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RESUMO 

A modernização dos sistemas elétricos de potência, marcada pela ampla integração 
de Recursos Energéticos Distribuídos (DERs), está transformando redes de 
distribuição tradicionais em sistemas dinâmicos e ativamente gerenciados. No 
entanto, persiste um grande desafio operacional: a visibilidade limitada dos DERs não 
monitorados, denominados DERs invisíveis. Embora sejam fundamentais para a 
flexibilidade futura da rede, esses recursos introduzem incertezas que prejudicam a 
observabilidade do sistema, a tomada de decisões operativas e a resiliência. Esta 
pesquisa propõe uma estrutura metodológica baseada em modelos de otimização 
inteira mista para apoiar a operação de sistemas de distribuição ativos sob condições 
de baixa observabilidade dos DERs. A abordagem concentra-se no desenvolvimento 
de modelos agregados equivalentes para DERs invisíveis, permitindo que operadores 
de sistema infiram variáveis críticas—como magnitudes de tensão e fluxos de potência 
em ramos—utilizando dados de medição esparsos ou incompletos. Ao formular o 
problema como uma tarefa de Programação Não Linear Inteira Mista (MINLP) 
convexa, a metodologia permite o posicionamento e dimensionamento estratégico de 
modelos agregados de DERs que reproduzem o comportamento observado do 
sistema. A pesquisa também introduz uma variante linearizada do modelo, incluindo 
uma formulação de Programação Linear Inteira Mista (MILP) utilizando relaxações de 
McCormick, para aprimorar a tratabilidade computacional sem comprometer a 
precisão das estimativas. Além disso, modelos híbridos de DERs, combinando 
tecnologias como geração fotovoltaica e sistemas de armazenamento de energia, são 
incorporados para representar melhor o comportamento em regime permanente de 
redes de distribuição modernas com DERs invisíveis híbridos. Diversos estudos de 
caso demonstram que a estrutura proposta é capaz de estimar variáveis de estado 
ausentes de forma precisa mesmo em cenários de escassez de dados, alcançando 
baixos erros médios enquanto reduz significativamente os tempos de solução por 
meio das técnicas de linearização. A integração com o OpenDSS possibilita a 
validação da implementação em uma ferramenta-padrão da indústria, comprovando a 
precisão numérica elevada e a redução dos tempos de solução na modelagem de 
alimentadores equivalentes com DERs agregados representando inúmeros recursos 
invisíveis. De forma geral, este trabalho avança o estado da arte ao oferecer uma 
abordagem de modelagem escalável e eficiente em dados, que capacita operadores 
de sistemas de distribuição a manter operações confiáveis e eficientes mesmo diante 
do crescente número de DERs invisíveis. 

Palavras-Chave: Recursos Energéticos Distribuídos, Rede Equivalente, Cálculo de 
Fluxo de Carga, Otimização, Sistemas de Distribuição Radiais, Estimação de Estado. 

  



 
 

ABSTRACT 

The modernization of electric power systems, marked by the widespread deployment 
of Distributed Energy Resources (DERs), is transforming traditional distribution 
networks into dynamic, actively managed systems. However, a major operational 
challenge persists: the limited visibility of unmonitored DERs, hereon referred to as 
invisible DERs. While critical to future grid flexibility, these resources introduce 
uncertainty that hampers system observability, operational decision-making, and 
resilience. This research proposes a novel methodological framework based on mixed-
integer optimization models to support the operation of active distribution systems 
under limited DER observability. The approach focuses on developing equivalent 
aggregate models for invisible DERs, enabling system operators to infer critical 
network states—such as voltage magnitudes and branch power flows—using sparse 
or incomplete measurement data. By formulating the problem as a convex Mixed-
Integer Nonlinear Programming (MINLP) task, the methodology allows for strategically 
placing and sizing equivalent aggregate DER models that best replicate observed 
system behavior in steady-state. The research introduces a linearized model variant, 
including Mixed-Integer Linear Programming (MILP) formulation using McCormick 
relaxations to enhance computational tractability without compromising estimation 
accuracy. Furthermore, hybrid DER models combining technologies such as 
photovoltaic generation and battery storage are incorporated to better capture the 
steady-state behavior of modern distribution networks with invisible hybrid DERs. 
Comprehensive case studies demonstrate that the proposed framework can accurately 
estimate unobserved system states even under reduced number of metered buses, 
achieving low average errors while significantly reducing solution times through 
linearization techniques. The integration with OpenDSS enables the validation of the 
implementation in an industry-standard tool of equivalent feeder models with 
aggregate DER models representing innumerable invisible resources with high 
numerical accuracy and reduced solution times. Overall, this work advances the state-
of-the-art by providing a scalable, data-efficient modeling approach that empowers 
distribution system operators to maintain reliable and efficient grid operations despite 
the growing presence of invisible DERs. 

Keywords: Distributed Energy Resources, Equivalent Network, Load Flow 
Calculation, Optimization, Radial Distribution Systems, State Estimation. 
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1. INTRODUCTION 

1.1. Motivation 

The advancing modernization and expansion of electrical power systems 

already brought significant changes to the design and operation of power distribution 

systems. Adopting grid-edge technologies and distributed generation has set up a 

transition from a passive distribution system to a more dynamic one, where distribution 

utilities must actively manage power flows while integrating a growing share of 

Distributed Energy Resources (DERs) [1]. Although the pace of these transformations 

varies across different countries—with more developed economies enabling faster 

shifts in customer consumption patterns—emerging economies tend to gradually follow 

a similar trajectory, facing their own unique challenges in updating electricity 

infrastructure while ensuring energy equity and resilience to an increasingly 

unpredictable climate [2], [3]. 

These transformations accelerate as electricity replaces fossil fuels in 

transportation, heating, and industry [4]. The deep electrification of the economy, 

complemented by the rise of high-consumption, high-reliability loads—such as data 

centers and electric vehicle (EV) fast-charging hubs—introduces new challenges by 

increasing peak demand and straining local grid infrastructure [5]. In other words, the 

ever-growing interdependence between the power sector and key aspects of society 

further increases the need for improved power system practices, as disruptions in 

power supply may have cascading effects across multiple sectors. Given this 

landscape, the role of Distribution System Operators (DSOs) becomes even more 

critical [6], [7]. Their ability to maintain a reliable power supply will depend on enhanced 

system modeling, monitoring, control, and operational flexibility [8]. 

When deployed in a coordinated manner, DERs may prove valuable for DSOs 

in dealing with voltage regulation and congestion management [9]. However, the 

impracticality of monitoring and integrating DER data at scale leaves many of these 

resources invisible to the operation and challenges system observability requirements 

for effective decision-making. This, associated with the invisible nature of small-scale 

DERs, can lead to unexpected power flows and potential voltage and grid unbalance 

problems [10], [11]. Invisible DERs refer to resources typically installed within the 

distribution utility’s service area, being unmonitored due to the limited capability to 

collect, process, and integrate data from many small-scale resources. DERs might also 

remain invisible when connected to feeder sections that are managed by third-party 

entities with limited data exchange with primary utility. 

In such cases, granular data related to each DER site remains unknown, such 

as real-time power output and control settings, introducing challenges related to data 

availability and integration with power flow and optimal power flow tools DSOs may 

employ [12]. Although not accurately representing invisible DERs might not be 

detrimental to the analysis of distribution systems under low DER penetration, some 
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utility practices are affected in scenarios with increased DER participation [13]. 

Examples include resource allocation [14], load transfer [15], voltage regulation [16], 

overcurrent protection [17], and system restoration [18]. 

Considering the survey results from [19], most distribution utilities tend to only 

monitor in real time and explicitly model DER units exceeding 250 kW of generating 

capacity. However, there are cases where only DERs above 1 MW of capacity are 

included in system models, leaving a larger number of existing DERs invisible to the 

operation. As a result, while network information and the total installed DER capacity 

at the feeder level might be known, the individual contributions and collective impact 

of small-scale DERs are not directly observable. On the other hand, certain feeder 

sections might be operated by third-party entities that restrict data sharing with the 

primary utility. These network sections are typically treated as hidden from the utility’s 

perspective, with limited information about the DERs and loads they contain. The only 

DER information that might be accessible in these scenarios is the peak DER 

generating capacity for each type of DER present, requiring equivalent models to 

address their impact in the main trunk feeder. 

For example, in Ontario, Canada, power distribution utilities classify feeders into 

M- and F-class [20]. M-class feeders contain sections managed by third-party 

companies, such as industrial or commercial facilities or private operators controlling 

part of the distribution infrastructure. These feeders tend to be more complex, 

particularly due to lacking system visibility; however, F-class feeders, despite being 

primarily controlled by the distribution utility itself, may still face challenges in assessing 

the impact of DERs on grid performance due to the presence of innumerable 

unmonitored small-scale resources. Examples of distribution feeders facing massive 

integration of small-scale DERs can be found in Brazil after the country-wide uptake of 

the solar photovoltaic (PV) market since 2022—after the enactment of Law no. 

14.300/2022 [21]. This law established the legal framework for distributed generation. 

On average, there were two PV installations per minute at the power distribution level 

until the end of 2024 [22], adding up to three million individual PV installations. Since 

the average installed generating capacity is around 12 kW per system (total country-

wide aggregated total is approximately 34.8 GW [23]—considering distributed 

generation only), most installations remain unmonitored and thus invisible to local 

operators. 

In addressing the challenge of improving the modeling fidelity of distribution 

systems in the presence of invisible DERs, much of the existing research literature 

focuses on developing equivalent models and methods to estimate their impact in 

steady-state. Many studies have proposed aggregate DER representations, relying on 

statistical and heuristic approaches to estimate power generation and consumption 

patterns of invisible resources. Other works have explored state-estimation techniques 

in the presence of invisible DERs, often using algorithms that can infer the presence 

and behavior based on real-time network conditions and historical data. 
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1.2. Literature Survey 

The efforts to improve system visibility, considering the presence of invisible 

DERs, have gained prominence in recent years, and three main classes of methods 

are identified in the literature. Some methods aim to identify the aggregate power 

output of invisible DERs downstream to a metering device by disaggregating DER 

generation from flow measurements [25]-[31]; others aim to improve system visibility 

by identifying the location of invisible DERs using voltage sensitivity data [32]-[35]. The 

third class of methods focuses on distribution system state estimation in the presence 

of invisible DERs [36]-[43]. 

Ref. [24] employs a linear regression method to extract the peak aggregate PV 

capacity in a region downstream to a metering device, assuming the availability of 

accurate weather (e.g., solar irradiance) and line current measurements. Ref. [25] 

proposes an improved regression method considering the spatial correlation between 

the aggregate output of hidden PVs and data from neighboring (visible) PV plants. 

Similarly, regression models are used in [26] to estimate the peak generating capacity 

of PV and EV charging stations aided by an artificial neural network (ANN) model for 

feature extraction. The authors in [27] employ a statistical approach for behind-the-

meter unit detection and capacity estimation using data-mining heuristics. In [28], a 

parametric PV model is built based on manufacturer data to approximate simulations 

to existing field measurements and estimate behind-the-meter PV generation. With 

equivalent parameters determined at multiple locations, the authors employ a 

clustering method to obtain aggregate models and estimate their impact at the feeder 

level. Ref. [29] defines a baseline demand curve from which PV generation is obtained 

when a significant deviation from historical recordings is identified. In [30], a machine 

learning model trained with feeder loading data is used to estimate the power output 

of unmonitored PV sites and is validated under various weather conditions. 

The limitation of such methods arises from their pre-definition of areas of interest 

for analysis (e.g., areas that the system modeler knows/suspects an unmonitored DER 

may exist) and their reliance on data from visible DER sites to support model training 

and tuning. These limitations are addressed in [31], where branch flow measurements 

at the substation exit are disaggregated into net load and DER output data per DER 

type in the feeder. This accurately estimates the steady-state behavior of existing 

DERs, eliminating the need for granular data to assess the impact of invisible DERs at 

the feeder level. 

Regarding models based on voltage sensitivity information, the authors in [32] 

determine buses to which invisible DERs are connected by assuming a linear 

relationship between node voltage magnitudes and active power injections from 

unmonitored resources. This approach, however, requires power flow calculations to 

determine bus voltage sensitivities. Algorithms for voltage magnitude [33], [34] and 

voltage sensitivity estimation [35] considering the presence of DERs improve the 

solution. However, these cannot be directly applied when considering that not all DER 
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data might be available for power output estimation. Hence, equivalent models must 

be developed to represent the impacts of these resources and yield numerically 

accurate power flow calculations. 

To enable state estimation in low-observable distribution systems with DERs, 

Ref. [36] employs a weighted least absolute value estimator using pseudo-

measurements to update missing system and DER parameters and improve power 

flow calculations. Pseudo-measurements are generated using average historical load 

data, while in [37] they are generated based on assumed correlations between existing 

measurements, the power output of visible DER sites, and unmetered system locations 

and DERs. The authors discuss the existence of smoothed behavior resulting from 

aggregating small, less predictable invisible DERs and loads connected at the low-

voltage level. 

Other state estimation methods employ machine learning models trained using 

time-series power flow calculations [38], physics-informed neural networks [39], and 

probabilistic models considering sampling of low-fidelity customer-side data [40]. Other 

approaches leverage accurate system topology and line impedance data to propagate 

known voltage values across similar buses and enhance system observability [41], 

[42]. Ref. [43] proposes a coupled power flow formulation, combining two subsequent 

snapshots for recovering system states over short-time intervals. A set of determined 

parameters is introduced by considering that all injections from unmetered nodes are 

stationary. Then, a state estimation problem is formulated to infer power injections, 

assuming that the variability of measurements arises from the variability of the power 

output of invisible DERs. 

While these methods integrate low-fidelity information to enhance system 

visibility, considering the presence of DERs, their performance is limited by increased 

data requirements, assumptions over the behavior of unmetered nodes, and 

measurements at DER locations or buses with similar voltage profiles. Refs. [36]-[42] 

also require full system observability. Even though [43] does not have the same 

requirements, it relies on consecutive power flow snapshots, and all non-metered 

buses must be connected to a metered one through vertex-disjoint paths (i.e., paths 

with no common shared nodes, except for the source and end locations). Moreover, 

many of these methods are computationally intensive and operate on detailed network 

models without offering a pathway to reduced-order representations—which is 

essential for improving scalability and integration into existing utility workflows. 

Given this context, there is an opportunity to explore novel methods to establish 

equivalent aggregate representations of invisible DERs to enhance their visibility and 

improve the steady-state analysis of power distribution systems with invisible DERs. 

Equivalent DER models representing innumerable invisible resources can be 

integrated into traditional power flow and optimal power flow solution algorithms to 

improve the fidelity of the resulting system models. This research explores Mixed-

Integer Programming (MIP) formulations that enable optimally allocating (locating and 
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sizing) aggregate DER models and estimating unobserved system states. This 

research also explores how these models can be integrated into utility-standard power 

systems modeling and analysis tools, such as OpenDSS [44], for enhanced steady-

state studies involving scenario analysis. 

An important feature of the proposed framework is the control over the number 

of resulting equivalent invisible DER models, enabling the aggregate representation of 

these resources and reduction of the resulting system model. This leads to simplified 

yet accurate models that expedite the solution time required for power flow analysis. 

This proves beneficial for studies requiring many scenarios and the modeling of larger-

scale systems with innumerable DERs. 

1.3. Thesis Objective 

The research reported in this thesis aims to enhance the steady-state analysis 

of radial distribution systems in the presence of invisible DERs by developing 

equivalent aggregate DER models that improve power flow calculations. Specifically, 

the research explores nonlinear and linearized MIP formulations to allocate aggregate 

DER models that capture the combined, steady-state impact of many invisible DERs. 

Another outcome of the proposed optimization formulations is the estimation of 

unobserved system states (e.g., node voltage magnitude and branch flows) without 

relying on dense measurement infrastructure. In this sense, the main objectives and 

highlights of this research can be listed as: 

• To develop optimization-based methods to determine the locations and generating 

capacities of equivalent aggregate DER models representing innumerable invisible 

DERs. 

• To improve the accuracy of steady-state system analyses by integrating the 

resulting equivalent models into traditional power flow and optimal power flow 

solution algorithms. 

• To enable the estimation of unobserved system states in low-observable radial 

distribution networks without relying on dense measurement infrastructure. 

• To ensure that the resulting outputs are compatible with utility-standard tools for 

power systems analysis and facilitate practical implementation. 

Figure 1.1 contrasts the traditional and future (with the deployment of equivalent 

aggregate DER models) workflows for utilities to perform scenario analysis (e.g., power 

flow calculations) with DER-rich distribution feeders. In the traditional approach (left 

side), utilities rely on a detailed system model that requires full visibility of all DERs. 

While this method provides high accuracy, it depends on extensive data collection and 

processing, which becomes increasingly burdensome as more small, often 

unmonitored DERs are added to the system. 

The future version (right side) proposes a more efficient method by using a 

simplified network model combined with available measurement data to build a 

reduced system model where DERs are aggregated. This approach lowers DER data 
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requirements and enables the representation of invisible resources while preserving 

system behaviors. The reduced model supports faster power flow solutions—due to 

the reduced number of elements represented—allowing utilities to run scenario 

analysis more efficiently—a key contribution of this research. 

 

Figure 1.1. Comparison of traditional and future workflows for power flow scenario 

analysis in DER-rich distribution feeders. 

 

 

1.4. Thesis Structure 

Each chapter of this thesis follows a logical progression from theoretical 

background to methodology, validation, and practical application—ultimately 

demonstrating the effectiveness of the proposed framework in addressing the 

challenge of developing accurate aggregate models for invisible DERs. The 

interactions between each section, along with the corresponding inputs and outputs, 

are depicted in Figure 1.2. 

 

Figure 1.2. An overview of the research reported in this document, along with the 

corresponding inputs and outputs of the models in each section. 
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Each chapter can be summarized as follows: 

• Chapter 2 presents the main convex mixed-integer nonlinear formulation, its 

modeling assumptions, and its outcomes in terms of developing equivalent 

aggregate DER models for radial distribution systems. 

• Chapter 3 explores linearized versions of the original formulation to enhance 

computational performance while yielding numerically accurate results. The 

modeling of hybrid DERs (e.g., PV+BESS) is introduced to better represent existing 

DER configurations. 

• Chapter 4 discusses the practical implications of the proposed methods, including 

their integration into OpenDSS and potential application cases for distribution 

utilities. 

• Chapter 5 concludes the thesis by summarizing key findings and suggesting future 

research directions. 

• Appendix A provides the deduction of the line-wise power flow model used to 

represent the steady-state behavior of radial distribution systems. This section was 

included to inform the potential reader that the power flow equations employed in 

formulations yield exact solutions. 

• Appendix B presents all the data used in simulations to allow the replication of 

results. 

• Appendix C outlines the publications related to this research and other research 

outputs realized during this Ph.D. degree. 
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2. A MINLP MODEL FOR THE AGGREGATE MODELING OF INVISIBLE DERS1 

2.1. Chapter Introduction 

This chapter presents the proposed Mixed-Integer Nonlinear Programming 

(MINLP) approach designed to develop aggregate models of invisible DERs and 

leverage the resulting equivalent models to enhance the operation and planning of 

radial distribution systems. The chapter begins by providing minimal introductions to 

the key concepts serving as the basis for the modeling aspects of the research. Since 

the proposed optimization approach relies on system measurements and historical 

data, discussing system visibility and state estimation issues in modern distribution 

systems is relevant. The rationale behind the chosen power flow model to represent 

the steady-state behavior of radial distribution systems is also discussed, along with 

algorithmic considerations regarding the convexity and computational complexity of 

optimization problems in the power systems context. 

Following the theoretical discussion, the chapter details the proposed MINLP 

formulation, along with a presentation and discussion of the results. The resulting 

aggregate DER models represent the aggregated effects of many invisible DERs, 

enabling enhanced steady-state analysis and power flow estimation—offering practical 

advantages, as they can be integrated with existing distribution system analysis tools 

such as OpenDSS, as discussed in Chapter 4. 

2.2. Theoretical Background 

2.2.1. Distribution system visibility and state estimation issues 

System visibility in power distribution networks refers to the extent to which a 

DSO can assess the state of the grid in real-time based on the availability of 

measurements for bus voltages, power injections, and branch flows. The level of 

visibility is determined primarily by the placement of metering infrastructure, the 

frequency of data collection, and integration into supervisory and control systems. 

Unlike in transmission systems, the practical implementation of state estimation 

methods for distribution systems has traditionally been overlooked, as these networks 

operated predominantly under unidirectional power flows from substations to 

consumers, relying on simple radial configurations and predetermined operational 

settings [45]. However, with increasing penetration of DERs, power flows are not 

strictly unidirectional, and distribution systems have become more dynamic. New forms 

of flexible loads, demand response programs, and the impending deep electrification 

further contribute to increased operational complexity and uncertainty. 

A common approach for increasing system visibility consists of using pseudo-

measurements, which are synthetic or simulated measurements not directly derived 

from physical sensors but often based on historical data, forecasting, and statistical 

 
1 This chapter’s contents were published in part in the paper: P. N. Vasconcelos, F. C. L. Trindade, B. Venkatesh, W. Freitas, A. 

C. Zambroni de Souza, and G. N. Taranto, “A Mixed-Integer Nonlinear Model to Support the Operation of Distribution Systems 
with Hidden DERs,” IEEE Transactions on Power Delivery, vol. 40, no. 1, pp. 484-496, Feb. 2025. © 2025 IEEE. 
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assumptions of unobserved quantities. Recently, more researchers have explored 

state estimation techniques incorporating data from advanced metering infrastructure 

(AMI), phasor measurement units (PMUs), and intelligent electronic devices (IEDs) 

[46]. However, practical implementation by distribution utilities has been limited, as 

discussed in the industry survey results of [47], with most respondents stating that lack 

of data, data quality, and data integration issues are current limitations for accurate 

system modeling and estimation. Concerning DERs, most respondents reported that 

only utility-scale installations are actively monitored—typically above the 250 kW of 

peak generating capacity but above the 1 MW limit in some cases—leaving small-scale 

and behind-the-meter resources invisible to DSOs. 

As a result, state estimation has become an area of interest for DSOs. However, 

achieving full observability is often impractical due to the high cost of deploying 

metering devices at scale [48]. This challenge presents a research opportunity: 

developing novel methods to leverage existing data (such as feeder-level aggregated 

information) and enhance steady-state system representation even under low-

observable conditions—an outcome of this thesis. 

2.2.2. The nature of invisible DERs 

In this work, it is considered that invisible DERs in distribution systems stem 

from two primary conditions: the presence of small-scale DERs below the monitoring 

threshold and hidden feeder sections where visibility is restricted due to limited data 

access. Each condition presents unique challenges for real-time monitoring, modeling, 

and steady-state system analysis. 

Small-scale DERs refer to units whose generating capacities fall below utility 

monitoring thresholds—commonly around 250 kW. These DERs are not individually 

metered or directly observable in real time. As a result, their power injections and 

control behaviors are unknown to system operators. While utilities may maintain 

aggregate information on installed DER capacity at the feeder level, they typically lack 

the integration of detailed site-specific data such as precise geographical location, 

generation profiles, fuel types, and control schemes. This lack of granularity creates 

significant uncertainty in assessing the operational impacts of these resources, 

especially considering scenarios at high DER penetration levels. 

Hidden feeder sections further contribute to DER invisibility in the system. 

These, include parts of the network—often feeder laterals—that are either outside of 

the utility’s metering scope or managed by third-party entities. In such cases, data 

sharing between the third party and the primary utility may be limited or entirely absent. 

Although voltage magnitude measurements might still be available at specific points 

within the system (e.g., via protection relays, billing meters, or AMI devices), they often 

do not provide insight into the DER activity or load conditions within these 

unobservable sections. Figure 2.1 illustrates a representative radial feeder where 

voltage magnitude measurements are available along the bulk feeder section at the 

medium voltage (MV) level, while lateral branches remain unmonitored and potentially 
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host invisible loads and DERs. Note that, even in cases where voltage measurements 

are available at nodes with invisible DERs, these measurements might not be 

dedicated to DER monitoring. 

 

Figure 2.1. Diagram of a radial distribution system with hidden sections containing 

invisible DERs. 

 

 

Table 2-1 provides an overview of the network, DER, and measurement 

information availability for the scenarios with small-scale DERs and hidden feeder 

sections, as assumed in this research. This distinction informs the modeling 

assumptions and the structure of the proposed aggregate DER models and their 

integration with traditional power flow solution methods. 

 

Table 2-1. Summary of the availability of system and DER information. 

Case 
Network 

Information 

DER 

Information 

Measurement 

Availability 

Small-

scale 

DERs 

Known feeder details 

(line impedances, 

topology, bus 

locations). 

Utility does not monitor 

DERs; only aggregated 

peak DER capacities 

known. 

Bus voltage magnitudes (if 

available); no direct DER 

measurements. 

Hidden 

feeder 

sections 

Main feeder details 

are known; limited or 

no data of third-party 

sections. 

Utility cannot monitor 

DERs as data is 

inaccessible; only 

aggregated peak DER 

capacities known. 

Bus voltage magnitudes (if 

available); equivalent 

representations required 

for unobservable sections. 
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2.2.3. Power flow model for radial distribution systems 

A power flow model is a mathematical representation of an electrical network 

describing how power is distributed across the system under steady-state conditions. 

The model’s equations must be sufficient to describe the relationship between bus 

voltages, power injections, and branch flows across all system components. There are 

many ways to categorize power flow models, with a frequent approach being 

separating bus injection and line-wise methods [49]. The former represents the power 

system regarding nodal power injections, while the latter tracks power flows along 

individual system lines, where Kirchoff’s laws can be applied directly to model branch 

currents and voltage drops. 

Although bus-injection models tend to be advantageous for large-scale power 

flow analysis since they leverage sparse matrix techniques for computational 

efficiency—while the Jacobian matrix for line-wise models tends to be relatively 

denser—the line-wise power flow formulation proposed in [50] leads to a more 

linearized set of equations. This property supports the integration into classical 

optimization problems. Such a feature exists due to the absence of voltage angle in 

the equations, obtained by rearranging the quadratic term referring to the voltage 

difference between two ends of a line. This step was first addressed in [51], referring 

back to the DistFlow equations for the line-wise model for radial distribution systems 

proposed by [52]. 

Appendix A provides a deduction of the line-wise power flow equations used in 

the foregoing sections to model radial distribution systems with DERs. This appendix 

was introduced to discuss the model and evidence that no simplifying assumptions are 

made. As discussed in [53], these equations yield an exact model of radial distribution 

systems even in the conditions of reverse power flow. The reader is referred to [54] for 

a line-wise model addressing meshed systems. 

2.2.4. Convexity in optimization problems 

Convexity is a key concept in optimization that affects the tractability and 

solvability of optimization problems. An optimization problem is considered convex if 

its objective function is convex and the feasible region, defined by its constraints, is 

also convex. This means that any local minimum is also a global minimum—a desirable 

property for optimization, which ensures the algorithm converges to an optimal solution 

without getting trapped in suboptimal points. Formally, a function 𝑓 is convex if, for any 

two points in its domain, 𝑥 and 𝑦 [55], 

𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≥ 𝛼𝑓(𝑥) +  (1 − 𝛼)𝑓(𝑥), ∀𝛼 ∈ [0,1]. 

This means that any point on the straight line between (𝑥, 𝑓(𝑥)) and (𝑦, 𝑓(𝑦)) is 

greater than or equal to the function value at the corresponding point between 𝑥 and 

𝑦. If 𝑓 is twice-differentiable, it is only convex if its Hessian matrix (constituted of all its 

second-order partial derivatives) is positive semidefinite, i.e., ∇2𝑓(𝑥) ≽ 0. 
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In the context of power systems, convexity depends on the power flow 

equations used to describe the system's behavior. The traditional bus-injection model 

often leads to nonconvex optimization problems, especially because the power flow 

equations are inherently nonlinear, involving products of voltage magnitudes and 

trigonometric functions with phase angles [56]. In contrast, the aforementioned line-

wise model yields equations that are more amenable to convex optimization 

techniques [57]. The transformation of power flow equations into convex formulations 

is primarily performed using relaxation and linearization techniques. A more detailed 

discussion of traditional linearization methods applied when addressing radial 

distribution systems is presented in Chapter 3. 

Relaxation techniques are employed to convexify inherently nonconvex 

problems, enabling the use of efficient convex optimization methods. These techniques 

often involve approximating or reformulating the original problem to obtain a convex 

counterpart that is theoretically easier to solve. For the scope of this research, the set 

of line-wise power flow equations of [50] is convexified using a second-order conic 

relaxation of the expression used to calculate the squared magnitude of line currents, 

as described in [61]. According to the authors, this approach yields exact solutions 

given that certain conditions are met, including a radial system topology and upper 

bounds on bus voltage magnitudes. By leveraging convex characteristics, the 

proposed optimization framework—described in the following sections—balances 

accuracy and computational feasibility, making it suitable for real-world applications. 

The MINLP formulation for aggregate modeling of invisible DERs is presented next. 

2.3. Problem Statement 

Consider Figure 2.2, identifying the observable and unobservable sections of a 

representative distribution feeder comprised of 𝑁𝐵 buses. The diagram of Figure 2.2(a) 

represents the main trunk of the feeder, with each node representing unmetered 

laterals with loads and DERs. The system visibility is limited because only one meter 

is present at the substation end-node. Under normal operation with few DERs, the 

system topology and estimations can be used to infer the state of unobserved voltages 

and branch flow magnitudes. However, estimating the state of the distribution system 

becomes a challenge with the massive integration of invisible DERs. 

Despite this challenge, it is possible to obtain 𝑁𝑌 equivalent representations of 

invisible DERs, as depicted in Figure 2.2(b), which leads to accurate power flow 

calculations. The measured power system quantities (e.g., voltage magnitudes and 

substation flows) are matched while the remaining unobserved variables are estimated 

considering the steady-state output of equivalent DERs. This is the basis of the MINLP 

formulation presented in this chapter. 
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Figure 2.2. (a) Radial distribution feeder with observed and unobserved sections, 

including invisible DERs; (b) equivalent system representation with aggregate DER 

models. 

 

(a) 

 
(b) 

 

2.3.1. Objective function 

The objective function minimizes the sum of weighted squared measurement 

residuals, encompassing estimates on measured voltage magnitudes. In instances 

where measurements for active and reactive power injection or branch flows exist, their 

respective squared residuals can be incorporated into (2.1) following the same 

structure. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ‖𝑲𝑼⨀(𝑼 − 𝑼̃)‖
𝐹

2
 (2.1) 

where ⨀ represents the element-wise product of two matrices of the same dimensions. 

Subscript 𝐹 denotes the Frobenius norm, computed as the sum of squares of all 

elements of the resulting matrix. 

Matrices 𝑼 and 𝑼̃ contain squared voltage magnitude estimates and 

measurements, respectively, referring to each metered bus with 𝑁𝐷𝑇 data entries in 

historical data. Matrix 𝑲𝑼 also has dimension 𝑁𝐷𝑇 × 𝑁𝑀 and contains weights for 

calculating of the weighted Frobenius norm of the measurement residuals matrix. This 

is a symmetric and positive definite matrix. Larger weight values assign relative 
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importance to each dataset, ensuring that more accurate measurements are more 

influential on the results. This is particular useful when a heterogeneous combination 

of voltage measurements exist—with some meters having higher accuracy class—and 

to allow the introduction of lower-fidelity data, such as pseudo-measurements. Note 

that the analyses presented in this chapter assume that all voltage magnitude 

measurements have the same weight value. This implies that the corresponding 

metering devices available in the targeted system have the same accuracy class. 

2.3.2. Power flow and system operation constraints 

Constraints (2.2)-(2.7) model the electrical behavior of a radial distribution 

system and ensure the solution is physically feasible. These equations correspond to 

the line-wise power flow model proposed by [50]. An important feature of the model is 

the absence of voltage angle, obtained by rearranging the quadratic equation referring 

to the voltage difference between two ends of a line (see Appendix A). 

Eq. (2.2) is a product of applying Kirchoff’s voltage law for the pi model of a line 

or transformer between buses 𝑖 and 𝑗. Eqs. (2.3) and (2.4) account for the active and 

reactive power losses, respectively. Eqs. (2.5) and (2.6) deal with the node-wise active 

and reactive power balances, respectively, and were modified to explicit the power 

output of solar photovoltaic (PV) and wind (WT) DERs. Eq. (2.7) corresponds to the 

second-order conic relaxation for calculating the square of the magnitude of the current 

flowing in branch 𝑙 and time 𝑡. 

This relaxation yields a convex formulation and is adopted to enhance solver 

efficiency while ensuring optimality. As noted in Section 2.2.2., this relaxation is exact 

when addressing radial power systems with the line-wise power flow model, even in 

the conditions of reverse power flow [53], [61]. Note that these expressions are 

evaluated for every time interval in historical data. This notation was omitted here for 

clarity; however, all parameters and variables with subscript 𝑡 are updated for each 

time interval. 

𝑈𝑗,𝑡 + 2 (𝑃𝑙,𝑡
𝑆 ⋅ 𝑅𝑙 + 𝑄𝑙,𝑡

𝑆 ⋅ 𝑋𝑙 −
𝑈𝑖,𝑡

2
) + 𝐽𝑙,𝑡 ⋅ 𝑍𝑙

2 = 0, (𝑖, 𝑗) ∈ 𝑙  (2.2) 

𝑃𝑙,𝑡
𝐹 + 𝑃𝑙,𝑡

𝑆 + 𝑅𝑙 ⋅ 𝐽𝑙,𝑡 = 0 (2.3) 

𝑄𝑙,𝑡
𝐹 + 𝑄𝑙,𝑡

𝑆 + 𝑋𝑙 ⋅ 𝐽𝑙,𝑡 = 0 (2.4) 

[𝑴] [
𝑷𝒕

𝑭

𝑷𝒕
𝑺] − 𝑼𝒕 ⋅ 𝑮 = 𝑷𝒕

𝑳 − 𝑷𝒕
𝑷𝑽 − 𝑷𝒕

𝑾𝑻 (2.5) 

[𝑴] [
𝑸𝒕

𝑭

𝑸𝒕
𝑺] + 𝑼𝒕 ⋅ 𝑩 = 𝑸𝒕

𝑳 (2.6) 

𝑈𝑗,𝑡 ⋅ 𝐽𝑙,𝑡 ≥ 𝑃𝑆
𝑙,𝑡
2

+ 𝑄𝑆
𝑙,𝑡

2
 (2.7) 

where 𝑈𝑗 is the squared voltage magnitude at node 𝑗; 𝐽𝑙 is the squared magnitude of 

the current at line 𝑙; 𝑍𝑙, 𝑅𝑙, and 𝑋𝑙 refer to the impedance, resistance, and reactance 

elements of a line, respectively; superscripts 𝐹 and 𝑆 indicate branch flows at the first 
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and second ends of a line. The susceptance and conductance shunt elements of a line 

are 𝐵 and 𝐺, respectively. 

Constraints (2.8) and (2.9) enforce operational limits on squared node voltage 

and branch current flow magnitudes, respectively. Traditional state estimation methods 

often do not impose these constraints, allowing limit violations. However, considering 

that the proposed method intends to determine aggregate DER models for accurate 

power flow calculations, these constraints ensure that equivalent models do not lead 

into unrealistic system operating conditions, improving the fidelity of the resulting 

model. 

𝑈𝑘  ≤ 𝑈𝑘,𝑡 ≤ 𝑈𝑘 (2.8) 

𝐽𝑙,𝑡 ≤ 𝐽𝑙 (2.9) 

2.3.3. DER allocation constraints 

Eqs. (2.10)-(2.15) deal with the allocation of equivalent DERs. The active power 

injections from local solar and wind DERs are computed for every time interval using 

(2.10) and (2.11), respectively. The output is computed as the product of the maximum 

DER generating capacity allocated at bus 𝑘, and the corresponding functions direct 

solar irradiance and wind speed. Although these equations model the behavior of 

equivalent aggregate DER models, setting a limit for power generation—the results of 

variables with overbars—ensures that the actual generation constraints of existing 

DERs are enforced. Moreover, since the individual settings of each DER are unknown, 

voltage/power controls are not considered. However, reactive power constraints can 

be introduced to consider operation in constant power factor modes. 

𝑃𝑘,𝑡
𝑃𝑉 = 𝑃𝑘

𝑃𝑉
⋅ 𝑝𝑡

𝑃𝑉 (2.10) 

𝑃𝑘,𝑡
𝑊𝑇 = 𝑃𝑘

𝑊𝑇
⋅ 𝑝𝑡

𝑊𝑇 (2.11) 

Piecewise linear functions can be derived from manufacturer data to model the 

power output of PV and W DERs as functions of direct solar irradiance and wind speed, 

respectively. The following expressions consider traditional cut-in, rated, and cut-out 

values for determining outputs, as depicted in Figure 2.3. 

𝑝𝑡
𝑃𝑉 = {

𝑚𝑎𝑥{𝐾𝑃𝑉 ⋅ (ℎ𝑡 − ℎ), 0} , 𝑖𝑓 ℎ𝑡 ≤ ℎ𝑟

1,                                           𝑖𝑓 ℎ𝑡 ≥ ℎ𝑟
  

𝑝𝑡
𝑊𝑇 = {

𝑚𝑎𝑥{𝐾𝑊𝑇 ⋅ (𝑤𝑡 − 𝑤), 0} , 𝑖𝑓 𝑤𝑡 ≤ 𝑤𝑟

1,                                    𝑖𝑓 𝑤𝑟 ≤ 𝑤𝑡 < 𝑤

0,                                               𝑖𝑓 𝑤𝑡 ≥ 𝑤

  

where ℎ and 𝑤 refer to direct solar irradiance and wind speed values. The superscript 

𝑟 refers to rated values, while values with underbars and overbars refer to minimum 

and maximum, threshold values to determine non-zero output, respectively. 
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Figure 2.3. Power output of equivalent DERs as piecewise linear functions of weather 

inputs. 

 

 

The total generating capacity per DER type at the feeder level is an input to the 

model. These values are defined as the parameters 𝑃𝑡𝑜𝑡𝑎𝑙
𝑃𝑉  and 𝑃𝑡𝑜𝑡𝑎𝑙

𝑊𝑇  for the total PV 

and WT capacity, respectively. Therefore, the sum of all aggregate DER models 

allocated by the proposed algorithm must equal these values, as expressed in (2.12) 

and (2.13). Notice that these summations are limited to 𝑘 = {2,3, … , 𝑁𝐵} to exclude the 

substation end-node as a candidate for equivalent DER allocation. 

∑ 𝑃𝑘

𝑃𝑉
𝑁𝐵

𝑘=2

= 𝑃𝑡𝑜𝑡𝑎𝑙
𝑃𝑉  (2.12) 

∑ 𝑃𝑘

𝑊𝑇
𝑁𝐵

𝑘=2

= 𝑃𝑡𝑜𝑡𝑎𝑙
𝑊𝑇  (2.13) 

The maximum number of equivalent DERs that can be integrated into the 

system is controlled by the count of candidate buses, 𝑁𝑌. This nonnegative integer 

parameter is introduced to constrain the binary decision variable 𝑌𝑘
𝐷𝐸𝑅 ∈ {0,1}. 

Parameter 𝑁𝑌 limits the zero “norm” of 𝒀𝑫𝑬𝑹 as per (2.14). This enables the peak 

generating capacity of a DER to be nonzero when this variable attains unity value for 

a specific bus 𝑘, as in (2.15). Here, 𝐶 represents a sufficiently large number. 

‖𝒀𝑫𝑬𝑹‖0 ≤ 𝑁𝑌, 𝑌𝑘
𝐷𝐸𝑅 ∈ {0,1} (2.14) 

0 ≤ 𝑃𝑘

𝑃𝑉
, 𝑃𝑘

𝑊𝑇
≤ 𝐶 ⋅ 𝑌𝑘

𝐷𝐸𝑅 , 𝐶 ≫ 1 (2.15) 

Including a binary variable introduces complexity to the solution; however, this 

parameter is required since the proposed method intends to develop reduced 

equivalent representations of innumerable DERs using aggregate DER models that 

are adjustable depending on the targeted accuracy. If the control over the number of 

resulting DER models is not required, constraints (2.14) and (2.15) can be disregarded, 

converting the formulation into a linear problem with theoretically faster solution times. 
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However, this defeats the purpose of developing simpler yet accurate models for low-

observable distribution systems with invisible DERs. 

2.3.4. Load determination constraints 

Next, constraints (2.16)-(2.19) deal with the customer load determination to 

distinguish their steady-state behavior from of the equivalent DERs. Constraints (2.16) 

and (2.17) update, for every time interval, the active and reactive power consumption 

for all load buses 𝑘, respectively. This considers the total aggregate consumption at 

the feeder level at a specific time instant, 𝑃𝑡
𝐿 and 𝑄𝑡

𝐿, and the share of the total load 

attributed to bus 𝑘, 𝐷𝑘
𝐿. 

𝑃𝑘,𝑡
𝐿 = 𝐷𝑘

𝐿 ⋅ 𝑃𝑡
𝐿 (2.16) 

𝑄𝑘,𝑡
𝐿 = 𝐷𝑘

𝐿 ⋅ 𝑄𝑡
𝐿 (2.17) 

Having a fixed value of 𝐷𝑘
𝐿 set to each bus assumes that the peak customer 

demand remains unchanged within the interval determined in historical data (e.g., 

hours to weeks of continuous system operation). This assumption simplifies many 

external (e.g., social and economic) factors outside of the scope of this research that 

may affect electricity consumption patterns and the rate of demand increase within a 

reduced time frame. Moreover, having local loads represented as shares of the total 

net load at the feeder level implies that similar consumption patterns are observed 

among each load node. Therefore, this assumption represents well distribution feeders 

constituted mostly by a single class of customers, e.g., residential, commercial, or 

industrial. 

Since variable 𝐷𝑘
𝐿 corresponds to percentages, its summation over all the 

system load buses must equal unity value, as in (2.18). This ensures that equivalent 

load models approximate data from substation flow measurements. As per DER 

constraints, the decision whether the load consumption at bus 𝑘 assumes a nonzero 

value is determined by a binary variable 𝑌𝑘
𝐿, which is defined in (2.19). 

∑ 𝐷𝑘
𝐿

𝑁𝐵

𝑘=2

= 1 (2.18) 

0 ≤ 𝐷𝑘
𝐿 ≤ 𝑌𝑘

𝐿 , 𝑌𝑘
𝐿 ∈ {0,1} (2.19) 

This approach assumes limited information on the actual locations and peak 

consumption of customer loads, as the only information used is a time series of net 

load measurements at the substation exit. The 𝐷𝑘
𝐿 values can be precomputed if 

accurate peak customer load data exists, removing the need for the binary variable for 

allocating loads. 

2.4. Solution Method 

The problem formulated in (2.1)-(2.19) represents a MINLP approach for 

developing aggregate DER models representing invisible DERs and estimating 

unobserved system states. This problem can be directly solved using a convex-MINLP 
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capable solver such as Bonmin [62]. This solver was selected based on its suitability 

for the problem type, prior use in the literature [63], availability—the solver is open-

source, integrated into COIN-OR [64], a well-known collection of optimization tools—

and its compatibility with different modeling frameworks. The formulation was 

implemented in Python [65], and Pyomo [66] was used to model the MINLP problem. 

The Bonmin solver was accessed through the AMPL Python API package [67]. 

Moreover, considering Bonmin’s default internal threshold tolerance for 

convergence of 10−8, the objective function is scaled by a factor of 106 to improve 

numerical stability. Scaling up the objective avoids arithmetic underflow problems and 

other precision limitations where rounding errors or numerical noise may dominate. 

This scaling factor was chosen based on a sensitivity analysis ranging from 103 to 109. 

Results demonstrated that simulations with a weight of 106 tend to converge faster and 

provide similar solutions to scenarios with increased weight values. As the weight 

decreases (lower than 106), there is an increase in estimation errors, which is more 

significant than the decrease in convergence time considering the problem treated in 

this work. Considering the proposed formulation and Bonmin, multiplying by values 

larger than 109 affected convergence stability and, therefore, was not considered 

further. 

2.4.1. Modeling assumptions 

The simulation setup was designed based on the following assumptions: (1) the 

developed formulation supports the planning and operation of distribution systems 

under massive DER integration and must be compatible with existing advanced 

distribution management system platforms; (2) the aggregate solar and wind DER 

capacity at the feeder level is known, while specific details such as type, size, location, 

and power generation data are not available; (3) the operational topology of the target 

distribution system is radial; (4) all voltage magnitude reporting devices have the same 

accuracy class and therefore have the same weight in the objective function; and (5) 

measurement errors, when introduced, are independent and follow Gaussian 

distribution. Based on these assumptions, a summary of all inputs and outputs 

associated with the resulting MINLP formulation is provided in Table 2-2. 

The maximum number of candidate buses is considered an optional input. By 

default, if a value for the parameter 𝑁𝑌 is not provided, the algorithm assumes that all 

buses (except the substation end-node) are candidates for equivalent DER allocation. 

Note that the feeder-level aggregated peak generating capacity of invisible DERs can 

be estimated using historical measurements at the substation exit, as reported in [31]. 
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Table 2-2. Expected inputs and outputs of the proposed MINLP formulation for 

aggregate modeling of invisible DERs. 

Inputs Outputs 

• System data: system topology, branch 

impedances, and bus voltage and branch 

current magnitude limits. 

• Operational data: feeder-level aggregated 

load (a time series) and generating power 

capacity of invisible DERs (a scalar value 

per DER type). 

• Measurement data: meter locations, if 

available, and time-series of the respective 

bus voltage magnitudes. 

• Weather data: time series of direct solar 

irradiance and wind speed for the same 

intervals as measurement and operational 

data. 

• Maximum candidate buses: the 

maximum number of buses eligible for 

equivalent DER allocation (optional). 

• Equivalent DER allocation: definition of 

optimal locations and peak generating 

capacities of equivalent aggregate DER 

models representing innumerable invisible 

resources. 

• Reconstructed system states: time-

series of observed and unobserved 

system variables considering measured 

and estimated data. This includes 

estimates on bus voltages magnitudes, 

power injections, and branch flows. 

 

2.4.2. Test system data and preparation 

In this chapter, the resulting formulation is employed to estimate system states 

and allocate equivalent DERs for a 10-bus, a 69-bus [68], and an 873-bus [69] test 

system. These were selected to test the proposed framework under different system 

scales and topological and operational characteristics. Note that detailed information 

on each test system is provided in Appendix B and the files used in simulation are 

available at [70]. 

The 10-bus test system consists of a 27.6 kV primary radial distribution feeder 

supplying 16 MW and 2 MVAr of load. The total impedance of the conductors is 19.5 

+ j13.1 Ohm (based on AWG 3/0 and 50-km length), equally split into nine branches. 

Two DER integration scenarios are devised. The first, accounts for a total aggregate 

generating capacity of 2.67 MW and 1.33 of PV and WT DERs, respectively. This 

results in a 25% DER penetration level, considering the ratio of the total DER 

generating capacity at the feeder level and the total peak aggregated load 

consumption. The second scenario foresees the massive integration of innumerable 

DERs, represented by a system with 100% DER penetration level, resulting in a total 

aggregate generating capacity of 10.67 MW and 5.33 MW for PV and WT DERs, 

respectively. 

The resulting distribution of loads and DERs across the system is presented in 

Table 2-3. Note that bus 0 is omitted since it is assumed that there is no consumption 

and generation at the substation end-node. This information is solely used for 
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generating measurement data through power flow calculations. The line-wise power 

flow model of [50] was used for this purpose. Note that all values are in MW, except 

for 𝑄𝐿, which is in MVAr. 

 

Table 2-3. Load and DER capacity per bus at the MV level for the 10-bus test feeder. 

Bus Pen 1 2 3 4 5 6 7 8 9 

𝑃𝐿  1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 

𝑄𝐿  0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 

𝑃𝑃𝑉 25% 0.53  0.53  0.53  0.53  0.53 

𝑃𝑊𝑇 25% 0.27  0.27  0.27  0.27  0.27 

𝑃𝑃𝑉 100% 2.13  2.13  2.13  2.13  2.13 

𝑃𝑊𝑇 100% 1.07  1.07  1.07  1.07  1.07 

 

The IEEE 69-bus radial test system [68] has been extensively used in research, 

and was chosen to assess the performance of the proposed model when dealing with 

a larger radial distribution system with laterals. The system works at the nominal 

voltage of 12.66 kV with a total load of 3.802 MW and 2.694 MVAr. It was modified to 

incorporate DERs placed on the nodes where the largest loads are located. The 25% 

DER penetration scenario has a total of 0.48 MW of both solar and wind DERs. DERs 

in the 100% penetration scenario remain connected to the same system nodes but 

were scaled to match the respective penetration values aggregated at the feeder level. 

Lastly, the 873-bus radial distribution system of [69] was chosen to expand the 

application of the algorithm to the representation of a radial distribution system with 

multiple feeders connected to the same substation busbar. The system comprises 

seven feeders, supplying a total aggregated load of 33.6 MW + j19.8 MVAr at the 

27.6 kV level. 

The system was modified to integrate 12.6 MW and 4.2 MW of solar and wind 

DERs, respectively (50% DER penetration scenario). DERs were placed in nodes with 

the highest loads up to 40% of the total number of nodes containing a DER. The 

individual generating capacities of invisible DERs were determined using the normal 

distribution. Each feeder has customer loads connected to every bus, except for the 

source node, with information summarized in Table 2-4. Each feeder was modeled and 

solved separately. Values are in MW, except for 𝑄𝐿, which is in MVAr. 

These test systems and the respective DERs shared weather data from 

renewables.ninja [71], corresponding to the region of Toronto, Canada. This dataset 

consists of solar irradiance and wind speed values for one year of duration, divided 

into one-hour intervals (8760 time steps). The linearized DER power output calculation 

models considered cut-in and rated direct solar irradiance of 150 and 800 W/m², 

respectively. For wind DERs, cut-in, rated, and cut-out wind speeds are 2.8, 10, and 

20 m/s, respectively. 
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Table 2-4. Load and DER capacity per feeder for the 873-bus distribution test system. 

Feeder F1 F2 F3 F4 F5 F6 F7 Total 

𝑁𝐵 89 108 147 116 137 221 55 873 

𝑃𝐿 4.03 4.25 6.25 5.19 5.83 5.80 2.25 33.60 

𝑄𝐿 2.16 2.53 3.48 3.21 3.51 3.63 1.28 19.80 

𝑃𝑃𝑉 1.51 1.59 2.34 1.95 2.19 2.17 0.85 12.60 

𝑃𝑊𝑇 0.50 0.53 0.78 0.65 0.74 0.72 0.28 4.20 

 

2.4.3. Estimation performance metrics 

The estimation performance is assessed with Mean Absolute Error (MAE) and 

Relative Error (RE). The Root-Mean-Square (RMSE), minimum absolute error 

(Min AE), and maximum absolute error (Max AE) values are used to gauge the 

dispersion result. The overall accuracy of estimations (ACC) is referred to as the 

complementary percentage value to the average relative error calculated using all time 

steps and system nodes or branches. For bus voltage magnitudes: 

𝑀𝐴𝐸𝑈 =
∑ ∑ |𝑈𝑘,𝑡 − 𝑈̃𝑘,𝑡|𝑁𝐵

𝑘=1
𝑁𝐷𝑇
𝑡=1

𝑁𝐷𝑇 ⋅ 𝑁𝐵
 [p.u.] 

𝑅𝐸𝑈𝑘,𝑡
= |

𝑈𝑘,𝑡 − 𝑈̃𝑘,𝑡

𝑈̃𝑘,𝑡

| [%] 

𝑅𝑀𝑆𝐸𝑈 = √∑ ∑
(𝑈𝑘,𝑡 − 𝑈̃𝑘,𝑡)

2

𝑁𝐷𝑇 ⋅ 𝑁𝐵

𝑁𝐵

𝑘=1

𝑁𝐷𝑇

𝑡=1

 [p.u.] 

𝑀𝑖𝑛 𝐴𝐸𝑈 = min(|𝑼 − 𝑼̃|) , 𝑀𝑎𝑥 𝐴𝐸𝑈 = max(|𝑼 − 𝑼̃|) [p.u.] 

𝐴𝐶𝐶𝑈 = 1 −
∑ ∑ 𝑅𝐸𝑈

𝑁𝐵
𝑘=1

𝑁𝐷𝑇
𝑡=1

𝑁𝐷𝑇 ⋅ 𝑁𝐵
 [%] 

For branch flows, replace voltage magnitude variables by 𝑃𝐹 and 𝑁𝐵 by the 

number of lines in the system 𝑁𝑇. The next sections present case studies along with 

estimation error results. 

The choice over acceptable error thresholds for estimates depends on data 

availability, computational feasibility, and the specific application requirements within 

planning and operation of power distribution systems. For example, applications 

involving real-time control or safety-critical operations—such as voltage regulation, 

fault location and isolation, protection setting, and coordination—typically require 

higher accuracy estimations (e.g., <5%). Tighter error constraints are also expected 

under well-observed system conditions. On the other hand, there are applications 

where approximate solutions (e.g., <15%) still provide significant value. This is 

particularly valid in planning and trend analysis, especially considering the added 

benefit of integrating equivalent DER models representing invisible resources active in 

the system. 
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2.5. Results and Discussion 

The first case studies (from Subsection 2.5.1 to Subsection 2.5.9) focus on the 

10-bus system to showcase the performance of the resulting formulation under various 

conditions. Later sections are dedicated to larger test systems to expand the initial 

observations. The presence of voltage magnitude measurements is referred to as 

Meter Coverage Level (MCL). This may refer to an absolute value (the total number of 

metered buses in the system) or a percentage value corresponding to the share of the 

total number of buses that are being metered. 

2.5.1. Ideal case (10-bus system) 

Table 2-5 presents estimation results for when voltage magnitude 

measurements are available for the entire system (100% MCL). These measurements 

are assumed to be 100% accurate, and the algorithm is allowed to spread equivalent 

DERs across the entire network (𝑁𝑌 = 9). Also, three months of historical data (2,160 

one-hour intervals) are considered in simulations. The base voltage and base power 

for per unit calculations are 27.6 kV and 10 MVA, respectively. 

Low absolute errors can be observed in both voltage magnitude and branch 

flow estimations for the 25% and 100% DER penetration scenarios. This highlights the 

capability of the proposed algorithm to replicate existing measurements and estimate 

unobserved branch power flows solely utilizing voltage magnitude measurements. 

These outcomes are dependent on model parameter configurations and target system 

characteristics, subjects explored in the subsequent sections. 

 

Table 2-5. Estimation Performance: 10-bus system, 𝑁𝑌 = 9, 100% MCL 

 25% DER Penetration 100% DER Penetration 

Metric 

Voltage 

Magnitude 

Errors (p.u.) 

Branch Active 

Power Flow 

Errors (p.u.) 

Voltage 

Magnitude 

Errors (p.u.) 

Branch Active 

Power Flow 

Errors (p.u.)  

MAE 1.25 ⋅ 10−4 3.22 ⋅  10−3 7.09 ⋅ 10−3 1.38 ⋅ 10−3 

RMSE 3.02 ⋅ 10−4 7.28 ⋅ 10−3 1.09 ⋅ 10−2 7.09 ⋅ 10−3 

Min AE 1.96 ⋅ 10−8 1.17 ⋅ 10−6 2.45 ⋅ 10−4 5.71 ⋅ 10−8 

Max AE 1.48 ⋅ 10−3 9.16 ⋅ 10−2 2.94 ⋅ 10−2 1.44 ⋅ 10−1 

ACC 99.99% 99.41% 99.99% 99.86% 

 

2.5.2. Impact of the voltage measurement availability (10-bus system) 

This subsection explores the sensitivity analysis concerning the quantity of 

voltage magnitude meters deployed in the system. Figure 2.4 and Figure 2.5 depict 

relative error values for voltage magnitude and branch active power flow estimations, 

respectively, across different MCLs and 25% and 100% DER penetration levels. The 
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number measurements ranges from two buses being monitored to the deployment of 

ten voltage meters across the entire system, and 3-month historical data. 

For each number of metered buses, all possible combinations are computed for 

𝑁𝑌 = 1 and 𝑁𝑌 = 9 by varying meter locations. It is assumed that the meter at the 

substation bus (bus 0) is always available. The results are presented as boxplots 

whose boxes mark the range of the central 50% of the data, with a central line marking 

the median value. Lines extend from each box to capture the interval of the remaining 

data, with ‘+’ indicating outliers. 

 

Figure 2.4. Relative voltage magnitude estimation errors for all metering scenarios 

combining the 𝑁𝑌 values of 1 and 9. 

 
(a) 25% DER penetration. 

 
(b) 100% DER penetration. 

 

Figure 2.4(a) and Figure 2.4(b) show that the proposed formulation can estimate 

voltage magnitudes with errors up to 5% for both the 25% and 100% DER penetration 

levels and this error decreases with the number of metered buses. Having a larger 

value for 𝑁𝑌 enables the proposed algorithm to slightly improve estimation results. 

However, a more significant difference is observed for branch flow estimations, which 

is depicted in Figure 2.5. 

Figure 2.5(a) and Figure 2.5(b) show that the proposed formulation can estimate 

unobserved branch flows with errors up to 35% for both the 25% and 100% DER 

penetration levels, respectively. The errors decrease as the number of voltage 

measurements increases. These results show that the utility should guarantee a 

reasonable coverage of voltage measurements to meet the target accuracy. For 

instance, if seven buses are monitored, the branch power flows can be estimated with 

errors up to 10% (neglecting outliers). 
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Figure 2.5. Boxplots of relative branch flow estimation errors for all metering scenarios 

combining the 𝑁𝑌 values of 1 and 9. 

 
(a) 25% DER penetration. 

 
(b) 100% DER penetration. 

 

In all scenarios, having a larger value for 𝑁𝑌 improves estimation results as the 

proposed algorithm leverages the increased degrees of freedom for the equivalent 

DER allocation problem. For the case with 100% DER penetration, 𝑁𝑌 = 1 leads to 

deteriorated results, especially when seven or more voltage measurements are 

available. This happens due to the limitation of allocating a single (larger) equivalent 

DER, affecting the calculation of neighboring branch flows. The influence of parameter 

𝑁𝑌 is explored next. 

2.5.3. Impact of the choice of 𝑵𝒀 (10-bus system) 

The parameter 𝑁𝑌 determines the maximum number of system nodes where 

equivalent DERs can be allocated. This parameter was introduced to provide control 

over the characteristics of the solution. It constitutes a trade-off relationship between 

solution sparsity (fewer aggregated DERs) and optimization performance (more 

degrees of freedom). A system representation with fewer equivalent DERs (a low 𝑁𝑌 

value) can provide accurate power flow calculations while reducing the computational 

time required for planning studies with many scenarios. On the other hand, opting for 

higher 𝑁𝑌 values eases the solution of the formulated problem and may lead to a 

distribution of equivalent DERs that approximates better the invisible resources. Still, 

it increases the model’s complexity, particularly in larger systems. 

Considering the same conditions of previous tests, Figure 2.6 illustrates a 

particular example of how the parameter 𝑁𝑌 can affect the accuracy of estimated 

results. Values are in MW. Figure 2.6(a) depicts actual branch active power flows and 

the power outputs of solar and wind DERs. Figure 2.6(b) and Figure 2.6(c) show 

estimated results for the same time interval when 𝑁𝑌 = 1 and 𝑁𝑌 = 9, respectively. 

For this snapshot, the total aggregate load consumption is 11.47 MW + j1.42 MVAr. 

The direct solar irradiance is 707 W/m2 and the wind speed is 9.46 m/s, leading to a 

total aggregate power output of 1.85 MW and 1.27 MW for solar and wind DERs, 

respectively. All voltage measurements are available and considered 100% accurate. 
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Note that the idea is not to find the actual case in terms of DER and load allocations, 

but rather finding an alternative, simplified representation where power flows are the 

same. 

 

Figure 2.6. Actual and estimated branch active power flows and equivalent DER output 

for different 𝑁𝑌. 

 
(a) Actual results. 

 

 
(b) Branch flow results when 𝑁𝑌 = 1. 

 

 
(c) Branch flow results when 𝑁𝑌 = 9. 

 

Considering this snapshot, the average relative error for estimated branch 

active power flows correspond to 4.41% and 3.20% when 𝑁𝑌 is 1 and 9, respectively, 

with maximum absolute errors of 1.33 MW and 0.63 MW. Considering the entire three 

months of estimated data and 𝑁𝑌 equal to 1, the minimum, mean, and maximum 

absolute errors for branch flow estimations are 8. 24 ⋅ 10−6, 1.39 ⋅ 10−2, and 2.46 ⋅ 10−1 

p.u., respectively, while these values when 𝑁𝑌 is 9, considering the 25% DER 

penetration scenario, are given in Table 2-5. This shows that 𝑁𝑌 can be significant in 

scenarios with higher meter coverage levels. Figure 2.6(b) shows a single composition 

of solar and wind DERs on bus 1, while Figure 2.6(c) illustrates that the proposed 

formulation was able to precisely place equivalent DERs on the same buses where 

actual DERs are located, despite being allowed to include more (𝑁𝑌 = 9). These 

results demonstrate its capability to approximate the spatial distribution of equivalent 

DERs when there is sufficient information available.  
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Figure 2.7 expands this analysis to include different meter coverage levels and 

values of 𝑁𝑌. In this example, voltage measurements are introduced in the same order 

as buses are numbered (from the substation to the farthest node). In other words, when 

two meters are available, only buses 0 and 1 are monitored; buses 0, 1, and 2 for three 

meters, and so on. Values presented refer to the accuracy of the branch active power 

flow estimation, for different meter coverage levels and 𝑁𝑌 values. Note that, for all 

meter coverage levels, the accuracy levels tend to reach the same value when the 

parameter 𝑁𝑌 assumes a value larger than or equal to the actual number of DERs in 

the system (𝑁𝑌 ≥ 5). This shows that the algorithm converges close to the same 

solution given a large enough number of equivalent DERs is allowed to be placed via 

the value set to 𝑁𝑌. 

There is, on average, a 1.51% and a 0.34% increase for every new voltage 

meter introduced to the system and each increment of 𝑁𝑌, respectively, for the 25% 

DER penetration scenario. Considering the 100% DER penetration level results, 

branch flow estimation accuracy increases on average 0.45% for every increment of 

𝑁𝑌, and 0.89% for each new voltage measurement available. 

 

Figure 2.7. Branch active power flow estimation accuracy (ACC, %) considering the 

variation of 𝑁𝑌 and the number of metered buses. 

 
(a) 25% DER penetration. 
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(b) 100% DER penetration. 

 

2.5.4. Impact of DER penetration (10-bus system) 

The branch flow estimation accuracy is also influenced by the total aggregated 

amount of DERs integrated into the system. Figure 2.8 illustrates that errors tend to 

decrease as DER penetration increases. DER penetration is taken as the ratio 

between the maximum aggregate DER generating and load capacities at the feeder 

level. These results are generated by varying 𝑁𝑌 from 1 to 9, assuming that all bus 

voltage magnitude measurements are available. The DER penetration levels of 25%, 

50%, 75%, and 100% are obtained by scaling the DERs described in Table 2-3 to a 

total aggregate generating capacity of 4 MW, 8 MW, 12 MW, and 16 MW, respectively, 

in a feeder with the maximum aggregate consumption of 16 MW. 

 

Figure 2.8. Branch flow estimation errors for different DER penetration levels. 
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2.5.5. Impact of the location of DERs (10-bus system) 

This section explores how the spatial distribution of invisible DERs affects 

estimation accuracy and the allocation of equivalent DERs. While keeping the 

distribution of customer loads as per Table 2-3, solar and wind DERs are redistributed 

so the "center of generation" is located at the beginning (Case 1), middle (Case 2), and 

end (Case 3) of the feeder. The total installed capacities of PV and W DERs remain 

2.67 MW and 1.33 MW, respectively (25% DER penetration scenario). 𝑁𝑌 is chosen 

to be 3. The system is assumed to have 100%-accurate voltage measurements at 

every node (100% MCL), and 3-month historical data are adopted to conduct the 

analysis. 

Table 2-6 presents the absolute error values for the estimation of branch active 

power flow in each of the three cases. The results demonstrate that the accuracy of 

estimation results remains insensitive to the specific locations of invisible DERs. 

Values are in p.u. and the base power is 10 MVA. 

 

Table 2-6. Absolute error values for the estimation of branch flows for different spatial 

distribution of PV DERs 

Metric Case 1 Case 2 Case 3 

25% Penetration 

MAE (p.u.) 1.39 ⋅ 10−3 1.48 ⋅ 10−3 1.43 ⋅ 10−3 

Min AE (p.u.) 2.33 ⋅ 10−6 2.01 ⋅ 10−6 2.04 ⋅ 10−6 

Max AE (p.u.) 4.70 ⋅ 10−3 5.95 ⋅ 10−3 5.97 ⋅ 10−3 

100% Penetration 

MAE (p.u.) 1.56 ⋅ 10−3 1.65 ⋅ 10−3 1.58 ⋅ 10−3 

Min AE (p.u.) 7.48 ⋅ 10−7 8.25 ⋅ 10−7 1.26 ⋅ 10−6 

Max AE (p.u.) 6.43 ⋅ 10−3 6.55 ⋅ 10−3 7.44 ⋅ 10−3 

 

Equivalent DER allocation results and actual DER positions for the three cases 

are depicted in Figure 2.9. These results demonstrate the capability of the proposed 

algorithm to approximate the spatial distribution of hidden DERs with a reduced 

number of equivalent representations. This unintended yet valuable outcome displays 

the proposed formulation’s ability in discerning the steady-state behavior of equivalent 

DERs to be placed along the feeder. 
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Figure 2.9. Equivalent DER allocation for distinct locations of hidden DERs in the 25% DER 

penetration scenario. 

 
(a) Case 1. 

 
(b) Case 2. 

 
(c) Case 3. 

 

2.5.6. Impact of the length of historical data (10-bus system) 

The length of historical data is another factor that influences the accuracy of 

estimation results. Notably, the largest absolute error values for unobserved branch 

flow estimations occur when a reduced horizon of historical data is considered. The 

results in Figure 2.10 refer to the MAE values for branch flow estimates, considering 

that the entire system is covered with voltage meters and parameter 𝑁𝑌 varies from 1 

to 9. It starts with 24 time steps (representing a day) and ends with 8,760 time steps 

(representing a year), leading to a total decrease of nearly 17% in the magnitude of 

branch flow estimation errors.  

Figure 2.10 also shows that this reduction comes at the expense of an increase 

in computational time, which presents a quadratic relation with the number of time 

steps considered. Note, however, that the average errors in the calculation of 

(observed) voltage magnitudes increase slightly with the addition of more snapshots. 

This is expected as error accumulates as the algorithm attempts to fit an increasing set 

of known values. 
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Figure 2.10. Average branch flow estimation and processing time values varying the 

length of historical data. 

 
2.5.7. Impact of meter accuracy (10-bus system) 

This subsection focuses on evaluating the impact of voltage measurement 

accuracy on the accuracy of branch flow estimations. Here, the measurement accuracy 

is expressed in terms of the Signal-to-Noise Ratio (SNR), defined as 

𝑆𝑁𝑅 = 20 ⋅ 𝑙𝑜𝑔10 (1
𝐴𝐶𝐶𝑚𝑒𝑡𝑒𝑟

⁄ ) [dB] 

where, 𝐴𝐶𝐶𝑚𝑒𝑡𝑒𝑟 refers to meter accuracy, representing the maximum allowed 

percentage deviation from the true measured value. 

Figure 2.11 depicts estimation results for different SNRs applied to voltage 

measurement data achieved by adding different levels of Gaussian noise to the input 

dataset. These results are generated by varying 𝑁𝑌 from 1 to 9, assuming that all bus 

voltage magnitude measurements are available with SNRs of 25, 35, 45, 55, and 65. 

Results show that when all voltage measurements present an SNR of 45, the highest 

branch flow estimation error reaches 13% for a time step with an instantaneous branch 

active power flow of 13.94 MW. These results were obtained for the 25% DER 

penetration scenario. 
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Figure 2.11. Branch flow estimation error for different SNRs. 

 
2.5.8. Impact of substation metering (10-bus system) 

Up to this point, only voltage magnitude measurements were considered inputs 

to test the proposed method. However, it is a common practice for utilities to include 

various types of meters at distribution substations. A measurement typically available 

consists of the active and reactive power flows from the substation to the feeder. 

Therefore, substation flow data is introduced to the scenarios with the highest 

estimation errors presented in Figure 2.4 and Figure 2.5. These are the instances 

where only two voltage magnitude measurements exist. Results include all the 

possible combinations with different 𝑁𝑌 values, two voltage magnitude measurements 

(one always being the voltage at the substation-end bus), and power flows at the end 

of the substation. Figure 2.12 compares estimation errors for the 25% and 100% DER 

penetration scenarios. 

As in previous studies, higher DER penetrations present finer results. The 

introduction of flow measurements reduced the maximum branch flow estimation 

errors from around 35% to a range between 12% and 17%. However, this effect is less 

pronounced for the estimation of unobserved voltage magnitudes (from around 5% to 

between 2.5% and 3.5%). 

These results display the benefits of introducing substation flow measurements 

and the flexibility of the proposed method in considering other measured quantities 

besides bus voltage magnitudes. Note that this case study involves a system with 

limited visibility (only the substation flow and two voltage magnitude measurements 

are available) where traditional state estimation methods may falter. In contrast, the 

proposed method can still provide a solution and determine equivalent DER models. 
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Figure 2.12. Comparison of results considering branch flow measurements at the 

substation exit. 

  

 

(a) Voltage magnitude errors.       (b) Branch flow errors. 

 

2.5.9. Analysis of solution robustness (10-bus system) 

MINLP problems inherently have complex solution spaces due to the presence 

of both continuous and discrete variables. This complexity arises because changes in 

parameter values can lead to different solutions that satisfy the problem's requirements 

but vary in their numerical values. A sensitivity analysis is therefore conducted to 

assess the robustness of results in the presence of multiple solutions. The study 

considered a scenario with 25% DER penetration, using 720 power flow snapshots 

representing a month of historical data at 1-hour intervals, and assumed error-free 

measurements. 

The lowest objective function value of 𝑅𝑜𝑝𝑡 = 1577.37530515 is achieved when 

𝑁𝑌 ≥ 5, being five, the actual number of DERs in the system. This results in an average 

squared voltage magnitude estimate error of 2.19 ⋅ 10−7 per bus and per time step. 

Next, constraint (2.20) was added to the formulated problem to limit the calculations of 

the original objective function to the lowest error achieved, 𝑅𝑜𝑝𝑡, while the objective 

function was modified to maximize (and later minimize) squared voltage magnitude 

measurement residuals—equivalent to maximizing or minimizing the squared RMSE 

error metric—as in (2.21). 

‖𝑲𝑼⨀(𝑼 − 𝑼̃)‖
𝐹

2
≤ 𝑅𝑜𝑝𝑡 (2.20) 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒) ∑ ∑(𝑈𝑘,𝑡 − 𝑈̃𝑘,𝑡)
2

𝑁𝑀

𝑘=1

𝑁𝐷𝑇

𝑡=1

 (2.21) 

The relative errors of estimating unobserved branch flows considering different 

meter coverage levels for both the maximization and minimization objectives are 
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depicted in Figure 2.13(a). As in previous studies, estimates tend to get more accurate 

as system visibility increases. Despite the different objectives, results evidence a small 

range of values at which estimation errors may vary, thus indicating the robustness of 

the proposed approach despite the diversity of optimal solutions. 

This analysis is complemented by Figure 2.13(b), which depicts the decreasing 

deviation between the maximum and minimum solutions (normalized by the maximum) 

as the number of voltage measurements increases. Percentage values account for the 

average deviation between max and min results considering all available time steps 

and 𝑁𝑌 ≥ 5. 

 

Figure 2.13. Relative branch flow estimation errors when maximizing and minimizing 

the squared RMSE metric. 

 

(a) Relative error distribution. 

 

(b) Max-Min deviation. 

 

2.5.10. A larger distribution feeder with laterals (69-bus system) 

The IEEE 69-bus radial test system [68] was chosen to assess the performance 

of the proposed model when dealing with a larger radial distribution system with 

laterals. The system works at the nominal voltage of 12.66 kV with a total load of 3.802 

MW and 2.694 MVAr. It was modified to incorporate DERs placed on the nodes where 

the largest loads are located–see Figure 2.14(a). 

Considering 720 one-hour time steps (a month of historical data), Table 2-7 

presents the results for the application of the proposed formulation considering the 

ideal case with all the system nodes having 100%-accurate voltage measurements 

available. The parameter 𝑁𝑌 is set to be 5 to stress the capability of providing accurate 

estimations with a reduced number of equivalent DER representations.
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Figure 2.14. Example of application for the modified IEEE 69-bus radial test system with a reduced number of equivalent DERs. 

 
(a) Branch flow results for the original test system at 𝑡 = 257. 

 
(b) Branch flow results for the equivalent system representation at 𝑡 = 257. 𝑁𝑌 is 5. 
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Table 2-7. Estimation Performance: 69-bus system, 𝑁𝑌 = 5, 100% MCL 

 25% DER Penetration 100% DER Penetration 

Metric 

Voltage 

Magnitude 

Errors (p.u.) 

Branch Active 

Power Flow 

Errors (p.u.) 

Voltage 

Magnitude 

Errors (p.u.) 

Branch Active 

Power Flow 

Errors (p.u.)  

MAE 1.90 ⋅ 10−4 2.93 ⋅ 10−3 6.48 ⋅ 10−3 2.07 ⋅ 10−3 

RMSE 5.14 ⋅ 10−3 1.03 ⋅ 10−2 1.55 ⋅ 10−2 3.53 ⋅ 10−3 

Min AE 5.64 ⋅ 10−8 1.51 ⋅ 10−6 1.49 ⋅ 10−5 2.64 ⋅ 10−6 

Max AE 5.57 ⋅ 10−4 5.58 ⋅ 10−3 3.77 ⋅ 10−2 1.61 ⋅ 10−2 

ACC 99.99% 98.31% 99.99% 99.04% 

 

The 25% DER penetration scenario has a total of 0.48 MW of both solar and 

wind DERs. DERs in the 100% penetration scenario remain connected to the same 

system nodes but were scaled to match the respective penetration values aggregated 

at the feeder level. Low error values show that the proposed algorithm can replicate 

existing measurements and estimate branch power flows solely utilizing voltage 

magnitude measurements. Figure 2.14(b) depicts how the estimated active power 

branch flows are disposed of in the resulting system representation with five equivalent 

DERs being allocated. As in previous case studies, estimation results are affected by 

the number of measurements available and the adjustment of parameter 𝑁𝑌. 

This is depicted in Fig. 13, with results generated by varying the meter coverage 

level by 10% increments of the number of voltage measurements available, until the 

system is fully monitored. Meters are placed at random locations selected using 

uniform distribution and assuming that the measurements at bus 0 (the substation end-

node) are always available and 100% accurate. On average, for every 10% increase 

in the number of voltage measurements available, an improvement of 3.7% in branch 

flow estimation accuracy is observed. 

 

Figure 2.15. Branch active power flow estimation accuracy (ACC, %) varying the 

number of metered buses and the choice of 𝑁𝑌. 

 

 

2.5.11. A distribution system with multiple feeders (873-bus system) 

The following case study expands the application of the algorithm to the 

representation of a radial distribution system with multiple feeders connected to the 

same substation busbar. The 873-bus radial distribution system of [69] comprises 
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seven feeders, supplying a total aggregated load of 33.6 MW + j19.8 MVAr at the 

27.6 kV level. The system was modified to integrate 12.6 MW and 4.2 MW of solar and 

wind DERs, respectively (50% DER penetration scenario). Table 2-8 presents branch 

active power flow estimation results when voltage measurements are fully available. 

These results consider 48 power flow snapshots (two days of metered data points with 

1-hour intervals). The parameter 𝑁𝑌 is 5 for each feeder, meaning there is a reduction 

from 350 nodes with actual DERs in the entire system to 35, with five aggregate DERs 

in each feeder. 

 

Table 2-8. Branch Flow Estimation Performance: 873-bus system, 𝑁𝑌 = 5 (per feeder), 

100% MCL 

 MAE (p.u.) RMSE (p.u.) Min AE (p.u.) Max AE (p.u.) ACC (%) 

Feeder 1 4.31 ⋅ 10−3 6.98 ⋅ 10−3 3.13 ⋅ 10−6 3.63 ⋅ 10−2 99.0 

Feeder 2 6.12 ⋅ 10−3 8.92 ⋅ 10−3 6.00 ⋅ 10−6 3.57 ⋅ 10−2 98.7 

Feeder 3 2.18 ⋅ 10−3 3.24 ⋅ 10−3 2.64 ⋅ 10−6 1.26 ⋅ 10−2 99.6 

Feeder 4 3.24 ⋅ 10−3 5.42 ⋅ 10−3 6.32 ⋅ 10−6 3.15 ⋅ 10−2 99.4 

Feeder 5 2.69 ⋅ 10−3 4.20 ⋅ 10−3 2.18 ⋅ 10−6 2.44 ⋅ 10−2 99.5 

Feeder 6 2.66 ⋅ 10−3 4.53 ⋅ 10−3 1.27 ⋅ 10−6 2.17 ⋅ 10−2 99.5 

Feeder 7 2.95 ⋅ 10−3 6.39 ⋅ 10−3 4.02 ⋅ 10−6 4.93 ⋅ 10−2 98.8 

 

Figure 2.16. Estimation accuracy across the seven feeders considering different 

meter coverage levels. 

 

(a) Voltage magnitudes. 

 

(b) Branch flows. 
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Accurate (≥ 90%) results evidence the algorithm’s ability to estimate 

unobserved branch flows using only bus voltage magnitudes, even in a scenario with 

fewer DER representations. Next, Figure 2.16 presents the distribution among the 

existing feeders of the accuracy of branch flow and node voltage magnitude 

estimations for different voltage meter coverage levels. Meters were randomly placed 

in the system following uniform distribution, except for the substation end-node, which 

is always available. Results show that the algorithm can estimate unobserved branch 

active power flows with errors below 10%, even for the scenario with fewer node 

voltage magnitude measurements. 𝑁𝑌 is 5 in all cases. Measurements are considered 

100% accurate. 

2.6. Chapter Summary 

This chapter presented a convex mixed-integer nonlinear problem formulation 

designed to develop aggregate DER models for equivalent representation of low-

visibility radial distribution feeders with invisible DERs. The formulated problem aims 

at estimating branch power flows and bus voltage magnitudes while strategically 

allocating equivalent DERs to reproduce sparse system measurements and represent 

innumerable DERs hidden from the system operator. The resulting DER models can 

be integrated into traditional power flow solution methods to enable accurate 

calculations—which is the focus of Chapter 4 of this document. 

A distinction of this method compared to conventional state estimation 

algorithms consists of lesser measurement data requirements to provide solutions in 

unobservable or poorly observable system conditions where these methods may falter. 

Case studies were realized to display the formulation’s efficacy in estimating missing 

power system variables. These studies considered relevant factors, such as the 

number of available meters, adjustment of model parameters, meter accuracy, length 

of historical data, DER integration, and system scale. 

In Chapter 3, different linearized versions of the convex-MINLP formulation are 

tested developed to enhance computational performance while maintaining numerical 

accuracy. Moreover, the modeling of invisible DERs is enhanced by introducing hybrid 

DER models (e.g., PV+BESS) to improve the representation of modern radial 

distribution systems with different DER configurations. 
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3. A MILP MODEL FOR ENHANCED AGGREGATE MODELING OF INVISIBLE 

HYBRID DERS2 

3.1. Chapter Introduction 

This chapter continues addressing the challenge of improving steady-state 

analysis for radial distribution systems with invisible DERs by presenting a Mixed-

Integer Linear Programming (MILP) formulation to develop equivalent aggregate DER 

models representing numerous invisible resources. The linearized formulation is 

obtained by addressing the nonlinear and nonconvex nature of power flow equations, 

yielding a simplified yet accurate model with reduced solution times. The resulting DER 

models capture the diverse characteristics of invisible resources, now including hybrid 

DERs that combine the flexibility of BESS and PV units. With faster solution times, the 

method presented in this chapter enables the development of equivalent DER models 

for systems with more dynamic operating conditions, such as with many possible 

topology changes. In this sense, the method is suited to operational planning and tasks 

such as system reconfiguration, which require rapid solutions, while addressing 

invisible DERs. 

As per Chapter 2, this chapter begins by providing minimal introductions to the 

key concepts serving as the basis for the modeling aspects of the research. In this 

sense, a review of linearization approaches applied to the modeling of distribution 

systems is provided. Next, the proposed MILP formulation is discussed, emphasizing 

changes in relation to the original MINLP optimization problem. 

3.2. Linearization in Power Distribution Systems Modeling 

The many different approaches for linearizing power flow equations can be 

categorized into two main groups, namely models based on assumptions over typical 

physical characteristics of radial power distribution systems and on mathematical 

approximations to existing nonlinear functions present in the formulation. The models 

in the first group often consider that voltage angles and magnitudes vary within 

relatively narrow boundaries. For example, in [72] and [73], the authors leverage small 

angle deviations across lines to simplify the calculation of bus voltage magnitudes. In 

[74] and [75], the authors assume that voltage magnitudes tend to be close to 1.0 p.u. 

to calculate branch power flows. Similarly, the authors in [76] assume negligible system 

losses, disregarding the calculation of the current magnitude for the traditional Distflow 

model for radial distribution systems [77]. However, although simplifying the model, 

assuming negligible losses may lead to larger errors in regions with higher current 

levels (e.g., the substation exit), as noted in [78]. 

The second group aims to determine mathematical expressions to approximate 

the power flow equations. These methods include Taylor series expansions, as 

employed in [79] for calculating branch power flows, and in [58] to approximate power 

 
2 This chapter’s contents were published in part in the paper: P. N. Vasconcelos, F. C. L. Trindade, and B. Venkatesh, “Linearized 

Optimization for Enhanced Aggregate Modeling of Invisible Hybrid Distributed Energy Resources,” IET Generation, Transmission 
& Distribution, vol. 19, no. 1, p. e70088, May 2025. 
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injections when modeling customer loads, both for node-injection power flow models. 

A more popular approach consists of piecewise linear approximations, which discretize 

nonlinear functions into linear segments, controlling accuracy and computational 

feasibility via the number of introduced segments. In [80] and [81], piecewise linear 

approximations define the calculation of squared active and reactive branch flows. In 

optimization applications, McCormick envelopes are often employed to calculate line 

currents of the line-wise power flow model, relaxing the nonlinear expression by 

introducing a set of linear constraints [76], [82]. 

Unlike methods that rely solely on simplifying assumptions or purely 

mathematical relaxations, the proposed MILP approach integrates both elements by 

approximating the nonlinear power flow equations using piecewise linearization and 

McCormick envelopes when addressing the equivalent behavior of aggregated 

invisible DERs. The formulation allocates (locates and sizes) aggregate DER models 

while estimating unobserved voltage magnitudes and branch flows. 

3.3. Problem Statement 

3.3.1. Nature of hybrid PV-BESS DERs 

Some of the power flow and DER allocation constraints presented in this section 

employ four different PV models (numbered from 0 to 3) to represent varying levels of 

energy storage capacity in hybrid PV-BESS DERs. These models capture different 

power generation profiles based on the time the battery charging begins. Since it is 

assumed that the BESS is recharged exclusively using locally generated solar power, 

the charging start times reflect different relative sizing of PV and BESS capacities. 

Earlier charging times correspond to hybrid DER configurations where the BESS has 

a larger capacity relative to PV generation, requiring a longer duration of available solar 

power to reach full charge. Conversely, later charging start times indicate scenarios 

where PV generation is larger, enabling shorter charging windows. BESS DERs 

discharge only during peak hours—between hours 16 and 21—when electricity rates 

are highest in a typical time of use (TOU) tariff strategy. Each combination is displayed 

in Figure 3.1. 

Model PV0 corresponds to a scenario where only the PV is active, with no 

associated energy storage. The remaining models—PV1, PV2, and PV3—correspond 

to hybrid PV-BESS configurations where the BESS starts charging at hours 11, 13, 

and 15, respectively. Figure 3.1 also includes a case where only the output of the BESS 

is active, representing a combination where the production of the local PV is sufficient 

to charge the battery fully, and there is no export of excess PV power to the grid. PVs 

export their power output to the grid whenever the local storage resources are not 

charging and the solar irradiance level allows for a non-zero power output. Therefore, 

the inherent variability of these resources is accounted for in the model. 

 



53 
 

Figure 3.1. Comparison of the power output profiles of the different hybrid PV-BESS 

models. The BESS charges exclusively through PV output and discharge between 

hours 16 and 21. 

 

 

 

3.3.2. Objective function 

The objective function remains unchanged from the original formulation. It 

minimizes the squared Frobenius norm of the resulting matrix, computed as the sum 

of the squares of measurement residuals considering measured and estimated node 

voltage magnitudes. Objective function weights, defined in matrix 𝑲𝑼 attribute relative 

importance to more accurate data. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ‖𝑲𝑼⨀(𝑼 − 𝑼̃)‖
𝐹

2
 (3.1) 

3.3.3. Power flow constraints 

The basis for the power flow constraints (3.2)-(3.6) also remains unchanged 

from the original formulation. Eq. (3.5) was modified to introduce the power output of 

BESS DERs and to refer to the different PV DER models considering the presence of 

local energy storage. 

𝑈𝑗,𝑡 + 2 (𝑃𝑙,𝑡
𝑆 ⋅ 𝑅𝑙 + 𝑄𝑙,𝑡

𝑆 ⋅ 𝑋𝑙 −
𝑈𝑖,𝑡

2
) + 𝐽𝑙,𝑡 ⋅ 𝑍𝑙

2 = 0, (𝑖, 𝑗) ∈ 𝑙  (3.2) 

𝑃𝑙,𝑡
𝐹 + 𝑃𝑙,𝑡

𝑆 + 𝑅𝑙 ⋅ 𝐽𝑙,𝑡 = 0 (3.3) 

𝑄𝑙,𝑡
𝐹 + 𝑄𝑙,𝑡

𝑆 + 𝑋𝑙 ⋅ 𝐽𝑙,𝑡 = 0 (3.4) 

[𝑴] [
𝑷𝒕

𝑭

𝑷𝒕
𝑺] − 𝑼𝒕 ⋅ 𝑮 = 𝑷𝒕

𝑳 − 𝑷𝒕
𝑷𝑽,𝒙 − 𝑷𝒕

𝑾𝑻 − 𝑷𝒕
𝑩𝑬𝑺𝑺 (3.5) 

[𝑴] [
𝑸𝒕

𝑭

𝑸𝒕
𝑺] + 𝑼𝒕 ⋅ 𝑩 = 𝑸𝒕

𝑳 (3.6) 

Originally, the calculation of the squared magnitude of the current flowing in line 

𝑙 at time 𝑡 was being performed employing a second-order conic (SOC) relaxation as 

𝑈𝑗,𝑡 ⋅ 𝐽𝑙,𝑡 ≥ 𝑃𝑆
𝑙,𝑡
2

+ 𝑄𝑆
𝑙,𝑡

2
  

This relation is linearized to benefit from the improved computational efficiency 

and scalability of MILP problems. The bilinear term on the left side is addressed using 

McCormick envelopes [83], while the right-hand side is approximated using piecewise 
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linear functions [87], resulting in (3.7). The choice of McCormick envelopes is 

motivated by their widespread adoption in optimization problems involving bilinear 

terms, as established in [85]. This approach preserves convexity, a desirable property 

for maintaining the quality of the solution when using standard optimization solvers 

[86]. Moreover, when considering a line-wise power flow model, this approach yields 

an improved approximation of the steady-state behavior of radial distribution systems 

compared to other linearization techniques, as discussed in the results section. 

𝑊𝑗,𝑙,𝑡 ≥ ∑ 𝜆𝑘
𝑃 ⋅ 𝑝𝑘

2

𝑖

𝑘=1

+ ∑ 𝜆𝑘
𝑄 ⋅ 𝑞𝑘

2

𝑗

𝑘=1

 (3.7) 

where the domains of 𝑃𝑆
𝑙,𝑡
2

 and 𝑄𝑆
𝑙,𝑡

2
 are divided into 𝑖 and 𝑗 breakpoints, respectively. 

Each interval is represented by a weight 𝜆𝑘
𝑃 or 𝜆𝑘

𝑄
 and an associated squared 

term 𝑝𝑘
2 or 𝑞𝑘

2. Variable 𝑊𝑚,𝑙,𝑡 is an auxiliary variable introduced to represent the linear 

approximation of the bilinear term, i.e., 𝑊𝑚,𝑙,𝑡  ≈ 𝑈𝑚,𝑡 ⋅ 𝐽𝑙,𝑡 Two sets of linear constraints 

impose its upper and lower bounds. Expressions (3.7a) and (3.7b) establish the lower 

limit, while (3.7c) and (3.7d) define the upper bounds. Parameters with lower and 

overbars refer to minimum and maximum reference values of the original squared node 

voltage magnitude and squared line current magnitude variables. 

𝑊𝑗,𝑙,𝑡 ≥ 𝑈 ⋅ 𝐽𝑙,𝑡 + 𝑈𝑗,𝑡 ⋅ 𝐽 − 𝑈 ⋅ 𝐽 (3.7a) 

𝑊𝑗,𝑙,𝑡 ≥ 𝑈 ⋅ 𝐽𝑙,𝑡 + 𝑈𝑗,𝑡 ⋅ 𝐽 − 𝑈 ⋅ 𝐽 (3.7b) 

𝑊𝑗,𝑙,𝑡 ≤ 𝑈 ⋅ 𝐽𝑙,𝑡 + 𝑈𝑗,𝑡 ⋅ 𝐽 − 𝑈 ⋅ 𝐽 (3.7c) 

𝑊𝑗,𝑙,𝑡 ≤ 𝑈 ⋅ 𝐽𝑙,𝑡 + 𝑈𝑗,𝑡 ⋅ 𝐽 − 𝑈 ⋅ 𝐽 (3.7d) 

Constraints (3.8) and (3.9) enforce operational limits on squared bus voltage 

and line current magnitudes. 

𝑈𝑘  ≤ 𝑈𝑘,𝑡 ≤ 𝑈𝑘 (3.8) 

𝐽𝑙,𝑡 ≤ 𝐽𝑙 (3.9) 

3.3.4. DER allocation constraints 

Constraints (3.10), (3.11), and (3.12) update, for every time interval, the power 

output of equivalent aggregate PV, WT, and BESS DERs using piecewise linear 

functions derived from manufacturer data. The output of BESS DERs is modeled 

according with a TOU tariff strategy. The BESS resources are allowed to discharge 

when electricity rates are highest, during the peak-hours between 4 PM and 9 PM, and 

this behavior is depicted in Figure 3.2. The 𝑇𝑂𝑈𝑡 function in (3.12) changes its values 

from 0 to 1 depending on the time of the day. 

As inferred in (3.10) and in the computation of 𝑝𝑡
𝑃𝑉, the values of 𝑥 correspond 

to different hybrid DER models that consider both PV and BESS resources available 

locally. Parameter 𝑡𝑥 consists of the time of the day when the associated energy 

storage model begins charging, consuming the PV output during this process. 
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However, PVs generate power whenever the solar irradiance level exceeds predefined 

threshold values, ensuring that the inherent variability of renewable energy generation 

is accounted for in the model. BESS DERs export energy to the grid only during peak 

hours in a typical time-of-use tariff strategy. Variables with overbars represent the peak 

generating capacity attributed to each equivalent DER. 

𝑃𝑚,𝑡
𝑃𝑉 = 𝑃𝑚

𝑃𝑉𝑥 ⋅ 𝑝𝑡
𝑃𝑉𝑥 , ∀𝑥 ∈ {0,1,2,3} (3.10) 

𝑃𝑚,𝑡
𝑊𝑇 = 𝑃𝑚

𝑊𝑇 ⋅ 𝑝𝑡
𝑊𝑇 (3.11) 

𝑃𝑚,𝑡
𝐵𝐸𝑆𝑆 = 𝑃𝑚

𝐵𝐸𝑆𝑆 ⋅ 𝑇𝑂𝑈𝑡 (3.12) 

 

Figure 3.2. TOU pricing signal used to schedule BESS DERs. 

 

 

Piecewise linear functions are derived from manufacturer data to model the 

power outputs of PV and WT DERs as functions of direct solar irradiance and wind 

speed, respectively. The following expressions consider traditional cut-in, rated, and 

cut-out parameter values for determining power outputs. 

𝑝𝑡
𝑃𝑉𝑥 = {

𝑚𝑎𝑥{𝐾𝑃𝑉 ⋅ (ℎ𝑡 − ℎ), 0} , 𝑖𝑓 ℎ𝑡 ≤ ℎ𝑟⋀ 𝑡 < 𝑡𝑥

1,                                            𝑖𝑓 ℎ𝑡 ≥ ℎ𝑟⋀ 𝑡 < 𝑡𝑥

0,                                                               𝑖𝑓 𝑡 ≥ 𝑡𝑥

, ∀𝑥 ∈ {0,1,2,3} 

𝑝𝑡
𝑊𝑇 = {

𝑚𝑎𝑥{𝐾𝑊𝑇 ⋅ (𝑤𝑡 − 𝑤), 0} , 𝑖𝑓 𝑤𝑡 ≤ 𝑤𝑟

1,                                      𝑖𝑓 𝑤𝑟 ≤ 𝑤𝑡 < 𝑤

0,                                                 𝑖𝑓 𝑤𝑡 ≥ 𝑤

 

Constraints (3.13), (3.14), and (3.15) limit the summation of the allocated 

generating capacity of equivalent DERs. Note that all PV models add up to a single 

value as the actual composition of PV-BESS DERs is unknown. Eq. (3.16) determines 

that the maximum capacity of each DER model may be higher than zero only for the 

nodes where the binary variable assumes the unity value. The maximum number of 

equivalent DER models is determined in (3.17) via the parameter 𝑁𝑌. 
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∑ ∑ 𝑃𝑘

𝑃𝑉𝑥

3

𝑥=0

𝑁𝐵

𝑘=2

= 𝑃𝑡𝑜𝑡𝑎𝑙
𝑃𝑉  (3.13) 

∑ 𝑃𝑘

𝑊𝑇
𝑁𝐵

𝑘=2

= 𝑃𝑡𝑜𝑡𝑎𝑙
𝑊𝑇  (3.14) 

∑ 𝑃𝑘

𝐵𝐸𝑆𝑆
𝑁𝐵

𝑘=2

= 𝑃𝑡𝑜𝑡𝑎𝑙
𝐵𝐸𝑆𝑆 (3.15) 

0 ≤ 𝑃𝑘

𝑃𝑉𝑥
, 𝑃𝑘

𝑊𝑇
, 𝑃𝑘

𝐵𝐸𝑆𝑆
≤ 𝐶 ⋅ 𝑌𝑘

𝐷𝐸𝑅, 𝐶 ≫ 1 (3.16) 

∑ 𝑌𝑘
𝐷𝐸𝑅 

𝑁𝐵

𝑘=2

≤ 𝑁𝑌, 𝑌𝑘
𝐷𝐸𝑅 ∈ {0,1} (3.17) 

3.3.5. Load determination constraints 

The same constraints are employed to determine equivalent load models. 

Constraints (3.18) and (3.18) update, for every time interval, the active and reactive 

power consumption for all load buses. This is done by multiplying the total feeder-level 

consumption by the corresponding share of the total load at each bus. Constraint (3.20) 

ensures that the summation of all load factors equals the total feeder-level load. These 

are determined using a binary variable for all load buses in the system, as in (3.21). 

𝑃𝑘,𝑡
𝐿 = 𝐷𝑘

𝐿 ⋅ 𝑃𝑡
𝐿 (3.18) 

𝑄𝑘,𝑡
𝐿 = 𝐷𝑘

𝐿 ⋅ 𝑄𝑡
𝐿 (3.19) 

∑ 𝐷𝑘
𝐿

𝑁𝐵

𝑘=2

= 1 (3.20) 

0 ≤ 𝐷𝑘
𝐿 ≤ 𝑌𝑘

𝐿 , 𝑌𝑘
𝐿 ∈ {0,1} (3.21) 

3.4. Solution Method 

The same implementation and solution method using Python and Pyomo was 

employed to test the resulting MILP formulation problem described in (3.1)-(3.21). 

Moreover, the same modeling assumptions are assumed in this chapter, related to 

data availability, DER information at the feeder level, system radial topology, and error 

distribution of existing measurement data. 

3.4.1. Test system data and preparation 

In this chapter, the resulting formulation is employed to estimate system states 

and allocate equivalent DERs for an 11-bus [87] and a 240-bus [88] distribution test 

systems. These were selected to test the proposed framework under different system 

scales and topological and operational characteristics. Note that, as per the previous 

chapter, detailed information on each test system is provided in Appendix B and the 

files used in simulation are available at [89]. 

The 11-bus test feeder involves a typical North-American distribution feeder 

supplying 4.32 MW + j1.43 MVAr of load at the 12.48 kV level. The total generating 
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capacity of PV DERs is 0.23 MW, while 1.50 MW is for WT, and 0.81 MW/4.06 MWh 

is for BESS. This corresponds to a 40% DER penetration level by taking the ratio 

between the total DER capacity and peak customer demand at the feeder level. The 

radial topology is obtained by leaving all tie-line switches and connections to 

neighboring feeders open. Figure 3.3 depicts the test system along with DER 

information. PV-BESS DER types were selected based on the presence of both 

resources in the original system. Note that this information is only used to generate 

system measurements through power flow calculations and is not disclosed to the 

proposed method, aligning with what would be available in practice, considering the 

presence of invisible DERs. 

 

Figure 3.3. Diagram of the test system displaying DER information. 

 

 

Although the 11-bus test feeder is a synthetic approximation of a real North-

American MV distribution feeder, the data presented in [88] for the 240-bus test system 

corresponds to a real distribution grid located in the Midwest U.S. that belongs to a 

municipal utility. The 240-bus test system is a 10-MVA rating radial distribution system 

consisting of three separate feeders supplied by a 69/13.8 kV substation transformer. 

According to the authors, the system is a fully observable network with smart meters 

installed at all customer locations. The system has 240 nodes and 37 km of primary 

feeder conductors with overhead and underground sections. 
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A 50% penetration scenario was devised by distributing DERs across 107 load 

buses in the system (50% of the total number of load buses) over the three existing 

distribution feeders connected to the same substation bus-bar. In total, there are 95 

PV (74 PV + 21 hybrid PV-BESS DERs) and 35 WT DERs. Details of each feeder are 

laid out in Table VIII. 

 

Table 3-1. Load and DER capacity per feeder for the 240-bus distribution test system. 

Feeder 𝑵𝑩 𝑷𝑳 (MW) 𝑸𝑳 (MVAr) 𝑷𝑷𝑽 (MW) 𝑷𝑾𝑻 (MW) 𝑷𝑩𝑬𝑺𝑺 (MW/MWh) 

A 17 0.71 0.27 0.28 0.07 0.052/0.258 

B 60 1.75 0.78 0.70 0.18 0.182/0.910 

C 163 1.60 0.58 0.64 0.16 0.085/0.425 

Total 240 4.06 1.63 1.62 0.41 0.319/1.595 

 

The same weather dataset (See Appendix B) referring to the location of Toronto, 

Canada, was used to execute the simulations described next. The linearized DER 

power output calculation models considered cut-in and rated direct solar irradiance of 

150 and 800 W/m², respectively. For wind DERs, cut-in, rated, and cut-out wind speeds 

are 2.8, 10, and 20 m/s, respectively. 

This dataset was processed to get each month’s average day (24-hour profile), 

reducing the total number of time steps from 8,760 to 288. This corresponds to the 

length of historical data used in simulations. The data was then utilized to generate 

measurements via power flow calculations using the line-wise power flow model of 

[50]. Consequently, all meter data in the results section correspond to values derived 

from this simulation. In practical applications, however, such data would be reported 

from field measurements. 

3.4.2. Estimation performance metrics 

To complement the assessment of the described method when providing 

estimations on unobserved voltage magnitudes and branch flows, the 95th percentile 

of absolute error (P95 AE) values are also computed. This metric provides the error 

value below which 95% of the observed deviations fall, capturing a typical upper bound 

of estimation errors. Note that the following subsections refer to two sets of results: the 

observed system, which consists of data reported by assumed existing measurements; 

and the entire network, where errors are calculated using power flow results as 

references. In the latter case, simulated data is used to extend evaluations and ensure 

a more comprehensive assessment of the performance of the proposed model. 

3.5. Results and Discussion 

The first case studies (from Subsection 3.5.1 to Subsection 3.5.6) focus on the 

11-bus system to showcase the performance of the resulting formulation under various 

conditions. Subsection 3.5.6 presents a comparison between the performance of the 
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method described in this chapter with the original MINLP model from Chapter 2, and 

alternative linearized formulation versions. Subsections 3.5.7 is dedicated to the 240-

bus test system. 

3.5.1. Ideal case (11-bus system) 

Table 3-2 presents the results for observed bus voltages and unobserved 

branch flows, assuming 100% MCL, meaning all system buses have voltage 

measurements. The solution can allocate the exact number of DERs in the system, 

i.e., 𝑁𝑌 = 9. This means there is no reduction in the number of DERs represented for 

this case. Historical data is comprised of 288 one-hour time steps with error-free 

measurements. The bases for per unit calculation are 12.47 kV and 10 MVA. 

Results show that with voltage measurements amply available, the proposed 

method can reproduce the existing voltage information while accurately (𝐴𝐶𝐶 > 95%) 

estimating unobserved branch flows. Taking the maximum historical branch active 

power flow in the system as reference (4.23 MW, at the substation exit), the mean and 

95th percentile error values correspond to around 2.9% and 12.6%, respectively, 

indicating that high errors (≥ 15%) are limited to a small portion of the branch flow 

estimates. 

 

Table 3-2. Estimation Performance: 11-bus system, 𝑁𝑌 = 9, 100% MCL, 40% DER. 

Error Metric 
Observed 

Voltages 

Unobserved 

Branch Flows 

MAE (p.u.) 1.92 ⋅ 10−5 1.22 ⋅ 10−2 

Max AE (p.u.) 1.41 ⋅ 10−4 9.72 ⋅ 10−2 

P95 AE (p.u.) 9.90 ⋅ 10−5 5.31 ⋅ 10−2 

ACC (%) 99.99 97.29 

 

3.5.2. Impacts of the number of available measurements (11-bus system) 

Notably, errors in estimating unobserved quantities reduce as more metered 

buses exist in the system. On the other hand, errors calculated for observed voltage 

magnitudes increase as each new measurement introduces variability to the input 

data. Figure 3.4 shows relative error results. Each boxplot consists of data from 

simulations considering a fixed number of metered buses—from two buses to the 

system fully covered with voltage magnitude measurements (100% MCL). Since 

multiple combinations exist considering the different possible meter locations, ten 

different scenarios were solved for each MCL by varying meter locations. The voltage 

at the substation exit (Bus 1) is always available, while the remaining metered buses 
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were selected using a uniform distribution. Parameter NY varies from 1 to 9 in all cases. 

The ‘+’ sign represents outliers. 

 

Figure 3.4. Relative estimation errors under different meter coverage levels. (a) 

Observed voltages. (b) Unobserved voltages. (c) Unobserved branch flows. 

 
(a) 

 
(b) 

 
(c) 
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Unobserved voltage magnitude estimation errors remain below 1.6%, even in 

cases with few measurements available. High values (≥ 15% error) in branch flow 

estimations are limited to scenarios with fewer than five metered buses and outliers in 

results. The average error value stays below 5% in all scenarios, while the maximum 

error values remain below 10% when nine or more metered buses are present in the 

system (ignoring outliers). 

3.5.3. Impacts of the resulting number of DER models (11-bus system) 

The number of equivalent DER models, set by parameter 𝑁𝑌, balances 

computational efficiency and accuracy. Fewer DER models speed up subsequent 

power flow calculations, while having a larger number of models representing many 

invisible DERs improves accuracy, yet increasing complexity, potentially burdensome 

as the system size and number of scenarios increase. Figure 3.5 shows the accuracy 

of unobservable branch flow estimations for varying MCLs and values of 𝑁𝑌. Each 

value corresponds to the average accuracy of ten scenarios solved for each condition. 

As in the previous section, these variations consider different meter locations while 

assuming the voltage at the substation end-node available as input to the model. 

 

Figure 3.5. Branch flow estimation accuracy (ACC, %) varying the meter coverage 

level and the maximum number of aggregate DERs (setting of parameter 𝑁𝑌). 

 
 

There is, on average, a 1.3% estimation accuracy increase for every increment 

of the number of equivalent DER models the proposed method is allowed to 

introduce—also, an average increase of 0.5% for each new voltage measurement 

introduced. However, note that the positive effect of 𝑁𝑌 in increasing estimation 

accuracy is more pronounced for the cases with fewer metered buses in the system. 

3.5.4. Impacts of the DER penetration level (11-bus system) 

The DER penetration level, computed as the ratio of the total DER generating 

capacity to the peak customer load at the feeder level, also impacts estimation 
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accuracy. Table 3-3 shows unobservable branch flow estimation results for the ideal 

scenario (𝑀𝐶𝐿 = 100%, 𝑁𝑌 = 9) under varying DER penetration levels, achieved by 

increasing DER capacity from what was presented in Figure 3.3, while keeping 

customer loads unchanged. As DER penetration increases, the algorithm 

demonstrates consistent improvements in estimation accuracy. Results suggest that 

higher DER penetrations allow the algorithm to better differentiate DER steady-state 

behavior from customer loads in measurements. This enables more precise allocation 

of equivalent DERs, thus enhancing unobserved branch flow estimations. 

Two statistical tests were employed to confirm that the proposed algorithm 

maintains stable performance across the different penetration levels. Groups with no 

statistically significant difference in means and variance are identified using both 

Welch-t and Levene tests and denoted by matching superscripts (e.g., 1, 2, 3). The 

former test [90] checks if two groups have different means, especially when the groups 

might have different variances and sample sizes. Moreover, the latter test [91] checks 

whether different groups have equal variances, regardless of their means. 

 

Table 3-3. Estimation Performance: 11-bus system, 𝑁𝑌 = 9, 100% MCL, Varying DER 

Penetration 

Error Metric 

(for Unobserved 

Branch Flows) 

MAE 

(p.u.) 

Max AE 

(p.u.) 

P95 AE 

(p.u.) 

ACC 

(%) 

20% DER1 2.25 ⋅ 10−2 3.19 ⋅ 10−1 1.66 ⋅ 10−1 95.00 

40% DER1 1.22 ⋅ 10−2 9.72 ⋅ 10−2 5.31 ⋅ 10−2 97.29 

60% DER1 1.14 ⋅ 10−2 7.76 ⋅ 10−2 4.82 ⋅ 10−2 97.47 

80% DER2 9.42 ⋅ 10−3 6.29 ⋅ 10−2 4.09 ⋅ 10−2 97.91 

100% DER2 8.54 ⋅ 10−3 6.01 ⋅ 10−2 3.73 ⋅ 10−2 98.10 

1,2Groups with no statistically significant difference in means and variances based on Welch-t and 

Levene tests (p-values <0.01). 

 

3.5.5. Impacts of measurement and model parameter errors (11-bus system) 

This section analyzes the impacts of four primary error sources on the 

estimation of unobserved branch flows: (1) noise in voltage magnitude data, (2) 

uncertainties in branch impedance parameters, (3) variations in the feeder-level 

aggregated capacity of invisible DERs, and (4) errors in net load measurements 

aggregated at the feeder level. 

• Voltage magnitude measurement errors 
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Table 3-4 demonstrates the impact of varying noise levels in voltage magnitude 

data. Noise levels, ranging from 0.1% to 6%, were generated using a Gaussian 

distribution applied uniformly to all measurements. Percentage values correspond to 

the maximum allowable deviation from actual data. Performance remains stable up to 

1.0% noise, but beyond 3.0% significant accuracy degradation occurs. This highlights 

a potential threshold where the proposed method struggles to maintain high estimation 

accuracy. 

 

Table 3-4. Estimation Performance: 11-bus system, 𝑁𝑌 = 9, 100% MCL, 40% DER, 

Noise in Measurements 

Error Metric 

(for Unobserved 

Branch Flows) 

MAE 

(p.u.) 

Max AE 

(p.u.) 

P95 AE 

(p.u.) 

ACC 

(%) 

0.1% Error 2.23 ⋅ 10−2 1.21 ⋅ 10−1 8.06 ⋅ 10−2 96.54 

0.2% Error 2.53 ⋅ 10−2 1.31 ⋅ 10−1 8.94 ⋅ 10−2 95.75 

0.5% Error1 2.69 ⋅ 10−2 1.42 ⋅ 10−1 1.36 ⋅ 10−1 95.24 

1.0% Error1 2.77 ⋅ 10−2 1.52 ⋅ 10−1 1.43 ⋅ 10−1 95.13 

3.0% Error2 3.22 ⋅ 10−2 1.80 ⋅ 10−1 1.68 ⋅ 10−1 93.91 

6.0% Error2 3.39 ⋅ 10−2 1.80 ⋅ 10−1 1.71 ⋅ 10−1 91.71 

1,2Groups with no statistically significant difference in means and variances. 

 

• Branch impedance errors 

Table 3-5 evaluates the effect of branch impedance inaccuracies on the 

estimation of unobserved branch flows. Errors were introduced as percentage 

deviations in resistance and reactance values, with error-free voltage magnitude 

measurements. Estimation accuracy remains consistent across tested impedance 

error levels. This demonstrates the robustness of the proposed method with respect to 

this error source. 
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Table 3-5. Estimation Performance: 11-bus system, 𝑁𝑌 = 9, 100% MCL, 40% DER, 

Branch Impedance Errors 

Error Metric 

(for Unobserved 

Branch Flows) 

MAE 

(p.u.) 

Max AE 

(p.u.) 

P95 AE 

(p.u.) 

ACC 

(%) 

1% Error1 1.22 ⋅ 10−2 9.57 ⋅ 10−2 5.22 ⋅ 10−1 97.27 

5% Error1 1.25 ⋅ 10−2 9.56 ⋅ 10−2 5.29 ⋅ 10−2 97.17 

15% Error1 1.25 ⋅ 10−2 9.68 ⋅ 10−2 5.23 ⋅ 10−2 97.15 

1Group with no statistically significant difference in means and variances. 

 

• Total feeder-level DER capacity errors 

Table 3-6 shows the impact of aggregated DER capacity deviations on 

estimation accuracy. Errors imply an inaccurate value presented to the model as the 

total DER generating capacity at the feeder level, per fuel type. The same error was 

attributed to all DERs in each case, with error-free measurements and network 

parameters. 

 

Table 3-6. Estimation Performance: 11-bus system, 𝑁𝑌 = 9, 100% MCL, 40% DER, 

Total DER Capacity Errors 

Error Metric 

(for Unobserved 

Branch Flows) 

MAE 

(p.u.) 

Max AE 

(p.u.) 

P95 AE 

(p.u.) 

ACC 

(%) 

-15% Error 1.34 ⋅ 10−2 9.65 ⋅ 10−2 5.30 ⋅ 10−2 96.78 

-5% Error 1.25 ⋅ 10−2 9.57 ⋅ 10−2 5.27 ⋅ 10−2 97.15 

-1% Error 1.24 ⋅ 10−2 9.36 ⋅ 10−2 5.06 ⋅ 10−2 97.22 

+1% Error1 1.23 ⋅ 10−2 9.72 ⋅ 10−2 5.31 ⋅ 10−2 97.23 

+5% Error1 1.25 ⋅ 10−2 9.74 ⋅ 10−2 5.32 ⋅ 10−2 97.16 

+15% Error1 1.26 ⋅ 10−2 9.77 ⋅ 10−2 5.34 ⋅ 10−2 97.11 

1Group with no statistically significant difference in means and variances. 

 

Results show that variations in DER capacity have minimal impact on accuracy, 

with only slight variations (≤ 1%) in overall accuracy values. Note that branch flow 
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errors are computed across all time steps in historical data. This includes periods when 

DER output is expected to be zero to insufficient solar irradiance of wind speeds. 

During these intervals the calculated power injection from equivalent DERs is also 

zero, leaving branch flow estimation unaffected, even if the total installed DER capacity 

is not perfectly estimated. 

• Errors in net load measurements aggregated at the feeder level 

Table 3-7 illustrates that while a 1% error in net load measurements has 

negligible effects on unobserved branch flow estimations, higher deviations—

particularly at the 15% error level—result in a substantial decline in estimation 

accuracy. This drop is more pronounced than other error sources analyzed in this 

section. 

 

Table 3-7. Estimation Performance: 11-bus system, 𝑁𝑌 = 9, 100% MCL, 40% DER, 

Net Load Measurement Errors 

Error Metric 

(for Unobserved 

Branch Flows) 

MAE 

(p.u.) 

Max AE 

(p.u.) 

P95 AE 

(p.u.) 

ACC 

(%) 

1% Error 1.23 ⋅ 10−2 9.71 ⋅ 10−2 5.32 ⋅ 10−2 97.25 

5% Error 1.33 ⋅ 10−2 9.62 ⋅ 10−2 5.51 ⋅ 10−2 93.33 

15% Error 1.92 ⋅ 10−2 9.82 ⋅ 10−2 6.51 ⋅ 10−2 84.56 

 

This deterioration of results happens due to the proposed model’s reliance on 

aggregated load consumption data to distribute the total load in the system across all 

load nodes and accurately determine the impacts of power injections from customer 

loads on measurements. Unlike voltage magnitude errors, which affect local 

measurement points, feeder-level net load errors propagate across multiple buses, 

influencing estimation results. 

3.5.6. Quality of the linearized solution (11-bus system) 

In this section, the performance of the linearized formulation is benchmarked 

against the MINLP model presented on Chapter 2 and two other linearized 

approaches. Note that the MINLP model was adapted to include the constraints 

associated hybrid DER models. The first linearized benchmark model is obtained by 

assuming that the voltage profile is leveled at 1.0 p.u. when calculating the squared 

magnitude of the current flowing in the system’s lines, eliminating the bilinear term 

multiplying line currents and node voltage magnitudes. Power losses are computed 
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normally using (3.3) and (3.4), with updated voltage magnitude values. This approach 

was addressed in [74] and [75]. 

The second linearized model depends on the negligibility of power losses. By 

neglecting active and reactive power losses, the line current variable can be eliminated 

from the model, which leads to the eradication of the SOC constraint and simplification 

of the remaining power flow equations. This approach was discussed in [76] and [78], 

with the authors in [78] stating its possible limitations, especially when addressing 

highly loaded and longer distribution feeders. Table 3-8 provides an overview of all 

models and their respective changes in the formulation implemented for testing. 

Faster solution times than those of the proposed model are expected from 

benchmarked linear approaches due to a reduced number of constraints used to model 

the system’s steady-state behavior through power flow equations. For the lossless 

MILP model, (3.7a)-(3.7d) are removed, while constraint (3.7) and line current 

variables are removed altogether from the formulation in the MILP 1.0 p.u. model. 

 

Table 3-8. Formulation Comparison of the Proposed Model and Linear and Nonlinear 

Benchmark Approaches 

Model Description Constraint (3.7) 

Proposed 

MILP 

Formulation as described by (3.1)-

(3.21). 
𝑊𝑗,𝑙,𝑡 ≥ ∑ 𝜆𝑘

𝑃 ⋅ 𝑝𝑘
2

𝑖

𝑘=1

+ ∑ 𝜆𝑘
𝑄

⋅ 𝑞𝑘
2

𝑗

𝑘=1

 

MINLP 

(Chapter 2) 

Formulation as described by (2.1)-

(2.19). SOC relaxation used to 

calculate line current magnitudes. 

𝑈𝑚,𝑡 ⋅ 𝐽𝑙,𝑡 ≥ 𝑃𝑆
𝑙,𝑡
2

+ 𝑄𝑆
𝑙,𝑡

2
 

MILP 

Lossless 

Neglected losses. Line current 

variables are removed. 
Removed from the formulation. 

MILP 1.0 p.u. 
Voltages are leveled at 1.0 p.u. to 

calculate line currents. 
𝐽𝑙,𝑡 ≥ ∑ 𝜆𝑘

𝑃 ⋅ 𝑝𝑘
2

𝑖

𝑘=1

+ ∑ 𝜆𝑘
𝑄 ⋅ 𝑞𝑘

2

𝑗

𝑘=1

 

 

Figure 3.6 presents boxplots of branch flow estimation errors for the linearized 

and nonlinear approaches. Voltage magnitude measurements are introduced 

sequentially as the buses are numbered, with the substation end-node (Bus 1) always 

available. The parameter 𝑁𝑌 varies from 1 (a single equivalent DER) to 9 (the actual 

number of DERs in the original system). There is an overall decreasing trend in 

estimation errors as the number of metered buses increases for all methods. For lower 

MCLs (with 2 to 6 metered buses), the median error values range from approximately 

5% to 15%, with the MILP 1.0 p.u. method exhibiting higher errors and the largest 

spread. 
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For higher MCLs, the median errors decrease significantly for most methods, 

staying below 5% and with fewer extreme outliers. In general, the MINLP method from 

Chapter 2 shows lower errors across different MCLs compared to all approaches, with 

the proposed MILP formulation performing slightly better than the lossless MILP model. 

This shows that the proposed approach, linearized using McCormick envelopes, 

provides a reasonable trade-off between computational performance and accuracy 

compared to the linear variants. 

 

Figure 3.6. Comparisons between the proposed method and other linearized and 

nonlinear approaches: (a) unobserved branch flow estimation errors, and (b) solution 

time. 

 
(a) 

 
(b) 

 

This trade-off is further evidenced by Figure 3.6(b). The MINLP model has 

higher solution times compared to all MILP models, particularly for small values of 

𝑁𝑌—with outliers reaching beyond 3000 seconds. The inset for 𝑁𝑌 = 9 shows that 
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though solution times are much lower than for smaller 𝑁𝑌, the MINLP model still 

presents a tenfold increase in solution time when compared to the MILP models. 

Note that higher solution times happen for lower 𝑁𝑌 values due to an increased 

combinatory complexity. For example, if 𝑁𝑌 = 1, the solver must choose a single bus 

to allocate equivalent DERs from a large set of buses, leading to a highly combinatorial 

decision problem. Also, since a binary decision variable controls this behavior, having 

fewer candidate buses for equivalent DER allocation introduces stronger discreteness 

and makes the problem harder to solve. 

3.5.7. A larger distribution system with multiple feeders (240-bus system) 

The next results consider the 240-bus distribution test system—a 10-MVA 

system consisting of three separate feeders supplied by a 69/13.8 kV substation 

transformer. A 50% penetration scenario was devised by distributing DERs across 107 

load buses in the system (50% of the total number of load buses) over the three 

existing distribution feeders connected to the same substation bus-bar. Figure 3.7 

shows branch flow estimation results for Feeders A, B, and C under varying MCLs 

ranging from 5% to 100%–from a system with sparse voltage magnitude 

measurements to a fully measured system. 

Parameter 𝑁𝑌 is considered 5 for each feeder, resulting in 15 aggregate DER 

models in a system with originally 128 DERs. Accurate results display the performance 

of the proposed method independent of the system size in terms of the number of 

nodes. At 5% MCL, there is considerable variability in error, particularly for Feeder C, 

which has the largest number of nodes and a more distributed DER setup. At 100% 

MCL, all feeders exhibit low errors, reflecting the advantage of full network coverage 

with voltage magnitude measurements. 

 

Figure 3.7. Branch flow estimation accuracy for all system feeders considering varying 

meter coverage levels. 50% DER penetration scenario. 
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Considering the modeling and solution of the proposed formulation for both test 

systems and the individual feeders on the 240-bus test system, the scalability of the 

proposed model can be discussed in terms of the computational time required to 

achieve a solution. Notably, the number of buses in the system directly influences the 

solution time. For instance, the 11-bus feeder with 288 hourly time steps solves in 

approximately four minutes (𝑁𝑌 = 1), while the model requires forty-five minutes for 

the 163-bus feeder (Feeder C) within the 240-bus test system. While computational 

performance remains relevant, the method is valid for practical implementation for 

larger-scale systems, especially considering that it only requires solving once for a 

given system topology and load/generation level. Therefore, its solution time is not a 

major limitation for real-world applications. 

3.6. Chapter Summary 

This chapter continued addressing the challenge of developing aggregate DER 

models to represent innumerable invisible hybrid DERs in radial distribution systems. 

Case studies were devised to display the effectiveness of the linearized formulation in 

locating and sizing equivalent DER models and leveraging the allocated resources to 

estimate unobserved bus voltage magnitudes and branch flows. The presented 

analyses showed low average errors (≤5%) for estimating unobserved branch flows 

using limited voltage magnitude data. Higher error values (≥15%) were limited to a few 

cases outside the 95% percentile of estimates. 

As per Chapter 2, the sensitivity of estimation results about different testing 

conditions was discussed. Subsection 3.5.6 compared the performance of the MILP-

based approach, the MINLP method from Chapter 2, and two benchmark linearized 

formulations. The MINLP method from Chapter 2 generally shows lower errors across 

different meter coverage levels compared to all approaches, with the proposed MILP 

formulation performing slightly better than the lossless MILP model. 

However, in terms of average solution times, the MINLP model has higher 

solution times than all its counterparts, particularly for small values of 𝑁𝑌—with outliers 

reaching beyond 3000 seconds. The linearized formulation presented in this chapter, 

employing McCormick envelopes, showed a reasonable trade-off between 

computational performance and accuracy compared to the linear variants, with a 

tenfold decrease in solution time compared to the MINLP model. 
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4. INTEGRATION INTO AN INDUSTRY-STANDARD TOOL FOR DISTRIBUTION 

SYSTEMS MODELING AND ANALYSIS 

4.1. Chapter Introduction 

Distribution system decision-making seeks frequent power flow solutions to 

determine the system state and execute optimal reconfiguration to manage feeder 

loading. With the growing number of DERs connected to feeders, these algorithms 

require longer solution times, impending operational decisions. Hence, utilities require 

methods to develop aggregate DER models that balance computational efficiency with 

numerical accuracy. As discussed in previous chapters, existing solutions to increase 

system and DER visibility rely on extensive measurement infrastructure, which 

becomes impractical at scale. Thus, there is a need for approaches that can be 

effective under low system observability, enabling accurate feeder and DER modeling. 

Building upon the methodologies developed in previous chapters—where 

equivalent aggregate DER models were formulated using convex MINLP (Chapter 2) 

and MILP (Chapter 3) approaches—this chapter focuses on their integration into an 

industry-standard distribution system analysis tool, OpenDSS [44], which was chosen 

based on its widespread adoption in the industry and the research community. By 

implementing the developed equivalent models in OpenDSS, this chapter aims to 

validate their ability to accurately reproduce system behavior while reducing 

computational burden. 

Previous chapters referred to the single-phase modeling of radial distribution 

systems, assuming balanced three-phase system conditions. Therefore, another 

outcome of the integration with OpenDSS is enabling the assessment of the impacts 

of aggregate DER models in unbalanced systems. Different scenarios are devised by 

varying the level of system unbalance caused by unbalanced load distributions across 

all phases. Tested scenarios consider the traditional node voltage and line current 

unbalance limits of 2% (per bus) and 20% (at the substation exit), respectively [20]. 

This chapter continues by detailing how previous results were integrated into 

OpenDSS. Next, simulations and results are discussed, along with an algorithm used 

to reduce system representation further by removing empty nodes and yield faster 

solution times with high numerical accuracy. 

4.2. Integration with OpenDSS 

To facilitate analysis and subsequent processing of results data, the outputs of 

the Python scripts implemented to solve the optimization problems referred to on 

Chapter 2 and Chapter 3 were saved on a spreadsheet file format, which are not 

directly readable by the OpenDSS engine. An auxiliary Python script was implemented 

to parse results—specifically, to gather system information, equivalent DER and load 

data, and time-series of load consumption and DER generation profiles. This approach 

generates a text file (.dss extension) compatible with OpenDSS, following extensive 
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documentation for model setting and data formatting of [92]. This procedure was 

facilitated by the DSS-Extensions platform [93]. 

Consequently, two main system files were generated for each test system used: 

an original file, with all loads and DERs explicitly modeled (assuming complete system 

and DER visibility), and a reduced system version with the outcomes of the proposed 

optimization models. For the analysis under unbalanced system conditions, different 

unbalanced load distributions were generated by keeping constant the total load over 

the three phases, but with different peak load values at phases A, B, and C. Voltage 

unbalance levels are calculated per system node using the root-mean-square voltage 

magnitudes at the fundamental frequency, as 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 100 ⋅
𝑉−

𝑉+
 [%] 

where 𝑉+ and 𝑉− are the magnitudes of the positive and negative sequence voltages, 

respectively. 

The current unbalance is calculated for the total feeder current at the substation 

exit. In normal operating conditions, this value is usually 10-20%. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 100 ⋅
𝐼−

𝐼+
 [%] 

where 𝐼+ and 𝐼− are the magnitudes of the positive and negative sequence of the 

current at the substation exit, respectively. 

4.3. Comparisons Between Detailed and Reduced System Models 

The first test cases involve the 240-bus test system presented in Chapter 3. 

Two testing conditions are considered: first, a comparison between two three-phase 

unbalanced system models is performed; second, a comparison between two 

unbalanced system models with balanced and unbalanced equivalent DERs. 

The first analysis involves the detailed model with all loads and DERs 

represented assuming complete system visibility (Model I) and a reduced system 

version with three-phase balanced DERs modeled according to the outcomes of the 

proposed MILP model of Chapter 3 (Model II). The second analysis consists of a 

comparison between two modified versions of Model II to generate system unbalance 

by redistributing peak customer loads per system phase. Then, the different system 

models are created by introducing DERs as three-phase balance models (the outcome 

of the proposed algorithms) and as three-phase unbalanced models following the 

same unbalance of customer loads. The latter model assumption is valid once it is 

expected that DERs might be also installed at customer sites with single- and two-

phase connections. Moreover, it is assumed that DERs are not allowed to increase the 

overall system unbalance, according to [20]. 

Comparisons between Model I and Model II for the 240-bus test system is done 

in Subsection 4.3.1. These comparisons are redone in Subsection 4.3.2 for the 10-bus 
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and the 873-bus systems of Chapter 2. Subsection 4.3.2 also introduces an algorithm 

to remove empty system nodes (i.e., nodes with no load or DER) from the equivalent 

system files. The algorithm combines lines leading to empty nodes, reducing the total 

number of nodes and lines in the files corresponding to model II, while yielding accurate 

voltage and branch flow computations for non-empty nodes. 

4.3.1. 240-bus distribution test system 

• Three-phase balanced system analysis 

The first tests consist of comparing results between three versions of the 240-

bus test system: a three-phase balanced model with all DERs and loads explicitly 

modelled assuming complete system visibility (Model I); the equivalent system 

representation with 15 aggregate DER models derived from the proposed model 

(Model II, with 5 DERs per feeder, 𝑁𝑌 = 5, 𝑀𝐶𝐿 = 100, 40% DER penetration, error-

free measurements); and a modified version of Model I (Model I-II)—a three-phase 

balanced system version considering that all DERs remain invisible to the system 

operation and therefore cannot be accurately integrated into the system model. 

The latter version assumes that the total feeder-level DER generating capacity 

is equally distributed across the 15 system nodes with highest peak load 

consumptions. This is a reasonable approach, as large electricity consumers tend to 

procure DERs to economically offset the local consumption. Note that the modified 

system version (Model I-II) results in the same number of aggregate DERs considered 

in Model II. 

Figure 4.1 illustrates the layouts of the detailed and reduced versions of the test 

system. Line thicknesses in plots are scaled based on the maximum branch flow 

values, typically observed at the substation exit. The axis labels refer to the (X,Y) 

coordinates of system locations. Marked locations in the plots indicate points where 

DERs connect to the network. 

The relative error between the maximum branch flow values of systems I and II 

is approximately 1.60%, indicating that the reduced system closely approximates the 

original in terms of branch flow calculations. Considering the deviations in power flow 

calculations between the original and the reduced system files in OpenDSS, the p.u. 

MAE, P95 AE, and Max AE values for voltages magnitudes are 0.0583, 0.0966, and 

0.1438, respectively. 

For Model I-II, the maximum branch flow reported is 755.63 kW. This, in relation 

to the full system representation of Model I, results in a 2.22% deviation. This result 

indicates that the proposed method preserves the characteristics of the original system 

better, with 1.60% deviation. Also, the MAE and Max AE values increase to 0.0758 

and 0.1601, respectively, from 0.0583 and 0.1438. Moreover, if DER information is 

completely absent from system data (e.g., not including feeder-level totals for each 

DER type), DERs would not be modeled, resulting in a maximum branch flow of 935.69 
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kW. This shows a 26.56% deviation from the complete system representation of 

Model I and would lead to highly inaccurate assessments of the operating conditions. 

 

Figure 4.1. System plots for the 240-bus case with DER locations marked. (a) Detailed 

system with 128 DERs. (b) Reduced version with 15 equivalent DERs. 

 
(a) 

 
(b) 

 

• Unbalanced three-phase power flow compatibility check 
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In the unbalanced three-phase version of the 240-bus system (Model III), the 

difference between the most loaded phase (Phase A) from the least loaded phase 

(Phase B) is 13.88%, with the maximum bus voltage unbalance of 0.09% and current 

unbalance at the substation exit of 6.99%, respectively. Phase current unbalance 

levels ranging from 6.99% to 20% were generated by redistributing loads over the three 

phases while keeping constant the total peak customer load summation per node. 

Voltage unbalances are calculated for all system buses, while the current value refers 

to the substation exit. Table 4-1 summarizes unbalance results (i.e., maximum node 

voltage unbalance and substation current unbalance) for all the tested scenarios. The 

table also shows comparison results between the system representations with 

aggregate DER models being introduced as balance and unbalanced three-phase 

models. Low deviations (≤ 5%) evidence that the representation of equivalent DERs 

as three-phase balanced model is adequate, even under highly unbalanced system 

conditions. 

 

Table 4-1. Branch Flow Deviations Under Different System Unbalance Levels 

Calculated Current Unbalance 

(at the substation exit) 
6.99%  10% 15% 20% 

Maximum Node Voltage Unbalance 0.09% 0.12% 0.16% 0.21% 

Average Branch Flow Deviation 

(between feeder models with balanced and 

unbalanced aggregate DER models) 

1.16% 1.74% 2.00% 3.07% 

 

4.3.2. 10-bus and 873-bus test systems 

Table 4-2 summarizes power flow results obtained for the 10-bus and the 873-

bus test systems, comparing the performance of the original (Model I) and reduced 

(Model II) system files. The reduced system with aggregated DERs shows low average 

voltage magnitude errors. Similarly, average feeder power errors remain low, though 

maximum errors reach higher values. However, the 95th percentile errors for feeder 

powers are 9.26% and 8.93% for the 10-bus and 873-bus systems, respectively, 

indicating that higher errors are limited to a small portion of the system branches. 
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Table 4-2. Power flow results obtained using OpenDSS. Balanced three phase models 

for the 10- and 873-bus test systems. 

System 
Total 

Demand 

DERs (#, MW) 

– Original 

System 

DERs (#, MW) 

– Reduced 

System 

MAE (Max 

AE) – 

Voltages 

MAE (Max AE) 

– Branch 

Flows 

10-bus 16.0 MW 
9 DERs (4 

MW) 
3 DERs (4 MW) 

0.71% 

(2.32%) 

2.98% 

(26.11%) 

873-

bus 
33.6 MW 

350 DERs 

(16.8 MW) 

35 DERs (16.8 

MW) 

0.13% 

(1.95%) 

2.01% 

(31.72%) 

 

• Algorithm for further system reduction 

Empty nodes (i.e., a node with no load or DER) might exist in the reduced 

system versions with aggregated DER models. Therefore, Algorithm 1 was 

implemented to combine lines leading to empty nodes, resulting in a further reduced 

system model in terms of the total number of nodes and lines—which, in turn, affect 

average power flow calculation times. 

 

Algorithm 1: System Reduction Procedure for Simplifying OpenDSS Models 

Input: OpenDSS (.dss) file containing system information. 

Parse the input file to extract lists of active loads and DERs. 

Parse the input file to extract line connections between nodes. 

𝑆𝑖 is the set of lines where bus 𝑖 is the sending node. 

repeat for all lines 𝑙1: 𝑖 → 𝑗, 𝑙1 = 1, 2, … , 𝑁𝑇 

  

if 𝑗 is an empty node with 𝐷𝑗
𝐿 , 𝑃𝑗

𝑃𝑉
, 𝑃𝑗

𝑊𝑇
, 𝑃𝑗

𝐵𝐸𝑆𝑆
= 0 do 

  if 𝑆𝑖 = ∅ do 

  remove line 𝑙1 and node 𝑛 from system data. 

else do 

  

for all 𝑖 ∈ 𝑆𝑖 do 

  
create line 𝑙3 = 𝑙1 + 𝑙2, 𝑙3: 𝑖 → 𝑘. 

remove line 𝑙2: 𝑗 → 𝑘 from list of lines. 

end    

end     

end      

until all lines are processed or removed. 
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Figure 4.2 and Figure 4.3 illustrate the original and reduced 10-bus and 873-

bus system cases. For the 10-bus system, the reduction consolidates the DERs from 

9 units into 3, while the 873-bus system reduces the 350 original DERs to 35 

aggregated units. DER locations are marked in each plot. The X and Y axes 

correspond to fictitious geographical coordinates of system node data used to generate 

the plots. Line thickness corresponds to the branch power flow magnitude at each 

segment, scaled to the maximum value registered at the top of the figure in kW, 

typically at the substation end-node. 

Finally, Table 4-3 compares the solution times required for 10,000 power flow 

calculations in OpenDSS using both test systems' original and reduced system 

versions. For the 10-bus system, there was a 29% time reduction, while there was a 

40% reduction for the 873-bus system. This evidences the computational advantages 

of the reduced models, especially for larger systems when solving many power flow 

scenarios. 

 

Table 4-3. Solution time after 10,000 power flow calculations in OpenDSS. 

System 
Solution Time 

Original System Reduced System 

10-bus 0.21 s 0.15 s (↓29%) 

873-bus 9.40 s 5.63 s (↓40%) 

 

Figure 4.2. 10-bus test feeder. (a) Original system. (b) Reduced system. 

 

(a) 
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(b) 

 

 

 

Figure 4.3. 873-bus test system. (a) Original system. (b) Reduced system. 

 

(a) 
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(b) 

 

4.4. Chapter Summary 

This chapter presented an alternative approach to validate the dual outcomes 

of the MIP formulations presented in Chapter 2 and Chapter 3—the development of 

aggregate DER models and estimation of unobserved system states for radial 

distribution systems. This was done by processing the resulting system information 

(e.g., location and size of aggregate DER models, peak customer load per node, 

system topology) and parsing it into an OpenDSS-compatible data structure. 

By introducing equivalent feeder models into an industry-standard tool for 

system modeling and analysis, this approach allows accurate and scalable modeling 

of DER-rich distribution feeders. Aggregate DER models reduce the computational 

burden when addressing distribution feeders with innumerable DERs while preserving 

high numerical accuracy. 

Simulation results on 10-bus and 873-bus test systems show branch flow 

estimation accuracy levels above 95%, even under limited observability conditions. 

The average computational time required to calculate 10,000 power flow solutions was 

reduced by around 29% and 40% for the 10-bus and the 873-bus test systems, 

respectively. Furthermore, the three-phase power flow compatibility check performed 

for the 240-bus systems evidenced that introducing aggregate DER models into three-

phase feeder models in OpenDSS yield accurate (≤5% deviation) results, even under 

highly unbalanced system conditions. 
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5. CONCLUSION 

5.1. Chapter-Wise Summary 

The research presented in this thesis addressed the challenge of improving 

steady-state analysis in radial distribution systems containing numerous invisible 

DERs. Optimization-based methods aimed to develop equivalent aggregate DER 

models representing innumerable invisible resources and to leverage resulting DER 

models to enhance power flow calculations and enable estimation of unobserved 

system states without relying on dense measurement infrastructure. 

Chapter 2 presented a convex Mixed-Integer Nonlinear Programming (MINLP) 

formulation to aggregate invisible DERs and estimate system states such as branch 

power flows and node voltage magnitudes. The formulation enabled accurate system 

analysis while minimizing measurement requirements and addressing the limitations 

of traditional state estimation methods, especially when considering the traditional low-

observability of power distribution systems. Average branch flow estimation results 

below 10% were observed using voltage magnitude measurements, even under low 

meter coverage levels. 

Chapter 3 extended the work by introducing linearized versions of the convex MINLP 

formulation. The MILP-based approach provided an efficient trade-off between 

computational speed and numerical accuracy, achieving an average tenfold reduction 

in solution time compared to the MINLP formulation despite having an increased 

number of constraints due to the introduction of McCormick envelopes and piece-wise 

linear approximations of the original formulation. Comparisons with benchmark 

linearized versions commonly employed when addressing radial distribution systems 

using the line-wise power flow model were performed, demonstrating that the proposed 

formulation achieves more numerically accurate results at comparable solution times 

despite having more constraints than the reference linear approaches. Additionally, 

hybrid DER models (PV-BESS DERs) were introduced to better represent the diversity 

of modern distribution systems. 

Chapter 4 presented an approach to validate the developed aggregate DER 

models by integrating them into OpenDSS, an industry-standard simulation tool for 

distribution system analysis. Simulations demonstrated high numerical accuracy (over 

95%) when modeling distribution feeders with aggregate DER models and reduced 

computational burden (up to 40% reduction of average power flow calculation times) 

across various network sizes and system conditions, including unbalanced, three-

phase systems. 

5.2. Thesis Contributions 

Based on the thesis objectives laid out in Section 1 and the research outcomes 

presented in the subsequent chapters, this research offers contributions to the field of 

distribution system modeling. The main takeaways can be summarized as follows. This 

research: 
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• Devised MIP-based optimization formulations (MINLP and MILP) to develop 

aggregate DER models for radial distribution networks, addressing the 

challenge of low DER observability in these systems. 

• The resulting formulations leverage system data that might be readily available 

to system operators (e.g., substation flow measurements, voltage magnitude 

measurements from existing metering devices at the bulk feeder level, weather 

information). 

• Introduced hybrid DER models (e.g., PV-BESS) to better capture DER 

configurations' diverse and evolving nature in modern distribution systems. 

• Proposed a framework for estimating unobserved system states, such as 

branch flows and node voltages, without relying on dense measurement 

infrastructure. 

• Achieved high numerical accuracy (over 90%) when estimating branch flows 

using node voltage magnitude measurements, even under limited system 

visibility conditions. 

• Demonstrated how the developed aggregate DER models could be integrated 

into industry-standard simulation tools like OpenDSS, facilitating practical 

implementation. 

• Achieved high numerical accuracy (over 95%) when using aggregate DER 

models in three-phase distribution system models under balanced and 

unbalanced conditions. Also, achieved substantial reductions in computational 

time (up to 40%) for power flow calculations across various test systems. 

Note that the proposed methods are particularly suited for cases where 

innumerable invisible DERs exist, making it impractical for utilities to collect detailed 

data for each site. If DER penetration is extremely low, no significant change in utilities’ 

practices is needed. 

5.3. Directions for Future Research 

While the approaches developed in this thesis offer advances in the scalable 

modeling of DER-rich distribution systems, several areas remain for future research 

can be pursued. Examples include: 

• Enhanced System Modeling: Future work could extend the formulated problems 

to include additional system equipment and operational constraints for more 

detailed simulations. Examples include introducing voltage regulation 

equipment, transformer tapping, different load models, and dynamic topological 

changes. 

• Advanced Hybrid DER Models: Further research could focus on refining the 

hybrid DER models to include additional configurations, such as those 

incorporating demand response and improved representation of battery energy 

storage DERs, considering the diverse typical behaviors of DER owners based 

on various socioeconomic factors. 
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• Develop Application Cases: By leveraging aggregate DER models and the 

system state estimation outcomes of this research, future work could focus on 

developing application cases for distribution utilities. Examples could involve 

optimizing meter placement strategies, enhancing feeder reconfiguration and 

load transfer procedures, and improving existing power flow, optimal power 

flow, and state estimation workflows. 

• Adaptation to Meshed Networks: Adapting the aggregate DER modeling 

techniques to handle more complex network topologies, such as weakly 

meshed or fully meshed distribution systems, would expand the applicability of 

the methods to a broader range of power distribution cases. 

• Field Validation and Utility Collaboration: Collaborating with utilities to validate 

these models in real-world systems would provide valuable insights and help 

fine-tune these methods for practical, large-scale deployment. 
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APPENDIX A—DEDUCTION OF THE LINE-WISE POWER FLOW EQUATIONS 

In this section, the set of line-wise power balance equations for radial power 

systems is presented. This deduction provides evidence that this model does not rely 

on simplifying assumptions of the steady-state behavior of power systems and, 

therefore, yields accurate results that can be directly compared to other power flow 

models. If voltage angles are required, they can be calculated as a subsequent step 

after the convergence of the preferred solution method. 

Consider the series impedance element of the pi model of a distribution line or 

transformer between buses 𝑖 and 𝑗 of Figure A.1. Subscripts 𝐹 and 𝑆 refer to the power 

flows in the first and second ends of the line, respectively. Note that the shunt 

admittance elements are omitted here for clarity but are considered as power injection 

sources in (A.14) and (A.15). 

The variables to be determined in this model are 𝑈, 𝑃𝑆, 𝑃𝐹, 𝑄𝑆, and 𝑄𝐹. The 

total number of equations (and therefore, variables) is 𝑁𝐿𝐵 + 4 ⋅ 𝑁𝑇, with 𝑁𝐿𝐵 and 𝑁𝑇 

being the number of load buses and number of system branches, respectively. 𝑁𝐵 

refers to the total number of buses in the system. 

 

Figure A.1. Representation of the 𝑙-th line segment connecting buses 𝑖 and 𝑗. 

 

 

Using the voltage difference between the elements of line 𝑙, connecting buses 𝑖 

and 𝑗 (Kirchoff’s Voltage Law), yields: 

𝑉𝑖∠𝜃𝑖 − 𝐼𝑙 ⋅ 𝑍𝑙 − 𝑉𝑗∠𝜃𝑗 = 0 (A.1) 

Rearranging and applying 𝑆𝑙
𝑆∠𝜃𝑆 = 𝑉𝑗∠𝜃𝑗 ⋅ 𝐼𝑗

∗: 

𝑉𝑖∠𝜃𝑖 − 𝑉𝑗∠𝜃𝑗 = (
𝑆𝑙

𝑆∠𝜃𝑆

𝑉𝑗∠𝜃𝑗
)

∗

⋅ 𝑍𝑙∠𝜃𝑍 (A.2) 

Multiplying both sides by the conjugate of 𝑉𝑗∠𝜃𝑗: 

𝑉𝑖∠𝜃𝑖 ⋅ (𝑉𝑗∠𝜃𝑗)
∗

− 𝑉𝑗
2 = (𝑆𝑙

𝑆∠𝜃𝑆)∗ ⋅ 𝑍𝑙∠𝜃𝑍 (A.3) 

Realizing the multiplication and converting into rectangular representation: 

𝑉𝑖 ⋅ 𝑉𝑗 ⋅ [cos(𝜃𝑖 − 𝜃𝑗) + 𝑗 sin(𝜃𝑖 − 𝜃𝑗)] − 𝑉𝑗
2 = (𝑃𝑙

𝑆 − 𝑗𝑄𝑙
𝑆) ⋅ (𝑅𝑙 + 𝑗𝑋𝑙) (A.4) 
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Taking the real and imaginary parts of (A.4) result in (A.5) and (A.6), 

respectively: 

𝑉𝑖 ⋅ 𝑉𝑗 ⋅ cos(𝜃𝑖 − 𝜃𝑗) = 𝑃𝑙
𝑆𝑅𝑙 + 𝑄𝑙

𝑆𝑋𝑙 + 𝑉𝑗
2 (A.5) 

𝑉𝑖 ⋅ 𝑉𝑗 ⋅ sin(𝜃𝑖 − 𝜃𝑗) = 𝑃𝑙
𝑆𝑋𝑙 − 𝑄𝑙

𝑠𝑅𝑙 (A.6) 

Since cos2 + sin2 = 1, we can add the squares of (A.5) and (A.6) and rearrange 

to eliminate the resulting elements with opposing signals: 

𝑉𝑗
4 + 2𝑉𝑗

2 (𝑃𝑙
𝑆𝑅𝑙 + 𝑄𝑙

𝑆𝑋𝑙 −
𝑉𝑖

2

2
) + (𝑅𝑙

2 + 𝑋𝑙
2) ⋅ (𝑃𝑆

𝑙
2

+ 𝑄𝑙
𝑆2

) = 0 (A.7) 

By making a substitution of the squared voltage magnitudes as 𝑈 = 𝑉2: 

𝑈𝑗
2 + 2𝑈𝑗 (𝑃𝑙

𝑆𝑅𝑙 + 𝑄𝑙
𝑆𝑋𝑙 −

𝑈𝑖

2
) + (𝑅𝑙

2 + 𝑋𝑙
2) ⋅ (𝑃𝑆

𝑙
2

+ 𝑄𝑙
𝑆2

) = 0 (A.8) 

Finally, dividing (A.8) by 𝑈𝑗 and replacing (𝑃𝑆
𝑙
2

+ 𝑄𝑙
𝑆2

) ⋅ 𝑈𝑗
−1 by 𝐽𝑙—with 𝐽𝑙 

representing the square of the magnitude of the current flowing in line 𝑙: 

𝑈𝑗 + 2 (𝑃𝑙
𝑆𝑅𝑙 + 𝑄𝑙

𝑆𝑋𝑙 −
𝑈𝑖

2
) + (𝑅𝑙

2 + 𝑋𝑙
2) ⋅ 𝐽𝑙 = 0 (A.9) 

𝐽𝑙 =
𝑃𝑆

𝑙
2

+ 𝑄𝑙
𝑆2

𝑈𝑗
 (A.10) 

 

Accounting for the power loss over the line impedance and the incoming power 

flows at the first and second ends of line 𝑙, we have: 

𝑆𝐹∠𝜃𝐹 + 𝑆𝑆∠𝜃𝑆 + 𝑍𝑙∠𝜃𝑍 ⋅ 𝐼𝑙
2 = 0 (A.11) 

By substituting the squared line current magnitude of (A.10) and taking the real 

and imaginary parts of (A.11), we introduce two expressions that account for the line 

active and reactive losses: 

𝑃𝑙
𝐹 + 𝑃𝑙

𝑆 + 𝑅𝑙 ⋅ 𝐽𝑙 = 0 (A.12) 

𝑄𝑙
𝐹 + 𝑄𝑙

𝑆 + 𝑋𝑙 ⋅ 𝐽𝑙 = 0 (A.13) 
 

Finally, node-wise power balance equations for active and reactive power are 

introduced as summations of all incoming branch flows for a specific node, as well as 

accounting for the local consumption, generation, and the contribution of shunt 

admittance elements. 

∑ 𝑃𝑘,𝑖
𝑆

(𝑘,𝑖)∈Ω𝐹𝑖

+ ∑ 𝑃𝑖,𝑗
𝐹

(𝑖,𝑗)∈Ω𝑆𝑖

− 𝑈𝑖 ⋅ 𝐺𝑖 = 𝑃𝑖
𝐿𝑜𝑎𝑑 − 𝑃𝑖

𝐺𝑒𝑛 (A.14) 

∑ 𝑄𝑘,𝑖
𝑆

(𝑘,𝑖)∈Ω𝐹𝑖

+ ∑ 𝑄𝑖,𝑗
𝐹

(𝑖,𝑗)∈Ω𝑆𝑖

+ 𝑈𝑖 ⋅ 𝐵𝑖 = 𝑄𝑖
𝐿𝑜𝑎𝑑 − 𝑄𝑖

𝐺𝑒𝑛 (A.15) 

where Ω𝐹𝑖 and Ω𝑆𝑖 refer to the sets of lines that have bus 𝑖 in their first and second 

ends, respectively. These expressions can be rewritten by constructing a matrix 𝑴 that 
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is similar to the concept of a bus incidence matrix as follows. For each line 𝑙 in a system 

with 𝑁𝑇 lines: 

[𝑴𝑭]𝑖,𝑙 = [𝑴]𝑖,𝑙 = 1 If bus 𝑖 is the first bus for line 𝑙 

[𝑴𝑺]𝑗,𝑙 = [𝑴]𝑗,𝑁𝑇+1 = 1 If bus 𝑗 is the second bus for line 𝑙 

[𝑴𝑭]𝑖,𝑙 = [𝑴]𝑖,𝑙 = 1 otherwise 

Note that the dimension of 𝑴 is 𝑁𝐵 × 2 ⋅ 𝑁𝑇 and that it can be divided into two smaller 

matrices as in (A.16). 

[𝑴] = [[𝑴𝑭][𝑴𝑺]] (A.16) 

Using 𝑴, we can rewrite the node-wise active and reactive power balance 

equations in matrix form, resulting in (A.17) and (A.18), respectively. 

[𝑴] [𝑷𝑭

𝑷𝑺] − 𝑼 ⋅ 𝑮 = 𝑷𝑳𝒐𝒂𝒅 − 𝑷𝑮𝒆𝒏 (A.17) 

[𝑴] [
𝑸𝑭

𝑸𝑺] + 𝑼 ⋅ 𝑩 = 𝑸𝑳𝒐𝒂𝒅 − 𝑸𝑮𝒆𝒏 (A.18) 

 

In summary, the line-wise model for representing radial distribution systems 

consists of solving the set of equations constituted by (A.9), (A.12), (A.13), (A.17), and 

(A.18) to determine 𝑈, 𝑃𝑆, 𝑃𝐹, 𝑄𝑆, and 𝑄𝐹. This model was first proposed in [50], with 

the authors presenting the construction of the Jacobian Matrix for solving the model 

using the traditional Newton-Raphson method. 
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APPENDIX B—TEST SYSTEM DATA USED IN SIMULATIONS 

This appendix lists the sources to the original data for all test systems used in 

simulations, as well as provides access to the actual spreadsheets used in this work. 

Changes to original data consisted of introducing DERs into feeder models, as well as 

generating bus coordinates for plotting in OpenDSS. 

• 10-Bus Radial Distribution Test Feeder: 

Original Source: This test system was developed during this research. 

Data Access: https://doi.org/10.21227/5n30-5402  

 

• 11-Bus Cigré Radial Distribution Feeder: 

Original Source: Kai Strunz, et al., “Benchmark systems for network integration of 

renewable and distributed energy resources,” Task Force C6.04.02, Technical Report 

575, 2014.  

Data Access: https://doi.org/10.21227/pgh4-zm86  

 

• IEEE 69-Bus Radial Distribution Test System: 

Original Source: M. E. Baran and F. F. Wu, "Optimal capacitor placement on radial 

distribution systems," IEEE Trans. Power Deliv., vol. 4, no. 1, pp. 725-734, 1989. 

Data Access: https://doi.org/10.21227/5n30-5402  

 

• Iowa State University’s 240-Bus Radial Distribution Test System: 

Original Source: F. Bu, Y. Yuan, Z. Wang, K. Dehghanpour, and A. Kimber, “A time-

series distribution test system based on real utility data,” in 2019 North American 

Power Symposium (NAPS), Wichita, KS, USA, 2019, pp. 1-6. 

Data Access: https://doi.org/10.21227/pgh4-zm86  

 

• North Dakota State University’s 873-Bus Radial Distribution Feeder: 

Original Source: R. Kavaseri and C. Ababei, REDS: Repository of Distribution 

Systems. https://www.dejazzer.com/reds.html (accessed September 30, 2024). 

Data Access: https://doi.org/10.21227/5n30-5402  

 

 

 

https://doi.org/10.21227/5n30-5402
https://doi.org/10.21227/pgh4-zm86
https://doi.org/10.21227/5n30-5402
https://doi.org/10.21227/pgh4-zm86
https://doi.org/10.21227/5n30-5402
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• Weather Data 

The weather data with one-year wind speed and direct solar irradiance values 

with 1-hour intervals (8760 data points) is available alongside the abovementioned 

system files. The 24-hour monthly average values used in Chapter 3 are provided in 

Table B-1. 

 

Table B-1. Summary of the average monthly 24-hour weather data profile used in simulations. 

Time H M 
Wspd 

(m/s) 

Irrad 

(W/m²) 
Time H M 

Wspd 

(m/s) 

Irrad 

(W/m²) 
Time H M 

Wspd 

(m/s) 

Irrad 

(W/m²) 

0 0 Jan 7.9 0.0 96 0 May 7.5 0.0 192 0 Sep 9.1 0.0 

1 1 Jan 7.9 0.0 97 1 May 7.5 0.0 193 1 Sep 9.0 0.0 

2 2 Jan 7.9 0.0 98 2 May 7.5 0.0 194 2 Sep 8.8 0.0 

3 3 Jan 8.0 0.0 99 3 May 7.6 0.0 195 3 Sep 8.6 0.0 

4 4 Jan 8.0 0.0 100 4 May 7.6 0.0 196 4 Sep 8.5 0.0 

5 5 Jan 8.0 0.0 101 5 May 7.0 0.0 197 5 Sep 8.1 0.0 

6 6 Jan 7.9 0.0 102 6 May 6.8 13.3 198 6 Sep 7.6 2.6 

7 7 Jan 7.9 0.7 103 7 May 7.4 97.1 199 7 Sep 7.6 47.9 

8 8 Jan 8.0 84.7 104 8 May 7.7 243.6 200 8 Sep 8.0 152.4 

9 9 Jan 8.1 217.1 105 9 May 7.9 376.9 201 9 Sep 8.3 270.8 

10 10 Jan 8.1 372.0 106 10 May 7.9 470.6 202 10 Sep 8.4 395.3 

11 11 Jan 8.1 454.8 107 11 May 8.0 507.9 203 11 Sep 8.6 474.6 

12 12 Jan 8.1 469.0 108 12 May 8.0 503.4 204 12 Sep 8.8 503.0 

13 13 Jan 8.1 435.0 109 13 May 8.0 463.9 205 13 Sep 8.9 475.4 

14 14 Jan 8.0 334.6 110 14 May 8.1 384.3 206 14 Sep 8.9 362.9 

15 15 Jan 8.1 192.8 111 15 May 8.1 269.5 207 15 Sep 8.8 256.0 

16 16 Jan 8.2 50.7 112 16 May 8.0 150.2 208 16 Sep 8.6 133.2 

17 17 Jan 8.2 0.1 113 17 May 7.8 56.1 209 17 Sep 8.7 40.6 

18 18 Jan 8.0 0.0 114 18 May 8.0 3.5 210 18 Sep 9.0 0.7 

19 19 Jan 7.7 0.0 115 19 May 8.4 0.0 211 19 Sep 9.1 0.0 

20 20 Jan 7.4 0.0 116 20 May 8.4 0.0 212 20 Sep 9.2 0.0 

21 21 Jan 7.5 0.0 117 21 May 8.1 0.0 213 21 Sep 9.2 0.0 

22 22 Jan 7.6 0.0 118 22 May 8.0 0.0 214 22 Sep 9.1 0.0 

23 23 Jan 7.8 0.0 119 23 May 8.0 0.0 215 23 Sep 9.0 0.0 

24 0 Feb 6.5 0.0 120 0 Jun 7.3 0.0 216 0 Oct 8.8 0.0 

25 1 Feb 6.5 0.0 121 1 Jun 7.4 0.0 217 1 Oct 8.8 0.0 

26 2 Feb 6.6 0.0 122 2 Jun 7.3 0.0 218 2 Oct 8.8 0.0 

27 3 Feb 6.8 0.0 123 3 Jun 7.0 0.0 219 3 Oct 8.8 0.0 

28 4 Feb 7.0 0.0 124 4 Jun 6.6 0.0 220 4 Oct 8.8 0.0 

29 5 Feb 7.0 0.0 125 5 Jun 5.7 0.0 221 5 Oct 8.8 0.0 

30 6 Feb 7.1 0.0 126 6 Jun 5.6 15.5 222 6 Oct 8.7 0.0 

31 7 Feb 7.2 9.1 127 7 Jun 6.0 98.2 223 7 Oct 8.4 27.4 

32 8 Feb 7.2 71.9 128 8 Jun 6.4 190.8 224 8 Oct 8.7 157.1 

33 9 Feb 7.4 177.8 129 9 Jun 6.5 295.6 225 9 Oct 9.3 347.2 

34 10 Feb 7.6 284.4 130 10 Jun 6.5 354.2 226 10 Oct 9.7 465.5 

35 11 Feb 7.8 352.1 131 11 Jun 6.5 380.6 227 11 Oct 9.9 505.4 

36 12 Feb 7.9 350.9 132 12 Jun 6.6 389.0 228 12 Oct 9.9 506.0 

37 13 Feb 7.9 306.1 133 13 Jun 6.5 377.9 229 13 Oct 9.8 479.5 

38 14 Feb 7.7 229.9 134 14 Jun 6.3 315.0 230 14 Oct 9.5 394.4 

39 15 Feb 7.4 137.6 135 15 Jun 6.1 235.7 231 15 Oct 9.2 264.1 

40 16 Feb 7.3 50.5 136 16 Jun 5.9 147.8 232 16 Oct 9.2 130.1 

41 17 Feb 7.4 4.5 137 17 Jun 5.8 64.9 233 17 Oct 9.4 20.0 

42 18 Feb 7.5 0.0 138 18 Jun 6.0 8.2 234 18 Oct 9.5 0.0 

43 19 Feb 7.3 0.0 139 19 Jun 6.3 0.0 235 19 Oct 9.5 0.0 

44 20 Feb 7.2 0.0 140 20 Jun 6.5 0.0 236 20 Oct 9.3 0.0 

45 21 Feb 7.1 0.0 141 21 Jun 6.6 0.0 237 21 Oct 9.0 0.0 

46 22 Feb 6.9 0.0 142 22 Jun 6.8 0.0 238 22 Oct 8.8 0.0 
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47 23 Feb 6.7 0.0 143 23 Jun 7.0 0.0 239 23 Oct 8.6 0.0 

48 0 Mar 8.0 0.0 144 0 Jul 7.2 0.0 240 0 Nov 8.2 0.0 

49 1 Mar 7.9 0.0 145 1 Jul 7.3 0.0 241 1 Nov 8.1 0.0 

50 2 Mar 7.7 0.0 146 2 Jul 7.2 0.0 242 2 Nov 8.0 0.0 

51 3 Mar 7.7 0.0 147 3 Jul 7.0 0.0 243 3 Nov 7.9 0.0 

52 4 Mar 7.8 0.0 148 4 Jul 6.8 0.0 244 4 Nov 7.8 0.0 

53 5 Mar 8.0 0.0 149 5 Jul 6.2 0.0 245 5 Nov 7.8 0.0 

54 6 Mar 7.8 1.6 150 6 Jul 5.6 10.9 246 6 Nov 8.0 0.0 

55 7 Mar 7.4 55.4 151 7 Jul 5.9 103.5 247 7 Nov 8.0 1.9 

56 8 Mar 7.4 193.2 152 8 Jul 6.2 222.6 248 8 Nov 7.9 64.8 

57 9 Mar 7.6 342.9 153 9 Jul 6.2 327.4 249 9 Nov 8.0 211.3 

58 10 Mar 7.8 449.2 154 10 Jul 6.3 423.6 250 10 Nov 8.3 331.8 

59 11 Mar 7.9 511.2 155 11 Jul 6.2 475.1 251 11 Nov 8.6 403.0 

60 12 Mar 8.0 499.2 156 12 Jul 6.1 492.1 252 12 Nov 8.6 432.2 

61 13 Mar 8.2 448.4 157 13 Jul 6.0 456.9 253 13 Nov 8.4 383.1 

62 14 Mar 8.3 378.2 158 14 Jul 5.9 391.5 254 14 Nov 8.2 301.0 

63 15 Mar 8.2 265.6 159 15 Jul 5.8 283.2 255 15 Nov 8.1 195.6 

64 16 Mar 8.0 144.5 160 16 Jul 5.7 171.5 256 16 Nov 8.2 80.8 

65 17 Mar 8.3 41.3 161 17 Jul 5.6 76.8 257 17 Nov 8.2 0.6 

66 18 Mar 8.7 1.0 162 18 Jul 5.9 10.8 258 18 Nov 8.2 0.0 

67 19 Mar 8.7 0.0 163 19 Jul 6.3 0.0 259 19 Nov 8.3 0.0 

68 20 Mar 8.5 0.0 164 20 Jul 6.6 0.0 260 20 Nov 8.4 0.0 

69 21 Mar 8.3 0.0 165 21 Jul 6.8 0.0 261 21 Nov 8.4 0.0 

70 22 Mar 8.2 0.0 166 22 Jul 6.8 0.0 262 22 Nov 8.4 0.0 

71 23 Mar 8.0 0.0 167 23 Jul 6.9 0.0 263 23 Nov 8.4 0.0 

72 0 Apr 8.7 0.0 168 0 Aug 7.2 0.0 264 0 Dec 7.3 0.0 

73 1 Apr 8.6 0.0 169 1 Aug 7.2 0.0 265 1 Dec 7.4 0.0 

74 2 Apr 8.5 0.0 170 2 Aug 7.0 0.0 266 2 Dec 7.4 0.0 

75 3 Apr 8.3 0.0 171 3 Aug 6.8 0.0 267 3 Dec 7.3 0.0 

76 4 Apr 8.1 0.0 172 4 Aug 6.6 0.0 268 4 Dec 7.2 0.0 

77 5 Apr 7.9 0.0 173 5 Aug 6.0 0.0 269 5 Dec 7.1 0.0 

78 6 Apr 7.5 4.8 174 6 Aug 5.4 5.7 270 6 Dec 7.0 0.0 

79 7 Apr 7.7 53.9 175 7 Aug 5.6 88.2 271 7 Dec 7.0 0.0 

80 8 Apr 8.2 153.6 176 8 Aug 6.1 219.5 272 8 Dec 6.9 33.4 

81 9 Apr 8.4 274.5 177 9 Aug 6.4 369.5 273 9 Dec 6.7 128.9 

82 10 Apr 8.6 368.9 178 10 Aug 6.7 509.4 274 10 Dec 6.6 252.4 

83 11 Apr 8.5 429.2 179 11 Aug 6.8 589.4 275 11 Dec 6.7 355.5 

84 12 Apr 8.3 454.6 180 12 Aug 6.8 620.6 276 12 Dec 6.9 399.4 

85 13 Apr 8.3 422.0 181 13 Aug 6.9 565.6 277 13 Dec 7.0 386.1 

86 14 Apr 8.2 363.0 182 14 Aug 7.0 464.5 278 14 Dec 7.2 314.7 

87 15 Apr 8.1 263.1 183 15 Aug 6.9 322.7 279 15 Dec 7.7 189.2 

88 16 Apr 7.8 151.6 184 16 Aug 6.6 179.3 280 16 Dec 8.0 44.7 

89 17 Apr 7.9 57.1 185 17 Aug 6.6 73.0 281 17 Dec 8.2 0.0 

90 18 Apr 8.2 1.7 186 18 Aug 7.0 4.4 282 18 Dec 8.2 0.0 

91 19 Apr 8.4 0.0 187 19 Aug 7.2 0.0 283 19 Dec 8.0 0.0 

92 20 Apr 8.3 0.0 188 20 Aug 7.4 0.0 284 20 Dec 7.7 0.0 

93 21 Apr 8.3 0.0 189 21 Aug 7.5 0.0 285 21 Dec 7.6 0.0 

94 22 Apr 8.4 0.0 190 22 Aug 7.4 0.0 286 22 Dec 7.4 0.0 

95 23 Apr 8.6 0.0 191 23 Aug 7.4 0.0 287 23 Dec 7.4 0.0 
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APPENDIX C—MAIN PUBLICATIONS RELATED TO THIS RESEARCH 

 

• P. N. Vasconcelos, F. C. L. Trindade, B. Venkatesh, W. Freitas, A. C. Zambroni 

de Souza, and G. N. Taranto, “A Mixed-Integer Nonlinear Model to Support the 

Operation of Distribution Systems with Hidden DERs,” IEEE Transactions on 

Power Delivery, vol. 40, no. 1, pp. 484-496, Feb. 2025. 

This paper presents the original convex MINLP formulation for aggregate DER 

modeling and estimating unobserved system states in radial distribution systems. This 

is an outcome of a research project in partnership with a distribution utility company in 

Ontario, Canada. (Chapter 2) 

 

• P. N. Vasconcelos, F. C. L. Trindade, and B. Venkatesh, “Linearized Optimization 

for Enhanced Aggregate Modeling of Invisible Hybrid Distributed Energy 

Resources,” IET Generation, Transmission & Distribution, vol. 19, no. 1, p. e70088, 

May 2025. 

This paper explores linearized formulations to enhance the solution of the 

aggregate DER allocation and system estimation problems. The resulting formulation 

enables the modeling of hybrid DERs (e.g., PV+BESS), provides estimates with high 

numerical accuracy, and results that are twice as fast as the original formulation. The 

integration of results with OpenDSS, an industry-standard power systems modeling 

and analysis tool, is also discussed. (Chapter 3) 

 

The content of Chapter 4 was, in part, organized as a conference paper and 

accepted for presentation at the 2025 CIGRE International Symposium. The 

conference will be held in Montréal, Canada, from Sep. 29, 2025, to Oct. 3, 2025. 

Other publications were realized during this degree (from 2020 to 2025) but are 

not directly related to this work. The main (unrelated) research outputs involve topics 

in engineering education (two journal papers), multidisciplinary dynamic system 

models (a conference paper and a book chapter), and other optimization applications 

into power systems planning (two conference papers). A complete list of publications 

is available at: 

https://scholar.google.ca/citations?user=YwiXb9sAAAAJ&hl=en&oi=ao. 

https://scholar.google.ca/citations?user=YwiXb9sAAAAJ&hl=en&oi=ao

