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Resumo
Este trabalho investiga as flutuações do vácuo de um campo escalar sem massa na presença
de uma fronteira cilíndrica num espaço-tempo de uma corda cósmica girante, de modo
que a condição de contorno nos serve para blindar a região causal da região acausal, e tem
como objetivo o cálculo da função de dois pontos e das flutuações do campo no estado
de vácuo. Primeiramente, foi feita uma breve revisão da quantização do campo escalar e
uma discussão sobre propagadores na teoria quântica de campos, onde foi definido como
se calcula as flutuações do vácuo. Em seguida, a função de dois pontos renormalizada
foi calculada e com ela fomos capazes de calcular, através do método point-splitting, as
flutuações do vácuo. Por fim, foi recuperado os principais resultados da literatura no que
se diz respeito a cordas cósmicas e as consequências destas nas flutuações do campo.

Palavras-chaves: Campo Escalar, Corda Cósmica Girante, Espaço-tempo, Região Acau-
sal, Região Causal, Renormalização.



Abstract
This work investigates the vacuum fluctuations of a massless scalar field in the presence
of a cylindrical boundary in the spacetime of a spinning cosmic string. The boundary con-
dition serves to shield the causal region from the acausal one, with the aim of computing
the two-point function and the vacuum fluctuations of the field. First, a brief review of
scalar field quantization is presented, along with a discussion of propagators in quantum
field theory, in which the procedure for calculating vacuum fluctuations is defined. Next,
the renormalized two-point function is obtained, and from it the vacuum fluctuations are
computed using the point-splitting method. Finally, the main results in the literature
regarding cosmic strings and their impact on field fluctuations are recovered.

Key-words: Scalar Field, Spinning Cosmic String, Spacetime, Acausal Region, Causal
Region, Renormalization.
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1 Introdução

Cordas cósmicas surgem no contexto de teorias de grande unificação, formadas na
fase inicial do Universo como resultado da quebra espontânea de simetria durante uma
transição de fase [36, 19]. Esses objetos são classificados como defeitos topológicos [29] e
produzem uma geometria localmente plana: a curvatura do espaço-tempo é diferente de
zero apenas sobre a própria corda, com comportamento tipo delta, e a topologia difere
daquela do espaço-tempo de Minkowski [37].

No modelo idealizado, a corda é unidimensional e infinita. Apesar dessa simpli-
ficação, efeitos físicos significativos podem ocorrer, tanto no regime clássico [7] quanto
no quântico [21, 12]. No caso de um campo escalar, por exemplo, as flutuações no es-
tado de vácuo permanecem não nulas mesmo após renormalização, consequência direta
da topologia não trivial [31, 8, 27].

O interesse por cordas cósmicas girantes remonta à década de 1980 [23, 33], pois
suas geometrias constituem soluções exatas e localmente planas das equações de Einstein
e, portanto, poderiam existir na natureza. Entretanto, esse tipo de geometria apresenta
uma complicação relevante: o espaço-tempo resultante não é globalmente hiperbólico.
Isso significa que não existe uma superfície de Cauchy global adequada para definir dados
iniciais [38, 18], dificultando a aplicação direta da teoria quântica de campos. Apesar
disso, há tentativas de lidar com esse cenário em espaços-tempos estáticos não globalmente
hiperbólicos [39], e quantizações de campos escalares foram de fato estudadas [22], embora
com resultados considerados fisicamente patológicos [6].

Um aspecto notável desses espaços-tempos é a possível formação de curvas do tipo-
tempo fechadas (CTCs), que permitiriam, em princípio, viagens ao passado. Em 1992,
Hawking propôs a conjectura de proteção cronológica [17], segundo a qual a existência de
tais curvas seriam instáveis e proibidas quando efeitos quânticos são considerados. Como
cordas cósmicas girantes podem conter regiões com CTCs, estudar a conjectura nesse
contexto é uma questão natural. A ausência de uma superfície de Cauchy, no entanto,
obriga a buscar estratégias alternativas de análise.

Uma dessas estratégias é considerar uma corda cósmica girante com um deslo-
camento ao longo do eixo 𝑧 [8] ("cosmic dispiration"). Por meio de uma transformação
de coordenadas, o problema torna-se mais tratável [14, 9]. Estudos nesse cenário mos-
tram que, ao aproximar-se das regiões onde CTCs se formariam, as flutuações do tensor
energia-momento crescem acentuadamente. Pelo mecanismo de backreaction, tal compor-
tamento divergente pode gerar uma ergoregião, funcionando como mecanismo de proteção
cronológica [10].
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Outra abordagem para lidar com a não hiperbocidade é introduzir uma condição de
contorno que “blinde” a região causal da acausal como sugere [32]. Para cordas cósmicas
não girantes, diversos trabalhos investigaram como fronteiras modificam as médias de
vácuo e o efeito Casimir [3, 24, 26, 25].

Neste trabalho, foi examinada a quantização de um campo escalar real sem massa
no espaço-tempo de uma corda cósmica girante, impondo-se uma condição de contorno
de Dirichlet sobre um cilindro de raio 𝑎, situado além da região acausal. Essa escolha per-
mite isolar a região que contém curvas do tipo-tempo fechadas (CTCs) e, assim, aplicar
as ferramentas usuais da teoria quântica de campos. A partir do propagador renormali-
zado, foram calculadas as flutuações do campo escalar no estado de vácuo, recuperando-se
resultados previamente conhecidos na literatura [21, 3]. Além disso, ao analisar o com-
portamento das flutuações suficientemente próximas ao contorno cilíndrico, obteve-se a
forma esperada para as flutuações do vácuo nas vizinhanças de um plano com condição
de contorno de Dirichlet. Seguindo a proposta de [32], a condição de Dirichlet foi empre-
gada com o intuito de regularizar os efeitos associados à região acausal. Contudo, essa
expectativa não se confirmou diretamente, visto que as divergências identificadas por [6]
nas flutuações do vácuo permaneceram presentes. Todavia, um contra-termo devido a
presença da condição de contorno apareceu, nos levando a necessidade de estudos futuros
mais profundos acerca da expressão obtida para as flutuações do campo no estado de
vácuo.
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2 Quantização do Campo Escalar e Propaga-
dores

O objetivo deste capítulo será apresentar brevemente os conceitos que levam a
quantização do campo escalar real e, posterior a isto, será apresentado um estudo sobre
propagadores e algumas consequências centrais para o objetivo do trabalho, terminando
com a construção do desvio quadrático médio do campo escalar no estado de vácuo e
mostrando como se calcula formalmente tal grandeza física. Para simplificar a notação,
vamos lançar mão do sistema de unidades naturais daqui em diante, ou seja, considerar
que 𝑐 = ℏ = 1 por simplicidade e sem perda de generalidade, visto que pode-se voltar ao
sistema de unidades internacionais através da análise dimensional.

2.1 Quantização Canônica
A quantização canônica é baseada em dois postulados iniciais [38]:

Postulado 1 Uma quantidade dinâmica 𝐴 clássica será promovido à um observável quân-
tico descrito por um operador linear Hermitiano 𝐴 .

Postulado 2 Seja 𝐴 e 𝐵 duas variáveis dinâmicas clássicas. Então, definido o parênteses
de Poisson entre estas, temos que a descrição quântica será dada pela substituição

{𝐴, 𝐵} → −𝑖[𝐴, 𝐵̂].

Tais postulados são motivados por conta da estrutura algébrica dos parênteses
de Poisson serem parecidas com as dos comutadores. Mais especificamente, os parênte-
ses de Poisson nos resulta uma estrutura algébrica no espaço dos observáveis clássicos 𝒪
enquanto os comutadores resultam numa estrutura algébrica para os observáveis quânti-
cos 𝒪̂, ambas bastante parecidas com a diferença de uma considerar funções e a outra
operadores. Dessa forma, deve existir um mapa ^ tal que

^ : 𝒪 → 𝒪̂, (2.1)

para o qual

[𝐴, 𝐵̂] = 𝑖{̂𝐴, 𝐵} (2.2)

Dessa forma, para que uma teoria seja quantizada precisamos, primeiramente, conhecê-la
em sua versão clássica.
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Nosso interesse será estudar o comportamento de um campo escalar real dada
uma métrica 𝑔𝜇𝜈 , com determinante 𝑔. Sendo assim, tal campo é descrito pela seguinte
lagrangiana:

ℒ =
√︁
|𝑔|
(︂1

2𝑔𝜇𝜈∇𝜇𝜑∇𝜈𝜑− 1
2𝑚2𝜑2 − 𝜉R𝜑2

)︂
, (2.3)

de tal forma que sua dinâmica vem dada pelo princípio de Hamilton [2], obtendo a equação
de Klein-Gordon (︁

22
𝑔 + 𝑚2 + 𝜉R(𝑥)

)︁
𝜑(𝑥) = 0, (2.4)

onde 𝑚 é a massa do campo escalar, R o escalar de curvatura dado pelo traço do tensor de
Ricci [40], 𝜉 uma constante de acoplamento entre o campo e a curvatura do espaço-tempo
(a discussão sobre este termo será discutido abaixo) e 22

𝑔 o operador de Laplace-Beltrami
para a geometria 𝑔𝜇𝜈

22
𝑔 = 1√︁

|𝑔|
𝜕𝜇
(︂√︁
|𝑔|𝜕𝜇

)︂
.

Observação 0: Nota sobre o termo 𝜉 R

A importância do termo de acoplamento 𝜉 R pode ser vista através de uma trans-
formação conforme na métrica

𝑔𝜇𝜈 = Ω2(𝑥)𝑔𝜇𝜈 (2.5)

seguida de uma transformação para o campo escalar

𝜑(𝑥) = Ω
2−𝑛

𝑛 (𝑥)𝜑(𝑥). (2.6)

Com isso, podemos mostrar que usando a definição do operador de Laplace-Beltrami

22
𝑔 = 1√︁

|𝑔|
𝜕𝜇
(︂√︁
|𝑔|𝜕𝜇

)︂

para a geometria 𝑔𝜇𝜈 que[︂
22

𝑔 + 1
4

𝑛− 2
𝑛− 1R̄

]︂
𝜑 = Ω− 𝑛−2

2

[︂
22

𝑔 + 1
4

𝑛− 2
𝑛− 1R

]︂
𝜑. (2.7)

Portanto, se
𝜉 = 1

4
𝑛− 2
𝑛− 1 (2.8)

a equação de Klein-Gordon sem massa se mostra invariante por uma transformação
conforme. Para um espaço-tempo 4-dimensional, 𝑛 = 4, temos o chamado acopla-
mento conforme 𝜉 = 1/6.

Da teoria clássica de campos definimos o momentum por

𝜋(x, 𝑡) = 𝜕ℒ
𝜕(𝜕𝑡𝜑) ,
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que no caso do campo escalar vem dado por

𝜋(x, 𝑡) =
√︁
|𝑔|𝑔0𝜈𝜕𝜈𝜑(x, 𝑡).

O parênteses de Poisson entre dois funcionais dependendo dos campos 𝜙𝛽 e 𝜋𝛽 é
definido por

{𝑋, 𝑌 } ·=
∫︁

𝑑3𝑥′
𝑁∑︁

𝛽=0

[︃
𝛿𝑋

𝛿𝜙𝛽(𝑥′)
𝛿𝑌

𝛿𝜋𝛽(𝑥′) −
𝛿𝑌

𝛿𝜙𝛽(𝑥′)
𝛿𝑋

𝛿𝜋𝛽(𝑥′)

]︃
. (2.9)

Desta forma, podemos usar tal definição e concluir imediatamente que o parênteses de
Poisson entre o campo 𝜑 e seu momentum conjugado 𝜋 vem dado por

{𝜑(x, 𝑡), 𝜋(x′, 𝑡)} = 𝛿(x− x′), (2.10)

e os demais parênteses de Poisson [2]

{𝜑(x, 𝑡), 𝜑(x′, 𝑡)} = 0 = {𝜋(x, 𝑡), 𝜋(x′, 𝑡)}. (2.11)

Portanto, usando as hipóteses de quantização, ou seja, (2.1) e (2.2) junto com os
resultados (2.10) e (2.11), encontramos que

[𝜑(x, 𝑡), 𝜋̂(x′, 𝑡)] = 𝑖𝛿(x− x′)Î ; [𝜑(x, 𝑡), 𝜑(x′, 𝑡)] = 0̂ = [𝜋̂(x, 𝑡), 𝜋̂(x′, 𝑡)]. (2.12)

A evolução temporal de um operador 𝐴, que não depende explicitamente do tempo,
é governada por

𝑑𝐴

𝑑𝑡
= 𝑖[𝐻̂, 𝐴], (2.13)

sendo
𝐻̂ =

∫︁
𝑑3𝑥

[︁
𝜋̂2 + (∇𝜑)2 + 𝑚2𝜑2

]︁
o operador Hamiltoniano do campo escalar real após usar as hipóteses de quantização
para a promover a Hamiltoniana clássica [16] à um observável quântico.

Com a equação (2.13), e usando o operador Hamiltoniano do campo escalar acima,
obtemos que a evolução temporal do operador de campo 𝜑 e o momentum 𝜋̂ são determi-
nadas pelas equações

˙̂
𝜑 = 𝑖[𝐻̂, 𝜑] (2.14)
˙̂𝜋 = 𝑖[𝐻̂, 𝜋̂]. (2.15)

Desenvolvendo o sistema de equações acima usando o operador 𝐻̂ encontramos que a
dinâmica do operador de campo é dado pela equação(︁

22
𝑔 + 𝑚2

)︁
𝜑(𝑥) = 0. (2.16)
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Assim, nota-se que a dinâmica do operador 𝜑(𝑥) é a mesma dada por (2.4) e, com
isso, podemos expandir o operador de campo como

𝜑(𝑥) =
∑︁

𝑛

[︁
𝑎̂𝑛𝜑𝑛(𝑥) + 𝑎̂†

𝑛𝜑*
𝑛(𝑥)

]︁
, (2.17)

onde as funções 𝜑𝑛(𝑥) são denominadas por modos normais do campo e satisfazem à
equação de autovalores (︁

22
𝑔 + 𝑚2

)︁
𝜑𝑛(𝑥) = 0 (2.18)

e são ortonormalizadas por meio do produto interno de Klein-Gordon, vide apêndice (A).

Substituindo a expansão do operador de campo acima, e usando a definição para
calcular o momentum, nas expressões para os comutadores na equação (2.12), encontramos

[𝑎̂𝑛, 𝑎̂†
𝑛′ ] = 𝛿𝑛𝑛′ Î (2.19)

[𝑎̂𝑛, 𝑎̂𝑛′ ] = 0Î (2.20)

[𝑎̂†
𝑛, 𝑎̂†

𝑛′ ] = 0Î, (2.21)

de modo que entendemos 𝛿𝑛𝑛′ como uma delta de Kronecker se os números quânticos
forem discretos e uma delta de Dirac caso forem contínuos.

Nota-se que as relações de comutação acima são exatamente iguais as de um con-
junto de osciladores harmônicos [2], o que faz os operadores 𝑎̂𝑛 e 𝑎̂†

𝑛 receberem o nome de
operadores de aniquilação e criação, respectivamente. Sendo assim, definimos o estado de
vácuo |0⟩ através da relação

𝑎̂k|0⟩ = 0 (2.22)

e o estado de uma partícula com momentum k por

𝑎̂†
k|0⟩ = |k⟩. (2.23)

Analogamente, pode-se construir o estado com 𝑁 partículas idênticas e momentum
k1 . . . k𝑁 através da aplicação do operador de criação sobre o estado de vácuo |0⟩, isto é

𝑎̂†
k1

. . . 𝑎̂†
k𝑁
|0⟩ = |k1 . . . k𝑁⟩.

O estado definido por (2.23) é base para o espaço de Hilbert de uma partícula e
a soma direta sobre os espaços de Hilbert das N-partículas determina o chamado espaço
de Fock. Ainda, note que por conta de [𝑎̂†

𝑛, 𝑎̂†
𝑛′ ] = 0, o estado de múltiplas-partículas é

simétrico sobre a operação de troca entre duas partículas, então esta obedece a estatística
de Bose-Einstein. Para a construção do espaço de Fock de 𝑛k partículas idênticas com
momentum k veja [30, 4].
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Observação 1: Notas sobre espaços-tempos globalmente hiperbólico

O procedimento feito acima (e para o que se segue) foi sempre considerando espaços-
tempos globalmente hiperbólicos para que possamos evoluir uma superfície de dados
iniciais Σ. Pensando nisso, devemos dar uma definição do que isso venha a ser e
algumas consequências.

Definição 2.1.1: Superfície de Cauchy [13]

Uma curva causal é aquela que o vetor tangente é tipo-tempo ou tipo-luz
(nulo) em todo lugar. Uma superfície de Cauchy para uma variedade ℳ
semi-Riemaniana é uma superfície tipo-espaço tal que toda curva causal inex-
tensível em ℳ a intercepte somente uma única vez.

Da definição de uma superfície de Cauchy aparece o termo "curva causal inexten-
sível", isso nada mais é do que uma curva causal que não pode ser estendida para
além do espaço-tempo, ou seja, a curva causal não pode ser estendida para além de
seu domínio, mantendo causalidade e suavidade.
Portanto, dizemos que nosso espaço-tempo possui um problema de Cauchy bem
posto, isto é podemos evoluir de forma única uma superfície de dados iniciais, se
a variedade ℳ como um todo satisfizer a condição de possuir uma superfície de
Cauchy, caracterizada, pelo menos localmente, por 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒. Tal afirmação é
equivalente a dizer que o espaço-tempo é globalmente hiperbólico [13, pág. 121].

2.2 Propagadores na Teoria Quântica de Campos
Com a quantização do campo escalar tendo sido feita na subseção anterior, pode-

mos dar um próximo passo e construir alguns objetos que vão nos auxiliar na construção
de um observável de interesse, a flutuação do campo escalar no estado de vácuo.

Sendo assim, comecemos com a definição da chamada função de Hadamard:

𝐺(1)(𝑥, 𝑥′) ·= ⟨0|{𝜑(𝑥), 𝜑(𝑥′)}|0⟩, (2.24)

onde foi definido o anti-comutador por

{𝐴, 𝐵̂} ·= 𝐴𝐵̂ + 𝐵̂𝐴. (2.25)

Ainda, usando a definição do anti-comutador em (2.24) podemos definir outras
duas funções por

𝐺+(𝑥, 𝑥′) ·= ⟨0|𝜑(𝑥)𝜑(𝑥′)|0⟩ (2.26)

𝐺−(𝑥, 𝑥′) ·= ⟨0|𝜑(𝑥′)𝜑(𝑥)|0⟩, (2.27)
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onde são chamadas de funções de Wightman de frequência positiva e negativa, respecti-
vamente.

Com isso, nota-se imediatamente que a função de Hadamard vem dada pela com-
binação das funções de Wightman

𝐺(1)(𝑥, 𝑥′) = 𝐺+(𝑥, 𝑥′) + 𝐺−(𝑥, 𝑥′). (2.28)

Note que a função de Hadamard é real e para comprovar a afirmação veja que:(︁
𝐺(1)(𝑥, 𝑥′)

)︁*
=
(︁
⟨0|𝜑(𝑥)𝜑(𝑥′)|0⟩+ ⟨0|𝜑(𝑥′)𝜑(𝑥)|0⟩

)︁*

= ⟨0|(𝜑(𝑥)𝜑(𝑥′))†|0⟩+ ⟨0|(𝜑(𝑥′)𝜑(𝑥))†|0⟩

= ⟨0|𝜑(𝑥′)𝜑(𝑥)|0⟩+ ⟨0|𝜑(𝑥)𝜑(𝑥′)|0⟩

= 𝐺(1)(𝑥, 𝑥′),

onde foi usado que o campo 𝜑(𝑥) é hermitiano, ou seja, 𝜑(𝑥) = 𝜑†(𝑥). Concluindo assim
que a função de Hadamard é real.

Outra conclusão útil e simples de ser verificada é que a função de Wightman
de frequência negativa é o complexo conjugado da função de Wightman de frequência
positiva. Para mostrar o resultado basta usar a definição da função de Wightman de
frequência negativa e que o campo 𝜑(𝑥) é hermitiano:

𝐺−(𝑥, 𝑥′) = ⟨0|𝜑(𝑥′)𝜑(𝑥)|0⟩

= ⟨0|(𝜑(𝑥)𝜑(𝑥′))†|0⟩

= (⟨0|𝜑(𝑥′)𝜑(𝑥)|0⟩)*

= (𝐺+(𝑥, 𝑥′))*.

Portanto, podemos reescrever a função de Hadamard como sendo proporcional a
parte real da função de Wightman de frequência positiva:

𝐺(1)(𝑥, 𝑥′) = 2ℜ[𝐺+(𝑥, 𝑥′)]. (2.29)

Para a construção das flutuações no estado de vácuo do campo escalar, tome a
definição da flutuação de um operador qualquer [5]

(Δ𝐴)2 ·= ⟨(𝐴− ⟨𝐴⟩)2⟩

= ⟨𝐴2⟩ − 2⟨𝐴⟨𝐴⟩⟩+ ⟨𝐴⟩2

= ⟨𝐴2⟩ − 2⟨𝐴⟩⟨𝐴⟩+ ⟨𝐴⟩2

= ⟨𝐴2⟩ − ⟨𝐴⟩2, (2.30)

onde o valor médio tomado acima foi para um estado quântico qualquer.
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Assim, tome o valor médio do operador de campo no estado de vácuo

⟨0|𝜑(𝑥)|0⟩ = ⟨0|
∑︁

𝑛

[︁
𝑎̂𝑛𝜑𝑛(𝑥) + 𝑎̂†

𝑛𝜑*
𝑛(𝑥)

]︁
|0⟩ (2.31)

e use que o estado de vácuo é definido por 𝑎̂𝑛|0⟩ = 0, ou equivalentemente ⟨0|𝑎̂†
𝑛 = 0, para

concluir que ⟨𝜑(𝑥)⟩ = 0.

Sendo assim, a flutuação do campo escalar real, de acordo com a equação (2.30),
deverá vir pela contribuição da média no estado de vácuo do quadrado do operador de
campo 𝜑(𝑥). Desta forma, a flutuação no vácuo do campo escalar é dada, partindo da
função de Hadamard, por

⟨𝜑2(𝑥)⟩ ·= lim
𝑥′→𝑥

1
2𝐺(1)(𝑥, 𝑥′) = lim

𝑥′→𝑥
ℜ[𝐺+(𝑥, 𝑥′)], (2.32)

de modo que o fator 1/2 surge por conta da arbitrariedade em escolher o produto 𝜑(𝑥)𝜑(𝑥′)
ou 𝜑(𝑥′)𝜑(𝑥) na passagem da descrição clássica para a descrição quântica, de tal forma
que o resultado que se mostra correto é o produto simetrizado.

Desta forma, calculando a função de Wightman de frequência positiva seremos
capazes de encontrar a flutuação do campo no estado de vácuo. Para tal, tome a expansão
(2.17) na definição de 𝐺(+)(𝑥, 𝑥′), equação (2.26), para encontrar

𝐺(+)(𝑥, 𝑥′) =
∑︁
𝑖,𝑗

⟨0|
[︁
𝑎̂𝑖𝑎̂𝑗𝜑𝑖(𝑥)𝜑𝑗(𝑥′) + 𝑎̂𝑖𝑎̂

†
𝑗𝜑𝑖(𝑥)𝜑*

𝑗(𝑥′) + 𝑎̂†
𝑖 𝑎̂𝑗𝜑

*
𝑖 (𝑥)𝜑𝑗(𝑥′) + 𝑎̂†

𝑖 𝑎̂
†
𝑗𝜑

*
𝑖 (𝑥)𝜑*

𝑗(𝑥′)
]︁
|0⟩

=
∑︁
𝑖,𝑗

𝜑𝑖(𝑥)𝜑*
𝑗(𝑥′)⟨0|𝑎̂𝑖𝑎̂

†
𝑗|0⟩

=
∑︁
𝑖,𝑗

𝜑𝑖(𝑥)𝜑*
𝑗(𝑥′)

(︁
⟨0|[𝑎̂𝑖, 𝑎̂†

𝑗] + 𝑎̂†
𝑗 𝑎̂𝑖|0⟩

)︁
=
∑︁

𝑖

𝜑𝑖(𝑥)𝜑*
𝑖 (𝑥′), (2.33)

onde foram utilizadas as equações (2.22), (2.19) e que o estado de vácuo é normalizado
⟨0|0⟩ = 1 para concluir o resultado.

Portanto, precisamos resolver a equação (2.18) para encontrar as auto-funções
𝜑𝑛(𝑥) com as condições de contorno adequadas e construir a função de Wightman seguindo
(2.33) fazendo uma soma sobre todos os modos.
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3 Flutuações do Campo Escalar sem Massa
na Geometria de uma Corda Cósmica

O objeto de estudo será um campo escalar sem massa no espaço-tempo de fundo
de uma corda cósmica girante e para garantir que a teoria quântica de campos possa ser
utilizada nesse espaço não globalmente hiperbólico, será imposta uma condição de con-
torno para que o campo somente tenha acesso à região causal do espaço-tempo, evitando
assim os problemas que surgem quando uma superfície de Cauchy global para a evolução
dos dados iniciais não pode ser implementada.

Após definir o que seja uma corda cósmica girante, vamos ao cálculo do propagador
renormalizado da teoria. Para verificar os efeitos que tal sistema físico terá, vamos analisar
o comportamento das flutuações do campo no estado de vácuo e recuperar alguns dos
principais resultados estabelecidos na literatura no que se diz respeito ao campo escalar
na geometria de cordas cósmicas.

3.1 Corda Cósmica Girante
Campos de maneira geral, quer sejam clássicos ou quânticos, sempre estão mer-

gulhados no espaço-tempo, isto é, estarão sofrendo influência da gravidade. Devido a
Einstein, a gravitação passou a ser governada pelas equações da relatividade geral e, a
partir disso, passou a ser uma teoria geométrica, ou seja, a gravidade é uma consequência
da curvatura do espaço-tempo e não mais uma força como era entendido no contexto da
gravitação Newtoniana. Para descrever como o espaço-tempo se curva com a presença de
um conteúdo de matéria-energia precisamos resolver as equações da relatividade geral e
obter como solução um objeto matemático chamado de tensor métrico.

Todavia, encontrar o tensor métrico para uma distribuição de matéria-energia
qualquer é inviável, devido a complexidade da teoria. Contudo, algumas soluções são
conhecidas [40] e dentre elas as chamadas cordas cósmicas. Tais soluções constituem uma
idealização de um objeto unidimensional infinito, intuitivamente parecido com um fio
infinito, que possuem a característica de serem planas em todo lugar exceto na região
onde se encontra a própria corda cósmica, de modo que nesta localidade a curvatura
diverge.

O comportamento dos campos quânticos, em particular, é modificado neste dado
espaço de fundo em relação ao espaço-tempo de Minkowski. Entretanto, sendo nula a
curvatura do espaço-tempo na região exterior a corda os comportamentos não deveriam
ser iguais? A resposta é não, pois as cordas cósmicas possuem uma geometria global
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distinta, de modo que a modificação na flutuação do campo no estado de vácuo, por
exemplo, é consequência da mudança na geometria.

Sabendo que as cordas cósmicas nos servem de laboratório para o estudo das
flutuações dos campos quânticos, pois são soluções das equações de Einstein, vamos tomar
o espaço-tempo de uma corda cósmica girante, de modo que o elemento de linha para tal
geometria vem dado por [23, 11]

𝑑𝑠2 = (𝑑𝜏 + 𝑆𝑑𝜑)2 − 𝑑𝑟2 − 𝛼2𝑟2𝑑𝜑2 − 𝑑𝑧2, (3.1)

onde 𝑆 e 𝛼 são, respectivamente, a rotação e o parâmetro de disclination da corda cósmica.

Observação 2:

Uma observação que pode ser importante é o fato de que a corda cósmica girante é
um espaço-tempo estacionário mas não estático. A definição de ambos vem abaixo:

Definição 3.1.1: Espaços-tempos Estacionários

Dizemos que um espaço-tempo é estacionário se existe um campo de Killing
do tipo-tempo 𝜉𝑡â cuja linhas integrais representam a simetria de translação
temporal.

Definição 3.1.2: Espaços-tempos Estáticos

Existe um vetor de Killing do tipo tempo da definição acima com o adicional
de que este é ortogonal à superfície de Cauchy Σ em todo o ponto.

Fisicamente, a condição de ser estacionário implica na invariância por translação
temporal, enquanto a condição de "estaticidade"implica na invariância por inversão
temporal.
Veja que a métrica

𝑑𝑠2 = (𝑑𝜏 + 𝑆𝑑𝜑)2 − 𝑑𝑟2 − 𝛼2𝑟2𝑑𝜑2 − 𝑑𝑧2 (3.2)

possui um vetor de Killing do tipo-tempo global 𝜉𝑎
𝜏 = (𝜕𝜏 )𝑎. Todavia, para a região

acausal 𝑟 < 𝑆/𝛼 o outro vetor de Killing 𝜉𝑎
𝜑 = (𝜕𝜑)𝑎 também se torna do tipo-tempo

(pois a componente da métrica 𝑔𝜑𝜑 muda de sinal nesta região), e como este é um
vetor que gera trajetórias fechadas temos curvas do tipo-tempo fechadas, quebrando
a causalidade.

Adicionalmente, a disclination tem relação com a densidade de massa 𝜇 da corda
[31]

𝛼 = 1− 4𝐺𝜇. (3.3)
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Note que, fazendo 𝑆 = 0 e 𝜏 constante obtemos a geometria de um cone [31], e tais
espaços-tempos são chamamos de cônicos. Ainda, se 𝜇 > 0 temos que 𝛼 < 1 e isso implica
que o espaço-tempo possuí um deficit angular, ou seja, uma volta completa na coordenada
angular 𝜑 não nos resulta em 2𝜋 mas sim em 2𝜋𝛼. Intuitivamente, pode-se pensar numa
folha de papel circular sem uma fatia, de modo que o deficit aparece quando cola-se ambas
as partes da folha formando um cone. Ainda, note que partindo de (3.1) tomando 𝑆 = 0
e 𝜇 = 0 em (3.3), isto é na ausência da corda cósmica, isso faz com que 𝛼 = 1 reduza o
elemento de linha (3.1) para o elemento de linha do espaço-tempo de Minkowski.

Um aspecto importante para a construção da teoria quântica de campos é que o
espaço-tempo considerado seja globalmente hiperbólico, ou seja, é possível definir uma
superfície de dados iniciais Σ, chamada de superfície de Cauchy, e evoluí-la de maneira
única no tempo. Todavia, a métrica (3.1) não possui esta característica. Verificar tal
afirmação se torna simples ao considerar uma curva no espaço-tempo (3.1) tal que 𝜏 , 𝑟 e
𝑧 sejam constantes:

𝑑𝑠2 = (𝑆2 − 𝛼2𝑟2)𝑑𝜑2,

de tal forma que a região 𝑟 < 𝑆/𝛼 faz com que haja uma mudança na assinatura da
métrica, de modo a fazer com que o espaço-tempo não seja globalmente hiperbólico e,
consequentemente, não seja possível definir a evolução unitária de um campo escalar [38].
Para tal região denominamos de região acausal e nesta aparecem curvas do tipo tempo
fechadas, ou seja, curvas que possibilitam viagens ao passado [9]. Para 𝑟 > 𝑆/𝛼 o espaço-
tempo permite a definição de uma superfície de Cauchy e é chamada de região causal.

Contudo, a teoria quântica falha em situações em que o espaço-tempo não seja
globalmente hiperbólico [18]. Pensando nisso, o objetivo é quantizar um campo escalar
sem massa em tal espaço de fundo e analisar as flutuações deste campo no estado de
vácuo, de modo que será imposta uma condição de contorno de Dirichlet para que a região
acausal não afete na "hiperbolicidade"do espaço-tempo, visto que para regiões 𝑟 > 𝑆/𝛼 o
espaço-tempo é globalmente hiperbólico. Em outras palavras, a condição de contorno será
imposta exterior a região acausal a fim de restringir a atuação do campo somente a região
causal do espaço-tempo, fazendo com que possamos usar todo o ferramental construído
na seção (2).

3.2 Função de Wightman Renormalizada
Como o objetivo é encontrar as flutuações de vácuo do campo escalar real sem

massa, precisamos solucionar a equação (2.18) para 𝑚 = 0 e construir a função de Wight-
man de frequência positiva (2.33). Para tal, tome a equação de autovalores e autovetores

22
𝑔𝜑𝜎(𝑥) = 𝜆𝜎𝜑𝜎(𝑥). (3.4)
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Todavia, para que 𝜑𝜎(𝑥) nos sirva para calcular 𝐺+(𝑥, 𝑥′) esta deve ser solução para (2.4),
e para tal deve-se exigir autovalores nulos a (3.4). Também, para cumprir com os requisitos
da seção (3.1) imporemos uma condição de contorno de Dirichlet sobre um cilindro de
raio 𝑎

𝜑(𝑟 = 𝑎, 𝜙, 𝑧, 𝑡) = 0, (3.5)

tal que 𝑎 > 𝑆/𝛼, pois assim, hipoteticamente, estamos garantindo que a região acausal
não influencie no comportamento do campo.

Antes de resolver (3.4) para a geometria (3.1) faça a seguinte mudança de coorde-
nadas na métrica de interesse

𝑡 = 𝜏 + 𝑆𝜑 𝜙 = 𝛼𝜑, (3.6)

de tal forma que (3.1) se torne

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜙2 − 𝑑𝑧2 (3.7)

mas agora com as seguintes identificações não triviais entre as coordenadas (𝑡, 𝑟, 𝜙, 𝑧) ∼
(𝑡+2𝜋𝑆, 𝑟, 𝜙+2𝜋𝛼, 𝑧). Como se pode ver, a fim de resolver a equação de autovalores para
o operador 22

𝑔, a métrica tem a forma da métrica de Minkowski e, com isso, o operador
22

𝑔 para (3.7) vem dado por

22
𝑔 = 𝜕2

𝜕𝑡2 −
[︃

1
𝑟

𝜕

𝜕𝑟

(︃
𝑟

𝜕

𝜕𝑟

)︃
+ 1

𝑟2
𝜕2

𝜕𝜙2 + 𝜕2

𝜕𝑧2

]︃
.

Com isso, pode-se usar a técnica de separação de variáveis [1] e supor que

𝜑𝜎(𝑥) = 𝑅(𝑟)e𝑖𝛾𝜙e𝑖𝑘𝑧e−𝑖𝜔𝑡 (3.8)

a (3.4) para encontrar que a função radial 𝑅(𝑟) deve respeitar

𝑟2 𝑑2𝑅(𝑟)
𝑑𝑟2 + 𝑟

𝑑𝑅(𝑟)
𝑑𝑟

+ (𝜈2𝑟2 − 𝛾2)𝑅(𝑟) = 0. (3.9)

A função radial então será dada em termos das funções de Bessel [35, 1]

𝑅(𝑟) = [𝜁𝐽𝛾(𝜈𝑟) + 𝛽𝑌𝛾(𝜈𝑟)] ,

onde 𝐽𝛾(𝜈𝑟) e 𝑌𝛾(𝜈𝑟) são as funções de Bessel de primeira e segunda espécie, respectiva-
mente.

Com isso, as autofunções do operador diferencial virão dadas por

𝜑𝜎(𝑥) = [𝜁𝐽𝛾(𝜈𝑟) + 𝛽𝑌𝛾(𝜈𝑟)] e𝑖𝑘𝑧e𝑖𝛾𝜙e−𝑖𝜔𝑡,

com autovalores 𝜆𝜈,𝑘,𝜔 = 𝜈2 +𝑘2−𝜔2 e duas constante a serem determinadas 𝜁 e 𝛽. Ambas
soluções da parte radial são consideradas por conta de estarmos interessados na parte do
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espaço-tempo que é globalmente hiperbólico e, portanto, não temos acesso a origem, onde
a função de Bessel de segunda espécie diverge. Como a condição de contorno nos servirá
para blindar a região acausal da causal, teremos acesso somente a parte externa do cilindro
definido por (3.5).

Sendo assim, aplicando as identificações (𝑡, 𝑟, 𝜙, 𝑧) ∼ (𝑡 + 2𝜋𝑆, 𝑟, 𝜙 + 2𝜋𝛼, 𝑧) para
as coordenadas nas autofunções acima concluímos que

𝜑𝜎(𝑥) =
[︂
𝜁𝐽|𝑛+𝜔𝑆

𝛼 |(𝜈𝑟) + 𝛽𝑌|𝑛+𝜔𝑆
𝛼 |(𝜈𝑟)

]︂
e𝑖𝑘𝑧e𝑖(𝑛+𝜔𝑆

𝛼 )𝜙e−𝑖𝜔𝑡,

com 𝑛 ∈ Z. As duas constantes remanescentes serão determinadas pela condição de con-
torno de Dirichlet e pela condição de normalização segundo o produto interno de Klein-
Gordon [4], definido no apêndice (A). Ainda, podemos redefinir algumas constantes para
escrever as autofunções acima como

𝜑𝜎(𝑥) = 𝛽
[︂
𝜁𝐽|𝑛+𝜔𝑆

𝛼 |(𝜈𝑟) + 𝑌|𝑛+𝜔𝑆
𝛼 |(𝜈𝑟)

]︂
e𝑖𝑘𝑧e𝑖(𝑛+𝜔𝑆

𝛼 )𝜙e−𝑖𝜔𝑡. (3.10)

Aplicando a condição de contorno de Dirichlet sobre a coordenada radial vemos
que a constante 𝜁 deve satisfazer

𝜁𝐽|𝑛+𝜔𝑆
𝛼 |(𝜈𝑎) + 𝑌|𝑛+𝜔𝑆

𝛼 |(𝜈𝑎) = 0,

implicando que as autofunções, após redefinir a constante 𝛽, serão tais que

𝜑𝜈,𝑘,𝑛(𝑥) = 𝛽
[︂
𝐽|𝑛+𝜔𝑆

𝛼 |(𝜈𝑟)𝑌|𝑛+𝜔𝑆
𝛼 |(𝜈𝑎)− 𝐽|𝑛+𝜔𝑆

𝛼 |(𝜈𝑎)𝑌|𝑛+𝜔𝑆
𝛼 |(𝜈𝑟)

]︂
e𝑖(𝑛+𝜔𝑆

𝛼 )𝜙e𝑖𝑘𝑧e−𝑖𝜔𝑡.

(3.11)

Agora, a condição de autovalor nulo dita acima nos resulta num vínculo para 𝜔:

𝜆𝜈,𝑘,𝜔 = 𝜈2 + 𝑘2 − 𝜔2 = 0

∴ 𝜔 =
√

𝜈2 + 𝑘2, (3.12)

onde só consideramos frequências positivas por conta da função de Wightman em questão
ser a de frequência positiva.

Por último, devemos usar o produto interno para impor a condição de normalização
para as autofunções e encontrar qual deve ser a constante 𝛽. Lembrando que 𝛽 pode
depender dos números quânticos, mas não deve depender das coordenadas.

Foi construído no apêndice (A) que o produto interno adequado para a teoria
juntamente com a geometria de interesse vem dado pela equação (A.14)

(𝜑𝜎, 𝜑𝜎′) = −𝑖
∫︁

Σ
𝑑3𝑥𝑟

⎡⎣ 1√︁
1− (𝑆/𝛼𝑟)2

𝜑𝜎

←→
𝜕𝑡 𝜑*

𝜎′ + 𝑆

𝛼𝑟2
√︁

1− (𝑆/𝛼𝑟)2
𝜑𝜎

←→
𝜕𝜙 𝜑*

𝜎′

⎤⎦ ,

onde 𝜎 denota o conjunto de números quânticos (𝜈, 𝑘, 𝑛).
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Seguindo o que foi feito no apêndice (B) podemos calcular a constante de norma-
lização, equação (B.42), seguindo o produto interno de Klein-Gordon para a geometria de
interesse e encontrar que as autofunções, agora normalizadas, vêm dadas por

𝜑𝜈,𝑛,𝑘(𝑥) =
⎯⎸⎸⎸⎷ 𝜈

2𝛼(2𝜋)2𝜔
(︂

𝐽2
|𝑛+𝜔𝑆

𝛼 |
(𝜈𝑎) + 𝑌 2

|𝑛+𝜔𝑆
𝛼 |

(𝜈𝑎)
)︂𝑔| 𝑛+𝜔𝑆

𝛼
|(𝜈𝑟, 𝜈𝑎)e𝑖(𝑛+𝜔𝑆

𝛼 )𝜙e𝑖𝑘𝑧e−𝑖𝜔𝑡,

(3.13)
onde 𝜔 =

√
𝜈2 + 𝑘2.

Agora somos capazes de calcular a função de Wightman e, por consequência, cons-
truir os observáveis de interesse lançando mão da construção feita na subseção (2.2). Com
as autofunções calculadas e normalizadas, equação (3.13), a função de Wightman de fre-
quência positiva se dá pela soma em todos os modos. Isto é

𝐺+(𝑥, 𝑥′) = 1
2𝛼(2𝜋)2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝑘
∫︁ ∞

0
𝑑𝜈𝜈

𝑔|𝑛+𝜔𝑆
𝛼 |(𝜈𝑎, 𝜈𝑟)𝑔||𝑛+𝜔𝑆

𝛼 |(𝜈𝑎, 𝜈𝑟′)
𝐽2
|𝑛+𝜔𝑆

𝛼 |
(𝜈𝑎) + 𝑌 2

|𝑛+𝜔𝑆
𝛼 |

(𝜈𝑎)

× e𝑖𝑛Δ𝜙e𝑖𝑘Δ𝑧e−𝑖
√

𝜈2+𝑘2Δ𝑡

√
𝜈2 + 𝑘2

. (3.14)

Fazendo uso da seguinte identidade [3]

𝑔𝛾(𝜈𝑎, 𝜈𝑟)𝑔𝛾(𝜈𝑎, 𝜈𝑟′)
𝑌 2

𝛾 (𝜈𝑎) + 𝐽2
𝛾 (𝜈𝑎) = 𝐽𝛾(𝜈𝑟)𝐽𝛾(𝜈𝑟′)− 1

2

2∑︁
𝑙=1

𝐽𝛾(𝜈𝑎)
𝐻

(𝑙)
𝛾 (𝜈𝑎)

𝐻(𝑙)
𝛾 (𝜈𝑟)𝐻(𝑙)

𝛾 (𝜈𝑟′), (3.15)

onde 𝐻(1)
𝛾 (𝑟) e 𝐻(2)

𝛾 (𝑟) são as funções de Hankel de primeira e segunda espécie, respecti-
vamente, a função de Wightman de frequência positiva se separa em duas contribuições:

𝐺+(𝑥, 𝑥′) = 1
2𝛼(2𝜋)2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝑘
∫︁ ∞

0
𝑑𝜈𝜈 𝐽|𝛾|(𝜈𝑟)𝐽|𝛾|(𝜈𝑟′) e𝑖𝛾Δ𝜙e𝑖𝑘Δ𝑧e−𝑖

√
𝜈2+𝑘2Δ𝑡

√
𝜈2 + 𝑘2

− 1
4𝛼(2𝜋)2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝑘
∫︁ ∞

0
𝑑𝜈𝜈

⎡⎣ 2∑︁
𝑙=1

𝐽|𝛾|(𝜈𝑎)
𝐻

(𝑙)
|𝛾|(𝜈𝑎)

𝐻
(𝑙)
|𝛾|(𝜈𝑟)𝐻(𝑙)

|𝛾|(𝜈𝑟′)
⎤⎦

× e𝑖𝛾Δ𝜙e𝑖𝑘Δ𝑧e−𝑖
√

𝜈2+𝑘2Δ𝑡

√
𝜈2 + 𝑘2

(3.16)

onde

𝐺+
𝐶𝑆(𝑥, 𝑥′) ·= 1

2𝛼(2𝜋)2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝑘
∫︁ ∞

0
𝑑𝜈𝜈𝐽|𝛾|(𝜈𝑟)𝐽|𝛾|(𝜈𝑟′)e𝑖𝛾Δ𝜙e𝑖𝑘Δ𝑧e−𝑖

√
𝜈2+𝑘2Δ𝑡

√
𝜈2 + 𝑘2

(3.17)

é a parte da função de Wightman relacionada somente a corda cósmica girante [6] e

𝐺+
𝐵(𝑥, 𝑥′) ·= − 1

4𝛼(2𝜋)2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝑘
∫︁ ∞

0
𝑑𝜈𝜈

⎡⎣ 2∑︁
𝑙=1

𝐽|𝛾|(𝜈𝑎)
𝐻

(𝑙)
|𝛾|(𝜈𝑎)

𝐻
(𝑙)
|𝛾|(𝜈𝑟)𝐻(𝑙)

|𝛾|(𝜈𝑟′)
⎤⎦

× e𝑖𝛾Δ𝜙e𝑖𝑘Δ𝑧e−𝑖
√

𝜈2+𝑘2Δ𝑡

√
𝜈2 + 𝑘2

(3.18)
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relacionada somente a contribuição devido ao contorno cilíndrico. Desta forma, para resol-
ver o problema por completo vamos examinar cada caso separado, começando por (3.17)
e depois indo para (3.18).

Note que o índice que acompanha as funções de Bessel em (3.17), dado que 𝛾 foi
definido acima, é complicado. Pensando nisso, vamos introduzir uma delta de Dirac de
modo a retirar este índice e substituir por outro mais simples:

𝐺+
𝐶𝑆(𝑥, 𝑥′) = 1

2𝛼(2𝜋)2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝑘
∫︁ ∞

0
𝑑𝜈𝜈

∫︁ ∞

−∞
𝑑𝜆𝛿

(︃
𝜆−

[︃
𝑛 + 𝑆

√
𝜈2 + 𝑘2

𝛼

]︃)︃

× 𝐽|𝜆|(𝜈𝑟)𝐽|𝜆|(𝜈𝑟′)e𝑖𝜆Δ𝜙e𝑖𝑘Δ𝑧e−𝑖
√

𝜈2+𝑘2Δ𝑡

√
𝜈2 + 𝑘2

.

Usando a fórmula de Poisson [8]
∞∑︁

𝑛=−∞
𝛿(𝜃 + 2𝜋𝑛) = 1

2𝜋

∞∑︁
𝑛=−∞

e𝑖𝑛𝜃 (3.19)

no propagador acima, encontra-se

𝐺+
𝐶𝑆(𝑥, 𝑥′) = 1

2𝛼(2𝜋)2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝑘
∫︁ ∞

0
𝑑𝜈𝜈

∫︁ ∞

−∞
𝑑𝜆𝐽|𝜆|(𝜈𝑟)𝐽|𝜆|(𝜈𝑟′)e𝑖𝜆(Δ𝜙−2𝜋𝑛𝛼)

× e𝑖𝑘Δ𝑧e−𝑖
√

𝜈2+𝑘2(Δ𝑡−2𝜋𝑆𝑛)
√

𝜈2 + 𝑘2
.

Definindo 𝜏
·= 𝑖(Δ𝑡− 2𝜋𝑛𝑆), usando que

e−𝜔𝜏

𝜔
= 2√

𝜋

∫︁ ∞

0
𝑑𝜂 e−𝜔2𝜂2− 𝜏2

4𝜂2

e a definição de 𝜔 em (3.12), podemos reescrever o propagador e deixá-lo com a seguinte
forma

𝐺+
𝐶𝑆(𝑥, 𝑥′) = 1

2𝛼(2𝜋)2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝑘
∫︁ ∞

−∞
𝑑𝜆
∫︁ ∞

0
𝑑𝜈𝜈 e−𝜂2𝜈2

𝐽|𝜆|(𝜈𝑟)𝐽|𝜆|(𝜈𝑟′)e𝑖𝜆(Δ𝜙−2𝜋𝑛𝛼)

× e− 𝜏2
4𝜂2 e−𝜂2𝑘2+𝑖𝑘Δ𝑧

Mas podemos escrever

−𝜂2𝑘2 + 𝑖𝑘Δ𝑧 = −𝜂2
(︃

𝑘 − 𝑖
Δ𝑧

2𝜂2

)︃2

− Δ𝑧2

4𝜂2 .

e reorganizar os termos de tal modo a obter

𝐺+
𝐶𝑆(𝑥, 𝑥′) = 2

8
√

𝜋𝜋2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝜆 e𝑖𝜆(Δ𝜙−2𝜋𝛼𝑛)

∫︁ ∞

0
𝑑𝜂 e

−(𝜏2+Δ𝑧2)
4𝜂2

∫︁ ∞

0
𝑑𝜈𝜈 e−𝜂2𝜈2

𝐽|𝜆|(𝜈𝑟)𝐽|𝜆|(𝜈𝑟′)
∫︁ ∞

−∞
𝑑𝑘 e−𝜂2

(︁
𝑘−𝑖 Δ𝑧

2𝜂2

)︁2

.
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Veja que podemos resolver imediatamente as integrais em 𝜈 e 𝑘 usando que [15]
∫︁ ∞

−∞
𝑑𝑘 e−𝜂2

(︁
𝑘−𝑖 Δ𝑧

2𝜂2

)︁2

=
√

𝜋

𝜂∫︁ ∞

0
𝑑𝜈𝜈 e−𝜂2𝜈2

𝐽|𝜆|(𝜈𝑟)𝐽|𝜆|(𝜈𝑟′) = e
(𝑟2+𝑟′2)

4𝜂2

2𝜂2 𝐼|𝜆|

(︃
𝑟𝑟′

2𝜂2

)︃
,

com 𝐼𝜆(𝑦) sendo a função de Bessel modificada de primeira espécie.

Assim, o propagador se resume a

𝐺+
𝐶𝑆(𝑥, 𝑥′) = 1

8𝜋2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝜆 e𝑖𝜆(Δ𝜙−2𝜋𝛼𝑛)

∫︁ ∞

0

𝑑𝜂

𝜂3 e− (𝜏2+Δ𝑧2+(𝑟2+𝑟′2))
4𝜂2 𝐼|𝜆|

(︃
𝑟𝑟′

2𝜂2

)︃
.

Por conveniência, tome a mudança de variáveis 𝑦 = 𝑟𝑟′/2𝜂2 e reescreva o propagador
acima como

𝐺+
𝐶𝑆(𝑥, 𝑥′) = 1

8𝜋2𝑟𝑟′

∞∑︁
𝑛=−∞

∫︁ ∞

0
𝑑𝑦e−𝑦

(𝜏2+Δ𝑧2+(𝑟2+𝑟′2))
2𝑟𝑟′

∫︁ ∞

−∞
𝑑𝜆 e𝑖𝜆(Δ𝜙−2𝜋𝛼𝑛)𝐼|𝜆|(𝑦).

Para o cálculo da última integral vamos lançar mão da representação [15, eq. 8.431-
5] para 𝐼𝜆(𝑦). Assim, após usar a representação citada e definirmos que 𝜙

·= Δ𝜙− 2𝜋𝛼𝑛

obtemos que∫︁ ∞

−∞
𝑑𝜆 e𝑖𝜆(Δ𝜙−2𝜋𝛼𝑛)𝐼|𝜆|(𝑦) =

∫︁ 𝜋

0
𝑑𝜃 e𝑦 cos(𝜃) [𝛿(𝜃 − 𝜙) + 𝛿(𝜃 + 𝜙)]

− 1
𝜋

∫︁ ∞

0
𝑑𝜉 e−𝑦 cosh(𝜉)

∫︁ ∞

−∞
𝑑𝜆 e−|𝜆|𝜉+𝑖𝜆𝜙 sin(|𝜆|𝜋). (3.20)

Note que o primeiro termo só é diferente de zero caso |𝜙| ≤ 𝜋. Assim, se nos restringirmos,
por simplicidade, somente a 𝛼 > 1/2 e usarmos a desigualdade triangular [1] encontramos
que

|𝜙| = |Δ𝜙− 2𝜋𝛼𝑛| ≤ |Δ𝜙|+ |2𝜋𝛼𝑛| ≤ 𝜋.

Assim, concluí-se que, para 𝛼 > 1/2, o primeiro termo de (3.20) será não nulo somente
para 𝑛 = 0, pois |2𝜋𝛼𝑛| > 𝜋 ∀ |𝑛| > 0.

Portanto, levando em consideração os argumentos acima a função de Wightman
toma a seguinte forma:

𝐺+
𝐶𝑆(𝑥, 𝑥′) = 1

2(2𝜋)2𝑟𝑟′

∫︁ ∞

0
𝑑𝑦 e− 𝑦

2𝑟𝑟′ (|x−x′|2−Δ𝑡2)

− 1
(2𝜋)3

∞∑︁
𝑛=−∞

∫︁ ∞

0
𝑑𝜉
∫︁ ∞

0
𝑑𝑦 e− 𝑦

2𝑟𝑟′ [𝜏2+Δ𝑧2+𝑟2+𝑟′2+2𝑟𝑟′ cosh(𝜉)]

×
∫︁ ∞

−∞
𝑑𝜆 e−|𝜆|𝜉+𝑖𝜆𝜙 sin(|𝜆|𝜋),

onde
|x− x′|2 ·= 𝑟2 + 𝑟′2 − 2𝑟𝑟′ cos(Δ𝜙) + Δ𝑧2.
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Resolvendo as integrais em 𝜆 e 𝑦 com auxilio de um software [41], encontramos
que

𝐺+
𝐶𝑆(𝑥, 𝑥′) = 1

(2𝜋)2
1

(|x− x′|2 −Δ𝑡2)

− 2
(2𝜋)2

∞∑︁
𝑛=−∞

∫︁ ∞

0
𝑑𝜉

1[︁
− (Δ𝑡− 2𝜋𝑛𝑆)2 + Δ𝑧2 + 𝑟2 + 𝑟′2 + 2𝑟𝑟′ cosh(𝜉)

]︁
× 𝜉2 + 𝜋2 − (Δ𝜙− 2𝜋𝛼𝑛)2[︂(︁

𝜉2 + (Δ𝜙− 2𝜋𝛼𝑛)2
)︁2

+ 2𝜋2 (𝜉 − (Δ𝜙− 2𝜋𝛼𝑛)) (𝜉 + (Δ𝜙− 2𝜋𝛼𝑛)) + 𝜋4
]︂

Note que o primeiro termo é a função de Wightman no espaço-tempo de Minkowski [13]
e esta é divergente quando tomado o limite de coincidência dos pontos, ou seja, é o termo
responsável pela divergência ultravioleta. Sendo assim, pensando em construir observáveis
este termo deve ser subtraído, de modo que só nos reste as contribuições convergentes do
propagador. Tal subtração dos termos divergentes que não contribuem com a física é
chamado de renormalização. De fato, o termo de Minkowski não contribui fisicamente por
conta do seu tensor energia-momentum, mais especificamente ⟨𝑇 𝜇

𝜈 ⟩ definido em [4], ser
nulo. De outra forma, ao realimentarmos as equações de Einstein para obter correções na
métrica obteríamos outra solução que não seja a do espaço-tempo de Minkowski.

Assim sendo, o primeiro termo do propagador (3.16) possui as divergências que
devem ser subtraídas, de modo que o propagador renormalizado vem dado por

𝐺+
𝑅𝐶𝑆(𝑥, 𝑥′) = − 2

(2𝜋)2

∞∑︁
𝑛=−∞

∫︁ ∞

0
𝑑𝜉

1[︁
− (Δ𝑡− 2𝜋𝑛𝑆)2 + Δ𝑧2 + 𝑟2 + 𝑟′2 + 2𝑟𝑟′ cosh(𝜉)

]︁
× 𝜉2 + 𝜋2 − (Δ𝜙− 2𝜋𝛼𝑛)2[︂(︁

𝜉2 + (Δ𝜙− 2𝜋𝛼𝑛)2
)︁2

+ 2𝜋2 (𝜉 − (Δ𝜙− 2𝜋𝛼𝑛)) (𝜉 + (Δ𝜙− 2𝜋𝛼𝑛)) + 𝜋4
]︂ . (3.21)

Agora, nos resta trabalhar com o segundo termo de (3.16), isto é o termo devido ao
contorno cilíndrico. Para lidar com o índice das funções de Bessel vamos utilizar do mesmo
truque que foi usado para o primeiro termo. Introduzindo a delta de Dirac e usando a
fórmula de Poisson (3.19), encontramos que a parte do propagador do campo escalar sem
massa devido ao contorno cilíndrico será

𝐺+
𝐵(𝑥, 𝑥′) = − 1

16𝜋2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝜆
∫︁ ∞

−∞
𝑑𝑘
∫︁ ∞

0
𝑑𝜈𝜈

⎡⎣ 2∑︁
𝑙=1

𝐽|𝜆|(𝜈𝑎)
𝐻

(𝑙)
|𝜆|(𝜈𝑎)

𝐻
(𝑙)
|𝜆|(𝜈𝑟)𝐻(𝑙)

|𝜆|(𝜈𝑟′)
⎤⎦

× e𝑖𝜆(Δ𝜙−2𝜋𝛼𝑛)e𝑖𝑘Δ𝑧e−𝑖(Δ𝑡−2𝜋𝑛𝑆)
√

𝜈2+𝑘2

√
𝜈2 + 𝑘2

. (3.22)

A fim de simplificar 𝐺+
𝐵(𝑥, 𝑥′) podemos girar o contorno de integração no plano

complexo de 𝜈 nos ângulos de 𝜋/2 para 𝐻(1)
𝜈 (𝑧) e −𝜋/2 para 𝐻(2)

𝜈 (𝑧) [3]. Com isso, e
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usando [20]

𝐻(1)
𝜈 (e𝑖𝜋/2𝑧) = −2𝑖

𝜋
e−𝑖𝜈𝜋/2𝐾𝜈(𝑧) 𝐻(2)

𝜈 (e−𝑖𝜋/2𝑧) = 2𝑖

𝜋
e𝑖𝜈𝜋/2𝐾𝜈(𝑧) (3.23)

𝐽𝜈(e𝑖𝜋/2𝑧) = e𝑖𝜈𝜋/2𝐼𝜈(𝑧) 𝐽𝜈(e−𝑖𝜋/2𝑧) = e−𝑖𝜈𝜋/2𝐼𝜈(𝑧) (3.24)

encontra-se após manipulações simples

𝐺+
𝐵(𝑥, 𝑥′) = − 1

16𝜋2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝜆 e𝑖𝜆(Δ𝜙−2𝜋𝑛𝛼)

∫︁ ∞

−∞
𝑑𝑘 e𝑖𝑘Δ𝑧×

×

⎡⎣2𝑖

𝜋

∫︁ ∞

0
𝑑𝑦 𝑦

𝐾|𝜆|(𝑦𝑟)𝐾|𝜆|(𝑦𝑟′)
𝐾|𝜆|(𝑦𝑎)

𝐼|𝜆|(𝑦𝑎)√︁
(e𝑖𝜋𝑦)2 + 𝑘2

e−𝑖
√

(e𝑖𝜋𝑦)2+𝑘2(Δ𝑡−2𝜋𝑛𝑆)

−2𝑖

𝜋

∫︁ ∞

0
𝑑𝑦 𝑦

𝐾|𝜆|(𝑦𝑟)𝐾|𝜆|(𝑦𝑟′)
𝐾|𝜆|(𝑦𝑎)

𝐼|𝜆|(𝑦𝑎)√︁
(e−𝑖𝜋𝑦)2 + 𝑘2

e−𝑖
√

(e−𝑖𝜋𝑦)2+𝑘2(Δ𝑡−2𝜋𝑛𝑆)

⎤⎦ , (3.25)

onde 𝐼𝜈(𝑥) e 𝐾𝜈(𝑥) são as funções modificadas de Bessel de primeira e segunda espécie,
respectivamente. Note que a rotação no contorno de integração não altera os limites de
integração, pois para fazer a rotação de 𝜋/2, por exemplo, usamos que 𝛾 = e𝜋/2𝑦, então
para o domínio de 𝛾 deveríamos ter um limite de integração da forma [0, 𝑖∞), indicando
que a integração acontece no eixo imaginário de 𝛾. Todavia, para o domínio de 𝑦 o limite
de integração permanece inalterado a comparar com antes da rotação, pois como 𝑦 ∈ R a
informação sobre a rotação está toda no Jacobiano, ou seja, em 𝑑𝛾.

Veja que √︁
(e±𝑖𝜋𝑦)2 + 𝑐2 =

⎧⎪⎨⎪⎩
√

𝑐2 − 𝑦2 , 0 ≤ 𝑦 ≤ |𝑐|

e±𝑖𝜋/2√𝑦2 − 𝑐2 , 𝑦 > |𝑐|
. (3.26)

Com isso, a soma de integrais dentro dos colchetes em (3.25) serão dividas em dois in-
tervalos, [0, |𝑘|] e [|𝑘|,∞), de modo que as integrais no intervalo [0, |𝑘|] cancelam entre
si. Dessa forma, manipulando os dois termos restantes e usando a definição das funções
hiperbólicas [1], encontra-se

𝐺+
𝐵(𝑥, 𝑥′) = − 1

4𝜋3

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝜆 e𝑖𝜆(Δ𝜙−2𝜋𝑛𝛼)

∫︁ ∞

−∞
𝑑𝑘 e𝑖𝑘Δ𝑧

[︃∫︁ ∞

|𝑘|
𝑑𝑦𝑦

𝐾|𝜆|(𝑦𝑟)𝐾|𝜆|(𝑦𝑟′)
𝐾|𝜆|(𝑦𝑎)

𝐼|𝜆|(𝑦𝑎)√
𝑦2 − 𝑘2 cosh

(︂√︁
𝑦2 − 𝑘2(Δ𝑡− 2𝜋𝑛𝑆)

)︂]︃
. (3.27)

Portanto, o propagador renormalizado utilizado para construir os observáveis de
interesse da teoria quântica de campos no exterior de uma corda cósmica girante sujeita
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a condição de contorno de Dirichlet é dado por

𝐺+
𝑅𝑒𝑛(𝑥, 𝑥′) = − 2

(2𝜋)2

∞∑︁
𝑛=−∞

∫︁ ∞

0
𝑑𝜉

𝜉2 + 𝜋2 − (Δ𝜙− 2𝜋𝛼𝑛)2

𝐷𝑛(𝜉)
1

𝑄𝑛(𝜉)

− 1
4𝜋3

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝜆 𝑒𝑖𝜆(Δ𝜙−2𝜋𝑛𝛼)

∫︁ ∞

−∞
𝑑𝑘 𝑒𝑖𝑘Δ𝑧

×
[︃∫︁ ∞

|𝑘|
𝑑𝑦 𝑦

𝐾|𝜆|(𝑦𝑟)𝐾|𝜆|(𝑦𝑟′)
𝐾|𝜆|(𝑦𝑎)

𝐼|𝜆|(𝑦𝑎)√
𝑦2 − 𝑘2 cosh

(︂√︁
𝑦2 − 𝑘2 (Δ𝑡− 2𝜋𝑛𝑆)

)︂]︃

·= 𝐺+
𝑅𝐶𝑆(𝑥, 𝑥′) + 𝐺+

𝐵(𝑥, 𝑥′), (3.28)

onde definimos

𝐷𝑛(𝜉) ≡
(︁
𝜉2 + (Δ𝜙− 2𝜋𝛼𝑛)2

)︁2
+ 2𝜋2

(︂
𝜉2 − (Δ𝜙− 2𝜋𝛼𝑛)2

)︂
+ 𝜋4, (3.29)

𝑄𝑛(𝜉) ≡ −(Δ𝑡− 2𝜋𝑛𝑆)2 + Δ𝑧2 + 𝑟2 + 𝑟′2 + 2𝑟𝑟′ cosh(𝜉). (3.30)

3.3 Flutuação do Campo no Vácuo
O valor esperado no vácuo, ⟨𝜑2⟩, foi definido na seção (2.2) e vem dada por (2.32)

⟨𝜑2⟩ = lim
𝑥′→𝑥
ℜ(𝐺+

𝑅𝑒𝑛(𝑥, 𝑥′)), (3.31)

de modo que temos que tomar o propagador renormalizado para obtermos resultados
físicos. Usando a definição da flutuação no vácuo do campo escalar para o propagador
obtido (3.28), encontramos que este possui duas contribuições

⟨𝜑2⟩(𝑟) = ⟨𝜑2⟩𝐶𝑆(𝑟) + ⟨𝜑2⟩𝐵(𝑟), (3.32)

onde ⟨𝜑2⟩𝐶𝑆 é a flutuação do campo escalar devido a corda cósmica girante [6]

⟨𝜑2⟩𝐶𝑆(𝑟) = − 1
2(2𝜋)2𝑟2

×
∞∑︁

𝑛=−∞

∫︁ ∞

0
𝑑𝜉

𝜉2 + 𝜋2(1− 4𝛼2𝑛2)[︁
𝜋2 (2𝛼𝑛 + 1)2 + 𝜉2

]︁ [︁
𝜋2 (2𝛼𝑛− 1)2 + 𝜉2

]︁ [︂
cosh2(𝜉/2)−

(︁
𝑛𝜋𝑆

𝑟

)︁2
]︂ (3.33)

e ⟨𝜑2⟩𝐵 a flutuação induzida pela fronteira cilíndrica

⟨𝜑2⟩𝐵(𝑟) = − 1
4𝜋3

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝜆 e−2𝜋𝑖𝑛𝛼𝜆

∫︁ ∞

−∞
𝑑𝑘
∫︁ ∞

|𝑘|
𝑑𝑦𝑦

𝐼|𝜆|(𝑦𝑎)
𝐾|𝜆|(𝑦𝑎)

𝐾2
|𝜆|(𝑦𝑟)

√
𝑦2 − 𝑘2 cosh

(︂
2𝜋𝑛𝑆

√︁
𝑦2 − 𝑘2

)︂
. (3.34)

Veja que a integração em 𝑘 do termo de fronteira (3.34) pode ser efetuada e para
isso basta que se troque a ordem da integração a modo a integrar primeiro em 𝑘. Para
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tal, basta olhar para o domínio da integral dupla e muda-lá de forma adequada, de modo
a obter

⟨𝜑2⟩𝐵(𝑟) = − 1
4𝜋3

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝜆 e−2𝜋𝑖𝑛𝛼𝜆

×
∫︁ ∞

0
𝑑𝑦𝑦

𝐼|𝜆|(𝑦𝑎)
𝐾|𝜆|(𝑦𝑎)𝐾2

|𝜆|(𝑦𝑟)
∫︁ 𝑦

−𝑦
𝑑𝑘

cosh
(︁
2𝜋𝑛𝑆

√
𝑦2 − 𝑘2

)︁
√

𝑦2 − 𝑘2 . (3.35)

Por uma mudança de variável, 𝑢 = 𝑘/𝑦, na integração em 𝑘 é fácil perceber que
[15, eq. 3.534-2]

∫︁ 𝑦

−𝑦
𝑑𝑘

cosh
(︁
2𝜋𝑛𝑆

√
𝑦2 − 𝑘2

)︁
√

𝑦2 − 𝑘2 = 2
∫︁ 1

0
𝑑𝑢

cosh
(︁
2𝜋𝑛𝑦𝑆

√
1− 𝑢2

)︁
√

1− 𝑢2
= 𝜋𝐼0(2𝜋𝑛𝑦𝑆).

Desta forma, encontramos que a flutuação devido a fronteira vem dada por

⟨𝜑2⟩𝐵(𝑟) = − 1
4𝜋2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝜆 e−2𝜋𝑖𝑛𝛼𝜆

∫︁ ∞

0
𝑑𝑦𝑦

𝐼|𝜆|(𝑦𝑎)
𝐾|𝜆|(𝑦𝑎)𝐾2

|𝜆|(𝑦𝑟)𝐼0(2𝜋𝑛𝑦𝑆). (3.36)

Portanto, concluímos finalmente que a flutuação do campo escalar no estado de
vácuo no espaço-tempo de uma corda girante com condição de contorno de Dirichlet será
dada por

⟨𝜑2⟩(𝑟) = − 1
2(2𝜋)2𝑟2

×
∞∑︁

𝑛=−∞

∫︁ ∞

0
𝑑𝜉

𝜉2 + 𝜋2(1− 4𝛼2𝑛2)[︁
𝜋2 (2𝛼𝑛 + 1)2 + 𝜉2

]︁ [︁
𝜋2 (2𝛼𝑛− 1)2 + 𝜉2

]︁ [︂
cosh2(𝜉/2)−

(︁
𝑛𝜋𝑆

𝑟

)︁2
]︂

− 1
4𝜋2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝜆 e−2𝜋𝑛𝑖𝛼𝜆

∫︁ ∞

0
𝑑𝑦𝑦

𝐼|𝜆|(𝑦𝑎)
𝐾|𝜆|(𝑦𝑎)𝐾2

|𝜆|(𝑦𝑟)𝐼0(2𝜋𝑛𝑦𝑆). (3.37)

O primeiro termo apresenta os problemas associados à quantização indevida no
espaço-tempo de uma corda cósmica com rotação [6], que, por sua vez, não é globalmente
hiperbólico. A motivação em impor uma condição de contorno era isolar a região pato-
lógica do espaço-tempo e, assim, obter uma contribuição regular para as flutuações do
vácuo. Contudo, tal resultado não se concretizou devido à presença do primeiro termo.
Em suma, mesmo com a introdução de uma fronteira separando as regiões causal e acausal
do espaço-tempo, verificamos que as flutuações do campo permanecem divergentes. Isso
sugere que: a condição de contorno considerada não foi suficiente; ou a existência física
de uma corda cósmica girante pode ser improvável.

3.4 Corda Cósmica Estática
Até aqui, obtivemos o propagador do campo escalar para o espaço-tempo de uma

corda cósmica girante e, em seguida, calculamos a flutuação no estado de vácuo. A partir
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disso, é possível testar a expressão geral obtida, verificando se ela reproduz casos já con-
solidados na literatura. Em particular, um teste natural consiste em considerar a situação
de uma corda cósmica sem rotação, isto é, para 𝑆 = 0. De fato, ao impor 𝑆 = 0 em (3.1),
recuperamos

𝑑𝑠2 = 𝑑𝜏 2 − 𝑑𝑟2 − 𝛼2𝑟2𝑑𝜑2 − 𝑑𝑧2. (3.38)

Mas veja que o tempo 𝜏 e 𝑡, definido em (3.6), serão os mesmos, de modo que utilizaremos
𝑡 para a coordenada temporal da corda cósmica sem rotação.

Assim, fazendo 𝑆 = 0 em (3.37) e utilizando que a função modificada de Bessel
de primeira espécie avaliada em zero é tal que 𝐼0(0) = 1, somos capazes de obter que
as flutuações do vácuo no exterior de uma corda cósmica sem rotação com condição de
contorno de Dirichlet serão tais que

⟨𝜑2⟩(𝑟) =− 1
2(2𝜋)2𝑟2

∞∑︁
𝑛=−∞

∫︁ ∞

0
𝑑𝜉

𝜉2 + 𝜋2(1− 4𝛼2𝑛2)[︁
𝜋2 (2𝛼𝑛 + 1)2 + 𝜉2

]︁ [︁
𝜋2 (2𝛼𝑛− 1)2 + 𝜉2

]︁
cosh2(𝜉/2)

− 1
4𝜋2

∞∑︁
𝑛=−∞

∫︁ ∞

−∞
𝑑𝜆 e−2𝜋𝑖𝑛𝛼𝜆

∫︁ ∞

0
𝑑𝑦𝑦

𝐼|𝜆|(𝑦𝑎)
𝐾|𝜆|(𝑦𝑎)𝐾2

|𝜆|(𝑦𝑟).

Ainda, podemos usar a fórmula de Poisson (3.19) para reescrever o segundo termo de
⟨𝜑2⟩(𝑟) acima de forma mais adequada:

1
2𝜋

∞∑︁
𝑛=−∞

e𝑖(−2𝜋𝜆𝛼)𝑛 =
∞∑︁

𝑛=−∞
𝛿(2𝜋𝑛− 2𝜋𝜆𝛼) = 1

2𝜋𝛼

∞∑︁
𝑛=−∞

𝛿
(︂

𝜆− 𝑛

𝛼

)︂

∴
∞∑︁

𝑛=−∞
e𝑖(−2𝜋𝜆𝛼)𝑛 = 1

𝛼

∞∑︁
𝑛=−∞

𝛿
(︂

𝜆− 𝑛

𝛼

)︂
.

Operando com a delta de Dirac resultante da igualdade acima na expressão para ⟨𝜑2⟩(𝑟)
acima desta é imediato obter

⟨𝜑2⟩(𝑆=0)(𝑟) =− 1
2(2𝜋)2𝑟2

∞∑︁
𝑛=−∞

∫︁ ∞

0
𝑑𝜉

𝜉2 + 𝜋2(1− 4𝛼2𝑛2)[︁
𝜋2 (2𝛼𝑛 + 1)2 + 𝜉2

]︁ [︁
𝜋2 (2𝛼𝑛− 1)2 + 𝜉2

]︁
cosh2(𝜉/2)

− 1
4𝜋2𝛼

∞∑︁
𝑛=−∞

∫︁ ∞

0
𝑑𝑦𝑦

𝐼 |𝑛|
𝛼

(𝑦𝑎)
𝐾 |𝑛|

𝛼

(𝑦𝑎)𝐾2
|𝑛|
𝛼

(𝑦𝑟)

·= ⟨𝜑2⟩(𝑆=0)
𝐶𝑆 (𝑟) + ⟨𝜑2⟩(𝑆=0)

𝐵 (𝑟).

O primeiro termo é exatamente o termo obtido em [21, 31] e o segundo o termo
obtido em [3]. Para que o resultado clássico da literatura apareça explicitamente, vamos
resolver a série e a integral do primeiro termo. Para tal, note que a série é simétrica, de
modo que podemos separa-lá na contribuição 𝑛 = 0 e |𝑛| > 0:

⟨𝜑2⟩(𝑆=0)
𝐶𝑆 (𝑟) = − 1

8𝜋2𝑟2

∫︁ ∞

0
𝑑𝜉

1
(𝜋2 + 𝜉2) cosh2(𝜉/2)

− 1
4𝜋2𝑟2

∞∑︁
𝑛=1

∫︁ ∞

0
𝑑𝜉

𝜉2 + 𝜋2(1− 4𝛼2𝑛2)[︁
𝜋2 (2𝛼𝑛 + 1)2 + 𝜉2

]︁ [︁
𝜋2 (2𝛼𝑛− 1)2 + 𝜉2

]︁
cosh2(𝜉/2)

.
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Resolvendo a série com o auxílio de [41], obtemos que o termo devido somente a
presença da corda cósmica vem dado por

⟨𝜑2⟩(𝑆=0)
𝐶𝑆 (𝑟) = − 1

8𝜋2𝑟2

∫︁ ∞

0
𝑑𝜉

1
(𝜋2 + 𝜉2) cosh2(𝜉/2)

+ 1
4𝜋2𝑟2

[︃
1
2

∫︁ ∞

0
𝑑𝜉

1
(𝜋2 + 𝜉2) cosh2(𝜉/2)

+ sin(𝜋/𝛼)
4𝜋𝛼

∫︁ ∞

0
𝑑𝜉

1
cosh2(𝜉/2) [cos(𝜋/𝛼)− cosh(𝜉/𝛼)]

]︃
.

Usando o teorema dos resíduos [1] é possível resolver os dois tipos de integrais acima:∫︁ ∞

0
𝑑𝜉

1
(𝜋2 + 𝜉2) cosh2(𝜉/2)

= 1
6

1
2

∫︁ ∞

0
𝑑𝜉

1
cosh2(𝜉/2) [cos(𝜋𝑎)− cosh(𝑎𝜉)]

= 𝜋𝑎

6 sin(𝜋𝑎)

(︃
1− 𝑎2

𝑎2

)︃
.

Manipulando os termos algebricamente, encontramos que

⟨𝜑2⟩(𝑆=0)
𝐶𝑆 (𝑟) = 1

48𝜋2𝑟2 (𝛼−2 − 1). (3.39)

Portanto, a flutuação do campo escalar real sem massa no espaço de fundo de uma
corda cósmica sem rotação com uma fronteira cilíndrica vem dada por

⟨𝜑2⟩(𝑆=0)(𝑟) = 1
48𝜋2𝑟2 (𝛼−2 − 1)− 1

4𝜋2𝛼

∞∑︁
𝑛=−∞

∫︁ ∞

0
𝑑𝑦𝑦

𝐼 |𝑛|
𝛼

(𝑦𝑎)
𝐾 |𝑛|

𝛼

(𝑦𝑎)𝐾2
|𝑛|
𝛼

(𝑦𝑟), (3.40)

onde o primeiro termo é um resultado clássico da literatura [21, 31, 8] e o segundo termo
devido a fronteira cilíndrica [3]. Note ainda que ao fazer 𝛼 = 1 recuperamos o espaço-
tempo de Minkowski, mas as flutuações do campo não são nulas devido a fronteira. O que
foi dito na seção (3.1) sobre a geometria do espaço-tempo ter interferência nos observáveis
quânticos se manisfestou através do primeiro termo da expressão acima, mesmo após a
renormalização em relação ao espaço-tempo de Minkowski. Isto é, mesmo o espaço-tempo
de uma corda cósmica sem rotação, assim como a com rotação, ser localmente plana
temos que o primeiro termo se deve exclusivamente a contribuições devidas à geometria
não trivial que a corda cósmica fornece ao espaço-tempo.

Ainda, apesar do propagador ter sido renormalizado com relação a Minkowski as
flutuações do campo são divergentes para 𝑟 = 𝑎. Fisicamente, os modos 𝑛 deverão ser
tais que a oscilação na parte angular seja rápida o suficiente para que a condição de
contorno de Dirichlet seja respeitada a medida que 𝑟 → 𝑎. Com isso, somos capazes de
notar que os únicos comprimentos de onda capazes de fazer com que essa resposta seja
rápida o suficiente seriam para comprimentos de onda muito curtos, ou seja, grandes
modos angulares. Em outras palavras, para 𝑟 → 𝑎 os termos mais relevantes deverão ser
os modos para os quais 𝑛 são grandes.

Sendo assim, podemos analisar as flutuações quando (𝑟 − 𝑎) → 0, ou seja, a
flutuação do campo avaliado bem próximas a fronteira. Fisicamente, esperaríamos que o
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comportamento fosse como as flutuações do campo escalar próximas a uma fronteira plana.
Note que para tal estudo, precisamos partir de (3.40) e considerar somente o segundo
termo por conta do primeiro termo não envolve 𝑎.

Para começar, faça as seguintes mudanças de variáveis para retirar a dimensão
física do argumento das funções de Bessel:

𝑥 = 𝑦𝑎 𝜌 = 𝑟/𝑎 𝜈 = 𝑛/𝛼.

Com isso, e usando a simetria no índice 𝑛, o segundo termo de (3.40) passa a ter
a seguinte forma

⟨𝜑2⟩(𝑆=0)
𝐵 (𝑟) = − 1

2𝜋2𝑎2𝛼

∞∑︁
𝑛=0

′
∫︁ ∞

0
𝑑𝑥𝑥

𝐼𝜈(𝑥)
𝐾𝜈(𝑥)𝐾2

𝜈 (𝑥𝜌), (3.41)

onde a linha no somatório significa que para 𝑛 = 0 há um fator 1/2 multiplicativo.

Agora, tome também 𝑥 = 𝜈𝑧 para reescrever a expressão acima como

⟨𝜑2⟩(𝑆=0)
𝐵 (𝑟) = − 1

2𝜋2𝑎2𝛼3

∞∑︁
𝑛=0

′𝑛2
∫︁ ∞

0
𝑑𝑥𝑥

𝐼𝜈(𝜈𝑥)
𝐾𝜈(𝜈𝑥)𝐾2

𝜈 (𝜈𝑥𝜌). (3.42)

Levando em conta o argumento anterior da contribuição principal das divergências se
darem para modos com 𝑛 grande, podemos usar a expansão assintótica para a ordem das
funções de Bessel e considerar somente o termo dominante [28]:

𝐼𝜈(𝜈𝑧) = e𝜈𝜂(𝑧)
√

2𝜋𝜈(1 + 𝑧2)1/4

𝐾𝜈(𝜈𝑧) =
√︂

𝜋

2𝜈

e−𝜈𝜂(𝑧)

(1 + 𝑧2)1/4 ,

onde
𝜂(𝑧) ·=

√
1 + 𝑧2 + ln

(︃
𝑧

1 +
√

1 + 𝑧2

)︃
.

Assim, substituindo as aproximações acima em (3.42) chega-se que

⟨𝜑2⟩(𝑆=0)
𝐵 (𝑟) ≃ − 1

4𝜋2𝛼2𝑎2

∞∑︁
𝑛=1

𝑛
∫︁ ∞

0

𝑧√
1 + 𝜌2𝑧2 e−2𝜈[𝜂(𝑧𝜌)−𝜂(𝑧)]. (3.43)

Todavia, considerando que 𝑟 está muito próximo de 𝑎, isto é 𝜌→ 1, podemos expandir o
argumento da exponencial em uma série de Taylor em torno de 𝜌 = 1. Matematicamente,
teríamos que

[𝜂(𝑧𝜌)− 𝜂(𝑧)] = 𝜂(𝑧) + 𝜕𝜂(𝑧𝜌)
𝜕𝜌

|𝜌=1(𝜌− 1) + . . .− 𝜂(𝑧),

onde pode-se calcular facilmente que

𝜕𝜂(𝑧𝜌)
𝜕𝜌

|𝜌=1 =
√

𝑧2 + 1. (3.44)
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Desta forma, após cálculos simples encontra-se

⟨𝜑2⟩(𝑆=0)
𝐵 (𝑟) ≃ − 1

4𝜋2𝛼2𝑎2

∞∑︁
𝑛=1

𝑛
∫︁ ∞

0

𝑧√
1 + 𝜌2𝑧2 e−2𝜈(𝜌−1)

√
1+𝑧2

≃ − 1
4𝜋2𝛼2𝑎2

∞∑︁
𝑛=1

𝑛
∫︁ ∞

0

𝑧√
1 + 𝑧2

e−2𝜈(𝑟/𝑎−1)
√

1+𝑧2

≃ − 1
4𝜋2𝛼2𝑎2

∫︁ ∞

0

𝑧√
1 + 𝑧2

∞∑︁
𝑛=1

𝑛e−2(𝑛/𝛼)(𝑟/𝑎−1)
√

1+𝑧2
. (3.45)

Resolvendo a série utilizando o auxílio de [41] encontramos que

∞∑︁
𝑛=1

𝑛e−2(𝑛/𝛼)(𝑟/𝑎−1)
√

1+𝑧2 = 1
4csch2

(︃
(𝑟/𝑎− 1)

𝛼

√
𝑧2 + 1

)︃
.

Mas note que (𝑟/𝑎−1) é um fator bem pequeno, dado as aproximações ditas acima, então
se expandirmos a função acima e considerarmos somente o termo dominante, encontrare-
mos que

csch2
(︃

(𝑟/𝑎− 1)
𝛼

√
𝑧2 + 1

)︃
≃ 𝛼2𝑎2

4(𝑟 − 𝑎)2(𝑧2 + 1) .

Substituindo a aproximação acima em (3.45) nos resulta que

⟨𝜑2⟩(𝑆=0)
𝐵 (𝑟) ≃ − 1

(4𝜋)2(𝑟 − 𝑎)2

∫︁ ∞

0

𝑧

(1 + 𝑧2)3/2 = − 1
(4𝜋)2(𝑟 − 𝑎)2

Portanto, as flutuações do campo escalar perto da fronteira virão dadas pela ex-
pressão acima somada ao primeiro de (3.40):

⟨𝜑2⟩(𝑆=0)(𝑟) ≃ 1
48𝜋2𝑟2 (𝛼−2 − 1)− 1

(4𝜋)2(𝑟 − 𝑎)2 . (3.46)

Entretanto, note que se estamos próximos à fronteira o segundo termo é o dominante,
visto que o primeiro não possuí nenhuma divergência para 𝑟 → 𝑎. Assim, a flutuação do
campo no estado de vácuo perto da fronteira cilíndrica

⟨𝜑2⟩(𝑆=0)(𝑟) ≃ − 1
(4𝜋)2(𝑟 − 𝑎)2 (3.47)

não enxerga a mudança na geometria global do espaço-tempo, ou seja, próximo a fronteira
as flutuações se comportam exatamente como as flutuações próximas a uma fronteira
plana [13, eq. 5.12].



35

4 Conclusão

Neste trabalho investigamos o comportamento das flutuações do vácuo de um
campo escalar sujeito a uma condição de contorno cilíndrica de Dirichlet no espaço-tempo
de uma corda cósmica girante. Como principal resultado, obtivemos a função de Wightman
renormalizada para esse sistema físico [ver Eq. (3.28)], a partir da qual foram calculadas
as flutuações do campo [Eq. (3.37)]. Verificamos que ⟨𝜑2⟩ apresenta duas contribuições
distintas: uma proveniente exclusivamente da presença da corda cósmica girante e outra
induzida pela condição de contorno cilíndrica.

Entretanto, como o primeiro termo é responsável pelas patologias associadas à
quantização do campo escalar — decorrentes do uso inadequado das ferramentas da teo-
ria quântica de campos em espaços não globalmente hiperbólicos [6] — torna-se necessário
analisar com mais cuidado o segundo termo, oriundo da fronteira, e investigar se as di-
vergências do primeiro poderiam ser, de algum modo, “compensadas” por este. Assim,
deixamos como conjectura a ser explorada futuramente a seguinte questão: impor uma
condição de Dirichlet que isola a região acausal seria suficiente para restaurar a causali-
dade na corda cósmica girante?

Como verificação de consistência, consideramos o limite de ausência de rotação, no
qual recuperamos resultados conhecidos na literatura: a contribuição associada à própria
corda cósmica [21, 31] e aquela devida à condição de contorno [3]. Além disso, mostramos
que, nesse mesmo limite, a expressão (3.37) reproduz o resultado clássico da teoria quân-
tica de campos para as flutuações próximas a um plano com condição de Dirichlet [13],
quando avaliada no regime em que (𝑟 − 𝑎) é suficientemente pequeno.

A questão que permanece, portanto, é se a condição de Dirichlet é realmente capaz
de eliminar as divergências associadas ao primeiro termo de (3.37). Um passo natural para
trabalhos futuros consiste em examinar numericamente essa expressão, a fim de verificar
se a imposição da condição de contorno resolve, de fato, o problema causal inicial. Caso
a resposta seja positiva, a função de Wightman renormalizada obtida aqui poderá ser
empregada para investigar, via backreaction [10], os mecanismos semiclássicos de resposta
da geometria ao campo quântico. Isso abriria caminho para testar a conjectura da proteção
cronológica de Hawking [17], analisando o comportamento das flutuações do vácuo na
vizinhança da fronteira onde surgem curvas do tipo-tempo fechadas.

Por outro lado, caso a resposta seja negativa, poderemos buscar condições de
contorno fisicamente mais adequadas e, ainda assim, estudar as implicações da conjectura
de Hawking. Contudo, se mesmo essas condições adicionais não forem suficientes para
isolar a região causalmente patológica, talvez seja necessário adotar a posição sugerida
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por [32]: “... perhaps one should reject as physically unrealistic a spinning string or at least
the portion of its spacetime 𝑟 < 𝑆 that contains closed time-like curves”, descartando,
portanto, tal solução como fisicamente admissível.



Apêndices
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APÊNDICE A – Produto Interno de
Kein-Gordon

O produto interno de Klein-Gordon vem dado por [4]

(𝜑1, 𝜑2) ·= −𝑖
∫︁

Σ
𝑑Σ𝑛𝜇(𝜑1∇𝜇𝜑*

2 − 𝜑*
2∇𝜇𝜑1),

onde Σ é uma superfície do tipo-espaço chamada de superfície de Cauchy, 𝑛𝜇 o quadrivetor
unitário perpendicular a Σ apontado na direção futura por definição e 𝜑1(𝑥), 𝜑2(𝑥) duas
soluções da equação de Klein-Gordon.

Precisamos que um produto interno possua algumas propriedades, entre elas que
seja positivo definido e que este não dependa do tempo. Para o último requerimento, o
equivalente é que o produto interno não dependa da escolha da superfície Σ.

Para motivar a definição do produto interno apresentado acima, tome a definição
da corrente de Noether [30]

𝐽𝜇 = 𝜕ℒ
𝜕(∇𝜇𝜑𝛽)

𝛿𝜑𝛽

𝛿𝜖
, (A.1)

onde 𝜑𝛽 denota o campo em questão e 𝛿𝜑𝛽/𝛿𝜖 a variação com respeito a um parâmetro
infinitesimal no campo levando em conta a sua simetria.

Considerando um campo escalar complexo descrito pela lagrangiana

ℒ = ∇𝜇𝜑∇𝜇𝜑* −𝑚2𝜑𝜑* (A.2)

e notando que tal teoria possui a seguinte simetria para 𝛼 ∈ R: 𝜑→ e𝑖𝛼𝜑 e 𝜑* → e−𝑖𝛼𝜑*;
implicando em 𝛿𝜑/𝛿𝛼 = 𝑖𝜑 e 𝛿𝜑*/𝛿𝛼 = −𝑖𝜑*, encontramos que a corrente de Noether
definida por (A.1) será

𝐽𝜇 = 𝑖(𝜑*∇𝜇𝜑− 𝜑∇𝜇𝜑*).

Note que

∇𝜇𝐽𝜇 = 𝑖 (∇𝜇(𝜑*∇𝜇𝜑)−∇𝜇(𝜑∇𝜇𝜑*))

= 𝑖 ((∇𝜇𝜑*)∇𝜇𝜑 + 𝜑*∇𝜇∇𝜇𝜑− (∇𝜇𝜑)∇𝜇𝜑* − 𝜑∇𝜇∇𝜇𝜑*)

= 𝑖 ((∇𝜇𝜑*)∇𝜇𝜑− (∇𝜇𝜑)∇𝜇𝜑*) + 𝑖
(︁
𝜑*22𝜑− 𝜑22𝜑*

)︁
= 𝑖(0) + 𝑖

(︁
𝜑*(𝑚2𝜑)− 𝜑(𝑚2𝜑*)

)︁
= 0.

Assim, vemos que 𝐽𝜇 se conserva. Mesmo tendo considerado um campo escalar complexo
para o cálculo, o resultado deve ser o mesmo para qualquer par de soluções da equação
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de Klein-Gordon, pois a conservação foi consequência da simetria e não da solução em
particular.

Suponha que integremos ∇𝜇𝐽𝜇 entre duas superfícies Σ1 e Σ2 infinitamente longas
e que 𝑛𝜇 seja um vetor apontado na direção futura e ortonormal às superfícies. Lançando
mão do teorema de Stokes vemos que∫︁

Σ
𝑑Σ∇𝜇𝐽𝜇|Σ=Σ2

Σ=Σ1 =
∫︁

𝜕Σ
𝑑Σ𝑛𝜇𝐽𝜇|Σ=Σ2

Σ=Σ1 =
∫︁

Σ2
𝑑Σ𝑛(2)

𝜇 𝐽𝜇 +
∫︁

Σ1
𝑑Σ𝑛(1)

𝜇 𝐽𝜇 = 0. (A.3)

Mas como foi definido que 𝑛𝜇 aponta para o futuro e a superfície Σ1 está no passado
de Σ2, então 𝑛(1)

𝜇 = −𝑛(2)
𝜇 , onde os índices 1 e 2 significam que os vetores normais são

ortogonais às respectivas superfícies. Com isto e levando em conta que a corrente 𝐽𝜇 vai
a zero quando avaliada no infinito, concluí-se que∫︁

Σ1
𝑑Σ𝑛𝜇𝐽𝜇 =

∫︁
Σ2

𝑑Σ𝑛𝜇𝐽𝜇 (A.4)

não depende da superfície de Cauchy escolhida e, portanto, independe do instante de
tempo em que é calculada. Isso nos motiva a definir um produto interno com a forma
acima, pois garante que estados ortogonais inicialmente permaneçam assim durante a
evolução temporal.

O elemento de superfície 𝑑Σ em coordenadas possuí a seguinte forma

𝑑Σ = 𝑑3𝑥
√︁
|ℎ|, (A.5)

onde ℎ é o determinante da métrica induzida na superfície de Cauchy e dada por

ℎ𝜇𝜈 = 𝑔𝜇𝜈 − 𝑛𝜇𝑛𝜈 . (A.6)

Levando em conta toda a construção acima e as propriedades que um produto
interno deve possuir, somos levados a definir o produto interno de Klein-Gordon por

(𝜑1, 𝜑2) = −𝑖
∫︁

Σ
𝑑3𝑥

√︁
|ℎ|𝑛𝜇(𝜑1∇𝜇𝜑*

2 − 𝜑*
2∇𝜇𝜑1). (A.7)

De forma que para cada geometria devemos ter um vetor normal à Σ distinto, e isso define
totalmente o produto interno para o campo escalar.

A geometria de interesse neste trabalho é a de uma corda cósmica girante cujo
elemento de linha é dado por

𝑑𝑠2 = (𝑑𝜏 + 𝑆𝑑𝜑)2 − 𝑑𝑟2 − 𝛼2𝑟2𝑑𝜑2 − 𝑑𝑧2. (A.8)

Para calcular as autofunções em (3.4) usamos coordenadas localmente planas, ou seja,
o elemento de linha tem a forma do elemento de linha de Minkowski, mesmo que as
identificações entre as coordenadas não sejam. Todavia, para calcularmos o vetor normal
à Σ devemos usar as coordenadas globais, isto é (𝜏, 𝑟, 𝜑, 𝑧).
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Para tal, lembre-se que o vetor normal possui duas propriedades: a de ser ortogonal
a superfície de Cauchy e que este possua norma igual a 1. Sendo assim, para determina-lo
vamos usar estas duas propriedades dadas em termos da métrica. Para o elemento de
linha (A.8) temos que a métrica é tal que

(𝑔𝜇𝜈) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 𝑆 0
0 −1 0 0
𝑆 0 −(𝛼2𝑟2 − 𝑆2) 0
0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.9)

Com isso, o vetor normal é determinado por

𝑔(𝑛, 𝑛) = 1 ; 𝑔(𝑛, 𝜕𝑖) = 0,

sendo que 𝑔 é o tensor métrico, 𝑛 o vetor normal com coordenadas 𝑛𝜇 = (𝑛𝜏 , 𝑛𝑟, 𝑛𝜑, 𝑛𝑧) e
𝜕𝑖 o i-ésimo vetor de base da superfície Σ.

Usando a métrica acima e as propriedades encontramos que

𝑛𝜇 =
√

𝛼2𝑟2 − 𝑆2

𝛼𝑟

𝜕

𝜕𝜏
+ 𝑆

𝛼𝑟
√

𝛼2𝑟2 − 𝑆2

𝜕

𝜕𝜑
. (A.10)

Usando a métrica podemos descer o índice do vetor contravariante, encontrando que o
vetor covariante é

𝑛𝜇 = 𝛼𝑟√
𝛼2𝑟2 − 𝑆2

𝜕

𝜕𝜏
. (A.11)

Assim, podemos usar (A.11) e (A.9) em (A.6) para concluir que a métrica induzida
na superfície Σ vem dada por

(ℎ𝜇𝜈) =

⎡⎢⎢⎢⎢⎢⎢⎣
1− 𝛼2𝑟2

𝛼2𝑟2−𝑆2 0 𝑆 0
0 −1 0 0
𝑆 0 −(𝛼2𝑟2 − 𝑆2) 0
0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.12)

Com isso, temos que o elemento de linha (A.8) pode ser reescrito em termos do projetor
ℎ𝜇𝜈 como sendo

𝑑𝑠2 = 𝑑𝜏 2 + 2𝑆𝑑𝜏𝑑𝜑 + ℎ𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗,

onde ℎ𝑖𝑗 é a parte espacial do projetor acima.

Agora que definimos as quantidades geométricas nas coordenadas globais podemos
fazer uma mudança de coordenadas usual usando (3.6) para mudar das coordenadas físicas
(𝜏, 𝑟, 𝜑, 𝑧) para as coordenadas planas (𝑡, 𝑟, 𝜙, 𝑧). Desta forma, o vetor normal à superfície
de Cauchy Σ no sistema de coordenadas planas é dado por

𝑛𝜇̄ = 𝜕𝑥𝜇̄

𝜕𝑥𝜇
𝑛𝜇 =

(︃
𝛼𝑟√

𝛼2𝑟2 − 𝑆2
, 0,

𝑆√
𝛼2𝑟2 − 𝑆2

, 0
)︃

, (A.13)
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onde 𝑥𝜇̄ denota as coordenadas planas definidas em (3.6). Adicionalmente, neste sistema
de coordenadas planas a parte espacial do projetor (A.12) possui determinante dado por
|ℎ| = 𝑟2.

Portanto, levando em conta as equações (A.7) e (A.13) encontramos que o produto
interno de Klein-Gordon adequado para a geometria examinada vem dado por

(𝜑𝜎, 𝜑𝜎′) = −𝑖
∫︁

Σ
𝑑3𝑥𝑟

⎡⎣ 1√︁
1− (𝑆/𝛼𝑟)2

𝜑𝜎

←→
𝜕𝑡 𝜑*

𝜎′ + 𝑆

𝛼𝑟2
√︁

1− (𝑆/𝛼𝑟)2
𝜑𝜎

←→
𝜕𝜙 𝜑*

𝜎′

⎤⎦ , (A.14)

onde
𝜑𝜎

←→
𝜕𝜇 𝜑*

𝜎′
·= 𝜑𝜎𝜕𝜇𝜑*

𝜎′ − 𝜑*
𝜎′𝜕𝜇𝜑𝜎.
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Para calcularmos a constante de normalização proveniente da integração em 𝑟 de
(??) vamos, primeiramente, lançar mão das coordenadas globais (A.8). Com isso, basta
usar (A.10) em (A.7) usando que o determinante induzido na superfície Σ é dado por
ℎ = 𝛼2𝑟2 − 𝑆2 e efetuar a mudança de coordenadas (3.6) nas autofunções (3.11) para
obter

𝜑𝜈𝑘𝑛(𝑥) = 𝛽
[︂
𝐽|𝑛+𝜔𝑆

𝛼 |(𝜈𝑟)𝑌|𝑛+𝜔𝑆
𝛼 |(𝜈𝑎)− 𝐽|𝑛+𝜔𝑆

𝛼 |(𝜈𝑎)𝑌|𝑛+𝜔𝑆
𝛼 |(𝜈𝑟)

]︂
e𝑖𝑛𝜑e−𝑖𝜔𝑡e𝑖𝑘𝑧, (B.1)

onde 𝑛 ∈ Z, 𝑘 ∈ R, 𝜈 ∈ R+ e 𝜔 =
√

𝜈2 + 𝑘2.

Usando (A.10) em (A.7), juntamente com ℎ = 𝛼2𝑟2 − 𝑆2 para a região 𝑟 > 𝑆/𝛼,
encontramos que a condição de normalização será

(𝜑𝜎(𝑥), 𝜑𝜎′(𝑥)) = −𝑖
∫︁

Σ
𝑑3𝑥

[︂
𝛼𝑟(𝜔 + 𝜔′)− 1

𝛼𝑟

(︁
𝑆(𝑛 + 𝑛′) + 𝑆2(𝜔 + 𝜔′)

)︁]︂
𝜑𝜎(𝑥)𝜑*

𝜎′(𝑥)

= |𝛽|2
∫︁ 2𝜋

0
𝑑𝜑 e𝑖Δ𝑛 𝜑

∫︁ ∞

−∞
𝑑𝑧 e𝑖Δ𝑘 𝑧

×
∫︁ ∞

𝑎
𝑑𝑟
[︂
𝛼𝑟(𝜔 + 𝜔′)− 1

𝛼𝑟

(︁
𝑆(𝑛 + 𝑛′) + 𝑆2(𝜔 + 𝜔′)

)︁]︂
𝑔|𝑛+𝑆𝜔

𝛼 |(𝜈𝑟, 𝜈𝑎)𝑔|𝑛′+𝑆𝜔′
𝛼 |(𝜈

′𝑟, 𝜈 ′𝑎)

= 𝛿𝑛𝑛′𝛿(𝑘 − 𝑘′)𝛿(𝜈 − 𝜈 ′), (B.2)

onde definimos
𝑔𝜈(𝑢, 𝑣) ·= [𝐽𝜈(𝑢)𝑌𝜈(𝑣)− 𝐽𝜈(𝑣)𝑌𝜈(𝑢)] . (B.3)

As integrações em 𝜑 e 𝑧 são triviais e resultam em (2𝜋)2𝛿𝑛𝑛′𝛿(𝑘 − 𝑘′) e por fim
devemos calcular somente∫︁ ∞

𝑎
𝑑𝑟
[︂
𝛼𝑟(𝜔 + 𝜔′)− 1

𝛼𝑟

(︁
2𝑛𝑆 + 𝑆2(𝜔 + 𝜔′)

)︁]︂
𝑔|𝑛+𝑆𝜔

𝛼 |(𝜈𝑟, 𝜈𝑎)𝑔|𝑛+𝑆𝜔′
𝛼 |(𝜈

′𝑟, 𝜈 ′𝑎). (B.4)

Antes de continuarmos, vamos revisitar alguns aspectos básicos da teoria de Sturm-
Liouville. Comecemos por definir um operador diferencial tal que

𝐿[𝑦](𝑥) ·=
𝑛∑︁

𝑘=0
𝑃𝑘(𝑥)𝑦(𝑘)(𝑥). (B.5)

Seja
𝑣(𝑥)𝐿[𝑢](𝑥) = 𝑣(𝑥)

𝑛∑︁
𝑘=0

𝑃𝑘(𝑥)𝑢(𝑘)(𝑥). (B.6)
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Trabalhando somente com o argumento dentro da série, podemos escrever

𝑃𝑘(𝑥)𝑢(𝑘)(𝑥) =
(︁
𝑣(𝑥)𝑃𝑘(𝑥)𝑢(𝑘−1)(𝑥)

)︁′
− (𝑣(𝑥)𝑃𝑘(𝑥)) 𝑢(𝑘−1)(𝑥)

=
(︁
𝑣(𝑥)𝑃𝑘(𝑥)𝑢(𝑘−1)(𝑥)

)︁′
−
{︂[︁

(𝑣(𝑥)𝑃𝑘(𝑥))′ 𝑢(𝑘−2)(𝑥)
]︁′
− [𝑣(𝑥)𝑃𝑘(𝑥)]′′ 𝑢(𝑘−2)(𝑥)

}︂
= [𝑣(𝑥)𝑃𝑘(𝑥)](2) 𝑢(𝑘−2)(𝑥) +

[︁
𝑣(𝑥)𝑃𝑘(𝑥)𝑢(𝑘−1)(𝑥)

]︁′
−
[︁
(𝑣(𝑥)𝑃𝑘(𝑥))′ 𝑢(𝑘−2)(𝑥)

]︁′
,

onde o símbolo 𝑦′ ·= 𝑑𝑦/𝑑𝑥 e 𝑦(𝑛) ·= 𝑑𝑛𝑦/𝑑𝑥𝑛.

Continuando com o raciocínio de usar a regra do produto para os termos que não
são a derivada total de produto de funções, ou seja, os termos que não são da forma
(𝑓(𝑥)𝑔(𝑥))′, encontramos que após aplicarmos o raciocínio 𝑘 vezes podemos escrever

𝑣(𝑥)𝐿[𝑢](𝑥) =
𝑛∑︁

𝑘=0
(−1)𝑘 [𝑣(𝑥)𝑃𝑘(𝑥)](𝑘) 𝑢(𝑥) + 𝑑

𝑑𝑥

⎧⎨⎩
𝑛∑︁

𝑘=0

𝑘−1∑︁
𝑗=0

(−1)𝑗
[︁
𝑣(𝑥)𝑃𝑘(𝑥)𝑢(𝑘−1−𝑗)

]︁⎫⎬⎭ .

Definindo
𝐿†[𝑣](𝑥) ·=

𝑛∑︁
𝑘=0

(−1)𝑘 [𝑣(𝑥)𝑃𝑘(𝑥)](𝑘) (B.7)

e
𝑄[𝑢, 𝑣](𝑥) ·=

𝑛∑︁
𝑘=0

𝑘−1∑︁
𝑗=0

(−1)𝑗
[︁
𝑣(𝑥)𝑃𝑘(𝑥)𝑢(𝑘−1−𝑗)

]︁
, (B.8)

vemos que
𝑣(𝑥)𝐿[𝑢](𝑥)− 𝑢(𝑥)𝐿†[𝑣](𝑥) = 𝑑

𝑑𝑥
𝑄[𝑢, 𝑣](𝑥). (B.9)

A equação diferencial 𝐿†[𝑦](𝑥) = 0 é chamada de equação diferencial adjunta de
𝐿[𝑦](𝑥) = 0. Chamamos uma equação diferencial de auto-adjunto se 𝐿[𝑦](𝑥) = 𝐿†[𝑦](𝑥).

Como a relação de ortogonalidade entre as funções de Bessel vêm dessas funções
serem solução da equação diferencial de Bessel, vamos supor que o operador (B.5) seja de
segunda ordem e escrever

𝐿[𝑦](𝑥) = 𝑃2(𝑥)𝑦′′(𝑥) + 𝑃1(𝑥)𝑦′(𝑥) + 𝑃0(𝑥)𝑦(𝑥) = 0 (B.10)

e sua adjunta, considerando (B.7), se dá por

𝐿†[𝑦](𝑥) = [𝑃2(𝑥)𝑦(𝑥)]′′ − [𝑃1(𝑥)𝑦(𝑥)]′ + [𝑃0(𝑥)𝑦(𝑥)] = 0

= 𝑃2(𝑥)𝑦′′(𝑥) + (2𝑃 ′
2(𝑥)− 𝑃1(𝑥))𝑦′(𝑥) + (𝑃 ′′

2 (𝑥)− 𝑃 ′
1(𝑥) + 𝑃0(𝑥))𝑦(𝑥) = 0.

Para que a equação diferencial proposta seja auto-adjunta a condição necessária será que⎧⎪⎨⎪⎩2𝑃 ′
2(𝑥)− 𝑃1(𝑥) = 𝑃1(𝑥)

𝑃 ′′
2 (𝑥)− 𝑃 ′

1(𝑥) + 𝑃0(𝑥) = 𝑃0(𝑥)
. (B.11)

Isto é, para 𝑃 ′
2(𝑥) = 𝑃1(𝑥).
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Desta forma, veja que (B.10) pode ser escrita como

[𝑃2(𝑥)𝑦′(𝑥)]′ − 𝑃 ′
2(𝑥)𝑦′(𝑥) + 𝑃1(𝑥)𝑦′(𝑥) + 𝑃0(𝑥)𝑦(𝑥) = 0

[𝑃2(𝑥)𝑦′(𝑥)]′ −������
𝑃 ′

2(𝑥)𝑦′(𝑥) +������
𝑃1(𝑥)𝑦′(𝑥) + 𝑃0(𝑥)𝑦(𝑥) = 0

Portanto, uma equação diferencial auto-adjunta de segunda ordem pode sempre
ser escrita como

[𝑝(𝑥)𝑦′(𝑥)]′ + 𝑞(𝑥)𝑦(𝑥) = 0, (B.12)

de tal forma que o operador em (B.8) vem dado por

𝑄[𝑢, 𝑣](𝑥) = 𝑝(𝑥) [𝑣(𝑥)𝑢′(𝑥)− 𝑢(𝑥)𝑣′(𝑥)] . (B.13)

Se a equação diferencial é auto-adjunta temos a conhecida identidade de Lagrange [35],
análoga à equação (B.9). Para o caso de uma equação diferencial de segunda ordem auto-
adjunta, como (B.10), a identidade de Lagrange se dá por

𝑣(𝑥)𝐿[𝑢](𝑥)− 𝑢(𝑥)𝐿[𝑣](𝑥) = 𝑑

𝑑𝑥
(𝑝(𝑥) [𝑣(𝑥)𝑢′(𝑥)− 𝑢(𝑥)𝑣′(𝑥)]) , (B.14)

para 𝑢(𝑥), 𝑣(𝑥) ∈ 𝐶2.

Finalmente, estamos em condição de definir um problema de Sturm-Liouville re-
gular. Seja um operador diferencial tal que possa ser escrito como

𝐿[𝑦](𝑥) = [𝑝(𝑥)𝑦′(𝑥)]′ + 𝑞(𝑥)𝑦(𝑥). (B.15)

Sendo assim, definimos um problema de Sturm-Liouville por⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐿[𝑦](𝑥) = −𝜆𝜌(𝑥)𝑦(𝑥) 𝑥 ∈ (𝑎, 𝑏)

𝛼1𝑦(𝑎) + 𝛼2𝑦
′(𝑎) = 0

𝛽1𝑦(𝑏) + 𝛽2𝑦
′(𝑏) = 0

, (B.16)

onde 𝛼𝑖 e 𝛽𝑖, 𝑖 = 1, 2, seja constantes.

Um problema de Sturm-Liouville regular é definido como sendo tal que⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛼2
1 + 𝛼2

2 > 0

𝛽2
1 + 𝛽2

2 > 0

𝑝(𝑥), 𝑝′(𝑥), 𝑞(𝑥), 𝜌(𝑥) contínuas em [𝑎, 𝑏]

𝑝(𝑥), 𝜌(𝑥) > 0 ∀𝑥 ∈ [𝑎, 𝑏]

. (B.17)

Um problema de Sturm-Liouville singular é aquele em que 𝑝(𝑥) > 0 e/ou 𝜌(𝑥) > 0 não
vale para um dos extremos de 𝑥, ou os dois extremos.

As soluções não triviais de (B.16) são chamadas de autofunções enquanto 𝜆 são os
autovalores e o conjunto dos autovalores constituem o espectro do problema de Sturm-
Liouville. Existem outros conceitos e propriedades importantes acerca do problema de
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Sturm-Liouville como, por exemplo, quando o problema de Sturm-Liouville é regular isso
implica que os autovalores são reais. Veja [35] para os detalhes.

Voltemos agora para o problema do trabalho. A solução de (3.9) é uma combinação
linear das funções de Bessel de primeira e segunda espécie. Tais soluções respeitam a
seguinte equação diferencial:

𝑟2 𝑑2𝑅(𝑟)
𝑑𝑟2 + 𝑟

𝑑𝑅(𝑟)
𝑑𝑟

+ (𝜈2𝑟2 − 𝛾2)𝑅(𝑟) = 0. (B.18)

Tal equação diferencial pode ser posta em sua forma auto-adjunta dividindo-a por 𝑟 e
rearranjando os termo de modo a escrever como

𝐿[𝑅](𝑟) = 𝑑

𝑑𝑟

[︃
𝑟

𝑑𝑅(𝑟)
𝑑𝑟

]︃
− 𝛾2

𝑟
𝑅(𝑟) = −𝜈2𝑟𝑅(𝑟) (B.19)

com o adicional da condição de contorno 𝑅(𝑟 = 𝑎) = 0 imposta para o problema físico
aqui considerado ser bem posto. Veja que (B.19) constitui um problema de Sturm-Liouville
regular, pois os requisitos (B.17) são cumpridos.

Sendo um problema de Sturm-Liouville regular, podemos usar o que foi desenvol-
vido acima para encontrar uma relação de ortogonalidade entre duas soluções de (B.19). A
solução, já com a condição de contorno imposta, foi apresentada em (3.11), de forma que
somente nos interessa a contribuição que depende da coordenada radial para resolvermos
completamente a constante 𝛽 na equação (B.2):

𝑔|𝑛+𝜔𝑆
𝛼 |(𝜈𝑟, 𝜈𝑎) ·=

[︂
𝐽|𝑛+𝜔𝑆

𝛼 |(𝜈𝑟)𝑌|𝑛+𝜔𝑆
𝛼 |(𝜈𝑎)− 𝐽|𝑛+𝜔𝑆

𝛼 |(𝜈𝑎)𝑌|𝑛+𝜔𝑆
𝛼 |(𝜈𝑟)

]︂
. (B.20)

Para uma relação de ortogonalidade precisamos de duas soluções que respeitem
(B.18). Tais soluções são dadas por

𝑢(𝑟) ·= 𝑔𝛾(𝜈𝑟, 𝜈𝑎) 𝑣(𝑟) ·= 𝑔𝛾′(𝜈 ′𝑟, 𝜈 ′𝑎), (B.21)

com
𝛾

·= 𝑛 + 𝑆𝜔

𝛼
(B.22)

Ambas soluções respeitam⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑

𝑑𝑟

[︃
𝑟

𝑑𝑢(𝑟)
𝑑𝑟

]︃
+
[︃

𝛾2

𝑟
− 𝜈2𝑟

]︃
𝑢(𝑟) = 0

𝑑

𝑑𝑟

[︃
𝑟

𝑑𝑣(𝑟)
𝑑𝑟

]︃
+
[︃

𝛾′2

𝑟
− 𝜈 ′2𝑟

]︃
𝑣(𝑟) = 0

. (B.23)

Multiplicando a primeira equação diferencial por 𝑣(𝑟), a segunda por 𝑢(𝑟) e subtraindo a
primeira da segunda, encontramos[︂

(𝜈2 − 𝜈 ′2)𝑟 − 1
𝑟

(𝛾2 − 𝛾′2)
]︂

𝑢(𝑟)𝑣(𝑟) = 𝑑

𝑑𝑟

[︃
𝑟

(︃
𝑢(𝑟)𝑑𝑣(𝑟)

𝑑𝑟
− 𝑑𝑢(𝑟)

𝑑𝑟
𝑣(𝑟)

)︃]︃
. (B.24)
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Pela definição de 𝛾 em (B.22) e as deltas encontradas ao integramos em 𝜑 e 𝑧 a equação
(B.2), discutida brevemente no começo deste apêndice, nos possibilita escrever

𝛾2 − 𝛾′2 =
(︂

𝑛 + 𝑆𝜔

𝛼

)︂2
−
(︃

𝑛 + 𝑆𝜔′

𝛼

)︃2

= (𝜔 − 𝜔′)
𝛼2

[︁
𝑆2(𝜔 + 𝜔′) + 2𝑛𝑆

]︁
(B.25)

e utilizando que 𝜔2 = 𝜈2 + 𝑘2, equação (3.12), encontra-se

𝜈2 − 𝜈 ′2 = (𝜔 + 𝜔′)(𝜔 − 𝜔′). (B.26)

Assim, a equação (B.24) pode ser reescrita como[︃
(𝜔 + 𝜔′)(𝜔 − 𝜔′)𝑟 − (𝜔 − 𝜔′)

𝛼2𝑟

(︁
𝑆2(𝜔 + 𝜔′) + 2𝑛𝑆

)︁]︃
𝑢(𝑟)𝑣(𝑟) =

= 𝑑

𝑑𝑟

[︃
𝑟

(︃
𝑢(𝑟)𝑑𝑣(𝑟)

𝑑𝑟
− 𝑑𝑢(𝑟)

𝑑𝑟
𝑣(𝑟)

)︃]︃
. (B.27)

Agora, multiplique ambos os lados da equação acima por
𝛼

(𝜔 − 𝜔′)
para encontrarmos[︂
𝛼𝑟(𝜔 + 𝜔′)− 1

𝛼𝑟

(︁
𝑆2(𝜔 + 𝜔′) + 2𝑛𝑆

)︁]︂
𝑢(𝑟)𝑣(𝑟) = 𝛼

(𝜔 − 𝜔′)
𝑑

𝑑𝑟

[︃
𝑟

(︃
𝑢(𝑟)𝑑𝑣(𝑟)

𝑑𝑟
− 𝑑𝑢(𝑟)

𝑑𝑟
𝑣(𝑟)

)︃]︃
.

Por fim, integrando ambos os lados no domínio 𝑟 ∈ (𝑎,∞), usando o teorema fundamental
do cálculo no lado direito e o fato de que as funções 𝑢(𝑟) e 𝑣(𝑟) se anulam em 𝑟 = 𝑎 pela
condição de contorno de Dirichlet, obtemos finalmente que a relação de ortogonalidade
virá dada por ∫︁ ∞

𝑎
𝑑𝑟
[︂
𝛼𝑟(𝜔 + 𝜔′)− 1

𝛼𝑟

(︁
2𝑛𝑆 + 𝑆2(𝜔 + 𝜔′)

)︁]︂
𝑢(𝑟)𝑣(𝑟) =

= lim
𝑟→∞

{︃
𝛼

(𝜔 − 𝜔′)

[︃
𝑟

(︃
𝑢(𝑟)𝑑𝑣(𝑟)

𝑑𝑟
− 𝑑𝑢(𝑟)

𝑑𝑟
𝑣(𝑟)

)︃]︃}︃
. (B.28)

Portanto, se resolvermos o limite ao lado direito teremos a relação de ortogonalidade entre
duas soluções da equação de Klein-Gordon para uma condição de contorno de Dirichlet
no espaço de fundo de uma corda cósmica girante, equação (3.11).

Antes de resolver o limite, vamos propor uma mudança em

𝑔𝛾(𝜈𝑟, 𝜈𝑎) = [𝐽𝛾(𝜈𝑟)𝑌𝛾(𝜈𝑎)− 𝐽𝛾(𝜈𝑎)𝑌𝛾(𝜈𝑟)]

simplesmente por conveniência matemática seguindo o esquema geométrico

𝑌𝛾(𝜈𝑎)

𝐽𝛾(𝜈𝑎)

√︁
𝐽 2
𝛾 (𝜈𝑎) +

𝑌 2
𝛾 (𝜈𝑎)

𝜃𝜈𝛾

.
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Veja que podemos reescrever

cos(𝜃𝜈𝛾) = 𝑌𝛾(𝜈𝑎)√︁
𝐽2

𝛾 (𝜈𝑎) + 𝑌 2
𝛾 (𝜈𝑎)

sin(𝜃𝜈𝛾) = 𝐽𝛾(𝜈𝑎)√︁
𝐽2

𝛾 (𝜈𝑎) + 𝑌 2
𝛾 (𝜈𝑎)

(B.29)

e então o ângulo 𝜃𝜈𝛾 vem dado por

tan(𝜃𝜈𝛾) = 𝑌𝛾(𝜈𝑎)
𝐽𝛾(𝜈𝑎) . (B.30)

Desta forma, podemos escrever

𝑔𝛾(𝜈𝑟, 𝜈𝑎) =
√︁

𝐽2
𝛾 (𝜈𝑎) + 𝑌 2

𝛾 (𝜈𝑎) [cos(𝜃𝜈𝛾)𝐽𝛾(𝜈𝑟)− sin(𝜃𝜈𝛾)𝑌𝛾(𝜈𝑟)] .

Como estamos interessados em resolver um limite quando o argumento de uma
combinação de funções de Bessel está tendendo ao infinito, podemos escrever estas funções
assintoticamente como sendo [20]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐽𝜈(𝑥) =
√︃

2
𝜋𝑥

cos
(︂

𝑥− 𝜋

4 (1 + 2𝜈)
)︂

𝑌𝜈(𝑥) =
√︃

2
𝜋𝑥

sin
(︂

𝑥− 𝜋

4 (1 + 2𝜈)
)︂ . (B.31)

Desta forma, assintoticamente temos que

𝑔𝛾(𝜈𝑟, 𝜈𝑎) = 𝛽𝜈𝛾

√︃
2

𝜋𝜈𝑟
cos(Ω𝜈𝛾 + 𝜃𝜈𝛾), (B.32)

de forma que foi definido
Ω𝜈𝛾

·= 𝜈𝑟 − 𝜋

4 (1 + 2𝛾) (B.33)

e
𝛽𝜈𝛾

·=
√︁

𝐽2
𝛾 (𝜈𝑎) + 𝑌 2

𝛾 (𝜈𝑎). (B.34)

Ainda, a derivada da função 𝑔𝛾(𝜈𝑟, 𝜈𝑎) vem dada por

𝑑

𝑑𝑟
𝑔𝛾(𝜈𝑟, 𝜈𝑎) =

[︃
− 𝛽𝜈𝛾

2
√

𝜈𝑟3/2 cos(Ω𝜈𝛾 + 𝜃𝜈𝛾)− 𝛽𝜈𝛾𝜈√
𝛾𝑟

sin(Ω𝜈𝛾 + 𝜃𝜈𝛾)
]︃

. (B.35)

Usando (B.35) e (B.32) no termo dentro dos colchetes no lado direito de (B.28)
encontramos(︃

𝑢(𝑟)𝑑𝑣(𝑟)
𝑑𝑟
− 𝑑𝑢(𝑟)

𝑑𝑟
𝑣(𝑟)

)︃
= 𝛽𝜈𝛾𝛽𝜈′𝛾′

𝑟
√

𝜈𝜈 ′

× [𝜈 cos(Ω𝜈′𝛾′ + 𝜃𝜈′𝛾′) sin(Ω𝜈𝛾 + 𝜃𝜈𝛾)− 𝜈 ′ cos(Ω𝜈𝛾 + 𝜃𝜈𝛾) sin(Ω𝜈′𝛾′ + 𝜃𝜈′𝛾′)] .

Usando a identidade

[𝜈 cos(Ω𝜈′𝛾′ + 𝜃𝜈′𝛾′) sin(Ω𝜈𝛾 + 𝜃𝜈𝛾)− 𝜈 ′ cos(Ω𝜈𝛾 + 𝜃𝜈𝛾) sin(Ω𝜈′𝛾′ + 𝜃𝜈′𝛾′)] =

= 1
2 [(𝜈 + 𝜈 ′) sin((Ω𝜈𝛾 − Ω𝜈′𝛾′) + (𝜃𝜈𝛾 − 𝜃𝜈′𝛾′)) + (𝜈 − 𝜈 ′) sin((Ω𝜈′𝛾′ + Ω𝜈𝛾) + (𝜃𝜈𝛾 + 𝜃𝜈′𝛾′))]
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e notando que
𝜔 − 𝜔′ = 𝜈2 − 𝜈 ′2

𝜔 + 𝜔′ (B.36)

podemos reescrever (B.28) como sendo

𝐼
·=
∫︁ ∞

𝑎
𝑑𝑟
[︂
𝛼𝑟(𝜔 + 𝜔′)− 1

𝛼𝑟

(︁
2𝑛𝑆 + 𝑆2(𝜔 + 𝜔′)

)︁]︂
𝑢(𝑟)𝑣(𝑟)

= lim
𝑟→∞

(𝜔 + 𝜔′)𝛼
𝜋

√︁
𝐽2

𝛾 (𝜈𝑎) + 𝑌 2
𝛾 (𝜈𝑎)

√︁
𝐽2

𝛾′(𝜈 ′𝑎) + 𝑌 2
𝛾′(𝜈 ′𝑎)

√
𝜈𝜈 ′

×
[︃

sin((Ω𝜈𝛾 − Ω𝜈′𝛾′) + (𝜃𝜈𝛾 − 𝜃𝜈′𝛾′))
𝜈 − 𝜈 ′ + sin((Ω𝜈𝛾 + Ω𝜈′𝛾′) + (𝜃𝜈𝛾 + 𝜃𝜈′𝛾′)

𝜈 + 𝜈 ′

]︃
. (B.37)

Mas, veja que usando (B.33) encontramos

Ω𝜈𝛾 − Ω𝜈′𝛾′ = (𝜈 − 𝜈 ′)𝑟 − 2(𝛾 − 𝛾′) ·= (𝜈 − 𝜈 ′)𝑟 −Δ𝛾𝛾′

Ω𝜈𝛾 + Ω𝜈′𝛾′ = (𝜈 − 𝜈 ′)𝑟 − 2(𝛾 − 𝛾′)− 𝜋

2
·= (𝜈 − 𝜈 ′)𝑟 −Δ𝛾𝛾′ − 𝜋

2 .

Assim, vemos que a integração que nos resulta na relação de ortogonalidade é dada pelo
seguinte limite

𝐼 = lim
𝑟→∞

(𝜔 + 𝜔′)𝛼
𝜋

√︁
𝐽2

𝛾 (𝜈𝑎) + 𝑌 2
𝛾 (𝜈𝑎)

√︁
𝐽2

𝛾′(𝜈 ′𝑎) + 𝑌 2
𝛾′(𝜈 ′𝑎)

√
𝜈𝜈 ′

×

⎧⎨⎩sin
[︁
(𝜈 − 𝜈 ′)𝑟 + 𝛿

]︁
(𝜈 − 𝜈 ′) +

sin
[︁
(𝜈 + 𝜈 ′)𝑟 + 𝛿 − 𝜋/2

]︁
(𝜈 + 𝜈 ′)

⎫⎬⎭ ,

onde definimos

𝛿
·= −Δ𝛾𝛾′ + (𝜃𝜈𝛾 − 𝜃𝜈′𝛾′) 𝛿

·= −Δ𝛾𝛾′ + (𝜃𝜈𝛾 + 𝜃𝜈′𝛾′). (B.38)

Veja que o primeiro termo dentro das chaves diverge para 𝜈 = 𝜈 ′, enquanto o
segundo não tem esta divergência pois 𝜈, 𝜈 ′ ∈ R+. Abrindo o primeiro termo dentro das
chaves usando a relação entre a soma de arcos e lançando mão da seguinte representação
da delta de Dirac [1]

lim
𝑟→∞

sin(𝜅𝑟)
𝜅

= 𝜋𝛿(𝜅) (B.39)

vamos encontrar

𝐿 = lim
𝑟→∞

⎧⎨⎩sin
[︁
(𝜈 − 𝜈 ′)𝑟 + 𝛿

]︁
(𝜈 − 𝜈 ′) +

sin
[︁
(𝜈 + 𝜈 ′)𝑟 + 𝛿 − 𝜋/2

]︁
(𝜈 + 𝜈 ′)

⎫⎬⎭
=

⎧⎨⎩cos(𝛿)𝜋𝛿(𝜈 − 𝜈 ′)) + sin(𝛿) lim
𝑟→∞

cos [(𝜈 − 𝜈 ′)𝑟]
(𝜈 − 𝜈 ′) − lim

𝑟→∞

cos
[︁
(𝜈 + 𝜈 ′)𝑟 + 𝛿

]︁
(𝜈 + 𝜈 ′)

⎫⎬⎭ .

Usando o lema de Riemann-Lebesgue [34, eq. 1.2] é possível mostrar que os limites
nos cossenos vão a zero no sentido de distribuições. Portanto, notando que ao usarmos
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que a delta de Dirac avalia 𝜈 = 𝜈 ′ isso implica em 𝛿 = 0 e com isso tudo somos capazes
de mostrar que∫︁ ∞

𝑎
𝑑𝑟
[︂
𝛼𝑟(𝜔 + 𝜔′)− 1

𝛼𝑟

(︁
2𝑛𝑆 + 𝑆2(𝜔 + 𝜔′)

)︁]︂
𝑔𝛾(𝜈𝑟, 𝜈𝑎)𝑔𝛾′(𝜈 ′𝑟, 𝜈 ′𝑎) =

= 2𝜔𝛼

[︃
𝑌 2

𝛾 (𝜈𝑎) + 𝐽2
𝛾 (𝜈𝑎)

𝜈

]︃
𝛿(𝜈 − 𝜈 ′). (B.40)

Desta forma, a condição de normalização apresentada no início deste apêndice,
equação (B.2), será dada por

(𝜑𝜎, 𝜑𝜎′) = |𝛽|2 2(2𝜋)2𝜔𝛼

[︃
𝑌 2

𝛾 (𝜈𝑎) + 𝐽2
𝛾 (𝜈𝑎)

𝜈

]︃
𝛿(𝜈 − 𝜈 ′)𝛿(𝑘 − 𝑘′)𝛿𝑛𝑛′ . (B.41)

Ou ainda, para que (𝜑𝜎, 𝜑𝜎′) = 𝛿(𝜈 − 𝜈 ′)𝛿(𝑘 − 𝑘′)𝛿𝑛𝑛′ a constante |𝛽|2 deve ser tal que

|𝛽|2 = 𝜈

2(2𝜋)2𝜔𝛼
[︁
𝑌 2

𝛾 (𝜈𝑎) + 𝐽2
𝛾 (𝜈𝑎)

]︁ . (B.42)
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