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ABSTRACT

This study evaluated projected changes in key climate variables relevant to the energy sector in
South America, with a focus on Brazil, using simulations from eight CMIP6 global climate
models. The study analyzed precipitation, 100 m wind speed, wind power density, global
horizontal irradiance, concentrated solar power (CSP), and photovoltaic potential (PVP). The
Quantile Delta Mapping (QDM) method was applied for bias correction and statistical
downscaling. The simulations indicate significant reductions in precipitation, increased duration
and severity of droughts, and delays in the onset and demise of the South American monsoon,
especially under the SSP5-8.5 scenario. A shortening of the rainy season was also observed over
the South Atlantic Convergence Zone (SACZ) and the Brazilian Amazon. Regarding renewable
energy, projections indicate a 25-50% increase in wind power density in Northeastern and
Southern Brazil, Patagonia, northern Venezuela, Uruguay, Bolivia, and Paraguay. CSP potential
is expected to increase by up to 6% in Northeastern Brazil and parts of Chile, while PVP is
projected to rise by 1-4% in the Midwest, Southeast, and Amazon regions, with predominantly
neutral or negative trends in Southern Brazil. The complementarity between sources (rain-solar
and wind-solar) tends to strengthen in several areas, favoring hybrid energy systems. However,
the growing intermittency of renewable sources and reduced hydropower storage capacity pose
operational challenges. The results highlight the importance of integrated energy planning and
infrastructure expansion in the context of climate change, with Brazil strategically positioned to

lead the sustainable energy transition in the region.

Keywords: South America; Statistical Downscaling; Climate Change; Renewable Energies;

Energetic Complementarity.




RESUMO

Este estudo avaliou proje¢des de mudancas em varidveis climaticas essenciais para o setor
energético na América do Sul, com foco no Brasil, utilizando oito modelos climaticos do CMIP6.
Foram analisadas precipitacao, vento a 100 m, densidade de poténcia eélica, irradiancia global
horizontal, energia solar concentrada (CSP) e potencial fotovoltaico (PVP). Aplicou-se o método
Quantile Delta Mapping (QDM) para correcdo de viés e downscaling estatistico. As simulagdes
indicam reducdo significativa da precipitagao, aumento da duragdo e severidade das secas e
atrasos no inicio e término da mongdo sul-americana, especialmente sob o cenario SSP5-8.5.
Também foi observada redugdo na duragao da estagdo chuvosana ZCAS e Amazonia. Em relacao
a energia renovavel, projeta-se aumento de 25-50% na densidade edlica no Nordeste e Sul do
Brasil, Patagonia, norte da Venezuela, Uruguai, Bolivia e Paraguai. O potencial solar CSP deve
crescer até 6% no Nordeste do Brasil e partes do Chile, enquanto o PVP tende a aumentar 1-4%
no Centro-Oeste, Sudeste e Amazonia. A complementariedade entre fontes (chuva-solar e vento-
solar) tende a se fortalecer em varias regides, favorecendo sistemas hibridos. No entanto, a
intermiténcia e a menor capacidade de armazenamento hidrico impdem desafios operacionais.
Os resultados reforcam a importancia do planejamento energético integrado e da ampliacdo da
infraestrutura frente as mudangas climaticas, com o Brasil posicionado estrategicamente para

liderar a transi¢do energética sustentavel na regido.

Palavras-chave: América do Sul; Downscaling Estatistico, Mudancas Climéticas; Energias

Renovaveis; Complementariedade Energética.
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1. GENERAL INTRODUCTION

Renewable energy plays an essential role in reducing greenhouse gas emissions, and it is
expected to supply about 20-30% of global primary energy by 2040, with the potential to entirely
replace the current energy system by 2050 (Gernaat et al., 2021). For South America, expanding
the use of renewable energy is crucial, as countries in the region have set ambitious targets to
reduce greenhouse gas emissions (Washburn and Pablo-Romero, 2019) and diversify clean

energy resources (Icaza et al., 2022) in the coming years.

Abundant in renewable energy resources, Latin America currently has more than 319 GW
of solar and wind energy production capacity (large-scale announced, in pre-construction or
under construction) and could increase its production capacity by more than 460% by 2030
compared to the 69 GW (27.6 GW of solar and 41.5 GW of wind) that are currently in operation
(Bauer et al., 2023). Although South America has a strong position in renewable energy
compared to other regions (Icaza et al., 2022), recent trends indicate an increasing reliance on
thermal energy sources (Arango-Aramburo et al., 2020). Additionally, there is a direct
relationship between economic growth and the consumption of non-renewable energy, leading

to higher greenhouse gas emissions in the region (Deng et al., 2020).

In this scenario, Brazil stands out, as the country currently has around 40 GW of installed
solar photovoltaic capacity and could reach 68 GW in the next five years, which would place it
as the fifth-largest solar producer in the world and the leader in solar production in Latin America
(Brazilian Energy Balance, 2024; Cacciuttolo et al., 2024). However, the expansion of solar
capacity in the country depends on several factors, such as the installation of solar farms,
improvements to energy transmission and storage systems, the implementation of a management
system that integrates solar energy into the Brazilian matrix, and incentives for new investments

in the sector (Reuters, 2023).

Furthermore, approximately 46% of the Brazilian energy matrix comes from renewable
sources, among which the hydraulic matrix predominates with 65.2%. Wind and solar sources
represent 10.5% of the total produced (EPE, 2022). Currently, the hydraulic matrix is responsible
for about 11% of primary energy and 65% of total electricity generated in Brazil (EPE, 2022).

10
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However, reduced precipitation can substantially affect hydropower generation, and
studies indicate that the impacts may be more severe on hydropower production in the North and
Northeast regions (Schaeffer et al., 2015; Vasquez-Arroyo et al., 2020; Arias et al., 2021), where
extreme events such as droughts, may reduce the volume of reservoirs and energy storage
(Schaeffer et al., 2012). Additionally, the effects are not limited to supply but also affect demand.
Changes in temperature and humidity can also lead to a greater need for cooling or heating
environments, with greater impacts on the building sector (Schaeffer et al., 2012; Clarke et al.,
2018). Given this, the high risk of water supply deficit to hydroelectric plants requires increasing
investments in energy from other sources. The increased occurrence of extreme events can also
put the energy production and transmission system at risk, with the impacts increasing on large

infrastructures such as the National Interconnected System (SIN) (Vasquez-Arroyo et al. 2020).

Considering wind energy, studies show that its potential will not be considerably affected
in Brazil, with climate projections pointing to an increase in wind capacity in the country in the
coming decades, mainly in the Northeast and South regions (Lucena et al., 2010; Pereira et al.,
2013; de Jong et al., 2019; Lima et al., 2020). Furthermore, projections estimate an increase in
solar radiation and temperature in most of the country, which would favor the expansion of this
energy matrix (Costa et al., 2020). Brazil’s energy sector heavily relies on hydropower, making
it particularly vulnerable to shifts in precipitation patterns driven by climate change. Given this
dependency, evaluating the country’s renewable energy matrix diversification is essential to
ensuring long-term energy security and resilience. Within this framework, this doctoral
dissertation aims to assess the potential impacts of climate change on the availability of hydro,

solar, and wind resources across South America, with a primary focus on Brazil.

By analyzing projections from the latest generation of climate models (CMIP6), this
research examines trends in precipitation, solar radiation, and wind availability, mapping the
regions best suited for expanding renewable energy generation in the coming decades.
Additionally, this study may support energy planning and climate adaptation strategies,
contributing to a deeper understanding of how a changing climate may reshape the renewable
energy landscape. Given the increasing urgency of transitioning to low-carbon energy sources,
this research’s findings are particularly relevant for policymakers, industry stakeholders, and
researchers aiming to enhance Brazil’s energy sustainability in the face of future climate

challenges.
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2. MOTIVATION

Anthropogenic activities are estimated to have caused a global increase of approximately
1.1 °C over pre-industrial levels (IPCC, 2021; Reboita and Ambrizzi, 2022). The increase in
global average temperature is associated with changes in the entire climate system, including
reduced snow and ice surfaces, sea level rise, increased frequency of heat extremes, intense
precipitation events, drought periods, and rainfall deficits in many regions of the globe,
configuring a risk situation for many ecosystems and human populations (IPCC, 2021). The
effects concern Brazil, given that critical economic activities, such as energy generation and

agriculture, depend highly on climate conditions.

Regarding South America, this continent is particularly vulnerable, as it concentrates on
some of the most important biodiversity areas in the world, harboring many endemic species
threatened by anthropogenic activities (Raven et al., 2020). Many regions of the continent are
exposed to the risks of reduced water availability, increased flooding and overflows, decreased
food production, and increased incidence of vector-borne diseases (Arias et al., 2021). Over the
past four decades, several portions of South America have also experienced reduced rainfall
volumes, indicating an expansion of dry subtropical zones and an increased frequency of drought

events over these regions (Rivera and Arnould, 2020).

In South America, climate change’s effects on droughts are evident in different sectors,
such as Northeastern and Southeastern Brazil, Amazonia, and the continent’s southeast. The
semi-arid Northeast of Brazil is one of the historically most vulnerable regions to droughts
(Marengo et al., 2018), with several events recorded since the 16th century (Marengo et al.,
2016a, 2018, 2022) and numerous socio-economic impacts such as damage to agricultural
production, livestock, loss of human life from hunger, malnutrition, disease, migrations to urban
centers, and failures in regional and national economies (Marengo et al., 2016a). Southeastern
Brazil (SEB) has also experienced some of the worst droughts in recent decades, such as in 2001
(Cavalcanti and Kousky, 2001), 2014/2015 (Seth et al., 2015; Nobre et al., 2016; Coelho et al.,
2016; Abatan et al., 2022; Geirinhas et al., 2022), 2018 (Gozzo et al., 2019), and most recently,
in 2020/2021 (Cuartas et al., 2022). Several drought events have also occurred in the Amazonia,
accentuating forest fires, affecting the region’s biota, and signaling the risk of a tipping point

(Guimberteau et al., 2013; Duffy et al., 2015; Marengo et al., 2016b; Lima and AghaKouchak,

12
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2017; Agudelo et al., 2019; Lovejoy and Nobre, 2019; Jimenez et al., 2021; Boulton et al., 2022).

Additionally, in the last decade, other Brazilian areas have also experienced severe droughts,
such as the 2019/2020 droughts in the Brazilian Pantanal and Midwest (Borges et al., 2018;
Thielen et al., 2020; Marengo et al., 2021) and the 2012/2013 and 2019/2020 droughts in southern
Brazil (SB) (Cunha et al., 2019; Fernandes et al., 2021).

On the other hand, most studies on the South American continent induce optimistic
estimates of wind power in the coming decades (Pereira et al., 2013; Ruffato-Ferreira et al., 2017,
Reboita et al., 2018; de Jong et al., 2019). Regarding offshore WPD, GCMs from the CMIP5
project for the end of the 21st century excellent conditions across the entire South Atlantic Ocean
(Zheng et al., 2019). A possible cause for the higher projected wind speeds is the South Atlantic
Subtropical Anticyclone (SASA) expansion and the longitudinal shift of its position to the west
(Gilliland and Keim, 2018; Reboita et al., 2019), intensifying the pressure gradient and wind

speeds along the Brazilian coast.

In this context of climate research, global climate models (GCMs) are a primary tool for
investigating climate system elements (Avila-Diaz et al., 2023). A new generation of GCMs from
CMIP has recently been available to the scientific community, comprising the sixth phase of the
project’s experiment (CMIP6). The CMIP6-GCMs present aspects of improvement over
previous generations, such as higher spatial resolution and better parameterization schemes of
the physical and biogeochemical processes of the climate system (Eyring et al., 2016). In
addition, CMIP6 models employ the Scenario Model Intercomparison Project (ScenarioMIP),
which provides climate projections based on the latest greenhouse gas emission and land use
scenarios, the Shared Socio-economic Pathways (SSPs) (Riahi et al., 2017). SSPs characterize a
more realistic socio-economic development by considering different social, economic,

technological, and political scenarios (Carvalho et al., 2021).

Despite their crucial role in climate research, GCMs have limitations due to their coarse
spatial resolution, which restricts their use in analyzing regional-scale processes and impacts. In
this framework, dynamical and statistical downscaling techniques address these limitations of
global models. Dynamical downscaling employs regional climate models (RCMs) that use initial
and boundary conditions provided by GCMs, whilst statistical downscaling determines
relationships between large-scale atmospheric circulation factors and local climate (Fowler et al.,
2007). Dynamical downscaling is helpful for the analysis of local-scale climate phenomena, but

such a procedure requires high computational costs (Ambrizzi et al., 2019). On the other hand,
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statistical downscaling requires less computational effort and avoids the propagation of

systematic errors arising from GCMs (Mutz et al., 2021).

Although both methods have advantages and weaknesses, a preference for studies in
South America using dynamical downscaling has been observed in recent decades, mainly in the
analysis of variables like precipitation and air temperature (da Rocha et al., 2009; Marengo et al.,
2012; Chou et al., 2014; Reboita et al., 2014, 2016; Solman and Blazquez, 2019; Solman et al.,
2021; Silva et al., 2023). However, there is a growing literature in recent years about statistical
downscaling in the continent (Bettolli and Penalba, 2018; Mutz et al., 2021; Sulca et al., 2021;
Solman et al., 2021; Olmo and Bettolli, 2022).

Statistical downscaling does not directly simulate the physical processes of the climate
systems. It relies on establishing statistical relationships between large-scale climate variables
(obtained from GCMs) and local-scale variables (obtained from in situ measurements). These
relationships are derived from historical observations (perfect prognosis (PP) approach) or
simulations (model output statistics (MOS) approach) and then applied to project future climate
conditions (Maraun and Widmann, 2018). Traditionally, in climate research, the PP approach has
been used, and it includes different methods (Maraun and Widmann, 2018), such as regression
models (also called the transfer function model), weather type methods, and analog and

resampling methods (Lee and Singh, 2019).

One of the statistical downscaling approaches that is less computationally expensive is
the model based on transfer functions. Research with statistical downscaling of precipitation
projections from CMIP6 to South America showed that the Quantile Delta Mapping (QDM) bias
correction technique, developed by Cannon et al. (2015), performed well in correcting the
systematic errors in the different quantiles of the probability distributions of the GCM raw
simulations, evidencing its ability to reproduce seasonal variability and extreme properties

(Ballarin et al., 2023).

With the QDM technique, it is possible to use data as reanalysis to interpolate the
historical projections to the reference dataset’s spatial resolution and, from transfer functions,
apply the same correction to future predictions. The QDM method has proved advantageous since
it preserves the model-projected relative changes and trends (i.e., if a model has a dry trend in a
specific region, it will be kept after the spatial disaggregation and bias correction) (Cannon et al.,

2015).
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Until now, only Ballarin et al. (2023) applied the QDM approach to CMIP6-GCMs in
South America. However, the present study introduces several distinctions from the former work.
While Ballarin et al. (2023) focus solely on Brazil, this research extends the analysis to the entire
South American continent, offering a broader perspective. Moreover, their study does not
examine the projected impacts on various aspects analyzed here (renewable energy, droughts,
changes in the rainy season etc.). Another distinction is the temporal scope since Ballarin et al.
(2023) limit their projections to the last three decades, and this study presents long-term
projections for the 21st century. These differences highlight this research’s broader scope and

relevance in assessing the future of renewable energy under a changing climate in South America.

Despite the growing urgency of renewable energy in South America, the region’s
literature on wind and solar energy is still relatively sparse, and few studies have used the latest
generation of climate models. Notwithstanding, previous works relied on raw CMIP6 outputs
(Almazroui et al., 2021; Arias et al., 2021; Ortega et al., 2021; Collazo et al., 2022; Dutta et al.,
2022; Medeiros and Oliveira, 2022; Zuluaga et al., 2022; Ha et al., 2023). Additionally, research
evaluating future changes in the South American monsoon lifecycle and the potential
complementarities among renewable energy resources in Brazil is lacking. Thus, this research
contributes by applying a novel approach to the national literature and seeks to bridge these gaps
by providing perspectives that can support those interested in optimizing the future management
of water resources and the expansion of wind and solar infrastructure in Brazil and, more broadly,

across South America.

Given this background, this study aims to (a) apply the QDM bias correction technique
and statistical downscaling to historical simulations and climate projections of precipitation,
surface wind, and global horizontal irradiance from a CMIP6 multi-model ensemble; (b) use the
bias-corrected data to generate intermediate-resolution (50 km) projections of precipitation,
wind, and solar energy potential across South America, with a particular focus on Brazil; and (c)
analyze the impacts of climate change on various aspects of renewable energy resources,
including hydrological droughts, changes in the South American monsoon system’s lifecycle,
wind power density, concentrated solar power, photovoltaic solar energy, and the

complementarities between these renewable resources.
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3. AIMS
3.1 General Aim

The general objective of this study is to analyze projected changes in climate and
renewable energy resources over South America, with a particular focus on Brazil, by applying
statistical downscaling to historical simulations and future climate projections from the Coupled
Model Intercomparison Project Phase 6 (CMIP6). The study investigates precipitation, wind
speed at 100 meters, wind power density at 100 meters, global horizontal irradiance (GHI),
concentrated solar power (CSP) output, photovoltaic (PV) potential, and the complementarity
between these resources under the SSP2-4.5 and SSP5-8.5 scenarios, across four future
timeframes (2020-2039, 2040-2059, 2060-2079, and 2080-2099), relative to the historical
baseline (1995-2014).

3.2 Specific Aims

The specific objectives of this research are organized into three thematic axes, each

associated with peer-reviewed scientific articles that comprise the core of this dissertation:
The specific objectives of this research include:
1) Assessment of hydrological droughts and the South American monsoon system
This objective aims to:

e Evaluate the frequency, duration, severity, and intensity of hydrological
droughts using the SPI-12 index based on statistically downscaled projections;
e Investigate projected changes in the South American monsoon system lifecycle,

particularly its onset, demise, and duration.

Associated articles:

o Assessment of precipitation and hydrological droughts in South America
through statistically downscaled CMIP6 projections (Climate, 2023)

o  South American monsoon lifecycle projected by statistical downscaling with

CMIP6-GCMs (Atmosphere, 2023)
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2) Evaluation of wind and solar energy potentials
This objective seeks to:

e Assess changes in wind speed and wind power density at 100 meters to estimate
future wind energy potential;
e Analyze projections of GHI, CSP output, and PV potential to evaluate the solar

energy resource base.
Associated articles:

o Assessment of the wind power density over South America simulated by CMIP6
models in the present and future climate (Climate Dynamics, 2024)

o Assessment of the solar energy potential over South America estimated by
CMIP6 models in the present and future climate (Journal of Environmental &
Earth Sciences, 2024)

3) Analysis of complementarity among renewable energy resources
This objective focuses on:

e Examining the spatiotemporal complementarity among key renewable resources
(precipitation, wind speed, and solar irradiance) to enhance integrated energy

strategies under climate change scenarios.
Associated article:

o Assessing remewable resources complementarity in South America with

statistically downscaled CMIP6 projections (manuscript in preparation)

In addition to these goals, this research also developed a climate-energy atlas and a
statistically downscaled dataset at 50 km spatial resolution, encompassing historical and future
projections of all analyzed variables for South America. These outputs support energy planning,

climate adaptation strategies, and scientific dissemination.
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Abstract: Drought events are critical environmental threats that yield several socioeconomic impacts.
Such effects are even more relevant for South America (SA) since different activities essential for the
continent, such as agriculture and energy generation, depend highly on water resources. Thus, this
study aimed to evaluate future changes in precipitation and hydrological drought occurrence in SA
through climate projections from eight global climate models (GCMs) of CMIP6. To this end, statistical
downscaling was applied to the projections obtained using the quantile delta mapping technique,
and the method proved to be efficient in reducing systematic biases and preserving GCMs’ trends.
For the following decades, the results show considerable and statistically significant reductions in
precipitation over most of SA, especially during the austral spring, with the most intense signal under
the SSP5-8.5 forcing scenario. Furthermore, GCMs showed mixed signals about projections of the
frequency and intensity of drought events. Still, they indicated agreement regarding the increased
duration and severity of events over the continent and a substantial proportion of moderate and
severe events over most of Brazil during the 21st century. These results can be helpful for better

management of water resources by decision-makers and energy planners.

Keywords: statistical downscaling; CMIP6; precipitation; drought; climate change; South America

1. Introduction

Climate change is undeniable, as is its attribution to anthropogenic greenhouse gas-
emitting activities, which have unequivocally intensified global warming, evidenced by
the 1.1 °C increase in global surface temperature from 2011 to 2020 relative to 1850-1900 [1].
Additionally, best estimates indicate that continued greenhouse gas emissions will cause
a 1.5 °C increase in the near term (2021-2040) [1]. Moreover, even if the countries fully
implement the commitments made in the Paris Agreement, global warming is expected
to exceed 2 °C by the end of the century [2,3]. The progressive warming will intensify
the global hydrological cycle so that compound heatwaves and droughts are projected to
become more frequent, including concurrent events in multiple locations [1].

Droughts are a natural phenomenon characterized by a continuous persistence of
precipitation deficit, which occurs in almost all climate zones, including those with high
Pprecipitation rates, such as Amazonia [4]. Prolonged periods of drought cause innumerable
damages, such as losses in agriculture and livestock, contamination of waters, reduction of
water availability for daily consumption and water energy generation, and environmental
risks of fires [5,6]. Due to climate change and increasing temperatures, droughts are
expected to increase in frequency and duration [7,8].

Studies with climate projections indicate an increased risk of extreme droughts in
different parts of the world, depending on the seasons and drought indicators analyzed.
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For example, considering North America, studies with climate projections of phases 5 and
6 of the Coupled Model Intercomparison Project (CMIP) show an increase in the duration
and frequency of droughts in the southeast [9], central and northern [10-14] United States,
and southwestern Canada [15]. Similarly, drought events are projected to intensify in parts
of Asia [11-14,16,17], Europe [11,18], Oceania [11,13,14,18], Africa [11,14,19], and South
America [11,13,14,18,20-25].

In South America (SA), climate change effects on droughts are evident in different
sectors, such as northeastern and southeastern Brazil, Amazonia, and the continent’s
southeast. The semi-arid Northeast of Brazil is one of the historically most vulnerable
regions to droughts [26], with several events recorded since the 16th century [26-28] and
numerous socioeconomic impacts, such as damage to agricultural production and livestock,
as well as loss of human life from hunger, malnutrition, disease, migrations to urban
centers, and losses in regional and national economies [27]. Southeastern Brazil (SEB)
has also experienced some of the worst droughts in recent decades, such as in 2001 [29],
2014/2015 [30-35], 2018 [6], and most recently, in 2020/2021 [36].

Several drought events have also occurred in Amazonia, accentuating forest fires,
affecting the region’s biota, and signaling the risk of a tipping point [37-43]. Additionally,
in the last decade, other Brazilian regions have also experienced severe droughts, such as the
2019/2020 droughts in the Brazilian Pantanal and Midwest [44-46] and the 2012/2013 and
2019/2020 droughts in southern Brazil [47,48]. Another South American region affected
by droughts is Southeastern South America (SESA), which covers northern Argentina,
Paraguay, Uruguay, and southern Brazil. The 2008/2009 drought in the region was among
the most severe in the last 50 years [49,50]. Additionally, several studies have shown an
increasing trend of warm days/nights [51-54] and the occurrence of dry spells [54,55] in
the region in the last decades.

Droughts are a complex and multiform phenomenon [35,36], and different quantita-
tive indicators allow for their assessment [56]. The Standardized Precipitation Index (SPI),
developed by McKee et al. [57], quantifies the rainfall deficit or excess on different time
scales. SPI on time scales greater than six months is employed to identify and characterize
hydrological droughts that cause reduced soil moisture levels, river flows, groundwater
recharge, and reservoir levels [56,58,59]. The SPI index proves advantageous because, be-
sides allowing for evaluating drought impacts on different hydrological cycle components
(using different time scales), it requires only rainfall data as input variables in the index
computation [58]. However, as SPI does not account for the temperature component, its
analysis disregards evapotranspiration processes, which play an essential role in the hydro-
logical cycle [56,58]. Despite its limitations, several studies have employed the SPI-12 index
(SPI index on a 12-month time scale) due to its simplicity of implementation to identify
hydrological droughts in SA [6,56,58,60—66].

In this context of climate research, global climate models (GCMs) are a primary tool
for investigating climate system elements [67]. A new generation of GCMSs from CMIP has
recently been available to the scientific community, comprising the sixth phase (CMIP6) of
the project’s expetiment. The CMIP6-GCMs present aspects of improvement over previous
generations, such as higher spatial resolution and better parameterization schemes of the
physical and biogeochemical processes of the climate system [68]. In addition, CMIP6
models employ the Scenario Model Intercomparison Project (ScenarioMIP), which provides
climate projections based on the latest greenhouse gas emission and land use scenarios, the
Shared Socioeconomic Pathways (S5Ps) [69]. SSPs characterize a more realistic socioeco-
nomic development by considering different social, economic, technological, and political
scenarios [70].

Despite their crucial role in climate research, GCMs have limitations due to their
coarse spatial resolution, which restricts their use in analyzing regional-scale processes and
impacts. In this framework, dynamical and statistical downscaling techniques address these
limitations of global models. Dynamical downscaling employs regional climate models
(RCMs) that use initial and boundary conditions provided by GCMs, while statistical
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downscaling determines relationships between large-scale atmospheric circulation factors
and local climate [71]. Dynamical downscaling is helpful for the analysis of local-scale
climate phenomena, but such a procedure requires high computational costs [72]. On
the other hand, statistical downscaling requires less computational effort and avoids the
propagation of systematic errors arising from GCMs [73].

Regarding SA, the literature focuses more on the dynamical approach of air temper-
ature, precipitation, and wind [74-84]. However, recent studies have also applied the
statistical method and demonstrated its competence in representing the spatial distribution
and extreme temperature and precipitation events [73,82,85-90]. Research with statistical
downscaling of precipitation projections from CMIP6 to SA showed that the quantile delta
mapping (QDM) bias correction technique, developed by Cannon et al. [91], performed well
in correcting the systematic errors in the different quantiles of the probability distributions
of the GCM raw simulations, evidencing its ability to reproduce seasonal variability and
extreme properties [90]. With the QDM technique, it is possible to use data as reanalysis to
interpolate the historical projections to the reference dataset’s spatial resolution and, from
transfer functions, apply the same correction to future predictions. The QDM method has
proved to be advantageous since it preserves the model-projected relative changes and
trends (i.e., if a model has a dry trend in a specific region, it will be kept after the spatial
disaggregation and bias correction) and corrects the systematic biases in the quantiles of
the modeled data with respect to the observations [91].

Given the background, this study aims to: (a) apply the QDM bias correction technique
and statistical downscaling to historical simulations and climate projections of precipitation
from a CMIP6 multi-model ensemble; (b) employ the bias-corrected estimates to present a
set of precipitation projections at intermediate resolution (50 km) in SA; and (c) employ the
bias-corrected projections and the SPI-12 index to identify the four types of hydrological
drought events (mild, moderate, severe, and extreme), and their aspects (frequency, dura-
tion, severity, intensity, and peak) in eight subdomains of SA. There is still a shortage of
studies analyzing hydrological droughts in SA with post-processed projections from the
CMIP6-GCMs, and this study intends to fill such a gap. In addition, this research can assist
decision-makers and energy planners in better future management of water resources on
the continent.

2, Materials and Methods
2.1. Study Area

The study area comprises the SA continent (Figure 1), located at latitudes 12° N-55° S.
Its extensive latitudinal coverage provides climate heterogeneity of tropical, subtropical,
and extratropical regions, as well as diverse geography that includes particular areas
such as the Andes Mountains, the Atacama Desert, the Amazon rainforest, and the semi-
arid Northeast of Brazil [92,93]. The South American monsoon system (SAMS) primarily
influences the central SA, with two well-defined seasons marked by the rainy season from
November to March and the dry season from May to September [92-94]. On the other
hand, the subtropical western portion of the continent concentrates its rainfall in the austral
winter months due to the passage of cold fronts and cutoff lows [92,93]. Still, the northern
portion of SA does not have a well-defined dry season, being strongly influenced by the
Intertropical Convergence Zone (ITCZ), with maximum rainfall in the austral autumn and
early winter [95], and being one of the wettest places in the globe [96].

The rectangles illustrated in Figure 1 indicate the subdomains selected (Table 1) to ana-
lyze hydrological drought events on the continent. We considered subdomain 8 (Patagonia)
because, in this region, the Andes have a lower height, while we did not perform analysis
for the other parts of the Cordillera due to uncertainties in the reference data [97].
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Figure 1. lllustration of the study area with elevation (m). Rectangles indicate subdomains selected for
the analysis of drought events. Source: United States Geological Survey, Earth Resources Observation
System (EROS) Center.

Table 1. Geographic coordinates of the subdomains selected for hydrological drought analysis.

Subdomain Area
1 5% N-5° 5 68° W-74° W
2 2.5°6-10° S 53° W-63° W
3 4.5% 5-11° § 36° W-45° W
4 11.5° 5-19.5° S 40° W47° W
lo] 11.5° 5-19.5° 5 48° W-57° W

20° 5-24.5° 5 41° W-53° W
25° §-35° 5 48.5° W-58° W
30° S-40° S 65° W-73° W

= "B =)

2.2. CMIP6-GCMs Selection

The study employed precipitation projections from eight CMIP6-GCMs, comprehend-
ing the historical period (1995-2014) and two greenhouse gas emission scenarios (S5P2-4.5
and SSP5-8.5) in the future period (2020-2099). The SSP2-4.5 scenario denotes a moderate
emission scenario, while SSP5-8.5 considers a high greenhouse gas emission context, repre-
senting a period with little effort to mitigate climate change effects [69]. The GCMs dataset
comprises precipitation projections every three hours provided on the Earth System Grid
Federation (ESGF) platform—available online: https:/ /esgfnode.llnl.gov/search/cmip6
(accessed on 26 January 2022).

At the early stage of this study (January 2022), we selected the models that best repre-
sented the South American climate in terms of precipitation and air temperature, which is
a response to atmospheric circulation. To choose the GCMs, we used the methodology of
Rupp et al. [98], whereby several metrics evaluate the best models based on regionally av-
eraged properties and large-scale patterns. Thus, the identification of the best-performing
models included the calculation of the following parameters with monthly data from
50 CMIP6-GCMs for different SA subdomains: (a) mean and standard deviation for each
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year (1995-2014); (b) spatial correlation calculated for each season (DJE, MAM, JJA, SON)
and year (1995-2014) with Pearson’s correlation coefficient; (¢) mean amplitude, defined as
the difference of the variables between January and July; (d) and a linear trend, calculated
for complete time series (rather than by seasons) using the method of least squares and
angular coefficients for the indication of a positive or negative trend.

Ranking the GCMs according to their performance is not trivial, as several statistical
metrics and seasonal seasons are evaluated. Therefore, we compiled all the information
by standardizing the metrics (giving equal weight/importance to each metric) to rank the
GCM s in terms of performance according to the methodology proposed by Rupp et al. [98].
Figure 2 illustrates that the best models are on the left-hand side (values closest to zero).
We could not necessarily select the best models shown in Figure 2 due to the absence
of hourly/daily data and/or projections in the ESGF database. Thus, by concurrently
analyzing the availability of high-frequency data and projections, the best models (indicated
with red bars) were selected for this study (Table 2). Furthermore, three selected GCMs (EC-
Earth3, IPSL-CM6A-LR, and MPI-ESM1-2-LR) were previously validated and performed
well in representing the SA climate [99]. Although a good simulation of the historical
period does not determine more accurate climate projections for the same model, it ensures
more reliable future estimates since the poor ability to simulate historical climate is likely
reflected in poorer future projections [100].

Mean of Overall Metrics
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Figure 2. Ranked models after applying the methodology of Rupp et al. [98], obtained with monthly
data from 50 CMIP6-GCMs for the historical period (1995-2014). Best performing models are located
on the left-hand side of the X-axis, and red bars indicate the models selected for the study.

Last, it is valid to mention that the ensemble composition included two models
(CMCC-CM2-SR5 and CMCC-ESM2) from the Fondazione Centro Euro-Mediterraneo sui
Cambiamenti Climatici (CMCC). Given their equal origin, there may be a higher likelihood
of shared biases or underlying assumptions, leading to correlated errors and limited
diversity within the ensemble. In this context, the “institutional democracy” approach
addresses these uncertainties by selecting one GCM from each modeling institute [101,102].
While this is an effective way to account for model dependence, it is worth noting that as
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institutes progressively copy or collaboratively develop models or components, there is no
guarantee that such an approach will continue to be efficient in future studies [103].

Table 2. Information on each CMIP6-GCM employed in the study.

Model

Resolution

(°“Lat % °Lon) Institute T ——

CMCC-CM2-SR5

CMCC-ESM2

EC-Earth3
GFDL-ESM4
IPSL-CM6A-LR
MIROC6
MPI-ESM1-2-LR
MRI-ESM2-0

1.25 x 0.94 LR Ceqﬂo EuFo—MeleeF raneo sul Lovato and Peano [104]
Cambiamenti Climatici

Fondazione Centro Euro-Mediterraneo sui

1.25 x 0.94 Cambiamenti Climatici Lovato et al. [105]
0.70 x 0.70 EC-Earth Consortium Dascher et al. [106]
1.25 x 1.00 Geophysical Fluid Dynamics Laboratory Krasting et al. [107]
250 x 1.26 Institut Pierre Simon Laplace Boucher et al. [108]
141 x 1.41 Japan Agency for Marine-Earth Science and Technology  Tatebe and Watanabe [109]
0.94 x 0.94 Max Planck Institute for Meteorology Wieners etal. [110]
113 % 1.13 Meteorological Research Institute Yukimoto et al. [111]

2.3. Reference Dataset

The study used precipitation analysis from the Climate Prediction Center (CPC) gauge-
based analysis of global daily precipitation [112] to validate the historical simulations of
the CMIP6-GCMs. For this, daily data from 1995 to 2014 were used, with 0.5° horizontal
resolution—available online: https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/
GAUGE_GLB/RT/ (accessed on 25 January 2022). CPC data proved adept at representing
average and seasonal precipitation patterns over most of SA [93] but presented uncertainties
in regions of complex topography, such as the Andes Mountains [97].

We point out that the information in the CMIP6 tutorials does not clarify the period
of daily precipitation accumulation. Precipitation data were obtained with a frequency
of three hours, and the daily accumulation followed the recommendations of the World
Meteorological Organization (WMO) [113] to avoid errors, such as comparing data with
different periods for the daily accumulation—that is, the rainfall for a given day is accumu-
lated from 1200 Z of the previous day to 1200 Z of the day in question. However, it is worth
noting that the CMIP6 models provide the accumulations at 0130, 0430 Z until completing
24 h. Thus, the accumulation was performed from 1330 Z to 1030 Z the following day to be
as close as possible to the WMO definition. Furthermore, CPC precipitation analysis also
accounts for the daily rainfall accumulated in the 1200 to 1200 Z interval.

2.4. Bias Correction and Statistical Downscaling

One way to overcome the limitations imposed by the coarse resolution of GCMs is
through statistical downscaling methods, which establish statistical relationships between
model outputs and reference data [114]. Statistical downscaling techniques are classified
into three types—transfer function or regression models, weather generators, and weather
typing [114}—and this study used transfer functions. This method was chosen due to its
simplicity of implementation and for preserving time series trends (for more details, see
Cannon et al. [91]). This methodology is also known as Bias Correction Statistical Downscaling
(BCSD).

This study used the BCSD method to downscale the simulations and projections of
CMIP6-GCMs. Bias correction was performed by applying the QDM technique [91] to
the historical simulations (1995-2014) and by applying the transfer functions to the future
projections (2020-2099). According to Cannon et al. [91], the QDM technique preserves the
model-projected trends and relative changes (e.g., if the GCM shows a dry trend in a given
region, that trend will be maintained after bias correction) and corrects systematic biases in
the quantiles of the modeled data relative to the reference one. Moreover, compared with
the quantile mapping technique, the QDM technique has proved advantageous because it
is less susceptible to problems such as inflating relative trends in extreme values [91].
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Before bias correction, spatial disaggregation was applied to the CMIP6-GCM outputs,
and the model data were downscaled to the 0.5° resolution as the CPC data with bilinear
interpolation. Several studies show that bilinear interpolation provides consistent estimates
by adjusting the spatially correlated behavior of the variable [90,115-122].

After spatial disaggregation, bias correction is applied using the QDM method. This
method follows three steps [91]: First, the trend is removed from all projected individual
quantiles. Next, the detrended quantiles are bias-corrected using the quantile mapping
technique. Finally, the projected changes are superimposed on the bias-corrected outputs.
Let 0 and p be the observed and projected data, whereas h and f are the historical and future
periods, respectively. The definition of the non-exceedance probability of the observed
(xh,0) and projected (Xh,p) historical and future (Xf’P} data is accounted for as:

Pep() = F(xip(®)

Prp(t) = F(xnp(t)) (1)

Pno(t) = Flxno(t))

where p and F denote the non-exceedance probability associated with a specific value in
time and the cumulative distribution function (CDF), respectively. The change factor, which
associates the historical simulation outputs with those of the future period, is calculated
with Equation (2):
2
i o (Pe®) | xp) o
Bl (pp®)  Fib(pep®)

where F~! denotes the inverse CDF and AM(t) is the multiplicative factor of change between
the simulated quantiles of the historical and future periods. Finally, the bias correction in
the future projections is obtained by applying the multiplicative relative change AM(1) to
the historical values with the corrected bias, according to Equation (3):

Rep(8) = BM(V)-Fp b (pep(®), )

The historical period (1995-2014) was used for the training set to adjust the future
projections (2020-2099) using the QDM algorithm. This time window was chosen due to
computational resources and to follow the same reference period used by the International
Panel on Climate Change (IPCC). The Python-based package xclin [123] was used to perform
the calculations.

2.5. Test of Statistical Significance for the Difference in Climatological Mean Values

To assess whether the differences in mean climatological values in the future period
(2020-2099) of the CMIP6-GCMs are statistically significant compared with the historical
period (1995-2014), we used the Student’s f-test. This test assumes the null hypothesis (Hp)
of no difference between the two datasets against the alternative hypothesis of a difference
between the two ensembles. The test was computed according to Equation (4):

O

where s; and sy, are the standard deviation values of the future and historical datasets,
respectively, and n comprises the number of values in each set. The associated degree of
freedom v is estimated as:
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2
2 2
5-3)
V= ﬁ' (5)
n?(n—1) + n2(n—1)

The test was performed using a significance level & of 5%. Thus, when the probability
value (p-value) found was less than 5%, the null hypothesis of no difference between the
two sets was rejected in favor of the alternative hypothesis, indicating statistical evidence
of the difference between the mean values of the two periods evaluated.

2.6. Standardized Precipitation Index (SPI)

The SPLindex, developed by McKee et al. [57], quantifies the rainfall deficit or excess
on different time scales, evaluating the intensity of dry and wet periods. The SPI-12 index
uses a time scale of 12 months. Besides identifying long-term rainfall patterns, SPI-12 can
also be associated with flows, reservoir levels, and groundwater anomalies, helping to
evaluate hydrological droughts [56,58]. More detailed information about the SPI calculation
can be found in Santos et al. [61] and Wilks [124].

As our results show that the SSP5-8.5 scenario presents the most significant changes,
the SPI-12 analysis was performed only under this scenario. Each bias-corrected CMIP6-
GCM calculated SPI-12, and the BSCD ensemble (the bias-corrected CMIP6 ensemble) index
was obtained by averaging the indices estimated by the individual models.

Drought starts when the SPI falls below zero and ends when it becomes positive [57].
In this work, we used the thresholds defined by McKee et al. [57] (Table 3) to select and
analyze all the drought events from mild to extreme categories. In addition, drought events
were analyzed based on five characteristics: frequency (number of drought events in a
period), duration (number of months between the first and last month of the event), severity
(absolute sum of all SPI values during the event), intensity (ratio between severity and
duration), and peak (largest absolute value of SPI recorded during the event).

Table 3. Drought events classification, adapted from McKee et al. [57].

SPI Values Drought Category
0to —0.99 Mild drought
-1.00to —1.49 Moderate drought
-150to -1.9 Severe drought

<-2.00 Extreme drought

3. Results and Discussion
3.1. Historical Simulations

The historical simulations (1995-2014) of precipitation obtained by the ensemble of
eight CMIP6-GCMs before (raw ensemble) and after applying statistical downscaling
(BCSD ensemble) are presented in Figure 3. Considering the austral summer (DJF), the
raw ensemble tends to overestimate precipitation over most of Brazil and the west coast
of SA (Figure 3(a5)). Contrarily, underestimates occur in northwest SA and north-central
Argentina. In addition, the overestimation of rainfall over the Andes is notable. During
summer, precipitation patterns exhibit a northwest-southeast orientation over the continent
due to the action of the South Atlantic Convergence Zone (SACZ) [93]. On average, the raw
ensemble represents the continental distribution of rainfall associated with the SACZ, but
it amplifies and shifts the core of maximum precipitation to the southeast and northeast
of SA.
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Figure 3. Seasonal climatology of precipitation (mm day!) in the historical period (1995-2014) ob-
tained by CPC (first left column), BCSD ensemble (CMIP6 ensemble with BCSD) (second left column),
raw ensemble (CMIP6 ensemble without BCSD) (middle column), and seasonal bias (mm day )
between the BCSD ensemble and CPC (second right column) and between the raw ensemble and
CPC (first right column).

The underestimation of precipitation during summer over northwestern SA and
northern Brazil is also seen in other studies with CMIP6 models [125-127], as well as
with CMIP5 models [128], which are associated with a less satisfactory representation
of the Intertropical Convergence Zone (ITCZ), arising from the models’ oversensitivity
to sea surface temperature (SST) and deficiency in simulating surface wind convergence.
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Although the CMIP6 models show considerable improvement in reproducing rainfall
magnitudes over SA relative to the CMIP5 models, the simulation of ITCZ position and
intensity is still deficient, which partially justifies the negative rainfall biases over northern
Brazil and northern SA [127]. The systematic underestimation of rainfall in the Amazon
Basin is due to an insufficient representation of different processes, such as cumulus
convection, biosphere-atmosphere interactions in the forest, soil moisture, and surface
processes, as well as a low coverage of rainfall stations in the region, which influences the
analysis of the magnitude and location of precipitation [129].

In addition, GCMs tend to produce overly intense precipitation over the Central
Andes in Bolivia, Peru, Ecuador, and southwestern Colombia due to excessive modeled
convection and lack of topographic representativeness. Validating the simulations in these
areas includes many uncertainties due to the scarcity of rainfall stations in mountainous
regions [125,130]. Historical simulations of the CMIP6 ensemble without bias correction
indicate better performance in reproducing precipitation patterns in SA during winter and
spring, reiterating previous results [127].

Considering the BCSD ensemble, one notices a significant reduction of biases across
the continent, especially on the west coast of SA and northeastern Brazil. Despite a better
representation of the intensity and location of rainfall maxima associated with the SACZ,
the ensemble still overestimates precipitation at the center of the continental SACZ, which
is mainly controlled by internal climate variability and has low or negligible predictability
associated with SST variations [131,132].

Similarly, during austral autumn (Figure 3(b4)), there is a marked reduction in the
ensemble systematic biases, and the errors concentrate in northern SA, portions of northern
and northeastern Brazil, northeastern Peru, central Brazil, and western Chaco. Considering
the rainfall biases north of 10° S obtained by the raw ensemble (Figure 3(b3)), BCSD adjusts
the spatial distribution of rainfall, providing a simulated field analogous to the observed
one, although with the persistence of larger overestimates in the far north of Peru and
Brazil (Figure 3(b2)).

In the winter and spring seasons, the reduction in raw ensemble’s systematic errors
in most of SA is notable, mainly on the continent’s west coast and portions of Colombia
and Venezuela (Figure 3(c4,d4)). In winter, rainfall overestimates concentrate north of the
equator, partially justified by the less satisfactory representation of the ITCZ by GCMs,
while in spring, the positive precipitation bias in western Amazonia persists even after
correction. In summary, we conclude that BCSD efficiently reduces the systematic errors of
GCMs and ensures more reliable projections about future climate conditions. In general,
the biases that persist after applying the correction occur in problematic sectors for global
climate modeling, such as the tropical region and continental portion of the SACZ.

3.2. BCSD Ensemble Projections of Precipitation under the SSP2-4.5 and SSP5-8.5
Forcing Scenarios

Figures 4 and 5 present the precipitation climate projections obtained by the BCSD
ensemble under the SSP2-4.5 and SSP5-8.5 forcing scenarios, respectively. To complement
the seasonal analyses, Figure S1 in the Supplementary Material presents the mean annual
projections of precipitation change relative to the historical period for both scenarios used.
Under the SSP2-4.5 scenario, for summer and fall, BCSD ensemble projects increase by
up to 10% over much of Brazil for the coming decades. From 2080, up to 20% growth is
projected in Brazil’s southeastern and northeastern sectors. In contrast, up to 20% reductions
are projected in the extreme north of SA, with their sign diminished by the end of the
21st century.
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Figure 4. Seasonal differences of precipitation (%) between the future (2020-2039, 2040-2059, 2060-2079,
2080-2099) and historical period (1995-2014), projected by the BCSD ensemble under the SSP2-4.5
forcing scenario. Hatched areas indicate statistical significance at a 95% confidence level.

In the winter season (Figure 4(c1—c4)), the BCSD ensemble projects more expressive
reductions starting in 2040, with regions of maximum decrease (up to 50%) beginning in
2080 in the central-western and northeastern Brazil sectors. In the spring (Figure 4(d1-d4)),
the BCSD ensemble projects a significant reduction in rainfall, intensified after 2060, with
reductions above 20% in large parts of central and northeastern Brazil. The results obtained
here partially agree with those of other studies that used projections from the CMIP5
and CMIP6 models. Under the RCP4.5 forcing scenario, mean annual patterns from the
ensemble of 26 CMIP5 models indicate decreases of up to 150 mm year ! in the far north
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of SA, decreases in annual rainfall over much of central SA, a slight increase over isolated
portions of Northeast Brazil, and larger increases over southern Brazil [133].
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Figure 5. Seasonal differences of precipitation (%) between the future (2020-2039, 2040-2059, 2060-2079,
2080-2099) and historical period (1995-2014), projected by the BCSD ensemble under the SSP5-8.5
forcing scenario. Hatched areas indicate statistical significance at a 95% confidence level.

Similarly, the CMIP5 ensemble indicates increased rainfall over southeastern SA and
reduced rainfall over Amazonia and northern SA during the summers of 2050-2080 [23].
In winter, increased precipitation is also seen over western SA, extending from Ecuador
to Argentina [23], a pattern analogous to that found here. Additionally, an ensemble
composed of 38 CMIP6-GMCs projects increased precipitation (~0.3 mm day ') over
Brazil’s Northeast and South sectors during the summers of 2040-2059 and a reduction
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of the same magnitude over nearly all of SA during the winter [125]. For the period 2080~
2099, projections show even wetter (drier) conditions in southern Brazil (Amazonas and
northern SA) during summer and intensified rainfall reduction across the continent during
winter [125]. On the other hand, a study with the global Had GEM2-ES model nested with
the Eta regional model under the RCP4.5 forcing scenario shows a projection of increased
precipitation over most of the Amazon Basin, southern Brazil, and the northern portion
of the coastal Northeast of Brazil, as well as decreased rainfall over much of the Midwest,
Southeast, and central Northeast regions of Brazil [134]. We stress that the similarities and
differences between the results of the studies are due to factors such as different models
used, emission scenarios employed, reference periods chosen, and validation data.

Considering the SSP5-8.5 emission scenario (Figure 5), spatial patterns of projected
seasonal change in precipitation are similar to those obtained for the SSP2-4.5 scenario
but with the most intense sign of change. During summer (Figure 5(al-a4)), an average
increase of 10% is projected over most of Brazil and Argentina, and the growth intensifies
after 2060, principally over portions of northeastern Brazil and central-southern Argentina.
The changes in fall (Figure 5(b1-b4)) are similar to the SSP2-4.5 scenario but indicate more
intense precipitation increases in the Bahia state (Brazil), southern Brazil, central-eastern
Argentina, and the central Andes.

In winter (Figure 5(c1-c4)), the BCSD ensemble projects rainfall a decrease over much
of central Brazil and Bolivia, extending into northern Argentina and southeastern, north-
eastern, and northern Brazil. From 2060 onwards, the BCSD ensemble shows up to 50%
decreases in the Midwest and coastal Northeast areas. In contrast, a substantial rainfall
increase for Brazil's southeast and southern coasts is observed from 2080 onward. In spring
(Figure 5(d1-d4)), the projections indicate more drastic changes, with decreases of more
than 10% over most of Brazil and northern SA, with more intense reductions (up to 50%)
over the northern portion of the coastal Northeast of Brazil. During this season, projected
increases in precipitation occur in isolated regions, such as the coasts of Peru and Ecuador
and northern Chile.

The results agree with those of Ruffato-Ferreira et al. [134], in which there is a trend
of increasing water scarcity, mainly in central Brazil, and a progressive increase in water
availability in the southern and southeastern Atlantic basins, favoring southern Brazil. In
addition, the Sao Francisco River Basin is the most vulnerable in the maximum emission
scenario, accentuating water scarcity in the Northeast of Brazil. Similarly, CMIP5 projections
indicate increases of about 100 mm year~! by the end of the 21st century in southern Brazil
and parts of Peru, Ecuador, Colombia, and Venezuela. In comparison, areas between
southern Chile and Argentina and the far north of SA may experience reductions of up to
150 mm year™! [133].

The higher severity of precipitation reductions in SA under the SSP5-8.5 scenario was
also obtained by CMIP5 models nested with different regional climate models [23,24,135].
Among the possible causes for the dry conditions projected for Amazonia and northern
SA is the weakening of the northeast trade winds at the end of the 21st century, inducing a
decrease in moisture transport from the ocean to the continent [23,72]. Additionally, studies
with CMIP6-GCMs under the SSP5-8.5 forcing scenario also provide projections of expres-
sive precipitation reduction over much of the continent, mainly in the Midwest, Southeast,
Northeast, and North of Brazil and northern SA, with decreases of up to 1.2 mm day
in the most affected regions [125,127]. On the other hand, SESA and southern Brazil will
likely experience higher rainfall volumes in the coming decades, exposing these regions
to the progressive frequency of extreme daily precipitation events and an increase in the
number of consecutive wet days [23].

Analyses of projected changes in rainfall with GCMs from CMIP3, CMIP5, and CMIP6
over Brazil show that the projected signal depends on the CMIP generation considered,
except for southern Brazil, where an increase is seen in all cases [136]. While CMIP3 projects
an increase in rainfall in northern Brazil (especially in the western portion), CMIP5 and
CMIP6 models project a reduction. In the Northeast of Brazil, the projections are also
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divergent among the CMIP generations, with CMIP5 indicating an increase in rainfall
throughout the territory. At the same time, CMIP3 and CMIP6 project an increase (reduc-
tion) in rainfall in the region’s northern (southern) sector. In the Midwest and Southeast
regions, the sign depends on the family of CMIP used, with increased precipitation pro-
jected by CMIP5 and decreased rainfall estimated by CMIP3 and CMIP6. In summary,
multi-model ensembles show that CMIP3 most accurately represents precipitation extremes
in northeastern Brazil, while CMIP5 performs best for the Midwest, and CMIP6 provides
the most accurate projections for the remaining Brazilian regions [136].

In this context of uncertainties, it is relevant to highlight some limitations of this
study. An important aspect to consider is the need to analyze potential changes in bias
and its propagation to future climates. Buser et al. [137] have demonstrated that different
assumptions about these biases (considering time-dependent model biases, which can be
either additive or multiplicative) can lead to substantially discrepant estimates of future
conditions, particularly for the summer. Similarly, Blazquez and Solman [138] verified that
models with higher warm biases and more clouds in both central Argentina and northeast
Brazil might drive the wet and warm biases in the regions, especially during the summer.
This way, the uncertainty in the intricate relationship between bias (which may not be
stationary) and mean state poses significant challenges in accurately projecting future
climate scenarios. A better comprehension of bias behavior can aid in a better interpretation
of climate change signals.

Moreover, we did not investigate the spatial aspects of systematic errors. In this respect,
Arisido et al. [139] evaluated systematic errors in coupled climate models by considering
their spatial and temporal relationships and providing estimates of the associated uncertain-
ties through posterior distributions. Their findings revealed a considerable warm bias in the
Angola-Benguela front region, and the posterior analysis showed that both the estimated
bias and its associated uncertainty changed over time.

Given the study constraints, we recommend caution for energy planning with the
projections analyzed here. More robust evaluations should also consider the vegetation
of different biomes since it plays a crucial role in the water balance and greater detail of
the projected scenarios of land use and land cover changes. Furthermore, intrinsic to the
process of climate modeling, the uncertainties and inaccuracies associated with different
models limit a greater assertiveness and require pondering in decision-making based on
the projections.

3.3. Temporal Series of the BCSD Ensemble SPI-12 Index under the SSP5-8.5 Forcing Scenario

Figure 6 shows the SPI-12 temporal series (2020-2099) and the annual precipitation
anomalies (in percent) relative to 1995-2014 provided by the BCSD ensemble under the
SSP5-8.5 emission scenario for eight SA subdomains. The SPI-12 index presented here
is obtained by averaging the indices calculated for each projection. Thus, the numbers
of hydrological drought events and classes reported here refer to the estimates obtained
from the average of all SPI-12 values projected by each model individually. Therefore, the
projections are based on the ensemble mean, biased by smoothing internal /naturally forced
variability. Additionally, Figures 52 and 53 in the Supplementary Materials present the SPI-
12 projections and the classification of hydrological drought events provided individually
by each ensemble member. In R1 (northwestern Amazonia), 31 drought episodes were
identified between 2020-2099, all belonging to the mild drought category. The longest
episode occurs from 07 /2086 to 09/2088, totaling 37 months, followed by the episode from
06/2065 to 05/2068 (36 months) with a severity of 10.02. In addition, other long-lasting
drought episodes occur from 11/2044 to 08/2047 and from 08/2049 to 05/2052 (34 months
each). In general, negative (positive) precipitation anomalies accompany lower (higher)
SPI-12 values.
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Figure 6. Temporal series (2020-2099) of the SPI-12 index and mean annual precipitation anomalies

(black dotted line) relative to 1995-2014 (in percent) projected by the BCSD ensemble under the

S5P5-8.5 scenario for eight SA subdomains ((a-h), Figure 1). Red (blue) bars indicate SPI-12 values

below (above) zero.
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For R2 (central Amazonia), 30 drought episodes were identified in the period 2020-2099,
categorized as mild droughts, and 56% of the episodes (17 cases) have a duration of 10 months
or longer. The longest episode occurs from 03,/2061 to 11/2065 (57 months), with a severity
of 13.89. Other longer episodes occur from 12/2085 to 02,/2089 (39 months), from 04/2039
to 08/2041 (29 months), and from 10/2073 to 12/2075 (27 months), which also indicates the
largest negative precipitation anomaly in the period (~—17%).

Although different droughts have occurred in Amazonia during El Nifio-Southern
Oscillation (ENSO) events, SST anomalies in the tropical North Atlantic (TNA) also play an
important role in the region’s rainfall regime [4,37,40,140,141]. The anomalous warming
in the TNA is associated with the northward displacement of the ITCZ, changes in the
north-south divergent circulation, and weakening of the trade winds and moisture flux
from the tropical Atlantic, inducing a reduction of rainfall in the southern, northern, and
eastern sectors of Amazonia [4,37,141]. Furthermore, ENSQO events are related to anomalies
in the east-west Walker circulation, with convection over the central Pacific and subsidence
over eastern and central Amazonia [4,140,141].

In general, drought events related to warm SST anomalies in the TNA show a north-
south gradient with drier (wetter) conditions in southern (northern) Amazonia, while
droughts linked to ENSO events show a southwest-northeast gradient with drier conditions
in northeastern Amazonia [141]. However, overlapping effects of both teleconnection
mechanisms also affect the region, such as the 2010 drought associated with successive
ENSO episodes during the austral summer and the warmer TNA during the austral autumn
and winter [37]. Similarly, the severe drought of 20152016 was associated with intense
warm anomalies in the central Pacific and TNA, with marked effects in northeastern
Amazonia [142].

Considering the occurrence of drought events in 2015-2100 relative to the 1850-2014
period under the SSP5-8.5 scenario, Wang et al. [14] found an increase in the frequency of
droughts in northern SA during the 21st century, as well as more prolonged droughts and
more than 50% increase in the extent of areas affected. On the other hand, the variability of
drought-related statistical results provided by CMIP6 models is greater in the tropics than
in other latitudinal zones, implying that GCMs need improvement in capturing drought-
causing patterns in equatorial regions [7]. Furthermore, models from CMIP5 and CMIP6
indicate divergence in rainfall projections over the area, and models from CMIP6 show
no improvement in simulating total precipitation and consecutive dry days relative to the
previous generation of CMIP [143].

In R3 (northern sector of Northeast Brazil), 31 drought episodes have been identified
in 20202099, all belonging to the mild drought category. About 61% of the episodes
(19 events) present a duration equal to or longer than 10 months. The longest-lasting
hydrological drought episode occurs from 11/2027 to 12/2032 (62 months), followed by the
episodes from 01/2041 to 02/2044 (38 months) and 12/2034 to 12/2037 (37 months). In R4
(central sector of Northeast Brazil), 32 hydrological drought episodes have been counted
in 2020-2099, all classified as mild droughts. About 72% of the episodes (23 cases) are
10 months or longer. Four longer-lasting episodes are obtained from 01/2035 to 12,/2040
(72 months), from 11/2026 to 11/2030 (49 months), from 01/2067 to 12/2069 (36 months),
and from 12/2085 to 02/2088 (27 months). Our results corroborate previous analyses
since CMIP6 projections suggest an increase in the number of dry days in Northeast Brazil
(mainly in DJF and MAM), with an estimated increase of up to 8.0 and 14.7% in the near
(2016-2040) and far (2076-2100) future, respectively, under the SSP5-8.5 scenario [8].

Precipitation in the Northeast of Brazil is marked by interannual variability, and
drought events are attributed to ENSO and the anomalously northern position of the ITCZ,
resulting from the warmer TNA [12,37,64,141]. However, extratropical variability modes
also influence rainfall distribution in the region, as analyses from 1980-2009 concluded
that drought events in this period showed annular patterns in both hemispheres (South
Annular Mode and North Annular Mode) well configured during DJF (pre-rainy season in
the region), both in years with and without ENSO [144].
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For R5 (Midwest region of Brazil), 31 drought episodes have been identified, all
classified as mild droughts, with the most extended episode from 11/2026 to 02/2031
(52 months), followed by other long-lasting events from 02/2043 to 10/2046 (45 months),
and from 10/20635 to 11/2038 (38 months). About 61% of the drought episodes (19 cases)
are 10 months or longer. Marengo et al. [46] report no evident direct relationship between
drought events in the region and SST anomalies in the Pacific and Atlantic Oceans. While
the 2019-2020 drought was associated with anomalous warming in TNA, earlier events
occurred with simultaneous warming of the northern tropical and equatorial Pacific and
cooling of the TNA. Overall, the authors conclude that droughts in the region may be
triggered by warmer SSTs in the North Atlantic and North Pacific (which promote the
northward displacement of the ITCZ and reduce precipitation in southern Amazonia and
the Midwest), which reduce moisture transport from Amazonia to the region. However,
regional factors, such as water balance and scil moisture, influence the sector’s interannual
seasonality of droughts and floods. In this context, there is an increasing tendency in the
water deficit in deforested regions due to the expansion of agriculture and cattle ranching,
contributing to local warming and reduced precipitation [46].

In R6 (Southeast region of Brazil), 33 drought episodes have been counted in the period
2020-2099, all belonging to the mild drought category, with the longest-lasting episode
from 04/2020 to 01/2026 (70 months), followed by episodes with 61 months (from 12 /2035
to 12/2040) and 23 months (11/2032 to 09/2034). Approximately 60% of projected drought
episodes are 10 months or longer. Analyses of SPI-1 and SPI-12 in the north and northwest
areas of the Rio de Janeiro state for the 1967-2013 period indicated a higher occurrence of
events in the moderately and extremely dry categories, as well as a higher frequency of
droughts in the two regions of the state during ENSO cycles in both phases of the Pacific
Decadal Oscillation [62]. Analyses of drought events in the Parana River Basin showed that
hydrological droughts in the 1981-2021 period were the most severe and intense [33].

Furthermore, studies show that the severe drought of 2014-2015 was associated with
anomalous warming in the western tropical Pacific that initiated a wave train along the
South Pacific, which in turn resulted in anomalous anticyclonic circulation in the Southwest
Atlantic, expanding the west flank of the South Atlantic Subtropical Anticyclone (SASA) and
restricting the entry of low-pressure systems into southeastern Brazil [30,32]. Additionally,
analyses of summer droughts during 1961-2010 in the Sao Paulo state show a prevalence
of anomalous subsidence of the Hadley cell’s descending branch and reduced moisture
convergence anomaly associated with upper-level convergence and lower-level divergence,
inhibiting convective activity in the region [33].

In R7 (southern Brazil and Uruguay region), 29 drought episodes have been computed,
all categorized as mild droughts, of which 62% (18 episodes) have a duration of 10 months
or longer. The longest drought episode refers to the period from 01,/2022 to 01/2028
(73 months), followed by cases of 41 months (12/2032 to 04/2036) and 39 months (08/2036
to 10/2039). Many of the droughts that have occurred in the region are linked to the cold
phase of ENSO (La Nifia), but other factors also contribute to the onset and intensification
of droughts in the sector, such as the development of atmospheric blockings in the South
Pacific, warmer SST anomalies in the TNA occurring concurrently with La Nifia, as well as
more regional and local aspects, such as reduced moisture transport to the region caused by
deforestation in Amazonia [49,50,145,146]. Attribution study infers that the rainfall deficit
occurring in the southern part of Brazil, Argentina, and Uruguay since 2019 is not only
partially induced by the action of La Nina but also caused by higher temperatures that
reduce water availability in the region, indicating that although the decrease in rainfall is
associated with natural climate variability, the consequences of drought are becoming more
severe due to increasing temperatures [146].

Finally, in R8 (western Patagonia), 40 drought episodes have identified in 2020-2099,
all classified as mild droughts, of which 52.5% (21 cases) have a duration of 10 months or
more. The longest-lasting episode occurs from 06 /2050 to 07,/2053 (38 months), followed by
episodes of 32 months (01/2076 to 08/2078) and 28 months (09/2066 to 12/2068). This sector
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has experienced intense droughts recently [147], substantially affecting socio-economic
activities in the region.

We emphasize that explaining the physical mechanisms associated with drought events
in different sectors of SA is not trivial, as each region responds differently to the various
teleconnection mechanisms. Such a purpose is beyond the scope of this study, and related
information can be found in the extensive literature available. For example, an overview of
the impacts of teleconnection patterns on SA is discussed by Reboita etal. [141]. Additionally,
the specificity of physical mechanisms associated with different drought events in sectors of
SA is argued in Marengo et al. [22,26-28], Marengo and Espinoza [37], and Oliveira-Junior
et al. [62] (Northeast Brazil and Amazonia), and in Coelho et al. [32,35], Abatan et al. [33],
and Freitas et al. [56,58] (Southeast Region and Parana Basin).

The BCSD ensemble shows that all SA subdomains analyzed are prone to drought
episodes during the 21st century. Although the ensemble projects predominantly mild
droughts due to smoothing the most extreme projections, a considerable proportion of
episodes last longer than 10 months. Additionally, the individual SPI-12 projections and
the classification of hydrological drought events identified by each GCM demonstrate that
all models project substantial proportions of moderate, severe, and extreme drought events
(see Supplementary Materials). The significant occurrence of longer hydrological drought
episodes corroborates analyses previously performed with CMIP6 models that indicate an
increase in event duration during the 21st century under the SSP5-8.5 scenario in SA and a
higher frequency of longer-lasting events [14].

3.4. Projections of Drought Parameters by the Bias-Corrected CMIP6-GCMs and BCSD Ensemble

Figures 7 and 8 show the drought parameters projected by the eight bias-corrected
CMIP6-GCMs, as well as by CPC (for the historical period only) and BCSD ensemble under
the S5P5-8.5 scenario. It is worth noting that the drought events and parameters reported
here were obtained from the individual projections yielded by each CMIP6-GCM used.
The Supplementary Materials present more information regarding the SPI-12 index and
different hydrological drought classes projected by each CMIP6-GCM.

For R1, of the 301 episodes identified by all datasets (including all GCMs and the
ensemble mean), 72% (218 cases) belong to the mild drought category, 16% (48 cases)
correspond to the moderate drought class, 9% (28 cases) are of severe drought events,
and 2% (7 cases) belong to the extreme drought category. Moreover, only three GCMs
(CMCC-CM2-SR5, CMCC-ESM2, and MPI-ESM1-2-LR) indicate a slight increase in the
average number of drought episodes in the 2020-2099 relative to the historical period,
while the IPSL-CM6A-LR model and BCSD ensemble suggest a reduction of up to 27% and
23%, respectively.

On the other hand, seven of the nine datasets show an increase in the duration of
drought episodes in 2020-2099 relative to 1996-2014. The IPSL-CM6A-LR and EC-Earth3
models indicate an increase of 47% and 32% in the duration (in months) of the events,
respectively, while the BCSD ensemble provides an average increase of 25%. Similarly,
most GCMs (and the BCSD ensemble) converge on increasing severity of drought episodes
in the 21st century, with the IPSL-CM6A-LR model and the BCSD ensemble indicating
increases of 51% and 40%, respectively. Regarding the intensity and peak parameters,
GCMs show mixed signals, and the MRI-ESM2-0 and EC-Earth3 models show 12% and
18% increases in intensity and peak, respectively. In general, in this region, all GCMs
overestimate the number of drought episodes over the historical period, and the GFDL-
ESM4 and IPSL-CM6A-LR models show the largest range of parameter estimates for the
2020-2099 period.

36



W‘/ 4 — Assessment of precipitation and hydrological droughts in South America
S N through statistically downscaled CMIP6 projections

Climate 2023, 11, 166 18 of 29

has experienced intense droughts recently [147], substantially affecting socio-economic
activities in the region.

We emphasize that explaining the physical mechanisms associated with drought events
in different sectors of SA is not trivial, as each region responds differently to the various
teleconnection mechanisms. Such a purpose is beyond the scope of this study, and related
information can be found in the extensive literature available. For example, an overview of
the impacts of teleconnection patterns on SA is discussed by Reboita etal. [141]. Additionally,
the specificity of physical mechanisms associated with different drought events in sectors of
SA is argued in Marengo et al. [22,26-28], Marengo and Espinoza [37], and Oliveira-Junior
et al. [62] (Northeast Brazil and Amazonia), and in Coelho et al. [32,35], Abatan et al. [33],
and Freitas et al. [56,58] (Southeast Region and Parana Basin).

The BCSD ensemble shows that all SA subdomains analyzed are prone to drought
episodes during the 21st century. Although the ensemble projects predominantly mild
droughts due to smoothing the most extreme projections, a considerable proportion of
episodes last longer than 10 months. Additionally, the individual SPI-12 projections and
the classification of hydrological drought events identified by each GCM demonstrate that
all models project substantial proportions of moderate, severe, and extreme drought events
(see Supplementary Materials). The significant occurrence of longer hydrological drought
episodes corroborates analyses previously performed with CMIP6 models that indicate an
increase in event duration during the 21st century under the SSP5-8.5 scenario in SA and a
higher frequency of longer-lasting events [14].

3.4. Projections of Drought Parameters by the Bias-Corrected CMIP6-GCMs and BCSD Ensemble

Figures 7 and 8 show the drought parameters projected by the eight bias-corrected
CMIP6-GCMs, as well as by CPC (for the historical period only) and BCSD ensemble under
the S5P5-8.5 scenario. It is worth noting that the drought events and parameters reported
here were obtained from the individual projections yielded by each CMIP6-GCM used.
The Supplementary Materials present more information regarding the SPI-12 index and
different hydrological drought classes projected by each CMIP6-GCM.

For R1, of the 301 episodes identified by all datasets (including all GCMs and the
ensemble mean), 72% (218 cases) belong to the mild drought category, 16% (48 cases)
correspond to the moderate drought class, 9% (28 cases) are of severe drought events,
and 2% (7 cases) belong to the extreme drought category. Moreover, only three GCMs
(CMCC-CM2-SR5, CMCC-ESM2, and MPI-ESM1-2-LR) indicate a slight increase in the
average number of drought episodes in the 2020-2099 relative to the historical period,
while the IPSL-CM6A-LR model and BCSD ensemble suggest a reduction of up to 27% and
23%, respectively.

On the other hand, seven of the nine datasets show an increase in the duration of
drought episodes in 2020-2099 relative to 1996-2014. The IPSL-CM6A-LR and EC-Earth3
models indicate an increase of 47% and 32% in the duration (in months) of the events,
respectively, while the BCSD ensemble provides an average increase of 25%. Similarly,
most GCMs (and the BCSD ensemble) converge on increasing severity of drought episodes
in the 21st century, with the IPSL-CM6A-LR model and the BCSD ensemble indicating
increases of 51% and 40%, respectively. Regarding the intensity and peak parameters,
GCMs show mixed signals, and the MRI-ESM2-0 and EC-Earth3 models show 12% and
18% increases in intensity and peak, respectively. In general, in this region, all GCMs
overestimate the number of drought episodes over the historical period, and the GFDL-
ESM4 and IPSL-CM6A-LR models show the largest range of parameter estimates for the
2020-2099 period.
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Figure 7. Heatmaps of drought frequency (a) and duration (b) projected by the bias-corrected
CMIP6-GCMs and BCSD ensemble under the SSP5-8.5 scenario for eight subdomains of SA (R1-R8,
Figure 1).

In R2, of the 252 episodes identified by all datasets, 65% (163 cases) correspond to the
mild drought class, 17% (43 cases) to moderate drought events, 12% (30 cases) refer to severe
drought events, and 6% (16 cases) are of extreme drought events. Additionally, about 70%
of the datasets converge to a growing number of drought episodes in the coming decades
relative to 1996-2014, with the MPI-ESM1-2-LR and MRI-ESM2-0 models indicating an
average increase of up to 45% and 38%, respectively. In addition, half of the datasets
show an increase in drought duration in the 21st century, with the CMCC-CM2-SR5 model
providing an average increase of up to 50%. Similarly, this model projects an average
increase of 24% in the severity of drought episodes. For the intensity and peak parameters,
the GCMs show mixed signals, with the EC-Earth3 model providing an average increase
of up to 19% in the magnitude of both parameters. In general, in this region, the GCMs
perform better in representing drought episodes during the historical period, with the
CMCC-ESM2 and GFDL-ESM4 models providing the same number of episodes obtained
by CPC.

In R3, 245 drought episodes have been identified by the datasets, of which 64%
(156 cases) correspond to mild drought episodes, 23% (56 cases) are moderate droughts,
9% (21 cases) are severe drought events, and 5% (12 cases) are extreme drought events. In
this region, half of the datasets project an increase in the frequency of drought episodes
in the 2020-2099 period (relative to 1996-2014), and half show a decrease. CMCC-ESM2
model indicates an average reduction of up to 47% in the number of episodes, but the
MIROC6 model shows an average increase of up to 33%. Contrarily, only two GCMs
(GFDL-ESM4 and IPSL-CM6A-LR) provide a reduction in episode duration, while all the
others project increase during the following decades. MRI-ESM2-0 and CMCC-ESM2 yield
average increases in the duration of drought episodes of up to 44% and 100%, respectively.
The same models also provide the largest average increases in severity, corresponding to
44% and 168% (by MRI-ESM2-0 and CMCC-ESM2, respectively). As for the other regions,
the intensity and peak projections show mixed signals, with the CMCC-ESM2 model
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indicating a 44% increase in the average peak magnitude of episodes in 2020-2099, while
the EC-Earth3 model shows a 34% reduction.
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Figure 8. Heatmaps of drought severity (a), intensity (b), and peak (c) projected by the bias-corrected
CMIP6-GCMs and BCSD ensemble under the SSP5-8.5 scenario for eight subdomains of SA (R1-R8,
Figure 1).
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For R4, 267 drought episodes have been identified by all datasets, of which 58%
(156 cases) are classified as mild droughts, 21% (57 cases) as moderate droughts, 11%
(29 cases) as severe droughts, and 9% (25 cases) as extreme droughts. In this sector, GCMs
show divergent projections about the frequency of drought episodes in 2020-2099. While
the IPSL-CM6A-LR model projects an average increase of up to 50% in frequency, the MPI-
ESM1-2-LR model estimates an average reduction of up to 43%. However, models converge
about the increasing duration over the coming decades, with only three GCMs projecting
reductions (CMCC-ESM2, IPSL-CM6A-LR, and MRI-ESM2-0) and the MPI-ESM1-2-LR
model indicating an average increase of up to 61%. Similarly, GCMS are more homogenous
concerning increasing severity, with the MPI-ESM1-2-LR model providing an average
increase of up to 100%. While GCMs project mixed signals about changes in intensity,
projections of peak changes are more concordant, with most models indicating an increase.
In this case, the MIROC6 model projects an average increase of up to 37% in peak episodes
over the coming decades.

In R5, all datasets total 277 drought episodes, of which 64% (176 cases) correspond
to the mild drought class, 21% (58 cases) are moderate drought events, 11% (31 cases)
are severe drought events, and 4% (12 cases) are extreme drought events. In this region,
more than half of the datasets project an increasing frequency in drought episodes in
2020-2099, with the GFDL-ESM4 model indicating an average increase of up to 63%, while
the MPI-ESM1-2-LR model projects an average reduction of up to 46%. Similarly, the same
proportion of models projects an increase in episode duration over the coming decades,
with the CMCC-ESM2 and MPI-ESM1-2-LR models providing average increases of up to
40% and 90%, respectively.

Regarding severity, only three GCMs project a reduction (EC-Earth3, MIROC6, and
GFDL-ESM4), and the MPI-ESM1-2-LR model estimates an average increase of up to
106%. For the intensity and peak parameters, the signals provided are heterogeneous,
with projections of change in intensity ranging from —32% (by EC-Earth3) to 34% (by
CMCC-CM2-5R5) and amplitude of change in peak from —17% (by MRI-ESM2-0) to 21%
(by IPSL-CM6A-LR).

For Ré, of the 324 episodes identified by the datasets, 70% (227 cases) are classified as
mild droughts, 16% (51 cases) as moderate droughts, 12% (38 cases) as severe droughts, and
2% (8 cases) as extreme droughts. In this sector, half of the ensembles project a reduction
in the frequency of drought episodes (with the EC-Earth3 model providing an average
reduction of up to 21%). Inversely, another half suggests an increase (with the CMCC-CM2-
SR5 model projecting an average increase of up to 32%). Regarding episode duration in
the 20202099 period, only two GCMs project a reduction (CMCC-CM2-SR5 and CMCC-
ESM2), while the MIROC6 and EC-Earth3 models provide an average increase of 29% and
37%, respectively. Likewise, only three GCMs indicate a reduction in severity (CMCC-
CM2-5R5, CMCC-ESM2, and MPI-ESM1-2-LR), while the IPSL-CM6A-LR and EC-Earth3
models project an average increase of 27% and 70%, respectively. Of the same, only the
models CMCC-CM2-SR5 and MPI-ESM1-2-LR project a reduction in the intensity of drought
episodes in 2020-2099, while the MRI-ESM2-0 model indicates an average increase of up
to 158%. Regarding the peak of identified episodes, the outputs indicate mixed signals,
with the EC-Earth3 model projecting an average increase of 26% and the MIROC6 model
providing an average reduction of up to 22%.

In R7, a total of 293 drought episodes have been obtained, with 70% (206 cases) being
mild droughts, 19% (56 cases) moderate droughts, 9% (27 cases) severe droughts, and 1%
(4 cases) extreme droughts. Regarding the frequency, only two GCMs project an increase
in the incidence (21% and 25% by the CMCC-ESM2 and MIROC6 models, respectively),
while models such as EC-Earth3 and CMCC-CM2-5R5 indicate a reduction of 25% and
40%, respectively. Contrarily, only two GCMs project a reduction in episode duration
(2% and 5% by CMCC-ESM2 and MIROC6 models, respectively), while EC-Earth3 and
CMCC-CM2-5R5 models indicate a 49% and 101% increase, respectively. Alike, most
models converge to a signal of increased severity of hydrological drought episodes in
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the region in 2020-2099, with the GFDL-ESM4, EC-Earth3, and CMCC-CM2-5R5 models
projecting average increases of 65%, 96%, and 125%, respectively. The datasets indicate
mixed signals for intensity, with decreases and increases ranging from 4% to 55% and
6% to 13%, respectively. Similarly, projections of change in episode peaks are also more
heterogeneous, with reductions and increases ranging from 0.10% to 30% and 7% to 28%,
respectively.

Finally, in R8, all datasets give a total of 331 drought episodes in 2020-2099, of which
81% (268 cases) are classified as mild droughts, 13% (43 cases) as moderate droughts, 5%
(17 cases) as severe droughts, and 1% (3 cases) as extreme droughts. Half of the outputs
project a reduction in the duration of episodes in the sector, while another indicates an
increase. As for the other regions, most GCMs converge on a signal of increasing duration of
drought episodes, with the GFDL-ESM4 model projecting an average increase of up to 34%.
Likewise, projections among the models are more concordant about the increasing severity,
with the IPSL-CMC6A-LR model providing an average increase of up to 41%. Additionally,
most GCMs project an increase in peak episodes in 2020-2099 (only the EC-Earth3 model
indicates an average reduction of up to 3%), with the BCSD ensemble providing an average
increase of up to 32%.

In summary, GCMs project mixed signals about changes in drought events’ frequency,
intensity, and peak magnitudes during the coming decades in the SA subdomains. On the
other hand, the projections are more homogeneous regarding the duration and severity of
the episodes, with most models converging to increasing magnitudes of both parameters
in all sectors evaluated. Concerning the different categories of droughts (mild, moder-
ate, severe, and extreme), results show a larger occurrence of mild droughts. However,
regions such as the northern and central Northeast, Midwest, and Southeast Brazil show
a substantial proportion (above 20%) of moderate drought events, as well as a relevant
occurrence (above 10%) of severe drought events in the Amazonia region, central Northeast,
Midwest, and Southeast Brazil (see Supplementary Materials). Based on this, we highlight
that although the BCSD ensemble provides predominantly mild drought episodes, individ-
ual analyses of the CMIP6-GCM s indicate expressive frequencies of moderate and severe
events in all the evaluated subdomains.

4. Conclusions

In this study, we applied statistical downscaling to CMIP6 precipitation projections
in SA using the CPC data as a reference to evaluate future changes in precipitation and
the occurrence of hydrological droughts on the continent. To this end, we used the QDM
technique developed by Cannon et al. [91], and the method proved effective in reducing
systematic biases and preserving the trends of GCM projections. For the coming decades,
the post-processed precipitation projections indicate reduced rainfall in sectors such as
northern SA, North, Northeast, Midwest, and Southeast Brazil and increased precipitation
in southern Brazil and SESA regions. Such changes are more prominent during the austral
spring (SON), and their signal is more robust under the SSP5-8.5 scenario, corroborating
the literature.

The SPI-12 index analysis shows considerable variability of projections among the
GCMs about drought event parameters, such as frequency, intensity, and peak. On the other
hand, concerning duration and severity, a more remarkable agreement is observed among
the GCMs regarding the intensification of both aspects in practically all the subdomains
analyzed. Considering the different categories of drought events, the results showed a
substantial frequency of moderate and severe droughts in Brazil's Northeast, Midwest,
and Southeast. In addition, the individual CMIP6-GCMs and the BCSD ensemble project a
considerable proportion of events with a duration equal to or greater than 10 months in all
evaluated South American sectors.

Given the results, it is valid to highlight some limitations of the study. First, we point
out that although the SPI-12 analysis is easy to implement because it uses only precipitation
information, it disregards crucial aspects of the droughts related to temperature and
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evapotranspiration processes. In this context, analyses have indicated that the frequency
and duration of droughts in SA are driven mainly by climate factors such as maximum and
minimum temperatures, net surface radiation, and precipitation [148]. Thus, future studies
employing statistical downscaling should address these aspects for assessing droughts on
the continent during the 21st century.

In addition, we mention that although the statistical downscaling technique reduces
model biases, considerable systematic etrors persist and may propagate into future projec-
tions. The precipitation simulation by climate models poses several challenges due to the
many processes involved, mostly parameterized, operating, and interacting at different
temporal and spatial scales. Even though the refinement of the horizontal grid improves
precipitation simulation, it does not deterministically guarantee better results. Added to
these difficulties is the uncertainty associated with data sources for validation and the
scarcity of precipitation observational networks across the continent. All these factors
constrain the assertiveness of the estimates, and their uncertainties should be pointed out
since the results are of interest to decision-makers.

Furthermore, although the study employed eight GCMs and the multi-model ensem-
ble, it is recommended that future studies use a larger number of models and forcing
scenarios to constrain the uncertainties associated with the projections. The projections
presented here have an intermediate spatial resolution of 50 km, which limits the spatial
detail of the analyses performed. In this sense, further research should consider climate
projections with a finer spatial resolution to ensure greater accuracy of the results. However,
the feasibility of such approaches demands high computational costs. Overall, despite the
uncertainties associated with GCMs, identifying hydrological drought episodes, and the
bias correction technique, the results presented here can provide valuable contributions to
decision-makers and energy planners for better managing water resources on the South
American continent for the coming decades.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article /10.3390 /cli1 1080166 /51, Figure S1: Mean annual differences of precipitation
(%) between the future (20202039, 2040-2059, 2060-2079, 2080-2099) and historical period (1995-2014),
projected by the BCSD ensemble under the S5P2-4.5 (a—d) and SSP5-8.5 (e-h) forcing scenarios. Hatched
areas indicate statistical significance at a 95% confidence level; Figure S2: Temporal series (2020-2099)
of the SPI-12 index projected by the eight CMIP6-GCMs used in the study and the BCSD ensemble
(solid black line) under the SSP5-8.5 scenario for eight SA subdomains; Figure S3: Classification of
hydrological drought events identified by each CMIP-GCM used in the study and the BCSD ensemble
for eight SA subdomains in 2020-2099 under the SSP5-8.5 scenario.
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Figure $1. Mean annual differences of precipitation (%) between the future (2020-2039, 2040-2059, 2060-2079, 2080-2099)
and historical period (1995-2014), projected by the BCSD ensemble under the SSP2-4.5 (a-d) and SSP5-8.5 (e-h) forcing
scenarios. Hatched arcas indicate statistical significance at a 95% confidence level.
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Figure 52. Temporal series (2020-2099) of the SPI-12 index projected by the eight CMIP6-GCMs used in the study
and the BCSD ensemble (solid black line) under the SSP5-8.5 scenario for eight SA subdomains (a-h, Figure 1).
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Figure S3. Classification of hydrological drought events identified by each CMIP-GCM used in the study and the BCSD
ensemble in 2020-2099 under the SSP5-8.5 scenario for eight SA subdomains (R1-R8, Figure 1).
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Abstract: This study analyzed the main features (onset, demise, and length) of the South American
Monsoon System (SAMS) projected in different time slices (2020-2039, 2040-2059, 2060-2079, and
2080-2099) and climate scenarios (SSP2-4.5 and SSP5-8.5). Eight global climate models (GCMSs) from
the Coupled Model Intercomparison Project Phase 6 (CMIP6) that perform well in representing South
America’s historical climate (1995-2014) were initially selected. Thus, the bias correction—statistical
downscaling (BCSD) technique, using quantile delta mapping (QDM), was applied in each model to
obtain higher-resolution projections than their original grid. The horizontal resolution adopted was
0.57 of latitude x longitude, the same as the Climate Prediction Center precipitation analysis used as
a reference dataset in BCSD. The QDM technique improved the monsoon onset west of 60° W and the
simulated demise and length in southwestern Amazonia. Raw and BCSD ensembles project an onset
delay of approximately three pentads compared to the historical period over almost all regions and a
demise delay of two pentads northward 20” S. Additionally, the BCSD ensemble projects a reduced
length with statistical significance in most South Atlantic Convergence Zone regions and a delay of
three pentads in the demise over the Brazilian Amazon from the second half of the 21st century.

Keywords: monsoon; precipitation; South America; statistical downscaling; climate scenarios

1. Introduction

The classical definition of a monsoon considers a region to have a monsoon climate
when rainfall increases in association with a seasonal reversal in low-level wind direction [1].
Following this concept, South America (SA) does not have a monsoon climate. However,
modern definitions of a monsoon consider a region to have this climate type based on
the occurrence of a dry and a wet well-defined period in a year [2]. In this sense, SA is a
region with a monsoon climate [3,4]. For instance, more than 50% of the total precipitation
occurs in austral summer (DJF) in central and eastern Brazil, northern Argentina, and the
central north of the Andes Mountains [5,6]. The onset of the South American rainy season is
configured with the rapid shift of the area of intense convection between the northwestern
extreme of the continent and latitudes south of the equator [7,8].

There are different approaches to studying the South American Monsoon System
(SAMS), and one of them is in terms of the SAMS lifecycle [7,9-12]: onset, demise, length,
and intensity (volume of precipitation). These studies, generally, use pentads of precipi-
tation (mean or sum of five days) and have differences in methodology because some of
them identify the SAMS lifecycle in each grid point of a dataset [12], while others consider
Midwest Brazil (50°-60° W and 10°-20° S) as a hotspot region to study the monsoon [9].
In Midwest Brazil, the average SAMS lifecycle begins in 58-59 pentads, decaying by
18-21 pentads, and having a length of 33-34 pentads. Kousky [13] presents a table for the
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pentads with the corresponding calendar dates. To complement information about the liter-
ature, the Supplementary Materials present comparative Tables S1-54 of the SAMS lifecycle
features obtained by different studies for various regions where the system operates.

The SAMS lifecycle can vary from one year to another. For instance, the rainy phase
of the SAMS can have a short or long duration. Fu and Li [14] observed that the wetter
land surface in southern Amazonia in the dry season could cause an abnormally lower
convective inhibition energy (CINE), which promotes an earlier and more rapid increase
in rainfall during the early phase of the transition. On the other hand, if the increase in
surface evapotranspiration is significantly weakened during the dry season, for example,
by a rise in runoff due to land use or a decrease in rainfall in previous seasons, the onset
of the wet season would probably be delayed [14]. Similar results were obtained in the
midwest and southeast of Brazil by Dias et al. [15]. These findings indicate an early or
late SAMS onset, but they do not explain the causes of the precipitation and land-surface
interaction variability, i.e., what are the drivers for a dryer or wetter dry season? Another
group of researchers [16-22] has addressed this problem and studied the impact of the
modes of atmospheric variability at different scales (interdecadal, decadal, interannual,
and intraseasonal) on atmospheric circulation and their effects on SA. While the physical
chain is simple—the changes in the atmospheric circulation caused by the atmospheric
modes of variability affect the distribution of synoptic and mesoscale precipitation systems,
which, in turn, affect the SAMS lifecycle (Mechoso et al. [23])—the predictability and
the coupling effect of different teleconnection modes continue to present a challenge for
researchers. For SA, most studies on teleconnection patterns and their impacts on monsoons
focus on the rainfall intensity and spatial distribution rather than the implications for
atmospheric systems that cause precipitation. Additionally, few studies analyze the effects
of teleconnection patterns on the onset and demise of monsoons. Most studies address the
SAMS lifecycle variability regarding land use and describe that in southern Amazonia, the
wet seasons have become shorter due to deforestation [24-27].

In SA, land-use changes are mainly responsible for the historical cumulative CO;
emissions [28]. The impact of global climate change and, on a regional scale, the effect
of land use have been considered in the climate projections and indicated changes in the
atmospheric circulation and, consequently, in precipitation in SA [29-31]. With the Couple
Model Intercomparison Project Phase 3 (CMIP3) projections, Bombardi and Carvalho [10]
evaluated the monsoon lifecycle in the twentieth century (1981-2000) and in the A1B
scenario (2081-2100). The authors observed that most models represent the spatiotempo-
ral variability of the annual precipitation cycle in central and eastern Brazil during the
summer monsoon in the reference period. For the A1B scenario, the models do not indi-
cate statistically significant changes in SAMS onset and demise dates. The most coherent
feature projected was a reduction in precipitation over central-eastern Brazil. Jones and
Carvalho [32] analyzed six global climate models (GCMs) of CMIP5 under the RCP8.5
scenario, and the models projected significant increases in seasonal amplitudes, early onsets
(14 days or ~3 pentads), late demises (17 days or ~4 pentads), and durations of the SAMS.
In terms of regional climate models (RCMs), Reboita et al. [11] projected the SAMS lifecycle
using the RegCMB3 nested in two GCMs (HadCM3 and ECHAMS) under the A1B scenario.
Focusing on Midwest Brazil, for the period 2010-2040, a delay of one pentad was obtained
at the beginning of the rainy season, while for the period 2070-2100, the authors obtained a
reduction of ~2 pentads in the duration of the rainy season. Ashfaq et al. [12] evaluated
the projections of global monsoons in an ensemble with RegCM4 nested in models from
CMIP5 under the RCP2.6 and RCP8.5 scenarios. For SA, the RegCM4 ensemble simulated
Amazonia’s monsoon onset later in the reference period. However, the authors highlighted
that the RegCM4 ensemble was within the uncertainties shown in Bombardi and Car-
valho [10]. The projected changes are more intense in the RCP8.5 scenario. Even beyond
SA, the authors found a delay in monsoon demise but less than the monsoon onset, which
reflects a shrinking of the monsoon rainy seasons. In SA, under the RCP8.5 scenario, the
onset is projected to be delayed in ~4 pentads and the demise in ~3 pentads. The authors
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also explore the drivers of the changes in the monsoon lifecycle. They mention that every
monsoon region receives a noticeable amount of pre-monsoon precipitation, which helps to
warm up the upper troposphere and induce deep overturning through latent heat release
in the atmosphere. In the future, the dry conditions will negatively affect the pre-monsoon
precipitation, causing a delayed onset.

CMIP provides the projections with GCMs for developing studies for the International
Panel on Climate Change (IPCC) assessment report. However, in regional and local studies
of climate impacts, the GCMSs’ resolution is coarse, and downscaling techniques need to
be applied to obtain high-resolution climate information [33-35]. There are two types
of downscaling: dynamical and statistical [36,37]. In dynamical downscaling, RCMs are
nested into GCM outputs, and RCMs simulate the physical processes of the climate system.
This methodology requires substantial computing power and time. For this reason, this
task is generally performed by international projects, such as the Coordinated Regional
Climate Downscaling Experiment (CORDEX, https:/ /cordex.org/, accessed on 26 January
2022) under the World Climate Research Project (WCRP)’s supervision, which makes
the projections available on the same platform as CMIP projections (Earth System Grid
Federation, ESGF).

Statistical downscaling does not directly simulate the physical processes of the cli-
mate systems. It relies on establishing statistical relationships between large-scale climate
variables (obtained from GCMs) and local-scale variables (obtained from in situ measure-
ments). These relationships are derived from historical observations (perfect prognosis—
PP—approach) or simulations (model output statistics—MOS—approach) and then applied
to project future climate conditions [36]. Traditionally, in climate research, the PP approach
has been used, and it includes different methods [36], such as regression models (linear
models, generalized linear models—GLM quantile regression), also called the transfer
function model [37], weather type methods, and analog and resampling methods.

Statistical downscaling is less computationally demanding compared to dynamical
downscaling. For this reason, many studies have used it. For SA, most of the studies focus
on southeastern South America (SESA) [38—41]. Bettolli et al. [38] analyzed the capability
of a set of projections using CORDEX dynamical downscaling and statistical downscaling
based on regression models (analog and GLM) in simulating daily precipitation during
the 2009-2010 austral warm season over SESA. The results revealed that no single model
performs best in all aspects evaluated and that most models capture the extreme events
selected, although with a considerable spread in accumulated values and the location of
heavy precipitation. Balmaceda-Huarte and Bettolli [39] applied statistical downscaling to
simulate daily and maximum temperatures in Argentina, considering three approaches:
analog, GLM, and artificial neural networks. According to the authors, depending on the
aspect analyzed, one specific model was more/less skillful. In addition, the authors high-
lighted that it is a challenge to capture the local variability of daily extreme temperatures in
regions with complex topography (Argentinian Patagonia and the subtropical Andes). A
similar study but for precipitation over SESA was carried out by Olmo and Bettolli [40],
while Olmo et al. [41] applied the CMIP5 and CMIP6-GCM projections.

Although statistical downscaling is less costly than dynamical downscaling, robust
computational resources are still needed, justifying its application in small domains. One of
the statistical downscaling approaches that is less computationally expensive is the model
based on transfer functions. This approach was applied by Ballarin et al. [42] using quantile
delta mapping. The authors developed a Brazilian dataset for different hydrological
variables for both historical (1980-2013) and future (2015-2100) scenarios, under the Shared
Socioeconomic Pathways (SSPs) 2-4.5 and 5-8.5, at a 0.25° x 0.25° spatial resolution. To
our knowledge, this is the only study of CMIP6-GCMs statistical downscaling covering a
large area in SA.

In January 2022, the execution of the project “Hydro, wind, and solar energy in Brazil:
Changes projected by CMIP6 climate models” (R&D Project 00403-0054 /2022) began in
order to provide a regional view of the climate change in different renewable energy
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sources in SA. Therefore, this study aims to assess the projected changes in the monsoon
lifecycle in SA, which significantly affects hydroelectric power generation on the continent.
Considering this project’s scope, CMIP6-GCMs have been statistically downscaled in the
whole of SA, yielding a new dataset with a 0.5° horizontal resolution. Thus, the main
objective of this work is to describe the projected changes to the SAMS lifecycle (onset,
demise, and length) using an ensemble composed of eight CMIP6-GCMs under the SSP2—
4.5 and SSP5-8.5 scenarios and considering four time slices until 2099. Hereby, this study
addresses uncertainties about SAMS lifecycle projections and the absence of works with
CMIP6 projections for SA.

2. Materials and Methods
2.1. Study Area and Reference Dataset

The study area comprises the SA continent (Figure 1), located at latitudes 12° N-55° S.
Due to its large latitudinal extension, different climate regimes occur over the continent but
with a predominance of monsoon [3,4,43] with the local convection and the South Atlantic
Convergence Zone (SACZ) as the main drivers of precipitation. The subdomains shown in
Figure 1 indicate the main areas of the monsoon climate and will be used in our analyses.
R1 indicates Amazonia, R2 Midwest Brazil, R3 southeastern Brazil (the boundary between
Sao Paulo and Minas Gerais states), R4 north of Southeast Brazil, and R5 north Argentina
and Paraguay. SACZ occurs from the southern R1 to R3, crossing R2. Therefore, when
mentioned in the text, the “SACZ region” refers to such areas.

10°N

20°S

30°8

Figure 1. Study area with elevation (m) obtained from the United States Geological Survey-Earth
Resources Observation System (EROS) Center. Yellow rectangles indicate subdomains selected for
the extraction of time series. R1 covers the area 0° 5-10° S and 60° W-70° W; R2, 10° 5-20° S and 50°
W-60° W; R3, 20° 5-25° S and 40° W-50° W; R4, 12.5° $-17.5° S and 40° W-50° W; and R5, 20° S-30°
S and 55° W-65" W.

The reference dataset is the precipitation analysis from the Climate Prediction Center
Gauge-Based Analysis of Global Daily Precipitation (CPC) [44]. The CPC has a daily
frequency and horizontal resolution of 0.5° (available at https://ftp.cpc.ncep.noaa.gov/
precip /CPC_UNI_PRCP/GAUGE_GLB/RT/, accessed on 22 January 2022). Itis developed
through rain gauge observations and has been applied in several studies in SA [40,45-47].
In this study, the period from 1995 to 2014 is used.

55



Wv 5 — South American monsoon lifecycle projected by statistical downscaling with

P e

CMIP6-GCMs

Atmosphere 2023, 14, 1380

5 of 30

2.2. CMIP6-GCMs

The projections of eight CMIP6-GCMs (Table 1) are used in this study. The models
were selected in January 2022 under the R&D project 00403-0054/2022. As described
in Ferreira et al. [48,49], the performance of 50 CMIP6-GCMs in representing the mean
state of the SA climate was analyzed with the methodology of ranking analysis [50].
Monthly data (from 1995 to 2014) of air temperature at 2 m and precipitation of these
models were used. Not all top-ranking models could be selected due to the absence of
hourly/daily data and/or projections on the database of the ESGF platform (available at
htips:/ /esginode llnl.gov /search/cmip6, accessed on 20 January 2022). Thus, the selection
followed the ranking and data availability on the ESGF platform.

Moreover, studies such as Dias and Reboita [51] have indicated that an ensemble of
CMIP6-GCMs for the historical period composed of the models with better representation
of the SA climate presents fewer biases with the reference datasets than an ensemble with
around 50 GCMs. Therefore, the GCMs used in this study were selected based on the
ranking method and data availability on the ESGF platform, but the validation previously
carried out by Dias and Reboita [51] also corroborates the choice of some of the GCMs used,
given their good performance in simulating the SA climate. We emphasize that if the model
has a good representation of the historical climate, it can have a good representation in the
future [52]. For this reason, we are using only eight models in the study, which helps to
save computational resources. The main steps of the methodology are indicated in Figure 2.

(a) GCMs Selection (b) Statistical Downscaling (c) SAMS Lifecycle
Method: Ranking technique (Rupp et St Method: modified method of
al. [50]) + The availabilty of hourly Disags o seminet e (o e (L jabmann and Marengo [7] by
data GCMs interpolatedto . ™ g Bombardi and Carvalho [10].

o T,
Models the ref dataset | F}‘k-"‘“-\
e ‘erence se ?(3 ¥ “.h\‘j N Data: 1990 cemise 1931 0nset

CMCC-CM2-SR5 erid (bilinear method) . \f 45 e
CMECESM| Baemien - 1% ./ | L Hees '
EC-Earth3 Quantile Delta i o Al B agd
GFDL-ESM4 Mapeine i fl g 2 S
IPSL-CMBA-LR ?::::r'?:nﬁ?;zméﬂ . é .  Appliedin CPC and individual
MIROCSE it CPC grid (0.5° x 0.5°) gd;is (hist and SSPs 2—4.5 and
MPI-ESM1-2.LR Preserved trends =

MRI-ESM2-0

Figure 2. Main steps of the methodology: (a) CMIP6-GCMs selection [50], (b) statistical downscaling,
and (c) defining the SAMS lifecycle [7,10].

After the eight CMIP6-GCMs (Table 1) were selected, precipitation projections every
three hours were downloaded from ESGF and, posteriorly, were accumulated into daily
data (the rainfall for a given day was accumulated from 1200 Z of the previous day to 1200 Z
of the day in question). As CMIP6-GCMs present distinct horizontal resolutions (Table 1),
the data were remapped into a regular 0.5° x 0.5° grid using a bi-linear interpolation
technique [42,53,54].

Table 1. Information on each CMIP6-GCM employed in the study.

Model

Resolution (*Lat x “Lon) Institute Reference

CMCC-CM2-SR5

Fondazione Centro Euro-Mediterraneo

¢ ; sl i Lovato and Peano [55
sui Cambiamenti Climatici vatoan ang[ 53]

1.25 x 0.94

Fondazione Centro Euro-Mediterraneo

CMCC-ESM2 1.25 x 0.94 i CARBiA N CHiaEa Lovato et al. [56]
EC-Earth3 0.70 x 0,70 EC-Earth Consortium Déscher et al. [57]
GFDL-ESM4 1.25 x 1.00 Geophysical Fluid Dynamics Laboratory Krasting et al. [58]
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Table 1. Cont.

Model Resolution (°Lat x “Lon) Institute Reference
IPSL-CM6A-LR 250 x 1.26 Institut Pierre Simon Laplace Boucher et al. [59]
MIROC-6 141 x 1.41 Japan Age“;ﬁ;";i’ﬁiﬁ;mh Al Tatebe and Watanabe [60]
MPI-ESM1-2-LR 0.94 x 0.94 Max Planck Institute for Meteorology Wieners et al. [61]
MRI-ESM2-0 113 x 1.13 Meteorological Research Institute Yukimoto et al. [62]

The historical period (1995-2014) follows the IPCC recommendation [12]. For the
future, two greenhouse gas emission scenarios (S5P2-4.5 and 55P5-8.5) are evaluated in
four time slices (2020-2039, 2040-2059, 2060-2079, and 2080-2099). SSPs are narratives
describing different development paths of society [63]. The SSP2-4.5 scenario denotes a
moderate emission scenario, in which the future trends in climate change stay relatively
the same as they are currently, with moderate population growth, uneven development,
slow progress towards sustainable development goals, environmental degradation, and
persistent income inequality, resulting in a forcing pathway of 45 Wm™2 by 2100 [63,64].
SSP5-8.5 considers a high greenhouse gas emission context, representing a period with
little effort to mitigate climate change effects, which leads to a forcing pathway of 8.5 Wm 2
in 2100. As in Ballarin et al. [42], we chose these two scenarios, moderate and extreme,
because they represent a wide range of expected changes, covering other intermediate
scenarios such as 55P3-7.0.

2.3. Statistical Downscaling

QOur study aims to have projections with an intermediate horizontal resolution (0.5° x 0.5%)
and which are bias-corrected. As dynamical downscaling has time-dependent boundaries,
a considerable quantity of data and computational power is necessary, becoming a working
difficulty for small research laboratories. The best alternative is to use statistical down-
scaling. Thus, in this study, we use the PP approach with the transfer function method
(quantile delta mapping, QDM). This method, also known as BCSD, was chosen for its
simplicity of implementation and for preserving time-series trends [65]. This last feature is
important because if the GCM shows, for instance, a dry trend in a given region, that trend
will be maintained after bias correction. In addition, several studies in different global areas
have used the method [42,66—69].

As the BCSD methodology is described in Ferreira et al. [48,49], here we provide only
a summary. For obtaining a dataset with an intermediate horizontal resolution, initially, the
daily precipitation from CMIP6-GCMs is spatially disaggregated, i.e., remapped to a grid
of 0.5° x 0.5%, which is the same as that from the reference dataset (CPC), as mentioned
in the previous section. The next step is to apply the QDM in the reference dataset and
in each historical simulation to obtain the model representative of each grid point and to
bias-correct the CMIP6-GCMs of the reference period. The last step is to apply the transfer
functions in the future period. The Python-based package xclim [70] was used to perform
the calculations.

The performance of bias correction applied to precipitation over SA in the reference
period is presented in detail in Ferreira et al. [49]. Here, we only show a few comparisons
of the GCMs with and without BCSD.

2.4. Determination of SAMS Lifecycle

The SAMS lifecycle is defined by the onset and demise dates of the rainy season using
the Liebmann and Marengo [7] method adapted by Bombardi and Carvalho [10]. This
method has also been used by Silva and Reboita [71], Reboita etal. [72], and Ashfaq et al. [12],
for example. For the identification of the onset and demise dates, only precipitation in pen-
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tads is required, and the method begins with the calculation of accumulated anomalies (S):

Spentad = p::z::dtadl (Rn = R)

where Ry, is the precipitation of the n pentad (each year consists of 73 pentads, and when
the year is bissextile, 29 February is included in the 12th pentad; a table with the pentads
and corresponding dates is presented in Kousky [13]); R is the climatological average of
all the pentads under study. The first pentad in the summation (pentad;) is chosen as
the first pentad of the year (total precipitation from 1 January to 5 January), which, in
turn, falls within the rainy season of the study region. After summing up the precipitation
anomalies (R — E) at each iteration, the resulting time series S is smoothed with a 3-point
moving average applied 30 times. The next step involves calculating the first derivative of
S =dS/dt to identify the onset and demise of the rainy season for each year under study.
This procedure is applied in CPC and each model for historical and future climates and
each time slice.

The mentioned steps were implemented in a script in Python language by the au-
thors of the present study. The algorithm performance was verified by comparing the
monsoon’s onset, demise, and length obtained with the CPC (reference dataset) with the
literature and considering each region shown in Figure 1. For brevity, here we only show
R2 (Table 2), the most common area used to define the SAMS lifecycle, since it is the central
core of the SA rainy season [9,73,74]. The tables for the other regions are presented in
the Supplementary Materials. In general, the results obtained here reaffirm those of pre-
vious studies, particularly the works of Bombardi and Carvalho [10], Ashfaq et al. [12],
Gan et al. [73], and Reboita et al. [75], indicating the good performance of the algorithm.
Some slight variations between the results may be due to differences in the data, period,
and methodology used for analysis. Not all mentioned studies in the tables were performed
with the same methods applied in this work.

Table 2. Results of the computation of SAMS lifecycle parameters for R2 obtained here (shaded line)
compared to previous works.

R2—Midwest Brazil—10° S-20° S 50° W-60° W

Reference Onset (Pentads) Demise (Pentads) Length (Pentads)

This study 57-59 20-23 34-36

Gan et al. [9] 51-63 22-25 33-44

Bombardi and Carvalho [10] 58-61 18-21 36-38

Ashfaq et al. [12]—GPCP 59 18-20 32-34

Ashfagq et al. [12]—RegCM4 ensemble 57-61 17-19 31-35

Gan et al. [73] 56-59 20-23 34-40
Bombardi et al. [74] 58 20 35

Reboita et al. [75] 57-59 20-22 32-34

Silva and Carvalho [76] 58-64 20-27 31-41
Raia and Cavalcanti [77] 60 18 31
Rodrigues et al. [78] 58 27 42

2.5. Analysis

All the analyses are performed considering the ensemble of the raw and BCSD projec-
tions. Initially, the performance of the raw and BCSD ensemble is evaluated through com-
parisons with the CPC analysis. Future projections under the SSP2—4.5 and SSP5-8.5 scenar-
ios are described based on the spatial patterns during the different time slices (2020-2039,
2040-2059, 2060-2079, and 2080-2099). The average precipitation and onset, demise, and
monsoon’s length are presented, as well as the difference of the time slices minus the
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historical climate (1995-2014). Statistically significant differences at a 95% confidence level,
computed with a #-test, are indicated in the figures. For a more detailed analysis, under
the S5P2—4.5 and SSP5-8.5 scenarios, the changes projected for the monsoon’s lifecycle
by the BCSD ensemble are evaluated in each region as shown in Figure 1. The statistical
significance of the trends is calculated with the Mann—Kendall trend test [79,80], used to
analyze trends in hydrological series [81,62]. In addition, Sen’s slope estimation test was
also employed to detect the SAMS parameters” linear trend in the selected subdomains.

3. Results and Discussion
3.1. BCSD Performance

Comparisons of the reference period evaluate the performance of the BCSD without
and with the technique application and CPC for precipitation and the main features of
the SAMS. In this section, we explore the spatial pattern of the variables without focusing
specifically on the regions R1 to R5 (Figure 1), which will be described in more detail in
Section 3.3. Figure 3 presents the historical simulations (1995-2014) of precipitation for the
period from October to March (rainy season) obtained by the ensemble of eight CMIP6-
GCMs without (middle column) and with (right column) applying the BCSD. The raw
ensemble (Figure 3b,e) overestimates precipitation in most parts of Brazil and the western
coast of SA, with great overestimations over the Andes. In contrast, underestimations occur
in the Brazilian Amazon, northwest SA, central-north Argentina, Uruguay, and extreme
southern Brazil. On average, the raw ensemble can represent the spatial distribution of the
highest rainfall volumes associated with the SACZ, but it exhibits an unreal amplification
and displacement of the system towards the southeast and northeast of Brazil.

CMIP6

BC

Precipitation (mmiday)

LT — Eren (LR By

Tiw W sew  aow

1078

15%5 |--degr i

20°s

Bins (mm/day)

25

0%

¢

ws| /) N 3855 4 - =5
. oW oW 50w 40w

P 3
oW W W 40w W BW seW W

Figure 3. Seasonal climatology (from October to March) for the historical period (1995-2014) of
precipitation (mm day‘j; a—c) and bias (mm day~'; d—f), obtained by CPC (a) and simulated by the
CMIP6 ensemble before (b,e) and after (c,f) the application of BCSD.

The underestimation of precipitation in northwest SA and northern Brazil corroborates
the results of other studies using CMIP5 and CMIP6 models [83-87]. These systematic errors
result from various factors, such as the models” sensitivity to the sea surface temperature
(SST) and their deficiency in simulating the Intertropical Convergence Zone (ITCZ) and
surface wind convergence [83,87], limitations in cloud physics representation [88], and
processes such as biosphere-atmosphere interactions and soil moisture [89], as well as
uncertainties associated with the insufficient coverage of rain gauge networks for validating
climate simulations [84,90].
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The BCSD application notably reduces biases throughout the continent, especially on
the western coast of SA and northeastern Brazil (Figure 3c,f). There is also a significant
improvement in representing the intensity and location of precipitation maxima associated
with SACZ despite a persistent overestimation of rainfall in the core of the continental
SACZ. Figure 3d also indicates these features, showing the difference between the ensemble
with and without BCSD application. In summary, the BCSD technique efficiently reduces
systematic errors in the global models comprising the CMIP6-GCMs ensemble, thereby
ensuring more reliable projections of future climate conditions. Additionally, the biases
that persist after the application of correction are located in problematic sectors of global
climate modeling, such as the tropical region and the continental portion of SACZ.

Figures 4—6 show the SAMS lifecycle: onset, demise, and length during the historical
period. Regarding the SAMS onset, the raw ensemble (Figure 4b,e) approximately estimates
the monsoon onset in the Brazilian Midwest from Pentads 60 (23-27 October) to 61 (28
October—1 November), indicating a delay of nearly two pentads compared to the onset
in CPC (approximately in Pentad 58, 13-17 October). Considering the BCSD ensemble
(Figure 4c¢,f), the onset of the rainy season in the Brazilian Midwest occurs around Pentad
61, indicating that the 2-3 pentad delay persists even after bias correction. For Southeast
Brazil, the raw ensemble (Figure 4b,e) simulates the SAMS onset during Pentads 57-58
(8-12 October to 13-17 October), in agreement with the start obtained by CPC (Pentad 58).
Similarly, the ensemble with BCSD (Figure 4c,f) indicates the onset of the rainy season
around Pentads 57-58, analogous to the result from CPC. Regarding the sector encom-
passing Paraguay and northern Argentina, both the raw and BCSD ensembles provide the
onset of the rainy season around Pentad 58, indicating an earlier start of the rainy season
than obtained by the CPC, which is approximately around Pentad 61. In summary, the
main gain with the BCSD ensemble is the enhancement of the onset results west of 60° W,
which includes southern Amazonia. It is a good result since this region corresponds to the
northern portion of the SACZ. In addition, BCSD also shows a slightly better performance
over north Argentina.

CPC Onset CMIPE Onset

6w SoW 0w

W R0W sowW aonw

BC-CPC

55 i
10%
15% |

2%

OIf (pentads)

25%

e

E T 355

Pia, >
W GW W A0 oW W SOW 40w

0W W 50w 40w

Figure 4. Seasonal climatology (from October to March) for the historical period (1995-2014) of the
onset (in pentads) of the rainy season in SA (a—c) and bias (in pentads) (d-f), obtained by CPC (a)
and simulated by the CMIP6 ensemble before (b,e) and after (c,f) the application of BCSD.
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Figure 5, Seasonal climatology (from October to March) for the historical period (1995-2014) of the
demise (in pentads) of the rainy season in SA (a—c) and bias (in pentads) (d—f), obtained by CPC (a)
and simulated by the CMIP6 ensemble before (b,e) and after (¢,f) the application of BCSD.
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Figure 6. Seasonal climatology (from October to March) for the historical period (1995-2014) of the
length (in pentads) of the rainy season in SA (a-c) and bias (in pentads) (d—f), obtained by CPC (a)
and simulated by the CMIP6 ensemble before (b,e) and after (c,f) the application of BCSD.

Considering the demise of the rainy season (Figure 5), both the raw and BCSD en-
sembles indicate a delay in this parameter in Brazil's southern Amazonia, Midwest, and
north of Southeast Brazil. In contrast, the monsoon’s demise is anticipated in Paraguay
and northern Argentina. Both ensembles show the rainy season’s demise around Pentads
21-22 (from 11-15 April to 1620 April) in southern Amazonia and the Midwest, while the
CPC indicates the demise during Pentad 20 (5-10 April). Similarly, a lag of approximately
two pentads also occurs in the north of Southeast Brazil, with the simulations indicating
the demise of the monsoon in Pentad 17 (22-26 March), while the CPC provides the end
in Pentad 20 (Figure 5a—c). The most prominent difference between the raw and BCSD
ensembles in these areas with a delay in the demise is that BCSD simulates a smaller area
with the maximal values of delay (Figure 5e,f). Considering the demise anticipation by
the ensembles over Paraguay and northern Argentina, the demise occurs in Pentad 19
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(1-5 April), up to three pentads earlier than that provided by the CPC (Pentad 22). Gener-
ally, the BCSD ensemble improves the rainy season demise over southern Amazonia and
Midwest Brazil. On the other hand, the BCSD ensemble does not decrease the bias over
northern Argentina and Paraguay simulated in the raw ensemble.

The BCSD ensemble better represents the SAMS onset, demise, and length west of
60° W (Figure 6). Despite this, no significant changes exist between the BCSD and raw
ensembles in the other continental regions. In the Brazilian Midwest, both ensembles indi-
cate a SAMS duration of 35-36 pentads, while the CPC indicates 36-37 pentads. Similarly,
in the southeastern region, both ensembles underestimate the duration of the monsoon,
with a duration of ~32-33 pentads, up to two pentads shorter than that provided by the
CPC (~34-35 pentads). Contrarily, in northern Argentina, the ensembles overestimate the
duration of the rainy season by up to two pentads, indicating a duration of 4041 pentads,
while the CPC shows a duration of 38-39 pentads.

Overall, it is concluded that despite the modest changes brought about by BCSD
in identifying the parameters of the rainy season’s lifecycle, the technique improves the
representation of the monsoon onset west of 60° W, as well as the representation of the
demise and length in the southwestern Amazonia.

3.2. Climate Projections
Spatial Patterns

Figures 7 and 8 present the climate projections of precipitation from October to March
for four time slices (2020-2039, 2040-2059, 2060-2079, and 2080-2099) and one historical
period (1995-2014) obtained by the raw and BCSD ensembles, under the S5P2-4.5 and
SSP5-8.5 scenarios, respectively. Under the SSP2-4.5 scenario (Figure 7), the raw ensemble
projections maintain their unrealistic representation of the spatial distribution of the rainy
seasorn, extending its influence to the northern portion of Northeast Brazil. However, the
BCSD ensemble corrects this deficiency and satisfactorily reproduces the rainfall spatial
distribution. The projected changes in rainfall volumes in each time slice compared to
the historical period show statistically significant increases in precipitation in sectors of
the Midwest and the interior of the Northeast, particularly from 2040 onwards. From
2060 onwards, increases in rainfall are also projected in the South, Southeast, and a larger
area of Northeast Brazil, as well as in Peru and northern Argentina. Similar results were
obtained by studies using CMIP5 models under the RCP-4.5 scenario [91,92] and a large
ensemble of CMIP6 models under the SSP2-4.5 scenario [84]. Under the SSP5-8.5 scenario
(Figure 8), the changes projected by both ensembles are similar to those provided by the
SS5P2-4.5 scenario, with the difference of having a more intense change signal and more
significant rainfall reductions in the Brazilian North. The raw CMIP6 projections maintain
their unrealistic representation of the rainy season, which is corrected by the statistically
downscaled projections. The downscaled projections generally provide a stronger change
signal than the raw projections. In both datasets, a more intense signal is observed towards
the end of the 21st century, particularly under the SSP5-8.5 scenario.

The projections of changes found here corroborate the results of previous studies
using models of different CMIP phases. The increase in rainfall in southeastern SA was
also observed in studies using CMIP3, CMIP5 [93-96], and CMIP6 models [84,87,97].
Similarly, the reduction in precipitation in the Amazonia region agrees with the litera-
ture [11,84,87,91,92,94-97]. However, none of these CMIP studies focused on the SAMS lifecycle.

Figures 9-14 present the projections of the rainy season’s onset, demise, and length
under the SSP2-4.5 and S5P5-8.5 scenarios. Raw and BCSD ensembles, in both scenarios
and in all time slices, project a delay in the onset of the rainy season, with a difference
of approximately three pentads compared to the onset in the historical period in most
of the study area (Figures 9 and 10), reaffirming the results obtained with the dynamical
downscaling of CMIP5 models [12]. Over northern Argentina, the monsoon is projected
to have an earlier onset. The difference between the ensembles is that the raw ensemble
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shows an earlier onset over Midwest Brazil and Bolivia in the first three time slices, which
BCSD does not project.
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Figure 7. October-March precipitation (mm day ') during the historical period and the SSP2-4.5
scenario for different time slices 1995-2014, (a,b); 2020-2039, (c—f); 2040-2059, (g-j); 2060-2079, (k-n);
2080-2099, (0-r) and considering the raw and BCSD data (left side) and difference regarding the
historical period (right side). From left to right: mean of the raw ensemble, mean of the BCSD
ensemble, difference raw ensemble, and difference BCSD ensemble. The dots indicate statistical
significance at 95% confidence in the difference fields based on the I-test.
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Similar to Figure 7, except for the SSP5-8.5 scenario.

October-March precipita-

tion (mm day ') during the historical period and the SSP2—4.5 scenario for different time slices
1995-2014, (a,b); 2020-2039, (c-f); 2040-2039, (g—j); 2060-2079, (k—n); 2080-2099, (0-r) and consid-
ering the raw and BCSD data (left side) and difference regarding the historical period (right side).
From left to right: mean of the raw ensemble, mean of the BCSD ensemble, difference raw ensemble,
and difference BCSD ensemble. The dots indicate statistical significance at 95% confidence in the
difference fields based on the f-test.
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Figure 9. Similar to Figure 7, except for the monsoon onset (pentads) and SSP2-4.5 scenario.
October-March precipitation (mm day ') during the historical period and the SSP2-4.5 scenario
for different time slices 1995-2014, (a,b); 2020-2039, (c—f); 2040-2059, (g—j); 2060-2079, (k-n);
2080-2099, (0o-r) and considering the raw and BCSD data (left side) and difference regarding the
historical period (right side). From left to right: mean of the raw ensemble, mean of the BCSD
ensemble, difference raw ensemble, and difference BCSD ensemble. The dots indicate statistical
significance at 95% confidence in the difference fields based on the f-test.
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Figure 10. Similar to Figure 7, except for the monsoon onset (pentads) and SSP5-8.5 scenario.
October-March precipitation (mm day ~!) during the historical period and the SSP2-4.5 scenario
for different time slices (1995-2014, (a,b); 2020-2039, (c—f); 2040-2059, (g—j); 2060-2079, (k—-n);
2080-2099, (0-1) and considering the raw and BCSD data (left side) and difference regarding the
historical period (right side). From left to right: mean of the raw ensemble, mean of the BCSD
ensemble, difference raw ensemble, and difference BCSD ensemble. The dots indicate statistical
significance at 95% confidence in the difference fields based on the t-test.
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Figure 11. Similar to Figure 7, except for the monsoon demise (pentads) and SSP2—4.5 scenario.
October-March precipitation (mm day ) during the historical period and the SSP2-4.5 scenario
for different time slices (1995-2014, (a,b); 2020-2039, (c—f); 20402059, (g-j); 2060-2079, (k-n);
2080-2099, (0-r) and considering the raw and BCSD data (left side) and difference regarding the
historical period (right side). From left to right: mean of the raw ensemble, mean of the BCSD
ensemble, difference raw ensemble, and difference BCSD ensemble. The dots indicate statistical
significance at 95% confidence in the difference fields based on the f-test.
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Figure 12. Similar to Figure 7, except for the monsoon demise (pentads) and SSP5-8.5 scenario.
October-March precipitation (mm day~') during the historical period and the SSP2-4.5 scenario
for different time slices (1995-2014, (a,b); 2020-2039, (c—f); 2040-2059, (g—j); 2060-2079, (k-n);
2080-2099, (0-1) and considering the raw and BCSD data (left side) and difference regarding the
historical period (right side). From left to right: mean of the raw ensemble, mean of the BCSD
ensemble, difference raw ensemble, and difference BCSD ensemble. The dots indicate statistical
significance at 95% confidence in the difference fields based on the /-test.
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Figure 13. Similar to Figure 7, except for the monsoon length (pentads) and SSP2-4.5 scenario.
October-March precipitation (mm day~') during the historical period and the SSP2-4.5 scenario
for different time slices (1995-2014, (a,b); 2020-2039, (c—f); 2040-2059, (g-j); 2060-2079, (k-n);
2080-2099, (0-1) and considering the raw and BCSD data (left side) and difference regarding the
historical period (right side). From left to right: mean of the raw ensemble, mean of the BCSD
ensemble, difference raw ensemble, and difference BCSD ensemble. The dots indicate statistical
significance at 95% confidence in the difference fields based on the I-test.
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Figure 14. Similar to Figure 7, except for the monsoon length (pentads) and SSP5-8.5 scenario.
October-March precipitation (mm day 1) during the historical period and the SSP2—4.5 scenaria
for different time slices (1995-2014, (a,b); 2020-2039, (c—f); 2040-2059, (g—j); 2060-2079, (k—n);
2080-2099, (0—r) and considering the raw and BCSD data (left side) and difference regarding the
historical period (right side). From left to right: mean of the raw ensemble, mean of the BCSD
ensemble, difference raw ensemble, and difference BCSD ensemble. The dots indicate statistical
significance at 95% confidence in the difference fields based on the /-test.

In both scenarios and ensembles, the demise of the rainy season (Figures 11 and 12) is
projected to delay northward 20° S, with a difference of around two pentads compared to
the historical period, but only reaching statistical significance over Amazonia and western
SA. Over northern Argentina, while the trend to the end of the century is to delay the demise
under SSP2.4-5 (Figure 11), it is to anticipate it under SSP5.8-5 (Figure 12). An interesting
signal appears in Midwest Brazil in the BCSD ensemble: under 55P2.4-5, a significant
area with late demise spread over the region toward the end of the century, while under
55P5-8.5, from 2020-2039 to 2040-2060 the area decreases with statistical significance and
returns to increasing towards the end of the century. Still, the SSP5-8.5 scenario indicates
a more intense change signal in the monsoon demise, with a delay of three pentads in
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(1-5 April), up to three pentads earlier than that provided by the CPC (Pentad 22). Gener-
ally, the BCSD ensemble improves the rainy season demise over southern Amazonia and
Midwest Brazil. On the other hand, the BCSD ensemble does not decrease the bias over
northern Argentina and Paraguay simulated in the raw ensemble.

The BCSD ensemble better represents the SAMS onset, demise, and length west of
60° W (Figure 6). Despite this, no significant changes exist between the BCSD and raw
ensembles in the other continental regions. In the Brazilian Midwest, both ensembles indi-
cate a SAMS duration of 35-36 pentads, while the CPC indicates 36-37 pentads. Similarly,
in the southeastern region, both ensembles underestimate the duration of the monsoon,
with a duration of ~32-33 pentads, up to two pentads shorter than that provided by the
CPC (~34-35 pentads). Contrarily, in northern Argentina, the ensembles overestimate the
duration of the rainy season by up to two pentads, indicating a duration of 4041 pentads,
while the CPC shows a duration of 38-39 pentads.

Overall, it is concluded that despite the modest changes brought about by BCSD
in identifying the parameters of the rainy season’s lifecycle, the technique improves the
representation of the monsoon onset west of 60° W, as well as the representation of the
demise and length in the southwestern Amazonia.

3.2. Climate Projections
Spatial Patterns

Figures 7 and 8 present the climate projections of precipitation from October to March
for four time slices (2020-2039, 2040-2059, 2060-2079, and 2080-2099) and one historical
period (1995-2014) obtained by the raw and BCSD ensembles, under the S5P2-4.5 and
SSP5-8.5 scenarios, respectively. Under the SSP2-4.5 scenario (Figure 7), the raw ensemble
projections maintain their unrealistic representation of the spatial distribution of the rainy
seasorn, extending its influence to the northern portion of Northeast Brazil. However, the
BCSD ensemble corrects this deficiency and satisfactorily reproduces the rainfall spatial
distribution. The projected changes in rainfall volumes in each time slice compared to
the historical period show statistically significant increases in precipitation in sectors of
the Midwest and the interior of the Northeast, particularly from 2040 onwards. From
2060 onwards, increases in rainfall are also projected in the South, Southeast, and a larger
area of Northeast Brazil, as well as in Peru and northern Argentina. Similar results were
obtained by studies using CMIP5 models under the RCP-4.5 scenario [91,92] and a large
ensemble of CMIP6 models under the SSP2-4.5 scenario [84]. Under the SSP5-8.5 scenario
(Figure 8), the changes projected by both ensembles are similar to those provided by the
SS5P2-4.5 scenario, with the difference of having a more intense change signal and more
significant rainfall reductions in the Brazilian North. The raw CMIP6 projections maintain
their unrealistic representation of the rainy season, which is corrected by the statistically
downscaled projections. The downscaled projections generally provide a stronger change
signal than the raw projections. In both datasets, a more intense signal is observed towards
the end of the 21st century, particularly under the SSP5-8.5 scenario.

The projections of changes found here corroborate the results of previous studies
using models of different CMIP phases. The increase in rainfall in southeastern SA was
also observed in studies using CMIP3, CMIP5 [93-96], and CMIP6 models [84,87,97].
Similarly, the reduction in precipitation in the Amazonia region agrees with the litera-
ture [11,84,87,91,92,94-97]. However, none of these CMIP studies focused on the SAMS lifecycle.

Figures 9-14 present the projections of the rainy season’s onset, demise, and length
under the SSP2-4.5 and S5P5-8.5 scenarios. Raw and BCSD ensembles, in both scenarios
and in all time slices, project a delay in the onset of the rainy season, with a difference
of approximately three pentads compared to the onset in the historical period in most
of the study area (Figures 9 and 10), reaffirming the results obtained with the dynamical
downscaling of CMIP5 models [12]. Over northern Argentina, the monsoon is projected
to have an earlier onset. The difference between the ensembles is that the raw ensemble
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shown, indicating whether the resulting trends are statistically significant (p-value < 0.05).
In addition, Sen’s slopes indicate whether the trends are positive (slope > 0) or negative
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Figure 15. Time series of the monsoon’s onset anomalies (in pentads) provided by the eight BCSD
models and its ensemble (solid black line) for five SA subdomains (R1, (a,b); R2, (c,d); R3, (e,f);
R4, (g,h); R5, (i,j) under the SSP2-4.5 (left column) and S5P5-8.5 (right column) scenarios. Anomalies
refer to 2020-2099 in relation to 1995-2014. The p-value indicates the Mann-Kendall test result for the
BCSD ensemble projections, and Sen’s slopes indicate whether the trends are positive (slope > 0) or
negative (slope < 0).
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Figure 16. Similar to Figure 15, except for the monsoon’s demise (pentads). Time series of the
monsoon’s onset anomalies (in pentads) provided by the eight BCSD models and its ensemble (solid
black line) for five SA subdomains (R1, (a,b); R2, (¢,d); R3, (e,f); R4, (g,h); R5, (i,j) under the SSP2-4.5
(left column) and SSP5-8.5 (right column) scenarios. Anomalies refer to 2020-2099 in relation to
1995-2014. The p-value indicates the Mann-Kendall test result for the BCSD ensemble projections,
and Sen’s slopes indicate whether the trends are positive (slope > 0) or negative (slope < 0).
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Figure 17. Similar to Figure 15, except for the monsoon’s length (pentads). Time series of the
monsoon’s onset anomalies (in pentads) provided by the eight BCSD models and its ensemble (solid
black line) for five SA subdomains (R1, (a,b); R2, (c,d); R3, (e,f); R4, (g,h); R5, (i,j) under the SSP2-4.5
(left column) and SSP5-8.5 (right column) scenarios. Anomalies refer to 2020-2099 in relation to
1995-2014. The p-value indicates the Mann-Kendall test result for the BCSD ensemble projections,
and Sen’s slopes indicate whether the trends are positive (slope > 0) or negative (slope < 0).
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For R1 (Amazonia), the ensemble projects an increase in the onset of the SAMS with
statistical significance under both scenarios, which means a regional delay in the monsoon
beginning. The ensemble generally shows changes from the SAMS onset ranging from
—1 to 5 pentads. On the other hand, the individual models indicate considerable spread
in the projections, with the CMCC-ESM2, GFDL-ESM4, and MIROC6 models providing
monsoon onset shifts ranging from —5 to 11 pentads. Under the SSP2—4.5 scenario, the
ensemble indicates the monsoon onset ranging from Pentads 5862 (13-17 October to 2—6
November), which is partially similar to the ranges found in the reference periods of other
studies [10,12,92]. Under the S5P5-8.5 scenario, the ensemble indicates a larger delay
in the SAMS onset, which varies in Pentads 59-64 (18-22 October to 12-16 November),
corroborating the results of previous studies [12,92].

Considering the projected changes in the SAMS demise in R1, only the SS5P5-8.5
scenario results in a statistically significant increasing trend projected by the BCSD ensemble.
While the ensemble projects the monsoon’s demise changes ranging from —1 to 2 pentads,
models such as EC-Earth3, GFDL-ESM4, and MPI-ESM1-2-LR provide anomalies ranging
from —7 to 6 pentads. Despite this result suggesting an increase in the rainy season in R1,
the analysis of the SAMS length shows that, under the SSP5-8.5 scenario, the ensemble
projects a statistically significant decrease, with anomalies ranging from —3 to 1 pentad in
relation to the historical period.

Moreover, the results found here agree with projections obtained by dynamical down-
scaling, which yielded a delay of one pentad at the monsoon’s beginning and a reduction
of up to two pentads in the duration for the period 2010-2040 [11]. Additionally, a study
of the impacts of land use on the monsoon lifecycle in southern Amazonia indicated that
deforestation has contributed to a delay of approximately 1 pentad at the beginning, an
advance of 2 to 6 pentads at the demise, and a reduction of 2 to 8 pentads in the duration of
the rainy season for the period 1998-2012 [104].

In R2 (Midwest Brazil), under both scenarios, the BCSD ensemble projects a statisti-
cally significant increase in the monsoon onset, which means a delay in the rainy season
beginning over the region. In this sector, the ensemble presents onset anomalies ranging
from —1 to 4 pentads, while other models, such as EC-Earth3 and GFDL-ESM4, project
variations from —4 to 9 pentads. The BCSD ensemble projections of the rainy season demise
in R2 do not result in statistically significant trends in both scenarios. On the other hand,
the ensemble provides a statistically significant decreasing trend in the SAMS length in
both scenarios, indicating a retraction in the rainy season over R2 during the 21st century.
In this region, the ensemble projects anomalies of the monsoon’s length ranging from —4 to
1 pentad, while models like CMCC-ESM2, EC-Earth3, and GFDL-ESM4 project anomalies
from —10 to 6 pentads.

For R3 (Southeast Brazil), the ensemble projections result in statistically significant
increasing trends in the monsoon onset for both scenarios, indicating that the rainy season’s
beginning tends to be delayed over the region during the 21st century. While the ensemble
projects anomalies of SAMS onset ranging from —1 to 4 pentads, models such as EC-
Earth3, MPI-ESM1-2-LR, and MRI-ESM2-0 estimate changes going from —7 to 11 pentads.
Regarding the monsoon demise, the ensemble projects a statistically significant increasing
trend only under the SSP5-8.5 scenario, with anomalies ranging from —2 to 3 pentads.
For the monsoon’s length projections, neither of the two scenarios results in a statistically
significant trend, with the BCSD ensemble providing anomalies of —6 to 2 pentads about
the reference period.

In R4 (northern sector of Southeast Brazil), the ensemble projects a statistically sig-
nificant increase in the monsoon onset under both scenarios, reiterating the delay in the
SAMS onset also found in other regions. In this sector, the ensemble shows onset anomalies
ranging from 0 to 4 pentads, while models like GFDL-ESM4 and MPI-ESM1-2-LR provide
changes from —4 to 10 pentads. The ensemble projections do not result in a statistically
significant trend in either scenario regarding the monsoon demise. On the other hand,
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under the two scenarios, the ensemble projects a statistically significant reduction in the
rainy season’s length, with anomalies ranging from —5 to 1 pentad.

Finally, in R5 (northern Argentina), the ensemble only projects a statistically significant
increasing trend in the monsoon onset under the SSP5-8.5 scenario. In this region, the
ensemble provides anomalies ranging from —1to3 pentads, while models such as GFDL-
ESM4 and MPI-ESM1-2-LR project anomalies ranging from —8 to 8 pentads. Similarly, for
the monsoon demise, the ensemble projects a statistically significant increasing trend only
under the SSP5-8.5 scenario, with anomalies ranging from —2 to 4 pentads. On the other
hand, neither scenario indicates a statistically significant trend in the monsoon’s length,
with the ensemble providing anomalies ranging from —4 to 3 pentads.

In general, the trend analysis shows that the BCSD ensemble projects a delay in the
monsoon onset in practically all regions analyzed under the two scenarios employed (except
in R5, where only the SSP5-8.5 scenario results in an increasing trend). Contrastingly, the
ensemble projections for the SAMS demise provide statistically significant increasing trends
only under the SSP5-8.5 scenario and for sectors R1, R3, and R5. Furthermore, the ensemble
projections show a statistically significant decreasing trend in monsoon length in the regions
R2 and R4 under both scenarios and in R1 only under the SSP5-8.5 scenario. Similarly, a
study of deforestation effects in southern Amazonia showed that almost 90% of rainfall
gauges in the transition zone between Amazonia and Midwest Brazil showed a decreasing
monsoon length from 1971 to 2010, with a later onset and early demise [105].

Regarding the individual projections of the GCMs, there is considerable variability
of estimates in all regions. In this context, the GFDL-ESM4 and EC-Earth3 models show
significant variability in the SAMS lifecycle parameters in practically all sectors evaluated.
In summary, these results suggest that, under both scenarios, the monsoon onset tends to
be delayed, but its demise is almost unchanged. Additionally, most evaluated sectors tend
to decrease the rainy season’s length during the 21st century.

4, Conclusions

This study applied statistical downscaling to CMIP6 precipitation projections using
the CPC data as a reference to evaluate future changes in the monsoon lifecycle and pre-
cipitation in SA. To this end, we used the QDM technique developed by Cannon et al. [65],
and the method improved the representation of the monsoon onset west of 60°W, as well as
the demise and length in southwestern Amazonia. Projections of precipitation showed an
increase in rainfall in SESA and a reduction in the Amazonia region during the 21st century,
in agreement with previous studies.

Raw and BCSD ensembles, in both scenarios and in all time slices, project a delay
in the monsoon onset, with a difference of approximately three pentads compared to the
onset in the historical period in most of the study area. Similarly, in both scenarios, the
monsoon demise is projected to delay northward 20° S, with a difference of around two
pentads compared to the historical period, although this exhibits statistical significance
only over Amazonia and western SA. Furthermore, the SSP5-8.5 scenario indicates a more
intense change signal in the monsoon demise, with a delay of three pentads in the Brazilian
Amazon from the second half of the 21st century.

Additionally, the trend analysis shows that the BCSD ensemble projects a delay in
the monsoon onset in practically all regions analyzed under the two scenarios assessed.
Moreovet, the ensemble projections show a statistically significant decreasing trend in the
monsoon’s length in most SACZ regions.

For future studies, we recommend using more forcing scenarios to minimize the un-
certainties associated with the projections. Moreover, despite the statistical downscaling
technique refining the grid of projections (yielding estimates with an intermediate spatial
resolution of 50 km), further research should employ finer climate projections to ensure
a greater accuracy. But, for this end, observed data in high resolution are needed. This
remains a gap and the subject of much discussion by the scientific community (few moni-
toring stations, data quality, data availability etc.). Nonetheless, despite the uncertainties
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associated with projections, our findings can provide helpful information to decision-
makers and energy planners for the better management of water resources on the South
American continent over the coming decades.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/atmos14091380/s1, Table S1: Results of the computation of SAMS lifecycle
parameters for R1 obtained here (shaded line) compared to previous works; Table S2: Results of the
computation of SAMS lifecycle parameters for R3 obtained here (shaded line) compared to previous
works; Table S3: Results of the computation of SAMS lifecycle parameters for R4 obtained here
(shaded line) compared to previous works; Table S4: Results of the computation of SAMS lifecycle
parameters for R5 obtained here (shaded line) compared to previous works; Figure S1: Time series of
the monsoon onset (in pentads) provided by eight CMIP6-GCMs and the BCSD ensemble for five SA
subdomains under the SSP2—4.5 and SSP5-8.5 scenarios; Figure S2: Similar to Figure S1, except for
the monsoon demise (in pentads); Figure S3: Similar to Figure 51, except for the monsoon’s length
(in pentads).
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SUPPLEMENTARY MATERIALS

Tabel S1. Results of the computation of SAMS lifecycle parameters for R1 obtained here (shaded line)
compared to previous works.

R1- Amazonia - 0°-10°S 60°W-70°W

Reference Onset (pentads) Demise (pentads) Length (pentads)
This study 60-65 23-30 38-42
Bombardi and Carvalho [10] 60-63 22-26 34-38
Ashfaq et al. [12] - GPCP 59-65 25-31 39-45
Ashfaq etal. [12] - RegCM4 56-64 21-30 30-47
ensemble
Bombardi et al. | 74] 62 30 41
Reboita et al. [75] 60-64 22-30 34-42
Rodrigues et al. [78] 56 30 47

Tabel S2. Results of the computation of SAMS lifecycle parameters for R3 obtained here (shaded line)
compared to previous works.

R3 - Southeast Brazil - 20°S-25°S 40°W-50°W

Reference Onset (pentads) Demise (pentads) Length (pentads)
This study 58-60 19-20 36-38
Bombardi and Carvalho [10] 58-61 18-21 30-34
Ashfaq et al. [12] - GPCP 58-61 17-18 29-33
Ashfaq et al. [12] - RegCM4 58-61 15-18 27-33
ensemble
Silva and Reboita [71] 57-59 16-20 32-34
Bombardi et al. [74] 58 19 34
Reboita et al. [75] 58-60 16-19 30-34
Silva and Carvalho [76] 58-64 20-27 3141
Raia and Cavalcanti [77] 50-69 10-28 18-40
Rodrigues et al. [78] 60 20 34
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Tabel S3. Results of the computation of SAMS lifecycle parameters for R4 obtained here (shaded line)
compared to previous works.

R4 — North of Southeast Brazil 12.5°5-17.5°S 40°W-50°W

Reference Onset (pentads) Demise (pentads) Length (pentads)
This study 56-57 16-19 34-36
Bombardi and Carvalho [10] 58-61 18-21 34
Ashfaq et al. [12] - GPCP 59-60 18-19 31-33
Ashfaq et al. [12] — RegCM4 63-65 17-19 25-29
ensemble
Silva and Reboita [71] 58-59 15-18 31-33
Bombardi et al. [74] 58 19 34
Reboita et al. [75] 58-60 15-21 34-36
Silva and Carvalho [76] 58-64 20-27 31-41
Raia and Cavalcanti [77] 50-69 10-28 18-40
Rodrigues et al. [78] 58-65 20-27 2842

Tabel S4. Results of the computation of SAMS lifecycle parameters for R5 obtained here (shaded line)
compared to previous works.

R5 - Northern Argentina - 20°-30°S 55°W-65°W

Reference Onset (pentads) Demise (pentads) Length (pentads)
This study 55-63 21-24 34-44
Bombardi and Carvalho [10] 58-61 17-21 34-38
Ashfaqet al. [12] - GPCP 57-62 19-22 30-38
Ashfaq et al. [12] - RegCM4 58-60 12-20 25-35

ensemble
Bombardi et al. [74] 60 26 39

Reboita et al. [75] 55-62 20-26 32-44
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Figure S1. Time series of the monsoon onset (in pentads) provided by eight CMIP6-GCMs and the BCSD ensemble
for five SA subdomains under the S5P2-4.5 and SSP5-8.5 scenarios. The p-value indicates the Mann-Kendall test
result for the BCSD ensemble projections, and the Sen's slopes indicate whether the trends are positive

(slope > 0) or negative (slope < 0).
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Figure S2. Similar to Figure 51, except for the monsoon demise (in pentads).
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Figure S3. Similar to Tigure S1, except for the monsoon’s length (in pentads).
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Abstract

Expanding the South American renewable energy matrix to ensure more sustainable socio-economic development, mitigate
the climate change effects, and meet the targets set in the Paris Agreement is crucial. Hence, this study sought to estimate
South America’s wind speed and wind power density alterations projected by eight global climate models (GCMs) from
the Coupled Model Intercomparison Project—Phase 6 (CMIP6). To this end, we applied statistical downscaling and bias
correction to the GCMs outputs through the Quantile Delta Mapping method and assessed the projected changes in wind
power in future climate under the Shared Socioeconomic Pathways (SSPs) SSP2-4.5 and SSP5-8.5 emission scenarios.
ERAS reanalysis data from 1995 to 2014 validated the models’ historical simulations. The CMIP6 multi-model ensemble
indicated an approximate 25-50% increase in wind power density in sectors such as Northeast and South Brazil and growing
wind power in regions such as Argentine Patagonia, northern Venezuela, and portions of Uruguay, Bolivia, and Paraguay.
Estimates of the wind power growth for the twenty-first century in those regions reiterated their potential performance in the
historical period. For the SSP5-8.5 emission scenario, the ensemble projections indicated even more favorable wind power
conditions in the sectors mentioned. However, individual projections of wind intensity anomalies obtained by each ensemble
member showed a large spread among the GCMs, evidencing the uncertainties associated with the prospects of change in
wind power on the continent. Furthermore, this study has presented a first analysis of CMIP6 projections for South American
wind power generation, providing relevant information to the energy sector decision-makers.

Keywords Wind power - CMIP6 - Climate change - Statistical downscaling - South America

1 Introduction

One of the world’s main challenges is meeting the grow-
ing energy demand with sustainable measures to preserve
the environment and mitigate the effects of climate change.
Anthropic activities, especially those associated with the
emission of greenhouse gases (GHG), have caused the global
average temperature to rise since the Industrial Revolution,
leading to uncertain future climate conditions and making it
urgent to increase the use of clean, renewable energy sources
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for power generation (IPCC 2021). Renewable energy plays
an essential role in reducing GHG emissions, and it may
supply about 20-30% of global primary energy by 2040,
being able to entirely replace the current energy system by
2050 (Gernaat et al. 2021). For South America (SA), the
renewable energy usage expansion is crucial, as countries
on the continent have proposed ambitious GHG emission
reduction targets (Washburn and Pablo-Romero 2019) and
diversification of clean energy sources (Icaza et al. 2022) for
the coming years. Although SA has a favorable prominence
in using renewable energy compared to the rest of the world
(Icaza et al. 2022), recent years have shown progressive
employment of thermal sources (Arango-Aramburo et al.
2020). Furthermore, there is a direct relationship between
the increase in the South American gross domestic product
(GDP) and the consumption of non-renewable energy and
GHG emissions (Deng et al. 2020).

@ Springer
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Among the current renewable energy sources available,
wind energy is a feasible option due to its technological
advancement and reduced cost (Wiser et al. 2021), represent-
ing a current global installed capacity of 837 GW (GWEC
2022), with an estimated installation of more than 6,000
GW by 2050 (IRENA 2019). Regarding SA, Brazil is the
third main market in the world for new wind power installa-
tions, presenting an expansion of 20 GW of installed capac-
ity in 2021, about 70% of all wind power in Latin America
(GWEC 2022). In addition, countries like Argentina, Chile,
Colombia, Ecuador, Peru, Venezuela, and Uruguay have
relevant wind capacity. Still, several factors, such as the
volatile economy, dependence on hydropower, lack of uni-
fied and ratified planning with long-term targets, as well as
the absence of better management of decision-makers and
federal incentives, hinder foreign investment and limit the
full exploitation of the continent’s wind power (Mattar et al.
2021; GWEC 2022; Icaza et al. 2022).

Wind turbines are generally installed at 100 m above the
surface to generate wind energy, designed to avoid the con-
straining effect of surface roughness on wind speed (Reboita
et al. 2021). The wind power density (WPD) measures the
energy associated with wind speed at a given location, char-
acterizing the wind power available per square meter of area
swept by a turbine (Manwell et al. 2010; Reboita et al. 2021).
WPD varies with the cube of wind speed, so even small
reductions in wind speed can substantially decline WPD
and negatively impact wind farms’ energy production and
incomes (Zhang and Li 2021). Despite that, wind power
plants contemplate onshore and offshore parks, with onshore
farms comprising the wind turbines installed over the land.
Wind turbines over the sea, in areas far from the coast, and
within deeper waters compose the offshore parks. Under
current global policies to expand the renewable energy
matrix, the annual global onshore market is estimated to
grow to 6.1% by 2026, whilst the offshore market may see an
increase of up to 8.3% over the same period (GWEC 2022).
Offshore wind farms have an average construction period
of 2-3 years and a useful operational life of 20-30 years;
nonetheless, uncertainties regarding future climate condi-
tions challenge long-term energy production (Zhang and Li
2021).

The wind power of a region can be assessed from obser-
vations (Alkhalidi et al. 2019; Arslan et al. 2020), reanalysis
products (Tavares et al. 2020; Braga et al. 2021; de Oliveira
Filho et al. 2022), and climate models (Reboita et al. 2018,
2021; Carvalho et al. 2021; Martinez and Iglesias 2021,
2022; Sawadogo et al. 2021; Hahmann et al. 2022; Ndiaye
et al. 2022; Anandh et al. 2022). Global climate models
(GCMs) provide essential information about future cli-
mate prospects and their impacts on winds. Recently, the
sixth phase of the Coupled Model Intercomparison Pro-
ject (CMIP6) launched by the World Climate Research

@ Springer

Programme’s (WCRP) Working Group on Coupled Mod-
eling (WGCM) has made available a prominent number of
GCMs that represent state-of-the-art multi-model datasets,
constituting a vital tool for better quality climate projections
(Eyring et al. 2016). Such models have a set of historical
simulations based on observations from 1850 to 2014, which
help to analyze the ability to simulate climate variability
and causes of forced climate change (Zhang and Li 2021).
Moreover, in CMIP6, the Scenario Model Intercomparison
Project (ScenarioMIP) plays a critical role in providing cli-
mate projections based on the latest scenarios of future GHG
emissions and land use, the Shared Socioeconomic Pathways
(SSPs) (Riahi et al. 2017). SSPs combine technological and
social development with the future climate radiative forcing,
characterizing society’s more realistic future development by
considering present and future social, economic, and politi-
cal scenarios (Carvalho et al. 2021).

Studies using CMIP5 models estimate an increase in wind
resources in the tropics and southern hemisphere (Karnaus-
kas et al. 2018), especially in SA (Reboita et al. 2018) and
sectors of Africa (Akinsanola et al. 2021; Sawadogo et al.
2021). On the other hand, a decrease is projected in the
mid-latitudes of the northern hemisphere (Karnauskas et al.
2018), including large parts of Europe (Carvalho et al. 2021;
Martinez and Iglesias 2021), North America (Kulkarni and
Huang 2014; Chen 2020), and Asia (Kulkarni et al. 2018;
Zhang and Li 2021; Anandh et al. 2022). Conversely,
southerly latitudes in China and India are also projected to
increase wind speed, especially during the winter months
and the boreal monsoon (Zhang and Li 2021; Anandh et al.
2022). Karnauskas et al, (2018) concluded that a reduc-
tion in baroclinicity induces a decrease in wind resources
in the boreal mid-latitudes due to the polar amplification
of the climate change-induced temperature increase, caus-
ing changes in the direction and weakening of storm tracks.
Contrastingly, over some equatorial and southern hemi-
sphere regions, the more significant land surface warming
than the ocean surface induces an increase in wind resources
(Karnauskas et al. 2018). Findings from some studies assess-
ing future WPD in different areas of the globe are presented
in Table 1, which is not intended to be exhaustive but to
highlight estimates from recent works focusing on CMIP
projections. Jung and Schindler (2022a) present a more
comprehensive overview of the current literature on wind
power in SA (and other regions of the globe) obtained with
climate models.

Most studies on the South American continent induce
optimistic estimates of wind power generation in the coming
decades (Pereira et al. 2013; Ruffato-Ferreira et al. 2017;
Reboita et al. 2018; de Jong et al. 2019). Regarding offshore
WPD, GCMs from the CMIPS project for the end of the
twenty-first century excellent power generation conditions
across the entire South Atlantic Ocean (Zheng et al. 2019).
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Table 1 A brief review of global wind speed and WPD projections from CMIPS and CMIP6 for the twenty-first century

Region CMIP

Emission Scenarios

Results

References

Europe CMIP6

Asia CMIP5

CMIP5

CMIP6
CMIP5/CMIP6
Africa

CMIP6

CMIP5

North America CMIP5

CMIP6

SSP2-4.5/SSP5-8.5

SSP5-8.5

SSP1-2.6/S8P2-4.5/SSP5-8.5

RCP-4.5/RCP-8.5

RCP-2.6/RCP-8.5

SSP2-4.5/SSP3-8.5

RCP-4.5/RCP-8.5 SSP2-4.5/SSP5-8.5

SSP5-8.5

RCP-2.6/RCP-8.5

RCP-4.5/RCP8.5

SSP5-8.5

Decrease about 10-20% in WPD over
the British Isles, Poland, western
Ukraine, and northern Norway.
Increase of 15-301% over eastern
Ukraine and Turkey

Decrease up to 35% in WPD over the
northern continent and the Central
Mediterranean. Increase of similar
magnitude in West Finland

Wind speed decreases in summer,

extending from the British Isles to the

Baltic Sea. Increase in winter in the
Southern Baltic Sea

Decrease below 20% in WPD over
the south of the Northwest Passage.
Increase in the region north of 72° N

Increase up to 29% in the annual aver-

age WPD across the Indian peninsular

region from 2006 to 2032

Increase above 20% and 40% in WPD
over the Pakistan provinces of Balo-

chistan and Sindh, respectively (under

RCP-8.5)

Decrease up to 10% in WPD over East
China and increase over the South
China Sea

Decreasing (increasing) seasonal and
annual wind speed over North India
(South India)

Increase up to 70% in WPD over the
Guinea coast over West Africa.
Decrease in the Sahel subregion

Increase up to 20% in WPD over the
continent

Decrease in WPD over the western
USA and East Coast, Increase in
WPD over the central USA. Increase
up to 20% (10%) in the Southern
Plains (Northern Plains and the
Midwest)

Decrease of 15% in WPD in the United

States and Canada. Increase up to
30% in southern Mexico

Carvalho et al. (2021)

Martinez and Iglesias (2021)

Hahmann et al. (2022)

Qian and Zang (2021)

Kulkarni et al. (2018)

Reboita et al. (2021)

Zhang and Li (2021)

Anandh et al. (2022)

Akinsanola et al. (2021)

Sawadogo et al. (2021)

Chen (2020)

Martinez and Iglesias (2022)

South America CMIP5 RCP-8.5 Increase in WPD over the northern con-
tinent, east-central Brazil, and above
507 8. Decrease in northern Patagonia

and western Amazon

Reboita et al. (2018)

RCP-4.5 Increase in WPD across most of Brazil,
with significant growth in Northeast-
ern Brazil and an increase above 40%

at some wind farm locations

de Jong et al. (2019)

RCP-4.5/RCP-8.5 Increase in offshore WPD across the

entire South Atlantic Ocean

Zheng et al. (2019)

A possible cause for the higher projected wind speeds is
the South Atlantic Subtropical Anticyclone (SASA) expan-
sion and the longitudinal shift of its position to the west

(Gilliland and Keim 2018; Reboita et al. 2019), intensifying
the pressure gradient and wind speeds along the Brazilian
coast.
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GCMs provide valuable information about many cli-
mate system elements, but their raw outputs are inappro-
priate for studies of mesoscale processes or regional-scale
impacts of climate change due to coarse resolution. Down-
scaling techniques can address these limitations, compris-
ing two approaches: dynamical and statistical downscaling.
Dynamical downscaling involves regional climate models
(RCMs) that use initial and boundary conditions provided
by GCMs, whilst statistical downscaling establishes rela-
tionships between large-scale global circulation factors
and local climate (Fowler et al. 2007). Although dynamical
downscaling is useful for representing local-scale climate
phenomena, such an approach requires high computational
cost (Ambrizzi et al. 2019), besides being prone to the
propagation of systematic biases originating from GCMs or
relating to parameterization schemes (Kotlarski et al. 2014;
Casanueva et al. 2016). On the other hand, statistical down-
scaling requires a long series of local data but demands less
computational effort, avoids the propagation of systematic
errors from the GCMs, and implicitly considers local factors
such as topography and microclimate (Mutz et al. 2021).

Although both methods have advantages and weaknesses,
a preference for studies in SA using dynamical downscaling
has been observed in recent decades, mainly in the analysis
of variables like precipitation and air temperature (da Rocha
et al. 2009; Marengo et al. 2012; Chou et al. 2014; Reboita
etal. 2014, 2016; Solman and Bliazquez 2019; Solman et al.
2021; Silva et al. 2023). However, there is a growing litera-
ture in recent years about statistical downscaling in SA (Bet-
tolli and Penalba 2018; Mutz et al. 2021; Sulca et al. 2021;
Solman et al. 2021; Olmo and Bettolli 2022), evidencing its
ability to represent spatial distributions and extreme events.
Nevertheless, there is still a scarcity of studies that apply sta-
tistical downscaling to winds in SA (Gongalves et al. 2010),
preferably analyzed under the dynamical approach (Reboita
etal. 2018; Silva et al. 2022). Recently, Ballarin et al. (2023)
applied the Quantile Delta Mapping (QDM) bias correction
process developed by Cannon et al. (2015) to statistically
downscale CMIP6 surface wind simulations and obtained a
significant improvement of the estimates, reducing the mod-
els’ systematic bias in both the long-term mean and extreme
values, and indicating its potential use for studies of climate
change impacts.

Hence, this study aims to: (a) apply the QDM bias correc-
tion and statistical downscaling to historical simulations and
climate projections of surface wind from a CMIP6 multi-
model ensemble and; (b) employ the bias-corrected esti-
mates for the evaluation of wind power generation potential
in SA under different GHG emission scenarios. Overall, the
South American literature on wind studies is still relatively
sparse, and there is a lack of work assessing the possible
impacts of climate change projected by CMIP6 models on
wind power generation over the continent. Therefore, we
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intend to fill this gap, analyzing the effects of the projected
changes on SA wind power and mapping the regions with
the best aptitude for the maintenance or installation of wind
farms in the coming decades. Consequently, this study may
be helpful for policymakers, energy planners, and stake-
holders involved in developing and expanding wind energy
infrastructure in SA.

2 Material and methods
2.1 Study area

The study area encompasses the SA continent (Fig. 1),
located at 12° N-55° S latitudes and characterized by a
vast meridional extent and complex topography. Besides
its considerable latitudinal range (yielding a climate hetero-
geneity of tropical, subtropical, and extratropical regions),
SA presents diverse geography, including particular areas
such as the Andes Mountains, the Atacama Desert, the
Amazon rainforest, and the semiarid Northeast of Brazil.
These features propitiate the continent’s occurrence of dif-
ferent atmospheric systems and climate contrasts (Reboita
et al. 2010; Ferreira and Reboita 2022). Central SA (espe-
cially Brazil) is broadly influenced by the South American
Monsoon System (SAMS), with two well-defined seasons
marked by the rainy period from November to March and
the dry season from May to September, as well as the pres-
ence of different circulation systems at high and low levels

6000
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]
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Fig.1 Illustration of the study area with elevation (m). Rectangles
indicate subdomains selected for individual analysis of GCMs from
CMIP6. Source: United States Geological Survey-Earth Resources
Observation System (EROS) Center
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of the atmosphere during these periods (Zhou and Lau 1998;
Pascale et al. 2019; Wang et al. 2020; Reboita et al. 2022).
In contrast, in subtropical Chile, precipitation occurs pre-
dominantly during the austral winter, associated with the
frequent passage of cold fronts and cut-off lows (Garreand
2009). Furthermore, SA is surrounded by two oceans, with
its eastern coast extending into the South Atlantic Ocean and
experiencing trade winds and monsoon action. The western
portion is strongly influenced by the South Pacific Subtropi-
cal Anticyclone (SPSA) and westerly disturbances (Reboita
et al. 2010; Ferreira and Reboita 2022).

2.2 CMIP6-GCMs selection

This study used simulations of the zonal and meridional
wind components at 10 m height from eight CMIP6-GCMs,
comprising the historical period (1995-2014) and two GHG
emission scenarios (SSP2-4.5 and SSP5-8.5) in the future
period (2020-2099). While the SSP2-4.5 corresponds to a
moderate emission scenario, the SSP5-8.5 represents a path-
way with high GHG emissions, reflecting a future with lim-
ited climate change mitigation efforts. The GCMs data com-
prised simulations obtained every three hours provided on
the Earth System Grid Federation (ESGF) platform (avail-
able at https://esgfnode.llnl.gov/search/cmip6/). Currently,
over 100 models are available by CMIP6, each with biases
and uncertainties (Eyring et al. 2016). While a good simula-
tion of the historical period cannot guarantee accurate future
projections for the same model, the low ability to simulate
historical climate likely reflects poor future simulations.
Thus, a fair simulation of past climate guarantees greater
confidence in future climate projections (Zhang et al. 2022).

At the early stage of this study (January 2022), we
selected the best models for representing the SA climate
in terms of precipitation and air temperature, which are a
response to atmospheric circulation. The GCMs selection
followed the methodology of Rupp et al. (2013), whereby
several metrics evaluate the best models considering both
the properties of regionally averaged time series and
large-scale patterns. Thus, the identification of the best-
performing GCMs included the calculation of the follow-
ing metrics of 50 models with monthly data for different
subdomains of the continent (figure not shown): (a) mean
and standard deviation: areal seasonal mean and standard
deviation for each year (from 1995 to 2014); (b) spatial
correlation: a way to assess the similarity of the spatial
patterns of a variable in the observation and model data-
sets (Cohen 1998), which was calculated for each season
(DIJF, MAM, JJA, SON) and year (from 1995 to 2014) with
the Pearson’s coefficient equation; (c) mean amplitude:
defined as the difference between July and January wind

speed; (d) linear trend: for the time series of the complete
period (not by seasons), the linear trend was calculated
using the least squares method and the angular coefficients
that are an indication of a positive or negative trend.

Ranking GCMs according to performance is not
straightforward since several statistical metrics and sea-
sons are analyzed. One way to compile all the information
is by standardizing all metrics (by signing equal weight/
importance to each metric) to rank the models in terms of
their performance, following the methodology proposed
by Rupp et al. (2013). For each model i and metric j, the
bias E; is calculated:

E

ij = |Xobsj — xi,jl (n

where E;; is the absolute error (absolute bias value), and X, ;
and x; ; are the observed and simulated metrics, respectively.
The next step was to calculate the relative error E:‘j (which

can be interpreted as a standardized time series) by Eq. 2:

. —

E;; — min(E;;)
W max(Ei

2

where max (E; ;) and min (E; ;) are the functions used to select
a time series’s maximum and minimum values, respectively.
If the metric is a correlation, each function max(Em) or
min(Elli) is reversed. In this metric, since the absolute error
E; i is divided by the amplitude of the error, E:J = O indicates
that the model has perfect performance and Ei*_J = l denotes
poor performance. According to Rupp et al. (2013), the rela-
tive error is then summed over all statistical metrics m of a
model, which provides the total relative error E* -

i,tot”
m
Bl = 3B} 3
i=1

The final step was to rank the models according to their
respective relative error on a scale from 0 to 1, where each
E;fj is divided by the maximum value of E;‘J With the defi-
nition of the subdomain in SA, the statistics were com-
puted, and the ranking method was applied. Figure 2 illus-
trates that the best models are on the left side (values
closer to zero). We stress that the best models shown in
Fig. 2 could not always be selected due to a lack of avail-
able hourly/daily data and/or projections in the ESGF data-
bases. Thus, by jointly analyzing the availability of high-
frequency data and projections, the models indicated with
a red arrow were selected for this study (Fig. 2, Table 2).
Furthermore, three selected GCMs (EC-Earth3, IPSL-
CM6A-LR, and MPI-ESM1-2-LR) also performed best in
reproducing the SA climate (Dias and Reboita 2021).
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Fig. 2 Ranking method based
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on Rupp et al. (2013) obtained
with monthly data from 50
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Table 2 Information on each CMIP6-GCM employed in the study
Model Resolution (°Lat x °Lon) Institute References
CMCC-CM2-SR5 1.25x0.94 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici Lovato and Peano (2020)
CMCC-ESM2 1.25%0.94 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici Lovato et al. (2022)
EC-Earth3 0.70 % 0.70 EC-Earth Consortium Daéscher et al. (2022)
GFDL-ESM4 1.25 % 1.00 Geophysical Fluid Dynamics Laboratory Krasting et al. (2018)
IPSL-CM6A-LR  2.50x% 1.26 Institut Pierre Simon Laplace Boucher et al. (2018)
MIROC6 141x1.41 Japan Agency for Marine-Earth Science and Technology Tatebe and Watanabe (2018)
MPI-ESM1-2-LR  0.94x 0.94 Max Planck Institute for Meteorology Wieners et al. (2019)
MRI-ESM2-0 1.13x1.13 Meteorological Research Institute Yukimoto et al. (2019)

2.3 Reference dataset

The reference dataset is ERAS reanalysis from the Euro-
pean Centre for Medium-Range Weather Forecasts — ERAS
(ECMWEF-ERAS; Hersbach et al. 2020). The variables
used were horizontal wind components at 10 m height
and 2 m air temperature, available every three hours, with
0.25° horizontal resolution (available at https://cds.clima
te.copernicus.eu/). Although ERAS has 0.25° of horizon-
tal resolution, our Engie project focused on a 0.5° spatial
erid. Hence, we applied the bilinear technique (Press et al.
2007) to get this resolution. The same procedure was used
in the GCMs output (see details in the next section).

@_ Springer

2.4 Bias correction and statistical downscaling

GCMs have a coarse resolution for different applications
(for example, in synoptic-scale studies). One way to get
higher-resolution data is through downscaling methods,
which apply statistical relations between model climate
outputs and reference datasets (Lee and Singh 2019). Sta-
tistical downscaling methods are categorized into three
groups: (a) transfer function model or regression, (b)
weather generator, and (¢) weather typing (Lee and Singh
2019). In this study, the transfer function is applied. This
method employs statistical relationships between reference
variables and GCM output variables, and some reasons for
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its choice are that there are functions that preserve the time
series trends (see Cannon et al. 2015), and its application
is not complicated. This methodology is also called Bias
Correction-Statistical Downscaling (BCSD).

This study applied the statistical downscaling method
by bias correction to downscale the CMIP6-GCMs. For
bias correction, we employed the QDM technique (Can-
non et al. 2015) to historical simulations (1995-2014), and
the transfer functions were applied in future projections
(2015-2099). Cannon et al. (2015) report that the QDM
technique preserves the model-projected relative changes
and trends (i.e., if a model has a dry trend in a specific
region, it will be kept after BCSD) and corrects the sys-
tematic biases in the quantiles of the modeled data with
respect to the observations.

Before bias correction, spatial disaggregation was applied
to the CMIP6-GCMs. All CMIP6 models and ERAS data
were interpolated to 0.5°x0.5° resolution using bilinear
interpolation. Bilinear interpolation was chosen since sev-
eral studies show that this method adjusts the smooth and
spatially correlated behavior of the variable, generating con-
sistent fields (Mukherjee et al. 2018; Lee et al. 2019; Mishra
et al. 2020; Xu et al. 2021; Tang et al. 2022; Wu et al. 2022;
Admasu et al. 2023; Ballarin et al. 2023; Tram-Anh et al.
2023).

After spatial disaggregation, we applied bias correc-
tion through the QDM method. The QDM process follows
three steps (Cannon et al. 2015). First, the trend is removed
from all projected individual quantiles. Next, the detrended
quantiles are bias-corrected with the quantile mapping tech-
nique. Finally, the projected changes are superimposed on
the bias-corrected outputs. Let o and p be the observed and
projected data, and h and f are the historical and future peri-
ods, respectively. The definition of the non-exceedance prob-
ability of the observed (x;,) and projected (x;, ,) historical
and future (x; ) data is accounted for as:

pf‘p([) = F(xf.p(t))ph.p([) = F(xh.p([))ph.o(l) = F(xh‘o(t))

“4)
where p and F denote the non-exceedance probability asso-
ciated with a specific value in time and the cumulative dis-
tribution function (CDF), respectively. The change factor,
which associates the historical simulation outputs with those
of the future period, was calculated with Eq. 5:

AMV = F (prp®) = By (pep(®) = xep(0) = B (pep(©)

(5)
where F~! denotes the inverse CDF and A(t) is the addi-
tive factor of change between the simulated quantiles of the
historical and future periods. Finally, the bias correction in
the future projections was obtained by applying the additive
relative change A*(1) to the historical values with the cor-
rected bias, according to Eq. 6:

Rep(0) = AMNO +F o (pr,p ) ©6)

The historical period (1995-2014) was used for the train-
ing set to adjust the future projections (2015-2099) with the
QDM algorithm. This time window was chosen due to com-
putational resources and to follow the same reference period
used by the International Panel on Climate Change (IPCC
2021). The Python-based package xclim (Logan et al. 2022)
was used to perform the calculations. According to Cannon
et al. (2015), the QDM technique, compared to the quantile
mapping technique, proved to have advantages because it is
less susceptible to problems such as inflating relative trends
in extreme values.

2.5 Wind power density (WPD)

After bias-correcting the simulations, vertical extrapolation
of the wind intensity to 100 m was performed since most
wind turbines are installed at this height to reduce friction
effects in wind intensity (Custddio 2009). Since the methods
used by ERAS and the various CMIP6 models to interpolate
the wind at 100 m are different and not always reported, we
chose to obtain the wind component data every three hours
and calculate the wind intensity per hour, and then the daily
average, to maintain consistency between the procedures
employed. Equation 7 (Nybg et al. 2020; Reboita et al. 2021)
was used to calculate the wind extrapolation:

1

ZoN7
Wy :wm( i ) @)

10m

where Wy, is the wind speed (m 571y at the desired height
(Zy, 100 m), and W, is the wind speed (m s71) at the refer-
ence height of 10 m.

For investors in wind energy, the variable of interest is the
WPD (W m™%) computed according to Eq. 8:

WPD = % pv? (8)

where p is the air density (kg m™), and v is the wind speed
(m s"). Some studies (Silva et al. 2016; Reboita et al. 2018,
2021; Emeksiz and Cetin 2019; de Oliveira Filho et al. 2022)
assume a constant value for air density, but here we estimate
this variable with Eq. 9 (Custodio 2009):

353.4(1 :

T
T

) 5.2624

©)

14

p

where p is the air density (kg m™), z is the height (meters)
in analysis, and T is the air temperature (K).

Weather stations, reanalysis, and climate models do not
provide air temperature at the height of 100 m. Hence, this
variable was estimated by considering the atmosphere’s
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saturated adiabatic vertical rate, by which air temperature
decreases by approximately 0.6 °C every 100 m (Wallace
and Hobbs 2006):

= T2m - r:al (JO)

where T is the air temperature (K) required for the air density
calculation, T,,, is the air temperature (K) at 2 m obtained
by ERAS, and I'sat is the atmosphere’s saturated adiabatic
vertical rate (0.6/100 m). Thus, for the height of 100 m, we
employ the value of I'sat = (0.6.

Seasonal averages of wind intensity and WPD were
calculated for the 100 m height, considering the historical
(1995-2014) and future periods (2020-2039, 2040-2059,
2060-2079, 2080-2099) under the SSP2-4.5 and SSP5-8.5
emission scenarios. All calculations were performed indi-
vidually for each model and the ensemble of CMIP6-GCMs.
However, for brevity, only the seasonal ensemble results are
presented here.

2.6 100 m WPD anomalies and trends time series

In a multi-model ensemble context, we present the change
projections in WPD at 100 m estimated by each CMIP6-
GCM. Thus, we calculated the 100 m WPD anomalies and
trends relative to the 1995-2014 period for eight key regions
(Fig. 1) that concentrate wind farms and wind hotspots in SA
(Viviescas et al. 2019): northern Brazil (R1; 45* W-55° W,
0-3.5° S), northeastern Brazil (R2; 35° W—45° W, 3° §-11°
S), coastal Bahia state (R3; 38.5° W—45° W, 11.5° S-19.5°
S), Southeast Brazil (R4; 41° W-51° W, 20° §-24.5° ),
South Brazil (R5; 48.5° W-55° W, 25° §-31° S), Uruguay
and south of Rio Grande do Sul state, in Brazil (R6; 52.5°
W-58.5° W, 30° S-35° S), central-eastern Argentina (R7;
56.5° W—65° W, 32° §-39° §), and south-central Chile and
central-western Argentina (R8; 65.5° W-72° W, 30° S-37°
S). This analysis allows an assessment of the spread of tem-
poral evolution among the different CMIP6 models used.

2.7 Significance test for the difference
in climatological mean values and Mann-
Kendal trend test

Student’s t-test was employed to assess whether the differ-
ences in the climatological mean values of wind speed and
WPD at 100 m for the future period (2020-2099) from the
CMIP6 ensemble were statistically significant relative to the
historical period (1995-2014). This test assumes the null
hypothesis (H) of no difference between the two datasets
against the alternative hypothesis of a difference between the
two ensembles. The test was computed according to Eq. 11:
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where s and s, are the standard deviation values of the
future and historical datasets, respectively, and n comprises
the number of values in each set. The associated degree of
freedom v was estimated as:

2 242
(1+5)
n n
V= 5 r; (12)
n(n-1)

n?(n-1)

The test was performed using a significance level a of
5%. Thus, when the probability value (p-value) found was
less than 5%, the null hypothesis of no difference between
the two sets was rejected in favor of the alternative hypoth-
esis, indicating statistical evidence of the difference
between the mean values of the two periods evaluated.

Additionally, we analyzed the 100 m WPD trend time
series obtained by the eight CMIP6-GCMs and the multi-
model ensemble for eight subdomains of SA (Fig. 1) to
present the climate change signal on WPD in different sec-
tors of the continent. This procedure was done using the
Mann—-Kendall trend test (Mann 1945), which is widely
used to analyze trends in hydrological series (Hamed
2008; Li et al. 2021). In this method, when the normal-
ized standard Z-statistic exceeds the critical thresholds
(—2.32, 2.32), the hydrological series has a significant
rate of change with a 99% confidence level. The standard
normalized Z-statistic is calculated according to Eq. 13:

(8=1) \
\/Vnr(S)‘ S0
z=40, $§=0 (13)
(5+1)
\fVur(S)’ <0

where S is the statistic
o=l n

S=3 3 sgn[x() - x)] (14)
i=1 j=itl

where n represents the length of the series, i.j represent the
variable numbers, and sgn is calculated as:

1, x(1) > x()
sgn[x() —x(@}] =1 0, x(i) =x(j) (15)
=1,  x(i) <x()

In addition, Sen’s slope estimation test was employed to
detect the linear trend of WPD in the sclected subdomains.
The trend is given by Eq. 16:
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X=X ..
E‘:M(i—j ),V_]<1 (16)
where f is the magnitude of the trend of the data series, and
M represents the median of the data series.

2.8 Classification of wind power density

Furthermore, we rated the wind energy potential in SA
considering the thresholds presented in Table 3, which are
adapted from the methodology proposed by Elliott et al.
(1991) for calculating WPD using wind speed at 100 m.
Hence, it is possible to map the regions suitable for wind
power generation, corresponding to the “moderate” category
or above (Reboita et al. 2021).

3 Results and discussion
3.1 Wind speed at 10 m

Figure 3 shows the seasonal climatology of the wind speed
(ms™") at 10 m for the historical period (1995-2014) over
SA and adjacent oceans, obtained by ERAS (left column)
and the CMIP6 ensemble with (middle column) and without
(right column) the application of bias correction.

To complement the analyses, Figure S2 of the Supple-
mentary Material shows the comparison of wind speed at
10 m obtained by ERAS and BCSD ensemble with surface
wind measurements taken at two weather stations (located
at Sombrio and Petrolina), made available by the National
Environmental Data Organization System (SONDA) net-
work, belonging to the National Institute for Space Research
(INPE). In addition, Figure S3 compares the extrapolated
wind estimates at 25 and 50 m obtained by Eq. 7 with meas-
urements from anemometer towers installed at these heights
at two stations in the SONDA network (located at Petrolina
and Sio Jodo do Cariri). Biases persist even after correction.
Still, both datasets (ERAS and BCSD ensemble) satisfac-
torily simulate the seasonal cycles of wind speed and the

Table3 Classes of WPD at 10 and 100 m adapted from Elliott et al.
(1991) and Reboita et al. (2021)

Classes 10m 100 m
v WPD v WPD

Poor 0-4.4 0-52.2 0-62  0-1469
Marginal 44-5.1 52.2-813 6.2-72 146.9-228.7
Moderate 5.1-5.6 81.3-107.6 7.2-19  228.7-302.8
Good 5.6-6.0 107.6-132.3 7.9-85 302.8-372.5
Excellent-1 6.0-6.4 132.3-160.6 8.5-9.0 372.5-452.0
Excellent-2 6.4-7.0 160.6-210.1 9.0-9.9 >452.0

general behavior of the observational time series at the two
stations analyzed. We would point out that, although obser-
vational data is available for different locations in SA, many
of these datasets are composed of relatively short series, in
addition to the absence of measurements or the poor quality
of the observed series, Given this, reanalysis could be an
alternative for studies evaluating large regions or where data
is difficult to obtain.

The ensemble without bias correction indicates that
GCMs underestimate the wind intensity in regions like
northeastern Brazil and Argentine Patagonia during the
entire year, with more expressive underestimations during
the austral winter (Fig. 3 a3) and spring (Fig. 3 d3). The
underestimation of wind intensity over northeastern Bra-
zil was also identified in CMIP5 models (GFDL-ESM2M,
HadGEM2-ES, and MPI-ESM-MR) nested to RegCM4,
which showed a negative deviation of up to 2 m s~ in the
region for all seasons (Reboita et al. 2018).

Underestimates from the CMIP6 models also occur in the
central portion of SA south of 10°S during austral autumn
and winter (Fig. 3 b5, ¢5) and over Uruguay during spring
(Fig. 3 d5). On the other hand, the CMIP6 ensemble ade-
quately simulates the wind speed seasonal variability in the
Amazonia region and the higher magnitudes in sectors such
as northern Venezuela, Suriname, Guyanas, and extreme
northern Brazil. Moreover, even without bias correction,
the CMIP6 ensemble reproduces the two high wind speed
offshore cores in the South Atlantic (in Rio de Janeiro state
and along the coast of Santa Catarina and Rio Grande do
Sul states, Brazil) during spring previously found by Tavares
et al. (2020).

Regarding the low-level jets (LLJ) east of the Andes
Mountains’ influence on the surface winds (10 m), the
CMIP6 ensemble simulates the highest wind intensity (up
to 4 m s~') over southeastern and southern Brazil in austral
summer (Fig. 3 a3). However, it overestimates (underes-
timates) the variable over the region east of the Atacama
Desert (eastern Colombia) throughout the year. CMIP5
models also overestimate wind speed over the mountain-
ous terrain of the Andes, showing a strong positive bias in
the region (of the order of 5 m s™1, which is due to their
horizontal resolution that constrains the ability to resolve
the complex topography (Kumar et al. 2015). In addition,
several CMIP5-GCMs (whose families encompass the
models analyzed here) underestimate the warm and moist
northerly flow originating from the tropical continent toward
southeastern SA, causing the underestimation of the South
Atlantic Convergence Zone (SACZ)-associated rainfall in
the region (Barros and Doyle 2018). This deficiency is also
evident in the CMIP6 ensemble underestimating winds over
Bolivia and Paraguay throughout the year.

CMIP6 ensemble captures the intensity magnitude asso-
ciated with wind convergence in the equatorial sector of
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Fig.3 Seasonal mean wind speed (m s~y at 10 m for the historical period (1995-2014) obtained by ERAS (left column) and the CMIP6 ensem-
ble with (middle column) and without (right column) the application of BCSD

the southern Atlantic Ocean. However, it underestimates
the intensity off the coast of northeastern Brazil during
austral summer (Fig. 3 a5). CMIP5-GCMs also indicated
a large spread among the models in simulating the climato-
logical mean wind vector, especially along the Intertropi-
cal Convergence Zone (ITCZ) and the equatorial Atlantic
(Huang et al. 2020). Some factors that cause the spread are
partially related to the different sea surface temperature
(SST) generated by the models since differences in the
SST warming patterns in the coupled models contribute
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substantially to the spread of tropical rainfall and atmos-
pheric circulation among the GCMs.

Furthermore, the ensemble overestimates the wind inten-
sity at the center of the SASA during austral autumn (Fig. 3
b4, b5) and winter (Fig. 3 c4, ¢5). Still, such a deviation does
not yield higher velocity values over northeastern Brazil.
Regarding the western portion of SA, the ensemble simu-
lates the SPSA action and its influence on the continent’s
west coast. In addition, it captures the higher intensity core
on the south-central Chile coast, corroborating results from
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the CMIP3 models (Garreaud and Falvey 2009). Since small
changes in wind intensity cause considerable changes in
wind power density, statistical downscaling with the QDM
bias correction technique is applied to the wind speed at
10 m simulated by each CMIP6-GCM before the wind
extrapolation calculation at 100 m. Figure 3 (second left col-
umn) shows that the methodology can reduce model biases
in the historical period, which results in fields symmetric to
those of ERAS and allows for more reliable estimates about
applying the wind speed from CMIP6 projections for the
twenty-first century.

3.2 Wind speed and wind power density at 100 m

Figure 4 presents the seasonal mean wind power density
(WPD) for the historical period (1995-2014) obtained with
the ERAS reanalysis and the CMIP6 ensemble mean after
statistical downscaling. ERAS indicates a seasonal variabil-
ity with higher WPD values throughout the year in regions
such as south-central Argentina, northern Venezuela, and
Uruguay. At the same time, northeastern and southern Brazil
show higher magnitudes during the austral spring and sum-
mer, recording values of up to 300 W m~2,

Offshore WPD analyses on the coasts of Southeastern and
Southern Brazil with different reanalysis products (ERAS,
CFSv2, and MERRA?2) indicated mean values of 400-475
W m™ for the Southeast and 425-550 W m™ for the South
(Tavares et al. 2020), which are appropriately simulated by
the CMIP6 ensemble, mainly in austral spring and summer.
The ensemble also shows suitable conditions for wind power
generation in much of Northeast Brazil during austral winter
and spring, as well as high offshore potential on the northern
coast of the Northeast, which corroborates previous analyses
performed with regional climate model (Oliveira and Costa
2011).

WPD scasonal variability is associated with the wind’s
seasonality influenced by different phenomena, such as the
confluence of the trade winds in the equatorial sector and
the SASA spatial variability, and the CMIP6 ensemble can
simulate the WPD seasonal variability during the histori-
cal period. However, it presents evident overestimations
in northeastern, central-western, and southeastern Brazil
throughout the year, even after applying the bias correction,
with larger deviations in austral spring and summer. Consid-
ering the continental sector, generally, the mean deviations
are between — 0.5 and 1 W m~2, with systematic overestima-
tions over the west coast of SA and central-eastern Argen-
tina throughout the year. Regarding the oceanic sectors, the
CMIP6 ensemble overestimates WPD in the South Atlantic
and South Pacific practically all year long (with more intense
overestimates south of 40° S during winter), except over
Equatorial Atlantic during austral fall and winter.

In the Brazilian southeast coast region, ERAS and CMIP6
ensemble indicate WPD values above 400 W m~? through-
out the year, with an underestimation of up to 80 W m~2 by
the ensemble during austral autumn and winter (Fig. 4 b3,
¢3). This region is a relevant area of interest for the installa-
tion of offshore wind farms, and analyses from 1979 to 2020
indicate that there has been a reduction (increase) in the fre-
quency of low (high) intensity winds (=7.5 m s~ (Corio-
lano et al. 2022), which is mainly related to the intensifica-
tion and expansion of the SASA in recent decades (Reboita
et al. 2019). Except for the coastal regions of Sdo Paulo and
the southern coast of Rio de Janeiro, in Brazil, a consistent
WPD increase of up to 1.89 W m~2 year ! was observed
over the last 40 years, which corresponded to the rise of
up to 11.2% in the median WPD (Coriolano et al. 2022).
In addition, it is estimated that there is a large area with
offshore wind power in Southern Brazil in water depths of
50m, as well as an area with an estimated technical potential
of 344 GW near the state of Rio de Janeiro, located in water
depths of 100 to 1500 m (Tavares et al. 2020).

Figure 5 presents the differences related to the historical
period of extrapolated wind intensity at 100 m projected by
the CMIP6 ensemble for the twenty-first century, consider-
ing the SSP2-4.5 scenario. For the period 2020-2039, slight
differences are noted, with an increase of approximately
0.5 m s~ in most of SA. Projections from the Eta regional
model nested with the HadGEM2 GCM under the RCP-4.5
scenario showed similar estimates, indicating an average
increase of 1 m s™! in wind intensity over most of SA and
higher speeds located in the North, Northeast, and South of
Brazil, with more expressive increases in the austral spring
(Ruffato-Ferreira et al. 2017). Similarities between the two
studies include an increase in wind intensity on the coast
of Southern Brazil, a fact most notable during the spring
of the century’s end, indicating an average increase of up
to 1 m s~ in the region. In addition, the decreasing wind
intensity in northern Argentina is obtained in both analyses.
Additionally, the results presented here corroborate other
projections from CMIPS, which indicated a decreasing
wind speed in Argentine Patagonia over the current century
(Reboita et al. 2018).

Figure 6 illustrates the projected change in the percent-
age of WPD at 100 m over the coming decades relative to
the historical period. Over most SA throughout the year,
there is an increase of up to 15%. In contrast, northern and
central Chile suggest a decreasing WPD over the entire year.
Towards the end of the twenty-first century, regions like
Venezuela, north of Brazil, coastal and central portions of
northeastern Brazil, and parts of Paraguay concentrate the
largest WPD increases.

Under the SSP5-8.5 scenario, the CMIP6 ensemble
projects a mean increase of 0.5 m s™' over much of SA
(Fig. 7), similar to the SSP2-4.5 scenario projections. The
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Fig.5 Seasonal differences in wind speed (m s™') at 100 m between
the future (2020-2039, 2040-2059, 20602079, and 2080-2099) and
historical period (1995-2014), projected by the CMIP6 ensemble

Brazilian northeastern, southeastern, and southern coasts
show an increase of up to 1 m s™!, with more signifi-
cant gains during the austral spring. Furthermore, in the
center-south of the subtropical anticyclones, wind inten-
sity is reduced in a band that extends from the Pacific
to the Atlantic, crossing Patagonia and extreme southern
Argentina throughout the year and with a more signifi-
cant decrease during austral summer. Reboita et al. 2018
obtained a similar profile, attributing it to the displace-
ment of storm tracks from 40 to 50° S to higher latitudes,
related to the horizontal temperature gradient at the poles
estimated in climate change scenarios. On the other

hand, northern SA shows an increase of up to 1.5 m s

under the SSP2-4.5 scenario. Hatched areas indicate 95% statistical
significance, based on Student's t-test

especially in the austral spring, corroborating previous
findings (Reboita et al. 2018).

In general, the projections of wind intensity change
obtained here resemble those obtained by dynamical down-
scaling with GCMs from CMIP5 under the RCP-8.5 scenario
(Ruffato-Ferreira et al. 2017). Similarities include an average
increase of approximately 1 m s™! in sectors such as south-
ern, central, southeastern, and northern Brazil. However, the
larger gains of up to 2 m s~ found by Ruffato-Ferreira et al.
(2017) for sectors such as the interior and north of North-
east Brazil are not reproduced here. Instead, these regions
indicate more modest change values in the—0.5to I m s~
range. Dynamical downscaling of the regional model Eta
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Fig.6 Scasonal differences (%) in wind power density (W m™) at
100 m between the future (2020-2039, 2040-2059, 2060-2079, and
2080-2099) and historical period (1995-2014), projected by the

with GCMs from CMIP5 (HADGEM?2-ES, CANESM?2, and
MIROCS) suggests a mean increase of up to 9.4% in wind
intensity over most of northeastern Brazil by 2080 (de Jong
et al. 2019), which is relatively similar to the more modest
increases found here. In this context, it is emphasized that
climate projections should be interpreted as indicators, given
that the different models employed involve uncertainties.
Regarding the western coast of SA, an average increase
of 1 m s~ is generally observed in the SPSA region, a pat-
tern also detected by the CMIP3 climate projections under
the A2 and B2 IPCC scenarios (Garreaud and Falvey 2009).
The strengthening of winds on the west coast of subtropi-
cal SA (north-central and southern Chile) is associated with
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CMIP6 ensemble under the SSP2-4.5 scenario. Hatched areas indi-
cate 95% statistical significance, based on Student's t-test

an increasing surface pressure at mid-southern latitudes,
intensifying the meridional pressure gradient (Garreaud
and Falvey 2009). In addition, other studies identified an
intensification of subtropical anticyclones in the Southern
Hemisphere (Seth et al. 2010; Reboita et al. 2018).

Figure 8 presents the projected changes of WPD rela-
tive to the historical period, considering the SSP5-8.5
scenario. Northern and southeastern Brazil show an aver-
age increase of up to 100% towards the end of the twenty-
first century. Reboita et al. (2018) also found an expressive
rise in WPD in northern Brazil during the last decades of
the twenty-first century, using the RCP8.5 scenario and the
regional model RegCM4 nested with GCMs from CMIP5.
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Fig.7 Similar to Fig. 5, except for the SSP5-8.5 scenario
Although the increments found here are minor, both stud-  the average increase of around 15% in southern Brazil is
ies estimate a WPD increase over southeastern and north-  identified in both studies.
central Brazilian regions, particularly from 2060 onwards. Sectors such as south-central Chile and central Argentina

WPD change estimates in Northeast Brazil present  indicate reduced WPD, with more noticeable decreases dur-
mixed associations with the results of Pereira et al. (2013)  ing austral autumn and winter, reiterating previous results
using the Eta-HadCM3 model. Although both studies  (Reboita et al. 2018). Furthermore, several other CMIP5-
show a potential wind increase in the interior (states of ~ GCMs have also provided projections of reduced WPD in
Bahia, Sergipe, and Alagoas) and east coast practically  the region under the RCP-2.6 and RCP-8.5 scenarios during
the entire year, results here indicate moderate changes and ~ almost the entire year, associated with a decrease in wind
even slight reductions in the northern coast during the aus-  intensity also identified by GCMs (Kumar et al. 2015) and
tral summer. Furthermore, Pereira et al. (2013) found an dynamical downscaling (Ruffato-Ferreira et al. 2017). On
expressive decrease of offshore WPD on the Bahia coast, the other hand, a marked increase in WPD is observed in
while our results show an average change of approxi-  northern SA countries such as Venezuela, Guyanas, and
mately — 10 to 15% throughout the year. On the other hand, Suriname, which corroborates projections of increased wind
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Fig.8 Similar to Fig. 6, except for the SSP5-8.5 scenario

power in the region obtained by CMIPS5 models (Donk et al.
2019).

Overall, the results suggest that the most promising
regions for wind power generation in future climate include
Brazil’s northern, southern, and southeastern portions and
the south-center of northeastern Brazil, endorsing previous
studies (Ruffato-Ferreira et al. 2017; Reboita et al. 2018;
de Jong et al. 2019; Donk et al. 2019; Gomes et al. 2019;
Tavares et al. 2020). Similarly, Argentine Patagonia shows
reduced wind sources, as found in other works (Kumar
et al. 2015; Reboita et al. 2018). Moreover, WPD increases
projected for northern SA, northeastern, southeastern, and
southern Brazil corroborate analogous estimates (Pereira
et al. 2013; Reboita et al. 2018). However, spatial and

@_ Springer

temporal differences in wind intensity and WPD estimates
occur among the different studies. They are likely due to
factors such as the different models and scenarios used, the
period analyzed, and data for validation. Hence, we empha-
size that the uncertainties associated with climate projec-
tions require caution in interpreting such analyses so that
they should be considered estimators and not as irrefutable
truths about future climate conditions.

On the whole, the results indicate suitable conditions
for wind power generation in most of the continent in the
context of progressive warming in the twenty-first cen-
tury, with more favoring patterns in the South, Southeast,
North, and Northeast of Brazil and northern countries of
SA. However, the ensemble projections also suggest that
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sectors traditionally potential for wind power generation,
such as Northeast Brazil, may experience slight reductions
in energy production. Additionally, high wind generation
estimates in areas such as the Andes and tropical SA should
be cautiously analyzed. GCMs tend to overestimate wind
intensity in regions of complex topography (Kumar et al.
2015) and exhibit a considerable spread in the climatologi-
cal simulation of precipitation and winds in the equatorial
region (Huang et al. 2020).

Furthermore, it is valid to point out the current study’s
limitations. First, we highlight that the results here refer to
changes in the average wind regime but do not consider the
changes caused by climate change on the wind speed distri-
bution, whose non-stationary conditions may misrepresent
future wind resources (Jung and Schindler 2019). Moreover,
assessing the evolution of extreme wind speed is critical for
wind analysis, given that extreme events structurally affect
wind turbines, potentially causing damage under excessive
speeds (Pryor and Barthelmie 2021). Estimates of GCMs
from CMIP5 suggest an enhancement of extreme winds in
SA during the twenty-first century, mainly over the tropics
and extratropics (Kumar et al. 2015). Besides, wind power
generation is not linearly proportional to wind intensity
since once the wind speed exceeds the wind turbine speed
(approximately 13—14 m s "), there is no additional wind
power generation beyond the typical turbine capacity (de
Jong et al. 2019).

In addition, the current results describe the possible
changes from a purely atmospheric point of view, not con-
sidering technological aspects such as the capacity factor
related to the wind turbine and the development of turbines
(Jung and Schindler 2022b). Here, we do not account for
technological advancements and evolving energy policies
that may influence the deployment and utilization of wind
power resources. Future research should address these limi-
tations and consider additional scenarios to provide a more
comprehensive assessment of wind power in SA.

Moreover, the current study presents a simplified inves-
tigation of wind power evolution, as the lack of detail in the
land use change projections employed by the GCMs restricts
a more accurate future perspective. This issue is particularly
relevant given that some regions presented here as prone to
wind energy production also correspond to climate change
hotspots under different CMIP3 and CMIPS emission sce-
narios (Torres and Marengo 2014). In light of this problem,
regional models are essential to describe such changes, and
progressive use of multiple RCMs driven by GCMs from
CMIP6 is expected.

Still, on the subject of GCMs, we would point out that
they involve uncertainties since many physical processes
in the sub-grid are parameterized in the numerical models.
Many of these processes are fundamental for a satisfactory
wind simulation, such as the effect of the planetary boundary

layer (PBL) scheme, which plays an essential role in modu-
lating mass, energy, and moisture flows between the surface
and the atmosphere, which in turn influences the simulation
of temperature and winds at low levels (Falasca et al., 2021;
Yu et al. 2022). In addition, a satisfactory wind simula-
tion by numerical models also includes the choice of cloud
microphysics and radiation parameterization since these
factors affect the dynamic and thermodynamic processes
of the atmosphere, influencing the vertical distribution pat-
terns of heat and wind at low levels (Santos-Alamillos et al.
2013; Yu et al. 2022). In this context, we stress the need
for studies that systematically evaluate the performance of
parameterization combinations to investigate the sensitiv-
ity of parameterizations to wind simulation in SA. Despite
the bias correction technique applied to the wind intensity
modeled by the CMIP6 ensemble, the projections from the
different models are still subject to biases, which should be
considered when analyzing the results. In this sense, a more
extensive base of observed data can reduce uncertainties
about validating the simulations.

Finally, we emphasize that the validation of simulations
and projections should employ the most accurate data-
base since the validation data can be biased. For example,
although ERAS performs satisfactorily (Tavares et al. 2020),
the reanalysis underestimates wind in regions with complex
topography (Jourdier 2020), which may induce erroneous
wind power estimates. Reanalysis products also involve
uncertainties since these data are obtained by assimilat-
ing information from different sources such as numerical
models, surface data, airplanes, ships, satellites, radars, and
radiosondes. In this context, Braga et al. (2021) concluded
that the ERAS-Land reanalysis data correctly reproduces
the seasonal and hourly cycles of wind speed over regions
of the Rio de Janeiro state (Brazil) but tends to overestimate
the variable, which consequently affects the estimated wind
potential. Similarly, de Oliveira-Filho et al. (2022) found
that the Global Forecast System (GFS) reanalysis satisfac-
torily simulates the spatial distribution of winds in the state
of Minas Gerais (Brazil) but overestimates wind intensity
in almost the entire region. Here, we can see that the ERAS
reanalysis is subject to biases but is adept at representing
the temporal variability of surface wind data (Figure S2).
Although reanalysis biases influence wind potential esti-
mates, such products can be an alternative for regions where
obtaining consistent and reliable data is difficult. However,
we recommend caution when analyzing wind potential to
consider the uncertainties inherent in the mapping process.

3.3 100m WPD anomaly and trends time series
Figures 9, 10, 11 and 12 show the 100 m WPD anomalies

(in percentage) over the eight subdomains for each CMIP6-
GCM under the SSP5-8.5 scenario. The data represent
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average anomalies relative to seasonal climatology of
1995-2014, indicating the evolution of deviations from pre-
sent to future climate, highlighting the spread among the dif-
ferent models and associated uncertainties. As a complement
to the analyses, Figure S5 in the Supplementary Material
shows the seasonal cycle of wind speed and WPD at 100 m
for regions R2, R3, R4, and R5 to assess the temporal vari-
ability of both indicators.

For the months of DIF (Fig. 9), about 64% of the time
series indicate increasing trends in WPD at 100 m relative
to the historical period (1995-2014) in the SA subdomains.
In R1, virtually all models (except EC-Earth3) and ensemble
project statistically significant increasing trends (Table 4),
with the MPI-ESM1-2-LR model showing the highest vari-
ability (=31 to 241%). Similarly, at R2, about 66% of the
projections indicate significant increasing trends, with the
GFDL-ESM4 model showing the largest range of variabil-
ity (—24 to 95%). GCMs from CMIPS5 also showed a large
spread in simulating rain and wind climatology in tropical
areas such as the ITCZ and equatorial Atlantic (Huang et al.
2020).

At R3, considerable variability also occurs among projec-
tions, and virtually all models (except MRI-ESM2-0) and
ensemble converge on a significant increasing trend in WPD
at 100 m during the twenty-first century, with the IPSL-
CM6A-LR model providing the largest variability (—27 to
2719%). In R4, about 77% of the projections indicate a signif-
icant increasing trend (except EC-Earth3 and MRI-ESM2-0
models), and again, the [IPSL-CM6A-LR model provides the
greatest variability of projected anomalies (— 19 to 199%).
On the other hand, the R6, R7, and R8 sectors show mixed
signals, with models indicating an increasing or decreasing
trend and others with no statistically significant trend. In
R6, only three models indicate an increasing trend, and most
projections do not result in significant trends. In R7, almost
half of the projections suggest a significant increasing trend,
and there is no prominent variability of projections among
the models as in the other sectors, with the IPSL-CM6A-
LR model showing the greatest variation (— 19 to 61%). In
R8, most projections indicate a significant decreasing trend,
and the GFDL-ESM4 model presents the greatest variability
(=25 to 52%).

During the MAM months (Fig. 10, Table 5), approxi-
mately 55% of the projections point to a significant increas-
ing trend in WPD at 100 m during the twenty-first century in
the SA subdomains relative to the 1995-2014 period. In R1,
only the EC-Earth3 model indicates a significant decreas-
ing trend, while the IPSL-CM6A-LR model provides the
largest range of anomaly projections (-39 to 374%). On
the other hand, in R2, only three models and the ensemble
indicate a significant increasing trend. In contrast, four oth-
ers show no significant trend, and three show a decreasing
trend, with the GFDL-ESM4 model resulting in the largest

& Springer

variation (—22 to 119%). At R3, only the EC-Earth3 and
MRI-ESM2-0 models provide no significant increasing
trend, and the CMCC-ESM2 model offers the greatest vari-
ability of projections (=28 to 133%). Similarly, at R4, only
the EC-Earth3 mode! does not result in a significant increas-
ing trend in WPD at 100 m during the twenty-first century,
with the IPSL-CM6A-LR model providing the greatest vari-
ability of projections (— 15 to 311%).

Likewise, approximately 77% of the projections indicate
an increasing trend at R5, and only the EC-Earth3 and MRI-
ESM2-0 models indicate no trend and a decreasing trend,
respectively. At R6, only four models result in an increasing
trend, while the others show mixed signals of a decreasing
trend or no trend. At R7, six models and the ensemble show
no significant trend, and only the GFDL-ESM4 model indi-
cates an increase in WPD at 100 m. Similarly, the GFDL-
ESM4 model is the only one to show a significant increas-
ing trend at R8. The outputs of the other eight data sets are
equally distributed in significant decreasing or no trend.

During the JJA period (Fig. 11, Table 6), about 51% of the
projections indicate a significant increasing trend in WPD
at 100 m in the eight SA subdomains during the twenty-
first century. At R1, only the EC-Earth3 and MRI-ESM2-0
models provide a decreasing trend, and the MPI-ESM 1-
2-LR model offers the largest range of projections (—47 to
168%). At R2, half of the models and the ensemble show an
increasing trend, while only the EC-Earth3 model indicates
a decreasing trend.

At R3, the data sets are unanimous in projecting a sig-
nificant increasing trend, with the IPSL-CM6A-LR model
presenting the largest range of projections (—33 to 209%).
Similar to R2, only the EC-Earth3 model deviates from the
projections of the other sets, indicating no trend in the R4
and R5 sectors. In R4, the IPSL-CM6A-LR model again
stands out with the greatest range of projections (— 29 to
198%), while in R5, the MIROC6 model stands out with the
greatest range (—28 to 135%). Evaluation of several GCMs
from CMIP5 and CMIP6 indicated that MIROC6 proved
to be the least accurate model of the CMIP6 family, with
a mean absolute error of 1.14 m s~! and a mean underes-
timate of — 1 m s™! (Jung and Schindler 2022a). At R6, no
model indicates an increasing trend, and most projections
point to a decreasing trend. At R7, only the GFDL-ESM4
and MPI-ESM1-2-LR models show no trend, while all other
ensembles provide a decreasing trend. Similarly, at R8, only
the GFDL-ESM4 model results in an increasing trend, while
five other models and the ensemble show a decreasing trend
of WPD at 100 m during the twenty-first century.

Finally, considering the SON months (Fig. 12, Table 7),
about 70% of the projections result in an increasing trend
of WPD at 100 m in the SA subdomains. In R1, only the
EC-Earth3 model indicates no trend, and the IPSL-CM6A-
LR model provides the largest range of projections (—55
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to 173%). In sectors R2, R3, R4, R5, and R6, only the EC-
Earth3 and MRI-ESM2-0 models indicate a decreasing trend
or no trend, while all other datasets provide a significant
increasing trend in WPD at 100 m. Overall, in these sec-
tors, the model showing the greatest range of projections
is IPSL-CM6A-LR, with variations from—31 to 63% at
R2, from—32 to 212% at R3, from — 21 to 242% at R4, and
from—21 to 116% at R5. Contrarily, at R7, only the GFDL-
ESM4 model indicates an increasing trend, while the other
five models show no trend, and two models and the ensem-
ble provide an increasing trend. Similarly, at R8, only three
models result in an increasing trend, while most datasets
project a decreasing trend in WPD at 100 m.

In summary, the analysis of 100 m WPD trends obtained
after BCSD under the SSP5-8.5 emission scenario suggests
that sectors R1, R2, R3, R4, and RS tend to experience
increased wind power for most of the year during the com-
ing decades. Although some models, such as EC-Earth3 and
MRI-ESM2-0, indicate a decreasing or no trend in these
regions, most models converge to a favorable future sce-
nario for wind power, considering a context of progressive
warming. On the other hand, sectors R6, R7, and R8 indicate
mixed signals of decrease, increase, or absence of a trend,
depending on the year’s seasons. However, the signs of wind
power reduction prevail mainly in sectors R7 and R8. A
likely reason for the models’ spread in the region relates to
the large GCMs spread in simulating the near-surface west-
erly wind jet position, given that CMIP5 models exhibit a
bias towards the equator of 3.3° in the mean position of the
mean zonal jet, associated with the coupling of ocean and
sea ice models, which can amplify atmospheric biases and
introduce biases generated by the models or the coupling
procedure (Bracegirdle et al. 2013).

An analysis of the direction of the mean bias of 18 models
from CMIP6 showed that half of the GCMs showed positive
median mean errors, while another nine models provided
a negative median (Jung and Schindler 2022a). Here, we
emphasize that although the amount of GCMs used is rea-
sonably small, such models were previously validated among
46 GCMs from CMIP6 (Dias and Reboita 2021) and were
chosen due to their satisfactory performance in representing
the SA climate during the historical period.

Furthermore, given the variability among GCMs, it is
recommended to evaluate multi-model ensembles. Analyses
demonstrated that the multi-model ensemble outperformed
any individual climate model in representing the phase and
amplitude of extreme winds (Kumar et al. 2015). Although
the ensemble masks the poor performance of some mod-
els, using a limited number of GCMs may induce biased
results. Employing a larger number of GCMs also coun-
terbalances the use of RCMs with a better resolution, but
whose number of models used in the studies is commonly
smaller. However, only about 20% of global wind power

studies estimated by climate models have used more than
20 GCMs (Jung and Schindler 2022a). Finally, we reiterate
that the uncertainty associated with intermodel variability
is expected to be reduced with a better representation of all
physical and chemical processes in the climate system. If
intermodel variability is attenuated, only the climate internal
variability and the variability between emission scenarios
would significantly affect climate projections (Blazquez and
Nufiez. 2013).

3.4 Classification of wind power density

Currently, most wind turbines operate at approximately
100 m. Still, the use of wind turbines up to 160 m is expected
to grow in the coming decades (Lantz et al. 2019) due to
the reduced installation and maintenance costs (Barthelmie
et al. 2020). Because of the structural limitations of wind
turbines, wind intensity restricts the amount of wind energy
available, such that weaker winds (<4 m s™') do not move
turbines, while stronger winds (> 13 m s71) do not increase
wind power as well as winds above 25 m ™' can cause struc-
tural damage to turbines (Reboita et al. 2021). Therefore,
projections of increasing wind intensity do not necessar-
ily translate into growth in wind power. Thus, it is valid to
classify regions according to their potential for wind power
generation.

Figures 13 and 14 illustrate the seasonal categorization
of SA wind power according to the methodology proposed
by Elliott et al. (1991) for the height of 100 m under the
SSP2-4.5 and SSP5-8.5 scenarios, respectively. In addition,
Figures S6 to S13 of the Supplementary Material present the
seasonal categorization of wind power obtained individu-
ally by each GCM under the SSP5-8.5 scenario. Although
the CMIP6 ensemble indicates an increase in the percent-
age of WPD over large parts of SA during the twenty-first
century, such an increase does not determine growth in the
continent’s wind power.

Under the SSP2-4.5 scenario, the wind power of most
of the continent is classified as poor over the twenty-first
century. Exceptions occur mainly during austral spring and
summer in extreme eastern Northeast Brazil and extreme
southern Brazil, where moderate to excellent conditions are
experienced. Additionally, other sectors, such as Uruguay,
northern Venezuela, central-southern Argentina, and por-
tions of Paraguay, show moderate to excellent conditions
throughout the year. Notably, the most excellent condition
in Argentine Patagonia throughout the century is impressive.

Under the SSP5-8.5 scenario, fields similar to those under
SSP2-4.5 are observed, but the areas with moderate or better
ratings cover slightly larger portions. Again, regions such
as the eastern coast of Northeast Brazil and southern Brazil
show moderate to excellent conditions, most evident during
austral spring and summer. Other sectors, such as Argentine
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Fig. 13 Seasonal classification of arcas suitable for wind power generation at the 100 m height under the SSP2-4.5 emission scenario during
2020-2099

Patagonia, Uruguay, northern Venezuela, and portions of
southeastern Paraguay, indicate moderate to excellent
conditions throughout the year. Importantly, although the
GCMs have provided mixed WPD trend signals in Argentine
Patagonia, this is not necessarily reflected in the wind power
classification, as the region has the best WPD estimates
on the continent. On the other hand, although the models
mostly indicate a WPD-increasing trend in most of Brazil,
the wind power classification suggests that the best regions
for wind generation are concentrated in Northeastern and
Southern Brazilian territories.

Overall, the results here reiterate the traditional wind
power of countries like Argentina and Brazil. Argentina has

@ Springer

one of the best wind resources in the world, with high wind
speeds in the country's southern, central, and northwestern
provinces, potentially supplying up to 14% of total energy
demand by 2030 (GWEC 2018). However, the country faces
several challenges for its wind expansion, such as increased
investment difficulty due to Argentina’s highly volatile econ-
omy, power transmission and distribution constraints, and
better local decision-making management since each Argen-
tina province has its own power regulation (GWEC 2019).
Analogously, although Brazil’s estimates are more con-
servative, these results reinforce the country’s considerable
wind energy potential. Brazilian wind power has experi-
enced massive growth in the last decades, rising from 1
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Fig. 14 Similar to Fig. 13, except for the SSP5-8.5 scenario

GW in 2011 to 21 GW in 2022 (accounting for 11% of the  for instance, is already a relevant example of local comple-
electricity matrix), resulting from a combination of factors ~ mentarity between solar and wind sources (EPE 2021).
such as economic recovery, increased energy demand, con-

solidation of the wind industry, and regulation of hybrid

projects (GWEC 2022). In addition, the country presents 4 Summary and Conclusions

promising offshore wind power generation capacity (Tavares

et al. 2020), attracting potential investments in the sector ~ The growing energy demand for sustainable socio-economic
(EPE 2022). Therefore, according to the Ten-Year Energy  development in South America during the twenty-first cen-
Expansion Plan (EPE 2022), the coming years indicate opti-  tury and the need to mitigate the effects of climate change
mistic prospects for the wind sector in the country. Still,  make it urgent to expand the renewable energy matrix in its
progress must also be made in strategic planning, public  different aspects on the continent. In this context, the present
policies that favor a fair energy transition, and hybrid pro- study sought to evaluate the projections of changes in wind
jects that contemplate wind and solar generation, offshore  intensity and wind power density at 100 m estimated by an
wind, and hydrogen (GWEC 2022). The Brazilian Northeast, = ensemble composed of eight CMIP6 global climate models
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for the twenty-first century under the SSP2-4.5 and SSP5-8.5
emission scenarios. ERAS reanalysis validated the ensemble
climate simulations for the historical period (1995-2014)
and the application of statistical downscaling. After bias cor-
rection, the ensemble proved adept at reproducing the his-
torical climate, although systematic biases remain in some
regions of the continent.

Results indicated that regions with wind energy potential
in the historical period maintain suitable conditions in the
future climate. However, the potential increasing wind speed
and WPD was observed over much of the South American
continent during the twenty-first century. Sectors such as
Northeast Brazil, portions of the Southeast, and the coast of
South Brazil showed an increase of approximately 25-50%
in wind energy production compared to the historical period,
with excellent conditions for wind energy generation for the
coming decades. Other regions such as Northern Brazil,
Argentine Patagonia, Northern Venezuela, and portions of
Uruguay, Bolivia, and Paraguay also suggest estimates of
growth in wind energy potential. For the worst GHG emis-
sion scenario (SSP5-8.5), the CMIP6 ensemble projections
indicated even more favorable conditions in those mentioned
South American regions.

Projections’ uncertainties were evaluated by analyzing the
time series of 100 m WPD anomalies projected individually
by each model of the CMIP6. A considerable spread was
observed among the model projections, with more expres-
sive variability in problematic sectors for climate modeling,
such as the Brazilian north and southeast regions and west-
ern South America. Thus, caution is recommended when
analyzing the projections to consider them as possible future
climate conditions and perspectives for energy production
and not as irrefutable truths about the climate evolution
in the South American territory. In this sense, dynamical
downscaling studies with RCMs driven by CMIP6-GCMs
are expected to advance the knowledge of future impacts in
the regions.

‘Within this context of uncertainties, we emphasize that
this study presents limitations, which should be considered
when analyzing the results. First, the study did not evaluate
the impact of climate change on wind speed distribution,
whose non-stationarity can mislead deductions of future
wind resources. The analysis of the evolution of extreme
wind speed was also not performed since this type of
study would require wind data of 10-min frequency, which
would demand high computational costs. However, such an
investigation is essential because extreme wind events can
cause structural damage to wind turbines. Furthermore,
the study did not account for technological advancements
and evolving energy policies, and future research should
address these limitations. Moreover, we also stress that
investigating the impacts of wind farm expansion on bio-
diversity should not be neglected. Installing increasingly

& Springer

tall wind turbines may, for example, affect the distribution
and habits of avian species (Therkildsen et al. 2021).

In addition, obtaining a reliable and extensive data-
base of observed data is necessary since the validation
data contains biases. Even though reanalysis products
with satisfactory global performance provide consistent
estimates, such data can also lead to erroneous assump-
tions about validating climate projections. Uncertainty is
intrinsic to reanalysis since it results from data assimila-
tion of different sources. As such, the uncertainties and
systematic errors in the reference data must be considered
when analyzing climate projections for wind power on the
continent. Furthermore, we emphasize that the methodol-
ogy used here can be replicated in dynamical downscaling
studies to assess better the regional characteristics of the
wind on the continent. It should be noted that there is still
a scarcity of wind studies with dynamical downscaling in
SA, and the methodology used in the current work proved
to be satisfactory for evaluating simulations and climate
projections of wind and WPD in studies with dynamical
downscaling on the continent (Reboita et al. 2018).

Overall, we stress that the projections presented here
have relevant implications for policymakers, energy plan-
ners, and investors in the South American wind energy
sector. For example, identifying regions with high wind
power density highlights potential areas for installing wind
farms, developing the strategic allocation and deployment
of wind energy resources, and facilitating the transition
towards a cleaner and sustainable energy infrastructure in
SA. In addition, these findings emphasize the importance
of formulating policies encouraging wind energy deploy-
ment in favorable regions, promoting a shift towards a
low-carbon economy, and reducing dependence on fossil
fuels. Lastly, the study provides valuable information to
policymakers, energy planners, and stakeholders involved
in the development and expansion of wind energy infra-
structure, as the analyses presented here represent a first
look at the climate projections of the latest generation of
CMIP models for SA wind power.
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Fig, S1 Illustration of the study area with elevation (m). Red dots correspond to the locations of the weather
stations from the SONDA network used to compare the ERAS reanalysis and BCSD ensemble simulations with
observational data. Source: United States Geological Survey-Earth Resources Observation System (EROS)

Center.
Table S1. Information on the SONDA network stations used in the study.
Number Station Federal Unit | Heights of Latitude Longitude Altitude (m)
Wind (m)
1 Sio Jodo do PB 25150 07°22° 54”8 | 36°31'38" W 4860
Cariri
2 Petrolina PE 10/25/50 09°04° 08 S | 40°19° 11" W 387
3 Sombrio SC 10 29°057 447 S | 49948748 W 15
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Fig. S6 Seasonal classification of areas suitable for wind power generation at the 100 m height under the SSP5-8.5
emission scenario during 2020-2099, obtained by the CMCC-CM2-SR5 model.
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Fig. S7 Similar to Figure S6, except for the CMCC-ESM2 model.
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Fig. S8 Similar to Figure S6, except for the EC-Earth3 model.
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Fig. S9 Similar to Figure S6, except for the GFDL-ESM4 model.
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Fig. 810 Similar to Figure S6, except for the IPSL-CM6A-LR model.
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Fig. S11 Similar to Figure S6, except for the MIROC6 model.
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Fig. S12 Similar to Figure S6, except for the MPI-ESM1-2-LR model.
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Fig. S13 Similar to Figure S6, except for the MRI-ESM2-0 model.
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ABSTRACT

Developing the renewable energy matrix of South America (SA) is fundamental for sustainable socioeconomic
growth and mitigating climate change’s adverse effects. Thus, this study estimates changes in SA’s solar irradiance
and solar power potential using data from eight global climate models (GCMs) belonging to the Coupled Model
Intercomparison Project—Phase 6 (CMIP6). Applying statistical downscaling and bias correction with the Quantile
Delta Mapping (QDM) technique, we evaluate projected changes in the Concentrated Solar Power (CSP) and
Photovoltaic Power (PVP) outputs under different future climate scenarios (SSP2-4.5 and SSP5-8.5). Historical
simulations (1995-2014) are validated using ERAS reanalysis and CLARA-A3 satellite observations. The QDM
method reduces the models” systematic biases, decreasing the ensemble’s errors by 50% across SA throughout the
year. Regarding future decades (2020-2099), the CMIP6 ensemble shows spatial and seasonal variability in solar
generation. For CSP, estimates suggest that regions traditionally favorable to solar energy generation (such as the
Brazilian Northeast and portions of Chile) will maintain their suitable conditions during the 21st century, projecting a
potential 1-6% increase (particularly under the SSP5-8.5 scenario in southern Chile and most of Brazil). Concerning
PVP generation, the CMIP6 ensemble projects a rise of [-4% (mainly under the SSP5-8.5 scenario in the Amazonia,
Midwest, and Southeast Brazilian sectors). Moreover, trend analyses projected individually by the CMIP6 GCMs
converge on an increasing PVP, mainly in Brazil’s Amazonia and Midwest regions. In contrast, for South Brazil,
approximately 84% of the projections show a negative trend (or no trend), evidencing unfavorable or uncertain
conditions for solar generation development in the region. Despite the data and processes’ inherent limitations, this
study yields a first analysis of statistically downscaled projections from CMIP6 for solar power generation in South
America, providing valuable information for energy sector decision-makers.

Keywords: Solar power; CMIP6; Climate change; Statistical downscaling; South America

*CORRESPONDING AUTHOR:
Glauber W. S. Ferreira, Natural Resources Institute, Federal University of Itajub4, Itajuba, Minas Gerais, 37500-903, Brazil; Email: glauber fer-
reira@unifei.edu.br

ARTICLE INFO

Received: 25 April 2024 | Revised: 30 May 2024 | Accepted: 13 June 2024 | Published Online: 4 July 2024

DOL: https://doi.org/10.30564/jees.v6i2.6425

CITATION

Ferreira, G.W.S., Reboita, M.S., Ribeiro, J.G.M., 2024. Assessment of the Solar Energy Potential over South America Estimated by CMIP6 Mod-
els in the Present and Future Climate. Journal of Environmental & Earth Sciences. 6(2): 110-143. DOL: https://doi.org/10.30564/jees.v6i2.6425
COPYRIGHT

Copyright © 2024 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu-
tion-NonCommercial 4.0 International (CC BY-NC 4.0) License (https:/creativecommons.org/licenses/by-nc/4.0/).

110

135



(id

P e

7 — Assessment of the solar energy potential over South America estimated by
CMIP6 models in the present and future climate

Journal of Environmental & Earth Sciences | Volume 06 | Issue 02 | July 2024

1. Introduction

Conciliating socioeconomic growth with sustain-
able energy development is one of the leading global
urgencies. Global warming, intensified by anthropic
activities that emit greenhouse gases, has caused
surface temperature to rise by approximately 1.1 °C
compared to pre-industrial levels "', Emissions of
greenhouse gases continue to grow, arising from
several factors like the use of fossil fuels, land-use
change, high consumption patterns etc. ", and in a
more pessimistic scenario, global climate models
(GCMs) project an increase in average global tem-
perature of up to 5.7 °C by the end of the 21st cen-
tury . Indeed, the ten warmest years in historical
records have all occurred in the last decade (2014—
2023), and 2023 was the warmest year since global
recordings began in 1850, being approximately
1.35 °C above the pre-industrial average ', In this
context, executing decarbonization strategies is cru-
cial to mitigate climate change’s negative impacts
and meet the Paris Agreement’s commitments. For
South America (SA), such actions are equally urgent
because, despite its leading role worldwide in the use
of renewable energies ™
a growing use of non-renewable sources and green-
house gas emissions ™,

, recent years have shown

Abundant in solar and wind resources, Latin
America currently has more than 319 GW of solar
and wind energy production capacity (large-scale an-
nounced, in pre-construction or under construction)
and could increase its production capacity by more
than 460% by 2030 compared to the 69 GW (27.6
GW of solar and 41.5 GW of wind) that are currently
in operation "', In this scenario, Brazil stands out, as
the country currently has around 40 GW of installed
solar photovoltaic capacity and could reach 68 GW
in the next five years, which would place it as the
fifth-largest solar producer in the world and the lead-
er in solar production in Latin America ™. How-
ever, the expansion of solar capacity in the country
depends on several factors, such as the installation of
solar farms, the improvement of energy transmission
and storage systems, the implementation of a man-
agement system that integrates solar energy into the
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Brazilian matrix, and incentives for new investments
in the sector ™.

Solar energy can be generated by two main meth-
ods: concentrated solar power (CSP) and photovol-
taic solar power (PVP). Concentrated solar power
stations collect and concentrate direct sunlight and
use it to produce heat and drive a steam turbine to
produce electricity. Two CSP technologies stand out:
power towers, where flat mirrors focus sunlight on a
single point on a high tower, and parabolic troughs,
where curved mirrors focus sunlight onto a line run-
ning along the mirrors ", Most systems use linear
concentrating systems via parabolic troughs, whereas
power towers are the most widely used point con-
centrating technology. On the other hand, solar pho-
tovoltaic technology uses solar cells to convert solar
radiation into electricity directly through the pho-
t """ They can convert up to 20%
of incident solar radiation into electricity, reaching
a total installed capacity of 710 GW by the end of
2020 "™, Among the most widely used PVP tech-
nologies, crystalline silicon devices account for 80%
of the global market, while thin film technology is
more recent, offering generally lower costs and more
efficiency than crystalline silicon technology """, In
SA, solar energy has become Brazil’s third largest
source of electricity, and around 70% of the solar
energy produced in the country comes from small
crystalline silicon systems installed on the roofs of
houses and commercial and rural properties .

Several studies have assessed the impacts of
climate change on solar radiation and, consequent-
ly, on solar energy generation in different parts of
the world. Using Coupled Model Intercomparison
Project—Phase 3 (CMIP3) models, Crook et al. '
concluded that, under the A1B scenario, there is a

tovoltaic effec

moderate increase (decrease) in PVP generation dur-
ing the 21st century in Europe and China (the west-
ern United States and Saudi Arabia), and significant
increases in CSP in the same regions. In addition,
dynamically downscaled CMIP3 projections show a
reduction of up to 12% in PVP in northern European
countries, while southern areas may experience an
increase in solar energy generation !"*\. Similarly,
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CMIP5 model projections indicate favorable condi-
tions for PVP generation in the coming decades in

11620 1 addition

Spain, France, Italy, and Germany
to Europe, other regions of the globe also suggest fa-
vorable conditions for solar power generation in the
future, as projected by CMIP5 models for East Asia,
Southeast North America, and Central America """,
Conversely, reduced PVP is projected by CMIP5 and
CMIP6 models in Africa, the Middle East, Central
Asia, Australia, and North America ",

In general, the increasing PVP generation is as-
sociated with a projected decreasing cloud cover ",
so changes in cloud cover and the composition of at-
mospheric aerosols can affect PVP generation since
the electricity produced does not respond linearly
to changes in irradiance and depends on the ratio
between direct and diffuse radiation "". Globally,
direct climate impacts on solar energy are expected
to be modest (of the order of 5%) because the effects
of changes in irradiance are also minor, while the
negative impacts of warming occur mainly at higher
latitudes, which already have a more limited poten-
tial for generating PVP than low latitudes *”.

Regarding SA, it has favorable conditions for
solar energy generation, given that the solar resource
is evenly distributed on the continent and a large
part of it is located in the Region of the Sun Belt
with the highest solar radiation, with Chile, Bolivia,
and Argentina among the ten countries in the world
with the maximum irradiation for PVP systems %%,
Some sectors of the continent stand out, such as
northern Chile, which has the highest irradiation lev-
els (with the Atacama Desert having the best global
maximum irradiation), northeastern Brazil, north
of Colombia, the west coast of Peru, and northern
Argentina ", On the other hand, climate projections
from the Coordinated Regional Downscaling Experi-
ment (CORDEX) indicate a reduction of up to 2.49%
in the PVP in the central zone of Narifio (far west of
Colombia) and a maximum increase of 2.52% in the
southeast of the region ", Furthermore, solar energy
is estimated to supply up to 82% and 86% of elec-
tricity generation by 2050 in Bolivia ™ and Chile *”,
respectively.

For Brazil, dynamically downscaled climate
projections from CMIP5 suggest increased solar ra-
diation over almost the entire country between 2030
and 2080 under the RCP8.5 scenario, resulting in an
average increase of 3.6% in PVP in Northeast Brazil
by 2080, as well as in locations with installed PVP
solar farms in the Northeast and Southeast ", In
addition, statistically downscaled climate projections
from CMIP5 provided three patterns of changes in
global horizontal irradiance during the 21st century
in Brazil: a pattern of reduction of up to 10% on the
north/northeast coast, a reduction of up to 10% in the
south of the country in the second half of the year,
and a transversal band from the Brazilian Southeast
to the Amazonia with an increase of 5 to 10% dur-
ing the austral summer ®, On the other hand, raw
climate projections from CMIP6 indicate for the
2021-2100 period an increase of up to 5% in CSP
in northern Brazil and reductions in the rest of the
country of more than 5%, mainly in the Southeast,
Midwest, northern portion of the Northeast and
portions of the Brazilian North **. In contrast, raw
climate projections from CMIP5 and CMIP6 suggest
growth in energy generated by CSP technology, with
a statistically significant average increase of up to
6% in most of Brazil (except the country’s southern
region) in 2071-2100 ¥, Furthermore, studies show
that environmental heating caused by rising temper-
atures reduces the conversion efficiency of photovol-
taic cells ™,

GCMs are fundamental tools for evaluating cli-
mate elements, but their direct application in stud-
ies of regional impacts is inappropriate due to the
outputs” coarse resolution. In this sense, statistical
and dynamical downscaling techniques are essential
for overcoming these limitations of global models.
However, their use in studies of climate change’s
impacts on solar radiation in SA is still embryonic
in the literature. Despite helping analyze climate
phenomena on a local scale, dynamical downscaling
requires high computational costs ", On the other
hand, statistical downscaling requires fewer compu-
tational resources but a long series of local observa-
tions ™1, Among the sparse existing studies for the
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region, there are analyses obtained by dynamical ™

and statistical downscaling B but more current stud-
ies with CMIP6 models use their raw outputs 727,
However, a recent study “* used the Quantile Delta
Mapping (QDM) bias correction method " to statis-
tically downscale CMIP6 simulations of irradiation
in Brazil, concluding that the technique reduced the
systematic biases of the models in both long-term
averages and extreme values, demonstrating its po-
tential use for studies of climate impacts in SA.

Given the above, this study aims to: (a) apply
QDM bias correction and statistical downscaling
to historical simulations and climate projections of
solar irradiation from a CMIP6 multi-model ensem-
ble and; (b) use the bias-corrected projections to as-
sess the solar generation potential by CSP and PVP
technologies in SA under different greenhouse gas
emission scenarios. The relevance of this study is
justified by the scarcity of studies on the impacts of
climate change on solar energy generation in SA, as
well as studies that apply statistical downscaling to
CMIP6 solar radiation projections for the continent.
In this context, our study fills this gap and seeks to
assist policymakers, planners, and decision-makers
involved in expanding the solar energy matrix in SA,
as well as all those interested in the energy transition
on the continent.

2. Materials and methods
2.1 Study area

The study area comprises the South American
continent (Figure 1), located at 12°N-55°S latitudes
and marked by great latitudinal extension, complex
topography, and climate heterogeneity with tropical,
subtropical, and extratropical regions ®’\. SA also has
an intricate geography, characterized by disparate
areas such as the Andes Mountains, the Atacama
Desert, the Amazon Rainforest, and Brazil’s semi-ar-
id northeastern region. SA is privileged in terms of
solar resources, and a large part of the continent is
located in the area of the Sun Belt with the highest
solar radiation ™, with some highlighted regions,

such as northern Chile, northeastern Brazil, north of

Colombia, the west coast of Peru and northern Ar-
[26]

gentina

aotw T0"W B0°W 50"W 40°W
Figure 1. Illustration of the study area with elevation (m). The
yellow rectangles indicate subdomains selected for individual
analysis of the CMIP6 GCMs.

Source: United States Geological Survey-Earth Resources Observation System

(EROS) Center.

2.2 CMIP6 GCMs

This study used surface downwelling shortwave
flux, 2 m air temperature, and the zonal and meridi-
onal components of wind at 10 m from eight CMIP6
GCMs, covering the historical period (1995-2014)
and two greenhouse gas emission scenarios (SSP2-
4.5 and SSP5-8.5) for the future period (2020-2099).
The GCMs data comprised simulations obtained
every three hours provided on the Earth System Grid
Federation (ESGF) platform (available at: https://
aims2.1Inl.gov/search/cmip6/). We employed the
B methodology to select the CMIP6
GCMs, whereby various statistical metrics are used

Rupp et al.

to assess the models’ performance in simulating a
given region’s historical climate. Further details on
the methodology, including the mathematical formu-
lation and statistical parameters, can be found in Fer-
reira et al. *** and Reboita et al. ™. However, we
emphasize that the choice of models (Table 1) con-
sidered the GCMs” ability to simulate historical cli-
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mate and the availability of high-frequency data and
projections on the ESGF platform. Furthermore, of
the GCMs selected, three (EC-Earth3, IPSL-CM6A-
LR, and MPI-ESM1-2-LR) had already demonstrat-
ed a fair ability to represent the South American
climate "', Moreover, the ensemble composed of
the best-performing models produces results closer
to the observations and surpasses the quality of the

individual GCM simulations .

2.3 Reference data

To validate the climate simulations of the CMIP6
GCMs, we used the ERAS reanalysis product
from the European Centre for Medium-Range
Weather Forecasts—ERAS5S (ECMWF-ERAS). The
variables used were surface solar irradiance (surface
downwelling shortwave flux), 2 m air temperature,
zonal and meridional wind components at 10 m
height, available at a temporal frequency of three
hours and with a horizontal resolution of 0.25° for
the 1995-2014 reference period (available at: https://
cds.climate.copernicus.eu/). Although the ERAS re-
analysis produet is an advanced dataset generated by
assimilating observations and numerical simulations,

it still has systematic biases ™',

Therefore, to complement the validation data
set and overcome the limitations of the reanalysis
product, we used satellite observations provided by
CLARA-A3, which is a set of cloud, albedo, and sur-
face radiation climate records generated by the Satel-
lite Application Facility on Climate Monitoring (CM
SAF), belonging to the European Organization for the
Exploitation of Meteorological Satellites (EUMET-
SAT). CLARA-A3 is the third edition of the CLARA
(CM SAF Cloud, albedo, and surface radiation) prod-
uct, which provides information on cloud properties
and radiation parameters derived from the Advanced
Very High Resolution Radiometer (AVHRR) sensor,
on board the polar-orbiting satellites of the National
Oceanic and Atmosphere Administration (NOAA)
and Meteorological Operational Satellite Programme
(EUMETSAT Metop) ™. The CLARA-A3 data was
obtained from the CM SAF platform, with a horizon-
tal resolution of 0.25° and a daily frequency for the
period 1995-2014 (available at https://www.cmsaf.
eu/EN/Home/home_node.html). In general, satel-
lite-based observations have fewer uncertainties than

21361 0 4

reanalysis data due to their greater accuracy
are widely used to evaluate solar irradiance simulated

by climate models ",

Table 1. Information on each CMIP6-GCM employed in the study.

Reference

Fondazione Centro Euro-Mediterraneo sui

Lovato and Peano ™"

Cambiamenti Climatici

Fondazione Centro Euro-Mediterraneo sui

Lovato et al. ™!

Cambiamenti Climatici

Model Resolution (Lat x Lon) Institute
CMCC-CM2-SR5 1.25 %094

CMCC-ESM2 1.25 % 0.94

EC-Earth3 0.70 % 0.70

GFDL-ESM4 1.25 % 1.00

[PSL-CM6A-LR 2.50 % 1.26

MIROC6 1.41 = 1.41 =

Technology

MPI-ESM1-2-LR 0.94 = 0.94

MRI-ESM2-0 1.13 % 1.13

EC-Earth Consortium
Geophysical Fluid Dynamics Laboratory
Institut Pierre Simon Laplace

Japan Agency for Marine-Earth Seience and

Max Planck Institute for Meteorology

Meteorological Research Institute

Déscher et al. !

Krasting et al. ")

Boucher et al, ¥

Tatebe and Watanabe *

Wieners et al, ™"

Yukimoto et al. "

2.4 Bias Correction and Statistical Downscal-
ing (BCSD)

Due to their coarse resolution, the raw output of
GCMs is unsuitable for use in different applications,

such as synoptic scale studies. Given this, we applied
statistical downscaling to the CMIP6 outputs (2 m
air temperature and zonal and meridional wind com-
ponents) using the ERAS reanalysis as a reference
set. For the solar irradiance variable, we used the
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ensemble mean of CLARA-A3 observations and the
ERAS reanalysis to apply the advantages obtained
by both sets. Among the different categories of sta-
tistical downscaling methods (transfer or regression
models, weather generator, weather typing), we ap-
plied the transfer function, which establishes statisti-
cal relationships between the observed and modeled
variables ®"). This methodology is also called Bias
Correction—Statistical Downscaling (BCSD). Be-
fore BCSD, spatial disaggregation was applied to the
CMIPG6 outputs so that all the data from the models,
the ERAS reanalysis, and the CLARA-A3 observa-
tions were interpolated to a resolution of 0.5° x 0.5° us-
ing bilinear interpolation since studies have shown the
ability of this method to generate consistent fields ***,

For the BCSD method, we used the QDM tech-
nique "' for historical simulations (1995-2014)
and applied transfer functions to future projections
(2015-2099) of each CMIP6 model. The QDM
technique is justifiable for statistical downscaling
because it preserves the relative changes and trends
projected by the models and corrects systematic bi-
ases in the modeled data’s quantiles concerning the
observations” distribution **. In general, the QDM
process follows three stages: first, the trend is re-
moved from all simulated and projected quantiles
individually; then, the bias is corrected using the
quantile mapping technique for all quantiles with the
trend removed; and finally, the projected changes are
superimposed on the bias-corrected outputs **. The
reader can find more details on the BCSD methodol-
ogy in Ferreira et al. ™*” and Reboita et al. ¥,

The historical period (1995-2014) composed the
training set to adjust the future projections (2015-
2099) with the QDM algorithm to optimize computa-
tional resources and follows the same reference period
used by the International Panel on Climate Change—
[PCC ", The Python-based package xclim "
was used to perform the calculations. According
to Cannon et al. ", the QDM technique is advan-
tageous over quantile mapping because it is less
susceptible to the inflating relative trends in extreme
values, which was demonstrated in a recent study
using the method to downscale different atmospheric
variables simulated by CMIP6 for SA 1.

2.5 Solar energy

CSP and PVP technologies are the most widely
used for generating solar energy """ '***. CSP sys-
tems produce electricity with the thermal energy
of sunlight through a process whereby the light is
concentrated on a receiver using various mirrors or
lenses and is then used to produce heat that drives
the engine and electricity generator *, On the other
hand, the PVP system converts sunlight directly into
electricity through PVP panels using semiconductor
materials, which absorb light and generate electricity
through the photovoltaic effect "**, As reported by
Ha et al. ™, the empirical equations and coefficients
used here evaluate the solar energy potential as a
function of different atmospheric variables and how
changes in climate conditions resulting from global
warming can influence this potential, not considering
technological advances that may alter future solar
energy generation.

Concentrated Solar Power (CSP)

CSP technology can be classified into four differ-
ent categories based on the type of collector: parabolic
trough collector (PTC), solar power tower (SPT), lin-
ear Fresnel reflector, and parabolic dish collector 4]
In this study, the equations and coefficients used
refer to the PTC system since this technology is
the most mature and globally consolidated among
the technologies for concentrating solar energy,
both commercially and on an industrial scale ',
as well as being the most widespread technology in
plants for thermoelectric generation from solar energy
in Brazil ),

Here, we apply the methodology proposed by
Crook et al. " which is consolidated in the litera-
ture with various studies *7***, whereby the CSP
output (CSP,,) is estimated using the thermal effi-
ciency of CSP (n.s,) multiplied by the direct irradi-
ance (R;), see equation (1):

CSP,y = Nese * Ry
(03]

Tesp 18 expressed as a function of surface air temper-
ature (TAS) and R, see equation (2):
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24
)[ J:

(T, — TAS)

ture changes, according to equation (7

Nesp = ko —ky X

Ry
2

The specific collector coefficients k,=0.762Wm "'C ',
k, =02125Wm *C 'and fluid temperature T, = 115°C
were tested on the Industrial Solar Technology par-
abolic trough collector at Sandia National Laborato-
ries *'** and applied in several studies "'*** %%
As R, is not provided directly by the CMIP6 mod-
els, it is necessary to derive it from an empirical rela-
tionship between fractional cloud cover (fclt) and clear
sky irradiance at the surface (R.) '™, see equation (3):
Ry =0.75 x Ry, x (1 — felt)
©)

where the factor 0.75 represents the scattering effect

of sunlight by air molecules and aerosols *'. As R

is also not provided by the CMIP6 GCMs, the rela-

tionship between fclt, solar irradiance at the surface

(R,) and R, is used as follows *'* | see equation (4):
Ry

felb=1 =
Rgc

@)

By grouping equations 3 and 4, it is possible to
estimate R, using equation (5):
Ry=0.75 xR,
6)

Photovoltaic Power Potential (PVP,,)

Following the methodology widely used in the

literature ['516-18-24321

, we estimated the photovoltaic
power potential (PVP ) utilizing the energy rating
method, which multiplies the total integrated solar
irradiance over a period by a performance ratio ™

through the expression, see equation (6):

PVP, . = Pp X
pot R RSSTC

(©)

where STC refers to the standard test conditions
(Rsg = 1000Wm 7), under which the nominal ca-
pacity of a photovoltaic device is determined, and Py
is the performance ratio that accounts for changes in
the efficiency of photovoltaic cells due to tempera-

Pr=1+7v X [Teey — Tsrcl
(7N

where Tg; is the ambient air temperature under stand-
ard test conditions (Tsre = 25 C ), v is -0.005 'C ', fol-
lowing the typical response of monocrystalline sili-
con solar panels adopted in different studies ['****'*,
Here, we consider the generation of solar energy
by monocrystalline silicon solar panels since these
(together with polycrystalline silicon solar panels)
account for up to 80% of the global photovoltaic en-
ergy market "
given that around 70% of the solar energy produced
in Brazil comes from small crystalline silicon sys-
tems installed on the roofs of houses and commercial
and rural properties 031 T, is the temperature of the
photovoltaic cell, which is affected by Rs, TAS, and
wind speed (WS, calculated with the zonal and merid-
ional components of the wind). Although some studies
P24 have shown that the contribution of wind speed

, as well as being widely used in SA,

is practically negligible for changes in PVP,,, here
we have chosen to include the variable in the estimate
of photovoltaic energy generation using equation 8,
widely adopted in the literature !'*'*1*#221;
Teen =¢1 + ¢y X TAS+ ¢35 X Rs + ¢4 X WS
®)

where ¢, =3.9C, ¢, = 0.942, ¢, = 0.028°C m "W ',
and ¢, =-1.509C sm . For better analysis, the value
of PVP_, is multiplied by 100 and is therefore re-

pot
ferred to in %.

PVP,, Anomalies and trend time series

Additionally, only for the SSP5-8.5 scenario, we
present the trend and change projections estimated
by each CMIP6 GCM (as well as by the multi-model
ensemble) for 2020-2099 concerning the 19952014
period for six key regions (Figure 1) that concen-
trate solar energy hotspots in SA '”; Brazilian Am-
azonia (R1; 2.5°8—10°S, 53°W-63°W), northern
sector of the Brazilian Northeast (R2; 4.5°S—11°S,
36°W-47°W), southern and central sectors of the
Brazilian Northeast (R3; 11°5-19.5°S, 40°W—47°W),
the Brazilian Midwest (R4; 11.5°S—-19.5°8,
48°W-57°W), the Brazilian Southeast (R5;
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20°8-24.5°S, 41°W-53°W), and the Brazilian South
and Uruguay (R6; 25°S-35°8, 48.5°W-58°W). This
analysis assesses the temporal evolution of the spread
among the different CMIP6 models’ projections.

Test of statistical significance for the difference
in mean climatological values and Mann-Ken-

dall Trend Test

We used the Student’s #-test to assess whether the
differences in the mean seasonal climatological val-
ues of CSP and PVP for the future period (2020-2099)
projected by the CMIP6 ensemble are statistically
significant about the historical period (1995-2014),
using an o significance level of 5%. Furthermore, un-
der the SSP5-8.5 scenario, we analyzed the trend time
series of PVP obtained by the eight CMIP6 models
and the multi-model ensemble for six SA subdomains
(Figure 1) to present the climate change signal in
different solar hotspot sectors """, This procedure was
carried out using the Mann-Kendall test, widely used
to analyze trends in climate series '*. In addition,
Sen’s slope estimation test was used to detect the lin-
ear trend of PVP,, in the subdomains evaluated.

3. Results and discussion

Historical simulations

Figure 2 shows the historical seasonal climatol-
ogy (1995-2014) of surface downwelling shortwave
radiation (W m”) provided by the outputs of the four
datasets used: the ERAS reanalysis, the CLARA-A3
satellite observations, the simulations obtained by the
ensemble composed of CLARA-A3+ERAS and, final-
ly, the original (pre-processed) historical simulations
of the CMIP6 ensemble. The biases of the four data-
sets are also presented: the bias of CMIPG6 statistically
downscaled with the ERAS reanalysis; the bias of
CMIP6 statistically downscaled with the CLARA-A3
satellite observations; the bias of CMIP6 statistically
downscaled with the CLARA-A3 + ERAS ensemble;
and bias of the original CMIP6 ensemble simulations
in relation to the CLARA-A3 + ERAS ensemble. In
general, all the ensembles show their systematic bi-
ases, with a predominance of underestimates of up to
20 W m” in much of central Brazil and northeastern

Brazil and overestimates of the same magnitude in
Argentina, Chile, and northern SA during the DJF
months. Similarly, in the months of MAM and JJA,
overestimates of up to 20 W m™ prevail over most of
the continent, including Argentina, Chile, the southern
and northern sectors of Brazil, and northern SA. For
the months of SON, there is a significant reduction in
bias across the continent despite a persistent positive
bias of up to 20 W m™ in northeast Brazil’s coastal
and central regions. Nevertheless, the CMIP6 down-
scaled simulations with the CLARA-A3 + ERAS en-
semble provide biases between —10 and 10 W m™ over
most of SA (except in JJA).

Figure 3 illustrates the satisfactory performance
of statistical downscaling with the CLARA-A3 +
ERAS ensemble, which shows the seasonal climatol-
ogy of solar irradiance and biases (in percentages).
The reduction in systematic errors by the BCSD
technique with the CLARA-A3 + ERAS ensemble
is notable, indicating a decrease of up to 50% in the
magnitude of the biases over most of the continent.
For almost the entire year, the biases are between -5
and 5%, with the months of JJA showing more sys-
tematic errors in Brazil’s central-southern and north-
eastern sectors, Paraguay, central-southern Peru,
Suriname, and the Guianas. In addition, a positive
(negative) bias of up to 10% persists in the months
of JJA and SON (DJF and MAM) in northeastern
Brazil. However, this Brazilian region is one of the
global sectors where CLARA-A3 does not satisfac-
torily achieve its accuracy objective "7,

The CSP,,, results (Figure 4) show that the high-
est seasonal values of CSP in SA also occur in spring
due to the higher magnitudes of solar irradiance at
the surface at this time of year. During this season,
the highest magnitudes of concentrated solar energy
occur in northeastern Brazil and the west coast of SA,
where concentrated energy exceeds 160 W m™. In
other regions of Brazil, such as the center-southeast
of the country, the values are between 140 and 160 W
m”. In addition, the concentrated energy reaches up
to 140 W m” in the Amazonia region. In the fall and
winter seasons, CSP is reduced across the continent,
and the west coast of SA and the northern part of the
Brazilian Northeast concentrate higher intensities,
where values reach up to 180 W m™.
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Figure 3. Seasonal climatology of surface downwelling shortwave radiation (W m™) in the historical period (1995-2014) obtained by
the CLARA-A3 + ERAS ensemble (first column on the left), CMIP6-CLARA-A3 + ERAS statistically downscaled (second column
on the left), original CMIP6 ensemble simulations (middle column); and seasonal bias (%) between the CMIP6-CLARA-A3 + ERAS
statistically downscaled and the CLARA-A3 + ERAS ensemble (second column from the right), and between the original CMIP6
ensemble’s simulations and the CLARA-A3 + ERAS ensemble (first column from the right).
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Figure 4. Seasonal climatology of CSP,,, (W m™) in the historical period (1995-2014) obtained by the CLARA-A3 + ERAS
ensemble (first column on the left), CMIP6-CLARA-A3 + ERAS statistically downscaled (second column on the left), original
CMIP6 ensemble simulations (middle column) and seasonal bias (W m™) between the CMIP6-CLARA-A3 + ERAS statistically
downscaled and the CLARA-A3 + ERAS ensemble (second column on the right) and original CMIP6 ensemble’s simulations and the
CLARA-A3 + ERAS ensemble (first column on the right).
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The bias fields show that the CMIP6 ensemble
tends to overestimate CSP over practically the whole
of SA, with positive biases of up to 20 W m” north
of 20°S throughout the year. Additionally, underesti-
mates of up to 20 W m” occur in the northern sector
of the Brazilian Northeast during the first half of the
year. Furthermore, underestimates of up to 30 W m”
occur on the west coast of SA throughout the year.
The BCSD technique significantly reduces the GCMs’
systematic errors, especially in the austral spring and
summet. After applying BCSD during the summer,
the ensemble biases are between —5 and 5 W m™ over
practically the entire continent. However, underesti-
mates (overestimates) of up to 10 W m™ (=10 W m™)
remain in the Northeast region during the summer
(spring). In the fall and winter seasons, the preva-
lence of CSP overestimates remains throughout the
continent despite BCSD reducing errors, especially
in the Amazonia region and northern SA.

The PVP,, results (Figure 5) indicate spatial
fields similar to CSP_,’s. The highest PVP occurs
during spring and regions such as the Brazilian
Northeast and the west coast of SA show values of
up to 36%. In other areas of Brazil, the values are
between 20 and 28% for most of the year. Similar-
ly to the CSP bias fields, the CMIP6 raw ensemble
shows systematic overestimates in northern Brazil
and northern SA, with a positive bias of up to 6%.
Conversely, underestimates of up to 4% occur in
northeastern Brazil during the summer and fall,
while the Andean region shows underestimates of up
to 6%. The BCSD technique considerably reduces
the systematic errors of the models, especially in the
spring and summer months, when biases of between
—1 and 1% are found in practically all of SA. On the
other hand, positive biases of up to 2% predominate
on the continent in the fall and winter months.

121

CcSP,,, and PVP

. i o PrOjections

Figures 6 and 7 show the seasonal difference (in
percent) in CSP,,, after applying statistical downscal-
ing with the CLARA-A3 + ERAS ensemble under
the SSP2-4.5 and SSP5-8.5 scenarios, respectively.
The seasonal differences refer to the changes in the
20202039, 2040-2059, 2060-2079, and 2080-2099
periods compared to the 1995-2014 historical peri-
od. For the DJF months, the projections indicate sta-
tistically significant increases in CSP of up to 4% in
Brazil’s southern and northern regions by 2059 under
the SSP2-4.5 scenario. Under the SSP5-8.5 scenar-
io, there is a statistically significant increase of over
3% in the Brazilian Amazonia from 2040 onwards.
From 2060 onwards, the SSP2-4.5 scenario projects
increased CSP by up to 4% in almost all Brazil. On
the other hand, the SSP5-8.5 scenario projects more
intense increases (above 4%) for summer from 2060
onwards in a large part of the northern region of Bra-
zil, Peru, Ecuador, southern Colombia, Venezuela,
Suriname, and the Guianas, and reductions of up to
2% in the northern part of the Brazilian Northeast.

For the MAM months, the SSP2-4.5 scenario
shows no statistically significant increase until 2059,
while the SSP5-8.5 scenario indicates increases of
up to 4% in northwestern SA. From 2060 onwards,
both scenarios show increases of over 3% in the Am-
azonia region and a reduction of the same intensity
in north-central Argentina.

Considering the months of JJA, both scenarios
indicate a statistically significant increase of up to 2%
in areas of the north and northeast of Brazil by 2059.
From 2060 onwards, both scenarios maintain their
projections of a significant increase of over 3% in
Brazil’s Southeast, Northeast, and North regions, with
a more intense signal under the SSP5-8.5 scenario.
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Figure 5. Seasonal climatology of PVP,, (%) in the historical period (1995-2014) obtained by the CLARA-A3 + ERAS ensemble
(first column on the left), CMIP6-CLARA-A3 + ERAS statistical downscaling (second column on the left), original CMIP6 ensemble
simulations (middle column) and seasonal bias (%) between the CMIP6-CLARA-A3 + ERAS statistical downscaling and the
CLARA-A3 + ERAS ensemble (second column on the right) and original CMIP6 ensemble’s simulations and the CLARA-A3+ERAS
ensemble (first column on the right).
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Figure 6. Scasonal difference (%) in CSP_, projected by the CMIP6 ensemble after BCSD with the CLARA-A3 + ERAS ensemble
under the SSP2-4.5 emission scenario for the periods 2020-2039, 2040-2059, 2060-2079, and 2080-2099 in relation to the historical
period (1995-2014). Hatched areas indicate a statistical significance of 95%, based on the Student’s r-test.
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Figure 7. Similar to Figure 6, except for the SSP5-8.5 scenario.
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About SON months, both scenarios show a
significant increase of over 3% in the Southeast,
Northeast, and North regions by 2059, as well as in
Peru, Bolivia, Ecuador, and Colombia. From 2060
onwards, the two scenarios suggest an intensified
increase in almost all of Brazil (as well as the other
countries mentioned and Venezuela) and a reduction
in the extreme south of Chile and Rio Grande do
Sul (Brazil). In general, CSP projections suggest a
favorable scenario for solar power generation in SA,
mainly in sectors of Brazil such as the Southeast,
Midwest, and Northeast coast (depending on the sea-
son and emission scenario), Bolivia, Peru, Ecuador,
Colombia, and Venezuela. At the same time, reduc-
tions are estimated for the southern region of Brazil.
These results corroborate projections of concentrated
solar energy provided by CMIP3 models for the sec-
ond half of the 21st century "',

Figures 8 and 9 show the seasonal difference (in
o Under the SSP2-4.5 and SSP5-
8.5 scenarios, respectively. To the DIJF months of the
20202059 period, both scenarios project an increase
of up to 2% in the Brazilian Amazonia and northern

percentage) in PVP

Peru, a pattern also obtained by an ensemble made up
of five CMIP6 GCMs under the same scenarios for
the DJF months of the 2015-2040 period *, as well
as by an ensemble of seven CMIP5 GCMs under the
RCP-4.5 scenario for the summer of 2036-2065 "\
From 2060 onwards, both scenarios maintain
their trend of a significant increase of more than 1%
in a large part of the Midwest and North regions and
portions of the Brazilian Southeast, as well as Bo-
livia, Peru, Ecuador and Venezuela. The SSP5-8.5
scenario projects a more intense sign of change, indi-
cating a significant increase of over 3% in practically
all of northwestern SA from 2080 onwards. Simi-
larly, ensemble projections of five CMIP6 GCMs

indicate an increase of approximately 6% in PVP at
latitudes above 20°S under the SSP1-2.6, SSP2-4.5,
and SSP5-8.5 scenarios for the period 2041-2100 ™/,
In addition, there are up to 2% reductions in the
northern sector of northeastern Brazil, southern Bra-
zil, Uruguay, and south-central Argentina, previously
obtained with CMIP6 projections ™%,

For the MAM months, the projected changes are
more modest during the 2020-2059 period, with both
scenarios indicating non-significant increases of up to
2%. For the decades from 2060 onwards, the scenari-
os reinforce the pattern of change, with the SSP5-8.5
scenario extending the areas with an increase of more
than 2% to the Brazilian Northeast from 2080 on-
wards, and extending the core of maximum increase
in central Amazonia, as well as a reduction of the
same magnitude in central Argentina. These results
corroborate CMIP6 projections previously analyzed
for the austral autumn of 2015-2100 *,

Considering the months of JJA, the scenarios
show significant increases of up to 1% in most of
Brazil, Peru, and Colombia by 2059, with more ev-
ident increases projected by the SSP5-8.5 scenario.
These results reiterate those of Dutta et al. ™!, which
found an increase of up to 4% in photovoltaic energy
potential in Brazil during JIA of 2015-2040. For the
decades from 2060 onwards, the increases persist in
the areas already mentioned, including significant
increases of over 2% in the Brazilian Southeast and
Northeast coastal areas, projected by both scenarios.
Similarly, these areas also showed a rise of over 2%
in the austral winter of 2041-2100 under the SSP1-
2.6, SSP2-4.5, and SSP5-8.5 scenarios . Further-
more, reductions of up to 3% persist in central-south-
ern Brazil, central-northern Argentina, and the west
coast of SA.

125

150



(id

P e

CMIP6 models in the present and future climate

7 — Assessment of the solar energy potential over South America estimated by

Journal of Environmental & Earth Sciences | Volume 06 | Issue 02 | July 2024

(al) CMIPG BCSD SSP2-4.5
DJF 2020-2039

(a2) CMIP6 BCSD S5P2-4.5
DJF 2040-2059

(a3) CMIP6 BCSD SSP2-4.5
DJF 2060-2079

(ad) CMIPG BCSD SSP2-4.5
DJF 2080-2099

10°N 10°N 10°N 10°N

0* o0° o o°
10°s - 10°8 10°s 10°s
20°8 o o 20°8 20°8 s 20°8
30°s I 30°s 30°S 30°s
40°S & 40°8 40°S 40°8
50°8 o 50°8 50°8 - 2 50°8

20°W TO0°W 50"W 30"wW g0°w T0°W 50"W 3o w 20°W 70°W 50°W 30°wW a0°wW T0'W 50°W 30°wW

(b1) CMIP6 BCSD SSP2-4.5

(b2) CMIP6 BCSD S5P2-4.5

(b3) CMIP6 BCSD SSP2-4.5

(b4) CMIP6 BCSD S5P2-4.5

MAM 2020-2039 MAM 2040-2059 MAM 2060-2079 MAM 2080-2099
10°N 10°N 10°N 10°N
0° o 0 0
10°8 - 10°5 10°5 10°8
20°8 20°8 20°5 20°8
30°8 g 30°8 30°8 30°5
10°8 40°8 40°8 0°8
50°8 . L 50°5 50°S L 5008
90°W  70°W  50°W  30°W 90°W  70°W  50°W  30°W 90°W  70°W  50°W  30°W 90°W  70°W  50°W  30°W

(c1) CMIP6 BCSD S5P2-4.5

(c2) CMIP& BCSD 55P2-4.5

(c3) CMIP6 BCSD SSP2-4.5

(c4) CMIP6 BCSD SSP2-4.5

JJA 2020-2039 JJA 2040-2059 JJA 2060-2079 JJA 2080-2099

10°K ? 10°N 10°N

0 : > 0 = . 0
10°8 . — 10°5 e 10°8
20°8 20°8 20°8
30°8 30°5 30°8
40°5 40°5 40°S
50°5 R . 50°5 & 50°8

90°W  70°W  50°W  30°W  O0°W  70°W  50°W  30°W  90°W  70°W  50°W  30°W  90°W  70°W  50°W  30°W

(d1) CMIP6 BCSD SSP2-4.5
SON 2020-2039

(d2) CMIP6 BCSD S5P2-4.5
SON 2040-2059

(d3) CMIP6 BCSD SSP2-4.5
SON 2060-2079

(d4) CMIPE BCSD S5P2-4.5
SON 2080-2099

10°N 10°] 10°N 10°)

0 o0® o 0*
10°s f X 10°s 10°5 10°8
20°8 20°s 20°8 20°8
30°s 30°s 30°8 1 30°s
40°5 40°8 40°5 40°5
50°5 += 50°5 50°8 X g 50°S

90°W 70°W 50°W 30"W 90°W T0"W 50°W 30°W 90°W T0°W 50"W 30°W 90°W T0°W 50°W 30w

Figure 8. Seasonal difference (%) in PVP_, projected by the CMIP6 ensemble after BCSD with the CLARA-A3 + ERAS ensemble
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period (1995-2014). Hatched areas indicate a statistical significance of 95%, based on the Student’s r-test.
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Figure 9. Similar to Figure 8, except for the SSP5-8.5 scenario.
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For the SON months, under both scenarios, the
CMIP6 ensemble shows significant increases of 2 to
6% by 2059 in the Brazilian Midwest, the northern
portion of Northeast Brazil, the coast of Southeast
Brazil, Brazilian Amazonia, Bolivia, Peru, Ecuador,
and Colombia, reiterating previous CMIP6 results
for 2015-2040 under the same scenarios
2060 onwards, both scenarios amplify the regions

!, From

with a significant increase above 3%, covering
practically all of Brazil, Bolivia, Peru, Colombia,
Ecuador, and Venezuela, with the SSP5-8.5 scenario
showing a more intense sign of change. These re-
sults corroborate CMIP6 projections already made
for 2041-2100, which indicate a transversal range of
increasing PVP of up to 8% extending from the coast
of southeastern Brazil to the north of SA 2,

In summary, results indicated that regions with
solar energy potential in the historical period main-
tain suitable conditions in the future climate. Further-
more, the projections of CSP suggest an increasing
generation in most SA (mainly Brazil, Peru, Bolivia,
Ecuador, and Colombia). On the other hand, although
PVP projections also majoritarily indicate favorable
conditions for solar energy generation (especially
during SON and under the SSP5-8.5 scenario), there
are decreasing estimates in areas such as the north-
ern sector of the Brazilian Northeast (during DJF),
southern Brazil, Argentina and north Chile (all year
round), whose reduction sign is more intense under
the SSP5-8.5 scenario, which was also observed in
studies with projections of CMIP3 ", CMIp5 ['*#173%31
and CMIP6 ***** models. In general, the negative
PVP anomalies obtained here partially agree with
those of other studies, which found that a thermal
increase of up to 5 °C under the RCP-8.5 scenario
can promote a reduction of up to 3% in PVP genera-
tion 'L, Thus, we suggest that the decreasing PVP
in these regions may stem from the increasing local
warming, given that the efficiency of PVP solar pan-
els reduces by approximately 0.2—0.5% for every 1

10,69]

°C increase in temperature ""*”. However, in other

regions where local warming does not result in neg-

ative PVP projections, it is likely that other factors,
such as increased solar irradiance at the surface and
reduced cloud cover, can compensate for this de-
crease in the PVP panels’ efficiency due to thermal
warming "*** In this sense, the decreasing cloud
cover projected for low latitudes ™
ing average surface wind speed of 0.5-1.0 m s es-
timated for SA " may enhance the PVP generation,
contributing to greater solar panel efficiency (through
the higher incidence of solar radiation and the cool-
ing effect). Moreover, the projections of increasing
cloud cover in mid-latitudes " and precipitation in
southern Brazil ™ may intensify the decreasing PVP
in South Brazil for the coming decades.

We stress that errors persist in climate simulations
even after bias correction of the original CMIP6
data. One reason for this arises from the CM SAF
CLARA-A3 solar irradiance at the surface being
derived from other parameters such as the cloud
cover index (extracted from satellite observations),

and the increas-

vertically integrated water vapor, ozone, and sur-
face albedo (obtained from climatological data from
ERAS5) through a radiative transfer model, which
also has their associated biases and uncertainties ©'*",
However, we highlight the good performance of the
QDM technique in reducing the systematic errors
of CMIP6 simulations by up to 50% when using the
CLARA-A3 + ERAS ensemble mean for statistical

downscaling.
Anomalies time series and trends

Figures 10 to 13 present the seasonal PVP,,
anomalies (in percentage) in six subdomains of SA
projected by each CMIP6 GCM and the multi-mod-
el ensemble under the SSP5-8.5 scenario and after
BCSD with the CLARA-A3 + ERAS5 ensemble
mean. The series represents seasonal anomalies pro-
jected for 2020-2099 relative to the climatological
period (1995-2014). In addition, Tables 2 to 5 also
present the results of the Mann-Kendall and Sen’s
slope tests, provided by each model and the mul-
ti-model ensemble for the six subdomains under the
SSP5-8.5 scenario.
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Figure 10. Time series (2020-2099) of PVP,, anomalies (%) in the DJF months for six S8A subdomains (R1-R6) relative to the
climatological period (1995-2014), obtained after BCSD with the CLARA-A3 + ERAS ensemble under the SSP5-8.5 scenario.
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Figure 11. Similar to Figure 10, except for MAM.
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Figure 12. Similar to Figure 10, except for IJA.
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Figure 13. Similar to Figure 10, except for SON.
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Table 2. Parameters of the Mann-Kendall and Sen’s Slope tests for the PVP,,, time series in the months of DJF (2020-2099) for six
SA subdomains obtained by each GCM and CMIP6 multi-model ensemble after BCSD and under the SSP5-8.5 scenario. P, N, NT, T,
and F denote positive, negative, no trend, true and false, respectively.

IPSL- MPI- AT
LR LR
Trend P p NT P NT P P P P
r1 Ho T T F T F T T T T
Slope 0.0295 0.0241 0.0127 0.0100 0.0173 0.0324 0.0245 0.0162 0.0192
Trend P p NT P NT N p N NT
r2 Ho T T F T F T T T F
Slope 0.0133 0.0178 —0.0059  0.0098 0.0068 ~0.0087  0.0151 —0.0181  0.0035
Trend P P NT NT NT P P N P
r3 Ho T T F F F & T T T
Slope 0.0228 0.0200 0.0022 0.0153 0.0138 0.0173 0.0200 0.0196 0.0105
Trend P P NT NT NT P P NT P
rR4 H. T T F F F T T F T
Slope 0.0182 0.0164 —0.0024  0.0106 0.0064 0.0283 0.0247 —0.0050  0.0119
Trend P P NT NT NT P NT NT P
rRs H. T T F F F T F F T
Slope 0.0342 0.0221 0.0054 0.0113 0.0081 0.0223 0.0101 0.0074 0.0145
Trend P P NT NT N P P NT B
R6 H, T T F F T T T F T
Slope 0.0115 0.0123 0.0058 0.0041 —-0.0119  0.0139 0.0169 0.0030 0.0053
Table 3. Similar to Table 2, except for the MAM months.
CMCCSRS i\ pamerns MROCS LGNl ChgALR 2LR ESM20 BOSD
Trend P P NT P NT P P NT P
Rr1 Ho T T F T F T T F T
Slope  0.0133 0.0211 0.0035 0.0085 0.0030 0.0619 0.0169 0.0025 0.0100
Trend P P NT P NT NT P NT P
rR2 Ho T T F T F F T F T
Slope  0.0277 0.0306 0.0079 0.0140 —0.0004  —0.0005 0.0166 —0.0076  0.0114
Trend P P NT NT NT P NT NT P
R3 Ho T T F F F T F F T
Slope  0.0226 0.0254 —0.0032  0.0001 0.0078 0.0171 0.0143 —0.0098  0.0098
Trend P P NT NT NT P P N P
R4 H, T T F F F T T T T
Slope  0.0188 0.0244 —-0.0053  -0.0015  0.0047 0.0235 0.0172 —0.0103  0.0089
Trend P P NT N NT P NT NT P
rRs H. T T F T F T F F T
Slope  0.0194 0.0236 —-0.0031  -0.0085 —0.0001 0.0153 0.0081 —0.0049  0.0062
Trend NT NT NT NT N NT NT NT NT
R6 H, F E F F T F F F F
Slope  0.0057 0.0065 —0.0044  —0.0033  —0.0092 -0.0026 —0.0028 0.0006 —0.0023
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Table 4. Similar to Table 2, except for the JJA months.

w CMCC- EC- .. GFDL- IPSL- MPI-ESM1- MRI- CMIP6
CHMCCARS ESM2 EARTH3 MIRGES ESM4 CM6A-LR  2-LR ESM2-0 BCSD
Trend P P P P P P P NT P
r1 Ho T T T T T o T F x
Slope  0.0139 0.0220 0.0065 0.0063 0.0044 0.0099 0.0187 -0.0019  0.0100
Trend P P NT NT P P P NT P
R2 Ho T T F F T T T F T
Slope  0.0195 0.0220 0.0009 0.0029 0.0034 0.0187 0.0116 0.0038 0.0108
Trend P P NT NT P P P NT P
r3 Ho T T F F T T T F T
Slope  0.0281 0.0234 0.0044 0.0043 0.0072 0.0166 0.0267 0.0014 0.0136
Trend P P p NT P P P NT P
R4 H. T T T F T T T F i
Slope  0.0101 0.0092 0.0067 0.0031 0.0046 0.0118 0.0167 0.0002 0.0078
Trend P NT NT NT NT B P NT P
rs H, T F F F F T T F T
Slope  0.0172 0.0063 -0.0005  -0.0024  0.0050 0.0075 0.0167 0.0147 0.0045
Trend NT NT NT NT NT N P NT NT
R6 H, F F F F F T T F F
Slope  0.0021 —0.0028 —0.0098  0.0006 —-0.0018  —0.0067 0.0106 -0.0015  —0.0013
Table 5. Similar to Table 2, except for the SON months.
’ CMCC- EC- GFDL-  IPSL- MPI-ESM1- MRI- CMIP6
CHCCSRY ESM2 EARTH3 MIROCH ESM4 CM6A-LR 2-LR ESM2-0 BCSD
Trend P p p P P p P B P
r1 Ho T T T {1 T T T T T
Slope  0.0295 0.0227 0.0389 0.0133 0.0449 0.0379 0.0379 0.0171 0.0304
Trend P P P NT P P P NT P
R2 Ho T T T F T T T F T
Slope  0.0211 0.0291 0.0119 0.0038 0.0162 0.0290 0.0184 0.0047 0.0169
Trend P P P P P p P NT P
r3 Ho T T T I T T s F T
Slope  0.0413 0.0404 0.0261 0.0169 0.0137 0.0416 0.0288 0.0097 0.0279
Trend P B P P P p P NT P
R4 H, T T T T T T T E T
Slope  0.0368 0.0337 0.0292 0.00139  0.0186 0.0378 0.0282 0.0079 0.0261
Trend P P NT NT NT P P NT P
rRs H. T T F F F T T F T
Slope  0.0465 0.0318 0.0141 0.0105 0.0095 0.0324 0.0184 0.0017 0.0203
Trend NT NT NT NT N N NT N N
R6 H, F F F F T T F T T
Slope  0.0007 —0.0081 —0.0056  0.0058 -0.0179 -0.0161 0.0072 -0.0101  -0.0063
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For R1, approximately 83% of PVP anomaly
projections are positive, indicating year-round so-
lar potential growth in the region throughout the
21st century. Considering all seasons, only the EC-
Earth3, GFDL-ESM4, and MRI-ESM2-0 models do
not project a significant positive trend in PVP in the
Amazonia sector. Similarly, the multi-model ensem-
ble projects a significant increase in year-round PVP
throughout the 21st century, with anomalies of up
to 13.5% in SON months. EC-Earth3, IPSL-CM6A-
LR, and MPI-ESM1-2-LR models present the largest
amplitude of projected PVP anomalies in the months
of DJF, MAM, JJA, and SON, respectively. On the
other hand, the maximum PVP anomalies are pro-
jected by the models IPSL-CM6A-LR (~23% in DJF
2099 and ~30% in MAM 2096), MPI-ESM1-2-LR
(~11.5% in JJA from 2083) and GFDL-ESM4 (~28%
in SON from 2091). Other studies also indicate a sig-
nificant increase in PVP in the region throughout the
century, projected by CMIP3 ", cMIps 517243031
and CMIP6 *** models.

For R2, approximately 61% of projections in-
dicate a statistically significant increase in year-
round PVP during the 21st century. EC-Earth3,
GFDL-ESM4, IPSL-CM6A-LR, and MRI-ESM2-0
models indicate no trend or negative trend in the
months of DJF and MAM, while in the months of
JJA and SON, EC-Earth3, MIROC®6, and MRI-
ESM2-0 models do not indicate a significant trend.
Similarly, the CMIP6 multi-model ensemble pro-
jects a statistically significant increase in PVP in
all months, with a positive anomaly of up to 7.5%
in MAM 2098. MRI-ESM2-0, CMCC-ESM2, and
IPSL-CM6A-LR models present the largest range
of projections, while the largest seasonal PVP
anomalies show increases of up to 16% in 2070
DJF (CMCC-ESM2), 23% in 2081 MAM (CMCC-
ESM2), 11% in 2096 JJA (IPSL-CM6A-LR) and
11% in 2092 SON (IPSL-CM6A-LR).

Regarding R3, around 64% of projections indicate
a statistically significant increase in PVP throughout
the year during the 21st century. EC-Earth3, GF-
DL-ESM4, MIROCS®, IPSL-CM6A-LR, MPI-ESM 1-
2-LR, and MRI-ESM2-0 show no trend in practically

the entire year, while for the SON months, only the
MRI-ESM2-0 model does not indicate a significant
positive trend. Furthermore, the ensemble projects an
increase of up to 17% in the SON months of 2098,
The CMCC-ESM2, MIROC6, and MPI-ESM1-2-LR
models have the largest range of projections, with
the MPI-ESM1-2-LR model projecting a positive
PVP anomaly of ~25% in DJF of 2092. In general,
the anomalies projected by the models and ensemble
agree with those of other studies that show an aver-
age increase of 5% in the PVP of the northeastern re-
gion for the following decades, projected by models
of CMIPS "% and CMIP6 2,

For R4, approximately 70% of projections esti-
mate a significant increase in PVP throughout the
year during the following decades, while EC-Earth3,
MIROCS6, GFDL-ESM4, and MRI-ESM2-0 models
indicate no trend or negative trend in practically all
year. Furthermore, the ensemble projects a statisti-
cally significant increase in PVP throughout the year,
with a positive anomaly of up to 14% during SON
of 2098. CMCC-ESM2, IPSL-CM6A-LR, and MPI-
ESM1-2-LR models present greater amplitude of
projections, estimating up to 24% increases in the
DJF months. The anomalies obtained corroborate the
average growth of approximately 5% in the PVP of
the Brazilian Midwest during the 21st century, esti-
mated by CMIP5 models under the RCP4.5 " and
RCP8.5 ®” scenarios and CMIP6 under the SSP2-4.5
and SSP5-8.5 scenarios ™.

Regarding RS, approximately 47% of projections
indicate a statistically significant increase in PVP
throughout the year during the 21st century. Similar
to regions R3 and R4, in this sector, EC-Earth3, GF-
DL-ESM4, MIROCS6, IPSL-CM6A-LR, MPI-ESM -
2-LR, and MRI-ESM2-0 result in no trend in seasonal
PVP projections across most of the year. Further-
more, the CMIP6 ensemble projects a statistically
significant increase in PVP throughout the year, with
a positive anomaly of up to 12% in the SON months.
IPSL-CM6A-LR, CMCC-CM2-SR5, and EC-Earth3
models present the largest range of projections, with
the CMCC-CM2-SR5 and IPSL-CM6A-LR GCMs
estimating increases of up to 28% and 25% in the
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months of SON and DIJF, respectively. Similarly, the
anomalies found here reiterate those of other studies,
which obtained an average increase of 5% in PVP for
the coming decades in Southeast Brazil, projected by
CMIP5 " and CMIP6 2! models.

Finally, for R6, only 16% of projections estimate
a significant increase in PVP, concentrated in the DJF
months. Unlike the other five regions evaluated, the
projections obtained for South Brazil and Uruguay
mainly indicate a non-significant or negative trend
in PVP throughout the year for the coming decades.
Furthermore, the CMIP6 ensemble projects a statisti-
cally significant increase (reduction) in PVP only in
DIJF (SON). In general, these results corroborate the
literature since the considerable decrease of PVP in
South Brazil was also estimated by projections from
CM[P3 [M]’ CMIPS [18.19.24.30], and CM[P6 [22.24 32].

In summary, PVP trend analyses in different
subdomains of SA show that practically all regions
(except the southern region of Brazil and Uruguay)
show a tendency for an increasing solar potential dur-
ing the 21st century throughout the year (with better
estimates for the austral spring and summer and sec-
tors R1 and R4). The anomaly projections obtained
by the ensemble show that, in descending order, the
most significant increases in PVP occur in northern
Brazil (R1), Brazilian Midwest (R4), southern and
central sectors of Northeast Brazil (R3), north sector
of Northeast Brazil (R2) and Southeast Brazil (R5).
On the other hand, southern Brazil (R6) presents
around 84% of projections with a negative trend or
no signal, highlighting an unfavorable or uncertain
scenario for the PVP development in the region.

In general, the models mostly converge to an in-
creasing PVP throughout the century in practically
all of Brazil. On the other hand, while models such
as EC-Earth3 and MIROCG result in no trend in al-
most all analyses, other GCMs such as GFDL-ESM4
and MRI-ESM2-0 project mixed signals, depending
on the regions and seasons. In any case, the pro-
jections reiterate the literature, which shows a sig-
nificant increasing tendency for PVP over the next
decades in the Amazonia region !'*!%!%222430313 e
Northeast, Midwest, and Southeast Brazil [15,22:243031)

Conversely, projections for South Brazil predomi-
nantly suggest the absence of a signal or a tendency
towards a decreasing PVP, corroborating previous

fegults [14.19 32.24.3[}.}],32]-

4. Conclusions

The growing demand for energy makes it urgent
to promote sustainable development in response to
climate change. In this context, adopting measures to
mitigate environmental impacts is essential to pro-
mote the efficient use of resources and the clean en-
ergy transition. Therefore, this study sought to eval-
uate the projections of change in solar irradiance,
concentrated solar energy, and photovoltaic energy
potential estimated by an ensemble of eight CMIP6
GCMs for SA during the 21st century under the
SSP2-4.5 and SSP5-8.5 scenarios. To this end, we
applied statistical downscaling to the simulations and
projections of the CMIP6 models using the ERAS
reanalysis and CLARA-A3J satellite observations as
reference data. The ERAS + CLARA-A3 ensemble
mean validated the climate simulations for the his-
torical period (1995-2014) and the application of
statistical downscaling. The QDM technique effec-
tively reduced the systematic biases of the original
CMIP6 solar irradiance simulations, reducing errors
by approximately 50% over practically the entire
continent throughout the year. However, even after
the BCSD method, biases persist in regions such as
northeastern Brazil and northern SA.

The projections of CSP show that regions tradi-
tionally favorable to its generation (mainly the Bra-
zilian Northeast) may maintain suitable conditions in
the coming decades. On the other hand, projections
of decreasing PVP in sectors such as the north of the
Brazilian Northeast, Argentina, the west coast of SA,
and southern Brazil suggest that other climate factors
such as local warming, cloud cover, aerosols, and
wind speed may influence solar energy generation in
these regions. In general, the results indicate spatial
and seasonal variability of solar generation in SA,
pointing to increases of approximately 1-6% in CSP
(mainly under the SSP5-8.5 scenario in southern
Chile and most of Brazil) and 1-4% in PVP gen-
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eration (mainly under the SSP5-8.5 scenario in the
Amazon, Midwest and Southeast Brazilian sectors).
In addition, trend analyses projected individually by
the CMIP6 GCMs converge on an increasing PVP,
mainly in Brazil’s Amazonia and Midwest regions.
Conversely, for the country’s southern sector, ap-
proximately 84% of the projections show a negative
trend (or no trend), showing unfavorable or uncertain
conditions for the development of PVP generation in
the region.

It is also worth mentioning some limitations of
this study. Firstly, this analysis investigates the possi-
ble changes in solar energy generation in SA from a
purely atmospheric perspective without considering
other relevant economic, technological, and political
factors. In this sense, future research should consider
the feasibility of expanding the solar matrix on the
continent through incentive policies for the sector
that favor strategic planning, foreign investment, so-
lar industry consolidation, and energy storage. Fur-
thermore, there is no analysis of the technological
advances that may improve the photovoltaic panels’
efficiency (including their performance concerning
thermal heating) and the reduced cost of solar tech-
nology, factors that could encourage its implemen-
tation in SA over the coming decades. In addition,
we highlight the importance of studies that evaluate
the relationship between solar energy generation and
cloud cover, given that in SA, this correspondence
is well corroborated during the austral fall and in-
consistent for the other seasons “?. In this context,
regional climate models are valuable tools for ana-
lyzing this issue, and we expect to see increasing use
of these models driven by CMIP6 GCMs in future
research.

Finally, we point out that the datasets used to
validate climate simulations also have their system-
atic biases. Although the reanalysis products have
satisfactory overall performance, these data result
from the assimilation of observations and numerical
simulations through radiative transfer models ™, so
uncertainties and biases are inherent to this source of
information. For example, the solar energy derived
from the ERAS reanalysis is overestimated by ap-

proximately 23% during the boreal winter in North
America ™, Furthermore, one of SA’s solar hotspots
(Northeast Brazil) corresponds to one of the global
sectors where CLARA-A3 presents uncertainties .
Here, we stress that the satellite dataset also has sys-
tematic biases since it derives from the assimilation
of different sources, such as reanalysis and numeri-

L] Given this, we reiterate that the

cal simulations
projections must be analyzed considering the uncer-
tainties and systematic biases of the reference data.

Moreover, this study uses CMIP6 climate projec-
tions with bias correction and statistical downscaling
to assess solar potential in SA. Generally, studies
analyze raw model outputs with coarse resolution
and without bias correction, which is inappropriate
for studies focused on renewable energy and climate
change impacts. In this context, our results advance
knowledge about future solar generation scenarios
on the continent and represent a first look at solar
energy potential in SA with corrected state-of-the-
art projections. Furthermore, the few existing studies
on the future potential of solar energy with CMIP6
models in South America evaluate shorter time ho-
rizons, such as the near future of 2021-2050 ** and
the distant future of 2071-2100 %! In this sense, our
study differs by presenting projections for the entire
21st century, using four time horizons of interest to
the South American energy sector.

Nevertheless, the projections presented here may
have significant implications for policymakers, en-
ergy planners, and South American energy sector in-
vestors. For instance, indicating areas with high solar
power potential underscores promising locales for
establishing solar farms, fostering strategic planning,
and assisting the transition towards a low-carbon
and sustainable energy grid across SA. Lastly, this
study gives helpful insights to stakeholders engaged
in developing the solar energy infrastructure, as the
analyses herein mark a fresh analysis of statistically
downscaled climate projections from CMIP6 models
tailored to SA’s solar potential.
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Abstract

The diversification and complementarity of renewable energy resources are essential for ensuring energy
security in South America, particularly regarding climate change. This study analyzes projected changes in
energy complementarity among precipitation, global horizontal irradiance, and wind speed at 100 m
throughout the 21st century using statistically downscaled CMIP6 projections. The findings indicate
substantial transformations in these relationships, with increased precipitation-solar complementarity in the
Midwest and Southeast Brazil during summer (DJF) and fall (MAM), while declining rainfall in Amazonia
may weaken this effect. Similarly, precipitation-wind complementarity strengthens in North and Northeast
Brazil, favoring hybrid energy generation during dry periods. Conversely, strong solar-wind similarity is
projected across Northern South America and the Brazilian Northeast, corroborating the region’s potential for
hybrid solar-wind systems. The expansion of run-of-river hydropower in Brazil, particularly in the North,
poses operational challenges due to its vulnerability to seasonal rainfall variability. However, integrating solar
energy with hydropower could mitigate fluctuations, ensuring a more stable supply. Despite the challenges of
increasing renewable intermittency and reduced water storage capacity, South America’s vast availability of
hydropower, solar, and wind resources presents a unique opportunity to optimize its energy matrix. Strategic
integration of hybrid systems and improved transmission infrastructure can enhance grid stability and
resilience in the face of climate change, positioning South America as a global leader in sustainable energy.

Keywords: Climate change; Renewable energy; Energy complementarity; CMIP6; South America.

1. Introduction

Climate change is impacting every corner of the globe. 2024 was the hottest year, marking the first
time the global average temperature exceeded the Paris Agreement’s 1.5°C threshold (Copernicus Climate
Change Service, 2025). Extreme precipitation events struck Brazil (Reboita et al. 2024a), Spain and Central
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Europe (Amiri et al. 2025; Zhang et al. 2025), Africa (Li et al. 2025; Zhang et al. 2025), the Middle East (Sian
et al. 2025; Zhang et al. 2025), Asia (Zhang et al. 2025; Zhou et al. 2025), and Australia (Climate Council,
2024), while wildfires, droughts, and heatwaves further underscored the intensifying climate crisis (European
Commission, 2024; NOAA/NIDIS, 2025; Zhang et al. 2025). Despite these warnings, some global leaders
continue propagating scientific denialism, obstructing decarbonization efforts and reinforcing fossil fuel
dependency (Sivin, 2025).

Amid these challenges, the global energy transition is advancing. Europe leads the shift to renewables,
but China’s solar and wind capacity is expanding by 30% annually, while India aims for 40% renewables by
2030 (Hassan et al. 2024). In South America (SA), countries such as Chile, Brazil, and Argentina stand out,
with renewable resources accounting for approximately 68%, 49%, and 40% of their energy matrices,
respectively (Brazilian Energy Balance 2024; Global Electricity Review 2024; IRENA 2024). On the other
hand, North America shows mixed progress, and regions like Africa and the Middle East have structural
challenges and incipient energy diversification (Hassan et al. 2024).

Hydropower dominates SA’s renewable sector, supplying 45% of the continent’s electricity — far
above the global average of 16% (Cacciuttolo et al. 2024). Yet, climate change threatens hydropower reliability
through intensified droughts (Ferreira et al. 2023) and shifts in the South American monsoon cycle (Reboita
etal. 2023), besides environmental damage resulting from its implementation (Araujo 2024; Costa et al. 2025).
Hybrid energy systems combining wind, solar, and hydro offer a solution, enhancing system resilience against
intermittency and variability (da Luz and Moura, 2018). Brazil’s Northeast exemplifies this approach, with
over half of its electricity derived from wind-solar integration (Campos et al. 2020).

In sum, energy complementarity is the ability of two or more renewable energy resources to balance
each other across time and space (Beluco et al. 2008). Temporal complementarity ensures stability within a
given period, while spatial complementarity distributes generation across regions (Engeland et al. 2017; da
Silva et al. 2024).

Studies of energy complementarity employ various methodologies, including statistical metrics — like
Pearson and Spearman correlations (Monforti et al. 2014; Bett and Thornton 2016; Frangois et al. 2016; Silva
et al. 2016; Cantdo et al. 2017; Rosa et al. 2017; Gallardo et al. 2020; Guezgouz et al. 2021; Soukissian et al.
2021; da Silva et al. 2024; Silva et al. 2024) —, cross-correlation and coherence analyses (dos Anjos et al. 2015;
Silva et al. 2016), spatiotemporal complementarity indices (Beluco et al. 2008; Bagatini et al. 2017; Risso et
al. 2018) and optimization models (da Luz and Moura 2018; Campos et al. 2020). Research on energy
complementarity spans North America (Hoicka and Rowlands, 2011; Selomon et al. 2016), Europe (Bett and
Thornton 2016; Frangois et al. 2016; Dalbeke et al. 2023), Asia (Liu et al. 2013; Min and Kim 2017), Oceania
(Prasad et al. 2017), Africa (Guezgouz etal. 2021), and SA (Riscoti and Sauer 2013; Schmidt et al. 2016; Silva
et al. 2016; Cantdo et al. 2017: Rosa et al. 2017; Viviescas et al. 2019; Cantor et al. 2022; Nascimento et al.
2022).

In Brazil, studies on energy complementarity began with the development of a spatiotemporal index
for the South (Beluco et al. 2008), laying the groundwork for subsequent regional assessments (Bagatini et al.
2017; Risso et al. 2018; Pimentel and Rosario 2024; Rosa et al. 2017; Campos et al. 2020; da Silva et al. 2024;
Silva et al. 2024). These studies emphasize Brazil’s potential to optimize renewable energy integration,
mitigating generation intermittency and strengthening energy security. Moreover, climate projections indicate
favorable trends for wind and solar resources, particularly in Northeast Brazil (Ferreira et al. 2024a,b),
suggesting new opportunities for energy planning. However, despite the growing importance of long-term
climate variability in power system resilience, research on energy complementarity under future climate
conditions remains limited. Therefore, this study addresses this gap by employing a multi-model ensemble of
statistically downscaled CMIP6 projections to assess future complementarity patterns. Additionally, it
contributes to a broader initiative aligned with Brazil’s renewable energy strategy, providing insights for more
adaptive and resilient energy planning.

2. Material and Methods
2.1 Study Area

SA (12°N-55°S) is a continent characterized by remarkable climate diversity, shaped by its vast
latitudinal span and complex topography (Figure 1). This unique setting provides the region abundant
renewable energy resources — hydropower, wind, and solar — making it highly favorable for sustainable energy
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development. The continent’s water availability is primarily governed by the South American Monsoon
System (SAMS), which drives intense seasonal rainfall over central and eastern regions (Reboita et al., 2023).
In contrast, southern latitudes experience peak precipitation during winter due to the passage of cold fronts
and extratropical cyclones, while the northeastern semiarid region frequently faces droughts influenced by
Intertropical Convergence Zone (ITCZ) variability and large-scale teleconnection patterns (Ferreira and
Reboita, 2022).

Wind energy potential in SA is striking and influenced by key atmospheric circulation features. The
trade winds provide persistent airflow over the Brazilian Northeast, making it one of the most promising
regions for wind power generation. Low-level jets and extratropical cyclones generate high speeds in southern
SA, particularly in Argentina and Uruguay. Additionally, the influence of the South Atlantic Subtropical
Anticyclone (SASA) enhances wind energy potential along the eastern coast, reinforcing the viability of large-
scale wind farms (Ferreira et al., 2024a).

Solar energy availability across the continent is equally remarkable, as much of SA lies within the
Sun Belt (Barbosa et al. 2017), a latitudinal zone of consistently high solar irradiance. This feature is
particularly evident in northern Chile, northeastern Brazil, and northern Argentina, where arid conditions and
predominantly clear skies contribute to some of the highest solar radiation levels globally (Ferreira et al.,
2024b). The abundant availability of water, wind, and solar resources establishes SA as a pivotal region in the
shift toward a more sustainable and resilient energy matrix, offering extensive opportunities for hybrid energy
integration and long-term energy stability.
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Figure 1: Tllustration of the study area with elevation (m). Source: United States Geological Survey-Earth
Resources Observation System (EROS) Center.

2.2 CMIP6 Models

This study utilized data from eight global climate models (GCMs) of CMIP6 (Table 1), including
precipitation, global horizontal irradiance, 2 m air temperature, and the zonal and meridional wind components
at 10 m. The dataset covers the historical period (1995-2014) and future projections (2020-2099) under two
greenhouse gas emission scenarios (SSP2-4.5 and SSP5-8.5). The simulations, available at three-hour
intervals, were obtained from the Earth System Grid Federation (ESGF) platform
(https://aims2.1In].gov/search/cmip6/).
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The GCMs selection followed the methodology proposed by Rupp et al. (2013), which employs
statistical metrics to evaluate model performance in reproducing the historical climate of a given region.
Further methodological details, including mathematical formulations and statistical parameters, are provided
in Reboita et al. (2024b). The model selection prioritized their ability to simulate historical climate conditions,
the availability of high-frequency data, and their projections on the ESGF platform. Additionally, the ensemble
of the best-performing models yielded results that aligned more closely with observations and outperformed
individual GCM simulations (Reboita et al. 2024b).

Table 1 — CMIP6 GCMs used in the study.
Model Resolution (°Lat X °Lon) Institute Reference

Fondazione Centro Euro-

CMCC-CM2-SR5 1.25 % 0.94 P — Lovato and Peano

: SR (2020)
Cambiamenti Climatici
Fondazione Centro Euro-
CMCC-ESM2 1.25 x 0.94 Mediterraneo sui Lovato et al. (2022)
Cambiamenti Climatici
EC-Earth3 0.70 x 0.70 EC-Earth Consortium Ddscher et al. (2022)
GFDL-ESM4 1.25 % 1.00 Geophysical Fluid Dynamics Krasting et al.
Laboratory (2018)
IPSL-CM6A-LR 2.50 x 1.26 Institut Pierre Simon Laplace  Boucher et al. (2018)
MIROC-6 141 % 1.41 Japan Agency for Marine- Tatebe and
Earth Science and Technology Watanabe (2018)
MPI-ESM1-2-LR 0.94 x 0.94 Max Planck Institute for — wieners et al. (2019)
Meteorology
MRI-ESM2-0 113 % 113 Meteorolagi.cal Research Yukimoto et al.
Institute (2019)

2.3 Reference Dataset

Multiple reference datasets were used to validate the historical simulations of the CMIP6 GCMs.
Precipitation data were obtained from the Climate Prediction Center (CPC) gauge-based global daily
precipitation analysis (Chen et al. 2008), covering the 1995-2014 period with a 0.5° horizontal resolution
(https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/RT/). While CPC data effectively
capture seasonal and mean precipitation patterns over most of SA, uncertainties persist in regions with complex
topography, such as the Andes (Lagos-Zuniga et al. 2024). For temperature and wind validation, the ERAS
reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) was used
(https://cds.climate.copernicus.eu/), which provides 2 m air temperature and 10 m wind components at three-
hour intervals with a 0.25° resolution (Hersbach et al. 2020).

Despite ERAS5’s high quality, reanalysis products can exhibit systematic biases (Dullaart et al. 2020;
Sawadogo et al. 2021; Wilczak et al. 2024; Khan et al. 2025). To enhance the validation dataset and address
the limitations of the reanalysis product, satellite observations from CLARA-A3 (Karlsson et al. 2023) were
incorporated, which comprises a collection of climate records on cloud properties, albedo, and surface
radiation produced by the Satellite Application Facility on Climate Monitoring (CM SAF) under EUMETSAT
(https://www.cmsaf.eu/EN/Home/home_node.html). This dataset includes surface solar irradiance and cloud
properties derived from AVHRR sensors aboard NOAA and Metop satellites, offering daily data at 0.25°
resolution for 1995-2014. Satellite-based products generally provide higher accuracy than reanalysis data,
making them valuable for evaluating solar radiation estimates in climate models (Boilley and Wald 2015;
Sawadogo et al. 2021).

2.4 Bias Correction/Statistical Downscaling
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GCMs have a coarse spatial resolution, making their raw outputs unsuitable for applications requiring
finer detail, such as synoptic-scale studies. Hence, statistical downscaling was applied to refine the CMIP6
outputs using previously mentioned datasets. For solar irradiance, both CLARA-A3 satellite observations and
ERAS reanalysis were averaged to compose an ensemble mean capturing the strengths of each dataset. Among
various statistical downscaling approaches, the Bias Correction—Statistical Downscaling (BCSD) method was
employed, precisely the transfer function technique, which establishes statistical relationships between
observed and simulated variables.

Before applying BCSD, spatial disaggregation was performed on all datasets to 0.5° x 0.5° using
bilinear interpolation, a method known for producing consistent fields (Tram-Anh et al. 2023). For bias
correction, we used the Quantile Delta Mapping (QDM) technique for historical simulations (1995-2014) and
transfer functions for future projections (2020-2099). QDM is particularly effective in statistical downscaling
as it preserves relative trends projected by models while correcting systematic biases in the data’s quantile
distribution (Cannon et al. 2015). This process involves three key steps: removing the trend from all quantiles,
applying quantile mapping for bias correction, and reintroducing projected changes onto the corrected data.
The historical period (1995-2014) served as the training dataset to calibrate future projections (2020-2099)
using the QDM algorithm, aligning with the reference period established by the Intergovernmental Panel on
Climate Change (IPCC).

After bias-correcting the simulations, the wind intensity at 10 m was vertically extrapolated to 100 m
since most wind turbines are installed at this height to reduce friction effects in wind intensity (Custodio 2009).
Equation 1 (Reboita et al. 2021a; Ferreira et al. 2024a) was used to calculate the wind extrapolation:

1
s ZH 7
Wy = Wy o 1)
m

where Wy is the wind speed (m s™') at the desired height (Zy, 100 m), and W is the wind speed (m s!) at the
reference height of 10 m.

2.5 Complementarity Analysis

This study analyzes three types of renewable resource complementarity: precipitation-wind,
precipitation-solar and wind-solar. Pearson’s linear correlation coefficient, a metric widely used to assess the
relationship between linear series of environmental variables — including water, wind, and solar resources
(Silva et al. 2016; Cantédo et al. 2017; Rosa et al. 2017, da Silva et al. 2024; Silva et al. 2024) —, was applied
to achieve this goal. The coefficient was obtained according to Equation 2 on a seasonal scale, and it measures
the intensity of the correlation (r), ranging from -1 to 1. The correlation intensity can be interpreted according
to Table 1 (Cantéo et al. 2017).

Iit1 (-0 (yvi-¥) @)

r=
I (xi-x02 L (vi-¥)?

where n is the number of samples, i is the monthly period, x; is the monthly precipitation value at time 1 (or
wind, in the case of wind-solar complementarity), X is the seasonal average precipitation, y; is the monthly
wind or solar irradiance value at time i, and ¥ is the seasonal average wind (or solar irradiance).

Table 2 — Interpretation of correlation coefficient values (adapted from Cantao et al. 2017).

Behavior Values of r Interpretation
09 <r<10 Very strong similarity
L 0.6<r <09 Strong similarity
AR, 03<r <06 Moderate similarity
0.0<r <03 Weak similarity
—-03 <r<0.0 Weak complementarity
iR —-06 <r<-03 Moderate complcmentqﬁty
-09 <r<-06 Strong complementarity
—-1.0 <r<-09 Very strong complementarity
5
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Negative values indicate complementarity between the resources, as they behave in opposite ways
since when one resource’s availability decreases, the other’s availability increases. On the other hand, positive
values indicate that the resources behave similarly and that the availability curves tend to be similar (Cantio
et al. 2017; da Silva et al. 2024). In this way, applying the coefficient makes it possible to quantify the
interrelationship between renewable resources and identify scasonal availability patterns. Based on these
analyses, it is possible to identify regions with greater potential for complementarity between renewable
resources and thus contribute to more efficient and resilient energy planning.

3. Results and Discussion

3.1 Historical period

Figure 2 illustrates the results of Pearson’s linear correlation (r) between the seasonal anomalies of
renewable sources (precipitation, wind at 100 m, and global horizontal irradiance) simulated by the CMIP6
ensemble in the historical period (considering the climatological period 1995-2014) and those obtained by the
reference data sets. The first row (Figure 2al-2a4) shows the correlations between the seasonal precipitation
anomalies of the CMIP6 ensemble and those of the CPC; the second row (Figure 2bl-2b4) shows the
correlations between the seasonal anomalies of global horizontal irradiance from the CMIP6 ensemble and
those obtained by the ERAS+CLARA-A3 mean ensemble; finally, the third row (Figure 2¢1-2¢4) shows the
correlations between the seasonal wind anomalies at 100 m simulated by the CMIP6 ensemble and those
provided by ERAS. It is worth noting that the correlations shown in Figure 2 are not associated with
complementarity between renewable resources but rather indicate the simulation performance of the CMIP6
ensemble through the linear correlation between simulated and observed climate anomalies.

Regarding the CMIP6 ensemble skill in simulating the seasonal precipitation anomalies of the
historical period, in the austral summer (DJF), there are statistically significant correlations (a = 0.05) above
0.4 in northeastern and central-southern Brazil sectors. On the other hand, low correlations occur in much of
the Amazonia and western SA, sectors in which GCMs show considerable systematic biases resulting from an
unsatisfactory representation of the position and intensity of the ITCZ, as well as insufficient representation of
biosphere-atmosphere interactions and orographic effects, especially in the northern SA and the Andes (Torres
and Marengo 2011; Rivera and Arnould 2020; Almazroui et al. 2021; Arias et al. 2021; Ortega et al. 2021;
Ferreira et al. 2023). A similar pattern occurs in the MAM and JJA seasons, with statistically significant
moderate correlations in a few southeastern and central-western Brazil regions. On the other hand, the pattern
obtained in SON shows statistically significant moderate correlations in sectors of the Brazilian Southeast and
Northeast. Similarly, other studies (Coelho et al. 2006; Chou et al. 2020; Reboita et al. 2021b; Ferreira et al.
2022) have indicated a good performance of GCMs in simulating precipitation anomalies in these sectors
during SON, associated with a better predictability of the teleconnection effects of El Nifio — Southern
Oscillation (ENSO) and the Tropical Atlantic Dipole.
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Figure 2: Pearson’s correlation between the seasonal anomalies of renewable resources (precipitation, wind
at 100 m, and global horizontal irradiance) simulated by the CMIP6 ensemble and the reference data for the
historical period (1995-2014). Hatched areas indicate statistical significance at the 95% level.

Regarding the representation of seasonal anomalies in global horizontal irradiance, the GCMs
perform better at simulating the variable in the months of SON and DJF in central Argentina and Brazil’s
Northeast and central-southeast regions. In contrast, sectors such as the Amazonia, western SA, and northern
SA show low correlation values (r < 0.4) for much of the year, reflecting systematic biases, especially in areas
of intense convection. In fact, even after the reduction of up to 50% of the errors in the CMIP6 ensemble
simulations after the BCSD application, average overestimates of up to 10 W m™ occur in most of SA in the
months of MAM and JJA (Ferreira et al. 2024b).

Considering the wind simulation, the highest statistically significant correlation values (r > 0.4) occur
in the months of SON and DJF in northeast Brazil and on the ocean coast of the Rio de Janeiro and Sdo Paulo
states, A statistically significant moderate correlation exists during MAM in the region where the low-level
jets east of the Andes (LLJ) act. Still, this performance does not occur in the other months due to the systematic
biases of the GCMs and their poor representation of the complex topography of the region (Kumar et al. 2015;
Barros and Doyle 2018; Reboita et al. 2018; Huang et al. 2020; Ferreira et al. 2024a).

Moreover, Figures S1, S2, and S3 of the Supplementary Material present an additional analysis of the
CMIP6 ensemble performance in simulating the seasonal patterns of renewable resources in SA during the
reference period. Figure SI illustrates the complementarity obtained with the CMIP6 ensemble simulations
(i.e., the complementarity between the precipitation, wind at 100 m, and global horizontal irradiance of the
selected GCMs were calculated), while Figure S2 presents the complementarity resulting from the reference
data (i.e., the complementarity between the CPC precipitation analyses, the wind from the ERAS reanalysis
and the global horizontal irradiance of the ERAS+CLARA-A3 mean ensemble). Moreover, Figure S3 shows
the bias of correlations between the complementarity of the CMIP6 GCMs and that of the reference data.
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CMIP6 GCMs generally provide spatial and temporal complementarity fields similar to those of the
reference ensembles. The most expressive deviations occur in the central-southern sectors of Brazil and
northern SA for the precipitation-wind complementarity at 100 m (Figure S3b) and in Brazil’s southern and
northeastern sectors for the solar irradiance-wind complementarity. These findings endorse previous results,
which showed persistent errors in the CMIP6 ensemble’s representation of wind and solar radiation in Brazil’s
southern and northeastern regions, even after applying BCSD (Ferreira et al. 2024a, 2024b). It is worth noting
that the observed data used also has uncertainties and constraints, making validating CMIP6 GCMs climate
simulations in SA more problematic.

3.2 Renewable Complementarity in the Future

3.2.1 Complementarity Precipitation-Solar

Figure 3 illustrates the complementarity between precipitation and global horizontal irradiance in SA
throughout the 21st century, based on CMIP6 ensemble projections under the SSP5-8.5 scenario. The analysis
considers seasonal precipitation and global horizontal irradiance anomalies relative to their climatological
means of the period analyzed. The uncertainties and variability associated with individual ensemble members
(i.e., individual GCM projections) are comprehensively discussed in studies that assess each renewable energy
resource separately (Ferreira et al. 2023; Reboita et al. 2023; Ferreira et al. 2024a, 2024b), which provide
detailed evaluations of the spread and biases among models. This analysis focuses on the general pattern
provided by the ensemble mean, representing the collective signal of multiple models, smoothing individual
model deviations, and highlighting the overarching trends in renewable energy complementarity across SA.

A strengthened negative correlation between these variables becomes more pronounced from 2040
onwards. This pattern, driven by projected changes in precipitation and cloud cover, enhances the availability
of one resource when the other declines. The Midwest and Southeast of Brazil exhibit increasing negative
correlations, particularly in summer (DJF) and fall (MAM), due to the influence of the SAMS and the
associated seasonal rainfall peaks. Similarly, the Amazonian region shows strong precipitation-solar
complementarity between December and May, but this effect is expected to weaken due to land-use changes
and declining rainfall (Reboita et al. 2021b, 2023; Ferreira et al. 2023). In winter (JJA), complementarity is
generally weak across the continent, except in Northeast Brazil and northern SA, where seasonal variability is
more pronounced. Under the SSP2-4.5 scenario (Figure S4), the spatial patterns show slight differences, such
as the more extensive areas of strong complementarity in Brazil in the months of DJF (2020-2039) and MAM
(2060-2099). However, this scenario generally shows a weaker signal intensity compared to SSP5-8.5.

Southern Brazil, in contrast, exhibits strong precipitation-solar complementarity throughout most of
the year, with a moderate relationship in winter. This stability is attributed to well-distributed precipitation
patterns, which support hydroelectric generation when solar radiation is lower (Ferreira and Reboita, 2022).
Studies indicate that nearly half of Rio Grande do Sul shows significant temporal hydro-solar complementarity,
with over 72 days separating the minimum availability of the two energy resources (Beluco et al. 2008).
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Figure 3: Seasonal correlations between precipitation and global horizontal irradiance anomalies provided by
statistically downscaled CMIP6 projections for the historical and future periods under the SSP5-8.5 scenario.

CMIP6 projections under SSP5-8.5 suggest substantial precipitation changes across the century.
While precipitation is expected to increase in the Southeast and South during DJF and MAM, reinforcing the
inverse relationship with solar radiation (Ferreira et al. 2023; Reboita et al. 2023), JJA and SON are projected
to experience considerable rainfall reductions in much of central and Northeast Brazil (Ferreira et al. 2023).
These reductions may undermine hydro-solar complementarity in these regions, necessitating stronger
integration with wind and solar energy resources to stabilize generation. The Southeast and South are likely to
maintain high precipitation levels (Almazroui et al. 2021; Reboita et al. 2021b), whereas the Midwest and
Northeast could face severe rainfall declines, impacting hydroelectric output and increasing reliance on
alternative renewables.

The expansion of run-of-river hydroelectric plants, particularly in North Brazil, must be assessed in
the context of climate change and renewable energy complementarity. These plants, which lack large
reservoirs, are susceptible to seasonal and interannual rainfall variability, posing risks to their operational
reliability (Alencar et al. 2019). However, their integration with solar energy can mitigate these challenges, as
photovoltaic generation thrives in dry conditions with reduced cloud cover, while hydropower peaks during
rainy periods. This synergy enables more efficient water use, reducing daily reservoir withdrawals and
enhancing energy security.

Given growing environmental restrictions and the high costs of new hydroelectric projects,
retrofitting existing plants with solar generation is a practical and cost-effective alternative. Solutions like
floating photovoltaic modules and secondary reservoirs for irrigation and supply can further optimize
efficiency (Teixeira et al. 2015). Additionally, integrating solar energy with run-of-river plants can reduce the
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extent of flooding, improve dam safety, and ensure a more stable energy supply throughout the year (Alencar
et al. 2019).

The findings indicate that hydro-solar complementarity will remain a key factor in optimizing Brazil’s
energy matrix throughout the 21st century. Strengthening negative correlations across regions supports
expanding hybrid generation systems, particularly in the South and Southeast, where climate stability favors a
balanced energy mix. However, the growing reliance on run-of-river hydropower necessitates careful energy
planning to maintain grid reliability. Reduced water storage capacity and shifting rainfall patterns could
destabilize hydroelectric generation, making integrating wind and solar energy crucial to compensating for
seasonal fluctuations. Thus, hybrid strategies, including solar retrofitting at hydroelectric plants and the
development of secondary reservoirs, represent viable solutions to enhance resource utilization and bolster the
resilience of Brazil’s energy system in the face of climate change.

3.2.2 Complementarity Precipitation-Wind

Figure 4 presents the complementarity between precipitation and wind speed at 100 m in SA over the
21st century, based on BSCD projections from the CMIP6 ensemble under the SSP5-8.5 scenario. Compared
to the historical period (1995-2014), future projections indicate a strengthening of the negative correlation
between precipitation and wind speed across various regions, highlighting an increasing potential for energy
complementarity. This effect is more pronounced in SON and DJF, with more apparent patterns of alternating
phases — higher precipitation coinciding with weaker winds and vice versa. Additionally, some areas exhibit a
more pronounced positive correlation, suggesting potential for joint energy production throughout the year.
Under the SSP2-4.5 scenario (Figure S5), the spatial patterns are similar, and the sign of change is less intense.
Still, there is stronger complementarity along the coast of northern Brazil in DJF (2040-2059) and MAM (from
2040).

Moderate to strong precipitation-wind complementarity is primarily observed in North and Northeast
Brazil and northern SA during DIF and MAM, where alternating periods of intense winds and heavy rainfall
create favorable conditions for hybrid energy generation systems. Conversely, regions such as the South and
Midwest of Brazil exhibit moderate to strong similarity, indicating that wind and precipitation co-occur,
particularly in the first half of the year. Similar areas include central-southern Chile (year-round) and central
Argentina (JJA).

These findings reinforce previously identified patterns of strong precipitation-wind complementarity
in Northern and Northeastern Brazil (Cantdo et al. 2017). Similarly, the observed hydro-wind similarity in
Southern Brazil, particularly from May to November and in the Northeast during JJA, aligns with the study
above, suggesting that these regions exhibit favorable conditions for integrating hydropower and wind energy.
Additionally, hydro-wind complementarity is particularly strong in the Northeast basins, including Sao
Francisco, Parnaiba, and the eastern and western northeast Atlantic basins, as well as in areas near the Sio
Francisco River’s power plants (Cantdo et al. 2017). In contrast, in the Southern region, hydro-wind similarity
tends to dominate, although some areas show moderate or weak alignment between these energy resources.

CMIPO projections under the SSP5-8.5 scenario indicate that precipitation is expected to increase
over Southern Brazil and the La Plata Basin throughout the 21st century, while wind speeds are projected to
intensify in Northern and Northeastern Brazil and along the western coast of SA (Reboita et al., 2021;
Almazroui et al., 2021; Ferreira et al. 2023). This configuration reinforces the complementarity between these
regions, highlighting strategic opportunities for integrating hydropower and wind energy production.
Additionally, projections suggest that wind speeds in central and southern Brazil may become stronger during
spring and winter (de Jong et al., 2019; Rufato-Ferreira et al., 2017; Ferreira et al., 2024a), while precipitation
may decline in parts of the Midwest and Northeast (Reboita et al., 2021; Ferreira et al., 2023), further enhancing
the potential for energy compensation between these resources. Conversely, the projected decline in wind
speeds over Patagonia and extreme southern Argentina throughout the century (Ferreira et al., 2024a) may
pose challenges for wind energy generation in the region, necessitating adaptive energy strategies.
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Figure 4: Seasonal correlations between precipitation and wind intensity at 100 m anomalies provided by
statistically downscaled CMIP6 projections for the historical and future periods under the SSP5-8.5 scenario.

3.2.3 Complementarity Solar-Wind

Figure 5 illustrates the solar-wind complementarity in SA over the 21st century, based on statistically
downscaled projections from the CMIP6 ensemble under the SSP5-8.5 scenario. The results highlight that the
similarity between global horizontal irradiance and wind speed at 100 m is more pronounced than other
renewable energy combinations, suggesting a high potential for the joint operation of solar and wind farms
throughout the year. Compared to the historical period (1995-2014), future projections indicate a strengthening
positive correlation between global horizontal irradiance and wind across much of the continent. This pattern
suggests a growing simultaneous availability of these resources, which could further support the integration of
solar and wind power plants. The intensification of this trend is particularly evident during spring (SON) and
summer (DJF), while in winter (JJA) and autumn (MAM), certain regions exhibit greater complementarity
(negative correlation). Under the SSP2-4.5 scenario (Figure S6), again the spatial patterns are similar, but
stronger complementarity is projected for the northern coast of Brazil in DJF and MAM.
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Figure 5: Seasonal correlations between horizontal global irradiance and wind intensity at 100 m anomalies
provided by statistically downscaled CMIP6 projections for the historical and future periods under the SSP5-
8.5 scenario.

Regions exhibiting strong similarity include northern SA, encompassing parts of the Brazilian
Amazonia, Colombia, Venezuela, and the Guianas, where energy resources are simultaneously available
throughout the year. Additionally, Northeast Brazil displays a consistent pattern of similarity nearly year-
round, reinforcing findings from previous studies that identified a high degree of solar-wind synergy in the
region (da Silva et al. 2024; Silva et al. 2024). Moreover, Southeast Brazil presents strong similarity during
SON, while moderate-to-strong similarities are also observed in Argentina and Uruguay. Conversely, Southern
Brazil and Chile exhibit moderate-to-strong complementarity (negative correlation) for much of the year,
suggesting that wind energy availability may compensate for solar intermittency in these regions.

CMIP6 projections under SSP5-8.5 indicate substantial changes in solar radiation and wind patterns
across SA. Global horizontal irradiance is expected to increase throughout the 21st century in North and
Northeast Brazil, as well as in parts of the Amazonia and the Andean region, reinforcing its alignment with
projected wind trends in these areas (Dutta et al., 2022; Ha et al., 2023). Additionally, wind speeds in Northeast
and Southeast Brazil and the western coast of SA are projected to intensify, further supporting the simultaneous
generation of solar and wind energy (Reboita et al., 2018; de Jong et al., 2019). These findings indicate that
the strong solar-wind similarity observed in various regions, particularly in northern, northeastern, and
southeastern Brazil, presents a significant advantage for the integrated operation of hybrid solar and wind
power plants throughout the 21st century. However, in regions such as Southern Brazil, Uruguay, and Chile,
the complementarity between these resources suggests that energy storage solutions and enhanced grid
integration may be necessary to optimize energy utilization and ensure year-round stability.
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4. Conclusion

This study analyzed projected changes in the complementarity of renewable energy resources across
South America, using statistically downscaled projections from the CMIP6 ensemble. The results indicate
substantial transformations in the relationships between precipitation, global horizontal irradiance, and wind
speed throughout the 21st century, with potential implications for energy planning and integration. The
increasing complementarity between precipitation and global horizontal irradiance, particularly in Brazil’s
Midwest and Southeast regions, highlights opportunities for hydro-solar hybrid systems, especially during
summer and fall. However, this complementarity is expected to weaken in Amazonia due to declining rainfall
and land-use changes. Conversely, precipitation-wind complementarity is projected to strengthen in North and
Northeast Brazil, where alternating intense wind and rainfall phases could optimize energy generation
throughout DJF and MAM. In contrast, regions like Southern Brazil, Uruguay, and Chile show more
substantial wind-solar complementarity, where wind energy could offset solar intermittency during certain
seasons.

The projections further indicate that the spatial extent of complementarity will evolve throughout the
century. Precipitation-solar complementarity is expected to persist in the Southeast and South, where
precipitation increases during DJF and MAM, reinforcing the inverse relationship with solar radiation.
However, precipitation reductions in the Midwest and Northeast could undermine the efficiency of hydro-solar
integration in these regions, necessitating greater reliance on wind and solar energy. Similarly, the increasing
wind potential in North and Northeast Brazil and precipitation gains in the South enhance the feasibility of
balancing energy supply across these regions. Additionally, the hydro-wind similarity in South Brazil indicates
that the combined hydrologic and wind resources could supply energy to the southeastern region, the country’s
highest consumption center.

The outcomes also emphasize the growing role of run-of-river hydropower in Brazil’s energy matrix,
particularly in the North, where the absence of large reservoirs makes these plants highly vulnerable to seasonal
and interannual rainfall variability. While this poses operational challenges, integrating solar energy with
hydropower could mitigate fluctuations, as photovoltaic generation is enhanced in dry periods, whereas
hydropower is favored during the rainy season. This synergy supports more efficient water use, reduces
reservoir withdrawals, and improves energy security. Furthermore, the observed similarity between wind and
solar resources in regions such as Northeast Brazil reinforces previous findings. confirming the region’s high
potential for hybrid solar-wind systems. Wind energy could supplement solar power during nighttime and low-
insolation periods in these areas, ensuring a more stable supply.

Despite these advantages, transitioning to a more renewable-based energy system in South America
presents several challenges. The increasing deployment of run-of-river hydropower reduces the country’s
capacity to store water, making the system more dependent on variable resources such as wind and solar. These
resources’ spatial and temporal variability also necessitates improved grid integration and energy storage
solutions to manage fluctuations. While regions like the Northeast and Midwest Brazil and Andean territories
exhibit strong renewable potential, ensuring efficient energy transmission to consumption centers remains a
crucial challenge. Nevertheless, the vast availability of hydropower, solar, and wind resources across the
continent offers unique opportunities for a diversified and resilient energy matrix. By strategically leveraging
these complementary resources and adopting hybrid energy strategies — such as retrofitting hydro plants with
solar modules and developing secondary reservoirs — South America, particularly Brazil, can enhance its
energy security and adaptability in the face of climate change.
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Figure S1: Seasonal complementarity in the historical period based on statistically downscaled CMIP6 climate

simulations.
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Figure 52: Seasonal complementarity in the historical period based on reference data.
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Figure S3: Difference between seasonal complementarity in the historical period based on CMIP6 and

reference data.
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Figure S4: Seasonal correlations between precipitation and global horizontal irradiance anomalies provided
by statistically downscaled CMIP6 projections for the historical and future periods under the SSP2-4.5
scenario.
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Figure S5: Seasonal correlations between precipitation and wind intensity at 100 m anomalies provided by
statistically downscaled CMIP6 projections for the historical and future periods under the SSP2-4.5 scenario.
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Figure S6: Seasonal correlations between global horizontal irradiance and wind intensity at 100 m anomalies
provided by statistically downscaled CMIP6 projections for the historical and future periods under the SSP2-
4.5 scenario.
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9. GENERAL CONCLUSIONS

This doctoral research analyzed projected changes in key climate variables across
South America, particularly Brazil, using simulations and projections from eight CMIP6
global climate models (GCMs). The study focused on precipitation, wind speed at 100 m,
wind power density at 100 m, surface solar irradiance, concentrated solar power (CSP), and
photovoltaic power (PVP). Statistical downscaling and bias correction were applied using the
Quantile Delta Mapping (QDM) method to enhance the accuracy of projections. Overall, the
QDM technique reduced systematic biases in CMIP6 models, improving all analyzed

variables’ seasonal and spatial representation.

Hydrological Droughts

Future projections indicate significant reductions in precipitation across most of the
continent, especially during austral spring, with the most pronounced decline under the SSP5-
8.5 scenario. While the frequency and intensity of drought events exhibited mixed signals
among GCMs, there was strong agreement on droughts’ increasing duration and severity
throughout the 21st century. Notably, Brazil is expected to experience a higher proportion of
moderate and severe droughts, particularly in the Northeast and Midwest regions. These
findings emphasize the urgent need for strategic water resource management to mitigate

potential energy and agricultural effects.

South American Monsoon Lifecycle

The projected changes in the South American Monsoon System indicate delays in its
onset, leading to a shortened rainy season in critical areas. The ensemble suggests a delay of
approximately three pentads in monsoon onset across most regions and a two-pentad delay in
its demise north of 20°S. These changes are expected to be particularly significant in the South
Atlantic Convergence Zone and the Brazilian Amazon, where a statistically significant
shortening of the monsoon length is projected in the second half of the 21st century. Such
shifts may have profound implications for agriculture, hydropower production, and overall

water availability, reinforcing the necessity of adaptive strategies to ensure regional resilience.
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Wind Energy Potential

Expanding wind power generation is crucial for South America’s transition to a more
sustainable energy matrix. Projections indicate a 25-50% increase in wind power density in
regions such as Northeast and South Brazil, Argentine Patagonia, northern Venezuela,
Uruguay, Bolivia, and Paraguay. The most substantial increases are expected under SSP5-8.5,
reinforcing these sectors’ growing potential for wind energy expansion. However, individual
model projections revealed considerable uncertainties regarding wind intensity anomalies,
underscoring the challenges of long-term forecasting. Despite these uncertainties, the study
provides the first comprehensive analysis of CMIP6 projections for wind power in South

America, offering valuable guidance for energy sector stakeholders.

Solar Energy Potential

The findings indicate spatial and seasonal variations in solar energy generation across
South America. For concentrated solar power (CSP), projections suggest that historically
favorable regions — such as Northeast Brazil and parts of Chile — will maintain their suitability,
with potential 1-6% increases under the SSP5-8.5 scenario. For photovoltaic power (PVP),
projected increases range from 1-4%, particularly in the Amazonia, Midwest, and Southeast
Brazil. However, in South Brazil, approximately 84% of the projections indicate either a
negative or neutral trend, signaling less favorable conditions for solar expansion in this region.
These results highlight the importance of region-specific planning to optimize solar energy

investments and infrastructure development.

Renewable Resources Complementarity

The complementarity between precipitation, solar radiation, and wind speed is
essential to ensuring energy security in South America. Future projections suggest an increase
in precipitation-solar complementarity in Midwest and Southeast Brazil during the wet season,
whereas declining rainfall in Amazonia may reduce this effect. Precipitation-wind
complementarity is expected to strengthen in North and Northeast Brazil, promoting hybrid
energy generation during dry periods. Additionally, solar-wind complementarity is projected
to increase in northern South America and Northeast Brazil, further supporting the

development of hybrid solar-wind systems.
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However, challenges remain in balancing the seasonal variability of run-of-river hydropower,
particularly in northern Brazil, where reduced water storage capacity may introduce

operational constraints.

Study Limitations and Implications for Decision-Making

While this research advances the understanding of climate change impacts on
renewable energy in South America through bias-corrected CMIP6 projections at a seasonal
scale, several limitations must be acknowledged to contextualize its results and inform their
appropriate use by decision-makers. Decision-makers often require spatially and temporally
explicit guidance tailored to specific investment horizons, infrastructure lifespans, and energy
policies (Illangasingha et al., 2023; Fleming et al., 2025). However, climate projections
inherently deal with long-term, probabilistic scenarios rather than deterministic forecasts
(Reggiani et al., 2021). This temporal mismatch can lead to misinterpretation or misuse of the
data if uncertainty ranges, methodological assumptions and spatial generalizations are not
fully understood. Without appropriate contextualization, there is a risk that policymakers may
either overestimate the confidence of model-based outputs or dismiss valuable information

due to perceived complexity (Moradian et al., 2025).

Furthermore, the analysis presented here is restricted to seasonal averages without
exploring finer temporal resolutions such as daily or hourly scales. These higher-resolution
scales are critical for evaluating the operational viability of renewable energy systems,
particularly regarding the intermittency and ramping behavior of wind and solar power
(Esnaola et al., 2024; Yang et al., 2024; Zhang et al., 2024). In addition, the observational
datasets used for validation (e.g., reanalysis or gridded climate products) are subject to biases
and uncertainties, especially in regions with sparse in situ data, such as parts of the Amazon
and Andes. These biases can propagate and lead to erroneous assumptions about the accuracy
of GCM projections and bias correction performance (Balmaceda-Huarte et al., 2021).
Moreover, extreme events such as heatwaves, heavy precipitation, or wind droughts are not
explicitly analyzed despite their significant relevance to energy demand, generation reliability,
and system resilience (Antonini et al., 2024). Given the projected intensification of extremes
under climate change (IPCC, 2021), their exclusion constitutes a critical research gap to be

addressed in future studies.
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Also, this study does not incorporate technological progress in wind and solar systems,
such as increased hub height for wind turbines or improvements in photovoltaic panel
efficiency (Cazzaniga and Rosa-Clot, 2021; Lopes et al., 2022; Zhuo et al., 2025). These
advances directly affect capacity factors and energy yield but were not modeled here,
potentially underestimating future renewable energy power (Lopes et al., 2022; Satymov et
al., 2022; Liu et al., 2023). In addition, hydropower projections were assessed through climate
indicators only, without using hydrological models capable of simulating river discharge,
reservoir dynamics, or water balance under climate change. Integrating such models is
essential for a more accurate evaluation of hydroelectric generation (Almeida et al., 2021;
Caceres et al., 2021; de Jong et al., 2021; Serrao et al., 2021). Moreover, biomass energy, a
relevant component of South America’s renewable energy mix, requires further analysis of
how changing climate conditions affect biomass availability, crop yields, and biofuel

production efficiency.

Despite the clear benefits of transitioning to renewable energy sources in mitigating
greenhouse gas emissions, deploying large-scale wind and solar energy infrastructure can
generate significant ecological and social impacts. Wind farms have been associated with
noise pollution, landscape fragmentation, and disturbances to avian and bat populations,
mainly when installed along migratory routes or near ecologically sensitive areas (Hamed and
Alshare, 2022; Karasmanaki, 2022; Msigwa et al., 2022). Similarly, solar PV projects often
require large tracts of land, leading to land-use change, habitat loss, and soil degradation

(Lambert et al., 2021; Tawalbeh et al., 2021; Hamed and Alshare, 2022).

The Amazon biome, in particular, presents a complex dilemma. While the region holds
vast potential for solar energy due to relatively high irradiance in its deforested and degraded
areas, installing PV systems may catalyze further deforestation, ecosystem fragmentation, and
indirect land-use change (da Silva et al., 2018; Rehbein et al., 2020; Sonter et al., 2020; Usman
et al., 2020). Therefore, the expansion of solar infrastructure in this biome must be carefully
evaluated through rigorous environmental impact assessments and inclusive planning that
prioritizes ecosystem integrity and local livelihoods (Sanchez et al., 2015; Trindade et al.,
2022; Hampl, 2024). Another often overlooked aspect of renewable energy development is
the environmental footprint of its supply chain — particularly the mining of critical minerals
such as lithium, which are essential for solar panels, batteries, and wind turbines (Al et al.,

2017; Sonter et al., 2020; Giglio, 2021).

198



P e 9 — General Conclusions @

Beyond energy systems, future work should also focus on the broader socio-

environmental consequences of climate change, including its effects on vector-borne disease
transmission. Rising temperatures and altered precipitation patterns could expand the habitat
suitability for disease-carrying vectors, posing significant public health risks. Furthermore,
extreme temperature events, including heatwaves and cold spells, require further investigation
to assess their potential impacts on human health, agriculture, and energy demand. By
integrating high-resolution climate models, advanced energy system modeling,
epidemiological studies, and interdisciplinary approaches, future research can provide even
more refined projections and strategic insights to guide sustainable energy planning, public

health preparedness, and climate adaptation policies in South America.
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