa de potências nominais dos motores disponíveis no mercado.

Tabela 30 - Constantes de sobredimensionamento necessário dos motores de indução trifásicos padronizados.

Pn [cv]	$\mathbf{F_{SN}}$	Pn [cv]	$\mathbf{F_{SN}}$
0,25	0,576	20	0,675
0,33	0,682	25	0,720
0,5	0,594	30	0,750
0,75	0,600	40	0,675
1,0	0,675	50	0,720
1,5	0,600	60	0,750
2,0	0,675	75	0,720
3,0	0,600	100	0,675
4,0	0,675	125	0,720
5,0	0,720	150	0,750
6,0	0,750	175	0,772
7,5	0,720	200	0,787
10	0,675	250	0,720
12,5	0,720	300	0,750
15	0,750	350	0,772

Como pode-se observar na Tabela 30 acima, o fator de sobredimensionamento necessário é muito baixo para alguns motores, principalmente os motores abaixo de 10 [cv].

4.6 CARREGAMENTO DE MOTORES DE INDUÇÃO TRIFÁSICOS

Verificou-se através da Figura 2, que o consumo dos motores elétricos equivale a aproximadamente 51% do consumo industrial.

Segundo Tabosa, R. P. (1996) e Soares, G. A. (1996), o sobredimensionamento de motores no Brasil é bastante acentuado, afirmando que aproximadamente 71% dos motores na indústria operam sobredimensionados, bem como 24% dos motores operam com cargas inferiores a 50% [19].

4.7 CONSIDERAÇÕES FINAIS

Neste capítulo, observou-se que um motor elétrico em regime intermitente necessita ser sobredimensionado devido à elevação de temperatura ocasionada por esse tipo de funcionamento, o exemplo apresentado prova esta teoria.

A determinação de um fator de sobredimensionamento para cada motor, possibilita uma análise do estado de funcionamento do motor para uma determinada carga.

Através de dados de uma pesquisa [19], foi possível compreender que o sobredimensionamento de motores de forma exagerada é bastante utilizado.

No próximo capítulo, será apresentada uma proposta para minimizar o efeito do sobredimensionamento de motores. Inicialmente trata-se da norma que padroniza as potências de motores, bem como se demonstra que as potências seguem uma série de números, chamada "Série de Renard".

Comenta-se rapidamente sobre a história inicial da fabricação de motores no mundo, bem como se mostra que a inserção de novas potências aos valores padronizados, trará o benefício da redução do sobredimensionamento nos acionamentos elétricos e consequentemente a diminuição das perdas ocasionadas pelo uso de motores de indução trifásicos.

CAPÍTULO 5

ANALÍSE DA REDUÇÃO DE SOBREDIMENSIONAMENTO DE MOTORES DE INDUÇÃO TRIFÁSICOS COM BASE EM NOVA PADRONIZAÇÃO DE POTÊNCIAS

5.0 CONSIDERAÇÕES INICIAIS

Nos capítulos anteriores ficou demonstrado que o sobredimensionamento de motores muitas vezes é necessário, tanto em função da forma de operação dos mesmos (operação intermitente) quanto das potências padronizadas disponíveis (fator de sobredimensionamento necessário).

O objetivo principal desse trabalho é mostrar que se fossem definidas novas potências padronizadas, tanto o sobredimensionamento função do regime de operação quanto aquele função do fator de sobredimensionamento necessário seriam reduzidos implicando em uma economia de energia elétrica¹⁰.

Com o objetivo de demonstrar a viabilidade de economia de energia, será feita uma análise para a introdução de novas potências de motores na faixa de potência de 1,5 a 10 [cv], por concentrar o maior número de motores em operação no Brasil, conforme demonstrado no capítulo 2.

5.1 PADRONIZAÇÃO E NORMALIZAÇÃO DOS MOTORES

Em 1889, o russo Michael Von Dolivo-Dobrowolsky fez o primeiro motor de indução do tipo gaiola, que possuía uma potência de 80W e um rendimento de 80%.

Figura 13 - Primeiro motor de indução do tipo gaiola¹¹

¹⁰ Ficou demonstrado no capítulo 2, que o maior número de motores em operação no Brasil pertence a faixa de 1,5 [cv] a 10 [cv].

¹¹ Deutsches Museum

Desde o início da fabricação em série de motores observava-se os problemas relacionados à padronização e normalização desse tipo de equipamento. A evolução tecnológica do motor de indução foi rápida. O surgimento de novos materiais juntamente com novas técnicas de fabricação proporcionou a redução da relação peso/potência, porém, cada fabricante produzia da forma que lhe favorecesse, contribuindo assim para falta de uniformidade entre tamanhos de motores e potências. Isto dificultava a intercambiabilidade entre motores de fabricantes diferentes. Este fato, inclusive, ocorria com um mesmo fabricante quando produzia outras séries de motores. Com isso, a necessidade de padronização era inevitável.

No ano de 1923, na Alemanha, publicou-se a norma DIN-VDE-2650, a qual já fixava valores para rendimento, fator de potência, conjugado de partida e corrente de partida para motores abertos trifásicos do tipo gaiola nas potências de 0,12 [kW] a 100 [kW] [16].

A padronização dos motores em termos de carcaça foi feita em 1948. A norma DIN 42676 estabelecia dez dimensões de carcaças para a faixa de 0,25 a 100 [kW]. Esta norma, no entanto, apresentava apenas valores orientativos para motores de 4 pólos e não proporcionava uma padronização geral entre fabricantes [16].

Em 1950, foi criado um subcomitê da IEC (International Electrotechnical Commission) com o objetivo de padronizar as máquinas elétricas girantes. A padronização era dificultada devido à utilização de dois sistemas de medidas (métrico e o polegadas), além do que, para que fosse possível utilizar máquinas de qualquer fabricante sem a necessidade de ajustes da carga, era necessária uma padronização das dimensões construtivas da máquina, bem como a devida correspondência entre carcaça e potência.

Uma forma utilizada para padronizar os motores foi o estabelecimento de séries independentes de potências e dimensões. A norma IEC-72, publicada em 1956, ainda é utilizada atualmente em alguns países. Nessa norma há a definição das potências padronizadas na faixa de 0,06 a 1000 [kW].

Atualmente no Brasil, a determinação das potências padronizadas segue uma normalização fundamentada na Série de Renard [16], cujas séries fundamentais são apresentadas na Tabela 31, a seguir.

Tabela 31 - Séries de Renard

R5	R10	R20	R40
		1 00	1,00
	1,00	1,00	1,06
	1,00	1,12	1,12
1,00		1,12	1,18
1,00		1,25	1,25
	1,25	1,23	1,32
	1,25	1,40	1,40
		1,10	1,50
		1,60	1,60
	1,60	1,00	1,70
	1,00	1,80	1,80
1,60		1,00	1,90
1,00		2,00	2,00
	2,00	2,00	2,12
	_, 0 0	2,24	2,24
		, :	2,36
		2,50	2,50
	2,50	_,0 0	2,65
	_,-	2,80	2,80
2,50		2,00	3,00
_,		3,15 3,15	3,15
	3.15		3,35
	-,	3,55	3,55
		- ,	3,75
		4,00	4,00
	4,00	,	4,25
	,	4,50	4,50
4,00		,	4,75
,		5,00	5,00
	5,00	,	5,30
		5,60	5,60
			6,00
		6,30	6,30
	6,30		6,70
6,30		7,10	7,10
			7,50
		8,00	8,00
	8,00		8,50
		9,00	9,00
10.00	10.00	10.00	9,50
10,00	10,00	10,00	10,00

Em 1870 um militar francês chamado Charles Renard¹², oficial especialista da aeronáutica, introduziu uma série através de uma progressão geométrica para definir diâmetros de cabos para construção de seus aparelhos aeronáuticos [25]. A progressão geométrica definida por Renard tem como primeiro termo o número um ($a_0 = 1$) e como último termo o número dez ($a_N = 10$). Para a obtenção das séries da Tabela 31 tem-se:

- a razão da progressão para série definida como R5 é $q = 10^{\frac{1}{5}}$
- a razão da progressão para série definida como R10 é $q = 10^{\frac{1}{10}}$
- a razão da progressão para série definida como R20 é $q = 10^{\frac{1}{20}}$
- a razão da progressão para série definida como R40, é $q = 10^{\frac{1}{40}}$

Estas séries foram usadas também para padronização das potências dos motores.

Esta grande variedade de números normalizados teve por objetivo permitir que cada país fizesse a escolha que julgasse mais adequada na produção de seus motores.

A padronização no Brasil utiliza alguns valores da série R40 mostrada na Tabela 31.

Como a padronização brasileira não utiliza todos os valores da série, resulta um baixo fator de sobredimensionamento necessário. A Tabela 32, abaixo, mostra os valores utilizados.

Tabela 32 - Valores normalizados no Brasil e a Série de Renard – R40

Potência N 5432/19		Potência segundo R40
[CV]	[kW]	[kW]
1,50	1,12	1,12
2,00	1,50	1,50
3,00	2,25	2,24
4,00	3,00	3,0
5,00	3,75	3,75
6,00	4,50	4,5
7,50	5,625	5,6
10,0	7,50	7,5

_

¹² Les Séries de Renard – http://www.sciences-en-ligne.com/momo/chronomath/anx1/series_renard.html

5.2 ANÁLISE DOS MOTORES NA FAIXA DE 1,5 A 10 [cv]

Nesse item, procurou-se analisar a faixa de potência dos motores de 1,5 a 10 [cv], uma vez que quando se iniciou este trabalho, não se tinha ainda o conhecimento da origem das potências padronizadas no Brasil. Em razão disso, demonstra-se na Tabela 33, abaixo, os valores considerados de potência máxima, mínima, bem como o fator de sobredimensionamento necessário para as potências em análise.

Tabela 33 - Limites máximo e mínimo da potência de carga para motores padronizados.

Potência Nominal [cv]	Potência Máxima [cv]	Potência Mínima	$\mathbf{F}_{\mathbf{SN}}$
1,5	1,35	0,9	0,600
2,0	1,8	1,35	0,675
3,0	2,7	1,8	0,600
4,0	3,6	2,7	0,675
5,0	4,5	3,6	0,720
6,0	5,4	4,5	0,750
7,5	6,75	5,4	0,720
10	9,0	6,75	0,675

A fim de otimizar esta faixa de potência, mantiveram-se as potências já fabricadas e inseriram-se potências intermediárias para melhorar o fator de sobredimensionamento necessário.

A introdução de novas potências levou em consideração duas condições básicas:

- a maior potência da carga para o motor não deve ultrapassar 90% de sua potência nominal;
- a menor potência de carga para o motor não deve ser inferior a 80% de sua potência nominal.

Para que estas duas condições sejam atendidas, as potências padronizadas devem formar uma progressão geométrica cuja razão é:

$$q = \frac{0.9}{0.8} = 1.12$$

Verifica-se que a razão calculada equivale à mesma razão da série de Renard R20 (Tabela 31).

Na Tabela 34, a seguir, apresentam-se as novas potências intermediárias sugeridas, bem como as novas potências máximas, mínimas, e também o novo fator de sobredimensionamento necessário. Nas potências sugeridas da Tabela 34 considerou-se a razão 1,12.

Tabela 34 - Limites máximo e mínimo da potência e fator de sobredimensionamento necessário para novas potências

Potência Nominal [cv]	Potência Máxima [cv]	Potência Mínima [cv]	F _{SN}
10	9,0	8,0	0,80
9,0	8,0	7,2	0,80
8,0	7,2	6,75	0,84
7,5	6,75	6,0	0,80
6,7	6,0	5,4	0,80
6,0	5,4	4,9	0,81
5,5	4,9	4,5	0,81
5,0	4,5	4,0	0,80
4,5	4,0	3,6	0,80
4,0	3,6	3,2	0,80
3,5	3,2	2,7	0,77
3,0	2,7	2,3	0,77
2,5	2,3	1,8	0,72
2,0	1,8	1,6	0,80
1,8	1,6	1,4	0,78
1,5	1,35	0,9	0,60

Com a nova padronização de potências sugeridas, verifica-se um aumento no fator de sobredimensionamento necessário, o que trará como benefício uma melhor utilização dos motores elétricos trifásicos.

É importante observar que alguns ajustes foram feitos para manterem-se as potências já fabricadas.

A Tabela 35, a seguir, tem por finalidade mostrar, para faixa de 1,5 a 10 [cv], as potências padronizadas obtidas pela série R40 de Renard e as sugeridas neste trabalho para melhoria do fator de sobredimensionamento.

Tabela 35 - Comparação entre as novas potências sugeridas e a série R40

P _N [cv]	$P_N [kW]$	R40	%Erro
10,00	7,50	7,50	0,00
9,00	6,75	6,70	0,75
8,00	6,00	6,00	0,00
7,50	5,63	5,60	0,45
6,70	5,03	5,00	0,50
6,00	4,50	4,50	0,00
5,50	4,13	4,00	3,13
5,00	3,75	3,75	0,00
4,50	3,38	3,35	0,75
4,00	3,00	3,00	0,00
3,50	2,63	2,65	-0,94
3,00	2,25	2,24	0,45
2,50	1,88	1,90	-1,32
2,00	1,50	1,50	0,00
1,80	1,35	1,32	2,27
1,50	1,13	1,12	0,45

5.3 CÁLCULO DA ECONOMIA DE ENERGIA COM A UTILIZAÇÃO DAS NOVAS POTÊNCIAS PADRONIZADAS

Com a inserção das potências intermediárias às já padronizadas, pode-se ter um dimensionamento mais racional para os motores de indução trifásicos.

Na Tabela 36, a seguir, apresenta-se a nova distribuição de potência, bem como, a potência média da carga (P_{CM}) para cada valor de potência do motor.

Com a inserção das novas potências, verifica-se que a nova faixa de potência de carga para os motores foi reduzida. Com isso, tem-se um dimensionamento mais adequado.

A potência média foi calculada através da média entre os novos valores da faixa de potência de carga estabelecida para cada motor.

Tabela 36 - Distribuição de cargas para as novas faixas de potências.

Pn [cv]	Faixa Anterior	Potência nova	Nova faixa [cv]	P _{CM} [cv]
		10	9,0 a 8,0	8,5
10	9,0 a 6,75	9	8,0 a 7,2	7,6
		8	7,2 a 6,75	6,975
7,5	6,75 a 5,4	7,5	6,75 a 6,0	6,375
7,5	0,75 tt 5, 4	6,7	6,0 a 5,4	5,7
6,0	5,4 a 4,5	6,0	5,4 a 4,9	5,15
0,0	3, 4 a 4,3	5,5	4,9 a 4,5	4,7
5,0	4,5 a 3,6	5,0	4,5 a 4,0	4,25
3,0	+,5 u 5,0	4,5	4,0 a 3,6	3,8
4,0	3,6 a 2,7	4,0	3,6 a 3,2	3,4
7,0	3,0 d 2,7	3,5	3,2 a 2,7	2,95
3,0	2,7 a 1,8	3,0	2,7 a 2,3	2,5
3,0	5,0 2,7 a 1,0	2,5	2,3 a 1,8	2,05
2,0	1,8 a 1,35	2,0	1,8 a 1,6	1,7
2,0	2,0 1,0 a 1,33	1,8	1,6 a 1,4	1,9
1,5	1,35 a 0,9	1,5	1,35 a 0,9	1,125

Como não é possível determinar a quantidade de motores que poderia ser substituída pelas novas potências, adotou-se o valor anterior dividido pelo novo número de potências na faixa, ou seja:

- Na análise da substituição de motores de 10 [cv] por motores de 8,0 e 9,0 [cv], considerou-se 33,3% da quantidade de motores destinadas à nova potência de 8,0 [cv], 33,3% para nova potência de 9,0 [cv] e 33,3% da quantidade estimada permaneceu com 10 [cv].
- Para as demais potências considerou-se que 50% da quantidade estimada de motores permaneceram com a potência padronizada atualmente e que 50% foram substituídos pela potência sugerida. Assim considerando-se um motor de 7,5 [cv] e a nova potência de 6,7 [cv], 50% da quantidade estimada para motores de 7,5 [cv] foram substituídos pelo novo motor sugerido, ou seja, o de potência 6,7 [cv].

Objetivando estimar a economia de energia elétrica utilizando-se a padronização de novas potências, foram feitas as seguintes considerações:

1. Para o motor de 10 [cv]

O número estimado de motores de 10 [cv] em operação no Brasil é de 587649. Esses motores são utilizados em cargas que variam de 9,0 a 6,75 [cv]. Com a introdução das novas potências de 9,0 [cv] e 8,0 [cv], verifica-se que:

- o motor de 10 [cv] será utilizado para cargas de 9,0 [cv] a 8,0 [cv];
- o motor de 9 [cv] será utilizado para cargas de 8,0 [cv] a 7,2 [cv];
- o motor de 8,0 [cv] será utilizado para cargas de 7,2 [cv] a 6,4 [cv].

Admite-se então que a nova distribuição de cargas será:

- 195.883 motores de 10 [cv] acionando cargas com potência média de 8,5 [cv];
- 195.883 motores de 9,0 [cv] acionando cargas com potência média de 7,6 [cv];
- 195.883 motores de 8,0 [cv] acionando cargas com potência média de 6,975 [cv].

2. Para o motor de 7,5 [cv]

O número estimado de motores de 7,5 [cv] em operação no Brasil é de 917784. Esses motores são utilizados em cargas que variam de 6,75 a 5,4 [cv]. Com a introdução da nova potência de 6,7 [cv], verifica-se que:

- o motor de 7,5 [cv] será utilizado para cargas de 6,75 a 6,0 [cv];
- o motor de 6,7 [cv] será utilizado para cargas de 6,0 a 5,4 [cv].

Admite-se então que a nova distribuição de cargas será:

- 458.892 (50% do total estimado) motores de 7,5 [cv] acionando cargas com potência média de 6,375 [cv];
- 458.892 motores de 6,7 [cv] acionando cargas com potência média de 5,7 [cv].

3. Para o motor de 6,0 [cv]

O número estimado de motores de 6,0 [cv] em operação no Brasil é de 104.701. Esses motores são utilizados em cargas que variam de 5,4 a 4,5 [cv]. Com a introdução da nova potência de 5,5 [cv], verifica-se que:

- o motor de 6,0 [cv] será utilizado para cargas de 5,4 a 4,9 [cv];
- o motor de 5,5 [cv] será utilizado para cargas de 4,9 a 4,5 [cv].

Admite-se então que a nova distribuição de cargas será:

- 52.350 motores de 6,0 [cv] (50% do total estimado) acionando cargas com potência média de 5,15 [cv];
- 52.350 motores de 5,5 [cv] acionando cargas com potência média de 4,7 [cv].

4. Para o motor de 5,0 [cv]

O número estimado de motores de 5,0 [cv] em operação no Brasil é de 1.446.006. Esses motores são utilizados em cargas que variam de 4,5 a 3,6 [cv]. Com a introdução da nova potência de 4,5 [cv], verifica-se que:

- o motor de 5,0 [cv] será utilizado para cargas de 4,5 a 4,0 [cv];
- o motor de 4,5 [cv] será utilizado para cargas de 4,0 a 3,6 [cv].

Admite-se então que a nova distribuição de cargas será:

- 723.003 motores de 5,0 [cv] (50% do total estimado) acionando cargas com potência média de 4,25 [cv];
- 723.003 motores de 4,5 [cv] acionando cargas com potência média de 3,8 [cv].

5. Para o motor de 4,0 [cv]

O número estimado de motores de 4,0 [cv] em operação no Brasil é de 677.255. Esses motores são utilizados em cargas que variam de 3,6 a 2,7 [cv]. Com a introdução da nova potência de 3,5 [cv], verifica-se que:

- o motor de 4,0 [cv] será utilizado para cargas de 3,6 a 3,2 [cv];
- o motor de 3,5 [cv] será utilizado para cargas de 3,2 a 2,7 [cv].

Admite-se então que a nova distribuição de cargas será:

- 338.627 motores de 4,0 [cv] (50% do total estimado) acionando cargas com potência média de 3,4 [cv];
- 338.627 motores de 3,5 [cv] acionando cargas com potência média de 2,95 [cv].

6. Para o motor de 3,0 [cv]

O número estimado de motores de 3,0 [cv] em operação no Brasil é de 2.003.468. Esses motores são utilizados em cargas que variam de 2,7 a 1,8 [cv]. Com a introdução da nova potência de 2,5 [cv], verifica-se que:

- o motor de 3,0 [cv] será utilizado para cargas de 2,7 a 2,3 [cv];
- o motor de 2,5 [cv] será utilizado para cargas de 2,3 a 1,8 [cv].

Admite-se então que a nova distribuição de cargas será:

- 1.001.734 motores de 3,0 [cv] (50% do total estimado) acionando cargas com potência média de 2,5 [cv];
- 1.001.734 motores de 2,5 [cv] acionando cargas com potência média de 2,05 [cv].

7. Para o motor de 2,0 [cv]

O número estimado de motores de 2,0 [cv] em operação no Brasil é de 2.439.250. Esses motores são utilizados em cargas que variam de 1,8 a 1,35 [cv]. Com a introdução da nova potência de 1,8 [cv], verifica-se que:

- o motor de 2,0 [cv] será utilizado para cargas de 1,8 a 1,62 [cv];
- o motor de 1,8 [cv] será utilizado para cargas de 1,62 a 1,35 [cv].

Admite-se então que a nova distribuição de cargas será:

- 1.219.625 motores de 2,0 [cv] (50% do total estimado) acionando cargas com potência média de 1,575 [cv];
- 1.219.625 motores de 1,8 [cv] acionando cargas com potência média de 1,485 [cv].

A Tabela 37, a seguir, resume as proposições acima, conforme se segue:

Potência [cv]	Potências usadas [cv]	%	Quantidade Estimada
	10	33,33	195883
10	8,0	33,33	195883
	9,0	33,33	195883
7.5	7,5	50,00	458892
7,5	6,7	50,00	458892
6.0	6,0	50,00	52350
6,0	5,5	50,00	52350
5.0	5,0	50,00	723003
5,0	4,5	50,00	723003
4.0	4,0	50,00	338627
4,0	3,5	50,00	338627
2.0	3,0	50,00	1001734
3,0	2,5	50,00	1001734
2.0	2,0	50,00	1219625
2,0	1,8	50,00	1219625
1,5	1,5	100	1256412

Tendo-se o número de motores, é possível agora calcular as perdas ocasionadas pelo uso dos motores sobredimensionados. Considera-se neste estudo que a carga é constante.

5.4 ANÁLISE DO USO DAS NOVAS POTÊNCIAS

Inicialmente, ressalta-se que serão considerados que todos os motores possuam 4 pólos, por serem a maioria dos motores comercializados.

Neste estudo analisam-se as duas situações:

- a) troca do motor padrão por motor padrão de potência inferior;
- b) troca do motor padrão por motor de alto rendimento de potência inferior.

A metodologia utilizada para o cálculo da economia resultante da introdução de novas potências padronizadas será mostrada detalhadamente para um caso específico.

Em seguida, será mostrada na forma de tabela, apresentando todos os valores de perdas, a economia total para a faixa de 1,5 a 10 [cv].

Para os motores de alto rendimento apresenta-se uma tabela com todas as substituições e os valores da potência economizada, bem como seu respectivo valor monetário.

O caso escolhido é o da substituição do motor de 10 [cv], 4 pólos, do tipo padrão, acionando cargas de 8,1 a 7,2 [cv] pelo motor de potência mais adequada que é o de 9,0 [cv], 4 pólos, também do tipo padrão.

Será admitida para o cálculo de redução das perdas uma potência média da carga de $P_{\rm CM}=7,6[cv]\,.$

Desta forma têm-se as seguintes etapas de cálculo para as duas situações:

- cálculo das perdas nominais totais do motor de 10 [cv] ($\sum P_{PN}$);
- distribuição das perdas nominais do motor de 10 [cv] (P_{J1N} , P_{J2N} , P_{fe} e P_{mec});
- cálculo das perdas totais do motor de 10 [cv] acionando carga de 7,6 [cv];
- cálculo das perdas nominais do motor de 9,0 [cv] ($\sum P_{PN}$). Os dados nominais deste motor, necessários aos cálculos das perdas (n_N , η_N e P_{fe} e P_{mec}) foram estimados com base nos dados de motores de 7,5 e 10 [cv];
- cálculo das perdas nominais do motor de 9,0 [cv] (P_{J1N} , P_{J2N} , P_{fe} e P_{mec});
- cálculo das perdas totais do motor de 9,0 [cv] acionando carga de 7,6 [cv];
- cálculo da redução das perdas resultante da substituição do motor de 10 [cv] pelo motor de 9,0 [cv];
- cálculo da redução anual de perdas de energia resultante da substituição do motor de 10 [cv] pelo motor de 9,0 [cv], admitindo-se mensalmente 20 horas de operação por dia durante 22 dias;
- cálculo da economia admitindo-se R\$ 0,25 como custo médio do kWh.

Observe-se que, nos cálculos a seguir, serão utilizadas as equações já definidas no Capítulo 3 e Anexos II e III.

Cálculo das perdas nominais do motor de 10 [cv], 4 pólos, tipo padrão

A partir do catálogo do fabricante obtem-se para o motor de 10 [cv]:

$$\eta_N = 89\%$$
 $\eta_N = 1760 \ [rpm]$
 $P_{fe} = 0,270[kW]$
 $P_{mec} = 0,069[kW]$

Desta forma tem-se:

$$\sum P_{PN} = P_N \left(\frac{100}{\eta_N} - 1 \right)$$

$$\sum P_{PN} = 7.5 \left(\frac{100}{89} - 1 \right)$$

$$\sum P_{PN} = 0.927 \ [kW]$$

$$P_{J2N} = s_N \cdot P_N \cdot \frac{n_{1N}}{n_N}$$

$$P_{J2N} = 0.022.7.5 \cdot \frac{1800}{1760}$$

$$P_{J2N} = 0.170 \ [kW]$$

$$P_{fe} = 0.207 \ [kW]$$

$$P_{mec} = 0.0699 \ [kW]$$

$$\sum P_{PN} = P_{J1N} + P_{J2N} + P_{fe} + P_{mec}$$

$$P_{J1N} = 0.927 - 0.168 - 0.270 - 0.0699$$

$$P_{J1N} = 0.418 \ [kW]$$

Para o cálculo das perdas do motor de 10 [cv], acionando carga de 7,6 [cv], torna-se necessário o cálculo da corrente de operação do motor para esta carga.

Conforme o Anexo II (equação II-3 e II-5) tem-se a seguinte expressão para o cálculo aproximado da corrente nominal e da corrente de operação para qualquer potência dentro da faixa de 1,5 a 10 [cv]:

$$I_{1N} = 3,0929.P_N^{0,9369}$$

$$Iop = 0,6974. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 18,288. \left(\frac{P_{C}}{P_{N}}\right) + 7,7613$$

Assim tem-se:

$$I_{1N} = 3,0929.10^{0.9369}$$

$$I_{1N} = 26,74 [A]$$

$$Iop = 0,6974. \left(\frac{7.6}{10}\right)^2 + 18,288. \left(\frac{7.6}{10}\right) + 7,7613$$

$$Iop = 22,06 [A]$$

Desta forma, as perdas no motor serão:

$$P_{J1} = P_{J1N} \left(\frac{I_{op}}{I_{1N}} \right)^{2}$$

$$P_{J1} = 0,420. \left(\frac{22,06}{26,75} \right)^{2}$$

$$P_{J1} = 0,284 [kW]$$

$$P_{J2} = P_{J2N}. \left(\frac{P_{C}}{P_{N}} \right)^{2}$$

$$P_{J2} = 0,168. \left(\frac{7,6}{10} \right)^{2}$$

$$P_{J2} = 0,097 [kW]$$

$$P_{fe} = 0,270 [kW]$$

$$P_{mec} = 0,069 [kW]$$

$$\sum P_{P} = P_{J1} + P_{J2} + P_{fe} + P_{mec}$$

$$\sum P_{P} = 0,285 + 0,097 + 0,270 + 0,069$$

$$\sum P_{P} = 0,722 [kW]$$

Cálculo das perdas nominais do motor de 9,0 [cv] padrão

Foram estimados os seguintes dados:

$$\eta_N = 89\%$$
 $\eta_N = 1765 [rpm]$
 $P_{fe} = 0,250 [kW]$
 $P_{mec} = 0,059[kW]$

Assim tem-se:

$$\sum P_{PN} = P_N \left(\frac{100}{\eta_N} - 1 \right)$$

$$\sum P_{PN} = 6,75. \left(\frac{100}{89} - 1 \right)$$

$$\sum P_{PN} = 0,834 [kW]$$

$$P_{J2N} = s_N.P_N. \frac{n_{1N}}{n_N}$$

$$P_{J2N} = 0,0194.6,75. \frac{1800}{1765}$$

$$P_{J2N} = 0,134 [kW]$$

$$\sum P_{PN} = P_{J1N} + P_{J2N} + P_{fe} + P_{mec}$$

$$P_{J1N} = 0,834 - 0,134 - 0,250 - 0,059$$

$$P_{J1N} = 0,421 [kW]$$

Para o cálculo das perdas do motor de 9,0 [cv] acionando carga de 7,6 [cv], torna-se necessário o cálculo da corrente de operação do motor para esta carga.

Conforme o Anexo II (equação II-3 e II-5), tem-se a seguinte expressão para o cálculo aproximado da corrente nominal e da corrente de operação para qualquer potência dentro da faixa de 1,5 a 10 [cv], tem-se:

$$I_{1N} = 3,0929.P_{N}^{0.9369}$$

$$I_{1N} = 3,0929.9^{0.9369}$$

$$I_{1N} = 24,23 [A]$$

Iop = 0,7502.
$$\left(\frac{P_C}{P_N}\right)^2 + 16,162. \left(\frac{P_C}{P_N}\right) + 7,3203$$

Iop = 0,7502. $\left(\frac{7,6}{9}\right)^2 + 16,162. \left(\frac{7,6}{9}\right) + 7,3203$
Iop = 21,5 [A]

$$P_{J1} = P_{J1N} \left(\frac{I_{op}}{I_{1N}} \right)^2$$

$$P_{J1} = 0,421. \left(\frac{21,50}{24,23}\right)^2$$

$$P_{J1} = 0,332[kW]$$

$$P_{J2} = P_{J2N} \cdot \left(\frac{P_C}{P_N}\right)^2$$

$$P_{J2} = 0.134. \left(\frac{7.6}{9}\right)^2$$

$$P_{J2} = 0.095 [kW]$$

$$\sum P_{P} = P_{J1} + P_{J2} + P_{fe} + P_{mec}$$

$$\sum P_P = 0.332 + 0.095 + 0.25 + 0.059$$

$$\sum P_P = 0,706[kW]$$

Com a substituição do motor de 10 [cv] pelo motor de 9,0 [cv], para uma carga média de 7,6 [cv], tem-se a seguinte economia de potência elétrica obtida por motor, determinada pela equação "(5.1)":

$$P_{Eco} = \sum P_{P(10[cv])} - \sum P_{P(9,0[cv])}$$
 (5.1)

onde:

 P_{Eco} - economia em potência elétrica por unidade de motor trocada

 $\sum P_{P(10[cv])}$ - perdas totais do motor de 10 [cv] para uma condição de carga especificada $\sum P_{P(9,0[cv])}$ - perdas totais do motor de 9 [cv] para uma condição de carga especificada

Assim tem-se:

$$P_{Eco} = 0,722 - 0,706$$

$$P_{Eco} = 0.015[kW]$$

Esta potência economizada equivale a 1,38% das perdas totais.

Considerando-se a quantidade estimada de 195883 motores passíveis de troca, operando 20h por dia, 22 dias por mês, a economia resultante em um ano, será calculada pela equação "(5.2)", abaixo:

$$E_{R\$} = P_{Eco} \cdot h_{FD} * D_{UM} * m_{UA} * N^{o}_{M} * R\$_{kWh}$$
(5.2)

onde:

 $E_{R\$}$ - economia em R\$

 h_{FD} - horas de funcionamento por dia

 D_{UM} - dias utilizados por mês

 m_{UA} - meses utilizados por ano

 N^o_M - número de motores

R\$_(kWh) - custo do kWh

Substituindo os valores, tem-se:

$$E_{R\$} = 0.015.20.22.12.195883.0,25$$

$$E_{R\$} = 3.947.004,88$$

Substituição do motor de 10 [cv] padrão pelo motor de 8,0 [cv] padrão

Conforme mencionado, segue abaixo os dados referentes ao motor 10 e 8,0 [cv], bem como, a tabela representativa dos cálculos efetuados.

Dados de catálogo do motor de 10 [cv] padrão:

$$\eta_N = 89\%$$
 $\eta_N = 1760 \ [rpm]$
 $P_{fe} = 0,270[kW]$
 $P_{mec} = 0,069[kW]$

Dados estimados do motor de 8,0 [cv] padrão:

$$\eta_N = 88,5\%$$
 $\eta_N = 1750 \ [rpm]$
 $P_{fe} = 0,190[kW]$
 $P_{mec} = 0,052[kW]$

Tabela 38 - Cálculo das perdas associadas aos motores de 10 [cv] e 8,0[cv]

Perdas	Motor de 10 [cv], 4 pólos padrão	Motor de 8,0 [cv], 4 pólos padrão
$\sum P_{PN}$	0,927	0,742
P_{J1N}	0,418	0,356
P_{J2N}	0,170	0,154
\mathbf{P}_{fe}	0,270	0,180
$\mathbf{P}_{ ext{mec}}$	0,069	0,052
P_{J1}	0,254	0,293
P_{J2}	0,083	0,117
$\sum P_{\scriptscriptstyle P}$	0,675	0,642

Desta forma, tem-se:

$$\begin{split} P_{ECON} &= \sum P_{P(10cv)} - \sum P_{P(8,0cv)} \\ P_{ECON} &= 0,675 - 0,642 \\ P_{ECON} &= 0,033 \ [kW] \end{split}$$

Esta potência economizada equivale a 4,88% da potência de perdas total, podendo proporcionar uma economia anual de R\$ 8.645.813,93

Substituição do motor de 7,5 [cv] padrão pelo motor de 6,7 [cv] padrão

Dados de catálogo do motor de 7,5 [cv]:

 $\eta_{N} = 88\%$

 $n_N = 1740 [rpm]$

 $P_{fe} = 0.171 [kW]$

 $P_{mec} = 0.05[kW]$

Dados estimados do motor de 6,7 [cv]:

 $\eta_{N} = 88\%$

 $n_N = 1720 [rpm]$

 $P_{fe} = 0.171[kW]$

 $P_{mec} = 0.05[kW]$

Tabela 39 - Cálculo das perdas associadas aos motores de 7,5 [cv] e 6,7[cv]

Perdas	Motor de 7,5 [cv], 4 pólos padrão	Motor de 6,7 [cv], 4 pólos padrão
$\sum P_{PN}$	0,767	0,695
$P_{_{J1N}}$	0,352	0,237
P_{J2N}	0,194	0,237
P_{fe}	0,171	0,171
$P_{ m mec}$	0,05	0,05
P_{J1}	0,243	0,181
P_{J2}	0,112	0,167
$\sum P_{P}$	0,576	0,569

Desta forma, tem-se:

$$P_{ECON} = \sum P_{J(7,5cv)} - \sum P_{J(6,7cv)}$$

$$P_{ECON} = 0,576 - 0,569$$

$$P_{ECON} = 0,007[kW]$$

Esta potência economizada equivale a 1,21% da potência de perdas total, podendo proporcionar uma economia anual de R\$ 4.092.567,00.

Substituição do motor de 6,0 [cv] padrão pelo motor de 5,5 [cv] padrão

Dados de catálogo do motor de 6,0 [cv]:

 $\eta_N = 85,5\%$

 $n_{\scriptscriptstyle N}=1720\,[rpm]$

 $P_{fe} = 0,249 [kW]$

 $P_{mec} = 0,049$

Dados estimados do motor de 6,7 [cv]:

 $\eta_N = 85,5\%$

 $n_N = 1720 [rpm]$

 $P_{fe} = 0.150 [kW]$

 $P_{mec}=0,040$

Tabela 40 - Cálculo das perdas associadas aos motores de 6,0 [cv] e 5,5[cv]

Perdas	Motor de 6,0 [cv], 4 pólos padrão	Motor de 5,5 [cv], 4 pólos padrão
$\sum P_{PN}$	0,763	0,700
P_{J1N}	0,256	0,318
$P_{\!J2N}$	0,209	0,192
${ m P_{fe}}$	0,249	0,150
$P_{ m mec}$	0,049	0,040
P_{J1}	0,185	0,257
P_{J2}	0,128	0,140
$\sum P_{P}$	0,611	0,587

Desta forma, tem-se:

$$P_{ECON} = \sum P_{J(6,0cv)} - \sum P_{J(5,5cv)}$$

$$P_{ECON} = 0,611 - 0,587$$

$$P_{ECON} = 0.024[kW]$$

Esta potência economizada equivale a 3,92% da potência de perdas total, podendo proporcionar uma economia anual de R\$ 1.660.643,19.

Substituição do motor de 5,0 [cv] padrão pelo motor de 4,5 [cv] padrão

Dados de catálogo do motor de 5,0 [cv]:

$$\eta_N = 85,5\%$$

$$n_N = 1715 \ [rpm]$$

$$P_{fe} = 0.103 [kW]$$

$$P_{mec}=0,029$$

Dados estimados do motor de 4,5 [cv]:

$$\eta_N = 85,5\%$$

$$N_N = 1720 \ [rpm]$$

$$P_{fe} = 0,080 [kW]$$

$$P_{mec} = 0,015$$

Tabela 41 - Cálculo das perdas associadas aos motores de 5,0 [cv] e 4,5 [cv]

Perdas	Motor de 5,0 [cv], 4 pólos	Motor de 4,5 [cv], 4 pólos		
reidas	padrão	padrão		
$\sum P_{PN}$	0,636	0,572		
$P_{_{J1N}}$	0,318	0,300		
P_{J2N}	0,186	0,178		
P_{fe}	0,103	0,080		
P_{mec}	0,029	0,015		
P_{J1}	0,223	0240		
P_{J2}	0,107	0,127		
$\sum P_{P}$	0,463	0,462		

Desta forma, tem-se:

$$P_{ECON} = \sum P_{J(5,0cv)} - \sum P_{J(4,5cv)}$$

$$P_{ECON} = 0,463-0,462$$

$$P_{ECON} = 0,001 [kW]$$

Esta potência economizada equivale a 0,22% da potência de perdas total, podendo proporcionar uma economia anual de R\$ 711.618,44.

Substituição do motor de 4,0 [cv] padrão pelo motor de 3,5 [cv] padrão

Dados de catálogo do motor de 4,0 [cv]:

 $\eta_{N} = 83\%$

 $n_{\scriptscriptstyle N}=1725~[rpm]$

 $P_{fe} = 0.131 \ [kW]$

 $P_{mec} = 0,029 [kW]$

Dados estimados do motor de 3,5 [cv]:

 $\eta_{N} = 83\%$

 $n_N = 1725 [rpm]$

 $P_{fe} = 0.103 [kW]$

 $P_{mec} = 0,027 [kW]$

Tabela 42 - Cálculo das perdas associadas aos motores de 4,0 [cv] e 3,5[cv]

Perdas	Motor de 4,0 [cv], 4 pólos	Motor de 3,5 [cv], 4 pólos	
reitas	padrão	padrão	
$\sum P_{PN}$	0,614	0,538	
$P_{{\scriptscriptstyle J}1N}$	0,324	0,294	
P_{J2N}	0,130	0,114	
P_{fe}	0,131	0,103	
$\mathbf{P}_{\mathrm{mec}}$	0,029	0,027	
P_{J1}	0,221	0,237	
P_{J2}	0,071	0,081	
$\sum P_{P}$	0,452	0,448	

Desta forma, tem-se:

$$P_{ECON} = \sum P_{J(4,0cv)} - \sum P_{J(3,5cv)}$$

$$P_{ECON} = 0,452 - 0,448$$

$$P_{ECON} = 0,004[kW]$$

Esta potência economizada equivale a 0,88% da potência de perdas total, podendo proporcionar uma economia anual de R\$ 1.620.835,53.

Substituição do motor de 3,0 [cv] padrão pelo motor de 2,5 [cv] padrão

Dados de catálogo do motor de 3,0 [cv]:

$$\eta_N = 83\%$$

$$n_N = 1730 [rpm]$$

$$P_{fe} = 0.103[kW]$$

$$P_{mec} = 0.025 [kW]$$

Para o motor de 2,5 [cv], conseguiram-se dados reais diretamente com um fabricante de motores, os dados são:

$$\eta_N = 82,55\%$$

$$n_N = 1740 [rpm]$$

$$P_{fe} = 0,090[kW]$$

$$P_{mec} = 0,024 [kW]$$

Tabela 43 - Cálculo das perdas associadas aos motores de 3,0 [cv] e 2,5[cv]

Perdas	Motor de 3,0 [cv], 4 pólos padrão	Motor de 2,5 [cv], 4 pólos padrão		
$\sum P_{PN}$	0,461	0,384		
$P_{_{J1N}}$	0,242	0,192		
P_{J2N}	0,091	0,065		
${ m P_{fe}}$	0,103	0,090		
${ m P}_{ m mec}$	0,025	0,024		
P_{J1}	0,155	0,151		
P_{J2}	0,043	0,043		
$\sum P_{P}$	0,326	0,309		

Desta forma, tem-se:

$$P_{ECON} = \sum P_{J(3,0cv)} - \sum P_{J(2,5cv)}$$

$$P_{ECON} = 0,326 - 0,309$$

$$P_{ECON} = 0.017 [kW]$$

Esta potência economizada equivale a 5,21% da potência de perdas total, podendo proporcionar uma economia anual de R\$ 22.273.717,22.

Substituição do motor de 2,0 [cv] padrão pelo motor de 1,8 [cv] padrão

Dados de catálogo do motor de 2,0[cv]:

$$\eta_N = 82,5\%$$

$$n_N = 1740 [rpm]$$

$$P_{fe} = 0,076[kW]$$

$$P_{mec} = 0,024 [kW]$$

Para o motor de 1,8 [cv], estimam-se os seguintes dados:

$$\eta_N = 82,5\%$$

$$n_N = 1740 [rpm]$$

$$P_{fe} = 0,076[kW]$$

$$P_{mec} = 0,024 \ [kW]$$

Tabela 44 - Cálculo das perdas associadas aos motores de 2,0 [cv] 1,8 [cv]

Perdas	Motor de 2,0 [cv], 4 pólos	Motor de 1,8 [cv], 4 pólos		
reidas	padrão	padrão		
$\sum P_{PN}$	0,318	0,286		
$P_{_{J1N}}$	0,166	0,140		
P_{J2N}	0,052	0,047 0,076		
${ m P_{fe}}$	0,076			
$P_{ m mec}$	0,024	0,024		
P_{J1}	0,120	0,113		
P_{J2}	0,029	0,032		
$\sum P_{P}$	0,249	0,245		

Desta forma, tem-se:

$$\begin{split} P_{ECON} &= \sum P_{J(2,0cv)} - \sum P_{J(1,8cv)} \\ P_{ECON} &= 0,224 - 0,245 \\ P_{ECON} &= 0,004[kW] \end{split}$$

Esta potência economizada equivale a 1,78% da potência de perdas total, podendo proporcionar uma economia anual de R\$ 6.204.775,46.

A Tabela 45, a seguir, apresenta o montante da economia proporcionada pelo uso das novas potências, considerando-se motores de 4 pólos do tipo padrão.

Tabela 45 – Resultado da economia das perdas para diversas potências

Potência Atual [cv]	Nova Potência [cv]	Economia R\$
10	9	8.645.813,93
10	8	3.947.004,88
7,5	6,7	4.092.567,00
6,0	5,5	1.660.643.19
5,0	4,5	711.618,44
4,0	3,5	1.620.835,53
3,0	2,5	22.273.817,22
2,0	1,8	6.204.775,76
TOTAL		49.157.045.65

Na Tabela 46, a seguir, apresentam-se os dados fornecidos por um fabricante de motores para a padronização atual de motores de alto rendimento.

Tabela 46 – Valores de catálogo para motores de alto rendimento padronizados atualmente

Dados de catálogo motores de alto rendimento							
Potência Nn Rend P _{fe} +P _{mec}							
[cv]	[rpm]	%	[W]				
1,5	1700	81,5	58,50				
2	1750	84	60,43				
3	1730	85	66,37				
4	1720	86,5	87,81				
5	1740	88,2	106,67				
6	1735	89	95,41				
7,5	1740	90	123,04				
10	1760	91	191,07				

Os dados de catálogos referentes às novas potências de motores sugeridas são estimados na Tabela 47, a seguir. Estes dados estão de acordo com os especificados no catálogo do fabricante para potências padronizadas de valores próximos.

Tabela 47 – Valores estimados de P₀ ($P_{fe} + P_{mec} + P_{J0}$) para novas potências sugeridas

Potência [cv]	Nn [rpm]	Rend %	P_0 [kW]		
9,0	1750	91,0	0,380		
8,0	1740	90,0	0,300		
6,7	1730	89,0	0,220		
5,5	1735	89,0	0,200		
4,5	1730	86,5	0,240		
3,5	1720	86,0	0,200		
2,5	1725	84,5	0,170		
1,8	1740	83,5	0,140		

Assim, calculando-se as perdas associadas a cada potência utilizando-se as equações especificadas no Anexo III, tem-se a economia estimada resumida na Tabela 48 a seguir:

Tabela 48 – Economia proporcionada pelo uso de novas potências

Padrão	10 por	10 por	7,5 por	6,0 por	5,0 por	4,0 por	3,0 por	2,0 por
Alto Rend.	9,0[cv]	8.0[cv]	6,7[cv]	5,5[cv]	4,5[cv]	3,5[cv]	2,5[cv]	1,8[cv]
P _{eco (kW)}	0,131	0,100	0,072	0,142	0,033	0,205	0,035	0,020
Economia	18,80%	15,46%	12,78%	24,95%	7,21%	20,51%	11,05%	8,12%
$E_{R\$}$	33,85	25,78	43,42	9,81	31,90	40,21	45,69	32,02
L'R\$	milhões							

Sendo assim, ter-se-ia uma economia anual global, para o uso dos motores de alto rendimento, estimada em R\$ 262.716.803,29

A título exemplificativo, no Anexo IV, apresenta-se limites de tolerância, nos quais os fabricantes devem obrigatoriamente atender a faixa especificada na norma 7094/1996.

5.5 CONSIDERAÇÕES FINAIS

Neste capítulo, fica clara a metodologia utilizada para determinação das potências padronizadas através da série de Renard.

Através da qual:

- Compararam-se os valores da série R40 com os valores estabelecidos para as potências padronizadas e as novas potências sugeridas. Para a análise das potências padronizadas na faixa de 1,5 a 10 [cv], foi estabelecida uma potência média, com a finalidade de proporcionar um cálculo médio das perdas nos motores elétricos;
- Mostrou-se o aumento do fator de sobredimensionamento necessário com a inserção de novas potências;
- Apresentou-se o cálculo da economia proporcionada pela inserção das novas potências, utilizando a quantidade de motores estimada no capítulo 2 e fazendo algumas considerações de substituição;

No capítulo 6 serão apresentadas as conclusões gerais e contribuições desta dissertação, bem como sugestões para novos trabalhos.

CAPÍTULO 6

6.0 CONTRIBUIÇÕES E CONCLUSÕES

Para que o objetivo principal deste trabalho fosse atingido, foi necessário o levantamento de uma série de informações que agora encontram-se disponibilizadas nesta dissertação, as quais destacamos resumidas abaixo:

São elas:

- i. Levantamento da quantidade de motores de indução trifásicos colocados anualmente no mercado durante o período de 1980 a 2003. Deve-se salientar que o levantamento fornece a quantidade de motor por faixa de potência (Capítulo 2). Esse levantamento permite que sejam feitos futuramente estudos detalhados sobre o mercado de motores, bem como estimar o crescimento do consumo para os próximos anos.
- ii. Conclusão de que os motores na faixa de 1,5 [cv] a 10 [cv] são os mais utilizados no Brasil (Capítulo 2). Essa informação possibilita que ações de conservação de energia sejam direcionadas mais especificamente para esse grupo de motores.
- iii. Estimativa do número de motores da faixa de potência de 1,5 [cv] a 10 [cv] em operação no Brasil, admitindo-se uma vida útil de 15 anos pra este tipo de motor (Capítulo 2).
- iv. Estimativa da quantidade de motores por potência na faixa de 1,5 [cv] a 10 [cv] em operação no Brasil (Capítulo 2). Esses dados foram extremamente úteis para estimar as perdas ocasionadas nesses motores.
- v. Tolerância no rendimento nominal de motores de indução trifásicos, fornecida pela NBR 7094/1996 (Anexo IV). Esse estudo possibilita que sejam feitas estimativas de erros que possam ocorrer com o uso dos dados de fabricantes.
- vi. Estudo das perdas no ferro em função do tipo de aço usado na fabricação do motor (Anexo V). Esse estudo mostrou a importância do material ferromagnético

utilizado na fabricação de motores, os quais apresentam um excelente potencial de conservação de energia.

- vii. Valores das perdas em vazio em função da potência nominal e do número de pólos do motor (Capítulo 3).
- viii. Valores das constantes de tempo de aquecimento e de resfriamento em função da potência nominal, da carcaça e do número de pólos do motor. Essas constantes não são disponibilizadas normalmente em catálogos, nesse trabalho, apresentam-se os valores das mesmas para todos os motores de indução trifásicos presentes em catálogos de fabricantes.

Por outro lado, para a conceituação de sobredimensionamento de motores de indução trifásicos foram desenvolvidos métodos que permitem:

- Cálculo das perdas nominais do motor. Esses cálculos são feitos diretamente através de dados constantes em catálogos de fabricantes (Capítulo 3).
- ii. Distribuição das perdas nominais em perdas por efeito *Joule* nos enrolamentos do estator e do rotor e perdas em vazio (Capítulo 3).
- iii. Cálculo da corrente de operação em função da potência de carga do motor utilizando equações obtidas a partir dos valores de corrente do motor para operação com 100%, 75%, 50% da potência nominal do motor (Anexos II e III).
- iv. Cálculo das perdas no motor para operação com potência diferente da nominal (Capítulo 3).
- v. Especificação de motores de indução trifásicos que operam em regime intermitente (Capítulo 4).
- vi. Cálculo analítico do tempo de partida de motores (Anexo I)
- vii. Definição do fator de sobredimensionamento necessário em função da potência do motor (Capítulo 4).

O levantamento das informações e os desenvolvimentos descritos anteriormente permitem concluir que:

- i. Atualmente no Brasil existem em regime contínuo motores que operam com até 60% de sua potência nominal, por não existir outro motor que atenda o acionamento. Esse elevado sobredimensionamento poderá ser reduzido com a proposta da padronização de novas potências de motores.
- ii. A introdução de novas potências padronizadas, admitindo-se que cada motor opere no máximo com 90% de sua potência nominal e no mínimo com 80% de sua potência nominal, pode melhorar o fator de sobredimensionamento, o que vai acarretar uma redução razoável no consumo de energia elétrica. Isto ficou demonstrado para motores na faixa de 1,5 a 10 [cv].

Historicamente, é importante observar que ao final deste trabalho, já com as definições de novas potências padronizadas, teve-se acesso à informação de que as potências dos motores foram definidas numericamente pela série de Renard. Porém, não se utilizou todos os termos da série. Caso o fossem, as potências obtidas estariam muito próximas daquelas sugeridas neste trabalho (Tabela 35, Capítulo 5).

6.1 SUGESTÕES PARA NOVOS TRABALHOS

Este trabalho teve como objetivo principal, demonstrar a economia resultante da criação de novas potências padronizadas. Sendo assim, não foi considerado o custo para substituição dos motores existentes por aqueles que melhor se adaptam ao acionamento. Desta forma, recomendamos que seja desenvolvido um trabalho nesse sentido. Também se deve mencionar que este trabalho limitou sua análise admitindo-se que os motores operam em regime contínuo, com isso, recomendamos que também seja desenvolvido um trabalho para otimização de motores em regime intermitente. Neste caso, além da economia resultante do consumo de energia do motor em operação, apresentar-se-ão vantagens referentes a sucessivas partidas dos motores.

ANEXO I

CÁLCULO DO TEMPO DE PARTIDA

I.0 CONSIDERAÇÕES INICIAIS

Para determinação do tempo de partida através da equação (04) torna-se necessário conhecer, além do momento de inércia do acionamento, as equações que definem os conjugados do motor e da carga.

I.1 MOMENTO DE INÉRCIA E CONJUGADO MOTOR

O momento de inércia do acionamento é definido por:

$$J = J_M + J_{AC} + J_C \left(\frac{n_C}{n_N}\right)^2 \tag{I-1}$$

onde:

 $J_{\scriptscriptstyle M}$ - momento de inércia do motor

 $J_{\scriptscriptstyle AC}$ - momento de inércia do acoplamento e redutor (já calculado em relação ou eixo do motor)

 J_{C} - momento de inércia da carga

 n_{C} - velocidade da carga

 n_N - velocidade nominal do motor

Equação do Conjugado Motor

A equação de Kloss, válida apenas para a faixa $s_k \ge s \ge 0$, é dada por:

$$\frac{M}{M_K} = \frac{2}{\frac{s}{s_K} + \frac{s_K}{s}} \tag{I-2}$$

onde:

M - conjugado [Nm]

 M_K - conjugado máximo [Nm]

s - escorregamento [pu]

 s_N - escorregamento nominal [pu]

 s_K - escorregamento no conjugado máximo em [pu]

Para a faixa $1 \ge s \ge s_K$, esta equação não é válida devido ao efeito pelicular nas barras do rotor. Este efeito influi diretamente no valor de s_K que conforme [5] pode ser representado por:

$$S_K = as + b \tag{I-3}$$

onde:

 s_K - escorregamento máximo "a" e "b" - coeficientes de ajustes

Desta forma, a equação de Kloss, válida para a faixa $1 \ge s \ge s_K$, torna-se:

$$\frac{M}{M_K} = \frac{2}{\frac{s}{as+b} + \frac{as+b}{s}} \tag{I-4}$$

Conjugado da Carga

Os tipos de carga mais comuns são:

a) Carga constante durante a partida:

$$M_{C_N} = \frac{60P_{C_N}}{2.\pi . n_{C_N}} \tag{I-5}$$

b) Carga variando linearmente com a velocidade durante a partida:

$$M_C = K.n_C \tag{I-6}$$

Onde pode ser determinado para condição de operação da carga com velocidade nominal:

$$K = \frac{M_{C_N}}{n_{C_N}} = \frac{\frac{60.P_{C_N}}{2.\pi . n_{C_N}}}{n_{C_N}} = \frac{60.P_C}{2.\pi . n_{C_N}^2}$$
(I-7)

$$M_C = \frac{60.P_{C_N}}{2.\pi n_{C_N}^2} n_C \tag{I-8}$$

$$M_{C} = \frac{60.P_{C_{N}}}{2.\pi n_{C_{N}}^{2}} \cdot \left(\frac{n_{C}}{n_{C_{N}}}\right) = \frac{60.P_{C_{N}}}{2.\pi n_{C_{N}}} \cdot \left(\frac{1-s}{1-s_{N}}\right)$$
 (I-9)

c) Carga variando com o quadrado da velocidade durante a partida:

$$M_C = K n_C^2 \tag{I-10}$$

$$K = \frac{M_{C_N}}{n_{CN}^2} = \frac{60P_{C_N}}{2.\pi n_{C_N}^3} \tag{I-11}$$

$$M_C = \frac{60P_{C_N}}{2.\pi n_{C_N}} \cdot \left(\frac{n_C}{n_{C_N}}\right)^2 = \frac{60P_{C_N}}{2.\pi n_{C_N}} \cdot \left(\frac{1-s}{1-s_N}\right)^2$$
 (I-12)

onde:

 $M_{\it CN}$ - conjugado de nominal carga em [Nm]

 P_{C_N} - potência nominal de carga em [W]

 n_{C_N} - velocidade nominal da carga [rpm]

 n_C - velocidade da carga em [rpm]

s - escorregamento em [pu] ou [%]

 s_N - escorregamento nominal em [pu] ou [%]

I.2 CÁLCULO DO TEMPO DE PARTIDA

O tempo de partida é calculado analiticamente pela fórmula de Kloss [5]. Abaixo, apresenta-se a sequência de cálculo.

$$t_{P1} = \frac{-2.\pi}{60} . J. n_N. \int_{s=1}^{s=s_K} \frac{ds}{\frac{2M_K}{as+b} - M_C}$$
 (I-13)

Resolução:

$$\frac{as+b}{s_K} = r$$
$$ds = \frac{s_K}{a} dr$$

$$t_{P1} = -\frac{2.\pi}{60} .J.n_{N} . \int_{s=1}^{s=s_{K}} \frac{ds}{\frac{2M_{K}}{as+b} - M_{C}} \Rightarrow -\frac{2.\pi}{60} .J.n_{N} . \frac{s_{K}}{a} . \int_{\frac{a+b}{s_{K}}}^{a+\frac{b}{s_{K}}} \frac{dr}{\frac{2M_{K}}{r} - M_{C}}$$

$$A = \frac{a+b}{s_K}$$

$$B = a + \frac{b}{s_K}$$

$$t_{P1} = -\frac{2.\pi}{60} J.n_{N} \cdot \frac{s_{K}}{a} \cdot \int_{A}^{B} \frac{dr}{\frac{2M_{K}}{1 + r} - M_{C}}$$

Ajustando:

$$\begin{split} \frac{dr}{\frac{2M_{K}}{1}-M_{C}} &= \frac{1}{\frac{2M_{K}.r}{r^{2}+1}-M_{C}} = \frac{r^{2}+1}{2M_{K}.r-M_{C}.(r^{2}+1)} = \frac{\left[M_{C}.(r^{2}+1)-2M_{K}.r+2M_{K}.r\right]}{M_{C}.\left[2M_{K}.r-M_{C}.(r^{2}+1)\right]} \\ &= -\frac{1}{M_{C}} + \frac{2M_{K}.r}{M_{C}.\left[2M_{K}.r-M_{C}.(r^{2}+1)\right]} \\ &= \frac{2M_{K}.r}{M_{C}.\left[2M_{K}.r-M_{C}.(r^{2}+1)\right]} = \frac{-\left[2M_{K}.r\right]}{M_{C}.\left[2M_{K}.r-M_{C}.(r^{2}+1)\right]} \end{split}$$

Aplicando fatoração por frações parciais tem-se:

$$-\frac{2M_{K}}{M_{C}^{2}}\left(\frac{r}{r^{2}-\frac{2M_{K}}{M_{C}}.r+1}\right) = -\frac{2M_{K}}{M_{C}^{2}}\left[\frac{A'}{r-r_{1}} + \frac{B'}{r-r_{2}}\right]$$

Fazendo
$$\frac{M_K}{M_C} = H$$
, temos:

• $r_1 e r_2$ raízes de $r^2 - 2H \cdot r + 1$

• A' e B' são coeficientes de ajuste

Resolução da equação $r^2 - 2H.r + 1$:

$$r = \frac{2H \pm \sqrt{(2H)^{2} - 4}}{2}$$
$$r = H \pm \sqrt{(H)^{2} - 1}$$

$$L = \sqrt{(H)^2 - 1}$$

$$r_1 = H - \sqrt{(H)^2 - 1}$$

 $r_2 = H + \sqrt{(H)^2 - 1}$

$$A' = \left(\frac{r}{r - r_2}\right)_{r = r_1} = \frac{H - L}{-2.L} = \frac{r_1}{-2.L}$$

$$B' = \left(\frac{r}{r - r_1}\right)_{r = r^2} = \frac{H + L}{2.L} = \frac{r_2}{2.L}$$

$$t_{P1} = -\frac{2.\pi}{60}.J.n_{N}.\frac{s_{K}}{a}.\int_{A}^{B} \frac{dr}{\frac{2M_{K}}{1+r}-M_{C}} \Rightarrow -\frac{2.\pi}{60}.J.n_{N}.\frac{s_{K}}{a}.\left[-\frac{1}{M_{C}}\int_{A}^{B} dr + \int_{A}^{B} \frac{2M_{K}.r \ dr}{M_{C}.\left[2M_{K}.r - M_{C}.(r^{2}+1)\right]}\right]$$

$$-\frac{1}{M_C}\int_A^B dr = -\frac{1}{M_C}\left[\left(a + \frac{b}{s_K}\right) - \left(\frac{a+b}{s_K}\right)\right] = -\frac{1}{M_C}\left[\frac{a(s_K - 1)}{s_K}\right]$$

$$\int_{A}^{B} \frac{2M_{K}.r \ dr}{M_{C}.\left[2M_{K}.r - M_{C}.(r^{2} + 1)\right]} = \frac{-2.M_{K}}{M_{C}^{2}}.\int_{A}^{B} \left(\frac{A'}{r - r_{1}} + \frac{B'}{r - r_{2}}\right) dr$$

$$t_{p(a)} = \int_{A}^{B} \left(\frac{A'}{r - r_{1}} \right) dr = \ln \left| r - r_{1} \right|_{A}^{B} = A' \left[\ln \left| B - r_{1} \right| - \ln \left| A - r_{1} \right| \right] = A' \cdot \left[\ln \left| a + \frac{b}{s_{K}} - r_{1} \right| - \ln \left| \frac{a + b}{s_{K}} - r_{1} \right| \right]$$

$$t_{p(b)} = \int_{A}^{B} \left(\frac{B'}{r - r_2} \right) dr = B' \left[\ln \left| r - r_2 \right|_{A}^{B} \right] = B' \cdot \left[\ln \left| B - r_2 \right| - \ln \left| A - r_2 \right| \right] = B' \cdot \left[\ln \left| a + \frac{b}{s_K} - r_2 \right| - \ln \left| \frac{a + b}{s_K} - r_2 \right| \right]$$

Assim chega-se à equação:

$$t_{P1} = -\frac{2\pi}{60} J n_{N} \frac{s_{K}}{a} \left[-\frac{1}{M_{C}} \left[\frac{a.(s_{K}-1)}{s_{K}} \right] + \frac{-2M_{K}}{M_{C}^{2}} \left[A' \left[\ln \left| a + \frac{b}{s_{K}} - r_{1} \right| - \ln \left| \frac{a+b}{s_{K}} - r_{1} \right| \right] + B' \left[\ln \left| a + \frac{b}{s_{K}} - r_{2} \right| - \ln \left| \frac{a+b}{s_{K}} - r_{2} \right| \right] \right] \right]$$
 (I-14)

Os valores de "a" e "b" podem ser determinados por duas condições:

$$M = M_P$$
 $s = 1$
 $M = M_K$ $s = s_K$

Assim forma-se o seguinte sistema de equações:

$$\begin{cases}
1 = \frac{2}{\frac{s_K}{a.s_K + b} + \frac{a.s_K + b}{s_K}} \\
\frac{M_P}{M_K} = \frac{2 \cdot \left(\frac{M_K}{M_N}\right)}{\frac{s_K}{a + b} + \frac{a + b}{s_K}}
\end{cases} \tag{I-15}$$

$$\frac{s_K}{a.s_K + b} = C^{-1} \qquad \frac{s_K}{a + b} = D^{-1}$$

$$1 = \frac{2}{C + \frac{1}{C}} \Rightarrow 1 = \frac{2C}{C^2 + 1} \Rightarrow C^2 + 1 = 2C \Rightarrow C^2 - 2C + 1 = 0 \Rightarrow (C - 1)^2 = 0 \Rightarrow C = 1$$

$$\frac{M_P}{M_K} = \frac{2}{\frac{s_K}{a+b} + \frac{a+b}{s_K}}$$

$$\frac{M_P}{M_K} = E$$

$$E = \frac{2.D}{D^2 + 1}$$

$$E.D^2 - 2.D + E = 0$$

$$D = \frac{2 \pm \sqrt{4 - 4.E^2}}{2.E}$$

$$\frac{D=1\pm\sqrt{1-E^2}}{E}$$

Determinação de "a" e "b" usando C e D calculados anteriormente.

$$a+b = s_K.D$$

$$as_K + b = s_K$$

$$a.(1-s_K) = s_K(D-1)$$

$$a = \frac{s_K(D-1)}{1-s_K}$$

$$a+b = s_K D$$

$$a+\frac{b}{s_K} = 1$$

$$b\left(1-\frac{1}{s_K}\right) = s_K . D - 1$$

$$b = \frac{s_K . D - 1}{\left(1-\frac{1}{s_K}\right)}$$

Os valores de $\frac{M_P}{M_N}$ e $\frac{M_K}{M_N}$ são obtidos diretamente no catálogo do fabricante.

O valor de $s_{\scriptscriptstyle K}$ é obtido através da equação:

$$s_K = s_N \cdot \left[\frac{M_K}{M_N} + \sqrt{\left(\frac{M_K}{M_N}\right)^2 - 1} \right]$$
 (I-16)

Ajustando-se a equação (I-15), chega-se a equação abaixo:

$$t_{p1} = \frac{\pi}{30} J.n_{N}.(s_{K} - 1) + \frac{\pi}{15} J.n_{N}.\frac{M_{K}}{M_{C}^{2}}.\frac{s_{K}}{a}.\left\{A'.\left[\ln\left|D - r_{1}\right| - \ln\left|\frac{1}{s_{K}} - r_{1}\right| + B'\left[\ln\left|D - r_{2}\right| - \ln\left|\frac{1}{s_{K}} - r_{2}\right|\right]\right]\right\}$$
(I-17)

Para a equação de Kloss abaixo, válida no intervalo entre $s_k \ge s \ge 0$,

$$t_{P1} = \frac{-2.\pi}{60} .J.n_{N} . \int_{s=s_{K}}^{s=s_{op}} \frac{ds}{\frac{2M_{K}}{s} - M_{C}}$$
(I-18)

Tem-se a seguinte solução:

$$\frac{s}{s_K} = r$$

$$ds = s_K dr$$

$$t_{P2} = -\frac{2.\pi}{60} .J.n_{N} . \int_{s=s_{K}}^{s=s_{op}} \frac{ds}{\frac{2M_{K}}{s} - M_{C}} \Rightarrow -\frac{2.\pi}{60} .J.n_{N} .s_{K} . \int_{s=s_{K}}^{s=s_{op}} \frac{dr}{\frac{2M_{K}}{1} - M_{C}}$$

$$A = \frac{s_K}{s_K}$$

$$B = \frac{S_{op}}{S_K}$$

$$t_{P2} = -\frac{2.\pi}{60} . J.n_{N} . \frac{s_{K}}{a} . \int_{A}^{B} \frac{dr}{\frac{2M_{K}}{1 + r} - M_{C}}$$

Ajustando:

$$\frac{dr}{\frac{2M_{K}}{\frac{1}{r}+r}-M_{C}} = \frac{1}{\frac{2M_{K}.r}{r^{2}+1}-M_{C}} = \frac{r^{2}+1}{2M_{K}.r-M_{C}.(r^{2}+1)} = \frac{\left[M_{C}.(r^{2}+1)-2M_{K}.r+2M_{K}.r\right]}{M_{C}.\left[2M_{K}.r-M_{C}.(r^{2}+1)\right]}$$

$$= -\frac{1}{M_{C}} + \frac{2M_{K}.r}{M_{C}.\left[2M_{K}.r - M_{C}.(r^{2} + 1)\right]}$$

$$\frac{2M_{K}.r}{M_{C}.\left[2M_{K}.r - M_{C}.(r^{2} + 1)\right]} = \frac{-\left[2M_{K}.r\right]}{M_{C}^{2}.\left(r^{2} + 1 - \frac{2M_{K}}{M_{C}}.r\right)}$$

$$= -\frac{2M_{K}}{M_{C}^{2}} \left(\frac{r}{r^{2} - \frac{2M_{K}}{M_{C}}.r + 1}\right) = -\frac{2M_{K}}{M_{C}^{2}} \left[\frac{A'}{r - r_{1}} + \frac{B'}{r - r_{2}}\right] \quad \text{(Fatoração por frações parciais)}$$

Fazendo $\frac{M_K}{M_C} = H$, temos:

- $r_1 e r_2$ raízes de $r^2 2H.r + 1$
- A' e B' são coeficientes de ajuste.

Resolução da equação $r^2 - 2H.r + 1$:

$$r = \frac{2H \pm \sqrt{(2H)^{2} - 4}}{2}$$
$$r = H \pm \sqrt{(H)^{2} - 1}$$

$$L = \sqrt{(H)^2 - 1}$$

$$r_1 = H - \sqrt{(H)^2 - 1}$$

 $r_2 = H + \sqrt{(H)^2 - 1}$

$$A' = \left(\frac{r}{r - r_2}\right)_{r = r_1} = \frac{H - L}{-2.L} = \frac{r_1}{-2.L}$$

$$B' = \left(\frac{r}{r - r_1}\right)_{r = r_2} = \frac{H + L}{2.L} = \frac{r_2}{2.L}$$

$$t_{P2} = -\frac{2.\pi}{60}.J.n_{N}.s_{K}.\int_{A}^{B} \frac{dr}{\frac{2M_{K}}{1} - M_{C}} \Rightarrow -\frac{2.\pi}{60}.J.n_{N}.s_{K}.\left[-\frac{1}{M_{C}} \int_{A}^{B} dr + \int_{A}^{B} \frac{2M_{K}.r \ dr}{M_{C}.\left[2M_{K}.r - M_{C}.(r^{2} + 1) \right]} \right]$$

$$-\frac{1}{M_C} \int_{A}^{B} dr = -\frac{1}{M_C} \cdot \left(1 - \frac{s_{op}}{s_K}\right)$$

$$\int_{A}^{B} \frac{2M_{K}.r \ dr}{M_{C}.\left[2M_{K}.r - M_{C}.(r^{2} + 1)\right]} = \frac{-2.M_{K}}{M_{C}^{2}}.\int_{A}^{B} \left(\frac{A'}{r - r_{1}} + \frac{B'}{r - r_{2}}\right) dr$$

$$t_{p(a)} = \int_{A}^{B} \left(\frac{A'}{r - r_{1}} \right) dR = \ln |r - r_{1}|_{A}^{B} = A' \left[\ln |B - r_{1}| - \ln |A - r_{1}| \right] = A' \cdot \left[\ln |s_{op} - r_{1}| - \ln |1 - r_{1}| \right]$$

$$t_{p(b)} = \int_{A}^{B} \left(\frac{B'}{r - r_2} \right) dr = B' \left[\ln \left| r - r_2 \right|_{A}^{B} \right] = B' \cdot \left[\ln \left| B - r_2 \right| - \ln \left| A - r_2 \right| \right] = B' \cdot \left[\ln \left| \frac{s_{op}}{s_K} - r_2 \right| - \ln \left| 1 - r_2 \right| \right]$$

Resultando na equação abaixo:

$$t_{P2} = -\frac{2.\pi}{60} J.n_{N}.s_{K} \cdot \left[-\frac{1}{M_{C}} \left[1 - \frac{s_{op}}{s_{K}} \right] + \frac{-2.M_{K}}{M_{C}^{2}} \cdot \left[A' \cdot \left[\ln \left| \frac{s_{op}}{s_{K}} - r_{1} \right| - \ln \left| 1 - r_{1} \right| \right] + B' \cdot \left[\ln \left| \frac{s_{op}}{s_{K}} - r_{2} \right| - \ln \left| 1 - r_{2} \right| \right] \right] \right]$$
 (I-19)

Desta forma o tempo de partida poderá ser calculado através da equação:

$$T_{PT} = t_{P1} + t_{P2} ag{I-20}$$

Onde:

 $T_{\mbox{\scriptsize PT}}$ - tempo de partida total

 t_{P1} - tempo de partida de s=1 até $s=s_K$

 t_{P2} - tempo de partida de $s = s_K$ até $s = s_{op}$

ANEXO II

CÁLCULO DA CORRENTE DE OPERAÇÃO PARA NOVAS POTÊNCIAS DE MOTORES PADRÃO

II.0 ESTIMATIVA DA CORRENTE DE OPERAÇÃO PARA MOTORES PADRÃO NÃO PADRONIZADOS

Para determinação da estimativa da corrente de operação para motores padrão não padronizados, tem-se a utilização dos valores de correntes nominais, da corrente para 75% de carga e da corrente para 50% da carga. Estes valores são conhecidos nos motores padronizados.

Assim traçam-se os gráficos das Figuras 14, 15, 16, e 17 para determinar uma equação de cálculo da corrente aos motores sugeridos. Através do programa *Excel* traçam-se os gráficos de cada corrente, utiliza-se o recurso de linha de tendência e equação da curva para determinação destas equações para motores não padronizados.

II.1 CÁLCULO DA CORRENTE PARA 50% DE CARGA - MOTORES PADRÃO

A Figura 14, abaixo, apresenta a linha de tendência e sua equação para determinação da corrente de motores com 50% de carga para motores padrão na faixa de 1,5 a 10 [cv].

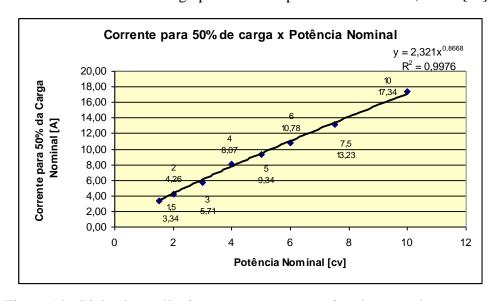


Figura 14 - Linha de tendência para corrente com 50% da carga de motores padrão

Para o cálculo estimado da corrente para 50% de carga, utiliza-se a expressão gerada pela linha de tendência da Figura 15, ou seja:

$$I_{\text{op}(50\%)} = 2,321.P_{\text{N}}^{0,8668}$$
 (II-1)

Comparando-se os valores de catálogo com os valores calculados pela equação (II-1) têm-se os valores e percentuais de erro indicados na Tabela 49.

Tabela 49 - Cálculo do erro entre a fórmula convencional e a fórmula gerada a partir da linha de tendência

Potência Nominal [cv]	Corrente para 50% da carga (Fórmula convencional)	Corrente para 50% da carga (Fórmula gerada)	Erro%
1,5	3,34	3,30	1,28
2	4,26	4,23	0,65
3	5,71	6,02	-5,35
4	8,07	7,72	4,32
5	9,34	9,37	-0,26
6	10,78	10,97	-1,76
7,5	13,23	13,31	-0,62
10	17,34	17,08	1,50

A Tabela 50 apresenta os valores estimados para corrente de motores com 50% de carga.

Tabela 50 - Estimativa da corrente para motores entre 1,5 e 10 [cv] com 50% de carga

Novas Potências [cv]	Estimativa da corrente para 50% de carga
10	17,08
9,0	15,59
8,0	14,08
7,5	13,31
6,7	12,07
6,0	10,97
5,5	10,17
5,0	9,37
4,5	8,55
4,0	7,72
3,5	6,88
3,0	6,02
2,5	5,14
2,0	4,23
1,8	3,86
1,5	3,30

II.2 CÁLCULO DA CORRENTE PARA 75% DE CARGA - MOTORES PADRÃO

A Figura 15 apresenta a linha de tendência e sua equação para motores padrão com 75% de carga.

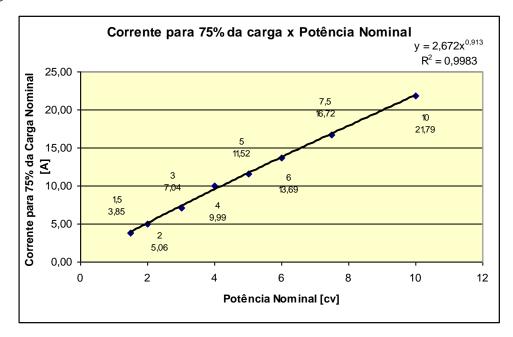


Figura 15 – Linha de tendência para corrente com 75% da carga em motores padrão de 1,5 a 10 [cv]

Para o cálculo estimado da corrente para 75% de carga utiliza-se a expressão gerada pela linha de tendência da Figura 15, ou seja:

$$I_{\text{op}(75\%)} = 2,672.P_{\text{N}(75\%)}^{0.913}$$
 (II-2)

Comparando-se os valores de catálogo com os valores calculados pela equação (II-2) têm-se os valores e percentuais de erro indicados na Tabela 51.

Tabela 51 - Comparação entre métodos de cálculo da corrente para 75% da carga nominal

Potência Nominal [cv]	Corrente para 75% da carga (Fórmula convencional)	Corrente para 75% da carga (Fórmula gerada)	Erro%
1,5	3,85	3,87	-0,45
2	5,06	5,03	0,62
3	7,04	7,29	-3,47
4	9,99	9,47	5,13
5	11,52	11,61	-0,83
6	13,69	13,72	-0,17
7,5	16,72	16,82	-0,59
10	21,79	21,87	-0,38

A Tabela 52 apresenta os valores estimados para corrente de motores com 75% da carga nominal.

Tabela 52 - Estimativa da corrente para motores padrão entre 1,5 e 10 [cv] com 75% da carga nominal

Novas Potências [cv]	Estimativa da corrente para 75% de carga
10	21,87
9,0	19,86
8,0	17,84
7,5	16,82
6,7	15,17
6,0	13,72
5,5	12,67
5,0	11,61
4,5	10,55
4,0	9,47
3,5	8,39
3,0	7,29
2,5	6,17
2,0	5,03
1,8	4,57
1,5	3,87

II.3 CÁLCULO DA CORRENTE NOMINAL - MOTORES PADRÃO

A Figura 16 apresenta a linha de tendência e a equação gerada para determinação da corrente nominal das novas potências.

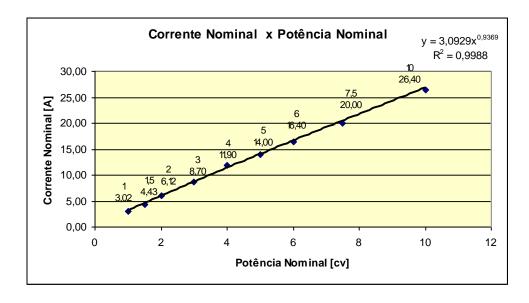


Figura 16 - Linha de tendência para corrente nominal de motores padrão de 1,5 a 10[cv]

A seguir, tem-se a equação que será utilizada para o cálculo das correntes nominais das novas potências.

$$I_{IN} = 3,0929.P_{N}^{0,9369}$$
 (II-3)

Tabela 53 -	Erro	nercentual	simples	apresentado	nela	equação	(II-3)
i aucia 33 -	LIIU	percentuar	SHIIDICS	aprosontado	DCIA	Cuuacao	(11-57.

Potência Nominal	Corrente Nominal Catálogo	Corrente nominal Calculada	Erro %
1	3,02	3,09	-2,41
1,5	4,43	4,52	-2,08
2	6,12	5,92	3,25
3	8,70	8,66	0,49
4	11,90	11,34	4,74
5	14,00	13,97	0,21
6	16,40	16,57	-1,06
7,5	20,00	20,43	-2,14
10	26,40	26,75	-1,31

A Tabela 54 a seguir apresenta os valores das correntes nominais estimados para a nova faixa de potência sugerida.

Tabela 54 - Estimativa da corrente para motores padrão entre 1,5 e 10 [cv] para carga nominal

Novas Potências [cv]	Estimativa da corrente nominal
10	26,75
9,0	24,23
8,0	21,70
7,5	20,43
6,7	18,38
6,0	16,57
5,5	15,28
5,0	13,97
4,5	12,66
4,0	11,34
3,5	10,00
3,0	8,66
2,5	7,30
2,0	5,92
1,8	5,36
1,5	4,52

II.4 CÁLCULO DA CORRENTE DE OPERAÇÃO - MOTORES PADRÃO

Dispondo-se dos valores das correntes ($I_{50\%}$, $I_{75\%}$, I_{1N}), conforme Tabelas 50, 52 e 54 pode-se encontrar a equação para o cálculo da corrente de operação conforme se mostra na Figura 17.

Exemplo:

Motor de Indução Trifásico de 10 [cv]

Dados das correntes calculadas

Potência [cv]	I _{50%}	I _{75%}	I_{1N}
10	17,08	21,87	26,75

A Linha de tendência e a equação para o cálculo da corrente de operação é mostrada na Figura 17, a seguir.

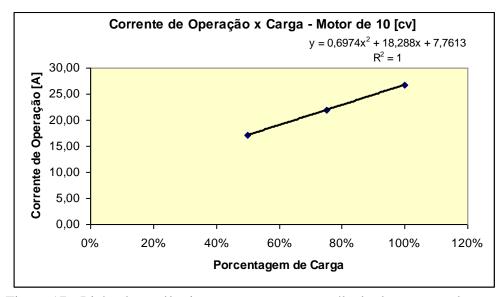


Figura 17 - Linha de tendência e a equação para o cálculo da corrente de operação do motor de indução trifásico padrão de 10 [cv]

O mesmo procedimento foi aplicado às demais potências obtendo-se as equações da Tabela 55 a seguir.

Tabela 55 - Equações da corrente de operação obtidas a partir da linha de tendência para motores padrão

Potência Nominal [cv]	Equação da Corrente de Operação
10	$Iop = 0,6974. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 18,288. \left(\frac{P_{C}}{P_{N}}\right) + 7,7613$
9,0	$Iop = 0,7502. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 16,162. \left(\frac{P_{C}}{P_{N}}\right) + 7,3203$
8,0	$Iop = 0,7954. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 14,056 \left(\frac{P_{C}}{P_{N}}\right) + 6,8488$
7,5	$Iop = 0.8147. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 13.013. \left(\frac{P_{C}}{P_{N}}\right) + 6.6001$
6,7	$Iop = 0.840. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 11,357. \left(\frac{P_{C}}{P_{N}}\right) + 6,1818$
6,0	$Iop = 0,8556. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 9,9253. \left(\frac{P_{C}}{P_{N}}\right) + 5,7927$
5,5	$Iop = 0.8623 \cdot \left(\frac{P_C}{P_N}\right)^2 + 8.914 \cdot \left(\frac{P_C}{P_N}\right) + 5.4998$
5,0	$Iop = 0,8647. \left(\frac{P_C}{P_N}\right)^2 + 7,9136. \left(\frac{P_C}{P_N}\right) + 5,1928$
4,5	$Iop = 0,8622. \left(\frac{P_C}{P_N}\right)^2 + 6,9259. \left(\frac{P_C}{P_N}\right) + 4,8698$
4,0	$Iop = 0,8538. \left(\frac{P_C}{P_N}\right)^2 + 5,9528. \left(\frac{P_C}{P_N}\right) + 4,5288$
3,5	$Iop = 0,8382. \left(\frac{P_C}{P_N}\right)^2 + 4,9974. \left(\frac{P_C}{P_N}\right) + 4,1668$
3,0	$Iop = 0.8140. \left(\frac{P_C}{P_N}\right)^2 + 4.0632. \left(\frac{P_C}{P_N}\right) + 3.7800$
2,5	$Iop = 0,7789. \left(\frac{P_C}{P_N}\right)^2 + 3,1558. \left(\frac{P_C}{P_N}\right) + 3,3632$
2,0	$Iop = 0,7293. \left(\frac{P_C}{P_N}\right)^2 + 2,2830. \left(\frac{P_C}{P_N}\right) + 2,9088$
1,8	$Iop = 0,7043. \left(\frac{P_C}{P_N}\right)^2 + 1,9462. \left(\frac{P_C}{P_N}\right) + 2,7140$
1,5	$Iop = 0,6596. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 1,4579. \left(\frac{P_{C}}{P_{N}}\right) + 2,4046$

ANEXO III

CÁLCULO DA CORRENTE DE OPERAÇÃO PARA NOVAS POTÊNCIAS PARA MOTORES DE ALTO RENDIMENTO

III.0 ESTIMATIVA DA CORRENTE DE OPERAÇÃO PARA MOTORES DE ALTO RENDIMENTO NÃO PADRONIZADOS

Para estimar a corrente de operação dos motores de alto rendimento não padronizados utilizam-se os valores das correntes dos motores padronizados de alto rendimento e determina-se a equação característica da curva obtida para cada percentual de corrente mostrado a seguir.

III.1 CÁLCULO DA CORRENTE PARA 50% DE CARGA - MOTORES DE ALTO RENDIMENTO

A Figura 18 apresenta a linha de tendência e sua equação para determinação da corrente de motores de alto rendimento com 50% de carga.

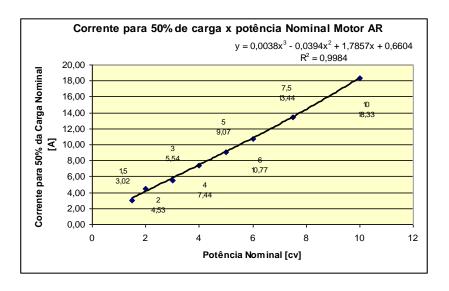


Figura 18 – Linha de tendência para corrente com 50% da carga de motores de 1,5 a 10 [cv].

Para o cálculo estimado da corrente para 50% de carga utiliza-se a expressão gerada pela linha de tendência da Figura 18, ou seja:

$$I_{op(50\%)} = 0.0038.P_N^3 - 0.0394.P_N^2 + 1.7857.P_N + 0.6604$$
 (III-1)

Comparando-se os valores de catálogo com os valores calculados pela equação (III-1) têm-se os seguintes valores e percentuais de erro indicados na Tabela 56:

Tabela 56 - Comparação dos cálculos da corrente de operação de motores de alto rendimento (AR) de 1,5 a 10 [cv]

Potência Nominal [cv]	Corrente para 50% da carga (Fórmula convencional)	Corrente para 50% da carga (Fórmula gerada)	Erro%
1,5	3,02	3,26	-7,93
2	4,53	4,10	9,39
3	5,54	5,77	-4,01
4	7,44	7,42	0,31
5	9,07	9,08	-0,14
6	10,77	10,78	-0,03
7,5	13,44	13,44	0,03
10	18,33	18,38	-0,24

Tabela 57 - Valores estimados para corrente de motores com 50% de carga para motores de alto rendimento

Novas Potências [cv]	Estimativa da corrente para 50% de carga
10	18,38
9,0	16,31
8,0	14,37
7,5	13,44
6,7	12,00
6,0	10,78
5,5	9,92
5,0	9,08
4,5	8,24
4,0	7,42
3,5	6,59
3,0	5,77
2,5	4,94
2,0	4,10
1,8	3,77
1,5	3,26

III.2 CÁLCULO DA CORRENTE PARA 75% DE CARGA - MOTORES DE ALTO RENDIMENTO

A Figura 19 apresenta a linha de tendência e a equação para motores de alto rendimento com 75% de carga, para faixa de 1,5 a 10 [cv]:

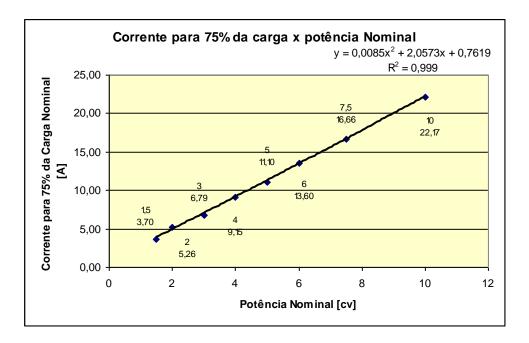


Figura 19 – Linha de tendência para corrente com 75% da carga para motores de alto rendimento.

Para o cálculo estimado da corrente para 75% de carga, utiliza-se a expressão gerada pela linha de tendência da Figura 19, ou seja:

$$I_{\text{op}(75\%)} = 0.0085.P_{\text{N}}^{2} + 2.0573P_{\text{N}} + 0.7619$$
 (III-2)

Comparando-se os valores de catálogo com os valores calculados pela equação (III-2) têm-se os seguintes valores e percentuais de erro indicados na Tabela 58, a seguir.

Tabela 58 - Comparação dos cálculos da corrente de operação para motor de alto rendimento com 75% da carga nominal

Potência Nominal [cv]	Corrente para 75% da carga (Fórmula convencional)	Corrente para 75% da carga (Fórmula gerada)	Erro%
1,5	3,70	3,87	-4,41
2	5,26	4,91	6,69
3	6,79	7,01	-3,21
4	9,15	9,13	0,30
5	11,10	11,26	-1,47
6	13,60	13,41	1,40
7,5	16,66	16,67	-0,04
10	22,17	22,18	-0,09

Tabela 59 - Valores estimados para corrente de motores de alto rendimento com 75% de carga, para as novas potências

Novas Potências [cv]	Estimativa da corrente para 75% de carga
10	22,18
9,0	19,97
8,0	17,76
7,5	16,67
6,7	14,93
6,0	13,41
5,5	12,33
5,0	11,26
4,5	10,19
4,0	9,13
3,5	8,07
3,0	7,01
2,5	5,96
2,0	4,91
1,8	4,49
1,5	3,87

III.3 CÁLCULO DA CORRENTE NOMINAL - MOTORES DE ALTO RENDIMENTO

A Figura 20, abaixo, apresenta a linha de tendência e a equação gerada para determinação da corrente nominal das novas potências de motores de alto rendimento de 1,5 a 10 [cv].

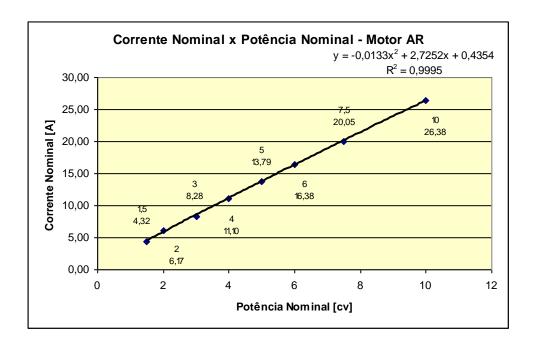


Figura 20 – Linha de tendência para corrente nominal de motores de alto rendimento

A seguir tem-se a equação que será utilizada para o cálculo das correntes nominais das novas potências de motores de alto rendimento.

$$I_{IN} = -0.0133P_{N}^{2} + 2.7252.P_{N} + 0.4354$$
 (III-3)

Comparando-se os valores de catálogo com os valores calculados pela equação (III-3) têm-se os valores e percentuais de erro indicados na Tabela 60, a seguir.

Tabela 60 - Erro percentual simples apresentado pela equação (III-3).

Potência Nominal	Corrente Nominal Catálogo	Corrente nominal Calculada	Erro %
1,5	4,32	4,49	-4,02
2	6,17	5,83	5,41
3	8,28	8,49	-2,51
4	11,10	11,12	-0,21
5	13,79	13,73	0,46
6	16,38	16,31	0,45
7,5	20,05	20,13	-0,39
10	26,38	26,36	0,08

Tabela 61 - Valores das correntes nominais para motores de alto rendimento estimados para a nova faixa de potência sugerida.

Estimativa da corrente nominal
26,36
23,88
21,39
20,13
18,10
16,31
15,02
13,73
12,43
11,12
9,81
8,49
7,17
5,83
5,30
4,49

III.4 CÁLCULO DA CORRENTE DE OPERAÇÃO - MOTORES DE ALTO RENDIMENTO

Dispondo-se dos valores das correntes (I_{50%}, I_{75%},I_{1N}), conforme Tabelas 57, 59 3 61, pode-se encontrar a equação para o cálculo da corrente de operação conforme se mostra na Figura 21 do exemplo a seguir:

Exemplo:

Motor de Indução Trifásico de 7,5 [cv] de alto rendimento

Dados das correntes calculadas

Potência [cv]	I _{50%}	I _{75%}	I_{1N}
7,5	13,44	16,67	20,35

Linha de tendência e equação para o cálculo da corrente de operação

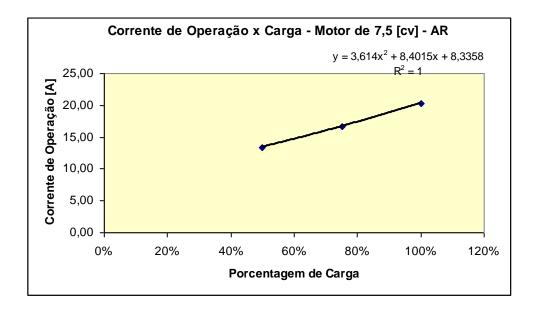


Figura 21 - Linha de tendência e a equação para o cálculo da corrente de operação do motor de indução trifásico de alto rendimento de 10 [cv]

O mesmo procedimento foi aplicado às demais potências obtendo-se as equações da Tabela 62 a seguir:

Tabela 62 - Equações para determinação da corrente de operação para motores de alto rendimento.

Potência Nominal [cv]	Equação da Corrente de Operação
10	$Iop = 5,3200. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 8,5800. \left(\frac{P_{C}}{P_{N}}\right) + 12,757$
9,0	$Iop = 4,2650. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 9,2904. \left(\frac{P_{C}}{P_{N}}\right) + 10,599$
8,0	$Iop = 3,7370. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 8,9052. \left(\frac{P_{C}}{P_{N}}\right) + 8,9830$
7,5	$Iop = 3,6140. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 8,4015. \left(\frac{P_{C}}{P_{N}}\right) + 8,3358$
6,7	$Iop = 3,5382. \left(\frac{P_C}{P_N}\right)^2 + 7,2914. \left(\frac{P_C}{P_N}\right) + 7,4685$
6,0	$Iop = 3,5312. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 6,1248. \left(\frac{P_{C}}{P_{N}}\right) + 6,8318$
5,5	$Iop = 3,5236. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 5,2437. \left(\frac{P_{C}}{P_{N}}\right) + 6,4194$
5,0	$Iop = 3,4880. \left(\frac{P_C}{P_N}\right)^2 + 4,3680. \left(\frac{P_C}{P_N}\right) + 6,0229$
4,5	$Iop = 3,4016. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 3,5376. \left(\frac{P_{C}}{P_{N}}\right) + 5,6253$
4,0	$Iop = 3,2416. \left(\frac{P_C}{P_N}\right)^2 + 2,7924. \left(\frac{P_C}{P_N}\right) + 5,2094$
3,5	$Iop = 2,9852. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 2,1723. \left(\frac{P_{C}}{P_{N}}\right) + 4,7582$
3,0	$Iop = 2,6096. \left(\frac{P_C}{P_N}\right)^2 + 1,7172. \left(\frac{P_C}{P_N}\right) + 4,2545$
2,5	$Iop = 2,0920. \left(\frac{P_C}{P_N}\right)^2 + 1,4670. \left(\frac{P_C}{P_N}\right) + 3,6813$
2,0	$Iop = 1,4096. \left(\frac{P_{C}}{P_{N}}\right)^{2} + 1,4616. \left(\frac{P_{C}}{P_{N}}\right) + 3,0214$
1,8	$Iop = 1,0854. \left(\frac{P_C}{P_N}\right)^2 + 1,5369. \left(\frac{P_C}{P_N}\right) + 2,7294$
1,5	Iop = 0,5396. $\left(\frac{P_C}{P_N}\right)^2 + 1,7409. \left(\frac{P_C}{P_N}\right) + 2,2578$

ANEXO IV

IV.0 A TOLERÂNCIA DOS DADOS DE FABRICANTES SEGUNDO NBR 7094/1996

Como dados são amplamente utilizados em nosso estudo, vale a pena salientar que esses dados de fabricantes levam em conta valores médios de ensaios. Eles são normalizados.

Por isso, poderão ocorrer diferenças entre valores calculados pelas expressões definidas neste trabalho e valores obtidos através dos fabricantes de motores.

Essas tolerâncias estão descritas na NBR 7094/1996, a qual modifica alguns critérios desta mesma norma quando foi editada em 1981.

A referida norma especifica valores para:

- rendimento;
- escorregamento;
- fator de potência;
- corrente de Rotor Bloqueado;
- conjugado com Rotor Bloqueado;
- conjugado Máximo;
- momento de Inércia.

Considerando o rendimento de um motor de indução, que será amplamente utilizado neste estudo, a Tabela 63, abaixo, apresenta as tolerâncias especificadas na NBR 7094.

Tabela 63 - Tolerância no rendimento de motores segundo NBR 7094/1996

Tolerância no rendimento (η)					
Rendimento	Tolerância				
$\eta \ge 0.851$	$-0, 2.(1-\eta)$				
η < 0,851	$-0,15.(1-\eta)$				

A título exemplificativo, apresentam-se nas Tabelas 64 e 65, as perdas calculadas com o rendimento dado nos catálogos dos fabricantes e as perdas fornecidas pelos próprios fabricantes. Verifica-se, ainda, uma diferença nos valores.

Tabela 64 - Perdas calculadas e fornecidas pelo fabricante

Potência em [cv]	Rendimento [%]	Ptotais Calculadas [W]	Ptotais fornecidas [W]
1	79,5	192	203
1,5	79,5	288	287
2,0	82,5	316	380
3,0	83	458	517
4,0	83,5	589	598
5,0	85,5	632	614
6,0	86	728	800
7,5	87	835	846
10	89	921	932

A fim de exemplificar o que é estabelecido na norma, o exemplo de cálculo abaixo apresenta o valor do rendimento supondo a tolerância máxima.

Para o motor de 1,5 [cv] tem-se η < 0,851, utiliza-se a expressão:

$$\begin{split} & \eta_{tolerado} = \eta_{indicado} - 0,15.(1 - \eta) \\ & \eta_{tolerado} = 0,795 - 0,15.(1 - 0,795) \\ & \eta_{tolerado} = 0,7643 \end{split}$$

Para o motor de 10 [cv] tem-se $\eta \ge 0.851$, utiliza-se a expressão:

$$\begin{split} & \eta_{tolerado} = \eta_{indicado} - 0, 20. (1 - \eta) \\ & \eta_{tolerado} = 0, 89 - 0, 20. (1 - 0, 89) \\ & \eta_{tolerado} = 0, 868 \end{split}$$

Fazendo-se o mesmo para as outras potências da faixa encontraremos os valores indicados na Tabela 65, a seguir:

Tabela 65 - Valores das perdas considerando a tolerância no rendimento

Potência em [cv]	Rendimento [%]	Ptotais Calculadas [W]	Ptotais fornecidas [W]
1	76,43	230	203
1,5	76,43	345	287
2,0	79,88	375	380
3,0	80,45	543	517
4,0	81,03	698	598
5,0	82,60	785	614
6,0	83,20	903	800
7,5	84,40	1033	846
10	86,80	1133	932

Na Tabela 65, acima, verifica-se que ocorre uma diferença substancial nos valores das perdas calculadas em relação às perdas fornecidas.

ANEXO V

V.0 MATERIAIS UTILIZADOS NO NÚCLEO DOS MOTORES

Os núcleos dos motores de indução em geral utilizam aço elétrico que são materiais magneticamente macios, com a função de servirem como caminho de baixa relutância para o fluxo magnético. Apesar do motor elétrico ter uma boa eficiência elétrica, as perdas totais equivalem a um grande desperdício de energia quando se considera uma grande quantidade de máquinas em funcionamento, a utilização de materiais magnéticos de baixa qualidade e o baixo fator de sobredimensionamento necessário.

A Figura 22, abaixo, mostra ranhuras de um estator e núcleo de um rotor de aço silício comumente utilizado em máquinas elétricas.

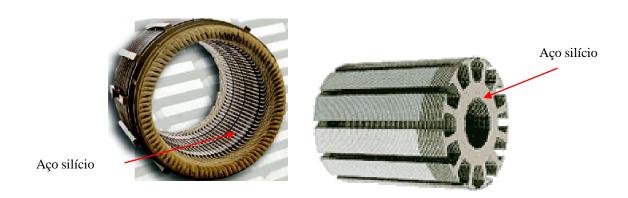


Figura 22 - Estator e rotor de aço silício

O aço silício utilizado no núcleo dos motores elétricos é uma liga de ferro e carbono com teor de silício entre 1,8% e 3,5% (Acesita). A utilização do silício se deve ao aumento da resistividade elétrica do aço que tem como função diminuir as perdas magnéticas. Pode-se utilizar o aço semi-processado ou o processado, a diferença está no tratamento térmico que é dado diretamente pelo usuário final (semi-processado) e o tratamento térmico dado diretamente pela metalúrgica (processado), definindo assim propriedades magnéticas desejadas.

Também se encontra aços do tipo grão orientado (GO) e do tipo grão não orientado (GNO), a diferença está relacionada à estrutura cristalográfica. No caso dos motores elétricos

o aço tipo GNO é o mais adequado devido à necessidade de propriedades magnéticas semelhantes em todas as direções da estrutura cristalina. O aço GO é utilizado em transformadores, pois o fluxo caminha na direção de laminação, essa direção adquire uma melhor propriedade magnética.

Esses aços são especificados pelas perdas que podem ocasionar no núcleo. A Tabela 66, abaixo, mostra as designações e as aplicações nos motores.

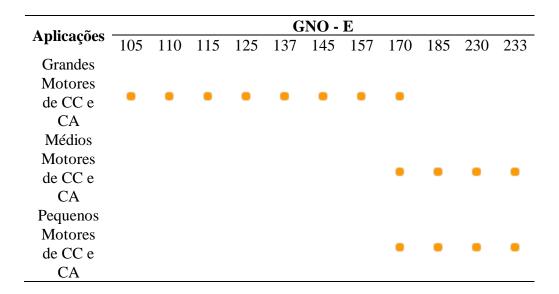


Tabela 66 - Designações e aplicações do aço elétrico tipo GNO.

A avaliação de desempenho de materiais ferromagnéticos para motores [18], mostra o tipo de material utilizado no Brasil para a construção do núcleo do motor.

Nessa avaliação feita pelo CEPEL, percebeu-se que as perdas em vazio dos motores nacionais têm um valor médio de 35%, para motores de 10 [cv], em relação à perda total do motor.

Verifica-se que nos motores americanos essas perdas estão entre 15 e 20% da perda total [18]. A avaliação teve como objetivo básico analisar o desempenho magnético e metalúrgico das chapas de materiais ferromagnéticos de fabricantes nacionais e verificar o efeito do tratamento térmico aplicado às chapas [18]. A Tabela 67, a seguir, apresenta os resultados obtidos em ensaios feitos em motores de 10 [cv] de diversos fabricantes nacionais [18].

Tabela 67 - Perdas em vazio medidas nos motores de 10 [cv], 1750 rpm, 4 pólos, 220/380V e 60 Hz, confeccionados com material ferromagnético nacional [18].

Mat	erial	Tratamento Térmico	Perdas no Ferro [W]
	Fabricante 1	Sem TT	439
Aco carbono	Fabricante 2	Sem TT	488
Aço carbono	Fabricante 3	Sem TT	456
1006	Fabricante 1	Com TT	304
	Fabricante 3	Com TT	398
Aço elétrico se	emiprocessado	Sem TT	467
Unicor	e 360 I	Com TT	271
Aço elétrico se	emiprocessado	Sem TT	416
Unicore	e 360 II	Com TT	285
Aço-silício pro	cessado E 230	Sem TT	294
Aço-silício processado E 170		Sem TT	263
		Com TT	225

Como se pode ver na Tabela 67, acima , o tipo de material utilizado no núcleo do motor favorece a uma redução expressiva das perdas no ferro.

A falta de um tratamento térmico corretamente aplicado ao material utilizado na fabricação do núcleo e o sobredimensionamento dos motores contribuem para excessivos desperdícios de energia em nosso país.

Um dos fatores associados à queda do rendimento de um motor é o tipo de aço elétrico utilizado na sua fabricação.

ANEXO VI

VI.0 TABELAS DE POTÊNCIA DE PERDAS NO FERRO E POTÊNCIA DE PERDAS MECÂNICAS NOS MOTORES DE INDUÇÃO TRIFÁSICOS.

Tabela 68 - Perdas no ferro e mecânicas em Watts para motores padrão

Potê	ncia	II p	ólos	IV _]	pólos	VI]	pólos	VIII	pólos
kW	cv	$\mathbf{p}_{\mathrm{mec}}$	\mathbf{p}_{fe}	$\mathbf{p}_{\mathrm{mec}}$	\mathbf{p}_{fe}	$\mathbf{p}_{\mathrm{mec}}$	\mathbf{p}_{fe}	$\mathbf{p}_{\mathrm{mec}}$	\mathbf{p}_{fe}
0,75	1,00	30	54,6	20	64,2	15	53,7	9	63,7
1,10	1,50	40	65,5	20	100,0	15	86,1	15	67,6
1,50	2,00	40	73,1	25	76,5	20	95,1	20	95,4
2,20	3,00	70	106,4	25	103,5	20	103,1	40	110,9
3,00	4,00	70	114,9	30	131,4	30	127,1	40	164,5
3,70	5,00	115	131,5	30	103,8	45	159,1	40	195,6
4,50	6,00	140	167,6	50	249,0	45	173,1	65	183,3
5,50	7,50	140	259,3	50	171,8	45	206,6	65	230,7
7,50	10,0	200	271,7	70	270,8	45	276,9	65	297,9
9,20	12,5	200	326,8	70	346,6	80	335,2	110	341,4
11,0	15,0	200	423,3	70	368,6	80	440,2	110	411,2
15,0	20,0	300	462,2	180	475,2	80	655,0	110	473,7
18,5	25,0	300	522,3	180	556,4	140	467,0	180	811,4
22,0	30,0	300	654,9	290	647,4	220	771,3	200	557,5
30,0	40,0	850	712,4	400	733,9	220	1.082,1	200	758,8
37,0	50,0	850	817,3	400	853,1	300	1.010,3	200	858,4
45,0	60,0	1.050	1.068,4	850	1.076,3	300	1.120,2	200	1.134,5
55,0	75,0	1.050	1.043,4	850	1.237,2	300	1.165,8	350	1.290,4
75,0	100	1.100	1.331,8	850	1.851,7	440	1.974,2	350	2.365,5
90,0	125	2.500	1.906,4	1.800	1.882,1	650	1.955,6	350	1.966,0
110	150	2.500	1.906,5	1.800	2.503,2	650	2.387,8	350	2.351,0
132	175	3.700	1.772,4	1.800	2.758,5	650	2.234,4	600	2.644,2
150	200	3.700	1.948,6	1.800	3.188,9	650	2.808,4	600	3.696,3
185	250	3.700	2.663,5	1.800	3.998,5	650	4.110,5	600	4.358,8
220	300	4.000	4.641,5	3.500	4.166,2	1.400	5.683,0	650	4.788,5
260	350	4.000	4.224,0	3.500	5.011,0	1.400	8.036,8	650	5.472,6

Tabela 69 - Perdas no ferro e mecânicas em Watts para motores de alto rendimento

Potê	ncia	II p	oólos	IV _l	pólos	VI _]	pólos	VIII	pólos
kW	cv	$\mathbf{p}_{\mathrm{mec}}$	\mathbf{p}_{fe}	$\mathbf{p}_{\mathrm{mec}}$	\mathbf{p}_{fe}	$\mathbf{p}_{\mathrm{mec}}$	\mathbf{p}_{fe}	$\mathbf{p}_{\mathrm{mec}}$	\mathbf{p}_{fe}
0,75	1,00	30	38,1	18	41,2	14	36,5	9	42,3
1,10	1,50	40	40,1	18	58,5	14	51,0	15	50,3
1,50	2,00	40	62,9	25	60,4	23	53,2	19	70,5
2,20	3,00	70	58,1	25	66,4	23	66,3	40	72,5
3,00	4,00	70	77,9	30	87,8	33	89,4	40	93,3
3,70	5,00	115	113,1	30	106,7	45	114,8	40	130,2
4,50	6,00	140	124,5	50	95,4	45	137,9	65	116,0
5,50	7,50	140	182,2	50	123,9	45	170,9	65	148,1
7,50	10,0	200	169,4	70	191,1	45	185,4	65	195,7
9,20	12,5	200	211,0	70	268,4	80	200,3	110	151,9
11,0	15,0	200	269,0	70	248,1	80	282,2	110	213,6
15,0	20,0	380	316,8	180	352,5	80	537,6	110	303,5
18,5	25,0	380	381,7	180	440,2	140	289,4	180	443,4
22,0	30,0	380	371,3	290	403,6	220	476,1	200	350,9
30,0	40,0	850	531,1	400	418,8	220	724,3	200	497,5
37,0	50,0	850	652,5	400	468,5	300	624,9	200	781,6
45,0	60,0	1.600	661,1	850	705,1	300	668,2	200	656,4
55,0	75,0	1.600	731,8	850	987,0	300	797,6	350	729,8
75,0	100	1.600	794,9	850	1.151,1	470	1.026,9	350	922,9
90,0	125	3.700	1.489,0	1.800	1.478,4	650	1.160,8	350	1.183,5
110	150	3.700	1.285,5	1.800	2.171,5	650	1.154,0	350	1.482,4
132	175	3.700	1.000,2	1.800	1.695,0	650	1.462,4	600	1.781,3
150	200	3.700	1.272,1	1.800	1.865,4	650	1.918,6	600	3.131,5
185	250	3.700	1.647,8	1.800	2.903,2	650	3.108,3	600	2.108,4
220	300	4.000	2.322,1	3.500	3.061,1	1.400	2.940,1	600	3.293,0
260	350	4.000	4.728,6	3.500	2.310,9	1.400	3.586,1	600	3.814,5

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] ELETROBRÁS BOLETIM ANUAL SIESE 2002 disponível em www.eletrobrás.gov.br.
- [2] Trabalho realizado por José Roberto Moreira e José Guilherme Moreira da Souza da USP. Disponível em http://www.mct.gov.br/clima/comunic_old/cenerg.htm
- [3] ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA ELÉTRICA E ELETRÔNICA ABINEE. Vendas de motores elétricos Informações fornecidas por Robson da Silva Freitas robson@abinee.org.br Administrative Assistant ABINEE http://www.abinee.org. Brazilian Electrical and Electronics Industry Association. Mensagem recebida por enioc@uol.com.br em 08. jul.2004.
- [4] ELEKTRISCHE ANTRIEBE Prof. Dr. Ing. Adolf Leonhard Editora Ferdinand Enke Verlag Stuttgart -1962.
- [5] KOSTENKO, M. "MÁQUINAS ELÉTRICAS", Volume 2, Edições Lopes da Silva, Porto–1979.
- [6] NBR 5432 Agosto 1983 Máquinas Elétricas Girantes Dimensões e Potências Padronização.
- [7] Programa Europeu Motor Challenge -Módulo de Accionamentos de Força Motriz Bruxelas – janeiro/ 2003
- [8] M. A. P Delgado, M. T. Tolmasquim, 2000 Analysis of a feasible tariff policy for the introduction of high efficiency electric motors in Brazil.

- [9] Soares, J.A. e R.P. Tabosa. 1996 "Motores Elétricos: Uma Análise Comparativa de Mercado e Eficiência". Anais do VII Congresso Brasileiro de Energia, pg 2019-2028, Rio de Janeiro, RJ, Brasil,: COPPE/UFRJ.
- [10] Soares, G.A., I. Hersztberg, e M.C. Arouca, 1996 "Avaliação Econômica da Utilização de Motores Elétricos Industriais de Indução de Alto Rendimento ". Anais do VII Congresso Brasileiro de Energia, pg 2059-2073, Rio de Janeiro, RJ, Brasil,: COPPE/UFRJ.
- [11] ABNT.NBR 7094 Máquinas Elétricas Girantes Motor de Indução Especificação. ABNT: São Paulo, 1992.
- [12] NBR 5383 Agosto 1982 Máquinas Elétricas Girantes Máquinas de Indução Determinação de Características Ensaios
- [13] Soares, G A.; Herszterg, I.; **Tabosa**, R. Os **Motores** de Indução de **Alto Rendimento**Dentro de Uma Visão de Gerenciamento Pelo Lado da Demanda. XV Seminário
 Nacional de Produção e Transmissão de Energia Elétrica. Belém. **1997**.
- [14] Motores Elétricos de indução: O que muda com a nova NBR 7094 Artigo publicado na Revista Eletricidade Moderna Março de 1997 Autor Sebastião Lauro Nau.
- [15] Analise de desempenho dos motores trifásicos nacionais Artigo publicado na Revista Eletricidade Moderna – Fevereiro de 1993, página 26 – Autores: João R. Cogo, Jocélio S. de Sá, Nelson W. B. Simões e Jaime A. Burgoa.
- [16] Avanços tecnológicos nos motores elétricos Artigo publicado na Revista Eletricidade Moderna – abril de 1985, página 23 – Autor Moacyr Rogério Sens.

- [17] Análise técnica e econômica da substituição de motores de baixa tensão Artigo publicado na Revista Eletricidade Moderna Março de 1999, pagina 130 Autores: Pedro Cirino, Geraldo Dias Rolim, Nilton Antônio Gonzaga e Denílson Martins Duarte.
- [18] Avaliação do desempenho de materiais ferromagnéticos para motores Artigo publicado na Revista Eletricidade Moderna Março de 1999 Autora: Heloisa Cunha Furtado.
- [19] Ações tecnológicas de conservação de energia em motores e acionamentos Artigo publicado na Revista Eletricidade Moderna Fevereiro de 1996, pagina 36 Autores: Ronaldo de Paula Tabosa e George Alves Soares.
- [20] WEG. Católogo Geral de Motores Elétricos. Jaraguá do Sul SC: Weg, 2003. Disponível em: http://www.weg.com.br/. Acesso em: 28.abril.2004.
- [21] Andréas, J.C. Energy Efficient Electric Motors Selection and Aplications Marcel Dcker, Inc., New York, 1982.
- [22] ESCOLA FEDERAL DE ENGENHARIA DE ITAJUBÁ (EFEI).. Conservação de Energia: Eficiência Energética de Instalações e Equipamentos. Apoio ELETROBRÁS / PROCEL Itajubá MG: FUPAI, 2001.
- [23] DELGADO, M. A. P. **Alternativas para o Aumento da Eficiência Energética no Brasil**: Uma Análise Técnico-Econômica para Viabilização de Motores Elétricos de Alto Rendimento e o Caso das Empresas de Serviços de Energia 1996, 165 p. Tese (Doutorado em Planejamento Energético) PPE/COPPE/UFRJ, Rio de Janeiro.
- [24] http://abradee.org.br/palestras/4-encontro/eficiencia/industrial%20-%20procel.ppt
- [25] http://www.sciences-en-ligne.com/mono/chronomath/anx1/seies_renardhtml