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Resumo

Este trabalho investiga as flutuagoes do vacuo de um campo escalar sem massa na presenca
de uma fronteira cilindrica num espaco-tempo de uma corda coésmica girante, de modo
que a condi¢ao de contorno nos serve para blindar a regiao causal da regiao acausal, e tem
como objetivo o calculo da funcao de dois pontos e das flutuagdes do campo no estado
de vacuo. Primeiramente, foi feita uma breve revisao da quantizacao do campo escalar e
uma discussao sobre propagadores na teoria quantica de campos, onde foi definido como
se calcula as flutuagdes do vacuo. Em seguida, a funcao de dois pontos renormalizada
foi calculada e com ela fomos capazes de calcular, através do método point-splitting, as
flutuagoes do vacuo. Por fim, foi recuperado os principais resultados da literatura no que

se diz respeito a cordas cosmicas e as consequéncias destas nas flutuagdes do campo.

Palavras-chaves: Campo Escalar, Corda Cosmica Girante, Espago-tempo, Regiao Acau-

sal, Regiao Causal, Renormalizacao.



Abstract

This work investigates the vacuum fluctuations of a massless scalar field in the presence
of a cylindrical boundary in the spacetime of a spinning cosmic string. The boundary con-
dition serves to shield the causal region from the acausal one, with the aim of computing
the two-point function and the vacuum fluctuations of the field. First, a brief review of
scalar field quantization is presented, along with a discussion of propagators in quantum
field theory, in which the procedure for calculating vacuum fluctuations is defined. Next,
the renormalized two-point function is obtained, and from it the vacuum fluctuations are
computed using the point-splitting method. Finally, the main results in the literature

regarding cosmic strings and their impact on field fluctuations are recovered.

Key-words: Scalar Field, Spinning Cosmic String, Spacetime, Acausal Region, Causal

Region, Renormalization.
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1 Introducao

Cordas cosmicas surgem no contexto de teorias de grande unificacao, formadas na
fase inicial do Universo como resultado da quebra espontanea de simetria durante uma
transicao de fase [36, 19]. Esses objetos sdo classificados como defeitos topoldgicos [29] e
produzem uma geometria localmente plana: a curvatura do espaco-tempo é diferente de
zero apenas sobre a propria corda, com comportamento tipo delta, e a topologia difere

daquela do espago-tempo de Minkowski [37].

No modelo idealizado, a corda é unidimensional e infinita. Apesar dessa simpli-
ficacao, efeitos fisicos significativos podem ocorrer, tanto no regime classico [7] quanto
no quantico [21, 12]. No caso de um campo escalar, por exemplo, as flutuagoes no es-
tado de vacuo permanecem nao nulas mesmo apos renormalizacao, consequéncia direta

da topologia nao trivial [31, 8, 27].

O interesse por cordas césmicas girantes remonta a década de 1980 [23, 33], pois
suas geometrias constituem solugoes exatas e localmente planas das equagoes de Einstein
e, portanto, poderiam existir na natureza. Entretanto, esse tipo de geometria apresenta
uma complicagao relevante: o espaco-tempo resultante nao é globalmente hiperbdlico.
Isso significa que nao existe uma superficie de Cauchy global adequada para definir dados
iniciais [38, 18], dificultando a aplicacao direta da teoria quantica de campos. Apesar
disso, ha tentativas de lidar com esse cenéario em espagos-tempos estaticos nao globalmente
hiperbdlicos [39], e quantizagoes de campos escalares foram de fato estudadas [22], embora

com resultados considerados fisicamente patolégicos [6].

Um aspecto notavel desses espagos-tempos é a possivel formacao de curvas do tipo-
tempo fechadas (CTCs), que permitiriam, em principio, viagens ao passado. Em 1992
Hawking propds a conjectura de prote¢io cronoldgica [17], segundo a qual a existéncia de
tais curvas seriam instaveis e proibidas quando efeitos quanticos sao considerados. Como
cordas cosmicas girantes podem conter regides com CTCs, estudar a conjectura nesse
contexto é uma questao natural. A auséncia de uma superficie de Cauchy, no entanto,

obriga a buscar estratégias alternativas de analise.

Uma dessas estratégias é considerar uma corda césmica girante com um deslo-
camento ao longo do eixo z [8] ("cosmic dispiration”). Por meio de uma transformacao
de coordenadas, o problema torna-se mais tratavel [14, 9]. Estudos nesse cendrio mos-
tram que, ao aproximar-se das regioes onde CTCs se formariam, as flutuagoes do tensor
energia-momento crescem acentuadamente. Pelo mecanismo de backreaction, tal compor-
tamento divergente pode gerar uma ergoregiao, funcionando como mecanismo de protecao

cronoldgica [10].
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Outra abordagem para lidar com a nao hiperbocidade é introduzir uma condigao de
contorno que “blinde” a regido causal da acausal como sugere [32]. Para cordas cdsmicas
nao girantes, diversos trabalhos investigaram como fronteiras modificam as médias de

vacuo e o efeito Casimir [3, 24, 26, 25].

Neste trabalho, foi examinada a quantizagdo de um campo escalar real sem massa
no espago-tempo de uma corda cosmica girante, impondo-se uma condicao de contorno
de Dirichlet sobre um cilindro de raio a, situado além da regiao acausal. Essa escolha per-
mite isolar a regido que contém curvas do tipo-tempo fechadas (CTCs) e, assim, aplicar
as ferramentas usuais da teoria quantica de campos. A partir do propagador renormali-
zado, foram calculadas as flutuagoes do campo escalar no estado de vacuo, recuperando-se
resultados previamente conhecidos na literatura [21, 3]. Além disso, ao analisar o com-
portamento das flutuagoes suficientemente proximas ao contorno cilindrico, obteve-se a
forma esperada para as flutuagoes do vacuo nas vizinhangas de um plano com condic¢ao
de contorno de Dirichlet. Seguindo a proposta de [32], a condigao de Dirichlet foi empre-
gada com o intuito de regularizar os efeitos associados a regiao acausal. Contudo, essa
expectativa nao se confirmou diretamente, visto que as divergéncias identificadas por [6]
nas flutuagoes do vacuo permaneceram presentes. Todavia, um contra-termo devido a
presenca da condi¢ao de contorno apareceu, nos levando a necessidade de estudos futuros
mais profundos acerca da expressao obtida para as flutuacoes do campo no estado de

VACuo.
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2 Quantizacao do Campo Escalar e Propaga-

dores

O objetivo deste capitulo serda apresentar brevemente os conceitos que levam a
quantizagao do campo escalar real e, posterior a isto, serda apresentado um estudo sobre
propagadores e algumas consequéncias centrais para o objetivo do trabalho, terminando
com a construcao do desvio quadratico médio do campo escalar no estado de vacuo e
mostrando como se calcula formalmente tal grandeza fisica. Para simplificar a notagao,
vamos lancar mao do sistema de unidades naturais daqui em diante, ou seja, considerar
que ¢ = h =1 por simplicidade e sem perda de generalidade, visto que pode-se voltar ao

sistema de unidades internacionais através da andlise dimensional.

2.1 Quantizacao Candnica

A quantizagao canonica é baseada em dois postulados iniciais [38]:

Postulado 1 Uma quantidade dinamica A cldssica serd promovido a um observdvel quan-

tico descrito por um operador linear Hermitiano A .

Postulado 2 Seja A e B duas varidveis dinamicas cldssicas. Entao, definido o parénteses

de Poisson entre estas, temos que a descri¢io quantica serd dada pela substituicdo

(A, BY - —i[A, B).

Tais postulados sao motivados por conta da estrutura algébrica dos parénteses
de Poisson serem parecidas com as dos comutadores. Mais especificamente, os parénte-
ses de Poisson nos resulta uma estrutura algébrica no espago dos observaveis classicos O
enquanto os comutadores resultam numa estrutura algébrica para os observaveis quanti-
coS @, ambas bastante parecidas com a diferenca de uma considerar funcoes e a outra

operadores. Dessa forma, deve existir um mapa " tal que
00, (2.1)

para o qual

A, B] = i{A, B} (2.2)

Dessa forma, para que uma teoria seja quantizada precisamos, primeiramente, conhecé-la

em sua versao classica.
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Nosso interesse sera estudar o comportamento de um campo escalar real dada
uma métrica g,,, com determinante g. Sendo assim, tal campo ¢ descrito pela seguinte
lagrangiana:

£ = \lol (50VuV.0 = S — R?). (2.3

de tal forma que sua dindmica vem dada pelo principio de Hamilton [2], obtendo a equagao
de Klein-Gordon
(02 + m* + €R(2)) ¢(x) = 0, (2.4)

onde m é a massa do campo escalar, R o escalar de curvatura dado pelo trago do tensor de
Ricci [40], € uma constante de acoplamento entre o campo e a curvatura do espago-tempo
(a discussao sobre este termo serd discutido abaixo) e Dg o operador de Laplace-Beltrami

para a geometria g,

1
02 =~ (Il
Vgl
Observacao 0: Nota sobre o termo ¢ R

A importancia do termo de acoplamento £ R pode ser vista através de uma trans-

formacao conforme na métrica

guu = Qz(x)g;w (25)

seguida de uma transformagao para o campo escalar

2—n

¢(z) = Q7 (2)¢(2). (2.6)

Com isso, podemos mostrar que usando a definicao do operador de Laplace-Beltrami
1
o2 = ——o (y/igla)
V19l

para a geometria g, que

In—2-7 - n—2 In—2
02+ = R] =0z [DQ = R] . 2.
g+4n—1 ¢ i g+4n—1 ¢ 2
Portanto, se
1n—2
== 2.8
€=~y (2.8)

a equacao de Klein-Gordon sem massa se mostra invariante por uma transformagcao
conforme. Para um espaco-tempo 4-dimensional, n = 4, temos o chamado acopla-

mento conforme £ = 1/6.

Da teoria classica de campos definimos o momentum por

oL
9(0i)’

m(x,t) =
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que no caso do campo escalar vem dado por
w(x,1) = /|glg” 0,6, ).

O parénteses de Poisson entre dois funcionais dependendo dos campos ¢z e 7° é

definido por

N 0X oY oY 0X
[ (2.9)

Xy} = [da & 505 37)  bala) ()|

Desta forma, podemos usar tal definicao e concluir imediatamente que o parénteses de

Poisson entre o campo ¢ e seu momentum conjugado m vem dado por

{p(x,t),7n(x', 1)} = 6(x — X), (2.10)

e os demais parénteses de Poisson [2]
{o(x,1), 0(x', 1)} = 0 = {m(x, 1), 7(x, 1)} (2.11)

Portanto, usando as hipéteses de quantizagao, ou seja, (2.1) e (2.2) junto com os

resultados (2.10) e (2.11), encontramos que
[D(x, 1), A(x )] = id(x = x5 [b(x,1),0(x,0)] = 0 = [A(x,1), #(x, 1)) (2.12)

A evolugao temporal de um operador fl, que nao depende explicitamente do tempo,

¢é governada por

A

dA A
— =i[H,A 2.1
= =il A) (213)

sendo
H= /dsx [7?2 + (Vo) + m%z}
o operador Hamiltoniano do campo escalar real apds usar as hipéteses de quantizacao

para a promover a Hamiltoniana cléssica [16] & um observavel quéantico.

Com a equagao (2.13), e usando o operador Hamiltoniano do campo escalar acima,
obtemos que a evolucao temporal do operador de campo qAb e o momentum 7 sao determi-

nadas pelas equacoes
¢ =ilH, ] (2.14)

7 =1i[H, 7] (2.15)

A

Desenvolvendo o sistema de equagoes acima usando o operador H encontramos que a

dindmica do operador de campo é dado pela equacgao

(02 + m?) é(x) = 0. (2.16)
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Assim, nota-se que a dindmica do operador ¢(z) é a mesma dada por (2.4) e, com

isso, podemos expandir o operador de campo como

A

o(x) =3 |andn(x) + al 65 (2)] | (2.17)

n

onde as fungdes ¢,(x) sdo denominadas por modos normais do campo e satisfazem a
equagao de autovalores
(02 4+ m?) ¢ulx) = 0 (2.18)

e sao ortonormalizadas por meio do produto interno de Klein-Gordon, vide apéndice (A).

Substituindo a expansao do operador de campo acima, e usando a definicao para

calcular o momentum, nas expressoes para os comutadores na equagao (2.12), encontramos

[y, ] = OT (2.20)
[af,, al] = oI, (2.21)

de modo que entendemos d,,, como uma delta de Kronecker se os niimeros quéanticos

forem discretos e uma delta de Dirac caso forem continuos.

Nota-se que as relagdes de comutagao acima sao exatamente iguais as de um con-
junto de osciladores harmonicos [2], o que faz os operadores @, e ! receberem o nome de
operadores de aniquilagao e criacao, respectivamente. Sendo assim, definimos o estado de
vacuo |0) através da relagao

ax|0)y =0 (2.22)

e o estado de uma particula com momentum k por

al|0) = [K). (2.23)

Analogamente, pode-se construir o estado com NV particulas idénticas e momentum

k; ... ky através da aplicagdo do operador de criagdo sobre o estado de vicuo |0), isto é

af, ...af, 10) = |ki ... ky).

O estado definido por (2.23) é base para o espago de Hilbert de uma particula e
a soma direta sobre os espacos de Hilbert das N-particulas determina o chamado espago
de Fock. Ainda, note que por conta de [a] &IL,] = 0, o estado de multiplas-particulas é
simétrico sobre a operacao de troca entre duas particulas, entao esta obedece a estatistica
de Bose-Einstein. Para a construcao do espaco de Fock de my particulas idénticas com

momentum k veja [30, 4].
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Observagao 1: Notas sobre espagos-tempos globalmente hiperbélico

O procedimento feito acima (e para o que se segue) foi sempre considerando espagos-

tempos globalmente hiperbdlicos para que possamos evoluir uma superficie de dados
iniciais Y. Pensando nisso, devemos dar uma definicao do que isso venha a ser e

algumas consequéncias.

Definigao 2.1.1: Superficie de Cauchy [ ]

Uma curva causal é aquela que o vetor tangente é tipo-tempo ou tipo-luz
(nulo) em todo lugar. Uma superficie de Cauchy para uma variedade M
semi-Riemaniana é uma superficie tipo-espaco tal que toda curva causal inex-

tensivel em M a intercepte somente uma Unica vez.

Da definicao de uma superficie de Cauchy aparece o termo "curva causal inexten-
sivel", isso nada mais é do que uma curva causal que nao pode ser estendida para
além do espago-tempo, ou seja, a curva causal nao pode ser estendida para além de
seu dominio, mantendo causalidade e suavidade.

Portanto, dizemos que nosso espaco-tempo possui um problema de Cauchy bem
posto, isto é podemos evoluir de forma tnica uma superficie de dados iniciais, se
a variedade M como um todo satisfizer a condi¢cdo de possuir uma superficie de
Cauchy, caracterizada, pelo menos localmente, por ¢t = constante. Tal afirmacao é

equivalente a dizer que o espago-tempo é globalmente hiperbdlico [13, pag. 121].

2.2 Propagadores na Teoria Quantica de Campos

Com a quantizacao do campo escalar tendo sido feita na subsecao anterior, pode-
mos dar um préximo passo e construir alguns objetos que vao nos auxiliar na construgao

de um observavel de interesse, a flutuagao do campo escalar no estado de vacuo.

Sendo assim, comecemos com a definicdo da chamada funcao de Hadamard:
G (x,2") = (0l{(x), $(=")}|0), (2.24)
onde foi definido o anti-comutador por
{A,B} = AB + BA. (2.25)

Ainda, usando a definicdo do anti-comutador em (2.24) podemos definir outras

duas fungoes por
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onde sao chamadas de func¢oes de Wightman de frequéncia positiva e negativa, respecti-

vamente.

Com isso, nota-se imediatamente que a funcao de Hadamard vem dada pela com-

binacao das funcoes de Wightman

GY(z,2') = G (z,2") + G (x,2)). (2.28)

Note que a funcao de Hadamard é real e para comprovar a afirmacao veja que:

(6, 2)" = ((0ld(x)d()[0) + (0lé(x')d()[0))”
= (0[(d(x)o(z"))"10) + (0](d(a")d(x))"]0)
= (0[d(2")(x)|0) + (Ol(x)d(a")|0)

= G(l)(x, x),

onde foi usado que o campo ¢(x) é hermitiano, ou seja, ¢(z) = ¢'(z). Concluindo assim

que a funcao de Hadamard é real.

Outra conclusao util e simples de ser verificada é que a funcao de Wightman
de frequéncia negativa é o complexo conjugado da funcao de Wightman de frequéncia
positiva. Para mostrar o resultado basta usar a definicdo da funcao de Wightman de

frequéncia negativa e que o campo ¢(x) é hermitiano:

( |
= (0l((x)e(a"))"]0)
= ((0l6(=")p(x)]0))"
= (G+(ZE,I/))*

Portanto, podemos reescrever a funcao de Hadamard como sendo proporcional a

parte real da funcao de Wightman de frequéncia positiva:

G (z,2") = 2R[GF (x, 2")]. (2.29)

Para a construcao das flutuagoes no estado de vacuo do campo escalar, tome a

defini¢ao da flutuacao de um operador qualquer [5]

)2, (2.30)

onde o valor médio tomado acima foi para um estado quéantico qualquer.
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Assim, tome o valor médio do operador de campo no estado de vacuo
O16()]0) = (0] 3 [a.0() + al g )] 10 (2.31)

e use que o estado de vacuo é definido por a,|0) = 0, ou equivalentemente (0|al = 0, para

concluir que (¢(x)) = 0.

Sendo assim, a flutuagdo do campo escalar real, de acordo com a equagao (2.30),
devera vir pela contribuicao da média no estado de vacuo do quadrado do operador de
campo (;AS(I) Desta forma, a flutuagdo no vacuo do campo escalar é dada, partindo da
funcao de Hadamard, por

(¢*(x)) = lim G Nz, 2') = lim R[G*(x,2")), (2.32)

:c—)x ' —x

de modo que o fator 1/2 surge por conta da arbitrariedade em escolher o produto ¢ ()¢ (z”)
ou (ﬁ(x’ )(ﬁ(:ﬂ) na passagem da descricao classica para a descri¢do quantica, de tal forma

que o resultado que se mostra correto é o produto simetrizado.

Desta forma, calculando a funcao de Wightman de frequéncia positiva seremos
capazes de encontrar a flutuagdo do campo no estado de vacuo. Para tal, tome a expansao

(2.17) na definicio de G (x, 2'), equacdo (2.26), para encontrar

GH(x,2") = (0] [&idj@(aﬁ)%( )+ asaloi(@) @ (2') + a0 (2) e, (o) + alale; (x)65(a")] [0)

'7.j

=2 0iv) 2'){0la;aj|0)
. z@ (<ouaw al] + alau0))

onde foram utilizadas as equagoes (2.22), (2.19) e que o estado de vicuo é normalizado

(0|0) = 1 para concluir o resultado.

Portanto, precisamos resolver a equagao (2.18) para encontrar as auto-fungdes
¢n(z) com as condigoes de contorno adequadas e construir a fungao de Wightman seguindo

(2.33) fazendo uma soma sobre todos os modos.
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3 Flutuacoes do Campo Escalar sem Massa

na Geometria de uma Corda Coésmica

O objeto de estudo sera um campo escalar sem massa no espago-tempo de fundo
de uma corda cosmica girante e para garantir que a teoria quantica de campos possa ser
utilizada nesse espaco nao globalmente hiperbdlico, serd imposta uma condi¢ao de con-
torno para que o campo somente tenha acesso a regiao causal do espago-tempo, evitando
assim os problemas que surgem quando uma superficie de Cauchy global para a evolucao

dos dados iniciais nao pode ser implementada.

Apo6s definir o que seja uma corda césmica girante, vamos ao calculo do propagador
renormalizado da teoria. Para verificar os efeitos que tal sistema fisico tera, vamos analisar
o comportamento das flutuagoes do campo no estado de vacuo e recuperar alguns dos
principais resultados estabelecidos na literatura no que se diz respeito ao campo escalar

na geometria de cordas cosmicas.

3.1 Corda Cdésmica Girante

Campos de maneira geral, quer sejam classicos ou quanticos, sempre estao mer-
gulhados no espago-tempo, isto é, estarao sofrendo influéncia da gravidade. Devido a
Einstein, a gravitacao passou a ser governada pelas equagoes da relatividade geral e, a
partir disso, passou a ser uma teoria geométrica, ou seja, a gravidade é uma consequéncia
da curvatura do espaco-tempo e ndo mais uma forca como era entendido no contexto da
gravitacdo Newtoniana. Para descrever como o espago-tempo se curva com a presenca de
um conteudo de matéria-energia precisamos resolver as equagoes da relatividade geral e

obter como solu¢cao um objeto matemético chamado de tensor métrico.

Todavia, encontrar o tensor métrico para uma distribuicdo de matéria-energia
qualquer ¢é inviavel, devido a complexidade da teoria. Contudo, algumas solugoes sao
conhecidas [40] e dentre elas as chamadas cordas cdsmicas. Tais solugoes constituem uma
idealizacdo de um objeto unidimensional infinito, intuitivamente parecido com um fio
infinito, que possuem a caracteristica de serem planas em todo lugar exceto na regiao
onde se encontra a propria corda césmica, de modo que nesta localidade a curvatura

diverge.

O comportamento dos campos quanticos, em particular, é modificado neste dado
espaco de fundo em relacao ao espaco-tempo de Minkowski. Entretanto, sendo nula a
curvatura do espago-tempo na regiao exterior a corda os comportamentos nao deveriam

ser iguais? A resposta é nao, pois as cordas cosmicas possuem uma geometria global
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distinta, de modo que a modificacao na flutuacao do campo no estado de vacuo, por

exemplo, é consequéncia da mudanca na geometria.

Sabendo que as cordas césmicas nos servem de laboratorio para o estudo das
flutuagoes dos campos quanticos, pois sao solugoes das equagoes de Einstein, vamos tomar
o espago-tempo de uma corda césmica girante, de modo que o elemento de linha para tal

geometria vem dado por [23, 11]
ds* = (dr + Sd¢)? — dr* — o*r*d¢?* — d2?, (3.1)

onde S e « sdo, respectivamente, a rotacao e o parametro de disclination da corda césmica.

Observagao 2:

Uma observagao que pode ser importante é o fato de que a corda césmica girante é

um espaco-tempo estacionario mas nao estatico. A definicao de ambos vem abaixo:

Definicao 3.1.1: Espacgos-tempos Estacionarios

Dizemos que um espaco-tempo ¢ estaciondario se existe um campo de Killing
do tipo-tempo &;a cuja linhas integrais representam a simetria de translacao

temporal.

Definicao 3.1.2: Espacgos-tempos Estaticos

Existe um vetor de Killing do tipo tempo da defini¢do acima com o adicional

de que este ¢é ortogonal a superficie de Cauchy > em todo o ponto.

Fisicamente, a condicao de ser estaciondrio implica na invariancia por translagao
)

temporal, enquanto a condicao de "estaticidade'implica na invaridncia por inversao

temporal.

Veja que a métrica
ds®> = (dr + Sd¢)? — dr® — a®r’d¢® — dz2? (3.2)

possui um vetor de Killing do tipo-tempo global £ = (9,)®. Todavia, para a regiao
acausal < S/a o outro vetor de Killing {F = (095)* também se torna do tipo-tempo
(pois a componente da métrica g,s muda de sinal nesta regidao), e como este é um
vetor que gera trajetorias fechadas temos curvas do tipo-tempo fechadas, quebrando

a causalidade.

J

Adicionalmente, a disclination tem relacao com a densidade de massa p da corda
[31]
a=1-4Gpu. (3.3)
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Note que, fazendo S = 0 e 7 constante obtemos a geometria de um cone [31], e tais
espagos-tempos sdo chamamos de conicos. Ainda, se p > 0 temos que o < 1 e isso implica
que o espago-tempo possui um deficit angular, ou seja, uma volta completa na coordenada
angular ¢ nao nos resulta em 27 mas sim em 27«. Intuitivamente, pode-se pensar numa
folha de papel circular sem uma fatia, de modo que o deficit aparece quando cola-se ambas
as partes da folha formando um cone. Ainda, note que partindo de (3.1) tomando S =0
e u =0 em (3.3), isto é na auséncia da corda césmica, isso faz com que o = 1 reduza o

elemento de linha (3.1) para o elemento de linha do espago-tempo de Minkowski.

Um aspecto importante para a construcao da teoria quantica de campos é que o
espago-tempo considerado seja globalmente hiperbdlico, ou seja, é possivel definir uma
superficie de dados iniciais ¥, chamada de superficie de Cauchy, e evolui-la de maneira
tnica no tempo. Todavia, a métrica (3.1) ndo possui esta caracteristica. Verificar tal
afirmagao se torna simples ao considerar uma curva no espago-tempo (3.1) tal que 7, r e
z sejam constantes:

ds* = (S* — o*r?)de?,
de tal forma que a regiao r < S/a faz com que haja uma mudanca na assinatura da
métrica, de modo a fazer com que o espago-tempo nao seja globalmente hiperbélico e,
consequentemente, nao seja possivel definir a evolugao unitéria de um campo escalar [38].
Para tal regiao denominamos de regiao acausal e nesta aparecem curvas do tipo tempo
fechadas, ou seja, curvas que possibilitam viagens ao passado [9]. Para r > S/a o espago-

tempo permite a definicao de uma superficie de Cauchy e é chamada de regiao causal.

Contudo, a teoria quéntica falha em situacées em que o espaco-tempo nao seja
globalmente hiperbdlico [18]. Pensando nisso, o objetivo é quantizar um campo escalar
sem massa em tal espaco de fundo e analisar as flutuacoes deste campo no estado de
vacuo, de modo que serd imposta uma condi¢ao de contorno de Dirichlet para que a regiao
acausal nao afete na "hiperbolicidade"do espago-tempo, visto que para regices r > S/« o
espago-tempo ¢ globalmente hiperboélico. Em outras palavras, a condi¢ao de contorno sera
imposta exterior a regiao acausal a fim de restringir a atua¢ao do campo somente a regiao
causal do espago-tempo, fazendo com que possamos usar todo o ferramental construido

na segao (2).

3.2 Funcao de Wightman Renormalizada

Como o objetivo é encontrar as flutuagoes de vacuo do campo escalar real sem
massa, precisamos solucionar a equagao (2.18) para m = 0 e construir a fungao de Wight-

man de frequéncia positiva (2.33). Para tal, tome a equagao de autovalores e autovetores

D26, (z) = Moo (). (3.4)
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Todavia, para que ¢, (z) nos sirva para calcular G*(x, ') esta deve ser solucao para (2.4),
e para tal deve-se exigir autovalores nulos a (3.4). Também, para cumprir com os requisitos
da se¢do (3.1) imporemos uma condi¢ao de contorno de Dirichlet sobre um cilindro de

raio a
o(r=a,p,z,t) =0, (3.5)

tal que a > S/a, pois assim, hipoteticamente, estamos garantindo que a regiao acausal

nao influencie no comportamento do campo.

Antes de resolver (3.4) para a geometria (3.1) faga a seguinte mudanga de coorde-

nadas na métrica de interesse
t=74+S5¢ Y = ag, (3.6)
de tal forma que (3.1) se torne
ds® = dt* — dr? — r*dy® — dz* (3.7)

mas agora com as seguintes identificagoes nao triviais entre as coordenadas (t,r, p, z) ~
(t427S,r, o+ 27, z). Como se pode ver, a fim de resolver a equacao de autovalores para
o operador Dg, a métrica tem a forma da métrica de Minkowski e, com isso, o operador

02 para (3.7) vem dado por
L oo\ 15 o
9 o2 ror \' or r20p2  022|°

Com isso, pode-se usar a técnica de separagao de variaveis [1] e supor que
b (1) = R(r)ePeze it (3.8)

a (3.4) para encontrar que a funcdo radial R(r) deve respeitar

2 d*R(r) dR(r)

= +r 0 + (V*r? —¥*)R(r) = 0. (3.9)

A funcao radial entdo serd dada em termos das fungdes de Bessel [35, 1]

R(r) = [CJy(vr) + BY, (vr)],

onde J,(vr) e Y, (vr) sao as fungoes de Bessel de primeira e segunda espécie, respectiva-

mente.

Com isso, as autofungoes do operador diferencial virdao dadas por
b0 () = [CJ,(vr) + BY, (vr)] eFZei1Pe™ i

com autovalores A, , = 12+ k? —w? e duas constante a serem determinadas ¢ e 3. Ambas

solugoes da parte radial sdo consideradas por conta de estarmos interessados na parte do
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espago-tempo que € globalmente hiperbdlico e, portanto, ndo temos acesso a origem, onde
a funcao de Bessel de segunda espécie diverge. Como a condicao de contorno nos servira

para blindar a regiao acausal da causal, teremos acesso somente a parte externa do cilindro
definido por (3.5).

Sendo assim, aplicando as identificagoes (t,r, ¢, z) ~ (t + 27S,r, ¢ + 27, z) para

as coordenadas nas autofungoes acima concluimos que

(n+awS )(pefiwt

Y

Po(x) = Cﬂ%l(w)—kﬁ}ﬂ%“w) oihz i

com n € Z. As duas constantes remanescentes serao determinadas pela condigdo de con-
torno de Dirichlet e pela condi¢do de normalizacao segundo o produto interno de Klein-
Gordon [4], definido no apéndice (A). Ainda, podemos redefinir algumas constantes para

escrever as autofungoes acima como

(n+wS

Go(x) = CJ‘MW”)*’Y’M’(VT) el (% e, (3.10)

Aplicando a condi¢ao de contorno de Dirichlet sobre a coordenada radial vemos

que a constante ¢ deve satisfazer
CJ| ntws | (Va) + Y|n+ws | (l/CL) =0,
implicando que as autofungoes, apds redefinir a constante [, serdao tais que

Gun(T) = J|st‘(l/7“)Y|st’(Va) — J‘M|(VQ)Y|M’(W) (P55 e gikz g it

(3.11)

Agora, a condi¢ao de autovalor nulo dita acima nos resulta num vinculo para w:

Aow = 4+ —wr=0

w=VI2 R (3.12)

onde s6 consideramos frequéncias positivas por conta da funcao de Wightman em questao

ser a de frequéncia positiva.

Por 1ultimo, devemos usar o produto interno para impor a condi¢ao de normalizacao
para as autofuncgoes e encontrar qual deve ser a constante . Lembrando que [ pode

depender dos niimeros quanticos, mas nao deve depender das coordenadas.

Foi construido no apéndice (A) que o produto interno adequado para a teoria

juntamente com a geometria de interesse vem dado pela equagao (A.14)

1 — S <
o O ) = —1 | d —— ), Oy &} o 0o 05/ |,
(9 6a) Z/Z o [\/1— (S/ar)2¢ Por arzw/l—(S/ow“)Q(é o?

onde ¢ denota o conjunto de nimeros quanticos (v, k,n).
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Seguindo o que foi feito no apéndice (B) podemos calcular a constante de norma-
lizagao, equagao (B.42), seguindo o produto interno de Klein-Gordon para a geometria de

interesse e encontrar que as autofungoes, agora normalizadas, vém dadas por

v

20(2mw (s (v0) + Vs (va)

(ntwS

) Gjoes, (vr, Va)ez( o

)tpezkze—zwt

Qbu,n,k (l‘) =

9

(3.13)
onde w = Vv? + k2.

Agora somos capazes de calcular a funcao de Wightman e, por consequéncia, cons-
truir os observaveis de interesse langando mao da construgao feita na subsegao (2.2). Com
as autofungoes calculadas e normalizadas, equagao (3.13), a fungdo de Wightman de fre-

quéncia positiva se d& pela soma em todos os modos. Isto é

g|n+wS|(Va V'f‘)g‘|n+w5|(7/a vr')

G (x,2) = 27r2 Z/ dk/ dvv

znAgo ikAz \—ivVU2+k2AL
x oo C . (3.14)

V2 + k2

Fazendo uso da seguinte identidade [3]

gW(Va’ W‘)gv(ya’qu) = vr vr') — s M O(urYHWO (pg!
YZ2(va) + J2(va) Ty (vr)dy(vr) > H3P (vr) H (vr), (3.15)

onde Hgl)(r) e Hf) (r) sao as fungoes de Hankel de primeira e segunda espécie, respecti-
vamente, a funcdo de Wightman de frequéncia positiva se separa em duas contribuicoes:

AP ik Az —iV v2+k2 At

G (@4 = 5o Z / dk / dvv Jpy(vr)J () N

S [ [ |5 0 o)
27T n=-—00 =1 H|7|<V0J>
ivAp ikAz n—iVV2+E2AL
o O C (3.16)

V2 + k2

onde

ei1AP ik Az —iV v2+k2 At

Gholw, o) = % LI / dk / R e (3.17)

n=—oo

é a parte da fungao de Wightman relacionada somente a corda césmica girante [6] e

J (I/G,) 1 l
Gh(z,2') = 27r Z / dk / dvv L 111;:'{( )ngf(w)HQ(w’)
n=—oo ¥
ivAp L ikAz —iVU2+E2 AL
x o (3.18)

V2 + k2



Capitulo 3. Flutuagoes do Campo FEscalar sem Massa na Geometria de uma Corda Cdsmica 25

relacionada somente a contribui¢ao devido ao contorno cilindrico. Desta forma, para resol-
ver o problema por completo vamos examinar cada caso separado, comegando por (3.17)

e depois indo para (3.18).

Note que o indice que acompanha as fung¢oes de Bessel em (3.17), dado que ~ foi
definido acima, é complicado. Pensando nisso, vamos introduzir uma delta de Dirac de

modo a retirar este indice e substituir por outro mais simples:

Gho(r,7) = 27T Z/ dk/ dw/ d)\(S()\—anrS\ng

n=—oo

eiANAP ik Az —iV v2+k2At

V2 + k2

S WNZIPNZS!
Usando a féormula de Poisson [8]
Z 30+ 2mn) = Z e (3.19)
no propagador acima, encontra-se

1
Gés(x,x’)zm Z / dk / dvv / AN (7)) (o7 ) A (Ae=2me)

n=—oo

eikAz =iV v2+k2(At—27Sn)

V2 + k2

X

Definindo 7 = i(At — 27n.S), usando que

2

2 o0 —w2p2_ 1
7/ dn e " a2
™ Jo

e a defini¢do de w em (3.12), podemos reescrever o propagador e deixa-lo com a seguinte

forma

1
Gé’S(‘xaxl) = W Z / dk/ d)\/ dvy e -0’ J\)\|(VT)J‘)\|(VT) Z)\(Acp 2mna)

n=—oo
T2 21.2 .
X e anZ e Mk HikAz

Mas podemos escrever

Az Az?
212 | 2
—n°k kEAz=—n"|k—i— ]| ——.
n°k" +1kAz n ( 2277 ) 12
e reorganizar os termos de tal modo a obter
2 oo [e%e] i o0 —(r +Az2)
G n _ / A\ Z)\(AL,O*Qﬂ'aTL)/ d )
os(od) =g 2 | e 0o
k— Z—AZ>2
2

/OO dvv e Jx (vr) iy (vr) /Oo dk e ( 2n
0 —00
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Veja que podemos resolver imediatamente as integrais em v e k usando que [15]

2
/ ® gk T EE) VT
—00 ’)7
(T2+;/2) ,
00 e 4 rr
/0 dvv " i (vr) (') = Top W <2n )

com I, (y) sendo a funcao de Bessel modificada de primeira espécie.
Assim, o propagador se resume a
0o dn _ (2482242 40"2) +(r 2+r2)) rr!
Gig(z,2') = d)\ A(Ap—2man) 77 an? Inl=—]-
871'2 272
n—=—oo
Por conveniéncia, tome a mudanga de varidveis y = 71//2n? e reescreva o propagador

acima como

T z T 7‘/2 oo .
Gcg($ I Z / dye y 248z (2 4r)) 2:: +r'%)) /_Oo d\ ez)\(Ago727ran)]|>\|(y>.

87T rr!

Para o cdlculo da tltima integral vamos lan¢ar mao da representagao [15, eq. 8.431-
5] para I,(y). Assim, apds usar a representacao citada e definirmos que ¢ = Ay — 2wan

obtemos que
/ X NBe=2man) () / d0 " [§(0 — @) + 6(0 + P)]
_ = / de e veosh(©) / dh e NEPE Gin (N ). (3.20)
m™Jo —00

Note que o primeiro termo s6 é diferente de zero caso || < 7. Assim, se nos restringirmos,
por simplicidade, somente a > 1/2 e usarmos a desigualdade triangular [1] encontramos

que
lo| = |Ap — 2man| < |Ap| + [2ran| < .

Assim, conclui-se que, para o > 1/2; o primeiro termo de (3.20) serd nao nulo somente

para n = 0, pois |2ran| > 7 V |n| > 0.

Portanto, levando em consideragdo os argumentos acima a fungdo de Wightman

toma a seguinte forma:

\x—x’|2—At2>

1 o0 _ Y
Gés<x,$/> :2<27T2T7=// dye 2rr’(

Z / dg/ dye Py [T +AZZr2 422! cosh(ﬁ)]

( 3 n=—oo

x / X e~ NEHAS gin (),

onde
L1202 2 ! 2
|x — x| =71 +1" = 2rr’ cos(Ap) + Az~
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Resolvendo as integrais em A\ e y com auxilio de um software [41], encontramos
que

1 1

+ no_
Gos(w,a) = 2m)2 ([x — X2 — AR)

1
d
n—_oo/ 5 — (At —27nS8)” + Az 4 12 + 172 4 21 cosh(g)}
€2+ 72 — (Ap — 2man)’

X 2
[({2 + (Ap — 27Tcm)2) + 272 (£ — (Ap —2man)) (€ + (Ap — 2man)) + 7T4}

Note que o primeiro termo é a fungdo de Wightman no espago-tempo de Minkowski [13]
e esta é divergente quando tomado o limite de coincidéncia dos pontos, ou seja, é o termo
responsavel pela divergéncia ultravioleta. Sendo assim, pensando em construir observaveis
este termo deve ser subtraido, de modo que s6 nos reste as contribui¢oes convergentes do
propagador. Tal subtracao dos termos divergentes que nao contribuem com a fisica é
chamado de renormalizacao. De fato, o termo de Minkowski nao contribui fisicamente por
conta do seu tensor energia-momentum, mais especificamente (T#) definido em [4], ser
nulo. De outra forma, ao realimentarmos as equacoes de Einstein para obter corregoes na

métrica obteriamos outra solugdo que nao seja a do espaco-tempo de Minkowski.

Assim sendo, o primeiro termo do propagador (3.16) possui as divergéncias que

devem ser subtraidas, de modo que o propagador renormalizado vem dado por

Ghes(z,2') Z / 5 :

S — (At —27n.S)” + Az2 4 12 + 172 4 2! cosh({)}

E4+712 —(Ap—2ran)?

X 2
(€2 + (Ap — 27an)?)” + 272 (€ — (Ap — 27an)) (€ + (Ap — 2man)) + ﬂ}

(3.21)

Agora, nos resta trabalhar com o segundo termo de (3.16), isto é o termo devido ao
contorno cilindrico. Para lidar com o indice das fungoes de Bessel vamos utilizar do mesmo
truque que foi usado para o primeiro termo. Introduzindo a delta de Dirac e usando a
férmula de Poisson (3.19), encontramos que a parte do propagador do campo escalar sem

massa devido ao contorno cilindrico sera

Inva) o 0

G (x, o) 5 / d / dk / dvv |7HA (wr)HO ()
167r2 o 2 Hflf( 2y W I

ei)\(Ago 2ran) ezkAze—z(At—27mS) Viv2+k?

X Vo . (3.22)

A fim de simplificar G§(z, ') podemos girar o contorno de integracio no plano

complexo de v nos angulos de 7/2 para H(M(z) e —m/2 para H(¥(z) [3]. Com isso, e
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usando [20]
(1) ( im/2 2 —ivm/2 (2) (,—im/2 21 v /2
H/(e™?z) = ——e K,(z) H;” (e z) = —e"" K, (2) (3.23)
7r T
T, (e722) = V2] (2) J (e ™2) = e7¥™2] () (3.24)
encontra-se apos manipulacoes simples
1 o 00 . oo .
Gh(z,2') = “l6m2 n:z;oo [m d\ e Ap=2mna) LOO dk e™F2%
y 22-/00 'y Ep(yr)Kin(yr') — In(ae) i femgmi ae2mms)
™ Jo Ky (ya) (eimy)? 4 k2

2 /oo dnym(y?“)Kw(yT’) InWY) /e Ge2ms) | (3.25)
0

7r Kz (ya) (e=imy)? + k2

onde I,(z) e K, () sdo as fungoes modificadas de Bessel de primeira e segunda espécie,
respectivamente. Note que a rotagdo no contorno de integragdo nao altera os limites de

integragao, pois para fazer a rotagdo de 7/2, por exemplo, usamos que y = em/?

1y, entao
para o dominio de 7 deverfamos ter um limite de integragao da forma [0, i00), indicando
que a integracao acontece no eixo imaginario de v. Todavia, para o dominio de y o limite
de integracao permanece inalterado a comparar com antes da rotagao, pois como y € R a

informagao sobre a rotagao esta toda no Jacobiano, ou seja, em dv.

Veja que
: \% c? —y? 70 <y<|c
(eximy)2 4 2 = A y y <l . (3.26)
TR Ly > |
Com isso, a soma de integrais dentro dos colchetes em (3.25) serdo dividas em dois in-
tervalos, [0, |k|] e [|k|,00), de modo que as integrais no intervalo [0, |k|] cancelam entre
si. Dessa forma, manipulando os dois termos restantes e usando a definicao das fungoes

hiperbdlicas [1], encontra-se

_413 i /OO d\ ei)\(Acp—anoz) /oo dk eikAz
T oo oo

n=—oo

- K (yr) Ky (yr') 1 (ya) 2 _ 1.2 — 2N
[/“C' dyy K (ya) mcosh (\/ﬁ(At 2 S))] (3.27)

Portanto, o propagador renormalizado utilizado para construir os observaveis de

GEh(x,2) =

interesse da teoria quantica de campos no exterior de uma corda césmica girante sujeita
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a condi¢do de contorno de Dirichlet é dado por

s o 2 & 47— (Ap —2man)® 1
GRen( ) (27’(’) i oo/ dé Dn(f) Qn(§>

4 — Z / d\ 67)\ Ap—27na) / dk ezkAz
s

x U: dyy K|A|([y(agg|)(yr’) % cosh<m(At - 27mS))]
= Gheglz, o) + Gh(z, o), (3.28)
onde definimos
Du(€) = (€ + (A — 2manf’)” + 27 (€ = (Ap - 2man)?) + 7, (3.29)
Qn(€) = —(At — 27n8)* + Az” + 17 + 1" + 2r1' cosh(€). (3.30)

3.3 Flutuacao do Campo no Vacuo

O valor esperado no vacuo, (¢?), foi definido na segao (2.2) e vem dada por (2.32)

(¢*) = lim R(G},, (2, 2")), (3.31)

' —x

de modo que temos que tomar o propagador renormalizado para obtermos resultados
fisicos. Usando a definicao da flutuacao no vacuo do campo escalar para o propagador

obtido (3.28), encontramos que este possui duas contribuigoes

(@) (r) = (¢*)es(r) + (6°) (1), (3.32)
onde {¢?)cg é a flutuagao do campo escalar devido a corda coésmica girante [6]
1
(@*)es(r) = —W
&+ 72(1 — 4a®n?)
<3 / de 2 - (3.33)
n=—o0 7'('2 20m + 1) + 52} [ﬂ (2an — 1)" + 52} [cosh2(§/2) — (@) }

e (¢%)p a flutuagdo induzida pela fronteira cilindrica

<¢2> — 47T3 Z / d\ 672mna)\

In(ya) Kj(yr) < / >
dk d cosh [ 2mnS\/y?2 — k2). (3.34
/—oo |k nyw(ya) \/y2 — k2 y ( )

Veja que a integracao em k do termo de fronteira (3.34) pode ser efetuada e para

isso basta que se troque a ordem da integracao a modo a integrar primeiro em k. Para
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tal, basta olhar para o dominio da integral dupla e muda-la de forma adequada, de modo

a obter

(%) 5(r) = Z/ A\ e—2TinaA

n=—oo

I (ya) y  cosh (2mnSv/y? — k?
/ dyy L) K3, (yr) / dk ( ). (3.35)

KIM (ya) Vy? — k2

Por uma mudanga de varidvel, u = k/y, na integragdo em k é facil perceber que
(15, eq. 3.534-2]

y dkCOSh (27mS\/y2 — k;2) ) 1 p cosh (27myS\/1 — u2>
/_y Vy? — k? B /0 " V1—u?

Desta forma, encontramos que a flutuacdo devido a fronteira vem dada por

—2TinaA I|)‘|
)s0) = gz [ ane e [Tayy V(o)

= wlo(2mnysS).

Kw(yr)IO(QWnyS) (3.36)

Portanto, concluimos finalmente que a flutuacdo do campo escalar no estado de
vacuo no espago-tempo de uma corda girante com condi¢ao de contorno de Dirichlet sera

dada por

(@) (r) = —2(2;)22

xZ/d

&+ (1 — 4a®n?)

w0 [ 2+ 1) 4+ €7 [ (2am — 1) 4+ €7] [eosh®(g/2) — (225)']
~2mnia In(ya) ..,
47T2 n_Z_OO / ) =2 / dyy Kf.ya>K“(yT)]0(2myS)‘ (3.37)

O primeiro termo apresenta os problemas associados a quantizagao indevida no
espago-tempo de uma corda césmica com rotagao [6], que, por sua vez, nao é globalmente
hiperbélico. A motivagdo em impor uma condi¢do de contorno era isolar a regiao pato-
légica do espago-tempo e, assim, obter uma contribui¢ao regular para as flutuagdes do
vacuo. Contudo, tal resultado nao se concretizou devido a presenca do primeiro termo.
Em suma, mesmo com a introducao de uma fronteira separando as regides causal e acausal
do espaco-tempo, verificamos que as flutuagdes do campo permanecem divergentes. Isso
sugere que: a condicao de contorno considerada nao foi suficiente; ou a existéncia fisica

de uma corda cosmica girante pode ser improvavel.

3.4 Corda Cdésmica Estatica

Até aqui, obtivemos o propagador do campo escalar para o espaco-tempo de uma

corda césmica girante e, em seguida, calculamos a flutuagao no estado de vacuo. A partir
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disso, é possivel testar a expressao geral obtida, verificando se ela reproduz casos ja con-
solidados na literatura. Em particular, um teste natural consiste em considerar a situacao
de uma corda césmica sem rotagao, isto é, para S = 0. De fato, ao impor S = 0 em (3.1),

recuperamos

ds* = dr* — dr* — o*r?d¢? — d2*. (3.38)

Mas veja que o tempo 7 e t, definido em (3.6), serdo os mesmos, de modo que utilizaremos

t para a coordenada temporal da corda cdésmica sem rotacao.

Assim, fazendo S = 0 em (3.37) e utilizando que a fun¢do modificada de Bessel
de primeira espécie avaliada em zero é tal que I4(0) = 1, somos capazes de obter que
as flutuagoes do vacuo no exterior de uma corda cosmica sem rotacao com condicao de
contorno de Dirichlet serao tais que

2 (r) = £ +m*(1 - 4a’n?)
)0) =~ g 3 e T W} 72 (2am — 1 + €] conl(€/2)

I (ya)
d\ 27rzna)\/ d P\| K2 )
471'2 Z / © K‘ Al ya) lM(yT)

n=—oo

Ainda, podemos usar a féormula de Poisson (3.19) para reescrever o segundo termo de

(¢*)(r) acima de forma mais adequada:

217T gi(—2mAa)n Z d(2mn — 2rAa) = — Z 0 (/\ — )
Z ei(—27r/\a n _ Z ) <)\ _ >

Operando com a delta de Dirac resultante da igualdade acima na expressao para (¢?)(r)

acima desta é imediato obter

<¢2>(S:0)(T) _ Z / f + (1 —4an )

n=—oo (2an +1)° + 52} [7?2 (2an —1)* + 52} cosh?(£/2)
1 e 1 m(ya)
" 4mla W= o K (ya) K%@T)

o}

= (D) es () + ()50 ().

O primeiro termo ¢é exatamente o termo obtido em [21, 31] e o segundo o termo
obtido em [3]. Para que o resultado classico da literatura aparega explicitamente, vamos
resolver a série e a integral do primeiro termo. Para tal, note que a série é simétrica, de
modo que podemos separa-14 na contribuicao n =0 e |n| > 0:

_ o0 1
<¢2>(g5 0)<T> T 82 / & (w2 + €2) cosh®(£/2)
£+ (1 — 4a2n?)
4727“2 Z / 7T2 20m + 1) + 52} [7r2 (20m — 1)* + 52} cosh?(£/2)
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Resolvendo a série com o auxilio de [41], obtemos que o termo devido somente a
presenca da corda cosmica vem dado por
2y(5=0) () _ _ 1 / * 4 1
(6%)cs (r) 81212 Jo g(7r2 +£2) cosh2(€/2)
1 |1 1 i 00 1
+—s f/ de , +Sm(”/0‘)/ de— .
4m2r? |2 Jo (m2 + £2) cosh™(£/2) drac Jo cosh®(£/2) [cos(m/a) — cosh(&/a)]

Usando o teorema dos residuos [1] é possivel resolver os dois tipos de integrais acima:

o0 1 1
/0 a (72 + £2) cosh?(£/2) "6

1 /°° e 1 _ Tma 1—a?
2 Jo cosh?(£/2) [cos(ma) — cosh(ag)]  6sin(ma) a? )
Manipulando os termos algebricamente, encontramos que

1

-2

$=0
(6")¢5 " (r) =
Portanto, a flutuacao do campo escalar real sem massa no espaco de fundo de uma

corda césmica sem rotagdo com uma fronteira cilindrica vem dada por

1 —2
4872y2 (a7 =

(@)= (r) =

47?04

I (ya)
> [dmt sk, G40)
n=—oo |”‘ ) o
onde o primeiro termo é um resultado classico da literatura [21, 31, 8] e o segundo termo
devido a fronteira cilindrica [3]. Note ainda que ao fazer & = 1 recuperamos o espago-
tempo de Minkowski, mas as flutuagées do campo nao sao nulas devido a fronteira. O que
foi dito na secdo (3.1) sobre a geometria do espago-tempo ter interferéncia nos observaveis
quanticos se manisfestou através do primeiro termo da expressao acima, mesmo apods a
renormalizacao em relacao ao espago-tempo de Minkowski. Isto é, mesmo o espago-tempo
de uma corda césmica sem rotacao, assim como a com rotagao, ser localmente plana
temos que o primeiro termo se deve exclusivamente a contribuigoes devidas a geometria

nao trivial que a corda césmica fornece ao espago-tempo.

Ainda, apesar do propagador ter sido renormalizado com relagdo a Minkowski as
flutuagoes do campo sdo divergentes para r = a. Fisicamente, os modos n deverao ser
tais que a oscilagao na parte angular seja rapida o suficiente para que a condi¢ao de
contorno de Dirichlet seja respeitada a medida que r — a. Com isso, somos capazes de
notar que os Unicos comprimentos de onda capazes de fazer com que essa resposta seja
rapida o suficiente seriam para comprimentos de onda muito curtos, ou seja, grandes
modos angulares. Em outras palavras, para r — a os termos mais relevantes deverao ser

os modos para os quais n sao grandes.

Sendo assim, podemos analisar as flutuagoes quando (r — a) — 0, ou seja, a

flutuacao do campo avaliado bem préximas a fronteira. Fisicamente, esperariamos que o
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comportamento fosse como as flutuacoes do campo escalar préximas a uma fronteira plana.
Note que para tal estudo, precisamos partir de (3.40) e considerar somente o segundo

termo por conta do primeiro termo nao envolve a.

Para comecar, faga as seguintes mudancas de variaveis para retirar a dimensao

fisica do argumento das func¢oes de Bessel:

r=ya p=r/a v=n/a.

Com isso, e usando a simetria no indice n, o segundo termo de (3.40) passa a ter

a seguinte forma

(@5 =(r) = - 2:/ dra: K%m (3.41)

onde a linha no somatério significa que para n = 0 hd um fator 1/2 multiplicativo.

272 a2

Agora, tome também z = vz para reescrever a expressao acima como

()5 (r) = 92208 ag Z' 2/ dxx ))K2<VSU,0) (3.42)

7

Levando em conta o argumento anterior da contribuicao principal das divergéncias se
darem para modos com n grande, podemos usar a expansao assintética para a ordem das

fungoes de Bessel e considerar somente o termo dominante [28]:

evn(2)

V2ru(1+ 22)1/4
T e_Vn(Z)
K,(vz) =, /;7“ vz

maivTI?+m<

I,(vz) =

onde

¥4
1+\/1+z2>'

Assim, substituindo as aproximagoes acima em (3.42) chega-se que

2\ (5=0) 1 5 / ¥ i) )
r)~————>3%n ————e¢ . 3.43
)0 = e 2y e (3.43)
Todavia, considerando que r esta muito préximo de a, isto é p — 1, podemos expandir o
argumento da exponencial em uma série de Taylor em torno de p = 1. Matematicamente,

teriamos que

() = 03] = 12) + 25 (= 1)+ ),

onde pode-se calcular facilmente que

on(zp
(;p )|,,:1 = V2711 (3.44)
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Desta forma, apds calculos simples encontra-se

on(s=0), 1 - /°° z —(p—1)VIF2
(005 ()= 4m2a2a? nz::ln 0 1+ p?2?

efZV(r/afl)\/1+22

12

1 i /00 z
—_——_— n —
4m202a? V14 22
1 o]
 4n202q2 /0 \/1 + 22 2 Z ne.

12

2(n/a)(r/a— 1)\/1—1—22' (345)

Resolvendo a série utilizando o auxilio de [41] encontramos que
Z ne2n/a)(r/a—1)Vi+z® 4csch2 <(r/a )m> .

Mas note que (r/a—1) é um fator bem pequeno, dado as aproximagoes ditas acima, entao

se expandirmos a funcao acima e considerarmos somente o termo dominante, encontrare-

o ((rfa—=1) — N a’a®
csch <a ? “) a1y

mos que

Substituindo a aproximagao acima em (3.45) nos resulta que

2\(5=0) ) ~ 1 > i = — 1
(%) (r) ~ (47)2(r — a)? /0 (1 + 22)3/2 (4m)2(r — a)?

Portanto, as flutuagées do campo escalar perto da fronteira virao dadas pela ex-

pressao acima somada ao primeiro de (3.40):

1
4822

1

U G

(%) (r) =

(3.46)

Entretanto, note que se estamos proximos a fronteira o segundo termo é o dominante,
visto que o primeiro nao possui nenhuma divergéncia para r — a. Assim, a flutuagao do

campo no estado de vacuo perto da fronteira cilindrica

1

2\ (S=0) r) ~ —
<¢ > ( ) (47T)2<7" —CL)2

(3.47)

nao enxerga a mudanca na geometria global do espacgo-tempo, ou seja, proximo a fronteira

as flutuagoes se comportam exatamente como as flutuagoes préximas a uma fronteira
plana [13, eq. 5.12].
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4 Conclusao

Neste trabalho investigamos o comportamento das flutua¢des do vacuo de um
campo escalar sujeito a uma condigao de contorno cilindrica de Dirichlet no espago-tempo
de uma corda cosmica girante. Como principal resultado, obtivemos a func¢ao de Wightman
renormalizada para esse sistema fisico [ver Eq. (3.28)], a partir da qual foram calculadas
as flutuacoes do campo [Eq. (3.37)]. Verificamos que (¢?) apresenta duas contribuigoes
distintas: uma proveniente exclusivamente da presenca da corda césmica girante e outra

induzida pela condi¢ao de contorno cilindrica.

Entretanto, como o primeiro termo é responsavel pelas patologias associadas a
quantizagao do campo escalar — decorrentes do uso inadequado das ferramentas da teo-
ria quantica de campos em espagos nao globalmente hiperbélicos [6] — torna-se necessario
analisar com mais cuidado o segundo termo, oriundo da fronteira, e investigar se as di-
vergéncias do primeiro poderiam ser, de algum modo, “compensadas” por este. Assim,
deixamos como conjectura a ser explorada futuramente a seguinte questao: impor uma
condicao de Dirichlet que isola a regiao acausal seria suficiente para restaurar a causali-

dade na corda césmica girante?

Como verificacao de consisténcia, consideramos o limite de auséncia de rotagao, no
qual recuperamos resultados conhecidos na literatura: a contribuicdo associada a prépria
corda césmica [21, 31] e aquela devida & condigdo de contorno [3]. Além disso, mostramos
que, nesse mesmo limite, a expressao (3.37) reproduz o resultado classico da teoria quéan-
tica de campos para as flutuagoes préximas a um plano com condigao de Dirichlet [13],

quando avaliada no regime em que (r — a) é suficientemente pequeno.

A questao que permanece, portanto, é se a condicao de Dirichlet é realmente capaz
de eliminar as divergéncias associadas ao primeiro termo de (3.37). Um passo natural para
trabalhos futuros consiste em examinar numericamente essa expressao, a fim de verificar
se a imposicao da condi¢ao de contorno resolve, de fato, o problema causal inicial. Caso
a resposta seja positiva, a funcao de Wightman renormalizada obtida aqui podera ser
empregada para investigar, via backreaction [10], os mecanismos semicldssicos de resposta
da geometria ao campo quantico. Isso abriria caminho para testar a conjectura da protecao
cronolégica de Hawking [17], analisando o comportamento das flutuagoes do viacuo na

vizinhanga da fronteira onde surgem curvas do tipo-tempo fechadas.

Por outro lado, caso a resposta seja negativa, poderemos buscar condigoes de
contorno fisicamente mais adequadas e, ainda assim, estudar as implicagoes da conjectura
de Hawking. Contudo, se mesmo essas condigoes adicionais nao forem suficientes para

isolar a regidao causalmente patoldgica, talvez seja necessario adotar a posicao sugerida
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por [32]: “.. perhaps one should reject as physically unrealistic a spinning string or at least

the portion of its spacetime r < S that contains closed time-like curves”, descartando,

portanto, tal solucao como fisicamente admissivel.
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APENDICE A - Produto Interno de
Kein-Gordon

O produto interno de Klein-Gordon vem dado por [4]

(61,62) = =i [ dEn, (61705 — 63V 0n).

onde X é uma superficie do tipo-espacgo chamada de superficie de Cauchy, n* o quadrivetor
unitario perpendicular a ¥ apontado na dire¢ao futura por defini¢ao e ¢1(z), ¢o(z) duas

solucoes da equacao de Klein-Gordon.

Precisamos que um produto interno possua algumas propriedades, entre elas que
seja positivo definido e que este nao dependa do tempo. Para o tltimo requerimento, o

equivalente é que o produto interno nao dependa da escolha da superficie X.

Para motivar a definicdo do produto interno apresentado acima, tome a defini¢ao

da corrente de Noether [30]
oL 6¢°

O(V,.0%) bc

onde ¢? denota o campo em questdo e J¢°/de a variacio com respeito a um pardmetro

JH = (A.1)
infinitesimal no campo levando em conta a sua simetria.

Considerando um campo escalar complexo descrito pela lagrangiana
L =V,pV'¢* —m?po* (A.2)

e notando que tal teoria possui a seguinte simetria para o € R: ¢ — €'®¢ e ¢* — e @¢*;
implicando em d¢/da = ip e §¢*/da = —i¢*, encontramos que a corrente de Noether
definida por (A.1) sera

T = i(§°V G — pVHGY).
Note que

V" =i (Vu(¢"VH9) = V,u(9VH 7))
i (Vg )VHo + 67V, Vi — (V,0) V" — ¢V, VH¢)
(

(0

Il
~.

(V) V' — (V,u0)VF'67) +i (9"0% — ¢0%")
i(0) +i (¢*(m*¢) — p(m?¢"))
0.

Assim, vemos que J* se conserva. Mesmo tendo considerado um campo escalar complexo

para o calculo, o resultado deve ser o mesmo para qualquer par de solugoes da equacao
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de Klein-Gordon, pois a conservacao foi consequéncia da simetria e nao da solugdo em

particular.

Suponha que integremos V,J* entre duas superficies 3J; e ¥, infinitamente longas
e que n* seja um vetor apontado na direcao futura e ortonormal as superficies. Lancando

mao do teorema de Stokes vemos que
/ ANV, Jr |5 = / A5, J1 =S = / A4 [ dsnl =0, (A3)
b 0%

Mas como foi definido que n, aponta para o futuro e a superficie ¥; estd no passado

2)

de 35, entao nﬁ) = —nEL , onde os indices 1 e 2 significam que os vetores normais sao

ortogonais as respectivas superficies. Com isto e levando em conta que a corrente J* vai

a zero quando avaliada no infinito, conclui-se que
d¥n,J" = | d¥n,J" (A.4)
31 P

nao depende da superficie de Cauchy escolhida e, portanto, independe do instante de
tempo em que é calculada. Isso nos motiva a definir um produto interno com a forma
acima, pois garante que estados ortogonais inicialmente permanecam assim durante a

evolugao temporal.
O elemento de superficie d¥ em coordenadas possui a seguinte forma
d¥ = d*x +/|h|, (A.5)
onde h é o determinante da métrica induzida na superficie de Cauchy e dada por

hyw = Guv — Ny (A.6)

Levando em conta toda a construgdo acima e as propriedades que um produto

interno deve possuir, somos levados a definir o produto interno de Klein-Gordon por

(61, 60) = =i [ &' /bl (6,965 — 639%6). (AT)

De forma que para cada geometria devemos ter um vetor normal a ¥ distinto, e isso define

totalmente o produto interno para o campo escalar.

A geometria de interesse neste trabalho é a de uma corda césmica girante cujo

elemento de linha é dado por
ds* = (dr + Sd¢)? — dr* — o*r*d¢?* — d=*. (A.8)

Para calcular as autofungdes em (3.4) usamos coordenadas localmente planas, ou seja,
o elemento de linha tem a forma do elemento de linha de Minkowski, mesmo que as
identificacoes entre as coordenadas nao sejam. Todavia, para calcularmos o vetor normal

a > devemos usar as coordenadas globais, isto é (7,7, ¢, z).
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Para tal, lembre-se que o vetor normal possui duas propriedades: a de ser ortogonal
a superficie de Cauchy e que este possua norma igual a 1. Sendo assim, para determina-lo
vamos usar estas duas propriedades dadas em termos da métrica. Para o elemento de

linha (A.8) temos que a métrica é tal que

1 0 0
0 —1 0
) = A9
(95 S 0 —(a*?*-5%) 0 (A.9)
0 0 -1
Com isso, o vetor normal é determinado por

sendo que g é o tensor métrico, n o vetor normal com coordenadas n* = (n”,n",n® n?) e

0; o i-ésimo vetor de base da superficie 3.

Usando a métrica acima e as propriedades encontramos que

~ Va?r? _Szﬁ—i- S g
N ar or  arva?r? — S20¢

Usando a métrica podemos descer o indice do vetor contravariante, encontrando que o

nt

(A.10)

vetor covariante é
ar 0

=, A1l
e a?r? — S2 0t ( )
Assim, podemos usar (A.11) e (A.9) em (A.6) para concluir que a métrica induzida

na superficie ¥ vem dada por

- 2575 0 S 0
0 -1 0 0
. A12
() S 0 —(a*?-5% 0 ( )
0 0 0 ~1

Com isso, temos que o elemento de linha (A.8) pode ser reescrito em termos do projetor
., como sendo

ds® = dr* + 2Sdrd¢ + hydx'da’,
onde h;; ¢ a parte espacial do projetor acima.

Agora que definimos as quantidades geométricas nas coordenadas globais podemos
fazer uma mudanca de coordenadas usual usando (3.6) para mudar das coordenadas fisicas
(1,7, ¢, 2) para as coordenadas planas (¢, 7, ¢, z). Desta forma, o vetor normal & superficie

de Cauchy > no sistema de coordenadas planas é dado por

_ OzH ar S
I H 1
nt = —xﬂn = < 2.2 52,0, 7,2 S2,0> , (A 3)
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onde z* denota as coordenadas planas definidas em (3.6). Adicionalmente, neste sistema
de coordenadas planas a parte espacial do projetor (A.12) possui determinante dado por
|h| = 2.

Portanto, levando em conta as equagoes (A.7) e (A.13) encontramos que o produto

interno de Klein-Gordon adequado para a geometria examinada vem dado por

(Qbm ¢o/) = (A14)

1 < S <
—i [ & 0, O O} o Op O |
Z/E o [1/1—(5/00")2(]5 Por ow*%/l—(S/cw)z(Zs e?

< .
¢g 6“ ¢:§.l - ¢gau¢:-/ - QS:./ N¢U'

onde
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APENDICE B - Parte Radial da Constante

de Normalizacao

Para calcularmos a constante de normalizacao proveniente da integracdo em r de
(??) vamos, primeiramente, lancar mao das coordenadas globais (A.8). Com isso, basta
usar (A.10) em (A.7) usando que o determinante induzido na superficie ¥ é dado por
h = o?r? — S? e efetuar a mudanga de coordenadas (3.6) nas autofungdes (3.11) para
obter

Guin (1) = 3 J‘MW/T)Y’Ml(Va) — J|M’(ua)Y’M|(W) ePeT Wt gikz (B.1)

onden€e€Z, keR, veR, ew=vv?+Ek2
Usando (A.10) em (A.7), juntamente com h = o?r? — S? para a regiao r > S/a,

encontramos que a condi¢ao de normalizacao sera

ar(w + o) — Ojr (Stn-+ 1)+ 82w + )] dola)t ()

(¢0(2), 6o (1)) = —i /E P
27 00
__|RI2 iAn ¢ 1Ak z
= || /o dpe [m dze
e 1
X /a dr [O‘T(w + W) — or (S(n + 1) + S (w + w’))] g|%|(w, Va)g|%‘(;/r, Va)
=GBk — K)o — ), (B.2)

onde definimos
gu(u,v) = [J, (W)Y, (v) = J,(v)Y, (u)]. (B.3)

As integracdes em ¢ e z sdo triviais e resultam em (27)26,,,0(k — k') e por fim

devemos calcular somente

oo 1
/ dr {ar(w +w') — or <2nS + S%(w + w'))] Q|M|(W’a l/a)g|n+5wr|(l/r, V'a). (BA4)

Antes de continuarmos, vamos revisitar alguns aspectos basicos da teoria de Sturm-

Liouville. Comecemos por definir um operador diferencial tal que
Llyl(z) = Y Pe(x)y™ (). (B.5)
k=0

Seja
v(z)L[u)(z) = v(z) ]; Py(x)u® (z). (B.6)
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Trabalhando somente com o argumento dentro da série, podemos escrever
Py(a)u® (z) ==(U(I)f%(w)uﬁh‘”(x))/-(U(I)f%(w))lﬁk‘”(x)
~ (@ Py V@)~ { [0@) Aua)) a2 @)] = o) Pula))” 02 0)

!/ /

= [v(2) Pi(2)]® "2 (2) + [v(2) Po(2)u* D ()]~ [(0(x) Pul(2)) u* D ()],

!/

onde o simbolo ' = dy/dx e y™ = d"y/dx".

Continuando com o raciocinio de usar a regra do produto para os termos que nao
sao a derivada total de produto de fungoes, ou seja, os termos que nao sdo da forma

!/ ’ . . s .
(f(x)g(x))’, encontramos que apds aplicarmos o raciocinio k vezes podemos escrever

o) Llu(x) = (D o) Pue)] P ) + {z S (19 o) Belau1 ) } |

Definindo .
V) = 31 o) )] B.7)
Qluv)(x) = Z > (1) [oe) P ). (B3)
VEINOS que d
o(@)Llu)(2) — () L'o](2) = - Qlu o)) (B.9)

A equacdo diferencial Li[y](z) = 0 é chamada de equacio diferencial adjunta de

L[y](x) = 0. Chamamos uma equagao diferencial de auto-adjunto se L[y](z) = LT[y](x).

Como a relagao de ortogonalidade entre as fungdes de Bessel vém dessas fungoes
serem solugao da equagao diferencial de Bessel, vamos supor que o operador (B.5) seja de

segunda ordem e escrever
Llyl(z) = P(2)y"(z) + Pr(2)y'(z) + Po(2)y(z) =0 (B.10)
e sua adjunta, considerando (B.7), se d& por

Liy)(z) = [Pa(x)y(2))" — [Pr(2)y(@)] + [Po(2)y(x)] = 0
= Py(2)y"(x) + (2P3(x) — Pa(2))y'(2) + (B () — Pi(z) + Po(x))y(x) = 0.

Para que a equacao diferencial proposta seja auto-adjunta a condi¢do necesséaria sera que

(B.11)

{ng@) ~ Pi(z) = Py()
Py(x) — Pi(z) + By(z) = Py(x)

Isto é, para Pj(x) = Pi(z).
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Desta forma, veja que (B.10) pode ser escrita como

[Po(2)y' ()] = Py(2)y' () + Pi(2)y' () + Po()y(x)

[Pa(2)y'(2)]' = Palayy' (@) + Pulady' (@) + Po(2)y(x)

Portanto, uma equacao diferencial auto-adjunta de segunda ordem pode sempre

0
0

ser escrita como

[p(2)y' ()] + a(z)y(x) =0, (B.12)
de tal forma que o operador em (B.8) vem dado por
Qu, v](x) = p(x) [v(z)v'(z) — u(z)v'(x)]. (B.13)

Se a equagao diferencial é auto-adjunta temos a conhecida identidade de Lagrange [35],
analoga a equagao (B.9). Para o caso de uma equagao diferencial de segunda ordem auto-

adjunta, como (B.10), a identidade de Lagrange se da por

v(@)Llul(z) — u(z)Lv](z) = jx (p(2) [o()u(z) = u(z)v'()]), (B.14)

para u(z),v(x) € C2.

Finalmente, estamos em condi¢ao de definir um problema de Sturm-Liouville re-

gular. Seja um operador diferencial tal que possa ser escrito como

Llyl(z) = [p(2)y ()] + q(=)y (). (B.15)
Sendo assim, definimos um problema de Sturm-Liouville por
Llyl(z) = =Ap(x)y(z) =z € (a,d)
ay(a) + asy'(a) =0 ; (B.16)
Bry(b) + B2y (b) = 0
onde «o; e (3;, 1 = 1,2, seja constantes.
Um problema de Sturm-Liouville regular é definido como sendo tal que
ai+ai>0
24+ 55 >0
B2 + B3 B
p(x), #(2), 4(x), plx) continuas em [a, 1]

p(z),p(x) >0 V€ la,b

Um problema de Sturm-Liouville singular é aquele em que p(z) > 0 e/ou p(x) > 0 nao

vale para um dos extremos de x, ou os dois extremos.

As solugbes nao triviais de (B.16) s@o chamadas de autofungoes enquanto A sdo os
autovalores e o conjunto dos autovalores constituem o espectro do problema de Sturm-

Liouville. Existem outros conceitos e propriedades importantes acerca do problema de
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Sturm-Liouville como, por exemplo, quando o problema de Sturm-Liouville é regular isso

implica que os autovalores sao reais. Veja [35] para os detalhes.

Voltemos agora para o problema do trabalho. A solugao de (3.9) é uma combinacao
linear das fungoes de Bessel de primeira e segunda espécie. Tais solugoes respeitam a
seguinte equacao diferencial:
d*R dR
r? (r) +7r (r)
dr? dr

Tal equacao diferencial pode ser posta em sua forma auto-adjunta dividindo-a por r e

+ (v*r* —¥*)R(r) = 0. (B.18)

rearranjando os termo de modo a escrever como

LIR|(r) = i [rdﬁ;ff)] ~ T R(r) = —12rR(r) (B.19)

r

com o adicional da condigao de contorno R(r = a) = 0 imposta para o problema fisico
aqui considerado ser bem posto. Veja que (B.19) constitui um problema de Sturm-Liouville

regular, pois os requisitos (B.17) sdo cumpridos.

Sendo um problema de Sturm-Liouville regular, podemos usar o que foi desenvol-
vido acima para encontrar uma relagao de ortogonalidade entre duas solugoes de (B.19). A
solucdo, ja com a condigao de contorno imposta, foi apresentada em (3.11), de forma que
somente nos interessa a contribuicao que depende da coordenada radial para resolvermos

completamente a constante B na equacgao (B.2):
g|w|(m“, va) = J|M|(VT)Y|M|(VCL) — J|M|(l/a)Y|M|(m“) ) (B.20)

Para uma relagao de ortogonalidade precisamos de duas solugoes que respeitem

(B.18). Tais solugoes sao dadas por

u(r) = g, (v va)  v(r) = gy (v'r, Va), (B.21)
com S
y = DR (B.22)
(6%

Ambas solucoes respeitam

d [ du(7 >_ _72 9
7_7' -+-*—V7” U(?“)—O
d | dv(“ ) i >/2 /2
— T + _7 —ver U(T) =0

Multiplicando a primeira equagao diferencial por v(r), a segunda por u(r) e subtraindo a

primeira da segunda, encontramos

(V2 — vy — i(f — )l = L [r (u(r)dv(r) - d“(r)v(m)} (B2
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Pela definigdo de v em (B.22) e as deltas encontradas ao integramos em ¢ e z a equagao

(B.2), discutida brevemente no comego deste apéndice, nos possibilita escrever

R (n—i— SW)Q - <n+ Sw’>2 _ (w ;Zw’) {Sz(w W)+ 2nS] (B.25)

0% 0%

e utilizando que w? = v + k?, equagao (3.12), encontra-se
V=1 = (w4 o) (w—u). (B.26)

Assim, a equacdo (B.24) pode ser reescrita como

/ / (W — w,) 2 / o
[(w +w)(w—w)r — . (S (w+w') + 2nS> u(r)v(r) =
o d do(r)  du(r)
= [r (u(r) o ar v(r) || . (B.27)
Agora, multiplique ambos os lados da equacao acima por
>
(w—w')

para encontrarmos

1 (SQ(w L)t QnS)] u(ryo(r) = —& d [r <u(r)dv(r) B du(?“)v(r)ﬂ :

ar (w—w') dr dr dr

Por fim, integrando ambos os lados no dominio r € (a, c0), usando o teorema fundamental

ar(w+ w')

do célculo no lado direito e o fato de que as fungoes u(r) e v(r) se anulam em r = a pela
condi¢do de contorno de Dirichlet, obtemos finalmente que a relacdo de ortogonalidade

vird dada por

/aoo dr {Oér(w + w/) B alr (QnS T 52(w + WI)H wlrjolr) =

= lim % r (u(r) ZTT - lc‘hf“ vy )| b (B.28)
{em o5 =)}

Portanto, se resolvermos o limite ao lado direito teremos a relagao de ortogonalidade entre

duas solugoes da equacao de Klein-Gordon para uma condi¢do de contorno de Dirichlet

no espago de fundo de uma corda césmica girante, equagao (3.11).
Antes de resolver o limite, vamos propor uma mudanca em
g-(vr,va) = [J,(vr)Y,(va) — J,(va)Y,(vr)]

simplesmente por conveniéncia matematica seguindo o esquema geométrico
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Veja que podemos reescrever

cos(f,,) = Y (va) sin(6,,) = S (va) (B.29)
V2 (va) + Y2(va) V2 (va) + Y2(va)
e entao o angulo 6,, vem dado por
Y, (va)
= —_= B.
tan(6,,) 7,(va) (B.30)

Desta forma, podemos escrever

gy(vr,va) = \/Jg(va) + Y2(va) [cos(0,,)J, (vr) — sin(0,,)Y, (vr)].

Como estamos interessados em resolver um limite quando o argumento de uma
combinagao de fungoes de Bessel esta tendendo ao infinito, podemos escrever estas fungoes

assintoticamente como sendo [20]

J(x) = \/zcos (ac - %(1 + 21/))
Y, (x) = \/zsin (a: - %(1 + 21/)) |

Desta forma, assintoticamente temos que

2
gy (vr,va) = By — cos(yy + 0,-), (B.32)

Oy = vr — 2(1 +29) (B.33)

(B.31)

de forma que foi definido

By = \/Jg(z/a) + Y2(va). (B.34)
Ainda, a derivada da fungao g,(vr,va) vem dada por

/61/ /BV v
%gw(yr, va) = l_2\/5;3/2 cos(Qyy +6,4) — \/%

sin(Qy, + 6,4) | - (B.35)

Usando (B.35) e (B.32) no termo dentro dos colchetes no lado direito de (B.28)

encontramos

<U(T)dv(r) du(r)v(r)> _ By By

dr dr rv v

X [ cos(Qyry 4 Oyry) sin(Qry + 0,,) — V' c08(Qyry + 0,) SIN(Qprr + 6,00 -

Usando a identidade
[V cos(Qyryr + Oprys) SIN(Qyry + O,) — 1 cOS(Qyry + 0,) SIN(Qpry + O, )] =

= ; [(v+ V') sin((Quy — Qury) + Oy = Oury)) + (v — V') sin((Quryy + Quy) + (O + 0ury))]
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e notando que

2 »
w—uw = Vw—i—:’ (B.36)

podemos reescrever (B.28) como sendo

1= ["ar Jar ) = — (205 + 8w + )] ulr)or)

. (w+ W) \/Jg(ya) + Y2(va) \/Jg,(u’a) + Y2 (Va)
7—00 T I/V/
X [Sin((ﬁw — QV"Y/) + (6’,,7 — 01/’7’)) + Sin((QW + QV’”/’) + (9117 + 91/’7’)

v—1v v+

(B.37)

Mas, veja que usando (B.33) encontramos

Quy =y = (v =0r—=2(y=°) =

—~

v—vr—A.,,
7r

Qo+ Q= —=0)r=20y=9)—z=w—-1v)r—A,, — 5

B

Assim, vemos que a integracao que nos resulta na relacao de ortogonalidade é dada pelo

seguinte limite

(w+wa \/Jg(ua) + Yf(l/a)\/JWQ,(u’a) + Y (Va)

I = lim
r—00 s I/Ul
sin [(y—y’)r—l—g} sin {(1/—1—#)7“4—5—71’/2]
X + ,
(v —1') (v + )
onde definimos
5= _A’W/ + ((9,,,y - 91,/7/) 5= —Aﬂwl -+ (91,7 + 91/’7’)- (B38)

Veja que o primeiro termo dentro das chaves diverge para v = 1/, enquanto o
segundo nao tem esta divergéncia pois v, Y € R, . Abrindo o primeiro termo dentro das

chaves usando a relacao entre a soma de arcos e lancando mao da seguinte representacao

da delta de Dirac [1]

= 76 (k) (B.39)

vamos encontrar

I — i {sin [(1/—1/)7’+5] sin [(1/+V’)7”+5—7T/2}}

w—v) v+ )

r—00

- {COS(S)WV — ) 4 sin(d) lim <= gy €8 (v +v)r + ] } |

r—00 (y — V/) r—00 (]/ -+ ]//)

Usando o lema de Riemann-Lebesgue [34, eq. 1.2] é possivel mostrar que os limites

nos cossenos vao a zero no sentido de distribui¢oes. Portanto, notando que ao usarmos
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que a delta de Dirac avalia v = v/ isso implica em § = 0 e com isso tudo somos capazes

de mostrar que

/Oo dr [ar(w + ') — alr (2nS + 5% (w + w/))] gy (vr,va)g, (V'r,v'a) =
o lYf(ya) + J2(va)

v

] (v —1). (B.40)

Desta forma, a condi¢ao de normalizagdo apresentada no inicio deste apéndice,

equacgao (B.2), serd dada por

Y2(va) + J2(va)

v

(¢0s dor) = |BI* 2(27) war [ ] S(v =)ok — K. (B.41)

Ou ainda, para que (¢y, ¢o') = 6(v — v')5(k — k'), a constante |3|? deve ser tal que

14

. B.42
2(27)%wa [Y2(va) + J2(va)| (B42)

181> =
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