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RESUMO

A modernizagéo dos sistemas elétricos de poténcia, marcada pela ampla integragao
de Recursos Energéticos Distribuidos (DERs), esta transformando redes de
distribuicdo tradicionais em sistemas dinamicos e ativamente gerenciados. No
entanto, persiste um grande desafio operacional: a visibilidade limitada dos DERs n&o
monitorados, denominados DERs invisiveis. Embora sejam fundamentais para a
flexibilidade futura da rede, esses recursos introduzem incertezas que prejudicam a
observabilidade do sistema, a tomada de decisdes operativas e a resiliéncia. Esta
pesquisa propde uma estrutura metodoldgica baseada em modelos de otimizagao
inteira mista para apoiar a operacao de sistemas de distribuicdo ativos sob condi¢cbes
de baixa observabilidade dos DERs. A abordagem concentra-se no desenvolvimento
de modelos agregados equivalentes para DERs invisiveis, permitindo que operadores
de sistema infiram variaveis criticas—como magnitudes de tensao e fluxos de poténcia
em ramos—utilizando dados de medi¢cao esparsos ou incompletos. Ao formular o
problema como uma tarefa de Programacdo Nao Linear Inteira Mista (MINLP)
convexa, a metodologia permite o posicionamento e dimensionamento estratégico de
modelos agregados de DERs que reproduzem o comportamento observado do
sistema. A pesquisa também introduz uma variante linearizada do modelo, incluindo
uma formulagdo de Programacéo Linear Inteira Mista (MILP) utilizando relaxagdes de
McCormick, para aprimorar a tratabilidade computacional sem comprometer a
precisdo das estimativas. Além disso, modelos hibridos de DERs, combinando
tecnologias como geragao fotovoltaica e sistemas de armazenamento de energia, séo
incorporados para representar melhor o comportamento em regime permanente de
redes de distribuicdo modernas com DERs invisiveis hibridos. Diversos estudos de
caso demonstram que a estrutura proposta € capaz de estimar variaveis de estado
ausentes de forma precisa mesmo em cenarios de escassez de dados, alcangando
baixos erros médios enquanto reduz significativamente os tempos de solugédo por
meio das técnicas de linearizacdo. A integracdo com o OpenDSS possibilita a
validagao da implementacdo em uma ferramenta-padrao da industria, comprovando a
precisdo numeérica elevada e a reducdo dos tempos de solugédo na modelagem de
alimentadores equivalentes com DERs agregados representando inumeros recursos
invisiveis. De forma geral, este trabalho avanca o estado da arte ao oferecer uma
abordagem de modelagem escalavel e eficiente em dados, que capacita operadores
de sistemas de distribuicdo a manter operagdes confiaveis e eficientes mesmo diante
do crescente numero de DERs invisiveis.

Palavras-Chave: Recursos Energéticos Distribuidos, Rede Equivalente, Calculo de
Fluxo de Carga, Otimizacao, Sistemas de Distribuicdo Radiais, Estimacao de Estado.



ABSTRACT

The modernization of electric power systems, marked by the widespread deployment
of Distributed Energy Resources (DERs), is transforming traditional distribution
networks into dynamic, actively managed systems. However, a major operational
challenge persists: the limited visibility of unmonitored DERs, hereon referred to as
invisible DERs. While critical to future grid flexibility, these resources introduce
uncertainty that hampers system observability, operational decision-making, and
resilience. This research proposes a novel methodological framework based on mixed-
integer optimization models to support the operation of active distribution systems
under limited DER observability. The approach focuses on developing equivalent
aggregate models for invisible DERs, enabling system operators to infer critical
network states—such as voltage magnitudes and branch power flows—using sparse
or incomplete measurement data. By formulating the problem as a convex Mixed-
Integer Nonlinear Programming (MINLP) task, the methodology allows for strategically
placing and sizing equivalent aggregate DER models that best replicate observed
system behavior in steady-state. The research introduces a linearized model variant,
including Mixed-Integer Linear Programming (MILP) formulation using McCormick
relaxations to enhance computational tractability without compromising estimation
accuracy. Furthermore, hybrid DER models combining technologies such as
photovoltaic generation and battery storage are incorporated to better capture the
steady-state behavior of modern distribution networks with invisible hybrid DERs.
Comprehensive case studies demonstrate that the proposed framework can accurately
estimate unobserved system states even under reduced number of metered buses,
achieving low average errors while significantly reducing solution times through
linearization techniques. The integration with OpenDSS enables the validation of the
implementation in an industry-standard tool of equivalent feeder models with
aggregate DER models representing innumerable invisible resources with high
numerical accuracy and reduced solution times. Overall, this work advances the state-
of-the-art by providing a scalable, data-efficient modeling approach that empowers
distribution system operators to maintain reliable and efficient grid operations despite
the growing presence of invisible DERs.

Keywords: Distributed Energy Resources, Equivalent Network, Load Flow
Calculation, Optimization, Radial Distribution Systems, State Estimation.
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1. INTRODUCTION

1.1. Motivation

The advancing modernization and expansion of electrical power systems
already brought significant changes to the design and operation of power distribution
systems. Adopting grid-edge technologies and distributed generation has set up a
transition from a passive distribution system to a more dynamic one, where distribution
utilities must actively manage power flows while integrating a growing share of
Distributed Energy Resources (DERs) [1]. Although the pace of these transformations
varies across different countries—with more developed economies enabling faster
shifts in customer consumption patterns—emerging economies tend to gradually follow
a similar trajectory, facing their own unique challenges in updating electricity
infrastructure while ensuring energy equity and resilience to an increasingly
unpredictable climate [2], [3].

These transformations accelerate as electricity replaces fossil fuels in
transportation, heating, and industry [4]. The deep electrification of the economy,
complemented by the rise of high-consumption, high-reliability loads—such as data
centers and electric vehicle (EV) fast-charging hubs—introduces new challenges by
increasing peak demand and straining local grid infrastructure [5]. In other words, the
ever-growing interdependence between the power sector and key aspects of society
further increases the need for improved power system practices, as disruptions in
power supply may have cascading effects across multiple sectors. Given this
landscape, the role of Distribution System Operators (DSOs) becomes even more
critical [6], [7]. Their ability to maintain a reliable power supply will depend on enhanced
system modeling, monitoring, control, and operational flexibility [8].

When deployed in a coordinated manner, DERs may prove valuable for DSOs
in dealing with voltage regulation and congestion management [9]. However, the
impracticality of monitoring and integrating DER data at scale leaves many of these
resources invisible to the operation and challenges system observability requirements
for effective decision-making. This, associated with the invisible nature of small-scale
DERs, can lead to unexpected power flows and potential voltage and grid unbalance
problems [10], [11]. Invisible DERs refer to resources typically installed within the
distribution utility’s service area, being unmonitored due to the limited capability to
collect, process, and integrate data from many small-scale resources. DERs might also
remain invisible when connected to feeder sections that are managed by third-party
entities with limited data exchange with primary utility.

In such cases, granular data related to each DER site remains unknown, such
as real-time power output and control settings, introducing challenges related to data
availability and integration with power flow and optimal power flow tools DSOs may
employ [12]. Although not accurately representing invisible DERs might not be
detrimental to the analysis of distribution systems under low DER penetration, some
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utility practices are affected in scenarios with increased DER participation [13].
Examples include resource allocation [14], load transfer [15], voltage regulation [16],
overcurrent protection [17], and system restoration [18].

Considering the survey results from [19], most distribution utilities tend to only
monitor in real time and explicitly model DER units exceeding 250 kW of generating
capacity. However, there are cases where only DERs above 1 MW of capacity are
included in system models, leaving a larger number of existing DERs invisible to the
operation. As a result, while network information and the total installed DER capacity
at the feeder level might be known, the individual contributions and collective impact
of small-scale DERs are not directly observable. On the other hand, certain feeder
sections might be operated by third-party entities that restrict data sharing with the
primary utility. These network sections are typically treated as hidden from the utility’s
perspective, with limited information about the DERs and loads they contain. The only
DER information that might be accessible in these scenarios is the peak DER
generating capacity for each type of DER present, requiring equivalent models to
address their impact in the main trunk feeder.

For example, in Ontario, Canada, power distribution utilities classify feeders into
M- and F-class [20]. M-class feeders contain sections managed by third-party
companies, such as industrial or commercial facilities or private operators controlling
part of the distribution infrastructure. These feeders tend to be more complex,
particularly due to lacking system visibility; however, F-class feeders, despite being
primarily controlled by the distribution utility itself, may still face challenges in assessing
the impact of DERs on grid performance due to the presence of innumerable
unmonitored small-scale resources. Examples of distribution feeders facing massive
integration of small-scale DERs can be found in Brazil after the country-wide uptake of
the solar photovoltaic (PV) market since 2022—after the enactment of Law no.
14.300/2022 [21]. This law established the legal framework for distributed generation.
On average, there were two PV installations per minute at the power distribution level
until the end of 2024 [22], adding up to three million individual PV installations. Since
the average installed generating capacity is around 12 kW per system (total country-
wide aggregated total is approximately 34.8 GW [23]—considering distributed
generation only), most installations remain unmonitored and thus invisible to local
operators.

In addressing the challenge of improving the modeling fidelity of distribution
systems in the presence of invisible DERs, much of the existing research literature
focuses on developing equivalent models and methods to estimate their impact in
steady-state. Many studies have proposed aggregate DER representations, relying on
statistical and heuristic approaches to estimate power generation and consumption
patterns of invisible resources. Other works have explored state-estimation techniques
in the presence of invisible DERs, often using algorithms that can infer the presence
and behavior based on real-time network conditions and historical data.
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1.2. Literature Survey

The efforts to improve system visibility, considering the presence of invisible
DERs, have gained prominence in recent years, and three main classes of methods
are identified in the literature. Some methods aim to identify the aggregate power
output of invisible DERs downstream to a metering device by disaggregating DER
generation from flow measurements [25]-[31]; others aim to improve system visibility
by identifying the location of invisible DERs using voltage sensitivity data [32]-[35]. The
third class of methods focuses on distribution system state estimation in the presence
of invisible DERs [36]-[43].

Ref. [24] employs a linear regression method to extract the peak aggregate PV
capacity in a region downstream to a metering device, assuming the availability of
accurate weather (e.g., solar irradiance) and line current measurements. Ref. [25]
proposes an improved regression method considering the spatial correlation between
the aggregate output of hidden PVs and data from neighboring (visible) PV plants.
Similarly, regression models are used in [26] to estimate the peak generating capacity
of PV and EV charging stations aided by an artificial neural network (ANN) model for
feature extraction. The authors in [27] employ a statistical approach for behind-the-
meter unit detection and capacity estimation using data-mining heuristics. In [28], a
parametric PV model is built based on manufacturer data to approximate simulations
to existing field measurements and estimate behind-the-meter PV generation. With
equivalent parameters determined at multiple locations, the authors employ a
clustering method to obtain aggregate models and estimate their impact at the feeder
level. Ref. [29] defines a baseline demand curve from which PV generation is obtained
when a significant deviation from historical recordings is identified. In [30], a machine
learning model trained with feeder loading data is used to estimate the power output
of unmonitored PV sites and is validated under various weather conditions.

The limitation of such methods arises from their pre-definition of areas of interest
for analysis (e.g., areas that the system modeler knows/suspects an unmonitored DER
may exist) and their reliance on data from visible DER sites to support model training
and tuning. These limitations are addressed in [31], where branch flow measurements
at the substation exit are disaggregated into net load and DER output data per DER
type in the feeder. This accurately estimates the steady-state behavior of existing
DERs, eliminating the need for granular data to assess the impact of invisible DERs at
the feeder level.

Regarding models based on voltage sensitivity information, the authors in [32]
determine buses to which invisible DERs are connected by assuming a linear
relationship between node voltage magnitudes and active power injections from
unmonitored resources. This approach, however, requires power flow calculations to
determine bus voltage sensitivities. Algorithms for voltage magnitude [33], [34] and
voltage sensitivity estimation [35] considering the presence of DERs improve the
solution. However, these cannot be directly applied when considering that not all DER
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data might be available for power output estimation. Hence, equivalent models must
be developed to represent the impacts of these resources and yield numerically
accurate power flow calculations.

To enable state estimation in low-observable distribution systems with DERS,
Ref. [36] employs a weighted least absolute value estimator using pseudo-
measurements to update missing system and DER parameters and improve power
flow calculations. Pseudo-measurements are generated using average historical load
data, while in [37] they are generated based on assumed correlations between existing
measurements, the power output of visible DER sites, and unmetered system locations
and DERs. The authors discuss the existence of smoothed behavior resulting from
aggregating small, less predictable invisible DERs and loads connected at the low-
voltage level.

Other state estimation methods employ machine learning models trained using
time-series power flow calculations [38], physics-informed neural networks [39], and
probabilistic models considering sampling of low-fidelity customer-side data [40]. Other
approaches leverage accurate system topology and line impedance data to propagate
known voltage values across similar buses and enhance system observability [41],
[42]. Ref. [43] proposes a coupled power flow formulation, combining two subsequent
snapshots for recovering system states over short-time intervals. A set of determined
parameters is introduced by considering that all injections from unmetered nodes are
stationary. Then, a state estimation problem is formulated to infer power injections,
assuming that the variability of measurements arises from the variability of the power
output of invisible DERSs.

While these methods integrate low-fidelity information to enhance system
visibility, considering the presence of DERs, their performance is limited by increased
data requirements, assumptions over the behavior of unmetered nodes, and
measurements at DER locations or buses with similar voltage profiles. Refs. [36]-[42]
also require full system observability. Even though [43] does not have the same
requirements, it relies on consecutive power flow snapshots, and all non-metered
buses must be connected to a metered one through vertex-disjoint paths (i.e., paths
with no common shared nodes, except for the source and end locations). Moreover,
many of these methods are computationally intensive and operate on detailed network
models without offering a pathway to reduced-order representations—which is
essential for improving scalability and integration into existing utility workflows.

Given this context, there is an opportunity to explore novel methods to establish
equivalent aggregate representations of invisible DERs to enhance their visibility and
improve the steady-state analysis of power distribution systems with invisible DERs.
Equivalent DER models representing innumerable invisible resources can be
integrated into traditional power flow and optimal power flow solution algorithms to
improve the fidelity of the resulting system models. This research explores Mixed-
Integer Programming (MIP) formulations that enable optimally allocating (locating and
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sizing) aggregate DER models and estimating unobserved system states. This
research also explores how these models can be integrated into utility-standard power
systems modeling and analysis tools, such as OpenDSS [44], for enhanced steady-
state studies involving scenario analysis.

An important feature of the proposed framework is the control over the number
of resulting equivalent invisible DER models, enabling the aggregate representation of
these resources and reduction of the resulting system model. This leads to simplified
yet accurate models that expedite the solution time required for power flow analysis.
This proves beneficial for studies requiring many scenarios and the modeling of larger-
scale systems with innumerable DERs.

1.3. Thesis Objective

The research reported in this thesis aims to enhance the steady-state analysis
of radial distribution systems in the presence of invisible DERs by developing
equivalent aggregate DER models that improve power flow calculations. Specifically,
the research explores nonlinear and linearized MIP formulations to allocate aggregate
DER models that capture the combined, steady-state impact of many invisible DERs.
Another outcome of the proposed optimization formulations is the estimation of
unobserved system states (e.g., node voltage magnitude and branch flows) without
relying on dense measurement infrastructure. In this sense, the main objectives and
highlights of this research can be listed as:

e To develop optimization-based methods to determine the locations and generating
capacities of equivalent aggregate DER models representing innumerable invisible
DERs.

e To improve the accuracy of steady-state system analyses by integrating the
resulting equivalent models into traditional power flow and optimal power flow
solution algorithms.

e To enable the estimation of unobserved system states in low-observable radial
distribution networks without relying on dense measurement infrastructure.

e To ensure that the resulting outputs are compatible with utility-standard tools for
power systems analysis and facilitate practical implementation.

Figure 1.1 contrasts the traditional and future (with the deployment of equivalent
aggregate DER models) workflows for utilities to perform scenario analysis (e.g., power
flow calculations) with DER-rich distribution feeders. In the traditional approach (left
side), utilities rely on a detailed system model that requires full visibility of all DERs.
While this method provides high accuracy, it depends on extensive data collection and
processing, which becomes increasingly burdensome as more small, often
unmonitored DERs are added to the system.

The future version (right side) proposes a more efficient method by using a
simplified network model combined with available measurement data to build a
reduced system model where DERs are aggregated. This approach lowers DER data
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requirements and enables the representation of invisible resources while preserving
system behaviors. The reduced model supports faster power flow solutions—due to
the reduced number of elements represented—allowing utilities to run scenario
analysis more efficiently—a key contribution of this research.

Figure 1.1. Comparison of traditional and future workflows for power flow scenario
analysis in DER-rich distribution feeders.
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(Power Flow) solutions (Power Flow)

1.4. Thesis Structure

Each chapter of this thesis follows a logical progression from theoretical
background to methodology, validation, and practical application—ultimately
demonstrating the effectiveness of the proposed framework in addressing the
challenge of developing accurate aggregate models for invisible DERs. The
interactions between each section, along with the corresponding inputs and outputs,
are depicted in Figure 1.2.

Figure 1.2. An overview of the research reported in this document, along with the
corresponding inputs and outputs of the models in each section.
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Each chapter can be summarized as follows:

Chapter 2 presents the main convex mixed-integer nonlinear formulation, its
modeling assumptions, and its outcomes in terms of developing equivalent
aggregate DER models for radial distribution systems.

Chapter 3 explores linearized versions of the original formulation to enhance
computational performance while yielding numerically accurate results. The
modeling of hybrid DERSs (e.g., PV+BESS) is introduced to better represent existing
DER configurations.

Chapter 4 discusses the practical implications of the proposed methods, including
their integration into OpenDSS and potential application cases for distribution
utilities.

Chapter 5 concludes the thesis by summarizing key findings and suggesting future
research directions.

Appendix A provides the deduction of the line-wise power flow model used to
represent the steady-state behavior of radial distribution systems. This section was
included to inform the potential reader that the power flow equations employed in
formulations yield exact solutions.

Appendix B presents all the data used in simulations to allow the replication of
results.

Appendix C outlines the publications related to this research and other research
outputs realized during this Ph.D. degree.
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2. A MINLP MODEL FOR THE AGGREGATE MODELING OF INVISIBLE DERS'
2.1. Chapter Introduction

This chapter presents the proposed Mixed-Integer Nonlinear Programming
(MINLP) approach designed to develop aggregate models of invisible DERs and
leverage the resulting equivalent models to enhance the operation and planning of
radial distribution systems. The chapter begins by providing minimal introductions to
the key concepts serving as the basis for the modeling aspects of the research. Since
the proposed optimization approach relies on system measurements and historical
data, discussing system visibility and state estimation issues in modern distribution
systems is relevant. The rationale behind the chosen power flow model to represent
the steady-state behavior of radial distribution systems is also discussed, along with
algorithmic considerations regarding the convexity and computational complexity of
optimization problems in the power systems context.

Following the theoretical discussion, the chapter details the proposed MINLP
formulation, along with a presentation and discussion of the results. The resulting
aggregate DER models represent the aggregated effects of many invisible DERs,
enabling enhanced steady-state analysis and power flow estimation—offering practical
advantages, as they can be integrated with existing distribution system analysis tools
such as OpenDSS, as discussed in Chapter 4.

2.2. Theoretical Background
2.2.1. Distribution system visibility and state estimation issues

System visibility in power distribution networks refers to the extent to which a
DSO can assess the state of the grid in real-time based on the availability of
measurements for bus voltages, power injections, and branch flows. The level of
visibility is determined primarily by the placement of metering infrastructure, the
frequency of data collection, and integration into supervisory and control systems.

Unlike in transmission systems, the practical implementation of state estimation
methods for distribution systems has traditionally been overlooked, as these networks
operated predominantly under unidirectional power flows from substations to
consumers, relying on simple radial configurations and predetermined operational
settings [45]. However, with increasing penetration of DERs, power flows are not
strictly unidirectional, and distribution systems have become more dynamic. New forms
of flexible loads, demand response programs, and the impending deep electrification
further contribute to increased operational complexity and uncertainty.

A common approach for increasing system visibility consists of using pseudo-
measurements, which are synthetic or simulated measurements not directly derived
from physical sensors but often based on historical data, forecasting, and statistical

" This chapter’s contents were published in part in the paper: P. N. Vasconcelos, F. C. L. Trindade, B. Venkatesh, W. Freitas, A.
C. Zambroni de Souza, and G. N. Taranto, “A Mixed-Integer Nonlinear Model to Support the Operation of Distribution Systems
with Hidden DERs,” IEEE Transactions on Power Delivery, vol. 40, no. 1, pp. 484-496, Feb. 2025. © 2025 IEEE.
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assumptions of unobserved quantities. Recently, more researchers have explored
state estimation techniques incorporating data from advanced metering infrastructure
(AMI), phasor measurement units (PMUs), and intelligent electronic devices (IEDs)
[46]. However, practical implementation by distribution utilities has been limited, as
discussed in the industry survey results of [47], with most respondents stating that lack
of data, data quality, and data integration issues are current limitations for accurate
system modeling and estimation. Concerning DERs, most respondents reported that
only utility-scale installations are actively monitored—typically above the 250 kW of
peak generating capacity but above the 1 MW limit in some cases—Ileaving small-scale
and behind-the-meter resources invisible to DSOs.

As aresult, state estimation has become an area of interest for DSOs. However,
achieving full observability is often impractical due to the high cost of deploying
metering devices at scale [48]. This challenge presents a research opportunity:
developing novel methods to leverage existing data (such as feeder-level aggregated
information) and enhance steady-state system representation even under low-
observable conditions—an outcome of this thesis.

2.2.2. The nature of invisible DERs

In this work, it is considered that invisible DERs in distribution systems stem
from two primary conditions: the presence of small-scale DERs below the monitoring
threshold and hidden feeder sections where visibility is restricted due to limited data
access. Each condition presents unique challenges for real-time monitoring, modeling,
and steady-state system analysis.

Small-scale DERs refer to units whose generating capacities fall below utility
monitoring thresholds—commonly around 250 kW. These DERs are not individually
metered or directly observable in real time. As a result, their power injections and
control behaviors are unknown to system operators. While utilities may maintain
aggregate information on installed DER capacity at the feeder level, they typically lack
the integration of detailed site-specific data such as precise geographical location,
generation profiles, fuel types, and control schemes. This lack of granularity creates
significant uncertainty in assessing the operational impacts of these resources,
especially considering scenarios at high DER penetration levels.

Hidden feeder sections further contribute to DER invisibility in the system.
These, include parts of the network—often feeder laterals—that are either outside of
the utility’s metering scope or managed by third-party entities. In such cases, data
sharing between the third party and the primary utility may be limited or entirely absent.
Although voltage magnitude measurements might still be available at specific points
within the system (e.g., via protection relays, billing meters, or AMI devices), they often
do not provide insight into the DER activity or load conditions within these
unobservable sections. Figure 2.1 illustrates a representative radial feeder where
voltage magnitude measurements are available along the bulk feeder section at the
medium voltage (MV) level, while lateral branches remain unmonitored and potentially
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host invisible loads and DERs. Note that, even in cases where voltage measurements
are available at nodes with invisible DERs, these measurements might not be
dedicated to DER monitoring.

Figure 2.1. Diagram of a radial distribution system with hidden sections containing
invisible DERs.
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Table 2-1 provides an overview of the network, DER, and measurement
information availability for the scenarios with small-scale DERs and hidden feeder
sections, as assumed in this research. This distinction informs the modeling
assumptions and the structure of the proposed aggregate DER models and their
integration with traditional power flow solution methods.

Table 2-1. Summary of the availability of system and DER information.

sections.

capacities known.

Case Network DER Measurement
Information Information Availability
Small- Knc')wn' feeder details | Utility does not monitor Bus voltage magnitudes (if
(line impedances, DERs; only aggregated : .
scale . available); no direct DER
topology, bus peak DER capacities
DERs ; measurements.
locations). known.
. Main feeder details Utility cannot m0|.1|tor Bus voltage magnitudes (if
Hidden - DERs as data is . .
are known; limited or , ) available); equivalent
feeder no data of third-part inaccessible; only representations required
sections party aggregated peak DER P g

for unobservable sections.
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2.2.3. Power flow model for radial distribution systems

A power flow model is a mathematical representation of an electrical network
describing how power is distributed across the system under steady-state conditions.
The model's equations must be sufficient to describe the relationship between bus
voltages, power injections, and branch flows across all system components. There are
many ways to categorize power flow models, with a frequent approach being
separating bus injection and line-wise methods [49]. The former represents the power
system regarding nodal power injections, while the latter tracks power flows along
individual system lines, where Kirchoff’'s laws can be applied directly to model branch
currents and voltage drops.

Although bus-injection models tend to be advantageous for large-scale power
flow analysis since they leverage sparse matrix techniques for computational
efficiency—while the Jacobian matrix for line-wise models tends to be relatively
denser—the line-wise power flow formulation proposed in [50] leads to a more
linearized set of equations. This property supports the integration into classical
optimization problems. Such a feature exists due to the absence of voltage angle in
the equations, obtained by rearranging the quadratic term referring to the voltage
difference between two ends of a line. This step was first addressed in [51], referring
back to the DistFlow equations for the line-wise model for radial distribution systems
proposed by [52].

Appendix A provides a deduction of the line-wise power flow equations used in
the foregoing sections to model radial distribution systems with DERs. This appendix
was introduced to discuss the model and evidence that no simplifying assumptions are
made. As discussed in [53], these equations yield an exact model of radial distribution
systems even in the conditions of reverse power flow. The reader is referred to [54] for
a line-wise model addressing meshed systems.

2.2.4. Convexity in optimization problems

Convexity is a key concept in optimization that affects the tractability and
solvability of optimization problems. An optimization problem is considered convex if
its objective function is convex and the feasible region, defined by its constraints, is
also convex. This means that any local minimum is also a global minimum—a desirable
property for optimization, which ensures the algorithm converges to an optimal solution
without getting trapped in suboptimal points. Formally, a function f is convex if, for any
two points in its domain, x and y [55],

flax+ (1 —a)y) = af(x)+ (1 —a)f(x), Va € [0,1].

This means that any point on the straight line between (x, f(x)) and (y, f(y)) is
greater than or equal to the function value at the corresponding point between x and
y. If f is twice-differentiable, it is only convex if its Hessian matrix (constituted of all its
second-order partial derivatives) is positive semidefinite, i.e., V2f(x) = 0.
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In the context of power systems, convexity depends on the power flow
equations used to describe the system's behavior. The traditional bus-injection model
often leads to nonconvex optimization problems, especially because the power flow
equations are inherently nonlinear, involving products of voltage magnitudes and
trigonometric functions with phase angles [56]. In contrast, the aforementioned line-
wise model yields equations that are more amenable to convex optimization
techniques [57]. The transformation of power flow equations into convex formulations
is primarily performed using relaxation and linearization techniques. A more detailed
discussion of traditional linearization methods applied when addressing radial
distribution systems is presented in Chapter 3.

Relaxation techniques are employed to convexify inherently nonconvex
problems, enabling the use of efficient convex optimization methods. These techniques
often involve approximating or reformulating the original problem to obtain a convex
counterpart that is theoretically easier to solve. For the scope of this research, the set
of line-wise power flow equations of [50] is convexified using a second-order conic
relaxation of the expression used to calculate the squared magnitude of line currents,
as described in [61]. According to the authors, this approach yields exact solutions
given that certain conditions are met, including a radial system topology and upper
bounds on bus voltage magnitudes. By leveraging convex characteristics, the
proposed optimization framework—described in the following sections—balances
accuracy and computational feasibility, making it suitable for real-world applications.
The MINLP formulation for aggregate modeling of invisible DERSs is presented next.

2.3. Problem Statement

Consider Figure 2.2, identifying the observable and unobservable sections of a
representative distribution feeder comprised of NB buses. The diagram of Figure 2.2(a)
represents the main trunk of the feeder, with each node representing unmetered
laterals with loads and DERs. The system visibility is limited because only one meter
is present at the substation end-node. Under normal operation with few DERs, the
system topology and estimations can be used to infer the state of unobserved voltages
and branch flow magnitudes. However, estimating the state of the distribution system
becomes a challenge with the massive integration of invisible DERs.

Despite this challenge, it is possible to obtain NY equivalent representations of
invisible DERs, as depicted in Figure 2.2(b), which leads to accurate power flow
calculations. The measured power system quantities (e.g., voltage magnitudes and
substation flows) are matched while the remaining unobserved variables are estimated
considering the steady-state output of equivalent DERs. This is the basis of the MINLP
formulation presented in this chapter.
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Figure 2.2. (a) Radial distribution feeder with observed and unobserved sections,
including invisible DERs; (b) equivalent system representation with aggregate DER
models.
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2.3.1. Objective function

The objective function minimizes the sum of weighted squared measurement
residuals, encompassing estimates on measured voltage magnitudes. In instances
where measurements for active and reactive power injection or branch flows exist, their
respective squared residuals can be incorporated into (2.1) following the same
structure.

minimize |[KOU - 0| (2.1)
where © represents the element-wise product of two matrices of the same dimensions.

Subscript F denotes the Frobenius norm, computed as the sum of squares of all
elements of the resulting matrix.

Matrices U and U contain squared voltage magnitude estimates and
measurements, respectively, referring to each metered bus with NDT data entries in
historical data. Matrix KU also has dimension NDT x NM and contains weights for
calculating of the weighted Frobenius norm of the measurement residuals matrix. This
is a symmetric and positive definite matrix. Larger weight values assign relative
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importance to each dataset, ensuring that more accurate measurements are more
influential on the results. This is particular useful when a heterogeneous combination
of voltage measurements exist—with some meters having higher accuracy class—and
to allow the introduction of lower-fidelity data, such as pseudo-measurements. Note
that the analyses presented in this chapter assume that all voltage magnitude
measurements have the same weight value. This implies that the corresponding
metering devices available in the targeted system have the same accuracy class.

2.3.2. Power flow and system operation constraints

Constraints (2.2)-(2.7) model the electrical behavior of a radial distribution
system and ensure the solution is physically feasible. These equations correspond to
the line-wise power flow model proposed by [50]. An important feature of the model is
the absence of voltage angle, obtained by rearranging the quadratic equation referring
to the voltage difference between two ends of a line (see Appendix A).

Eq. (2.2) is a product of applying Kirchoff's voltage law for the pi model of a line
or transformer between buses i and j. Egs. (2.3) and (2.4) account for the active and
reactive power losses, respectively. Egs. (2.5) and (2.6) deal with the node-wise active
and reactive power balances, respectively, and were modified to explicit the power
output of solar photovoltaic (PV) and wind (WT) DERs. Eq. (2.7) corresponds to the
second-order conic relaxation for calculating the square of the magnitude of the current
flowing in branch [ and time t.

This relaxation yields a convex formulation and is adopted to enhance solver
efficiency while ensuring optimality. As noted in Section 2.2.2., this relaxation is exact
when addressing radial power systems with the line-wise power flow model, even in
the conditions of reverse power flow [53], [61]. Note that these expressions are
evaluated for every time interval in historical data. This notation was omitted here for
clarity; however, all parameters and variables with subscript t are updated for each
time interval.

U:
Uy +2 (P R+ QS Xy = —2) 4y 22 =0, )€l (2.2)
P+ P +R -] =0 (2.3)
Qe + Qe + X, Jie =0 (2.4)
PF
[M] lpgl—Ut-(}:P%—P{’V—P'g"T (2.5)
t
Qf
[M] lel + U, -B=Qt (2.6)
t
Ui Jie = PSie +Q5,, (2.7)

where U; is the squared voltage magnitude at node j; J; is the squared magnitude of
the current at line [; Z;, R;, and X, refer to the impedance, resistance, and reactance
elements of a line, respectively; superscripts F and S indicate branch flows at the first
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and second ends of a line. The susceptance and conductance shunt elements of a line
are B and G, respectively.

Constraints (2.8) and (2.9) enforce operational limits on squared node voltage
and branch current flow magnitudes, respectively. Traditional state estimation methods
often do not impose these constraints, allowing limit violations. However, considering
that the proposed method intends to determine aggregate DER models for accurate
power flow calculations, these constraints ensure that equivalent models do not lead
into unrealistic system operating conditions, improving the fidelity of the resulting
model.

Ui < Upe < Uy (2.8)
Jie < Ji

2.3.3. DER allocation constraints

Egs. (2.10)-(2.15) deal with the allocation of equivalent DERs. The active power
injections from local solar and wind DERs are computed for every time interval using
(2.10) and (2.11), respectively. The output is computed as the product of the maximum
DER generating capacity allocated at bus k, and the corresponding functions direct
solar irradiance and wind speed. Although these equations model the behavior of
equivalent aggregate DER models, setting a limit for power generation—the results of
variables with overbars—ensures that the actual generation constraints of existing
DERs are enforced. Moreover, since the individual settings of each DER are unknown,
voltage/power controls are not considered. However, reactive power constraints can
be introduced to consider operation in constant power factor modes.

PPV =Py -plY (2.10)

PYT =P, - ptT (2.11)
Piecewise linear functions can be derived from manufacturer data to model the
power output of PV and W DERSs as functions of direct solar irradiance and wind speed,

respectively. The following expressions consider traditional cut-in, rated, and cut-out
values for determining outputs, as depicted in Figure 2.3.

PPV = {max{KPV - (he — h),0},if Ry < AT
PV =

1, if h, > h"

max{K"T - (w, —w),0},if w, < w"
T =11, ifw <w,<w

0, if we=>w

where h and w refer to direct solar irradiance and wind speed values. The superscript
r refers to rated values, while values with underbars and overbars refer to minimum
and maximum, threshold values to determine non-zero output, respectively.
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Figure 2.3. Power output of equivalent DERs as piecewise linear functions of weather
inputs.
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The total generating capacity per DER type at the feeder level is an input to the
model. These values are defined as the parameters P, and PV, for the total PV
and WT capacity, respectively. Therefore, the sum of all aggregate DER models
allocated by the proposed algorithm must equal these values, as expressed in (2.12)
and (2.13). Notice that these summations are limited to k = {2,3, ..., NB} to exclude the
substation end-node as a candidate for equivalent DER allocation.

NB

—PV
D B =Pl (2.12)
k=2
NB

—WT

Py = gf:Taz (2.13)
k=2

The maximum number of equivalent DERs that can be integrated into the
system is controlled by the count of candidate buses, NY. This nonnegative integer
parameter is introduced to constrain the binary decision variable Y?%% € {0,1}.
Parameter NY limits the zero “norm” of YPER as per (2.14). This enables the peak
generating capacity of a DER to be nonzero when this variable attains unity value for
a specific bus k, as in (2.15). Here, C represents a sufficiently large number.

||YPER||0 < NY, YPER € (0,1} (2.14)

0<P, P, <C-YPPR,  C»1 (2.15)
Including a binary variable introduces complexity to the solution; however, this
parameter is required since the proposed method intends to develop reduced
equivalent representations of innumerable DERs using aggregate DER models that
are adjustable depending on the targeted accuracy. If the control over the number of
resulting DER models is not required, constraints (2.14) and (2.15) can be disregarded,
converting the formulation into a linear problem with theoretically faster solution times.
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However, this defeats the purpose of developing simpler yet accurate models for low-
observable distribution systems with invisible DERs.

2.3.4. Load determination constraints

Next, constraints (2.16)-(2.19) deal with the customer load determination to
distinguish their steady-state behavior from of the equivalent DERs. Constraints (2.16)
and (2.17) update, for every time interval, the active and reactive power consumption
for all load buses k, respectively. This considers the total aggregate consumption at
the feeder level at a specific time instant, Pt and Qf, and the share of the total load
attributed to bus k, Df.

Pi. =Dy - Pt (2.16)
Qkc = Di - Qf (2.17)
Having a fixed value of Di set to each bus assumes that the peak customer
demand remains unchanged within the interval determined in historical data (e.g.,
hours to weeks of continuous system operation). This assumption simplifies many
external (e.g., social and economic) factors outside of the scope of this research that
may affect electricity consumption patterns and the rate of demand increase within a
reduced time frame. Moreover, having local loads represented as shares of the total
net load at the feeder level implies that similar consumption patterns are observed
among each load node. Therefore, this assumption represents well distribution feeders
constituted mostly by a single class of customers, e.g., residential, commercial, or
industrial.

Since variable DE corresponds to percentages, its summation over all the
system load buses must equal unity value, as in (2.18). This ensures that equivalent
load models approximate data from substation flow measurements. As per DER
constraints, the decision whether the load consumption at bus k assumes a nonzero
value is determined by a binary variable Y}, which is defined in (2.19).

NB
Z DL =1 (2.18)
k=2

0<D:E<YE:  YEe{01} (2.19)

This approach assumes limited information on the actual locations and peak
consumption of customer loads, as the only information used is a time series of net
load measurements at the substation exit. The D values can be precomputed if
accurate peak customer load data exists, removing the need for the binary variable for
allocating loads.

2.4. Solution Method

The problem formulated in (2.1)-(2.19) represents a MINLP approach for
developing aggregate DER models representing invisible DERs and estimating
unobserved system states. This problem can be directly solved using a convex-MINLP
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capable solver such as Bonmin [62]. This solver was selected based on its suitability
for the problem type, prior use in the literature [63], availability—the solver is open-
source, integrated into COIN-OR [64], a well-known collection of optimization tools—
and its compatibility with different modeling frameworks. The formulation was
implemented in Python [65], and Pyomo [66] was used to model the MINLP problem.
The Bonmin solver was accessed through the AMPL Python API package [67].

Moreover, considering Bonmin’s default internal threshold tolerance for
convergence of 1078, the objective function is scaled by a factor of 10° to improve
numerical stability. Scaling up the objective avoids arithmetic underflow problems and
other precision limitations where rounding errors or numerical noise may dominate.
This scaling factor was chosen based on a sensitivity analysis ranging from 103 to 10°.
Results demonstrated that simulations with a weight of 106 tend to converge faster and
provide similar solutions to scenarios with increased weight values. As the weight
decreases (lower than 10°), there is an increase in estimation errors, which is more
significant than the decrease in convergence time considering the problem treated in
this work. Considering the proposed formulation and Bonmin, multiplying by values
larger than 10° affected convergence stability and, therefore, was not considered
further.

24.1. Modeling assumptions

The simulation setup was designed based on the following assumptions: (1) the
developed formulation supports the planning and operation of distribution systems
under massive DER integration and must be compatible with existing advanced
distribution management system platforms; (2) the aggregate solar and wind DER
capacity at the feeder level is known, while specific details such as type, size, location,
and power generation data are not available; (3) the operational topology of the target
distribution system is radial; (4) all voltage magnitude reporting devices have the same
accuracy class and therefore have the same weight in the objective function; and (5)
measurement errors, when introduced, are independent and follow Gaussian
distribution. Based on these assumptions, a summary of all inputs and outputs
associated with the resulting MINLP formulation is provided in Table 2-2.

The maximum number of candidate buses is considered an optional input. By
default, if a value for the parameter NY is not provided, the algorithm assumes that all
buses (except the substation end-node) are candidates for equivalent DER allocation.
Note that the feeder-level aggregated peak generating capacity of invisible DERs can
be estimated using historical measurements at the substation exit, as reported in [31].
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Table 2-2. Expected inputs and outputs of the proposed MINLP formulation for
aggregate modeling of invisible DERs.

Inputs Outputs

e System data: system topology, branch | e Equivalent DER allocation: definition of
impedances, and bus voltage and branch optimal locations and peak generating
current magnitude limits. capacities of equivalent aggregate DER

¢ Operational data: feeder-level aggregated | models representing innumerable invisible
load (a time series) and generating power | resources.
capacity of invisible DERs (a scalar value | e Reconstructed system states: time-
per DER type). series of observed and unobserved

e Measurement data: meter locations, if | system variables considering measured
available, and time-series of the respective | and estimated data. This includes
bus voltage magnitudes. estimates on bus voltages magnitudes,

e Weather data: time series of direct solar | power injections, and branch flows.
irradiance and wind speed for the same
intervals as measurement and operational
data.

e Maximum  candidate buses: the
maximum number of buses eligible for
equivalent DER allocation (optional).

2.4.2. Test system data and preparation

In this chapter, the resulting formulation is employed to estimate system states
and allocate equivalent DERs for a 10-bus, a 69-bus [68], and an 873-bus [69] test
system. These were selected to test the proposed framework under different system
scales and topological and operational characteristics. Note that detailed information
on each test system is provided in Appendix B and the files used in simulation are
available at [70].

The 10-bus test system consists of a 27.6 kV primary radial distribution feeder
supplying 16 MW and 2 MVAr of load. The total impedance of the conductors is 19.5
+j13.1 Ohm (based on AWG 3/0 and 50-km length), equally split into nine branches.
Two DER integration scenarios are devised. The first, accounts for a total aggregate
generating capacity of 2.67 MW and 1.33 of PV and WT DERSs, respectively. This
results in a 25% DER penetration level, considering the ratio of the total DER
generating capacity at the feeder level and the total peak aggregated load
consumption. The second scenario foresees the massive integration of innumerable
DERSs, represented by a system with 100% DER penetration level, resulting in a total
aggregate generating capacity of 10.67 MW and 5.33 MW for PV and WT DERs,
respectively.

The resulting distribution of loads and DERs across the system is presented in
Table 2-3. Note that bus 0 is omitted since it is assumed that there is no consumption
and generation at the substation end-node. This information is solely used for
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generating measurement data through power flow calculations. The line-wise power
flow model of [50] was used for this purpose. Note that all values are in MW, except
for Q%, which is in MVAr.

Table 2-3. Load and DER capacity per bus at the MV level for the 10-bus test feeder.

Bus Pen 1 2 3 4 5 6 7 8 9

Pt 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77
Q*r 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
pPv 25% | 0.53 0.53 0.53 0.53 0.53
pwT 25% | 0.27 0.27 0.27 0.27 0.27
prv 100% | 2.13 2.13 2.13 2.13 2.13
PYT | 100% | 1.07 1.07 1.07 1.07 1.07

The IEEE 69-bus radial test system [68] has been extensively used in research,
and was chosen to assess the performance of the proposed model when dealing with
a larger radial distribution system with laterals. The system works at the nominal
voltage of 12.66 kV with a total load of 3.802 MW and 2.694 MVAr. It was modified to
incorporate DERs placed on the nodes where the largest loads are located. The 25%
DER penetration scenario has a total of 0.48 MW of both solar and wind DERs. DERs
in the 100% penetration scenario remain connected to the same system nodes but
were scaled to match the respective penetration values aggregated at the feeder level.

Lastly, the 873-bus radial distribution system of [69] was chosen to expand the
application of the algorithm to the representation of a radial distribution system with
multiple feeders connected to the same substation busbar. The system comprises
seven feeders, supplying a total aggregated load of 33.6 MW + j19.8 MVAr at the
27.6 kV level.

The system was modified to integrate 12.6 MW and 4.2 MW of solar and wind
DERs, respectively (50% DER penetration scenario). DERs were placed in nodes with
the highest loads up to 40% of the total number of nodes containing a DER. The
individual generating capacities of invisible DERs were determined using the normal
distribution. Each feeder has customer loads connected to every bus, except for the
source node, with information summarized in Table 2-4. Each feeder was modeled and
solved separately. Values are in MW, except for Q%, which is in MVAr.

These test systems and the respective DERs shared weather data from
renewables.ninja [71], corresponding to the region of Toronto, Canada. This dataset
consists of solar irradiance and wind speed values for one year of duration, divided
into one-hour intervals (8760 time steps). The linearized DER power output calculation
models considered cut-in and rated direct solar irradiance of 150 and 800 W/m?,
respectively. For wind DERSs, cut-in, rated, and cut-out wind speeds are 2.8, 10, and
20 m/s, respectively.
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Table 2-4. Load and DER capacity per feeder for the 873-bus distribution test system.

Feeder| F1 F2 F3 F4 F5 F6 F7 Total
NB 89 108 147 116 137 221 55 873
pt 403 | 425 | 625 | 519 | 583 | 580 | 225 | 33.60
Q* 216 | 253 | 348 | 3.21 3.51 3.63 | 1.28 | 19.80
pPrv 1.51 159 | 234 | 195 | 219 | 217 | 0.85 | 12.60

pWT 050 | 0.53 | 0.78 | 0.65 | 0.74 | 0.72 | 0.28 | 4.20

2.4.3. Estimation performance metrics

The estimation performance is assessed with Mean Absolute Error (MAE) and
Relative Error (RE). The Root-Mean-Square (RMSE), minimum absolute error
(Min AE), and maximum absolute error (Max AE) values are used to gauge the
dispersion result. The overall accuracy of estimations (ACC) is referred to as the
complementary percentage value to the average relative error calculated using all time
steps and system nodes or branches. For bus voltage magnitudes:

_ X ERE Uk — Ukt

MAE [p.u.]
U= NDT - NB
Uee — U
REy,, = u [%]
NDT NB ( U )
kt — Ykt
— .u.
RMSEy Z Z DT NG [p.u.]
t=1 k=
Min AE; = min(|[U-U|), Max AEU = max(|U — U|) [p.u.]
Y2 Y2, REy 0
-1 _ e
ACCy =1 NDT ~F [%]

For branch flows, replace voltage magnitude variables by P and NB by the
number of lines in the system NT. The next sections present case studies along with
estimation error results.

The choice over acceptable error thresholds for estimates depends on data
availability, computational feasibility, and the specific application requirements within
planning and operation of power distribution systems. For example, applications
involving real-time control or safety-critical operations—such as voltage regulation,
fault location and isolation, protection setting, and coordination—typically require
higher accuracy estimations (e.g., <5%). Tighter error constraints are also expected
under well-observed system conditions. On the other hand, there are applications
where approximate solutions (e.g., <15%) still provide significant value. This is
particularly valid in planning and trend analysis, especially considering the added
benefit of integrating equivalent DER models representing invisible resources active in
the system.
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2.5. Results and Discussion

The first case studies (from Subsection 2.5.1 to Subsection 2.5.9) focus on the
10-bus system to showcase the performance of the resulting formulation under various
conditions. Later sections are dedicated to larger test systems to expand the initial
observations. The presence of voltage magnitude measurements is referred to as
Meter Coverage Level (MCL). This may refer to an absolute value (the total number of
metered buses in the system) or a percentage value corresponding to the share of the
total number of buses that are being metered.

2.5.1. Ideal case (10-bus system)

Table 2-5 presents estimation results for when voltage magnitude
measurements are available for the entire system (100% MCL). These measurements
are assumed to be 100% accurate, and the algorithm is allowed to spread equivalent
DERs across the entire network (NY = 9). Also, three months of historical data (2,160
one-hour intervals) are considered in simulations. The base voltage and base power
for per unit calculations are 27.6 kV and 10 MVA, respectively.

Low absolute errors can be observed in both voltage magnitude and branch
flow estimations for the 25% and 100% DER penetration scenarios. This highlights the
capability of the proposed algorithm to replicate existing measurements and estimate
unobserved branch power flows solely utilizing voltage magnitude measurements.
These outcomes are dependent on model parameter configurations and target system
characteristics, subjects explored in the subsequent sections.

Table 2-5. Estimation Performance: 10-bus system, NY =9, 100% MCL

25% DER Penetration 100% DER Penetration
Voltage Branch Active Voltage Branch Active
Metric Magnitude Power Flow Magnitude Power Flow
Errors (p-u.) Errors (p.u.) Errors (p.u.) Errors (p.u.)
MAE 1.25-107* 3.22- 1073 7.09-1073 1.38-1073
RMSE 3.02-107% 7.28-1073 1.09 - 1072 7.09-1073
Min AE 1.96-1078 1.17-107° 2.45-107% 5.71-1078
Max AE 1.48-1073 9.16- 1072 2.94-1072 1.44-1071
ACC 99.99% 99.41% 99.99% 99.86%
2.5.2. Impact of the voltage measurement availability (10-bus system)

This subsection explores the sensitivity analysis concerning the quantity of
voltage magnitude meters deployed in the system. Figure 2.4 and Figure 2.5 depict
relative error values for voltage magnitude and branch active power flow estimations,
respectively, across different MCLs and 25% and 100% DER penetration levels. The
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number measurements ranges from two buses being monitored to the deployment of
ten voltage meters across the entire system, and 3-month historical data.

For each number of metered buses, all possible combinations are computed for
NY =1 and NY =9 by varying meter locations. It is assumed that the meter at the
substation bus (bus 0) is always available. The results are presented as boxplots
whose boxes mark the range of the central 50% of the data, with a central line marking
the median value. Lines extend from each box to capture the interval of the remaining
data, with ‘+’ indicating outliers.

Figure 2.4. Relative voltage magnitude estimation errors for all metering scenarios
combining the NY values of 1 and 9.

Q) I
w§é5- ) B ONY =1 mg%5 B NY =1
0 =
c %;C) C %qt) 3- +*
YE TR >Ec e
BL22 HETE TN 592 2] TR
R A ORCRE fEE
2L E] é**f:H 2L E 1] i l;
>§0. Iélil‘l‘liéﬁ&:ﬁs. >g0 é éal‘l‘liﬁieié
2 3456 7 8 910 2 3456 7 8 910
No. of buses with No. of buses with
voltage measurements voltage measurements
(a) 25% DER penetration. (b) 100% DER penetration.

Figure 2.4(a) and Figure 2.4(b) show that the proposed formulation can estimate
voltage magnitudes with errors up to 5% for both the 25% and 100% DER penetration
levels and this error decreases with the number of metered buses. Having a larger
value for NY enables the proposed algorithm to slightly improve estimation results.
However, a more significant difference is observed for branch flow estimations, which
is depicted in Figure 2.5.

Figure 2.5(a) and Figure 2.5(b) show that the proposed formulation can estimate
unobserved branch flows with errors up to 35% for both the 25% and 100% DER
penetration levels, respectively. The errors decrease as the number of voltage
measurements increases. These results show that the utility should guarantee a
reasonable coverage of voltage measurements to meet the target accuracy. For
instance, if seven buses are monitored, the branch power flows can be estimated with
errors up to 10% (neglecting outliers).
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Figure 2.5. Boxplots of relative branch flow estimation errors for all metering scenarios
combining the NY values of 1 and 9.
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In all scenarios, having a larger value for NY improves estimation results as the
proposed algorithm leverages the increased degrees of freedom for the equivalent
DER allocation problem. For the case with 100% DER penetration, NY = 1 leads to
deteriorated results, especially when seven or more voltage measurements are
available. This happens due to the limitation of allocating a single (larger) equivalent
DER, affecting the calculation of neighboring branch flows. The influence of parameter
NY is explored next.

2.5.3. Impact of the choice of NY (10-bus system)

The parameter NY determines the maximum number of system nodes where
equivalent DERs can be allocated. This parameter was introduced to provide control
over the characteristics of the solution. It constitutes a trade-off relationship between
solution sparsity (fewer aggregated DERs) and optimization performance (more
degrees of freedom). A system representation with fewer equivalent DERs (a low NY
value) can provide accurate power flow calculations while reducing the computational
time required for planning studies with many scenarios. On the other hand, opting for
higher NY values eases the solution of the formulated problem and may lead to a
distribution of equivalent DERs that approximates better the invisible resources. Still,
it increases the model’s complexity, particularly in larger systems.

Considering the same conditions of previous tests, Figure 2.6 illustrates a
particular example of how the parameter NY can affect the accuracy of estimated
results. Values are in MW. Figure 2.6(a) depicts actual branch active power flows and
the power outputs of solar and wind DERs. Figure 2.6(b) and Figure 2.6(c) show
estimated results for the same time interval when NY =1 and NY = 9, respectively.
For this snapshot, the total aggregate load consumption is 11.47 MW + j1.42 MVAr.
The direct solar irradiance is 707 W/m2 and the wind speed is 9.46 m/s, leading to a
total aggregate power output of 1.85 MW and 1.27 MW for solar and wind DERSs,
respectively. All voltage measurements are available and considered 100% accurate.
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Note that the idea is not to find the actual case in terms of DER and load allocations,
but rather finding an alternative, simplified representation where power flows are the
same.

Figure 2.6. Actual and estimated branch active power flows and equivalent DER output
for different NY.

System Buses
0 1 2 3 4 5 6 7 8 9

Actual PV:0.37 PV:0.37 PV:0.37 PV:0.37 PV: 0.37
0.25 W: 0.25 W: 0.25 W: 0.25 W: 0.25

[ fo—®

. o ¢ o o o & o o
Substation 998 9.19 7.78 6.96 551 4.67 320 235 0.87

(a) Actual results.

NY =1 PV: 1.85
W: 1.27
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Substation 1094 7.86 7.65 6.69 528 4.26 281 181 0.95

(b) Branch flow results when NY = 1.

NY=9 PV:0.71 PV:0.12 PV: 0.33 PV: 0.34 PV: 0.37
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O is anode with noload ® isanode with load PV DER Output: 0.70 pu
E':] is a composition of PV and W DERs W DER output: 0.95 pu

(c) Branch flow results when NY = 9.

Considering this snapshot, the average relative error for estimated branch
active power flows correspond to 4.41% and 3.20% when NY is 1 and 9, respectively,
with maximum absolute errors of 1.33 MW and 0.63 MW. Considering the entire three
months of estimated data and NY equal to 1, the minimum, mean, and maximum
absolute errors for branch flow estimations are 8.24 - 107%, 1.39 - 1072, and 2.46 - 107!
p.u., respectively, while these values when NY is 9, considering the 25% DER
penetration scenario, are given in Table 2-5. This shows that NY can be significant in
scenarios with higher meter coverage levels. Figure 2.6(b) shows a single composition
of solar and wind DERs on bus 1, while Figure 2.6(c) illustrates that the proposed
formulation was able to precisely place equivalent DERs on the same buses where
actual DERs are located, despite being allowed to include more (NY =9). These
results demonstrate its capability to approximate the spatial distribution of equivalent
DERs when there is sufficient information available.
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Figure 2.7 expands this analysis to include different meter coverage levels and
values of NY. In this example, voltage measurements are introduced in the same order
as buses are numbered (from the substation to the farthest node). In other words, when
two meters are available, only buses 0 and 1 are monitored; buses 0, 1, and 2 for three
meters, and so on. Values presented refer to the accuracy of the branch active power
flow estimation, for different meter coverage levels and NY values. Note that, for all
meter coverage levels, the accuracy levels tend to reach the same value when the
parameter NY assumes a value larger than or equal to the actual number of DERs in
the system (NY > 5). This shows that the algorithm converges close to the same
solution given a large enough number of equivalent DERs is allowed to be placed via
the value set to NY.

There is, on average, a 1.51% and a 0.34% increase for every new voltage
meter introduced to the system and each increment of NY, respectively, for the 25%
DER penetration scenario. Considering the 100% DER penetration level results,
branch flow estimation accuracy increases on average 0.45% for every increment of
NY, and 0.89% for each new voltage measurement available.

Figure 2.7. Branch active power flow estimation accuracy (ACC, %) considering the
variation of NY and the number of metered buses.

NY=1 92.1 933 94.8 94.9
NY=2 959 969 97.0 97.1 975
NY=3 945 96.2 97.1 979 984 985
NY=4 947 96.2 975 984 98.7 98.8
NY=5 947 96.2 975 984 99.1 994
NY=6 947 96.2 975 984 99.1 994
NY=7 947 96.2 975 984 99.1 994
NY=8 947 96.2 975 984 99.1 994
NY=9 947 96.2 975 984 99.1 994

2 3 4 5 6 7 8 9 10
No. of buses with voltage measurements

(a) 25% DER penetration.
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NY=1

NY=2 97.2

97.3 975

NY=3 96.8 98.0 983 984 98.7 98.7

NY=4 97.6 981 988 989 99.1 993

NY=5 97.6 986 994 99.8 99.9 99.9

NY=6 97.6 98.6 994 99.8 99.9 99.9

NY=7 97.6 986 994 99.8 99.9 99.9

NY=8 97.6 986 994 99.8 99.9 99.9

NY=9 97.6 98.6 994 99.8 999 99.9

2 3 4 5 6 7 8 9 10
No. of buses with voltage measurements

(b) 100% DER penetration.

2.5.4. Impact of DER penetration (10-bus system)

The branch flow estimation accuracy is also influenced by the total aggregated
amount of DERs integrated into the system. Figure 2.8 illustrates that errors tend to
decrease as DER penetration increases. DER penetration is taken as the ratio
between the maximum aggregate DER generating and load capacities at the feeder
level. These results are generated by varying NY from 1 to 9, assuming that all bus
voltage magnitude measurements are available. The DER penetration levels of 25%,
50%, 75%, and 100% are obtained by scaling the DERs described in Table 2-3 to a
total aggregate generating capacity of 4 MW, 8 MW, 12 MW, and 16 MW, respectively,
in a feeder with the maximum aggregate consumption of 16 MW.

Figure 2.8. Branch flow estimation errors for different DER penetration levels.
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2.5.5. Impact of the location of DERs (10-bus system)

This section explores how the spatial distribution of invisible DERs affects
estimation accuracy and the allocation of equivalent DERs. While keeping the
distribution of customer loads as per Table 2-3, solar and wind DERs are redistributed
so the "center of generation” is located at the beginning (Case 1), middle (Case 2), and
end (Case 3) of the feeder. The total installed capacities of PV and W DERs remain
2.67 MW and 1.33 MW, respectively (25% DER penetration scenario). NY is chosen
to be 3. The system is assumed to have 100%-accurate voltage measurements at
every node (100% MCL), and 3-month historical data are adopted to conduct the
analysis.

Table 2-6 presents the absolute error values for the estimation of branch active
power flow in each of the three cases. The results demonstrate that the accuracy of
estimation results remains insensitive to the specific locations of invisible DERs.
Values are in p.u. and the base power is 10 MVA.

Table 2-6. Absolute error values for the estimation of branch flows for different spatial
distribution of PV DERs

Metric | Case 1 | Case 2 | Case 3

25% Penetration

MAE (p.u.) 1.39-1073 1.48-1073 1.43-1073

Min AE (p.u.) 2.33-107° 2.01-107° 2.04-10°°

Max AE (p.u.) 470-1073 5.95-1073 5.97-1073
100% Penetration

MAE (p.u.) 1.56-1073 1.65-1073 1.58-1073

Min AE (p.u.) 7.48-1077 8.25-1077 1.26-107°

Max AE (p.u.) 6.43-1073 6.55-1073 7.44-1073

Equivalent DER allocation results and actual DER positions for the three cases
are depicted in Figure 2.9. These results demonstrate the capability of the proposed
algorithm to approximate the spatial distribution of hidden DERs with a reduced
number of equivalent representations. This unintended yet valuable outcome displays
the proposed formulation’s ability in discerning the steady-state behavior of equivalent
DERs to be placed along the feeder.
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Figure 2.9. Equivalent DER allocation for distinct locations of hidden DERs in the 25% DER
penetration scenario.
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2.5.6. Impact of the length of historical data (10-bus system)

The length of historical data is another factor that influences the accuracy of
estimation results. Notably, the largest absolute error values for unobserved branch
flow estimations occur when a reduced horizon of historical data is considered. The
results in Figure 2.10 refer to the MAE values for branch flow estimates, considering
that the entire system is covered with voltage meters and parameter NY varies from 1
to 9. It starts with 24 time steps (representing a day) and ends with 8,760 time steps
(representing a year), leading to a total decrease of nearly 17% in the magnitude of
branch flow estimation errors.

Figure 2.10 also shows that this reduction comes at the expense of an increase
in computational time, which presents a quadratic relation with the number of time
steps considered. Note, however, that the average errors in the calculation of
(observed) voltage magnitudes increase slightly with the addition of more snapshots.
This is expected as error accumulates as the algorithm attempts to fit an increasing set
of known values.
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Figure 2.10. Average branch flow estimation and processing time values varying the
length of historical data.
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2.5.7. Impact of meter accuracy (10-bus system)

This subsection focuses on evaluating the impact of voltage measurement
accuracy on the accuracy of branch flow estimations. Here, the measurement accuracy
is expressed in terms of the Signal-to-Noise Ratio (SNR), defined as

SNR = 2010910 (Y4, pper) [dB]

where, ACC,,...r refers to meter accuracy, representing the maximum allowed
percentage deviation from the true measured value.

Figure 2.11 depicts estimation results for different SNRs applied to voltage
measurement data achieved by adding different levels of Gaussian noise to the input
dataset. These results are generated by varying NY from 1 to 9, assuming that all bus
voltage magnitude measurements are available with SNRs of 25, 35, 45, 55, and 65.
Results show that when all voltage measurements present an SNR of 45, the highest
branch flow estimation error reaches 13% for a time step with an instantaneous branch
active power flow of 13.94 MW. These results were obtained for the 25% DER
penetration scenario.
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Figure 2.11. Branch flow estimation error for different SNRs.
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Up to this point, only voltage magnitude measurements were considered inputs
to test the proposed method. However, it is a common practice for utilities to include
various types of meters at distribution substations. A measurement typically available
consists of the active and reactive power flows from the substation to the feeder.
Therefore, substation flow data is introduced to the scenarios with the highest
estimation errors presented in Figure 2.4 and Figure 2.5. These are the instances
where only two voltage magnitude measurements exist. Results include all the
possible combinations with different NY values, two voltage magnitude measurements
(one always being the voltage at the substation-end bus), and power flows at the end
of the substation. Figure 2.12 compares estimation errors for the 25% and 100% DER
penetration scenarios.

As in previous studies, higher DER penetrations present finer results. The
introduction of flow measurements reduced the maximum branch flow estimation
errors from around 35% to a range between 12% and 17%. However, this effect is less
pronounced for the estimation of unobserved voltage magnitudes (from around 5% to
between 2.5% and 3.5%).

These results display the benefits of introducing substation flow measurements
and the flexibility of the proposed method in considering other measured quantities
besides bus voltage magnitudes. Note that this case study involves a system with
limited visibility (only the substation flow and two voltage magnitude measurements
are available) where traditional state estimation methods may falter. In contrast, the
proposed method can still provide a solution and determine equivalent DER models.
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Figure 2.12. Comparison of results considering branch flow measurements at the
substation exit.
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2.5.9. Analysis of solution robustness (10-bus system)

MINLP problems inherently have complex solution spaces due to the presence
of both continuous and discrete variables. This complexity arises because changes in
parameter values can lead to different solutions that satisfy the problem's requirements
but vary in their numerical values. A sensitivity analysis is therefore conducted to
assess the robustness of results in the presence of multiple solutions. The study
considered a scenario with 25% DER penetration, using 720 power flow snapshots
representing a month of historical data at 1-hour intervals, and assumed error-free
measurements.

The lowest objective function value of R,,,, = 1577.37530515 is achieved when
NY =5, being five, the actual number of DERs in the system. This results in an average
squared voltage magnitude estimate error of 2.19 - 1077 per bus and per time step.
Next, constraint (2.20) was added to the formulated problem to limit the calculations of
the original objective function to the lowest error achieved, R,,;, while the objective
function was modified to maximize (and later minimize) squared voltage magnitude
measurement residuals—equivalent to maximizing or minimizing the squared RMSE
error metric—as in (2.21).

IKY@W - D)|> < Rope (2.20)
NDT NM

maximize (or minimize) Z Z(Uk't — Uk,t)z (2.21)
t=1 k=1

The relative errors of estimating unobserved branch flows considering different
meter coverage levels for both the maximization and minimization objectives are
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depicted in Figure 2.13(a). As in previous studies, estimates tend to get more accurate
as system visibility increases. Despite the different objectives, results evidence a small
range of values at which estimation errors may vary, thus indicating the robustness of
the proposed approach despite the diversity of optimal solutions.

This analysis is complemented by Figure 2.13(b), which depicts the decreasing
deviation between the maximum and minimum solutions (normalized by the maximum)
as the number of voltage measurements increases. Percentage values account for the
average deviation between max and min results considering all available time steps
and NY > 5.

Figure 2.13. Relative branch flow estimation errors when maximizing and minimizing
the squared RMSE metric.
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2.5.10. A larger distribution feeder with laterals (69-bus system)

The IEEE 69-bus radial test system [68] was chosen to assess the performance
of the proposed model when dealing with a larger radial distribution system with
laterals. The system works at the nominal voltage of 12.66 kV with a total load of 3.802
MW and 2.694 MVAr. It was modified to incorporate DERs placed on the nodes where
the largest loads are located—see Figure 2.14(a).

Considering 720 one-hour time steps (a month of historical data), Table 2-7
presents the results for the application of the proposed formulation considering the
ideal case with all the system nodes having 100%-accurate voltage measurements
available. The parameter NY is set to be 5 to stress the capability of providing accurate
estimations with a reduced number of equivalent DER representations.
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Figure 2.14. Example of application for the modified IEEE 69-bus radial test system with a reduced number of equivalent DERs
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(a) Branch flow results for the original test system at t = 257.
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(b) Branch flow results for the equivalent system representation at t = 257. NY is 5.
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Table 2-7. Estimation Performance: 69-bus system, NY = 5, 100% MCL

25% DER Penetration 100% DER Penetration
Voltage Branch Active Voltage Branch Active
Metric Magnitude Power Flow Magnitude Power Flow
Errors (p-u.) Errors (p.u.) Errors (p.u.) Errors (p.u.)
MAE 1.90-10~* 2.93-1073 6.48-1073 2.07-1073
RMSE 5.14-1073 1.03 - 1072 1.55- 1072 3.53-1073
Min AE 5.64-1078 1.51-107° 1.49-107° 2.64-107°
Max AE 5.57-107* 5.58-1073 3.77-1072 1.61- 1072
ACC 99.99% 98.31% 99.99% 99.04%

The 25% DER penetration scenario has a total of 0.48 MW of both solar and
wind DERs. DERs in the 100% penetration scenario remain connected to the same
system nodes but were scaled to match the respective penetration values aggregated
at the feeder level. Low error values show that the proposed algorithm can replicate
existing measurements and estimate branch power flows solely utilizing voltage
magnitude measurements. Figure 2.14(b) depicts how the estimated active power
branch flows are disposed of in the resulting system representation with five equivalent
DERSs being allocated. As in previous case studies, estimation results are affected by
the number of measurements available and the adjustment of parameter NY.

This is depicted in Fig. 13, with results generated by varying the meter coverage
level by 10% increments of the number of voltage measurements available, until the
system is fully monitored. Meters are placed at random locations selected using
uniform distribution and assuming that the measurements at bus 0 (the substation end-
node) are always available and 100% accurate. On average, for every 10% increase
in the number of voltage measurements available, an improvement of 3.7% in branch
flow estimation accuracy is observed.

Figure 2.15. Branch active power flow estimation accuracy (ACC, %) varying the
number of metered buses and the choice of NY.
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2.5.11. A distribution system with multiple feeders (873-bus system)

The following case study expands the application of the algorithm to the
representation of a radial distribution system with multiple feeders connected to the
same substation busbar. The 873-bus radial distribution system of [69] comprises
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seven feeders, supplying a total aggregated load of 33.6 MW + j19.8 MVAr at the
27.6 kV level. The system was modified to integrate 12.6 MW and 4.2 MW of solar and
wind DERSs, respectively (60% DER penetration scenario). Table 2-8 presents branch
active power flow estimation results when voltage measurements are fully available.
These results consider 48 power flow snapshots (two days of metered data points with
1-hour intervals). The parameter NY is 5 for each feeder, meaning there is a reduction
from 350 nodes with actual DERs in the entire system to 35, with five aggregate DERs
in each feeder.

Table 2-8. Branch Flow Estimation Performance: 873-bus system, NY = 5 (per feeder),
100% MCL

MAE (p.u.) | RMSE (p.u.) | Min AE (p.u.) | Max AE (p.u.) | ACC (%)
Feeder1 | 431-107% | 6.98-1073 3.13-107° 3.63-1072 99.0
Feeder2 | 6.12-107% | 8.92-1073 6.00-107° 3.57 - 1072 98.7
Feeder 3 | 2.18-1073 | 3.24-1073 2.64-107° 1.26-1072 99.6
Feeder4 | 3.24-1073 | 5.42-1073 6.32-107° 3.15- 1072 99.4
Feeder 5| 2.69-1073 | 4.20-1073 2.18-107° 244 -1072 99.5
Feeder 6 | 2.66-107% | 4.53-1073 1.27-107° 2.17 -1072 99.5
Feeder 7 | 2.95-1073 | 6.39-1073 4.02-107° 4.93-1072 98.8

Figure 2.16. Estimation accuracy across the seven feeders considering different
meter coverage levels.
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Accurate (= 90%) results evidence the algorithm’s ability to estimate
unobserved branch flows using only bus voltage magnitudes, even in a scenario with
fewer DER representations. Next, Figure 2.16 presents the distribution among the
existing feeders of the accuracy of branch flow and node voltage magnitude
estimations for different voltage meter coverage levels. Meters were randomly placed
in the system following uniform distribution, except for the substation end-node, which
is always available. Results show that the algorithm can estimate unobserved branch
active power flows with errors below 10%, even for the scenario with fewer node
voltage magnitude measurements. NY is 5 in all cases. Measurements are considered
100% accurate.

2.6. Chapter Summary

This chapter presented a convex mixed-integer nonlinear problem formulation
designed to develop aggregate DER models for equivalent representation of low-
visibility radial distribution feeders with invisible DERs. The formulated problem aims
at estimating branch power flows and bus voltage magnitudes while strategically
allocating equivalent DERs to reproduce sparse system measurements and represent
innumerable DERs hidden from the system operator. The resulting DER models can
be integrated into traditional power flow solution methods to enable accurate
calculations—which is the focus of Chapter 4 of this document.

A distinction of this method compared to conventional state estimation
algorithms consists of lesser measurement data requirements to provide solutions in
unobservable or poorly observable system conditions where these methods may falter.
Case studies were realized to display the formulation’s efficacy in estimating missing
power system variables. These studies considered relevant factors, such as the
number of available meters, adjustment of model parameters, meter accuracy, length
of historical data, DER integration, and system scale.

In Chapter 3, different linearized versions of the convex-MINLP formulation are
tested developed to enhance computational performance while maintaining numerical
accuracy. Moreover, the modeling of invisible DERs is enhanced by introducing hybrid
DER models (e.g., PV+BESS) to improve the representation of modern radial
distribution systems with different DER configurations.
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3. A MILP MODEL FOR ENHANCED AGGREGATE MODELING OF INVISIBLE
HYBRID DERS?

3.1. Chapter Introduction

This chapter continues addressing the challenge of improving steady-state
analysis for radial distribution systems with invisible DERs by presenting a Mixed-
Integer Linear Programming (MILP) formulation to develop equivalent aggregate DER
models representing numerous invisible resources. The linearized formulation is
obtained by addressing the nonlinear and nonconvex nature of power flow equations,
yielding a simplified yet accurate model with reduced solution times. The resulting DER
models capture the diverse characteristics of invisible resources, now including hybrid
DERs that combine the flexibility of BESS and PV units. With faster solution times, the
method presented in this chapter enables the development of equivalent DER models
for systems with more dynamic operating conditions, such as with many possible
topology changes. In this sense, the method is suited to operational planning and tasks
such as system reconfiguration, which require rapid solutions, while addressing
invisible DERs.

As per Chapter 2, this chapter begins by providing minimal introductions to the
key concepts serving as the basis for the modeling aspects of the research. In this
sense, a review of linearization approaches applied to the modeling of distribution
systems is provided. Next, the proposed MILP formulation is discussed, emphasizing
changes in relation to the original MINLP optimization problem.

3.2. Linearization in Power Distribution Systems Modeling

The many different approaches for linearizing power flow equations can be
categorized into two main groups, namely models based on assumptions over typical
physical characteristics of radial power distribution systems and on mathematical
approximations to existing nonlinear functions present in the formulation. The models
in the first group often consider that voltage angles and magnitudes vary within
relatively narrow boundaries. For example, in [72] and [73], the authors leverage small
angle deviations across lines to simplify the calculation of bus voltage magnitudes. In
[74] and [75], the authors assume that voltage magnitudes tend to be close to 1.0 p.u.
to calculate branch power flows. Similarly, the authors in [76] assume negligible system
losses, disregarding the calculation of the current magnitude for the traditional Distflow
model for radial distribution systems [77]. However, although simplifying the model,
assuming negligible losses may lead to larger errors in regions with higher current
levels (e.g., the substation exit), as noted in [78].

The second group aims to determine mathematical expressions to approximate
the power flow equations. These methods include Taylor series expansions, as
employed in [79] for calculating branch power flows, and in [58] to approximate power

2 This chapter’s contents were published in part in the paper: P. N. Vasconcelos, F. C. L. Trindade, and B. Venkatesh, “Linearized
Optimization for Enhanced Aggregate Modeling of Invisible Hybrid Distributed Energy Resources,” IET Generation, Transmission
& Distribution, vol. 19, no. 1, p. €70088, May 2025.
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injections when modeling customer loads, both for node-injection power flow models.
A more popular approach consists of piecewise linear approximations, which discretize
nonlinear functions into linear segments, controlling accuracy and computational
feasibility via the number of introduced segments. In [80] and [81], piecewise linear
approximations define the calculation of squared active and reactive branch flows. In
optimization applications, McCormick envelopes are often employed to calculate line
currents of the line-wise power flow model, relaxing the nonlinear expression by
introducing a set of linear constraints [76], [82].

Unlike methods that rely solely on simplifying assumptions or purely
mathematical relaxations, the proposed MILP approach integrates both elements by
approximating the nonlinear power flow equations using piecewise linearization and
McCormick envelopes when addressing the equivalent behavior of aggregated
invisible DERs. The formulation allocates (locates and sizes) aggregate DER models
while estimating unobserved voltage magnitudes and branch flows.

3.3. Problem Statement
3.3.1. Nature of hybrid PV-BESS DERs

Some of the power flow and DER allocation constraints presented in this section
employ four different PV models (numbered from 0 to 3) to represent varying levels of
energy storage capacity in hybrid PV-BESS DERs. These models capture different
power generation profiles based on the time the battery charging begins. Since it is
assumed that the BESS is recharged exclusively using locally generated solar power,
the charging start times reflect different relative sizing of PV and BESS capacities.
Earlier charging times correspond to hybrid DER configurations where the BESS has
a larger capacity relative to PV generation, requiring a longer duration of available solar
power to reach full charge. Conversely, later charging start times indicate scenarios
where PV generation is larger, enabling shorter charging windows. BESS DERs
discharge only during peak hours—between hours 16 and 21—when electricity rates
are highest in a typical time of use (TOU) tariff strategy. Each combination is displayed
in Figure 3.1.

Model PVO corresponds to a scenario where only the PV is active, with no
associated energy storage. The remaining models—PV1, PV2, and PV3—correspond
to hybrid PV-BESS configurations where the BESS starts charging at hours 11, 13,
and 15, respectively. Figure 3.1 also includes a case where only the output of the BESS
is active, representing a combination where the production of the local PV is sufficient
to charge the battery fully, and there is no export of excess PV power to the grid. PVs
export their power output to the grid whenever the local storage resources are not
charging and the solar irradiance level allows for a non-zero power output. Therefore,
the inherent variability of these resources is accounted for in the model.
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Figure 3.1. Comparison of the power output profiles of the different hybrid PV-BESS
models. The BESS charges exclusively through PV output and discharge between
hours 16 and 21.
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3.3.2. Objective function

The objective function remains unchanged from the original formulation. It
minimizes the squared Frobenius norm of the resulting matrix, computed as the sum
of the squares of measurement residuals considering measured and estimated node
voltage magnitudes. Objective function weights, defined in matrix KV attribute relative
importance to more accurate data.

minimize KO - 0| (3.1)
3.3.3. Power flow constraints

The basis for the power flow constraints (3.2)-(3.6) also remains unchanged
from the original formulation. Eq. (3.5) was modified to introduce the power output of
BESS DERs and to refer to the different PV DER models considering the presence of
local energy storage.

U.
Uy +2 (P R+ QS Xy = —2) 4y 22 =0, )€l (3.2)
Pll,pt + Pl?t +R - Ji+=0 (3.3)
Qe+ Qi+ X1 J1: =0 (3.4)
F
- lisl ~Up-G=Pr =P " — P{T — PIES (3.5)
t
Qf
[M] Qsl +U, B = QFf (3.6)
t

Originally, the calculation of the squared magnitude of the current flowing in line
[ at time t was being performed employing a second-order conic (SOC) relaxation as

Upe - Jue = PSLe + Q5
This relation is linearized to benefit from the improved computational efficiency
and scalability of MILP problems. The bilinear term on the left side is addressed using
McCormick envelopes [83], while the right-hand side is approximated using piecewise
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linear functions [87], resulting in (3.7). The choice of McCormick envelopes is
motivated by their widespread adoption in optimization problems involving bilinear
terms, as established in [85]. This approach preserves convexity, a desirable property
for maintaining the quality of the solution when using standard optimization solvers
[86]. Moreover, when considering a line-wise power flow model, this approach yields
an improved approximation of the steady-state behavior of radial distribution systems
compared to other linearization techniques, as discussed in the results section.

i j
Wie2 Y A-pk+ ) 22 q (3.7)
k=1 k=1
where the domains of PSit and Qsit are divided into i and j breakpoints, respectively.

Each interval is represented by a weight A% or /12 and an associated squared
term p; or g7. Variable W, . is an auxiliary variable introduced to represent the linear
approximation of the bilinear term, i.e., W,,,,+ = Uy, - J;+ Two sets of linear constraints
impose its upper and lower bounds. Expressions (3.7a) and (3.7b) establish the lower
limit, while (3.7c) and (3.7d) define the upper bounds. Parameters with lower and
overbars refer to minimum and maximum reference values of the original squared node
voltage magnitude and squared line current magnitude variables.

Wie2U-Jie+Upe-J-U-] (3.7a)
Wiie = U Jie +Uje J-U-] (3.7b)
Wie SU-Jye+Upe-J—U-] (3.7¢)
Wie SU-Jie+Uje-J=U-] (3.7d)

Constraints (3.8) and (3.9) enforce operational limits on squared bus voltage
and line current magnitudes.

Ui < Upe < Uy (3.8)

Jue < T (3.9)
3.3.4. DER allocation constraints

Constraints (3.10), (3.11), and (3.12) update, for every time interval, the power
output of equivalent aggregate PV, WT, and BESS DERs using piecewise linear
functions derived from manufacturer data. The output of BESS DERs is modeled
according with a TOU tariff strategy. The BESS resources are allowed to discharge
when electricity rates are highest, during the peak-hours between 4 PM and 9 PM, and
this behavior is depicted in Figure 3.2. The TOU, function in (3.12) changes its values
from 0 to 1 depending on the time of the day.

As inferred in (3.10) and in the computation of pfV, the values of x correspond
to different hybrid DER models that consider both PV and BESS resources available
locally. Parameter t, consists of the time of the day when the associated energy
storage model begins charging, consuming the PV output during this process.
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However, PVs generate power whenever the solar irradiance level exceeds predefined
threshold values, ensuring that the inherent variability of renewable energy generation
is accounted for in the model. BESS DERs export energy to the grid only during peak
hours in a typical time-of-use tariff strategy. Variables with overbars represent the peak
generating capacity attributed to each equivalent DER.

PLY, = PPV . pf", vx € {0,1,2,3} (3.10)
Pt =Py’ 0" (3.11)
PBESS — pBESS . TQy, (3.12)

Figure 3.2. TOU pricing signal used to schedule BESS DERs.

1 End of
Discharge Discharge
— Start Time Cycle
;:un 1 4 | L Rated
n BESS power
]
9
S
o
) Peak Hours
E (Highest Rates)
Off-Peak Off-Peak
0 >
4 PM 9PM

Hour of the Day

Piecewise linear functions are derived from manufacturer data to model the
power outputs of PV and WT DERs as functions of direct solar irradiance and wind
speed, respectively. The following expressions consider traditional cut-in, rated, and
cut-out parameter values for determining power outputs.

max{K®V - (hy — h),0},if hy S hK"TAt < t,

pr™* =11, if h, =h"At<t, Vx€{0,1,23)}
0, ift>t,
max{KWT . (wt — m),O}, if we <w'
pdT =11, ifwh <w,<w
0, if we=2w

Constraints (3.13), (3.14), and (3.15) limit the summation of the allocated
generating capacity of equivalent DERs. Note that all PV models add up to a single
value as the actual composition of PV-BESS DERSs is unknown. Eq. (3.16) determines
that the maximum capacity of each DER model may be higher than zero only for the
nodes where the binary variable assumes the unity value. The maximum number of
equivalent DER models is determined in (3.17) via the parameter NY.
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NB

3
—PV,
D B =P (3.13)

k=2 x=0
NB
—WT
P, =P', (3.14)
k=2
NB
—BESS
> B = pEs (3.15)
k=2
—PV,, —WT —BESS
0<P, P, ,P, <C-YPER — (»1 (3.16)
NB
z YPER < NY,  YPER € {0,1) (3.17)
k=2

3.3.5. Load determination constraints

The same constraints are employed to determine equivalent load models.
Constraints (3.18) and (3.18) update, for every time interval, the active and reactive
power consumption for all load buses. This is done by multiplying the total feeder-level
consumption by the corresponding share of the total load at each bus. Constraint (3.20)
ensures that the summation of all load factors equals the total feeder-level load. These
are determined using a binary variable for all load buses in the system, as in (3.21).

Pk, = DE- Pt (3.18)
Qe = Dic - Q¢ (3.19)
NB
Z DL =1 (3.20)
k=2
0<DL<vV:  YEe{01} (3.21)

3.4. Solution Method

The same implementation and solution method using Python and Pyomo was
employed to test the resulting MILP formulation problem described in (3.1)-(3.21).
Moreover, the same modeling assumptions are assumed in this chapter, related to
data availability, DER information at the feeder level, system radial topology, and error
distribution of existing measurement data.

3.41. Test system data and preparation

In this chapter, the resulting formulation is employed to estimate system states
and allocate equivalent DERs for an 11-bus [87] and a 240-bus [88] distribution test
systems. These were selected to test the proposed framework under different system
scales and topological and operational characteristics. Note that, as per the previous
chapter, detailed information on each test system is provided in Appendix B and the
files used in simulation are available at [89].

The 11-bus test feeder involves a typical North-American distribution feeder
supplying 4.32 MW + j1.43 MVAr of load at the 12.48 kV level. The total generating
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capacity of PV DERs is 0.23 MW, while 1.50 MW is for WT, and 0.81 MW/4.06 MWh
is for BESS. This corresponds to a 40% DER penetration level by taking the ratio
between the total DER capacity and peak customer demand at the feeder level. The
radial topology is obtained by leaving all tie-line switches and connections to
neighboring feeders open. Figure 3.3 depicts the test system along with DER
information. PV-BESS DER types were selected based on the presence of both
resources in the original system. Note that this information is only used to generate
system measurements through power flow calculations and is not disclosed to the
proposed method, aligning with what would be available in practice, considering the
presence of invisible DERs.

Figure 3.3. Diagram of the test system displaying DER information.

Although the 11-bus test feeder is a synthetic approximation of a real North-
American MV distribution feeder, the data presented in [88] for the 240-bus test system
corresponds to a real distribution grid located in the Midwest U.S. that belongs to a
municipal utility. The 240-bus test system is a 10-MVA rating radial distribution system
consisting of three separate feeders supplied by a 69/13.8 kV substation transformer.
According to the authors, the system is a fully observable network with smart meters
installed at all customer locations. The system has 240 nodes and 37 km of primary
feeder conductors with overhead and underground sections.
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A 50% penetration scenario was devised by distributing DERs across 107 load
buses in the system (50% of the total number of load buses) over the three existing
distribution feeders connected to the same substation bus-bar. In total, there are 95
PV (74 PV + 21 hybrid PV-BESS DERs) and 35 WT DERs. Details of each feeder are
laid out in Table VIII.

Table 3-1. Load and DER capacity per feeder for the 240-bus distribution test system.

Feeder | NB | PL (MW) | Q% (MVAr) | PPV (MW) | P¥T (MW) | PBESS (MW/MWh)
A 17 0.71 0.27 0.28 0.07 0.052/0.258
B 60 1.75 0.78 0.70 0.18 0.182/0.910
[ 163 | 1.60 0.58 0.64 0.16 0.085/0.425
Total | 240 | 4.06 1.63 1.62 0.41 0.319/1.595

The same weather dataset (See Appendix B) referring to the location of Toronto,
Canada, was used to execute the simulations described next. The linearized DER
power output calculation models considered cut-in and rated direct solar irradiance of
150 and 800 W/m?, respectively. For wind DERSs, cut-in, rated, and cut-out wind speeds
are 2.8, 10, and 20 m/s, respectively.

This dataset was processed to get each month’s average day (24-hour profile),
reducing the total number of time steps from 8,760 to 288. This corresponds to the
length of historical data used in simulations. The data was then utilized to generate
measurements via power flow calculations using the line-wise power flow model of
[50]. Consequently, all meter data in the results section correspond to values derived
from this simulation. In practical applications, however, such data would be reported
from field measurements.

3.4.2. Estimation performance metrics

To complement the assessment of the described method when providing
estimations on unobserved voltage magnitudes and branch flows, the 95" percentile
of absolute error (P95 AE) values are also computed. This metric provides the error
value below which 95% of the observed deviations fall, capturing a typical upper bound
of estimation errors. Note that the following subsections refer to two sets of results: the
observed system, which consists of data reported by assumed existing measurements;
and the entire network, where errors are calculated using power flow results as
references. In the latter case, simulated data is used to extend evaluations and ensure
a more comprehensive assessment of the performance of the proposed model.

3.5. Results and Discussion

The first case studies (from Subsection 3.5.1 to Subsection 3.5.6) focus on the
11-bus system to showcase the performance of the resulting formulation under various
conditions. Subsection 3.5.6 presents a comparison between the performance of the
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method described in this chapter with the original MINLP model from Chapter 2, and
alternative linearized formulation versions. Subsections 3.5.7 is dedicated to the 240-
bus test system.

3.5.1. Ideal case (11-bus system)

Table 3-2 presents the results for observed bus voltages and unobserved
branch flows, assuming 100% MCL, meaning all system buses have voltage
measurements. The solution can allocate the exact number of DERs in the system,
i.e., NY = 9. This means there is no reduction in the number of DERs represented for
this case. Historical data is comprised of 288 one-hour time steps with error-free
measurements. The bases for per unit calculation are 12.47 kV and 10 MVA.

Results show that with voltage measurements amply available, the proposed
method can reproduce the existing voltage information while accurately (ACC > 95%)
estimating unobserved branch flows. Taking the maximum historical branch active
power flow in the system as reference (4.23 MW, at the substation exit), the mean and
95th percentile error values correspond to around 2.9% and 12.6%, respectively,
indicating that high errors (= 15%) are limited to a small portion of the branch flow
estimates.

Table 3-2. Estimation Performance: 11-bus system, NY =9, 100% MCL, 40% DER.

Observed | Unobserved
Error Metric
Voltages | Branch Flows

MAE (p.u.) |192-107>| 1.22-107?

Max AE (p.u.) | 1.41-10% | 9.72-10°2

P95 AE (p.u.) | 9.90-107°| 5.31-1072

ACC (%) 99.99 97.29

3.5.2. Impacts of the number of available measurements (11-bus system)

Notably, errors in estimating unobserved quantities reduce as more metered
buses exist in the system. On the other hand, errors calculated for observed voltage
magnitudes increase as each new measurement introduces variability to the input
data. Figure 3.4 shows relative error results. Each boxplot consists of data from
simulations considering a fixed number of metered buses—from two buses to the
system fully covered with voltage magnitude measurements (100% MCL). Since
multiple combinations exist considering the different possible meter locations, ten
different scenarios were solved for each MCL by varying meter locations. The voltage
at the substation exit (Bus 1) is always available, while the remaining metered buses
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were selected using a uniform distribution. Parameter NY varies from 1 to 9 in all cases.
The ‘+’ sign represents outliers.

Figure 3.4. Relative estimation errors under different meter coverage levels. (a)
Observed voltages. (b) Unobserved voltages. (c) Unobserved branch flows.
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Unobserved voltage magnitude estimation errors remain below 1.6%, even in
cases with few measurements available. High values (= 15% error) in branch flow
estimations are limited to scenarios with fewer than five metered buses and outliers in
results. The average error value stays below 5% in all scenarios, while the maximum
error values remain below 10% when nine or more metered buses are present in the
system (ignoring outliers).

3.5.3. Impacts of the resulting number of DER models (11-bus system)

The number of equivalent DER models, set by parameter NY, balances
computational efficiency and accuracy. Fewer DER models speed up subsequent
power flow calculations, while having a larger number of models representing many
invisible DERs improves accuracy, yet increasing complexity, potentially burdensome
as the system size and number of scenarios increase. Figure 3.5 shows the accuracy
of unobservable branch flow estimations for varying MCLs and values of NY. Each
value corresponds to the average accuracy of ten scenarios solved for each condition.
As in the previous section, these variations consider different meter locations while
assuming the voltage at the substation end-node available as input to the model.

Figure 3.5. Branch flow estimation accuracy (ACC, %) varying the meter coverage
level and the maximum number of aggregate DERs (setting of parameter NY).

NY=1
NY=2
NY=3
NY=4
NY=5
NY=6

93.2 938 948 948 958 95.8
91.6 93.3 94.1 0951 957 96.3 96.8
93.3 940 943 954 0957 96.3 096.8
934 94.0 943 95.6 96.1 96.3 96.8
940 946 958 958 96.2 96.5 96.9
945 951 958 96.0 96.2 96.7 96.9
NY=7 948 957 958 96.1 96.2 96.8 96.9
NY=8 949 0958 96.2 96.3 96.6 96.8 96.9
NY=9 - 94.7 94.7 959 96.3 966 96.8 96.8 969 97.3

2 3 4 5 6 7 8 9 10 11
Number of Metered Buses

There is, on average, a 1.3% estimation accuracy increase for every increment
of the number of equivalent DER models the proposed method is allowed to
introduce—also, an average increase of 0.5% for each new voltage measurement
introduced. However, note that the positive effect of NY in increasing estimation
accuracy is more pronounced for the cases with fewer metered buses in the system.

3.5.4. Impacts of the DER penetration level (11-bus system)

The DER penetration level, computed as the ratio of the total DER generating
capacity to the peak customer load at the feeder level, also impacts estimation
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accuracy. Table 3-3 shows unobservable branch flow estimation results for the ideal
scenario (MCL = 100%, NY = 9) under varying DER penetration levels, achieved by
increasing DER capacity from what was presented in Figure 3.3, while keeping
customer loads unchanged. As DER penetration increases, the algorithm
demonstrates consistent improvements in estimation accuracy. Results suggest that
higher DER penetrations allow the algorithm to better differentiate DER steady-state
behavior from customer loads in measurements. This enables more precise allocation
of equivalent DERSs, thus enhancing unobserved branch flow estimations.

Two statistical tests were employed to confirm that the proposed algorithm
maintains stable performance across the different penetration levels. Groups with no
statistically significant difference in means and variance are identified using both
Welch-t and Levene tests and denoted by matching superscripts (e.g., 1, 2, 3). The
former test [90] checks if two groups have different means, especially when the groups
might have different variances and sample sizes. Moreover, the latter test [91] checks
whether different groups have equal variances, regardless of their means.

Table 3-3. Estimation Performance: 11-bus system, NY = 9, 100% MCL, Varying DER
Penetration

Error Metric
MAE Max AE P95 AE ACC

(p.u.) (p-u.) (p-u.) (%)

(for Unobserved

Branch Flows)

20% DER! 2.25-107%2 13.19-1071 | 1.66-1071 | 95.00

40% DER! 1.22-10729.72-1072 | 531-1072 | 97.29

60% DER' 1.14-1072 | 7.76 - 1072 | 4.82-1072 | 97.47

80% DER? 9.42-1073 | 6.29-1072 | 4.09-1072 | 97.91

100% DER? 8.54-1073 | 6.01-1072|3.73-1072 | 98.10

12Groups with no statistically significant difference in means and variances based on Welch-t and
Levene tests (p-values <0.01).

3.5.5. Impacts of measurement and model parameter errors (11-bus system)

This section analyzes the impacts of four primary error sources on the
estimation of unobserved branch flows: (1) noise in voltage magnitude data, (2)
uncertainties in branch impedance parameters, (3) variations in the feeder-level
aggregated capacity of invisible DERs, and (4) errors in net load measurements
aggregated at the feeder level.

¢ Voltage magnitude measurement errors
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Table 3-4 demonstrates the impact of varying noise levels in voltage magnitude
data. Noise levels, ranging from 0.1% to 6%, were generated using a Gaussian
distribution applied uniformly to all measurements. Percentage values correspond to
the maximum allowable deviation from actual data. Performance remains stable up to
1.0% noise, but beyond 3.0% significant accuracy degradation occurs. This highlights
a potential threshold where the proposed method struggles to maintain high estimation

accuracy.

Table 3-4. Estimation Performance: 11-bus system, NY =9, 100% MCL, 40% DER,

Noise in Measurements

Error Metric

MAE Max AE P95 AE | ACC
(for Unobserved
(p.u.) (p.u.) (p.u.) (%)
Branch Flows)
0.1% Error 2.23-1072 | 1.21-1071 | 8.06- 1072 | 96.54
0.2% Error 2.53-1072 | 1.31-1071 | 894-1072 | 95.75
0.5% Error’ 2.69-1072 | 1.42-1071 | 1.36-107! | 95.24
1.0% Error? 2.77-1072 | 1.52-1071 | 1.43-107! | 95.13
3.0% Error? 3.22-107% | 1.80-1071 | 1.68- 1071 | 93.91
6.0% Error? 3.39-1072 | 1.80-1071 | 1.71-1071 | 91.71

1.2Groups with no statistically significant difference in means and variances.

e Branch impedance errors

Table 3-5 evaluates the effect of branch impedance inaccuracies on the
estimation of unobserved branch flows. Errors were introduced as percentage
deviations in resistance and reactance values, with error-free voltage magnitude
measurements. Estimation accuracy remains consistent across tested impedance
error levels. This demonstrates the robustness of the proposed method with respect to

this error source.

63



Table 3-5. Estimation Performance: 11-bus system, NY =9, 100% MCL, 40% DER,

Branch Impedance Errors

Error Metric

MAE Max AE P95 AE ACC
(for Unobserved
(p.u.) (p.u.) (p.u.) (%)
Branch Flows)
1% Error? 1.22-1072|9.57-107%2 | 5.22-107t | 97.27
5% Error? 1.25-1072 | 9.56-1072 | 5.29-107% | 97.17
15% Error? 1.25-1072 | 9.68-1072 | 5.23-107% | 97.15

1Group with no statistically significant difference in means and variances.

o Total feeder-level DER capacity errors

Table 3-6 shows the impact of aggregated DER capacity deviations on
estimation accuracy. Errors imply an inaccurate value presented to the model as the
total DER generating capacity at the feeder level, per fuel type. The same error was
attributed to all DERs in each case, with error-free measurements and network

parameters.

Table 3-6. Estimation Performance: 11-bus system, NY =9, 100% MCL, 40% DER,

Total DER Capacity Errors

Error Metric
MAE Max AE P95 AE ACC
(for Unobserved
(p.u.) (p-u.) (p-u.) (%)
Branch Flows)
-15% Error 1.34-1072% | 9.65-1072 | 5.30-1072 | 96.78
-5% Error 1.25-1072 | 9.57-1072 | 5.27-1072 | 97.15
-1% Error 1.24-1072|9.36-1072 | 5.06-1072 | 97.22
+1% Error1 1.23-1072|9.72-107%2 | 5.31-1072%2 | 97.23
+5% Error1 1.25-1072 | 9.74-107% | 5.32-1072% | 97.16
+15% Error1 1.26-1072 | 9.77-1072 | 5.34-1072 | 97.11

1Group with no statistically significant difference in means and variances.

Results show that variations in DER capacity have minimal impact on accuracy,
with only slight variations (< 1%) in overall accuracy values. Note that branch flow
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errors are computed across all time steps in historical data. This includes periods when
DER output is expected to be zero to insufficient solar irradiance of wind speeds.
During these intervals the calculated power injection from equivalent DERs is also
zero, leaving branch flow estimation unaffected, even if the total installed DER capacity
is not perfectly estimated.

e Errors in net load measurements aggregated at the feeder level

Table 3-7 illustrates that while a 1% error in net load measurements has
negligible effects on unobserved branch flow estimations, higher deviations—
particularly at the 15% error level—result in a substantial decline in estimation
accuracy. This drop is more pronounced than other error sources analyzed in this
section.

Table 3-7. Estimation Performance: 11-bus system, NY =9, 100% MCL, 40% DER,
Net Load Measurement Errors

Error Metric
MAE Max AE P95 AE ACC

(p.u.) (p-u.) (p-u.) (%)

(for Unobserved

Branch Flows)

1% Error 1.23-1072 | 9.71-1072 | 532-1072 | 97.25

5% Error 1.33-1072|9.62-107%2 | 5.51-1072 | 93.33

15% Error 1.92-1072 | 9.82-1072 | 6.51-107% | 84.56

This deterioration of results happens due to the proposed model’s reliance on
aggregated load consumption data to distribute the total load in the system across all
load nodes and accurately determine the impacts of power injections from customer
loads on measurements. Unlike voltage magnitude errors, which affect local
measurement points, feeder-level net load errors propagate across multiple buses,
influencing estimation results.

3.5.6. Quality of the linearized solution (11-bus system)

In this section, the performance of the linearized formulation is benchmarked
against the MINLP model presented on Chapter 2 and two other linearized
approaches. Note that the MINLP model was adapted to include the constraints
associated hybrid DER models. The first linearized benchmark model is obtained by
assuming that the voltage profile is leveled at 1.0 p.u. when calculating the squared
magnitude of the current flowing in the system’s lines, eliminating the bilinear term
multiplying line currents and node voltage magnitudes. Power losses are computed
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normally using (3.3) and (3.4), with updated voltage magnitude values. This approach
was addressed in [74] and [75].

The second linearized model depends on the negligibility of power losses. By
neglecting active and reactive power losses, the line current variable can be eliminated
from the model, which leads to the eradication of the SOC constraint and simplification
of the remaining power flow equations. This approach was discussed in [76] and [78],
with the authors in [78] stating its possible limitations, especially when addressing
highly loaded and longer distribution feeders. Table 3-8 provides an overview of all
models and their respective changes in the formulation implemented for testing.

Faster solution times than those of the proposed model are expected from
benchmarked linear approaches due to a reduced number of constraints used to model
the system’s steady-state behavior through power flow equations. For the lossless
MILP model, (3.7a)-(3.7d) are removed, while constraint (3.7) and line current
variables are removed altogether from the formulation in the MILP 1.0 p.u. model.

Table 3-8. Formulation Comparison of the Proposed Model and Linear and Nonlinear
Benchmark Approaches

Model Description Constraint (3.7)
j J
Proposed Formulation as described by (3.1)- .
MILP (3.21). Wire = z AP+ Z i - 0k
k=1 k=1

Formulation as described by (2.1)-

MINLP .
(2.19). SOC relaxation used to Upe - Jie = PSie + Q52
(Chapter 2) , ) S ' L
calculate line current magnitudes.
MILP Negl I . Li
e ec.t ed losses. Line current Removed from the formulation.
Lossless variables are removed.
i J
Voltages are leveled at 1.0 p.u. to
MILP 1.0 p.u. P p2 Q. g2
0pu calculate line currents. Jue 2 z A - pic + z A+ dic
k=1 k=1

Figure 3.6 presents boxplots of branch flow estimation errors for the linearized
and nonlinear approaches. Voltage magnitude measurements are introduced
sequentially as the buses are numbered, with the substation end-node (Bus 1) always
available. The parameter NY varies from 1 (a single equivalent DER) to 9 (the actual
number of DERs in the original system). There is an overall decreasing trend in
estimation errors as the number of metered buses increases for all methods. For lower
MCLs (with 2 to 6 metered buses), the median error values range from approximately
5% to 15%, with the MILP 1.0 p.u. method exhibiting higher errors and the largest
spread.
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For higher MCLs, the median errors decrease significantly for most methods,
staying below 5% and with fewer extreme outliers. In general, the MINLP method from
Chapter 2 shows lower errors across different MCLs compared to all approaches, with
the proposed MILP formulation performing slightly better than the lossless MILP model.
This shows that the proposed approach, linearized using McCormick envelopes,
provides a reasonable trade-off between computational performance and accuracy
compared to the linear variants.

Figure 3.6. Comparisons between the proposed method and other linearized and
nonlinear approaches: (a) unobserved branch flow estimation errors, and (b) solution
time.

40
+ + I MINLP
351 [ Proposed MILP
1 MILP Lossless
1 MILP 1 p.u.

+ + +H

-+

[,]

M M1

I+ M b
|t o+ o+
10— e 4
P I AR AT
B i e L

T HE L+ +
— T 1 + +#

iiii
L |

o

Errors in Unobserved
Branch Flow Estimations (%)
= = N N w
o w o w o
E A
N | PR

i;

4 é 1'0
Number of Metered Buses
(a)
30001 * B MINLP [ MILP Lossless
I Proposed MILP 1 MILP1 p.u.
25001
5 2000 240
E 160
< 1500
<} 80
5 [ e
3 0
& 1000 NY=9
500 l
N
N I T A A T T
NY=2 NY=3 NY=4 NY=5 NY=6 NY=7 NY=8 NY=9

(b)

This trade-off is further evidenced by Figure 3.6(b). The MINLP model has
higher solution times compared to all MILP models, particularly for small values of
NY—with outliers reaching beyond 3000 seconds. The inset for NY = 9 shows that
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though solution times are much lower than for smaller NY, the MINLP model still
presents a tenfold increase in solution time when compared to the MILP models.

Note that higher solution times happen for lower NY values due to an increased
combinatory complexity. For example, if NY = 1, the solver must choose a single bus
to allocate equivalent DERs from a large set of buses, leading to a highly combinatorial
decision problem. Also, since a binary decision variable controls this behavior, having
fewer candidate buses for equivalent DER allocation introduces stronger discreteness
and makes the problem harder to solve.

3.5.7. A larger distribution system with multiple feeders (240-bus system)

The next results consider the 240-bus distribution test system—a 10-MVA
system consisting of three separate feeders supplied by a 69/13.8 kV substation
transformer. A 50% penetration scenario was devised by distributing DERs across 107
load buses in the system (50% of the total number of load buses) over the three
existing distribution feeders connected to the same substation bus-bar. Figure 3.7
shows branch flow estimation results for Feeders A, B, and C under varying MCLs
ranging from 5% to 100%-from a system with sparse voltage magnitude
measurements to a fully measured system.

Parameter NY is considered 5 for each feeder, resulting in 15 aggregate DER
models in a system with originally 128 DERs. Accurate results display the performance
of the proposed method independent of the system size in terms of the number of
nodes. At 5% MCL, there is considerable variability in error, particularly for Feeder C,
which has the largest number of nodes and a more distributed DER setup. At 100%
MCL, all feeders exhibit low errors, reflecting the advantage of full network coverage
with voltage magnitude measurements.

Figure 3.7. Branch flow estimation accuracy for all system feeders considering varying
meter coverage levels. 50% DER penetration scenario.
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Considering the modeling and solution of the proposed formulation for both test
systems and the individual feeders on the 240-bus test system, the scalability of the
proposed model can be discussed in terms of the computational time required to
achieve a solution. Notably, the number of buses in the system directly influences the
solution time. For instance, the 11-bus feeder with 288 hourly time steps solves in
approximately four minutes (NY = 1), while the model requires forty-five minutes for
the 163-bus feeder (Feeder C) within the 240-bus test system. While computational
performance remains relevant, the method is valid for practical implementation for
larger-scale systems, especially considering that it only requires solving once for a
given system topology and load/generation level. Therefore, its solution time is not a
major limitation for real-world applications.

3.6. Chapter Summary

This chapter continued addressing the challenge of developing aggregate DER
models to represent innumerable invisible hybrid DERs in radial distribution systems.
Case studies were devised to display the effectiveness of the linearized formulation in
locating and sizing equivalent DER models and leveraging the allocated resources to
estimate unobserved bus voltage magnitudes and branch flows. The presented
analyses showed low average errors (<5%) for estimating unobserved branch flows
using limited voltage magnitude data. Higher error values (=15%) were limited to a few
cases outside the 95% percentile of estimates.

As per Chapter 2, the sensitivity of estimation results about different testing
conditions was discussed. Subsection 3.5.6 compared the performance of the MILP-
based approach, the MINLP method from Chapter 2, and two benchmark linearized
formulations. The MINLP method from Chapter 2 generally shows lower errors across
different meter coverage levels compared to all approaches, with the proposed MILP
formulation performing slightly better than the lossless MILP model.

However, in terms of average solution times, the MINLP model has higher
solution times than all its counterparts, particularly for small values of NY—with outliers
reaching beyond 3000 seconds. The linearized formulation presented in this chapter,
employing McCormick envelopes, showed a reasonable trade-off between
computational performance and accuracy compared to the linear variants, with a
tenfold decrease in solution time compared to the MINLP model.
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4. INTEGRATION INTO AN INDUSTRY-STANDARD TOOL FOR DISTRIBUTION
SYSTEMS MODELING AND ANALYSIS

4.1. Chapter Introduction

Distribution system decision-making seeks frequent power flow solutions to
determine the system state and execute optimal reconfiguration to manage feeder
loading. With the growing number of DERs connected to feeders, these algorithms
require longer solution times, impending operational decisions. Hence, utilities require
methods to develop aggregate DER models that balance computational efficiency with
numerical accuracy. As discussed in previous chapters, existing solutions to increase
system and DER visibility rely on extensive measurement infrastructure, which
becomes impractical at scale. Thus, there is a need for approaches that can be
effective under low system observability, enabling accurate feeder and DER modeling.

Building upon the methodologies developed in previous chapters—where
equivalent aggregate DER models were formulated using convex MINLP (Chapter 2)
and MILP (Chapter 3) approaches—this chapter focuses on their integration into an
industry-standard distribution system analysis tool, OpenDSS [44], which was chosen
based on its widespread adoption in the industry and the research community. By
implementing the developed equivalent models in OpenDSS, this chapter aims to
validate their ability to accurately reproduce system behavior while reducing
computational burden.

Previous chapters referred to the single-phase modeling of radial distribution
systems, assuming balanced three-phase system conditions. Therefore, another
outcome of the integration with OpenDSS is enabling the assessment of the impacts
of aggregate DER models in unbalanced systems. Different scenarios are devised by
varying the level of system unbalance caused by unbalanced load distributions across
all phases. Tested scenarios consider the traditional node voltage and line current
unbalance limits of 2% (per bus) and 20% (at the substation exit), respectively [20].

This chapter continues by detailing how previous results were integrated into
OpenDSS. Next, simulations and results are discussed, along with an algorithm used
to reduce system representation further by removing empty nodes and yield faster
solution times with high numerical accuracy.

4.2. Integration with OpenDSS

To facilitate analysis and subsequent processing of results data, the outputs of
the Python scripts implemented to solve the optimization problems referred to on
Chapter 2 and Chapter 3 were saved on a spreadsheet file format, which are not
directly readable by the OpenDSS engine. An auxiliary Python script was implemented
to parse results—specifically, to gather system information, equivalent DER and load
data, and time-series of load consumption and DER generation profiles. This approach
generates a text file (.dss extension) compatible with OpenDSS, following extensive
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documentation for model setting and data formatting of [92]. This procedure was
facilitated by the DSS-Extensions platform [93].

Consequently, two main system files were generated for each test system used:
an original file, with all loads and DERs explicitly modeled (assuming complete system
and DER visibility), and a reduced system version with the outcomes of the proposed
optimization models. For the analysis under unbalanced system conditions, different
unbalanced load distributions were generated by keeping constant the total load over
the three phases, but with different peak load values at phases A, B, and C. Voltage
unbalance levels are calculated per system node using the root-mean-square voltage
magnitudes at the fundamental frequency, as

V (o)
Voltage Unbalance = 100 g [%]

where V* and V'~ are the magnitudes of the positive and negative sequence voltages,
respectively.

The current unbalance is calculated for the total feeder current at the substation
exit. In normal operating conditions, this value is usually 10-20%.

1
Current Unbalance = 100 e [%]

where I* and I~ are the magnitudes of the positive and negative sequence of the
current at the substation exit, respectively.

4.3. Comparisons Between Detailed and Reduced System Models

The first test cases involve the 240-bus test system presented in Chapter 3.
Two testing conditions are considered: first, a comparison between two three-phase
unbalanced system models is performed; second, a comparison between two
unbalanced system models with balanced and unbalanced equivalent DERs.

The first analysis involves the detailed model with all loads and DERs
represented assuming complete system visibility (Model 1) and a reduced system
version with three-phase balanced DERs modeled according to the outcomes of the
proposed MILP model of Chapter 3 (Model Il). The second analysis consists of a
comparison between two modified versions of Model Il to generate system unbalance
by redistributing peak customer loads per system phase. Then, the different system
models are created by introducing DERs as three-phase balance models (the outcome
of the proposed algorithms) and as three-phase unbalanced models following the
same unbalance of customer loads. The latter model assumption is valid once it is
expected that DERs might be also installed at customer sites with single- and two-
phase connections. Moreover, it is assumed that DERs are not allowed to increase the
overall system unbalance, according to [20].

Comparisons between Model | and Model Il for the 240-bus test system is done
in Subsection 4.3.1. These comparisons are redone in Subsection 4.3.2 for the 10-bus
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and the 873-bus systems of Chapter 2. Subsection 4.3.2 also introduces an algorithm
to remove empty system nodes (i.e., nodes with no load or DER) from the equivalent
system files. The algorithm combines lines leading to empty nodes, reducing the total
number of nodes and lines in the files corresponding to model I, while yielding accurate
voltage and branch flow computations for non-empty nodes.

4.3.1. 240-bus distribution test system
e Three-phase balanced system analysis

The first tests consist of comparing results between three versions of the 240-
bus test system: a three-phase balanced model with all DERs and loads explicitly
modelled assuming complete system visibility (Model 1); the equivalent system
representation with 15 aggregate DER models derived from the proposed model
(Model II, with 5 DERs per feeder, NY =5, MCL = 100, 40% DER penetration, error-
free measurements); and a modified version of Model | (Model I-Il)—a three-phase
balanced system version considering that all DERs remain invisible to the system
operation and therefore cannot be accurately integrated into the system model.

The latter version assumes that the total feeder-level DER generating capacity
is equally distributed across the 15 system nodes with highest peak load
consumptions. This is a reasonable approach, as large electricity consumers tend to
procure DERs to economically offset the local consumption. Note that the modified
system version (Model I-l) results in the same number of aggregate DERs considered
in Model II.

Figure 4.1 illustrates the layouts of the detailed and reduced versions of the test
system. Line thicknesses in plots are scaled based on the maximum branch flow
values, typically observed at the substation exit. The axis labels refer to the (X,Y)
coordinates of system locations. Marked locations in the plots indicate points where
DERs connect to the network.

The relative error between the maximum branch flow values of systems | and Il
is approximately 1.60%, indicating that the reduced system closely approximates the
original in terms of branch flow calculations. Considering the deviations in power flow
calculations between the original and the reduced system files in OpenDSS, the p.u.
MAE, P95 AE, and Max AE values for voltages magnitudes are 0.0583, 0.0966, and
0.1438, respectively.

For Model I-Il, the maximum branch flow reported is 755.63 kW. This, in relation
to the full system representation of Model I, results in a 2.22% deviation. This result
indicates that the proposed method preserves the characteristics of the original system
better, with 1.60% deviation. Also, the MAE and Max AE values increase to 0.0758
and 0.1601, respectively, from 0.0583 and 0.1438. Moreover, if DER information is
completely absent from system data (e.g., not including feeder-level totals for each
DER type), DERs would not be modeled, resulting in a maximum branch flow of 935.69
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KW. This shows a 26.56% deviation from the complete system representation of
Model | and would lead to highly inaccurate assessments of the operating conditions.

Figure 4.1. System plots for the 240-bus case with DER locations marked. (a) Detailed
system with 128 DERSs. (b) Reduced version with 15 equivalent DERs.
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In the unbalanced three-phase version of the 240-bus system (Model lll), the
difference between the most loaded phase (Phase A) from the least loaded phase
(Phase B) is 13.88%, with the maximum bus voltage unbalance of 0.09% and current
unbalance at the substation exit of 6.99%, respectively. Phase current unbalance
levels ranging from 6.99% to 20% were generated by redistributing loads over the three
phases while keeping constant the total peak customer load summation per node.
Voltage unbalances are calculated for all system buses, while the current value refers
to the substation exit. Table 4-1 summarizes unbalance results (i.e., maximum node
voltage unbalance and substation current unbalance) for all the tested scenarios. The
table also shows comparison results between the system representations with
aggregate DER models being introduced as balance and unbalanced three-phase
models. Low deviations (< 5%) evidence that the representation of equivalent DERs
as three-phase balanced model is adequate, even under highly unbalanced system
conditions.

Table 4-1. Branch Flow Deviations Under Different System Unbalance Levels

Calculated Current Unbalance
6.99% 10% 15% 20%
(at the substation exit)

Maximum Node Voltage Unbalance 0.09% 0.12% 0.16% 0.21%

Average Branch Flow Deviation

(between feeder models with balanced and 1.16% 1.74% 2.00% 3.07%

unbalanced aggregate DER models)

4.3.2. 10-bus and 873-bus test systems

Table 4-2 summarizes power flow results obtained for the 10-bus and the 873-
bus test systems, comparing the performance of the original (Model I) and reduced
(Model Il) system files. The reduced system with aggregated DERs shows low average
voltage magnitude errors. Similarly, average feeder power errors remain low, though
maximum errors reach higher values. However, the 95th percentile errors for feeder
powers are 9.26% and 8.93% for the 10-bus and 873-bus systems, respectively,
indicating that higher errors are limited to a small portion of the system branches.
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Table 4-2. Power flow results obtained using OpenDSS. Balanced three phase models
for the 10- and 873-bus test systems.

DERs (#, MW) | DERs (#, MW) MAE (Max | MAE (Max AE)
Total L

System Demand — Original — Reduced AE) - — Branch
System System Voltages Flows
9 DERs (4 0.71% 2.98%

10-bus | 16.0 MW MW) 3 DERs (4 MW) (2.32%) (26.11%)
873- 33.6 MW 350 DERs 35 DERs (16.8 0.13% 2.01%

bus ' (16.8 MW) MW) (1.95%) (31.72%)

e Algorithm for further system reduction

Empty nodes (i.e., a node with no load or DER) might exist in the reduced
system versions with aggregated DER models. Therefore, Algorithm 1 was
implemented to combine lines leading to empty nodes, resulting in a further reduced
system model in terms of the total number of nodes and lines—which, in turn, affect
average power flow calculation times.

Algorithm 1: System Reduction Procedure for Simplifying OpenDSS Models

Input: OpenDSS (.dss) file containing system information.

Parse the input file to extract lists of active loads and DERs.

Parse the input file to extract line connections between nodes.

S; is the set of lines where bus i is the sending node.

repeat for all lines l;:i - j, l; =1,2,...,NT

if j is an empty node with

end

end

if S, = ¢ do

L —PV
D;,P; ,P;

—WT —BESS
)

=0do

remove line [; and node n from system data.

else do

foralli € S; do

createline l; =1, + 1, I3:i > k.

remove line [,:j — k from list of lines.

end

until all lines are processed or removed.
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Figure 4.2 and Figure 4.3 illustrate the original and reduced 10-bus and 873-
bus system cases. For the 10-bus system, the reduction consolidates the DERs from
9 units into 3, while the 873-bus system reduces the 350 original DERs to 35
aggregated units. DER locations are marked in each plot. The X and Y axes
correspond to fictitious geographical coordinates of system node data used to generate
the plots. Line thickness corresponds to the branch power flow magnitude at each
segment, scaled to the maximum value registered at the top of the figure in kW,
typically at the substation end-node.

Finally, Table 4-3 compares the solution times required for 10,000 power flow
calculations in OpenDSS using both test systems' original and reduced system
versions. For the 10-bus system, there was a 29% time reduction, while there was a
40% reduction for the 873-bus system. This evidences the computational advantages
of the reduced models, especially for larger systems when solving many power flow
scenarios.

Table 4-3. Solution time after 10,000 power flow calculations in OpenDSS.

Solution Time
System
Original System | Reduced System
10-bus 0.21s 0.15 s (129%)
873-bus 9.40s 5.63 s (140%)

Figure 4.2. 10-bus test feeder. (a) Original system. (b) Reduced system.
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Figure 4.3. 873-bus test system. (a) Original system. (b) Reduced system.
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4.4. Chapter Summary

This chapter presented an alternative approach to validate the dual outcomes
of the MIP formulations presented in Chapter 2 and Chapter 3—the development of
aggregate DER models and estimation of unobserved system states for radial
distribution systems. This was done by processing the resulting system information
(e.g., location and size of aggregate DER models, peak customer load per node,
system topology) and parsing it into an OpenDSS-compatible data structure.

By introducing equivalent feeder models into an industry-standard tool for
system modeling and analysis, this approach allows accurate and scalable modeling
of DER-rich distribution feeders. Aggregate DER models reduce the computational
burden when addressing distribution feeders with innumerable DERs while preserving
high numerical accuracy.

Simulation results on 10-bus and 873-bus test systems show branch flow
estimation accuracy levels above 95%, even under limited observability conditions.
The average computational time required to calculate 10,000 power flow solutions was
reduced by around 29% and 40% for the 10-bus and the 873-bus test systems,
respectively. Furthermore, the three-phase power flow compatibility check performed
for the 240-bus systems evidenced that introducing aggregate DER models into three-
phase feeder models in OpenDSS yield accurate (<5% deviation) results, even under
highly unbalanced system conditions.

78



5. CONCLUSION
5.1. Chapter-Wise Summary

The research presented in this thesis addressed the challenge of improving
steady-state analysis in radial distribution systems containing numerous invisible
DERs. Optimization-based methods aimed to develop equivalent aggregate DER
models representing innumerable invisible resources and to leverage resulting DER
models to enhance power flow calculations and enable estimation of unobserved
system states without relying on dense measurement infrastructure.

Chapter 2 presented a convex Mixed-Integer Nonlinear Programming (MINLP)
formulation to aggregate invisible DERs and estimate system states such as branch
power flows and node voltage magnitudes. The formulation enabled accurate system
analysis while minimizing measurement requirements and addressing the limitations
of traditional state estimation methods, especially when considering the traditional low-
observability of power distribution systems. Average branch flow estimation results
below 10% were observed using voltage magnitude measurements, even under low
meter coverage levels.

Chapter 3 extended the work by introducing linearized versions of the convex MINLP
formulation. The MILP-based approach provided an efficient trade-off between
computational speed and numerical accuracy, achieving an average tenfold reduction
in solution time compared to the MINLP formulation despite having an increased
number of constraints due to the introduction of McCormick envelopes and piece-wise
linear approximations of the original formulation. Comparisons with benchmark
linearized versions commonly employed when addressing radial distribution systems
using the line-wise power flow model were performed, demonstrating that the proposed
formulation achieves more numerically accurate results at comparable solution times
despite having more constraints than the reference linear approaches. Additionally,
hybrid DER models (PV-BESS DERs) were introduced to better represent the diversity
of modern distribution systems.

Chapter 4 presented an approach to validate the developed aggregate DER
models by integrating them into OpenDSS, an industry-standard simulation tool for
distribution system analysis. Simulations demonstrated high numerical accuracy (over
95%) when modeling distribution feeders with aggregate DER models and reduced
computational burden (up to 40% reduction of average power flow calculation times)
across various network sizes and system conditions, including unbalanced, three-
phase systems.

5.2. Thesis Contributions

Based on the thesis objectives laid out in Section 1 and the research outcomes
presented in the subsequent chapters, this research offers contributions to the field of
distribution system modeling. The main takeaways can be summarized as follows. This
research:
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Devised MIP-based optimization formulations (MINLP and MILP) to develop
aggregate DER models for radial distribution networks, addressing the
challenge of low DER observability in these systems.

The resulting formulations leverage system data that might be readily available
to system operators (e.g., substation flow measurements, voltage magnitude
measurements from existing metering devices at the bulk feeder level, weather
information).

Introduced hybrid DER models (e.g., PV-BESS) to better capture DER
configurations' diverse and evolving nature in modern distribution systems.
Proposed a framework for estimating unobserved system states, such as
branch flows and node voltages, without relying on dense measurement
infrastructure.

Achieved high numerical accuracy (over 90%) when estimating branch flows
using node voltage magnitude measurements, even under limited system
visibility conditions.

Demonstrated how the developed aggregate DER models could be integrated
into industry-standard simulation tools like OpenDSS, facilitating practical
implementation.

Achieved high numerical accuracy (over 95%) when using aggregate DER
models in three-phase distribution system models under balanced and
unbalanced conditions. Also, achieved substantial reductions in computational
time (up to 40%) for power flow calculations across various test systems.

Note that the proposed methods are particularly suited for cases where

innumerable invisible DERs exist, making it impractical for utilities to collect detailed
data for each site. If DER penetration is extremely low, no significant change in utilities’
practices is needed.

5.3.

Directions for Future Research

While the approaches developed in this thesis offer advances in the scalable

modeling of DER-rich distribution systems, several areas remain for future research
can be pursued. Examples include:

Enhanced System Modeling: Future work could extend the formulated problems
to include additional system equipment and operational constraints for more
detailed simulations. Examples include introducing voltage regulation
equipment, transformer tapping, different load models, and dynamic topological
changes.

Advanced Hybrid DER Models: Further research could focus on refining the
hybrid DER models to include additional configurations, such as those
incorporating demand response and improved representation of battery energy
storage DERs, considering the diverse typical behaviors of DER owners based
on various socioeconomic factors.
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Develop Application Cases: By leveraging aggregate DER models and the
system state estimation outcomes of this research, future work could focus on
developing application cases for distribution utilities. Examples could involve
optimizing meter placement strategies, enhancing feeder reconfiguration and
load transfer procedures, and improving existing power flow, optimal power
flow, and state estimation workflows.

Adaptation to Meshed Networks: Adapting the aggregate DER modeling
techniques to handle more complex network topologies, such as weakly
meshed or fully meshed distribution systems, would expand the applicability of
the methods to a broader range of power distribution cases.

Field Validation and Utility Collaboration: Collaborating with utilities to validate
these models in real-world systems would provide valuable insights and help
fine-tune these methods for practical, large-scale deployment.
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APPENDIX A—DEDUCTION OF THE LINE-WISE POWER FLOW EQUATIONS

In this section, the set of line-wise power balance equations for radial power
systems is presented. This deduction provides evidence that this model does not rely
on simplifying assumptions of the steady-state behavior of power systems and,
therefore, yields accurate results that can be directly compared to other power flow
models. If voltage angles are required, they can be calculated as a subsequent step
after the convergence of the preferred solution method.

Consider the series impedance element of the pi model of a distribution line or
transformer between buses i and j of Figure A.1. Subscripts F and S refer to the power
flows in the first and second ends of the line, respectively. Note that the shunt
admittance elements are omitted here for clarity but are considered as power injection
sources in (A.14) and (A.15).

The variables to be determined in this model are U, PS, PF, @5, and QF. The
total number of equations (and therefore, variables) is NLB + 4 - NT, with NLB and NT
being the number of load buses and number of system branches, respectively. NB
refers to the total number of buses in the system.

Figure A.1. Representation of the [-th line segment connecting buses i and j.

ViLQi V]LBJ

Z : N
< Ry +jXi; 7
S{ 20" = P[ +jQi SP260% = P +jQi

Using the voltage difference between the elements of line [, connecting buses i
and j (Kirchoff’s Voltage Law), yields:

Rearranging and applying S; 265 = Vic; - I
S50\
ViLBi - VJLHJ = <V]LHJ > . ZIAGZ (A2)

Multiplying both sides by the conjugate of V;26;:

V28, - (V;26;) — V2 = (S§£65)" - 2,26, (A.3)
Realizing the multiplication and converting into rectangular representation:

ViV - [cos(6; — 6;) + jsin(6; — 6;)] — V? = (Pf —jQF) - (R, + j X)) (A.4)
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Taking the real and imaginary parts of (A.4) result in (A.5) and (A.6),
respectively:
Vi-V;-cos(6; — 6;) = PPR, + QP X, + V} (A.5)
Vi-V;-sin(6; — 6;) = PPX, — Qf R, (A.6)
Since cos? + sin? = 1, we can add the squares of (A.5) and (A.6) and rearrange
to eliminate the resulting elements with opposing signals:

V2 2 2
Vi + 217 (Ple + 07X, — 7) + (Rf + X7) - (Psl +0Q7 ) =0 (A.7)

By making a substitution of the squared voltage magnitudes as U = V2:
U:
U? + 2U; (Ple + Q7 X, — 71) + (Rf +X7) - (PSIZ + sz) =0 (A.8)

Finally, dividing (A.8) by U; and replacing (PS; +@F°)- U7 by Ji—with J,
representing the square of the magnitude of the current flowing in line [:

U:
U + 2 (PZSRZ + Q7 X, — 71) +RE+XE)-J,=0 (A.9)
J = % (A10)

]

Accounting for the power loss over the line impedance and the incoming power
flows at the first and second ends of line [, we have:

SF/0p + 85205+ 2,20, -1} =0 (A11)
By substituting the squared line current magnitude of (A.10) and taking the real
and imaginary parts of (A.11), we introduce two expressions that account for the line
active and reactive losses:

Pl +P°+R, -], =0 (A.12)
Qf +Q'+X,- ;=0 (A13)

Finally, node-wise power balance equations for active and reactive power are
introduced as summations of all incoming branch flows for a specific node, as well as
accounting for the local consumption, generation, and the contribution of shunt
admittance elements.

Pei + Z P{j = U;- Gy = P[°** — pfen (A.14)
(k,i)EQFi (i,j)eQSi

Qici + Z Qfj+ Ui B = Q" — Q" (A.15)
(k,)EQF; (i,))eqs;

where QF; and QS; refer to the sets of lines that have bus i in their first and second
ends, respectively. These expressions can be rewritten by constructing a matrix M that
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is similar to the concept of a bus incidence matrix as follows. For each line [ in a system
with NT lines:

[MF];, = [M];; =1 If bus i is the first bus for line [
[MS];, = [M]jnri1 =1 If bus j is the second bus for line I
[MF];; = [M];; =1 otherwise

Note that the dimension of M is NB X 2 - NT and that it can be divided into two smaller
matrices as in (A.16).

[M] = [[MF][MS]] (A.16)
Using M, we can rewrite the node-wise active and reactive power balance
equations in matrix form, resulting in (A.17) and (A.18), respectively.

[M] 1;5] — U - G = pload _ pGen (A17)
QF
[M] Qs] + U - B = QLoad — QGen (A.18)

In summary, the line-wise model for representing radial distribution systems
consists of solving the set of equations constituted by (A.9), (A.12), (A.13), (A.17), and
(A.18) to determine U, PS5, PF, @5, and QF. This model was first proposed in [50], with
the authors presenting the construction of the Jacobian Matrix for solving the model
using the traditional Newton-Raphson method.
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APPENDIX B—TEST SYSTEM DATA USED IN SIMULATIONS

This appendix lists the sources to the original data for all test systems used in
simulations, as well as provides access to the actual spreadsheets used in this work.
Changes to original data consisted of introducing DERs into feeder models, as well as
generating bus coordinates for plotting in OpenDSS.

e 10-Bus Radial Distribution Test Feeder:
Original Source: This test system was developed during this research.

Data Access: https://doi.org/10.21227/5n30-5402

¢ 11-Bus Cigré Radial Distribution Feeder:

Original Source: Kai Strunz, et al., “Benchmark systems for network integration of
renewable and distributed energy resources,” Task Force C6.04.02, Technical Report
575, 2014.

Data Access: https://doi.org/10.21227/pgh4-zm86

o |EEE 69-Bus Radial Distribution Test System:

Original Source: M. E. Baran and F. F. Wu, "Optimal capacitor placement on radial
distribution systems," IEEE Trans. Power Deliv., vol. 4, no. 1, pp. 725-734, 19809.
Data Access: https://doi.org/10.21227/5n30-5402

¢ lowa State University’s 240-Bus Radial Distribution Test System:

Original Source: F. Bu, Y. Yuan, Z. Wang, K. Dehghanpour, and A. Kimber, “A time-
series distribution test system based on real utility data,” in 2019 North American
Power Symposium (NAPS), Wichita, KS, USA, 2019, pp. 1-6.

Data Access: https://doi.org/10.21227/pgh4-zm86

¢ North Dakota State University’s 873-Bus Radial Distribution Feeder:

Original Source: R. Kavaseri and C. Ababei, REDS: Repository of Distribution
Systems. https://www.dejazzer.com/reds.html (accessed September 30, 2024).
Data Access: https://doi.org/10.21227/5n30-5402
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Table B-1.

Weather Data

The weather data with one-year wind speed and direct solar irradiance values
with 1-hour intervals (8760 data points) is available alongside the abovementioned
system files. The 24-hour monthly average values used in Chapter 3 are provided in

Table B-1. Summary of the average monthly 24-hour weather data profile used in simulations.

. Wspd Irrad . Wspd Irrad . Wspd Irrad
Time | H M (m IZ) (W/m?) Time | H M (m /Z) (W/m?) Time | H M (m II:) (W/m?)
0 0 | Jan 7.9 0.0 96 0 | May 7.5 0.0 192 0 | Sep 9.1 0.0
1 1 Jan 7.9 0.0 97 1 May 7.5 0.0 193 1 Sep 9.0 0.0
2 2 | Jan 7.9 0.0 98 2 | May 7.5 0.0 194 2 | Sep 8.8 0.0
3 3 | Jan 8.0 0.0 99 3 | May 7.6 0.0 195 3 | Sep 8.6 0.0
4 4 | Jan 8.0 0.0 100 4 | May 7.6 0.0 196 4 | Sep 8.5 0.0
5 5 | Jan 8.0 0.0 101 5 | May 7.0 0.0 197 5 | Sep 8.1 0.0
6 6 | Jan 7.9 0.0 102 6 | May 6.8 13.3 198 6 | Sep 7.6 2.6
7 7 | Jan 7.9 0.7 103 7 | May 7.4 97.1 199 7 | Sep 7.6 47.9
8 8 | Jan 8.0 84.7 104 8 | May 7.7 243.6 200 8 | Sep 8.0 152.4
9 9 | Jan 8.1 2171 105 9 | May 7.9 376.9 201 9 | Sep 8.3 270.8
10 10 | Jan 8.1 372.0 106 | 10 | May 7.9 470.6 202 10 | Sep 8.4 395.3
1 11 | Jan 8.1 454.8 107 | 11 | May 8.0 507.9 203 | 11 | Sep 8.6 474.6
12 12 | Jan 8.1 469.0 108 | 12 | May 8.0 503.4 204 | 12 | Sep 8.8 503.0
13 13 | Jan 8.1 435.0 109 | 13 | May 8.0 463.9 205 | 13 | Sep 8.9 475.4
14 14 | Jan 8.0 334.6 110 | 14 | May 8.1 384.3 206 | 14 | Sep 8.9 362.9
15 15 | Jan 8.1 192.8 111 15 | May 8.1 269.5 207 15 | Sep 8.8 256.0
16 16 | Jan 8.2 50.7 112 | 16 | May 8.0 150.2 208 16 | Sep 8.6 133.2
17 17 | Jan 8.2 0.1 113 | 17 | May 7.8 56.1 209 17 | Sep 8.7 40.6
18 18 | Jan 8.0 0.0 114 | 18 | May 8.0 3.5 210 18 | Sep 9.0 0.7
19 19 | Jan 7.7 0.0 115 | 19 | May 8.4 0.0 211 19 | Sep 9.1 0.0
20 20 | Jan 7.4 0.0 116 | 20 | May 8.4 0.0 212 | 20 | Sep 9.2 0.0
21 21 | Jan 7.5 0.0 117 | 21 | May 8.1 0.0 213 | 21 | Sep 9.2 0.0
22 22 | Jan 7.6 0.0 118 | 22 | May 8.0 0.0 214 | 22 | Sep 9.1 0.0
23 23 | Jan 7.8 0.0 119 | 23 | May 8.0 0.0 215 | 23 | Sep 9.0 0.0
24 0 | Feb 6.5 0.0 120 0 Jun 7.3 0.0 216 0 Oct 8.8 0.0
25 1 Feb 6.5 0.0 121 1 Jun 7.4 0.0 217 1 Oct 8.8 0.0
26 2 | Feb 6.6 0.0 122 2 Jun 7.3 0.0 218 2 Oct 8.8 0.0
27 3 | Feb 6.8 0.0 123 3 Jun 7.0 0.0 219 3 Oct 8.8 0.0
28 4 | Feb 7.0 0.0 124 4 Jun 6.6 0.0 220 4 Oct 8.8 0.0
29 5 | Feb 7.0 0.0 125 5 Jun 5.7 0.0 221 5 | Oct 8.8 0.0
30 6 | Feb 71 0.0 126 6 Jun 5.6 15.5 222 6 Oct 8.7 0.0
31 7 | Feb 7.2 9.1 127 7 Jun 6.0 98.2 223 7 Oct 8.4 27.4
32 8 | Feb 7.2 71.9 128 8 Jun 6.4 190.8 224 8 Oct 8.7 157.1
33 9 | Feb 7.4 177.8 129 9 Jun 6.5 295.6 225 9 Oct 9.3 347.2
34 10 | Feb 7.6 284.4 130 | 10 | Jun 6.5 354.2 226 | 10 | Oct 9.7 465.5
35 11 | Feb 7.8 352.1 131 11 | Jun 6.5 380.6 227 11 | Oct 9.9 505.4
36 12 | Feb 7.9 350.9 132 | 12 | Jun 6.6 389.0 228 12 | Oct 9.9 506.0
37 13 | Feb 7.9 306.1 133 | 13 | Jun 6.5 377.9 229 13 | Oct 9.8 479.5
38 14 | Feb 7.7 229.9 134 | 14 | Jun 6.3 315.0 230 14 | Oct 9.5 394.4
39 15 | Feb 7.4 137.6 135 | 15 | Jun 6.1 235.7 231 15 | Oct 9.2 264.1
40 16 | Feb 7.3 50.5 136 | 16 | Jun 5.9 147.8 232 16 | Oct 9.2 130.1
41 17 | Feb 7.4 45 137 | 17 | Jun 5.8 64.9 233 17 | Oct 9.4 20.0
42 18 | Feb 7.5 0.0 138 | 18 | Jun 6.0 8.2 234 | 18 | Oct 9.5 0.0
43 19 | Feb 7.3 0.0 139 | 19 | Jun 6.3 0.0 235 | 19 | Oct 9.5 0.0
44 20 | Feb 7.2 0.0 140 | 20 | Jun 6.5 0.0 236 | 20 | Oct 9.3 0.0
45 21 | Feb 71 0.0 141 21 | Jun 6.6 0.0 237 | 21 | Oct 9.0 0.0
46 22 | Feb 6.9 0.0 142 | 22 | Jun 6.8 0.0 238 | 22 | Oct 8.8 0.0
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47 23 | Feb 6.7 0.0 143 | 23 | Jun 7.0 0.0 239 | 23 | Oct 8.6 0.0
48 0 | Mar 8.0 0.0 144 0 Jul 7.2 0.0 240 0 | Nov 8.2 0.0
49 1 | Mar 7.9 0.0 145 1 Jul 7.3 0.0 241 1 | Nov 8.1 0.0
50 2 | Mar 7.7 0.0 146 2 Jul 7.2 0.0 242 2 | Nov 8.0 0.0
51 3 | Mar 7.7 0.0 147 3 Jul 7.0 0.0 243 3 | Nov 7.9 0.0
52 4 | Mar 7.8 0.0 148 4 Jul 6.8 0.0 244 4 | Nov 7.8 0.0
53 5 | Mar 8.0 0.0 149 5 Jul 6.2 0.0 245 5 | Nov 7.8 0.0
54 6 | Mar 7.8 1.6 150 6 Jul 5.6 10.9 246 6 | Nov 8.0 0.0
55 7 | Mar 7.4 55.4 151 7 Jul 5.9 103.5 247 7 | Nov 8.0 1.9
56 8 | Mar 7.4 193.2 152 8 Jul 6.2 222.6 248 8 | Nov 7.9 64.8
57 9 | Mar 7.6 342.9 153 9 Jul 6.2 327.4 249 9 | Nov 8.0 2113
58 10 | Mar 7.8 449.2 154 | 10 | Jul 6.3 423.6 250 | 10 | Nov 8.3 331.8
59 11 | Mar 7.9 511.2 155 | 11 | Jul 6.2 475.1 251 | 11 | Nov 8.6 403.0
60 12 | Mar 8.0 499.2 156 | 12 | Jul 6.1 492.1 252 | 12 | Nov 8.6 432.2
61 13 | Mar 8.2 448.4 157 | 13 | Jul 6.0 456.9 253 | 13 | Nov 8.4 383.1
62 14 | Mar 8.3 378.2 158 | 14 | Jul 5.9 391.5 254 | 14 | Nov 8.2 301.0
63 15 | Mar 8.2 265.6 159 | 15 | Jul 5.8 283.2 255 | 15 | Nov 8.1 195.6
64 16 | Mar 8.0 144.5 160 | 16 | Jul 5.7 171.5 256 | 16 | Nov 8.2 80.8
65 17 | Mar 8.3 41.3 161 | 17 | Jul 5.6 76.8 257 | 17 | Nov 8.2 0.6
66 18 | Mar 8.7 1.0 162 | 18 | Jul 5.9 10.8 258 | 18 | Nov 8.2 0.0
67 19 | Mar 8.7 0.0 163 | 19 | Jul 6.3 0.0 259 | 19 | Nov 8.3 0.0
68 20 | Mar 8.5 0.0 164 | 20 | Jul 6.6 0.0 260 | 20 | Nov 8.4 0.0
69 21 | Mar 8.3 0.0 165 | 21 | Jul 6.8 0.0 261 | 21 | Nov 8.4 0.0
70 22 | Mar 8.2 0.0 166 | 22 | Jul 6.8 0.0 262 | 22 | Nov 8.4 0.0
71 23 | Mar 8.0 0.0 167 | 23 | Jul 6.9 0.0 263 | 23 | Nov 8.4 0.0
72 0 | Apr 8.7 0.0 168 0 | Aug 7.2 0.0 264 0 | Dec 7.3 0.0
73 1 | Apr 8.6 0.0 169 1 | Aug 7.2 0.0 265 1 | Dec 7.4 0.0
74 2 | Apr 8.5 0.0 170 2 | Aug 7.0 0.0 266 2 | Dec 7.4 0.0
75 3 | Apr 8.3 0.0 171 3 | Aug 6.8 0.0 267 3 | Dec 7.3 0.0
76 4 | Apr 8.1 0.0 172 4 | Aug 6.6 0.0 268 4 | Dec 7.2 0.0
77 5 | Apr 7.9 0.0 173 5 | Aug 6.0 0.0 269 5 | Dec 7.1 0.0
78 6 | Apr 7.5 4.8 174 6 | Aug 54 5.7 270 6 | Dec 7.0 0.0
79 7 | Apr 7.7 53.9 175 7 | Aug 5.6 88.2 271 7 | Dec 7.0 0.0
80 8 | Apr 8.2 153.6 176 8 | Aug 6.1 219.5 272 8 | Dec 6.9 33.4
81 9 | Apr 8.4 274.5 177 9 | Aug 6.4 369.5 273 9 | Dec 6.7 128.9
82 10 | Apr 8.6 368.9 178 | 10 | Aug 6.7 509.4 274 | 10 | Dec 6.6 252.4
83 11 | Apr 8.5 429.2 179 | 11 | Aug 6.8 589.4 275 | 11 | Dec 6.7 355.5
84 12 | Apr 8.3 454.6 180 | 12 | Aug 6.8 620.6 276 | 12 | Dec 6.9 399.4
85 13 | Apr 8.3 422.0 181 | 13 | Aug 6.9 565.6 277 | 13 | Dec 7.0 386.1
86 14 | Apr 8.2 363.0 182 | 14 | Aug 7.0 464.5 278 | 14 | Dec 7.2 314.7
87 15 | Apr 8.1 263.1 183 | 15 | Aug 6.9 322.7 279 | 15 | Dec 7.7 189.2
88 16 | Apr 7.8 151.6 184 | 16 | Aug 6.6 179.3 280 | 16 | Dec 8.0 44.7
89 17 | Apr 7.9 57.1 185 | 17 | Aug 6.6 73.0 281 | 17 | Dec 8.2 0.0
90 18 | Apr 8.2 1.7 186 | 18 | Aug 7.0 4.4 282 | 18 | Dec 8.2 0.0
91 19 | Apr 8.4 0.0 187 | 19 | Aug 7.2 0.0 283 | 19 | Dec 8.0 0.0
92 20 | Apr 8.3 0.0 188 | 20 | Aug 7.4 0.0 284 | 20 | Dec 7.7 0.0
93 21 | Apr 8.3 0.0 189 | 21 | Aug 7.5 0.0 285 | 21 | Dec 7.6 0.0
94 22 | Apr 8.4 0.0 190 | 22 | Aug 7.4 0.0 286 | 22 | Dec 7.4 0.0
95 23 | Apr 8.6 0.0 191 | 23 | Aug 7.4 0.0 287 | 23 | Dec 7.4 0.0
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APPENDIX C—MAIN PUBLICATIONS RELATED TO THIS RESEARCH

e P. N. Vasconcelos, F. C. L. Trindade, B. Venkatesh, W. Freitas, A. C. Zambroni
de Souza, and G. N. Taranto, “A Mixed-Integer Nonlinear Model to Support the
Operation of Distribution Systems with Hidden DERs,” IEEE Transactions on
Power Delivery, vol. 40, no. 1, pp. 484-496, Feb. 2025.

This paper presents the original convex MINLP formulation for aggregate DER
modeling and estimating unobserved system states in radial distribution systems. This
is an outcome of a research project in partnership with a distribution utility company in
Ontario, Canada. (Chapter 2)

e P. N. Vasconcelos, F. C. L. Trindade, and B. Venkatesh, “Linearized Optimization
for Enhanced Aggregate Modeling of Invisible Hybrid Distributed Energy
Resources,” IET Generation, Transmission & Distribution, vol. 19, no. 1, p. e70088,
May 2025.

This paper explores linearized formulations to enhance the solution of the
aggregate DER allocation and system estimation problems. The resulting formulation
enables the modeling of hybrid DERs (e.g., PV+BESS), provides estimates with high
numerical accuracy, and results that are twice as fast as the original formulation. The
integration of results with OpenDSS, an industry-standard power systems modeling
and analysis tool, is also discussed. (Chapter 3)

The content of Chapter 4 was, in part, organized as a conference paper and
accepted for presentation at the 2025 CIGRE International Symposium. The
conference will be held in Montréal, Canada, from Sep. 29, 2025, to Oct. 3, 2025.

Other publications were realized during this degree (from 2020 to 2025) but are
not directly related to this work. The main (unrelated) research outputs involve topics
in engineering education (two journal papers), multidisciplinary dynamic system
models (a conference paper and a book chapter), and other optimization applications
into power systems planning (two conference papers). A complete list of publications
is available at:

https://scholar.google.ca/citations?user=YwiXb9sAAAAJ&hl=en&oi=ao.
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