Universidade Federal de Itajubá Programa de Pós–Graduação em Matemática

Existência de configurações centrais convexas e côncavas no problema de 4 corpos

André Rubens Lima

Itajubá, 9 de maio de 2016

Universidade Federal de Itajubá Programa de Pós–Graduação em Matemática

André Rubens Lima

Existência de configurações centrais convexas e côncavas no problema de 4 corpos

Dissertação submetida ao Programa de Pós–Graduação em Matemática como parte dos requisitos para obtenção do Título de Mestre em Ciências em Matemática

Área de Concentração: Equações Diferenciais Ordinárias

Orientador: Prof. Dr. Antônio Carlos Fernandes

Itajubá – MG 9 de maio de 2016

Universidade Federal de Itajubá Programa de Pós–Graduação em Matemática

André Rubens Lima

Existência de configurações centrais convexas e côncavas no problema de 4 corpos

Dissertação aprovada por banca examinadora em 11 de Março de 2016, conferindo ao autor o título de Mestre em Ciências em Matemática.

Banca Examinadora:

Prof. Antonio Carlos Fernandes (Orientador)Prof. Lucas Ruiz dos SantosProf. Luci Any Francisco Roberto

Itajubá – MG fevereiro de 2016

Aos meus pais, Reinaldo Ferreira Lima e Inês Aparecida Santos Lima e a minha irmã Maria Aparecida Santos Lima. dedico

i

Agradecimentos

Agradeço primeiramente a Deus, força de meus passos e essência da minha existência.

Aos meus pais, Reinaldo Ferreira Lima e Inês Aparecida Santos Lima, por todo apoio, carinho e amor incondicional que tem por mim, tenho certeza de que sem vocês não teria chegado nem a metade do caminho que já trilei até hoje, se sou o que sou e, estou onde estou, é por causa da luta diária de vocês. A minha irmã Maria (minha eterna Bebê) pela qual luto até hoje. À todos os meus parentes que direta, ou indiretamente me incentivaram a chegar aqui, em especial agradeço minha madrinha Zilda e a minha prima Lilian, que sempre me ajudaram de todas as formas quando precisei.

A Lucivânia (Vaninha), que me ajudou nos momentos difíceis, me dizendo que tudo ia dar certo, que Deus está comigo a todo instante e por este motivo tudo iria terminar bem, agradeço a sua família, em especial a Dona Neuza, por sempre acreditar em mim.

Aos meus amigos da eterna Ala 1 que vêm desde a graduação, em especial ao Lucas Costa, Túlio, Anderson Capelete, Diego Generoso, Guemael e ao meu eterno amigo que sempre o encontrava com um sorriso, Renato Sagiorato (in memorian), você faz falta irmão.

Ao Professor Antonio Carlos, meus sinceros agradecimentos pela competente e dedicada orientação, pelo ótimo professor e pesquisador que és, e, principalmente, por ser uma pessoa de grande humildade e honestidade, agradeço todos os ensinamentos e conversas, aprendi muito mais que matemática.

Aos meus eternos amigos, Adílio, Jaqueline, Regiele e Elaine. À todos os amigos que conheci aqui em Itajubá, ao pessoal da Pastoral Universitária e aos meus irmãos do GOU.

Aos meus amigos do mestrado pelas discussões, conversas e risadas, sem vocês as coisas

teriam sido muito mais difíceis, obrigado a cada um de vocês.

 $\rm \AA$ todas as pessoas que possa estar esquecendo, agradeço imensamente.

"É impossível proceder ao infinito na série dos seres que se geram sucessivamente. Deve-se admitir, por isso, que existe um ser necessário que tenha em si toda a razão de sua existência, e do qual procedam todos os outros seres. A este chamamos Deus." (São Tomás de Aquino)

Resumo

No presente trabalho, tem-se como objetivo, estudar a existência e a unicidade de certas configurações centrais convexas e côncavas dentro do problema de n corpos, este, é fundamental dentro do estudo da Mecânica Celeste. Iniciaremos definindo o problema de n corpos e suas definições, que serão de grande valia para as demonstrações posteriores. Introduziremos o conceito das equações de razão de massa, e através dela definir as equações de compatibilidade que é de primordial importância para o estudo das configurações centrais. Falaremos que dentro do problema de n corpos, para $n \ge 3$ não existe um método para integrar este problema via quadraturas, veremos alguns casos de soluções particulares, e definiremos o conceito de configurações centrais. Iremos definir as equações de Andoyer e algumas aplicações diretas sobre estas. Mostraremos o Teorema de Existência para configurações centrais. Mostraremos resultados sobre configurações centrais convexas, mais especificamente, configurações do tipo losango e do tipo trapézio isósceles. Por conseguinte, definiremos a configurações centrais côncavas e alguns resultados. No último capítulo mostraremos alguns resultados para um futuro trabalho sobre uma configuração central convexa do tipo trapézio, porém, retirando a simetria.

Palavras–chave: Problema de *n* Corpos, Configuração Central, Equações de Andoyer, Equações de Compatibilidade.

Abstract

In this paper, the goal is to study the existence and the uniqueness of certain central configurations, both convex and concave, within the problem of n bodies. Which is of fundamental relevance when studying Celestial Mechanics. We shall start by outlining the problem of n bodies and its definitions, which will be of great value during future demonstrations. We will introduce the concept involving the equations ratio of mass and, by its means, define the equations of consistency that are of paramount importance for the study of central configurations. We shall say that, within the problem of n bodies, for $n \geq 3$, there is no method for integrating it through squares, we will check some cases of particular solutions and we will define the concept of central configuration. We are going to define the Andoyer equations and some of its direct applications. We will present the Theorem of Existence for central configurations along with the results on central convex configurations, that being, diamond and isosceles trapezium types. Furthermore, we will define the central concave configurations and some results. In the last chapter, we will present some results for a future study on a trapezium type central convex configuration, however, removing symmetry.

Keywords: n-body problem, central configuration, Andoyer equations consistency.

Sumário

Agradecimentos					
Resumo					
Abstract					
Índice					
Li	sta de Figu	ras	ix		
1	Introduçã	D	1		
2	Prelimina	res	3		
	2.0.1	Não-integrabilidade via quadraturas	5		
	2.0.2	Soluções particulares do problema de n corpos \ldots \ldots \ldots \ldots	7		
	2.0.3	Configurações centrais	11		
	2.0.4	Equações de compatibilidade e razões de massa	13		
	2.0.5	Equações de Andoyer	18		
	2.0.6	Aplicações das equações de Andoyer	22		
3	Configura	ções centrais convexas	27		
	3.0.1	Teorema de existência	27		
	3.0.2	Configuração convexa do tipo trapézio	34		
	3.0.3	Unicidade no caso da configuração do tipo losango	40		

SUMÁRIO

4	Configura	ções centrais côncavas	44
	4.0.1	Resultados preliminares	44
	4.0.2	Teorema de caracterização geométrica de uma configuração côncava	47
5	Trabalhos	futuros	52
D:		Funções 1	00 60
Dibilograna			04

Lista de Figuras

2.1	Solução de equilíbrio relativo de Euler	8
2.2	Solução de equilíbrio relativo de Lagrange	9
2.3	Solução homográfica de Euler	10
2.4	Solução homográfica de Lagrange.	10
2.5	Não pode ser uma configuração central.	23
2.6	Pode ser uma configuração central	23
2.7	configuração colinear	25
3.1	Ponto de início da construção convexa.	28
3.2	Construção convexa.	29
3.3	Curvas de $(R_{23} - R_0)(R_{14} - R_0) = (R_0 - R_{13})(R_0 - R_{24})$	30
3.4	Curva $\mu(\rho)$	31
3.5	Curvas de $S_{12}S_{34} = (R_{12} - R_0)(R_{34} - R_0)$	31
3.6	Configuração convexa.	32
3.7	Construção convexa.	33
3.8	Gráfico de F	36
3.9	Gráfico de G	37
3.10	Gráfico de F_1	37
3.11	Gráfico de G_1	38
3.12	Função T	39
3.13	Configuração planar convexa de 4 corpos.	41
3.14	Derivada em relação a x	43

LISTA DE FIGURAS

4.1	Regiões admissíveis no caso côncavo	47
5.1	Configuração Trapézio não isósceles	52
5.2	Razão de massa M_{43} junto da função T_1	53
5.3	Razão de massa M_{21} junto da função T_1	54
5.4	Razão de massa M_{32} junto da função T_1	54
5.5	Razão de massa M_{31} junto da função T_1	55
5.6	Razão de massa M_{42} junto da função T_1	55
5.7	Razão de massa M_{41} junto da função T_1	56
5.8	Função T_1	57
5.9	Função T_2	58

Capítulo 1

Introdução

O fascínio e o interesse a respeito dos fenômenos celestes vêm desde as primícias da humanidade. Vê-se então, dentro da Astronomia um ramo dessa ciência chamada Mecânica Celeste, tal ramo configura-se como o estudo da dinâmica dos corpos sob interação gravitacional. A Mecânica Celeste, a fim de ser entendida, tem seu ápice com Isaac Newton, quem em 1666 formula a Lei de Gravitação Universal, porém, a publica somente em 1687 em seu *Philosophiae Naturalis Principia Mathematica*, vide [11]. Vejamos como é formulada tal lei.

Lei da Gravitação Universal: A interação gravitacional entre dois corpos pode ser expressa por uma força central, atrativa, proporcional ao produto das massas destes corpos e inversamente proporcional ao quadrado da distância entre eles, vide [2]. Desta forma, em norma, a força que um corpo exerce no outro é dada por

$$F = \frac{Gm_1m_2}{d^2},$$

onde m_1 e m_2 representam as massas dos corpos, d a distância entre eles e G é uma constante de proporcionalidade. Aqui tomamos G = 1.

Isto posto, é colocado o problema de n corpos, ao qual damos o seguinte entendimento. Dado um sistema isolado no espaço, formado por n corpos com massas m_1, \ldots, m_n interagindo pela lei da gravitação universal, tem-se a seguinte pergunta: Qual a dinâmica das posições destes corpos? [2]. No âmbito desse trabalho, veremos no Capítulo 2 que dentro do problema de n corpos, para $n \ge 3$, não é possível integrar este problema via quadraturas, tornando-se assim significativa a descoberta de soluções particulares. Tais soluções serão definidas na Seção 2.0.3. Em seguida, vamos apresentar a definição de configurações centrais, que são de grande importância dentro do estudo da Mecânica Celeste.

Dando prosseguimento, vamos definir as equações de compatibilidade e as equações de razão de massa. As equações de compatibilidade, junto das equações de razão de massa serão de grande valia para o estudo da existência de configurações centrais convexas e côncavas, que são tratadas no Capítulo 3 e Capítulo 4, respectivamente. Veremos a seguir as equações de Andoyer, que tem uso na determinação de configurações centrais.

Em sequência, no Capítulo 3 trabalharemos com as configurações centrais convexas, enunciaremos e demonstraremos o Teorema de Existência, mostraremos a existência e a unicidade de uma configuração central do tipo trapézio. Em seguida mostraremos a unicidade de uma configuração central na forma de um losango. A seguir, no Capítulo 4 enunciaremos lemas importantes para o estudo de uma configuração central côncava, enunciaremos e mostraremos o teorema sobre a existência de tais configurações, mostrada por [6].

Finalmente, no Capítulo 5 trataremos de um trabalho futuro. Este tem como objetivo mostrar a existência de configurações centrais do tipo trapézio isósceles, entretanto sem nenhuma reta de simetria.

Capítulo 2

Preliminares

Escolhamos um referencial inercial, o qual modelamos como o \mathbb{R}^d , d = 1, 2, 3. Considere então $n \ge 2$ partículas, indexadas por i = 1, 2, ..., n, com massas $m_i \ge 0$ e que ocupam, no instante $t \in \mathbb{R}$, as posições $r_i(t) = (x_{i1}(t), x_{i2}(t), x_{i3}(t))$. O problema fundamental da mecânica celeste é o de estudar a dinâmica do sistema sob a ação das forças gravitacionais. A força de atração gravitacional que a *j*-ésima partícula exerce sobre a *i*-ésima, onde $j \ne i$, é dada pela Lei da Gravitação Universal,

$$F_{ij} = -Gm_i m_j \frac{r_i - r_j}{|r_i - r_j|^3}$$

Note que a força $F_{ij} = -F_{ji}$, é uma manifestação da $3^{\underline{a}}$ Lei de Newton.

A formulação matemática do problema de *n*-corpos gravitacional Newtoniano é a seguinte: dadas as posições $r_i(t_0)$ e velocidades $\dot{r}_i(t_0)$ de todas as partículas (i = 1, 2, ..., n)num instante inicial $t_0 \in \mathbb{R}$, satisfazendo $r_i(t_0) \neq r_j(t_0)$, se $i \neq j$; estudar a respectiva solução do seguinte sistema de equações diferenciais:

$$m_i \ddot{r}_i = -\sum_{j=1, j \neq i}^n m_i m_j \frac{r_i - r_j}{|r_i - r_j|^3},$$
(2.1)

para $i = 1, 2, \ldots, n$ e tomando G = 1.

Denotaremos por $r_{ij} = |r_i - r_j|$, a distância Euclidiana entre os corpos *i* e *j*. E expressemos por $r = (r_1, \ldots, r_n) \in \mathbb{R}^{dn}$ o vetor configuração.

Agora, vamos definir dentro do problema Newtoniano de n corpos as seguintes quantidades: i) Chamaremos de conjunto colisão o seguinte conjunto

$$\Delta = \bigcup_{i \neq j} \Delta_{ij},$$

onde

$$\Delta_{ij} = \left\{ Q = (r_1, \dots, r_n) \in \mathbb{R}^{3n} / r_i = r_j, i \neq j \right\}.$$

ii) Chamaremos de massa total do sistema a seguinte quantidade escalar

$$M = \sum_{i=1}^{n} m_i.$$

iii) Chamaremos de momento linear total do sistema o seguinte vetor

$$P = \sum_{i=1}^{n} m_i \dot{r_i}.$$

As componentes do vetor P são constantes ao longo das soluções, isto implica que o centro de massa do sistema, definido a seguir, tem movimento retilíneo e uniforme.

iv) Chamaremos de centro de massa do sistema o seguinte vetor

$$C = \frac{1}{M} \sum_{i=1}^{n} m_i r_i.$$
 (2.2)

v) Chamaremos de energia cinética total do sistema a quantidade escalar

$$T = \frac{1}{2} \sum_{i=1}^{n} m_i |\dot{r}_i|^2.$$
(2.3)

vi) Chamaremos de energia potencial do sistema a seguinte quantidade escalar

$$V = -\sum_{i < j} \frac{m_i m_j}{r_{ij}}.$$
(2.4)

vii) Chamaremos de energia total do sistema a seguinte quantidade escalar

$$E = T + V = \frac{1}{2} \sum_{i=1}^{n} m_i |\dot{r_i}|^2 - \sum_{i < j} \frac{m_i m_j}{r_{ij}}.$$

A energia total do sistema é constante ao longo das soluções.

$$L = \sum_{i=1}^{n} m_i r_i \wedge \dot{r_i}.$$
(2.5)

Pode-se mostrar que as componentes do momento angular total do sistema são constantes ao longo das soluções do sistema (2.1).

ix) chamaremos de referencial baricêntrico, um referencial inercial, tal que

$$M.C = \sum_{i=1}^{n} m_i r_i = 0,$$

assim, considere daqui por diante as definições com relação ao referencial baricêntrico ou referencial do centro de massa.

2.0.1 Não-integrabilidade via quadraturas

Utilizando uma notação condensada, podemos escrever a equação (2.1) da seguinte forma,

$$N\ddot{Q} = -\nabla V, \tag{2.6}$$

onde

$$N = diag[m_1, m_1, m_1, m_2, m_2, m_2, \dots, m_n, m_n, m_n],$$

é uma matriz diagonal $3n \times 3n$,

$$Q = (r_1, r_2, \dots, r_n)^t,$$

é um vetor de \mathbb{R}^{3n} ,

$$\nabla = (\nabla_1, \nabla_2, \dots, \nabla_n)^t,$$

é um operador diferencial, com ∇_k sendo o gradiente das coordenadas do k-ésimo corpo.

Tomemos condições iniciais da seguinte forma,

$$Q(0) \in \{\mathbb{R}^{3n} \setminus \Delta\},\$$

е

 $\dot{Q}(0) \in \mathbb{R}^{3n}.$

CAPÍTULO 2. PRELIMINARES

É possível pensar no problema de n corpos como um problema de valor inicial,

$$\begin{cases} \dot{S} = F(S) \equiv \left(\dot{Q}, -M^{-1}\nabla V\right) \\ S(0) = \left(Q(0), \dot{Q}(0)\right) \in \{\mathbb{R}^{3n} \setminus \Delta\} \times \mathbb{R}^{3n}, \end{cases}$$
(2.7)

onde $S = (Q, \dot{Q}) \in \mathbb{R}^{6n} \in F : \mathbb{R}^{3n} \setminus \Delta \longrightarrow \mathbb{R}^{6n}$ é continuamente diferenciável em todo o domínio definido.

Desta forma, podemos aplicar o Teorema de Existência e Unicidade para garantir que existe $\delta \in \mathbb{R}$ positivo e uma única aplicação

$$S: (\delta, -\delta): \longrightarrow \mathbb{R}^{6n}$$
$$t \longmapsto S(t) = \left(Q(t), \dot{Q}(t)\right)$$

solução de (2.1). Em tal ponto chegamos a um impasse, embora tal solução exista e seja única, esta não pode ser determinada via quadraturas.

Até o final do século XIX as integrais de movimento, chamadas também de *Leis de Conservação*, eram de interesse primordial, pois a ideia é que cada integral permitiria *reduzir* a dimensão do sistema de uma unidade de forma que, de posse de um número suficiente de integrais independentes, seria possível resolver um sistema de forma explícita ou ter conhecimento de suas trajetórias, tal ideia é chamada de *método das quadraturas*, achar soluções através de um número finito de operações elementares.

Definição 2.0.1. Uma integral de movimento é uma função real diferenciável não constante $\Lambda(x, v, t)$ tal que

$$\dot{\Lambda}(x(t), v(t), t) = 0,$$

ou seja, $\Lambda(x(t), v(t), t) = C$, onde C é determinada pelas condições iniciais.

Das definições acima, conhecemos dez integrais de movimento clássicas do problema de n corpos em \mathbb{R}^3 , que são: uma para a energia total, três para as componentes do momento linear total, três para as componentes do centro de massa do sistema e três integrais de movimento para as componentes do momento angular total.

O problema de dois corpos é integrável via quadraturas. No caso de 3 corpos, as 10 integrais clássicas reduzem o problema de 18 para 8 dimensões. Porém em 1887 Heinrich

Bruns provou que no problema de 3 corpos não existem integrais primeiras além das 10 integrais clássicas e que sejam funções algébricas das posições, velocidade e do tempo.

Teorema 2.0.1 (Bruns). [3] No Problema Newtoniano de (n + 1)-corpos em \mathbb{R}^d , com $n \geq 2$ e $1 \leq d \leq n + 1$ toda integral primeira que seja algébrica com respeito às posições, momentos e tempo é uma função algébrica das integrais primeiras clássicas: a energia, as d(d-1)/2 componentes do momento angular total e as 2d integrais que vêm do movimento retilíneo uniforme do centro de massa.

Concluímos, do Teorema de Bruns que, para $n \ge 3$ o problema não é integrável via quadraturas. Por este fato, tornam-se importantes quaisquer soluções particulares, que veremos a seguir na Seção 2.0.2.

2.0.2 Soluções particulares do problema de n corpos

Comentamos na Seção 2.0.1 que o Problema de n corpos para $n \ge 3$ não pode ser integrado via quadraturas, por este fato torna-se de grande valia o estudo de soluções particulares, sendo elas a homotética, a de equilíbrio relativo e a homográfica. Vamos defini-las abaixo e depois ir em direção à definição de configurações centrais do problema de n corpos, as quais usaremos para separar o problema em n problemas de um corpo sob ação de um campo central.

Definição 2.0.2. No problema Newtoniano de n corpos, chamaremos uma solução de homotética se existe uma função positiva, $\omega(t) > 0$, tal que a dinâmica dos corpos é dada por

$$Q(t) = \omega(t)Q_0, \tag{2.8}$$

 $com \ Q_0 \in X = \{\mathbb{R}^{3n} \setminus \Delta\}$ e para todo t no intervalo maximal de solução.

Definição 2.0.3. No problema Newtoniano de n corpos, chamaremos de Configuração Central uma solução da equação

$$\lambda MQ = -\nabla V(Q).$$

Esta equação será chamada de equação das configurações centrais

Definição 2.0.4. No problema Newtoniano de n corpos, chamaremos uma solução de equilíbrio relativo se existe uma aplicação no grupo de transformações rígidas de \mathbb{R}^3 , $g(t) \in SO(3)$, tal que a dinâmica dos corpos é dada por

$$Q(t) = g(t)Q_0, \tag{2.9}$$

 $com \ Q_0 \in X = \{\mathbb{R}^{3n} \setminus \Delta\}$ e para todo t no intervalo maximal de solução.

Aqui, entendemos a ação do grupo $Eucl(\mathbb{R}^3)$ sobre \mathbb{R}^3 como a ação em cada corpo em \mathbb{R}^3 ,

$$g(t)Q_0 = (g(t)r_{01}, \dots, g(t)r_{0n})^t.$$

Vejamos abaixo duas figuras que ilustram a definição da solução de equilíbrio relativo. A Figura 2.1 é uma configuração central colinear de Euler, a segunda, a Figura 2.2, é uma configuração central de Lagrange, nesse caso um triângulo equilátero. As Figuras 2.1 e 2.2, podem ser vistas em [4].

Figura 2.1: Solução de equilíbrio relativo de Euler.

Figura 2.2: Solução de equilíbrio relativo de Lagrange.

Definição 2.0.5. No problema Newtoniano de n corpos, chamaremos uma solução de homográfica se existe uma aplicação g(t) no grupo de transformações rígidas de \mathbb{R}^3 , $SO(3) \subset Eucl(\mathbb{R}^3)$ e, uma função positiva $\omega(t)$ tais que a dinâmica dos corpos é dada por

$$Q(t) = \omega(t)g(t)Q_0, \qquad (2.10)$$

 $com \ Q_0 \in X = \{\mathbb{R}^{3n} \setminus \Delta\}$ e para todo t no intervalo maximal de solução.

Aqui, entendemos novamente, a ação do grupo $Eucl(\mathbb{R}^3)$ sobre \mathbb{R}^3 como na equação (2.9).

Consideremos a configuração colinear de Euler, o movimento que retrata uma solução homográfica correspondente será como na Figura 2.3.

Figura 2.3: Solução homográfica de Euler.

Agora, considerando a configuração equilátera de Lagrange, esta solução é descrita na Figura 2.4. As Figuras 2.3 e 2.4, podem ser vistas na tese de A. C. Fernandes, vide [4].

Figura 2.4: Solução homográfica de Lagrange.

Sabemos da história, que as primeiras soluções particulares foram encontradas por Euler e Lagrange. Em 1767, Euler mostra a existência de soluções particulares, em que os três corpos permanecem alinhados em cada instante, ou seja, os três corpos têm uma configuração colinear em cada instante. Lagrange, em 1772, mostra a existência de duas soluções particulares, as quais os três corpos formam um triângulo equilátero em cada instante. Soluções particulares essas que definimos acima como Soluções Homográficas.

2.0.3 Configurações centrais

Quando Newton formula o problema de n corpos, houve muitas investidas a fim de resolver tal problema. Como mencionamos na Seção 2.0.1, o problema de n corpos não é possível de ser resolvido via quadraturas.

Por esta razão, definimos na Seção 2.0.2 as soluções particulares, tais sendo a solução homotética, a de equilíbrio relativo e a homográfica. Assim, quando Euler em 1767 descobriu uma classe especial de soluções periódicas colineares de três corpos na qual as partículas moviam-se em órbitas elípticas e, Lagrange em 1772 descobriu outra classe de soluções periódicas, e neste caso as partículas moviam-se em órbitas elípticas formando uma configuração equilátera durante o tempo em que estiver definida, viu-se a importância de tais objetos para o estudo da Mecânica Celeste dentro do problema de n corpos, isto impulsionou a definição sobre configurações centrais no problema de n corpos, isto é, que seriam configurações especiais nas quais conseguia-se distribuir o problema de n corpos em n problemas de um corpo sob a ação de um campo central.

Definição 2.0.6. Dado um instante fixo t_0 , dizemos que n corpos de massas m_1, \ldots, m_n localizados no referencial baricêntrico, pelos vetores $r_1(t_0), r_2(t_0), \ldots, r_n(t_0)$ tal que $(r_1, \ldots, r_n) \in$ $X = \{\mathbb{R}^{3n} \setminus \Delta\}$, respectivamente, formam uma configuração central se vale

$$\ddot{r}_i = \lambda r_i, \quad \forall i = 1, \dots, n, \tag{2.11}$$

onde $\lambda = \lambda(r_1, \dots, r_n)$ é uma função não nula. Em outras palavras, podemos dizer que a força resultante sobre o i-ésimo corpo aponta na direção do centro de massa. De modo equivalente, podemos escrever a condição de configuração central da seguinte forma

$$\lambda r_i = -\sum_{k \neq i} \frac{m_k (r_i - r_k)}{r_{ik}^3}, \quad \forall i = 1, \dots, n.$$
 (2.12)

Podemos encontrar a expressão de λ da seguinte maneira, em acordo com as definições e notações do início desse capítulo,

$$m_i \ddot{r_i} = -\nabla_i V,$$

usando a equação (2.11), temos

$$m_i \ddot{r}_i = -\nabla_i V = \lambda m_i r_i. \tag{2.13}$$

Se tomarmos o produto interno da equação (2.13) por r_i em ambos os membros, temos

$$(-\nabla V_i) \bullet r_i = \lambda m_i r_i \bullet r_i. \tag{2.14}$$

Somando as equações de (2.14) em *i*, lembrando que *V* é homogênea de grau (-1) e da definição de momento de inércia

$$I = \frac{1}{2} \sum_{i=1}^{n} m_i r_i \bullet r_i,$$

temos, $V = \lambda(2I)$, logo,

$$\lambda = \frac{V}{2I}.$$

Na notação para configurações, a equação (2.11) é exatamente a equação de configurações centrais,

$$\lambda Mr = -\nabla V(r).$$

Dentro da literatura, existem vários exemplos conhecidos de soluções particulares, como vimos na Seção 2.0.2, porém, podemos citar também o problema de dois corpos, as configurações colineares de Euler e as equiláteras de Lagrange, que como vimos, formam a cada instante uma configuração central.

Temos um importante resultado no âmbito das soluções homográficas, que é o seguinte resultado, ao qual chamamos de Teorema de Laplace, este resultado pode ser encontrado em A. Wintner [14].

Teorema 2.0.2. Se a solução do problema de n corpos é homográfica, então os corpos formam uma configuração central a cada instante.

A prova deste resultado por ser vista na tese de A. Carlos Fernandes em [4].

Nessa próxima seção iremos definir as equações de a partir das equações de movimento, estas são primordiais para o estudo da existência e unicidade de configurações centrais e a partir delas deduziremos a fórmula para razão de massa. Também definiremos as equações de Andoyer, que serão utilizadas para provar a existência de configurações centrais. Apresentaremos o Teorema da Mediatriz que nos dá uma condição necessária para se ter uma configuração central e um corolário. Este corolário afirma que em uma configuração central de 4 corpos não se pode ter três corpos numa mesma reta e um quarto corpo fora desta reta.

2.0.4 Equações de compatibilidade e razões de massa

Nesta seção vamos definir as equações que serão usadas durante todo este trabalho, que são de suma importância para o estudo de existência de configurações centrais no plano. Para tanto, vamos deduzi-las assumindo que os pontos da configuração central são não colineares. Consideramos a equação de movimento, tomando G = 1,

$$\lambda r_i = -\sum_{j \neq i} m_j \frac{r_i - r_j}{|r_i - r_j|^3},$$
(2.15)

para as coordenadas do primeiro ponto da configuração central, onde $r_i = (x_i, y_i)$ e $r_{ij} = |r_i - r_j|$:

$$\lambda x_1 = -\sum_{j \neq 1} m_j \frac{x_1 - x_j}{r_{1j}^3},\tag{2.16}$$

$$\lambda y_1 = -\sum_{j \neq 1} m_j \frac{y_1 - y_j}{r_{1j}^3}.$$
(2.17)

Os primeiros índices da equação são escolhidos por simplicidade, mas as manipulações para as outras coordenadas podem ser feitas analogamente.

Admitimos as seguintes mudanças de parâmetros, de λ para r_0 definido por $-\lambda = Mr_0^{-3}$, onde M é a somatória de todas as massas, isto é, $M = \sum_{i=1}^{n} m_i$. Por adequação, nós definimos $R_0 = 1/r_0^3$, $R_{ij} = 1/r_{ij}^3$. Então,

$$-\lambda x_{1} = \sum_{j \neq 1} m_{j} R_{1j} (x_{1} - x_{j}),$$

$$R_{0} M x_{1} = \sum_{j \neq 1} m_{j} R_{1j} (x_{1} - x_{j}),$$

$$R_{0} \left(\sum_{j \neq 1} m_{j} x_{1} + m_{1} x_{1} \right) = \sum_{j \neq 1} m_{j} R_{1j} (x_{1} - x_{j}).$$
(2.18)

Lembremos que o centro de massa do sistema é definido como $\sum_{j=1} m_j x_j = 0$. Dessa forma, $\sum_{j \neq 1} m_j x_j + m_1 x_1 = 0$, ou seja, $m_1 x_1 = -\sum_{j \neq 1} m_j x_j$. Temos assim, da equação (2.18),

$$R_{0}\left(\sum_{j\neq 1} m_{j}x_{1} - \sum_{j\neq 1} m_{j}x_{j}\right) = \sum_{j\neq 1} m_{j}R_{1j}(x_{1} - x_{j}) \Rightarrow$$
$$R_{0}\left(\sum_{j\neq 1} m_{j}(x_{1} - x_{j})\right) = \sum_{j\neq 1} m_{j}R_{1j}(x_{1} - x_{j}) \Rightarrow$$
$$\sum_{j\neq 1} m_{j}R_{1j}(x_{1} - x_{j}) - R_{0}\left(\sum_{j\neq 1} m_{j}(x_{1} - x_{j})\right) = 0.$$

Chegamos então à seguinte equação

$$\sum_{j \neq 1} (R_{1j} - R_0)(x_1 - x_j)m_j = 0.$$
(2.19)

Analogamente, façamos para y_1 . Então,

$$-\lambda y_{1} = \sum_{j \neq 1} m_{j} R_{1j}(y_{1} - y_{j}) \Rightarrow$$

$$R_{0} M y_{1} = \sum_{j \neq 1} m_{j} R_{1j}(y_{1} - y_{j}) \Rightarrow$$

$$R_{0} \left(\sum_{j \neq 1} m_{j} y_{1} + m_{1} y_{1} \right) = \sum_{j \neq 1} m_{j} R_{1j}(y_{1} - y_{j}) \Rightarrow$$

$$R_{0} \left(\sum_{j \neq 1} m_{j} y_{1} - \sum_{j \neq 1} m_{j} y_{j} \right) = \sum_{j \neq 1} m_{j} R_{1j}(y_{1} - y_{j}) \Rightarrow$$

$$R_{0} \left(\sum_{j \neq 1} m_{j}(y_{1} - y_{j}) \right) = \sum_{j \neq 1} m_{j} R_{1j}(y_{1} - y_{j}). \qquad (2.20)$$

Somando o termo $\left(-R_0 \sum_{j \neq i} m_j (y_1 - y_j)\right)$ em ambos os lados da expressão (2.20) e colocando os termos apropriados em evidência, resta-nos a seguinte expressão,

$$\sum_{j \neq 1} (R_{1j} - R_0)(y_1 - y_j) m_j = 0.$$
(2.21)

Veja que usamos as primeiras coordenadas de um ponto, ou seja, usando o ponto r_1 da configuração para deduzir as equações (2.19) e (2.21) teremos a seguinte expressão

$$\sum_{j \neq 1} (R_{1j} - R_0)(r_1 - r_j)m_j = 0.$$
(2.22)

Expandindo o somatório de (2.22), temos:

$$m_2(R_{12} - R_0)(r_1 - r_2) + m_3(R_{13} - R_0)(r_1 - r_3) + m_4(R_{14} - R_0)(r_1 - r_4) = 0.$$
 (2.23)

Assim, para eliminar o segundo termo da soma de (2.23), ou seja, m_2 , nós fazemos o produto vetorial da expressão (2.23) pelo $(r_1 - r_2)$. Isto é,

$$m_2(R_{12} - R_0)(r_1 - r_2) \wedge (r_1 - r_2) + m_3(R_{13} - R_0)(r_1 - r_3) \wedge (r_1 - r_2) + m_4(R_{14} - R_0)(r_1 - r_4) \wedge (r_1 - r_2) = 0.$$

Com
o $(r_1-r_2)\wedge(r_1-r_2)=0,$ resta para nós então

$$m_3(R_{13} - R_0)(r_1 - r_3) \wedge (r_1 - r_2) + m_4(R_{14} - R_0)(r_1 - r_4) \wedge (r_1 - r_2) = 0.$$

Definição 2.0.7. Definimos a área do triângulo orientado como sendo a região delimitada pelas posições $r_i, r_j \in r_k$ da seguinte maneira,

$$\Delta_{ijk} = 1/2(r_i - r_j) \wedge (r_i - r_k).$$

Portanto,

$$m_3(R_{13} - R_0)\Delta_{132} + m_4(R_{14} - R_0)\Delta_{142} = 0.$$
(2.24)

Por conveniência, substituímos a definição da orientação do triângulo $\Delta_{ijk} = \Delta_m$, onde $m \neq i, j \in k$. Assim, temos a seguinte convenção de sinais das áreas dos triângulos.

$$\Delta_1, \Delta_3 < 0 \qquad \quad \Delta_2, \Delta_4 > 0. \tag{2.25}$$

Então, (2.24) torna-se

$$m_3(R_{13} - R_0)\Delta_4 - m_4(R_{14} - R_0)\Delta_3 = 0.$$
(2.26)

Seguindo, escrevamos a equação (2.22) para r_2 , isto é, $\sum_{j \neq 2} (R_{2j} - R_0)(r_2 - r_j)m_j = 0$, nós podemos eliminar o termo m_1 ao expandirmos o seu somatório e tomarmos o produto vetorial deste pelo fator que acompanha m_1 .

Com efeito, expandindo o somatório para r_2 ,

$$m_1(R_{12} - R_0)(r_2 - r_1) + m_3(R_{23} - R_0)(r_2 - r_3) + m_4(R_{24} - R_0)(r_2 - r_4) = 0, \quad (2.27)$$

fazendo o produto vetorial de (2.27) por $(r_2 - r_1)$, resulta-nos que

$$m_3(R_{23} - R_0)(r_2 - r_3) \wedge (r_2 - r_1) + m_4(R_{24} - R_0)(r_2 - r_4) \wedge (r_2 - r_1) = 0.$$
(2.28)

Lembrando da definição 2.0.7 temos

$$m_3(R_{23} - R_0)\Delta_{231} + m_4(R_{24} - R_0)\Delta_{241} = 0.$$
(2.29)

Logo, dispomos da seguinte expressão

$$m_3(R_{23} - R_0)\Delta_4 - m_4(R_{24} - R_0)\Delta_3 = 0.$$
(2.30)

Do par de equações (2.26) e (2.30), obtemos o seguinte sistema linear,

$$\begin{cases} m_3(R_{13} - R_0)\Delta_4 & - & m_4(R_{14} - R_0)\Delta_3 &= & 0\\ m_3(R_{23} - R_0)\Delta_4 & - & m_4(R_{24} - R_0)\Delta_3 &= & 0. \end{cases}$$

Representando matricialmente esse sistema linear, temos

$$\begin{pmatrix} (R_{13}-R_0)\Delta_4 & -(R_{14}-R_0)\Delta_3\\ (R_{23}-R_0)\Delta_4 & -(R_{24}-R_0)\Delta_3 \end{pmatrix} \begin{pmatrix} m_3\\ m_4 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

Calculando o determinante da matriz (2.0.4), resulta-nos

$$-(R_{13} - R_0)(R_{24} - R_0)\Delta_3\Delta_4 + (R_{14} - R_0)(R_{23} - R_0)\Delta_3\Delta_4 = 0,$$

e colocando a expressão em função de $\Delta_3 \Delta_4$, temos

$$\Delta_3 \Delta_4 ((R_{14} - R_0)(R_{23} - R_0) - (R_{13} - R_0)(R_{24} - R_0)) = 0.$$
(2.31)

Vamos agora introduzir a notação $S_{ij} = R_{ij} - R_0$, então a equação (2.31) torna-se

$$S_{14}S_{23} = S_{13}S_{24}, \tag{2.32}$$

onde para acontecer a igualdade da equação (2.32), supomos que a configuração é colinear.

Analogamente, expandido a equação (2.22) para o ponto r_2 , agora eliminando o termo m_4 , temos que se expandimos o seu somatório e fazermos o produto vetorial de sua

expressão pelo fator $(r_2 - r_4)$, que acompanha m_4 , teremos como resultado a seguinte expressão,

$$m_1(R_{12} - R_0)\Delta_{214} + m_3(R_{23} - R_0)\Delta_{234} = 0.$$
(2.33)

Usemos o mesmo argumento para a equação de r_4 . Eliminando agora o termo m_2 quando expandimos o somatório da expressão de r_4 , isto é, $\sum_{j \neq 4} m_j (R_{4j} - R_0)(r_4 - r_j) = 0$, e fazemos o produto vetorial desta expressão pelo fator $(r_4 - r_2)$. Temos como resultado a expressão

$$m_1(R_{14} - R_0)\Delta_{412} + m_3(R_{34} - R_0)\Delta_{432} = 0.$$
(2.34)

Fazendo uso da definição sobre áreas orientadas dos triângulos, as equações (2.33) e (2.34) tornam-se

$$m_1(R_{12} - R_0)\Delta_3 - m_3(R_{23} - R_0)\Delta_1 = 0, \qquad (2.35)$$

$$-m_1(R_{14} - R_0)\Delta_3 + m_3(R_{34} - R_0)\Delta_1 = 0.$$
(2.36)

Colocando as equações (2.35) e (2.36) num sistema linear, temos

$$\begin{cases} m_1(R_{12} - R_0)\Delta_3 & - & m_3(R_{23} - R_0)\Delta_1 = & 0\\ -m_1(R_{14} - R_0)\Delta_3 & + & m_3(R_{34} - R_0)\Delta_1 = & 0 \end{cases}$$

Matricialmente o sistema linear (2.0.4) é dada por

$$\begin{pmatrix} (R_{12} - R_0)\Delta_3 & -(R_{23} - R_0)\Delta_1 \\ -(R_{14} - R_0)\Delta_3 & +(R_{34} - R_0)\Delta_1 \end{pmatrix} \begin{pmatrix} m_1 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Calculando o determinante da matriz no sistema (2.0.4) chegamos na seguinte equação,

$$R_{12} - R_0(R_{34} - R_0)\Delta_1\Delta_3 + (R_{14} - R_0)(R_{23} - R_0)\Delta_1\Delta_3 = 0.$$

Colocando a expressão (2.0.4) em função de $\Delta_3 \Delta_4$, temos

$$-((R_{23} - R_0)(R_{14} - R_0) + (R_{12} - R_0)(R_{34} - R_0)) = 0.$$
(2.37)

Utilizando a notação que inserimos anteriormente, $S_{ij} := R_{ij} - R_0$, temos

$$S_{23}S_{14} = S_{12}S_{34}. (2.38)$$

CAPÍTULO 2. PRELIMINARES

Segue das equações (2.32) e (2.38) que

$$S_{13}S_{24} = S_{23}S_{14} = S_{12}S_{34}. (2.39)$$

Estas são as equações de compatibilidade que devem ser satisfeitas para que exista uma configuração central.

Estas são suficientes exceto para a positividade das massas, que podem ser verificadas pela fórmula das razões de massa que segue imediatamente do argumento acima:

$$\frac{m_i}{m_j} = \frac{\Delta_i S_{jk}}{\Delta_j S_{ik}} \tag{2.40}$$

onde $i, j \in k$ são distintos um do outro.

Para equações não equiláteras, se o parâmetro R_0 é eliminado, as equações de razão de massa são simplificadas para:

$$\frac{m_i}{m_j} = \frac{\Delta_i (R_{jk} - R_{jl})}{\Delta_j (R_{ik} - R_{il})}.$$
(2.41)

Notamos que quando definimos as regiões delimitadas pelos vetores posição, a região interna do triângulo assume um sinal, positivo ou negativo. Porém, as convenções de sinais para área no caso de uma configuração central convexa é diferente do caso de uma configuração central côncava. Vejamos

- a) Para uma configuração central convexa tem-se a seguinte convenção de sinais de áreas para os triângulos, $\Delta_1, \Delta_3 < 0 \in \Delta_2, \Delta_4 > 0$;
- b) Para uma configuração central côncava tem-se a seguinte convenção de sinais de áreas para os triângulos, $\Delta_1, \Delta_2, \Delta_3 < 0$ e $\Delta_4 > 0$.

Dando continuidade, na próxima seção vamos definir as equações de Andoyer. Estas equações que definiremos são mais fáceis de serem trabalhadas vistas pela linha geométrica.

2.0.5 Equações de Andoyer

Iniciamos definindo uma equação que é conveniente para determinar configurações centrais, que é chamada de equação de Andoyer. Em seguida, apresentamos o Teorema da Mediatriz. **Definição 2.0.8.** As equações de Andoyer com áreas em \mathbb{R}^3 são dadas por

$$f_{ij} = \sum_{k \neq i,j} m_k (R_{ik} - R_{jk}) \Delta_{ijk} = 0, 1 \le i < j \le n,$$
(2.42)

onde $R_{ij} = R_{ji} = |r_i - r_j|^{-3} = 1/r_{ij}^3 \ e \ \Delta_{ijk} = (r_i - r_j) \land (r_i - r_k) \ é \ duas \ vezes \ a \ área \ com$ sinal do triângulo formado por $m_i, m_j \ e \ m_k$.

Estas equações formam um conjunto de n(n-1)/2 equações.

Definição 2.0.9. As equações de Andoyer com volumes em \mathbb{R}^3 são dadas por

$$f_{ijh} = \sum_{k \neq i,j,h} m_k (R_{ik} - R_{jk}) \Delta_{ijhk} = 0, 1 \le i < j \le n, h = 1, 2, \dots, n$$
(2.43)

onde $R_{ij} = R_{ji} = |r_i - r_j|^{-3} e \Delta_{ijhk} = (r_i - r_j) \wedge (r_i - r_k) \bullet (r_h - r_k)$ é seis vezes o volume com sinal do tetraedro formado $m_i, m_j, m_k e m_h$.

Teorema 2.0.3. Considere um sistema de n-corpos em com massas m_1, \ldots, m_n nãocolineares, então eles formam uma configuração central se, e somente se, respeitam as seguintes condições

$$f_{ij} = 0, \qquad \forall i, j \ (1 \le i < j \le n) \,.$$

Demonstração: Essa demonstração pode ser vista na tese de [4].

Suponhamos que os n corpos formam uma configuração central planar, então, existe λ tal que

$$\lambda r_i = -\sum_{k \neq i} m_k R_{ik} \left(r_i - r_k \right). \tag{2.44}$$

Isto é equivalente a

$$\lambda r_{i} = -\sum_{k \neq i,j} m_{k} R_{ik} \left(r_{i} - r_{k} \right) - m_{j} R_{ij} \left(r_{i} - r_{j} \right).$$
(2.45)

Também para $j \neq i$ podemos fazer

$$\lambda r_{j} = -\sum_{k \neq i,j} m_{k} R_{jk} \left(r_{j} - r_{k} \right) - m_{i} R_{ji} \left(r_{j} - r_{i} \right).$$
(2.46)

Considerando a subtração da equação (2.45) e da equação (2.46), tem-se

$$\lambda (r_i - r_j) = -\sum_{k \neq i,j} m_k \left[R_{ik} (r_i - r_k) - R_{jk} (r_j - r_k) \right] - \left[m_i R_{ij} - m_j R_{ji} \right] (r_i - r_j) \,. \tag{2.47}$$

E tomando o produto vetorial por $(r_i - r_j)$ em ambos os lados da equação (2.47), obtemos

$$0 = -\sum_{k \neq i,j} m_k (R_{ik} - R_{jk}) \Delta_{ijk} = -f_{ij}.$$
 (2.48)

Logo, $f_{ij} = 0, \forall i, j (1 \neq i < j \neq n).$

Para a recíproca, consideremos que as equações de Andoyer são verificadas, isto é,

$$f_{ij} = \sum_{k \neq i,j}^{n} m_k (R_{ik} - R_{jk}) \Delta_{ijk} = 0, \qquad (2.49)$$

para $(1 \neq i < j \neq n)$. Podemos escrever (2.49) da seguinte forma,

$$\sum_{k \neq i,j}^{n} m_k R_{ik}(r_i - r_j) \wedge (r_i - r_k) = \sum_{k \neq i,j}^{n} m_k R_{jk}(r_i - r_j) \wedge (r_i - r_k),$$
(2.50)

ou seja,

$$(r_i - r_k) \wedge \sum_{k \neq i}^n m_k R_{ik} (r_i - r_j) = \sum_{k \neq j}^n m_k R_{jk} [r_i \wedge (r_j - r_k) + (r_j \wedge r_k)].$$
(2.51)

Denote $\nabla_i V$ por F_i . Vemos que (2.51) pode ser escrita como:

$$(r_i - r_j) \wedge \frac{F_i}{m_i} = \sum_{k \neq j}^n m_k R_{jk} [r_i \wedge (r_j - r_k) + (r_j \wedge r_k)].$$
(2.52)

Podemos inserir à direita da igualdade (2.52) o termo $-r_j$ sem alterá-la, obtendo

$$(r_i - r_j) \wedge \frac{F_i}{m_i} = \sum_{k \neq j}^n m_k R_{jk} [r_i \wedge (r_j - r_k) + r_j \wedge (-r_j + r_k)], \qquad (2.53)$$

rearranjando o lado direito da equação (2.53), temos

$$(r_i - r_j) \wedge \frac{F_i}{m_i} = (r_i - r_j) \wedge \frac{F_j}{m_j},$$

disto segue,

$$(r_i - r_j) \wedge (m_j F_i - m_i F_j) = 0.$$
 (2.54)

Fazendo o produto vetorial termo a termo em (2.54), obtemos

$$r_i \wedge m_j F_i - r_i \wedge m_i F_j - r_j \wedge m_j F_i + r_j \wedge m_i F_j = 0,$$

e segue

$$m_j r_i \wedge F_i - m_i r_i \wedge F_j - m_j r_j \wedge F_i + m_i r_j \wedge F_j = 0.$$

Podemos somar em j com $j \neq i$, obtendo:

$$(M-m_i)r_i \wedge F_i - m_i r_i \wedge \sum_{j \neq i}^n F_j - \left(\sum_{j \neq i}^n m_j r_j\right) \wedge F_i + m_i \sum_{j \neq i} r_j \wedge F_j = 0, \qquad (2.55)$$

onde M é a massa total do sistema. E, considerando o centro de massa na origem do referencial, temos

$$\sum_{j=1}^{n} m_j r_j = 0 \Rightarrow \sum_{j \neq i}^{n} m_j r_j = -m_i r_i.$$

$$(2.56)$$

Como o espaço é homogêneo e isotrópico e o sistema é isolado, temos que as quantidades de momento linear total e momento angular total são conservadas. Então, respectivamente, temos

$$\sum_{j=1}^{n} F_j = 0 \Rightarrow \sum_{j \neq i}^{n} F_j = -F_i$$
(2.57)

е

$$\sum_{j=1}^{n} (r_j \wedge F_j) = 0 \Rightarrow \sum_{j \neq i}^{n} (r_j \wedge F_j) = (-r_i \wedge F_i).$$
(2.58)

Substituindo (2.56), (2.57) e (2.58) em (2.55), obtemos

$$Mr_i \wedge F_i - m_i r_i \wedge F_i + m_i r_i \wedge F_i + m_i r_i \wedge F_i - m_i r_i \wedge F_i = 0.$$

Assim, $Mr_i \wedge F_i = 0$, logo $r_i \in F_i$ são paralelos, ou seja, $F_i = \lambda_i r_i$, ou $\ddot{r}_i = (\lambda_i/m_i)r_i$. De (2.54), decorre que

$$\left(\frac{\lambda_i}{m_i}r_i - \frac{\lambda_j}{m_j}r_j\right) \wedge (r_i - r_j) = 0.$$

Assim,

$$-\frac{\lambda_i}{m_i}r_i\wedge r_j - \frac{\lambda_j}{m_j}r_j\wedge r_i = 0,$$

logo,

$$\left(\frac{\lambda_i}{m_i} - \frac{\lambda_j}{m_j}\right)(r_j - r_i) = 0.$$

Se r_i e r_j são paralelos a igualdade acima é imediata. Se r_i e r_j são não-colineares, temos que

$$\frac{\lambda_i}{m_i} = \frac{\lambda_j}{m_j} = \lambda,$$

para todo i, j. Portanto,

$$\ddot{r}_i = \lambda r_i$$

para todo $i = 1, 2, 3, \ldots, n$, como queríamos demonstrar.

2.0.6 Aplicações das equações de Andoyer

Mostraremos duas aplicações das equações de Andoyer, a primeira sendo a determinação da configuração planar de Lagrange para 3 corpos.

Teorema 2.0.4. A única configuração central de três corpos, não colinear, é o triângulo equilátero com massas arbitrárias nos vértices.

Demonstração:Neste caso usamos as equações de Andoyer para áreas, isto é, temos 3 equações de Andoyer, que são,

$$f_{12} = m_3 (R_{13} - R_{23}) \Delta_{123} = 0,$$

$$f_{13} = m_2 (R_{12} - R_{23}) \Delta_{132} = 0,$$

е

$$f_{23} = m_1 (R_{12} - R_{13}) \Delta_{231} = 0.$$

Pela positividade das massas, ou seja, $m_i > 0$ e $\Delta_{ijk} \neq 0$, temos que, $R_{12} = R_{13} = R_{23}$, isto quer dizer que as massas m_1, m_2 e m_3 estão nos vértices de um triângulo equilátero, onde as massas podem assumir quaisquer valores positivos.

Teorema 2.0.5 (Mediatriz). Considere uma configuração central planar, formada por n massas positivas m_1, \ldots, m_n . Escolha dois corpos de massas $m_i e m_j$ com posições $r_i e$ r_j , respectivamente. Trace a reta que contém estes dois corpos e a mediatriz do segmento $\overline{r_i r_j}$. Estas duas retas definem dois cones abertos no plano. Então, se existem massas num dos cones abertos, devemos ter também massas no outro cone. Em outra palavras, se as (n-2) massas restantes pertencessem a apenas um cone aberto não teríamos uma configuração central.

Figura 2.5: Não pode ser uma configuração central.

Figura 2.6: Pode ser uma configuração central.

Demonstração: Não há perda de generalidade se renomeamos os índices $i \in j$ por 1 e 2. Suponhamos, por contradição, que as massas m_3, \ldots, m_n estão ou num único cone aberto ou sobre o eixo bissetor, mas não todas sobre o eixo, pois senão ainda poderíamos ter uma configuração central.

Como por hipótese temos uma configuração central planar, todas as n(n-1)/2 equações de Andoyer são satisfeitas; em particular

$$f_{12} = \sum_{k=3}^{n} m_k \left(R_{1k} - R_{2k} \right) \Delta_{12k} = 0.$$
 (2.59)
Podemos olhar as retas passando pelos corpos m_1 e m_2 bissetando o segmento como eixos que dividem o plano em 4 quadrantes ordenados ciclicamente, como usual. Dessa forma, um cone aberto formado pela união do primeiro e terceiro quadrantes abertos e, o outro cone aberto pela união do segundo e quarto quadrantes abertos.

Assim, vamos supor que existam massas no primeiro e terceiro quadrantes e, possivelmente sobre os eixos. Vamos tomar a soma acima em 3 parcelas, da seguinte maneira, o índice l denotará termos no primeiro quadrante, k no terceiro quadrante e i os termos sobre a bissetriz.

Assim

$$f_{12} = \sum_{l} m_l \left(R_{1l} - R_{2l} \right) \Delta_{12l} + \sum_{k} m_k \left(R_{1k} - R_{2k} \right) \Delta_{12k} + \sum_{i} m_i \left(R_{1i} - R_{2i} \right) \Delta_{12i}.$$
(2.60)

A princípio, notemos que os termos da terceira soma são todos nulos, pois sobre a bissetriz $R_{1i} = R_{2i}$, ou seja, as distâncias $1/r_{1i}^3 \in 1/r_{2i}^3$ são iguais. Então $(R_{il} - R2i)$ é zero, portanto

$$\sum_{i=1}^{3} \left(R_{1i} - R_{2i} \right) \Delta_{12i} = 0.$$
(2.61)

Donde, resulta-nos que

$$f_{12} = \sum_{l} m_l \left(R_{1l} - R_{2l} \right) \Delta_{12l} + \sum_{k} m_k \left(R_{1k} - R_{2k} \right) \Delta_{12k} = 0.$$
 (2.62)

Estudemos o sinal dos termos da primeira soma; lembremos que dados os dois pontos iniciais e traçada a linha que passa por estes dois pontos a área do lado esquerdo da reta tem sinal positivo e, o lado direto sinal negativo.

Vemos que $\Delta_{12l} > 0$ para todo l, e, temos a seguinte implicação,

$$r_{1l} > r_{2l} \Rightarrow R_{1l} < R_{2l}, \tag{2.63}$$

ou seja, todos os coeficientes das massas na primeira soma tem sinal positivo, assim,

$$\sum_{l} m_l \left(R_{1l} - R_{2l} \right) \Delta_{12l} > 0.$$
(2.64)

Para os termos da segunda soma, temos $\Delta_{12k} < 0$, para todo k e,

$$r_{1k} > r_{2k} \Rightarrow R_{1k} > R_{2k}. \tag{2.65}$$

Logo, todos os coeficientes das massas na segunda soma tem sinal positivo também, isto é,

$$\sum_{k} m_k \left(R_{1k} - R_{2k} \right) \Delta_{12k} > 0.$$
(2.66)

Ora, mas isso contradiz a equação (2.62).

Logo, as (n-2) massas não estão num único cone aberto ou todas sobre a bissetriz.

Vamos agora enunciar um corolário e, em seguida vamos prová-lo utilizando o Teorema da Mediatriz.

Colorário 1. Para uma configuração central planar não-colinear $r \in (\mathbb{R}^2)^4$ com massas positivas, a área interna compreendida entre os vetores posição r_i, r_j, r_k da configuração é não-nula.

A prova do Corolário 1 pode ser vista em [7].

Façamos agora a prova do Corolário 1, com o auxílio do Teorema da Mediatriz 2.0.5. Demonstração: A prova será feita por contradição.

Admita que r_1, r_2 e r_3 são colineares. Pictoricamente representamos tal situação na Figura 2.7.

Figura 2.7: configuração colinear.

Traçando a mediatriz do segmento $\overline{r_2r_3}$, ou seja, a reta l, temos o seguinte panorama. Se a massa m_4 situa-se do lado direito da retal l, vemos que só um cone aberto do plano possui massas, entretanto, sabemos que isto é uma condição suficiente para que não seja uma configuração central. Analogamente, se a massa m_4 situa-se ao lado esquerdo da reta l não teremos uma configuração central. Portanto, $r_1, r_2 \in r_3$ não podem ser colineares para termos uma configuração. A mesma análise seria feita se traçássemos a mediatriz do seguimento $\overline{r_1r_2}$.

E assim está provado o Corolário 1

Tendo em vista a importância do estudo de configurações centrais dentro da Mecânica Celeste, vamos tratar no Capítulo 3 do Teorema de Existência para configurações centrais convexas, isto é, ao fixarmos três massas, através do Teorema de Existência mostraremos que a quarta massa, m_4 , estando fora do fecho convexo delimitado pelas massas m_1, m_2 e m_3 , precisa estar numa região específica para que a configuração central exista.

Capítulo 3

Configurações centrais convexas

Dentro do estudo de configurações centrais no problema de *n* corpos, podemos perceber que as configurações centrais convexas no problema de 4 corpos são melhores compreendidas do que configurações centrais côncavas, ou seja, essa evidência sugere que configurações côncavas têm uma estrutura mais complicada do que configurações convexas.

Sabendo disso, vamos estudar um resultado que aparece na tese de Hampton [5] mostrado por MacMillan e Bartky, vide [8].

3.0.1 Teorema de existência

Teorema 3.0.1. Dados $k_0, k_{12}, k_{34}, k_{13} > 0$ reais, existe uma configuração central convexa tal que $k_0 = r_0$,

$$max\left(r_{12}, r_{23}, r_{14}, r_{34}\right) < r_0 < min\left(r_{13}, r_{24}\right)$$

e as razões de massas são dadas por

$$\frac{m_1}{m_2} = k_{12}, \frac{m_3}{m_4} = k_{34}, \frac{m_1}{m_3} = k_{13}$$

Demonstração: Na demonstração de Hampton, vide [5], tomou-se as massas m_1, m_2, m_3 e m_4 com posições r_1, r_2, r_3 e r_4 , respectivamente, estas estão ordenadas no sentido antihorário. Analisando as equações de razão de massa, pode-se determinar que todas as massas são positivas para a desigualdade $max(r_{12}, r_{23}, r_{14}, r_{34}) < r_0 < min(r_{13}, r_{24})$ ser satisfeita. Ao estabelecermos o parâmetro $k_0 = r_0$ remove-se a degenerescência dilatacional. Vamos à prova.

Fixe $r_{12} < r_0$ como na Figura 3.1. A Figura 3.1 pode ser encontranda ne tese de [5].

Figura 3.1: Ponto de início da construção convexa.

O primeiro e o segundo ponto da configuração foram rodados para se encontrarem numa linha horizontal, e o semicírculo de raio r_0 desenhado em torno de cada um deles. Seja r_1 o ponto da esquerda. Os dois arcos F e G na figura 3.1 são as distâncias de um círculo de raio r_0 centrado na interseção P.

A região U é definida como sendo a interseção do interior dos semicírculos de raio r_0 em torno do segundo ponto, r_2 , o do ponto P e o exterior do semicírculo de raio r_0 em torno de r_1 . A região V é definida similarmente com a regra trocada entre os dois pontos. Procederemos para provar que para todo ponto na região U existe um ponto na região Vtal que os 4 pontos formam uma configuração central para alguma dada massa vetorial.

A fim de que r_0 satisfaça as desigualdades do Teorema 3.0.1 nós devemos restringir o quarto ponto na região W, esta é determinada como sendo a interseção de V e o interior do círculo centrado em r_3 com raio r_0 . Vamos mostrar que dada a posição de r_3 em U, encontramos r_4 em W, tal que as equações de compatibilidade

$$S_{12}S_{34} = S_{23}S_{14} = S_{13}S_{24}$$

sejam satisfeitas.

Fixados os três primeiros pontos $r_1, r_2 \in r_3$ nos são dados $R_0, R_{12}, R_{23} \in R_{13}$. Seja o parâmetro ρ_0 a distância de r_3 a P. Agora fixe um $\rho > 0$ tal que $\rho_0 < \rho < r_0$ e considere o arco AB em W definido pela circunferência de raio ρ de r_3 , veja a Figura 3.2. A Figura 3.2 pode ser encontranda ne tese de [5].

Figura 3.2: Construção convexa.

Umas das equações de compatibilidade pode ser escrita da seguinte forma

$$(R_{23} - R_0) (R_{14} - R_0) = (R_0 - R_{13}) (R_0 - R_{24}),$$

em que todos os fatores entre parênteses são positivos se r_4 está no interior do arco AB. Com efeito, se r_4 está no interior do arco AB, temos que $r_{23} < r_0$, ou seja, como definimos anteriormente que $R_{ij} = r_{ij}^{-3}$, isto no diz que

$$r_{23} < r_0 \Longrightarrow r_{23}^{-3} > r_0^{-3} \Longrightarrow R_{23} > R_0$$

e dessa forma o fator $(R_{23} - R_0)$ é positivo.

A mesma análise é feita para r_{14} , isto é,

$$r_{14} < r_0 \Longrightarrow r_{14}^{-3} > r_0^{-3} \Longrightarrow R_{14} > R_0,$$

logo, $(R_{14} - R_0) > 0.$

Vemos que pela Figura 3.2 que como r_3 está no exterior do círculo de centro r_1 e raio r_0 , então $|r_1 - r_3| > r_0$, isto é, $r_{13} > r_0$,

$$r_{13} > r_0 \Longrightarrow r_{13}^{-3} < r_0^{-3} \Longrightarrow R_{13} < R_0$$

e assim, $(R_{13} - R_0) < 0$. Analogamente,

$$r_{24} > r_0 \Longrightarrow r_{24}^{-3} < r_0^{-3} \Longrightarrow R_{24} < R_0$$

Ainda analisando as equações $(R_{23} - R_0) (R_{14} - R_0) = (R_0 - R_{13}) (R_0 - R_{24})$, note que se r_4 está no ponto A temos que $R_{24} = R_0$ e assim a expressão $(R_0 - R_{13}) (R_0 - R_{24})$ é zero, pois $(R_0 - R_{13}) (R_0 - R_0) = 0$.

Analisando a expressão $(R_0 - R_{13})(R_0 - R_{24})$, vista como função na variável r_4 , é monótona crescente, pois o primeiro fator é constante, já que R_{13} é fixo, isto é, percebamos que quando r_4 tende ao ponto A a função vai a zero. Agora, quando r_4 tende ao ponto B, a função é crescente.

Agora, olhando para a função $(R_{23} - R_0)(R_{14} - R_0)$, vejamos que quando r_4 tende a *B*, esta tende a zero, e por sua vez quando r_4 tende ao ponto *A* a função é crescente.

Dessa forma, estas duas funções criam a figura 3.3.

Figura 3.3: Curvas de $(R_{23} - R_0)(R_{14} - R_0) = (R_0 - R_{13})(R_0 - R_{24})$.

Vamos ter um ponto para cada arco dentro da região W, definindo assim uma curva. Esta curva entra dentro da região W e a sua derivada, é positiva. Ou seja, $d\mu/d\rho > 0$. Temos que $d\mu/d\rho > 0$ quando $\rho = \rho_0$, para vermos isso, note que

$$\frac{d\mu}{d\rho} = (R_{23} - R_0)\frac{dR_{14}}{d\rho} = -(R_0 - R_{13})\frac{dR_{24}}{d\rho}.$$

Figura 3.4: Curva $\mu(\rho)$

Analisando a equação de compatibilidade,

$$S_{12}S_{34} = (R_{12} - R_0)(R_{34} - R_0),$$

temos que R_{12} é fixo, e olhamos R_{34} . Fazendo a mesma análise feita para as outras equações de compatibilidade, resulta-nos o figura 3.5.

Figura 3.5: Curvas de $S_{12}S_{34} = (R_{12} - R_0)(R_{34} - R_0).$

Portanto, existe um único quarto ponto do equilíbrio relativo, r_4 , na região W, onde as equações de compatibilidade são satisfeitas como na figura 3.6.

Figura 3.6: Configuração convexa.

Agora vamos estudar as dependências das massas no caso convexo acima descrito. Considere qualquer curva CD de posições de r_3 , ou seja, através de r_3 passa o arco CDem U, que começa no arco de raio r_0 em torno de r_1 e termina no arco de raio r_0 em torno de r_2 .

Para cada ponto r_3 contido na curva CD, existe um ponto r_4 em V que é o quarto ponto do equilíbrio relativo. Com o auxílio da geometria, para qualquer família a 1-parâmetro de equilíbrios relativos, as razões de área Δ_i/Δ_j serão limitadas acima e abaixo por um número positivo. Agora tomando i = 1 e j = 2 na equação de razão das massas

$$\frac{m_1}{m_2} = \frac{\Delta_1 S_{23}}{\Delta_2 S_{13}}.$$

Vejamos que quando o ponto r_3 tende ao ponto C temos o seguinte resultado,

$$r_3 \to C \Rightarrow \frac{m_1}{m_2} \to +\infty$$

pois

$$\frac{m_1}{m_2} = \frac{\Delta_1 S_{23}}{\Delta_2 S_{13}} = \frac{\Delta_1 (R_{23} - R_0)}{\Delta_2 (R_{13} - R_0)}.$$

Note que quando r_3 tende ao arco de raio r_0 em torno de r_1 , a distância entre r_2 e r_3 fica cada vez menor, entretanto, cada vez mais R_{23} fica cada vez maior do que R_0 , isto é, $R_{23} > R_0$, e desta forma o valor $R_{23} - R_0$ vai aumentando cada vez mais. Vejamos agora para o caso em que r_3 tende ao ponto D. Façamos a mesma análise e chegaremos a conclusão de que a razão de massa tende a zero, ou seja,

$$r_3 \to D \Rightarrow \frac{m_1}{m_2} \to 0.$$

Existe, assim, ao menos um ponto na curva $CD \operatorname{com} m_1/m_2 = k_{12}$.

Visto que as massas são funções contínuas das distâncias em U, variando a curva CDnós obtemos uma curva C_1 em U tenho início em P e final em F, tal que a configuração central obtida variando r_3 na curva C_1 tem razão de massa $m_1/m_2 = k_{12}$.

Figura 3.7: Construção convexa.

Assim, para cada ponto em C_1 existe um ponto correspondente em V, isto é, o ponto r_4 , ou seja, existe uma curva correspondente em V para a curva C_1 .

Por construção, quando a partícula r_3 percorre a curva C_1 em direção ao arco F, a partícula correspondente em V aproxima-se do ponto P. Analisando agora a fórmula de razão de massa para i = 3 e j = 4, veja que quando $S_{14} < 0$ a razão de massa m_3/m_4 vai a zero. Por simetria, quando r_3 aproxima-se de P, m_3/m_4 vai a infinito.

Portanto existe ao menos um ponto em C_1 tal que $m_3/m_4 = k_{34}$. Mostramos então que para $r_{12} < r_0$, ambos fixados, existe uma configuração central com $m_1/m_2 = k_{12}$ e $m_3/m_4 = k_{34}$. Considere agora uma família de tal configuração com r_{12} decrescente para r_0 , enquanto este está fixado. Temos que o limite de r_{13}/r_{23} e r_{14}/r_{24} é 1, que significa que de fato cada uma dessas distâncias nas razões devem tender a r_0 pelas desigualdades

$$r_{23} < r_0 < r_{13} \quad e \quad r_{14} < r_0 < r_{24}.$$

Isto significa que o lado direito da equação $S_{12}S_{34} = S_{23}S_{14}$ é limitado por zero, mas S_{12} é considerado arbitrariamente grande, o que força r_{34} ser limitado por r_0 .

Pela fórmula de razão de massa nós obtemos que

$$\frac{m_1 m_2}{m_3 m_4} = \frac{\Delta_1 \Delta_2 S_{34}}{\Delta_3 \Delta_4 S_{12}}$$

vai a zero.

Analogamente, consideramos a situação que acontece quando r_{12} é crescente em relação a r_0 , nós encontramos que as razões das áreas das equações de razão de massas permanecem limitadas e S_{12} vai a zero enquanto $S_{34} < 0$.

Então $m_1 m_2 / m_3 m_4$ é pego arbitrariamente grande e existe ao menos um $r_{12} < r_0$ tal que

$$\frac{m_1 m_2}{m_3 m_4} = \frac{k_{13}^2 k_{34}}{k_{12}}$$

que implica que $m_1/m_3 = k_{13}$ como queríamos demonstrar.

Vamos mostrar agora mais alguns resultados importantes sobre o estudo das configurações centrais convexas.

3.0.2 Configuração convexa do tipo trapézio

Nesta seção vamos mostrar um resultado apresentado também por MacMillan e Bartky em [8], que fala sobre uma configuração do tipo trapézio isósceles, onde mostra-se a existência e a unicidade desta configuração. Entretanto, na prova que faremos vamos utilizar as equações de Andoyer, vistas na Seção 2.0.5 do Capítulo 2, a fim de mostrar como é mais simples a demonstração deste resultado através destas equações.

Tomamos nota de que quando estamos trabalhando com trapézios isósceles, temos as seguintes hipóteses, $r_{14} = r_{23}$ e $r_{13} = r_{24}$ e os lados r_{34} e r_{12} são paralelos. Das equações de razão de massa, podemos usar a seguinte relação

$$\frac{m_i}{m_j} = \frac{\Delta_i (R_{jk} - R_{jl})}{\Delta_j (R_{ik} - R_{il})}.$$
(3.1)

Temos então,

$$\frac{m_2}{m_1} = \frac{\Delta_2(R_{13} - R_{14})}{\Delta_1(R_{23} - R_{24})}$$

e usando as hipóteses das relações de lados, temos

$$\frac{m_2}{m_1} = \frac{\Delta_2(R_{13} - R_{23})}{\Delta_1(R_{23} - R_{24})} = 1 \Leftrightarrow$$
$$\Leftrightarrow m_1 = m_2.$$

Do mesmo modo, quando tomamos i = 3 e j = 4, temos que,

$$\frac{m_3}{m_4} = \frac{\Delta_3(R_{24} - R_{14})}{\Delta_4(R_{24} - R_{14})} = 1 \Leftrightarrow$$
$$\Leftrightarrow m_3 = m_4.$$

Vamos colocar sob quais hipóteses estamos trabalhando.

Teorema 3.0.2. Seja uma configuração central do tipo trapézio isósceles, ou seja, assumimos que $m_1 = m_2$, $m_3 = m_4$ e as seguintes simetrias acontecem, $r_{14} = r_{23}$ e $r_{13} = r_{24}$. Esta configuração existe e é única.

Demonstração: Estamos assumindo as seguintes simetrias $r_{14} = r_{23}$ e $r_{13} = r_{24}$, e tendo conhecimento de que r_{34} e r_{12} são paralelos.

As coordenadas que os vetores posição assumem em nosso problema são,

$$r_1 = (-1, 0, 0),$$
 $r_2 = (1, 0, 0),$
 $r_3 = (x, y, 0),$ e $r_4 = (-x, y, 0).$

Assumindo as hipóteses acima, vamos mostrar a existência de uma configuração central convexa, sendo esta um trapézio isósceles.

Para tanto vamos fazer uso das equações de Andoyer, mas em nosso caso, vamos fazer uso somente as relações f_{13} e f_{14} , já que $f_{12} \equiv 0$ e $f_{34} \equiv 0$. Escrevamos as relações que vamos usar,

$$f_{13} = m_2(R_{12} - R_{32})\Delta_{132} + m_4(R_{14} - R_{34})\Delta_{134} = 0, \qquad (3.2)$$

$$f_{14} = m_2(R_{12} - R_{42})\Delta_{142} + m_3(R_{13} - R_{43})\Delta_{143} = 0.$$
(3.3)

Empregando as hipóteses acima postas, essas relações ficam,

$$f_{13} = (R_{12} - R_{23})\Delta_{123} + m(R_{14} - R_{34})\Delta_{134} = 0, \qquad (3.4)$$

$$f_{14} = (R_{12} - R_{24})\Delta_{124} + m(R_{13} - R_{34})\Delta_{134} = 0, \qquad (3.5)$$

onde $m = m_2/m_4$. Isolando m na equação (3.4) temos que,

$$m = \frac{(R_{12} - R_{23})\Delta_{123}}{(R_{14} - R_{34})\Delta_{134}}.$$
(3.6)

Analogamente, na equação (3.5), resulta-nos

$$m = \frac{(R_{12} - R_{24})\Delta_{124}}{(R_{34} - R_{13})\Delta_{134}}.$$
(3.7)

Agora temos que analisar a positividade das razões (3.6) e (3.7), para isso, temos que analisar somente os termos dentro dos parênteses, pois as áreas dos triângulos são sempre positivas. Assim, devemos analisar que tanto o numerador quanto o denominador das razões devem manter o mesmo sinal na região que vamos analisar.

Para isto, consideramos a expressão (3.6) e analisamos cada fator deste quociente. Denotamos $F = R_{12} - R_{23}$ e $G = R_{14} - R_{34}$.

Considerando o fator F, temos que plotando o gráfico do fator F junto das curvas $r_{13} = 2$ e $r_{23} = 2$ onde x e y variam no seguinte intervalo, $-3 \le x \le 3$ e $-3 \le y \le 3$, temos a Figura 3.8. A região de interesse a qual procuramos para o caso da existência é a região vermelha, região negativa. Entretanto, estamos analisando somente a área externa ao círculo centrado em (-1, 0) e de raio 2. Ao plotarmos o gráfico do fator G, ficará mais claro a região de interesse.

Figura 3.8: Gráfico de F.

Analisando a região de interesse do gráfico do fator G, que é a hipérbole definida pela curva $y^2 + 3x^2 + 2x - 1 = 0$, junto das curvas $r_{13} = 2$ e $r_{23} = 2$ nas mesmas hipóteses do gráfico do fator F na Figura 3.8, temos que

Figura 3.9: Gráfico de G.

Vejamos que na região de existência de m_3 ao plotarmos o gráfico do fatores $F \in G$ da expressão (3.6) juntos das curvas $r_{13} = 2 \in r_{23} = 2$, a região de interesse têm o mesmo sinal.

Vamos agora analisar da mesma forma o quociente de (3.7).

Chamamos de $F_1 = R_{12} - R_{14}$ e $G_1 = R_{34} - R_{13}$. Vamos plotar o fator F_1 junto das curvas $r_{13} = 2$ e $r_{23} = 2$, onde x e y variam no seguinte intervalo, $-3 \le x \le 3$ e $-3 \le y \le 3$. Temos assim a Figura 3.10.

Figura 3.10: Gráfico de F_1 .

Analisando a Figura 3.10, a região admissível de interesse é a área externa ao círculo centrado em (-1, 0) e de raio 2, esta região têm sinal positivo.

Vamos plotar o gráfico do fator G_1 junto das curvas $r_{13} = 2$ e $r_{23} = 2$, onde $x \in y$ variam no seguinte intervalo, $-3 \le x \le 3$ e $-3 \le y \le 3$.

Figura 3.11: Gráfico de G_1 .

A região admissível de interesse na Figura 3.11 é a área externa ao círculo centrado em (-1,0) e de raio 2, a região em questão tem sinal positivo.

Vejamos que na região de existência da massa m_3 ao plotarmos o fator F_1 e G_1 da expressão (3.7) juntos das curvas $r_{13} = 2$ e $r_{23} = 2$, esta região têm o mesmo sinal.

Visto isto, podemos igualar os dois quocientes (3.6) e (3.7). Ao igualarmos os dois quocientes, temos a seguinte função,

$$T = (R_{12} - R_{23})(R_{34} - R_{13}) - (R_{12} - R_{13})(R_{23} - R_{34}).$$
(3.8)

Ao plotarmos o gráfico da função T junto do fator G, veremos que esta curva passa na região admissível delimitada pelos gráficos dos fatores $F, G, F_1 \in G_1$, centrados em (-1, 0), onde os intervalos de $x \in y$ variam em $-3 \le x \le 3 \in -3 \le y \le 3$. Observe

Figura 3.12: Função T.

Assim, para mostrar a existência do trapézio isósceles, temos de mostrar que a curva do gráfico da função T junto com o gráfico do fator G é crescente.

Para isto, vejamos os sinais das derivadas implícitas da função T em relação a x e a y. Para mostrarmos a unicidade do trapézio a derivada implícita em relação a y tem de ser positiva e a derivada implícita em relação a x tem de ser negativa.

Com efeito, seja a função T:

$$\left(\frac{1}{8(x^2)^{3/2}} - \frac{1}{((-1-x)^2 + y^2)^{3/2}}\right) \left(\frac{1}{8} - \frac{1}{((1-x)^2 + y^2)^{3/2}}\right) - \left(\frac{1}{8} - \frac{1}{((-1-x)^2 + y^2)^{3/2}}\right) \left(-\frac{1}{8(x^2)^{3/2}} + \frac{1}{((1-x) + y^2)^{3/2}}\right) = 0.$$

Ao fazermos a derivada implícita da função T em relação a y temos o seguinte resultado:

$$y' = \frac{(ab)^{5/2} - 4(ab^{5/2} + ba^{5/2}) - x^2(4b^{5/2} + 4a^{5/2} - 192b - 192a) + 4yb^{5/2} - x^4(192yb + 192ya) + 4yxa^{(5/2)}}{\frac{x(4b^{5/2} - 4a^{5/2} - 192x^4b)}{4yb^{5/2} - x^4(192yb + 192ya) + 4yxa^{5/2}}.$$

Onde $a = ((1-x)^2 + y)^{3/2}$ e $b = ((-1-x)^2 + y^2)^{3/2}$. Ao fazermos a análise do sinal deste quociente, o sinal de y' é positivo, isto é, a derivada implícita da função T em relação a y é positiva.

Façamos agora a derivada implícita da função T em relação a x, temos como resultado:

$$x' = \frac{(ab)^{5/2} - xy(4b^{5/2} + 4a^{5/2} + x^4y(192b + 192a))}{x(-4b^{5/2} + 4a^{5/2}) + x^2(4b^{5/2} + 4a^{5/2}) + x^4(192b - 192a) + \frac{(ab)^{5/2} - xy(4b^{5/2} + 4a^{5/2} + x^4y(192b + 192a))}{x^5(192b - 192a) + 4(ab^{5/2} + ba^{5/2})}.$$

Onde $a = ((1-x)^2 + y)^{3/2}$ e $b = ((-1-x)^2 + y^2)^{3/2}$. Ao fazermos a análise do sinal deste quociente, o sinal de x' é negativo, isto é, a derivada implícita da função T em relação a x é negativa.

Desta maneira, teremos que na região admissível a curva da função T junto do gráfico do fator G é crescente. Logo estará provado a existência e a unicidade do trapézio isósceles.

3.0.3 Unicidade no caso da configuração do tipo losango

Apresentamos nesta seção a unicidade de uma configuração convexa do tipo losango. Usamos o Teorema a seguir na demonstração.

Teorema 3.0.3. Sejam quatro massas positivas com posições (r_1, r_2, r_3, r_4) formando uma configuração central planar, que é um quadrilátero convexo tendo $[r_1, r_2]$ e $[r_3, r_4]$ como diagonais. Então:

- i) Esta configuração é simétrica com respeito ao eixo $[r_1, r_2]$ se, e somente se, $m_3 = m_4$
- ii) Esta configuração é simétrica com respeito ao eixo $[r_3, r_4]$ se, e somente se, $m_1 = m_2$
- iii) $m_1 < m_2$ se, e somente se, $|\Delta_{134}| < |\Delta_{234}|$
- *iv)* $m_3 < m_4$ se, e somente se, $|\Delta_{123}| < |\Delta_{124}|$.

Demonstração: veja [12]

Demonstração: (Unicidade da Configuração do tipo losango) Vamos agora mostrar a sua unicidade, para tanto, vamos primeiramente definir sobre quais hipóteses estamos trabalhando e aí desenvolver a prova. Estamos trabalhando com uma configuração central convexa do tipo Losango, na qual as massas estão sendo tomadas como na Figura 3.13, sendo que os vetores posição associados a cada massa têm as seguintes coordenadas:

Figura 3.13: Configuração planar convexa de 4 corpos.

Consideremos $m_1 = m_2 = 1$ e $m_3 = m_4 = m$ para fazermos as contas. Vamos definir as equações de Andoyer, as quais vão nos ajudar na prova:

$$f_{12} = m_3(R_{13} - R_{23})\Delta_{123} + m_4(R_{14} - R_{24})\Delta_{124} = 0, \qquad (3.9)$$

$$f_{13} = m_2(R_{12} - R_{32})\Delta_{132} + m_4(R_{14} - R_{34})\Delta_{134} = 0, \qquad (3.10)$$

$$f_{14} = m_2(R_{12} - R_{42})\Delta_{142} + m_3(R_{13} - R_{43})\Delta_{143} = 0, \qquad (3.11)$$

$$f_{23} = m_1(R_{21} - R_{31})\Delta_{231} + m_4(R_{24} - R_{34})\Delta_{234} = 0, \qquad (3.12)$$

$$f_{24} = m_1(R_{21} - R_{41})\Delta_{241} + m_3(R_{21} - R_{43})\Delta_{243} = 0, \qquad (3.13)$$

$$f_{34} = m_1(R_{31} - R_{41})\Delta_{341} + m_2(R_{32} - R_{24}\Delta_{342} = 0.$$
(3.14)

Ao fazermos as contas, vamos chegar aos seguintes resultados,

$$f_{12} = 0, (3.15)$$

$$f_{13} = -2\sqrt{3}mx \left(\frac{1}{\left(x^2+3\right)^{3/2}} - \frac{1}{24\sqrt{3}}\right) - 2\sqrt{3}x \left(\frac{1}{8\left(x^2\right)^{3/2}} - \frac{1}{\left(x^2+3\right)^{3/2}}\right), \quad (3.16)$$

$$f_{14} = 2\sqrt{3}mx \left(\frac{1}{\left(x^2+3\right)^{3/2}} - \frac{1}{24\sqrt{3}}\right) + 2\sqrt{3}x \left(\frac{1}{8\left(x^2\right)^{3/2}} - \frac{1}{\left(x^2+3\right)^{3/2}}\right), \quad (3.17)$$

$$f_{23} = 2\sqrt{3}mx \left(\frac{1}{\left(x^2+3\right)^{3/2}} - \frac{1}{24\sqrt{3}}\right) + 2\sqrt{3}x \left(\frac{1}{8\left(x^2\right)^{3/2}} - \frac{1}{\left(x^2+3\right)^{3/2}}\right), \quad (3.18)$$

$$f_{24} = -2\sqrt{3}mx \left(\frac{1}{\left(x^2+3\right)^{3/2}} - \frac{1}{24\sqrt{3}}\right) - 2\sqrt{3}x \left(\frac{1}{8\left(x^2\right)^{3/2}} - \frac{1}{\left(x^2+3\right)^{3/2}}\right), \quad (3.19)$$

$$f_{34} = 0. (3.20)$$

Percebamos que ao analisarmos as equações acima, vamos perceber que $f_{13} = -f_{23}$ e $f_{14} = -f_{24}$. Assim, dependemos apenas das relações (3.16) e (3.17).

Agora vamos mostrar que a unicidade gira em torno de mostrar que as equações de razão de massa vão ficar em função de uma única variável, em nosso caso, a variável x. Quando fizermos a derivada em relação a esta variável veremos que sua derivada é sempre positiva.

Com efeito, das relações (3.11), (3.17) e tomando a seguinte notação $M_{32} = m$, temos que,

$$M_{32} = -\frac{\frac{1}{8(x^2)^{3/2}} - \frac{1}{(x^2+3)^{3/2}}}{\frac{1}{(x^2+3)^{3/2}} - \frac{1}{24\sqrt{3}}}$$
(3.21)

Agora, ao fazermos a derivada de M_{32} em relação a variável x, temos o seguinte resultado

$$\frac{d}{dx}(M_{32}) = -\frac{\frac{3x}{(x^2+3)^{5/2}} - \frac{3x}{8(x^2)^{5/2}}}{\frac{1}{(x^2+3)^{3/2}} - \frac{1}{24\sqrt{3}}} - \frac{3x\left(\frac{1}{8(x^2)^{3/2}} - \frac{1}{(x^2+3)^{3/2}}\right)}{(x^2+3)^{5/2}\left(\frac{1}{(x^2+3)^{3/2}} - \frac{1}{24\sqrt{3}}\right)^2}.$$
 (3.22)

Chamemos $\frac{d}{dx}(M_{32})$ de $D(M_{32})$. Fatorando $D(M_{32})$, temos que:

$$-\frac{27x\sqrt{x^2+3}\left(-8\sqrt{3}\left(x^2\right)^{5/2}+\sqrt{3}\left(x^2+3\right)^{5/2}-216\right)}{\left(x^2\right)^{5/2}\left(\sqrt{3}\left(x^2+3\right)^{3/2}-72\right)^2}.$$
(3.23)

Vejamos que devemos somente analisar o termo $+8\sqrt{3} (x^2)^{5/2} - \sqrt{3} (x^2+3)^{5/2} + 216$, pois os termos restantes são não negativos.

Com efeito, vejamos a Figura 3.14 que é o gráfico do termo $+8\sqrt{3}(x^2)^{5/2}-\sqrt{3}(x^2+3)^{5/2}+$ 216.

Figura 3.14: Derivada em relação a x.

Vemos então que a derivada de M_{32} em relação a x no intervalo (1, 2) é positiva. Logo, a configuração central convexa no caso do Losango é única.

Dando continuidade sobre regiões de existência para uma configuração central, vamos mostrar no Capítulo 4 um Teorema de Existência mostrado por Yiming Long, vide [6], entretanto, Yiming mostra em seu trabalho um teorema de existência para configurações centrais côncavas. No início do Capítulo 4 enunciaremos lemas importantes que nos auxiliaram para a demonstração do Teorema de Existência de configurações centrais côncavas.

Capítulo 4

Configurações centrais côncavas

Neste capítulo enunciaremos lemas para configurações centrais côncavas, a fim de auxiliar na prova do teorema principal do capítulo, o qual tem como objetivo mostrar as regiões admissíveis para a caracterização geométrica de uma configuração côncava. Lembremos que definimos uma configuração central côncava, quando a quarta massa m_4 , está contida dentro do fecho convexo delimitado pelas massas $m_1, m_2 \in m_3$.

4.0.1 Resultados preliminares

Lema 4.0.1. Para qualquer equilíbrio relativo côncavo de 4-corpos $r = (r_1, r_2, r_3, r_4)$ com massas $m_1, m_2, m_3, m_4 \in (\mathbb{R}^+)^4$, todos os lados exteriores são maiores do que os lados interiores, e existe $r_0 > 0$ dependendo de m e r tal que r_0 é menor ou igual do que os comprimentos de todos os lados exteriores, e maior ou igual do que os comprimentos de todos os lados interiores. Além disso, o maior lado exterior é oposto ao maior lado interior.

A demonstração deste lema pode ser vista em [8].

Lema 4.0.2. Seja $r = (r_1, r_2, r_3, r_4)$ um equilíbrio relativo côncavo, com r_2 localizado dentro do fecho convexo do triângulo formado por $r_1, r_3 e r_4$. Então o triângulo $\Delta r_1 r_3 r_4$ é um triângulo agudo, isto é, todo ângulo interior $\angle r_1 r_3 r_4$, $\angle r_3 r_4 r_1$, ou $\angle r_4 r_1 r_3$ é estritamente menor do que 90°. A prova deste lema por ser encontrada em [6].

Lema 4.0.3. Na Figura 4.1 os pontos r_4 , $F \in A$ são colineares, então os pontos r_3 , $F' \in A$ também o são.

Este resultado é demonstrado por Yiming, vide [6].

A seguir, temos a Figura 4.1, que nos auxiliará na prova do teorema de caracterização geométrica de uma configuração côncava. Vamos mostrar como a Figura 4.1 é construída.

Dado um equilíbrio relativo côncavo $r = (r_1, r_2, r_3, r_4)$ para *m* localizada no interior do $\Delta r_1 r_3 r_4$, nós fixamos r_3 e r_4 como na figura 4.1 e construímos as regiões admissíveis R_1 e R_2 tal que $r_1 \in R_1$ e $r_2 \in R_2$.

Seja $r = r_{34}$. A figura 4.1 é obtida como a seguir.

- i) Fixe r₄ e r₃ da esquerda para a direita em uma linha horizontal em ℝ². Seja Q o ponto médio de r₃r₄.
- ii) Nós desenhamos a metade superior dos círculos C_3, C_Q e C_4 como o mesmo raio r/2 e centrados em r_3, Q , e r_4 respectivamente. Denote por $B \in B'$ os pontos de interseção das metades superiores dos círculos de $C_4 \in C_3$ com C_Q respectivamente.
- iii) Nós desenhamos a metade superior dos círculos D_3 e D_4 com o mesmo raio r e centrados em r_3 e r_4 respectivamente. Denote por K o ponto de interseção das metades superiores dos círculos D_3 e D_4 .
- iv) Nós desenhamos um círculo C_K centrado em K com rai
orque passa através de r_3 e r_4 .
- v) Nós desenhamos duas linhas L_3 e L_4 perpendiculares a $\overline{r_3r_4}$ passando através de r_3 e r_4 respectivamente. Denote por G e G' os pontos de interseção de L_4 e L_3 com a metade superior do círculo C_K respectivamente.
- vi) Nós desenhamos uma linha L_Q perpendicular a $\overline{r_3r_4}$ e passando através de Q. Essa linha L_Q passa através de K. Denote por H e A a interseção dos pontos de L_Q com as metades superiores dos círculos C_Q e C_K respectivamente.

- vii) Nós desenhamos uma linha M_3 passando através dos pontos r_3 e B. A linha M_3 intersecta L_4 no ponto E e na metade superior do círculo D_3 e no ponto F.
- viii) Nós desenhamos a linha M_4 passando através dos pontos r_4 e B'. A linha M_4 intersecta L_3 no ponto E' e na metade superior do círculo D_4 e no ponto F'.
- ix) Nós ligamos os pontos $r_3 \in F'$ pelo segmento $\overline{r_3F'} \in r_4$ a F pelo segmento $\overline{r_4F}$.
- x) Nós denotamos por R₁ a região aberta limitada pelo arco superior de C_K de G a G', L₃ de G' a E', M₄ de E' a B', o arco superior de C_Q de B' a B, M₃ de B a E, e então L₄ de E a G. A região R₁ é cercada pelas curvas de espessura grossa na Figura 4.1.
- xi) Nós denotamos por T_1 a região fechada limitada pelo arco superior de D_4 de K para r_3 , $\overline{r_3r_4}$ de r_3 para r_4 , e o arco superior de D_3 para r_4 a K. Então seja $T_2 = T_1 \overline{r_3r_4}$.
- xii) Nós denotamos por R'_2 a região aberta limitada pelo arco superior de D_4 de K para F', o segmento $\overline{F'r_3}$, o segmento $\overline{r_3r_4}$, o segmento $\overline{r_4F}$, e então o arco superior de D_3 de F a K. Seja a região R_2 a união de R'_2 com o arco de F' a K na metade superior do arco de D_3 sem o ponto F, e com o arco de F' a K na metade superior do arco de D_4 sem o ponto F'. A região R_2 é cercada pelas curvas finas na Figura 4.1.

Figura 4.1: Regiões admissíveis no caso côncavo.

Na prova do teorema, as massas são tomadas no sentido horário. Vamos fazer uso dos lemas apresentados anteriormente para fazermos a prova do lema.

Durante a demonstração sempre faremos menção à construção da figura para equilíbrios relativos côncavos no problema de 4-corpos, a Figura 4.1. A prova deste resultado é mostrado por Y. Long, vide [6].

4.0.2 Teorema de caracterização geométrica de uma configuração côncava

Teorema 4.0.1. Para qualquer massa $m \in (R_+)^4$, seja $r = (r_1, r_2, r_3, r_4)$ um equilíbrio relativo côncavo para m com r_2 localizado dentro do triângulo $\Delta r_1 r_3 r_4$. Fixando r_3 e r_4 como na Figura 4.1, os seguintes resultados sempre acontecem.

i) Afirmamos que

$$r_1 \in R_1, \tag{4.1}$$

ii) Cada um dos ângulos interiores de $\Delta r_1 r_3 r_4$ deve ser estritamente maior do que 30°

e estritamente menor do que 90°, isto é,

$$30^{\circ} < \min\{ \angle r_1 r_3 r_4, \angle r_3 r_4 r_1, \angle r_4 r_1 r_3 \} \le \max\{ \angle r_1 r_3 r_4, \angle r_3 r_4 r_1, \angle r_4 r_1 r_3 \} < 90^{\circ},$$

$$(4.2)$$

iii) Assegura-se que

$$\frac{\sqrt{3}}{2}r_{34} < |r_1 - \overline{r_3 r_4}| < \left(1 + \frac{\sqrt{3}}{2}\right)r_{34},\tag{4.3}$$

$$\frac{\sqrt{3}}{4}max\left\{r_{34}^2, r_{13}^2, r_{14}^2\right\} < \acute{a}rea\left(\Delta r_1 r_3 r_4\right) < \frac{2+\sqrt{3}}{4}min\left\{r_{34}^2, r_{13}^2, r_{14}^2\right\},$$
(4.4)

onde $|r_1 - \overline{r_3 r_4}|$ denota a distância entre r_1 e o segmento $\overline{r_3 r_4}$,

iv) Afirmamos que

$$r_2 \in R_2, \tag{4.5}$$

v) Cada um dos dois ângulos internos da base do triângulo $\Delta r_2 r_3 r_4$ deve ser estritamente maior do que 0° e estritamente menor do que 75°, isto é,

$$0^{\circ} < \min\{ \angle r_2 r_3 r_4, \angle r_2 r_4 r_3 \} \le \max\{ \angle r_2 r_3 r_4, \angle r_2 r_4 r_3 \} < 75^{\circ}, \tag{4.6}$$

vi) Assegura-se que

$$0 < |r_2 - \overline{r_3 r_4}| \le \frac{\sqrt{3}}{2} r_{34}, \tag{4.7}$$

$$0 < \acute{a}rea \left(\Delta r_2 r_3 r_4\right) \le \frac{\sqrt{3}}{4} r_{34}^2, \tag{4.8}$$

Demonstração: A prova será realizada em 4 etapas.

Passo 1: Afirmamos que $r_2 \in T_2$.

Note que esta é uma afirmação mais fraca do que o item iv). De fato, se r_2 localiza-se fora da região T_2 , então ao menos um dos seguimentos r_{23} e r_{24} é maior do que $r \equiv r_{34}$, ou seja, se $r_2 \notin T_2$, então ou $r_{23} > r_{34} \equiv r$ ou $r_{24} > r_{34} \equiv r$.

Entretanto, tal fato não acontece, pois r_2 estando dentro de $\Delta r_1 r_3 r_4$, o Lema 4.0.1 assegura essa afirmação anterior. Além disso, o maior (ou menor) lado exterior fica oposto ao maior (menor, respectivamente) lado interior, ou seja, como r_2 situa-se dentro de $\Delta r_1 r_3 r_4$ e um dos lados $r_{34} \equiv r$, pelo Lema 4.0.1, r_{24} ou r_{23} não pode ser maior do que r_{34} , isto é, $r_2 \in T_2 \Rightarrow r_{23} < r$ ou $r_{24} < r$.

Perceba também que r_2 não pode estar sobre $\overline{r_3r_4}$, pois senão não teríamos um equilíbrio relativo côncavo.

Passo 2: $\langle 1 \rangle$ Prova do item *i*) para o item *iii*).

Tomamos a seguinte desigualdade

$$30^{\circ} < \min\{ \angle r_1 r_3 r_4, \angle r_3 r_4 r_1, \angle r_4 r_1 r_3 \} \le \max\{ \angle r_1 r_3 r_4, \angle r_3 r_4 r_1, \angle r_4 r_1 r_3 \} < 90^{\circ}; \quad (4.9)$$

Pelo Lema 4.0.2, o lado direito da desigualdade $max \{ \angle r_1 r_3 r_4, \angle r_3 r_4 r_1, \angle r_4 r_1 r_1 \} < 90^{\circ}$ acontece, e dessa forma r_1 localiza-se na tira aberta delimitada pelas linhas L_3 e L_4 .

 $\langle 2 \rangle$ Afirmamos que r_1 não pode localizar-se abaixo da metade do círculo superior de C_4 . Com efeito, caso contrário pelo Teorema 2.0.5, r_2 deve localizar-se no lado direito da linha L_Q . Dessa forma teríamos $r_{14} \leq r/2 < r_{24}$. Ora, mas isto contradiz o Lema 4.0.1, já que todos os lados exteriores são maiores do que os lados interiores. Portanto, $r_1 \notin C_4$.

Pelo mesmo argumento, r_1 não pode localizar-se abaixo do semicírculo superior de C_3 , pois sendo este pertencente a C_3 , pelo Teorema 2.0.5, r_2 , pertenceria ao lado esquerdo da linha L_Q e por este fato $r_{13} \leq r/2 < r_{32}$. Entretanto, pelo Lema 4.0.1 isto não é válido, então $r_1 \notin C_3$.

 $\langle 3 \rangle$ Note que r_1 não pode localizar-se abaixo do semicírculo superior de C_Q . Vejamos que para qualquer posição tomada de r_1 e r_2 , irá contrariar o Lema 4.0.1, e colocando o ponto r_1 no ponto H, infringimos o Lema 4.0.2 onde $\Delta r_1 r_3 r_4$ tem de ser um triângulo agudo. Portanto $r_1 \notin C_K$.

 $\langle 4 \rangle$ Afirmamos que r_1 não pode localizar-se acima do semicírculo superior de C_K e dentro da região aberta entre as linhas L_3 e L_4 . De fato, se r_1 está estritamente acima do semicírculo superior de C_K , então pelo passo 1, afirmamos que $r_2 \in T_2$, obtemos assim que $r_{12} > |A - K| = r \equiv r_{34}$.

Ora, mas essa desigualdade contradiz o Lema 4.0.1, portanto r_1 não pertence a região superior do semicírculo C_K .

Se r_1 está no arco superior de C_k entre $G \in A$, e $r_1 \neq G \in A$, então pelo Teorema 2.0.5 e pelo fato de $r_2 \in T_2$, segue que r_2 deve localizar-se no lado direito de L_Q e dentro de T_2 . Assim nós temos que $r_{12} > |A - K| = r \equiv r_{34}$. Isso contradiz o Lema 4.0.1.

Similarmente, r_1 não pode localizar-se no arco superior de C_k entre $A \in G'$, e $r_1 \neq A$ e $G, r_2 \in T_2$ e está no lado esquerdo da linha L_Q , o que viola o Lema 4.0.1.

Se $r_1 = A$, então r_2 deve localizar-se em $L_Q \cap T_2$ pelo Teorema 2.0.5 e $r_2 \in T_2$. Por causa $|A - K| = r = |K - r_4|$, a bissetriz perpendicular L_4 do segmento $\overline{r_1 r_4}$ passa através do ponto médio de $\overline{r_1 r_4}$ e K. Assim $L_Q \cap T_2$ não contém pontos no lado esquerdo de L_{14} , porque r_3 está sobre o lado direito de L_{14} , isso viola o Teorema 2.0.5. Note que quando r_1 está sobre o arco C_K no ponto A, temos que $\angle r_3 A r_4 = 30^\circ$.

 $\langle 5 \rangle$ Pela construção geométrica, se r_1 está sobre o arco superior C_K entre $G \in G'$, então $\angle r_3 r_1 r_4 = 30^\circ$. Assim pelas provas acima em $\langle 1 \rangle \in \langle 4 \rangle$, para r_1 localizar-se entre as duas linhas $L_3 \in L_4$, e abaixo do semicírculo superior de C_K entre $G \in G'$, tem que valer $\angle r_3 r_1 r_4 > 30^\circ$.

Permutamos agora as posições das massas, ou seja, permutando $r_1, r_3 \in r_4$, seque que

$$\min\left\{ \angle r_1 r_3 r_4, \angle r_1 r_4 r_3 \right\} > 30^{\circ} \tag{4.10}$$

Dessa forma, obtemos:

$$\min\left\{ \angle r_3 r_1 r_4, \angle r_4 r_3 r_1, \angle r_1 r_4 r_3 \right\} > 30^{\circ} \tag{4.11}$$

essa desigualdade representa o lado esquerdo da desigualdade que queríamos demonstrar.

Assim a designal dade $max \{ \angle r_1 r_3 r_4, \angle r_3 r_4 r_1, \angle r_4 r_1 r_3 \} < 90^\circ$ acontece.

 $\langle 6 \rangle$ Por $min \{ \angle r_1 r_3 r_4, \angle r_1 r_4 r_3 \} > 30^\circ$ nós obtemos que r_1 não pode localizar-se abaixo das linhas $M_3 \in M_4$. Pois, por construção, o ângulo formado entre a união dos seguimentos $\overline{r_3 r_4} \in \overline{r_3 E}$ é de 30° e o mesmo vale para $\overline{r_3 r_4} \in \overline{r_3 E'}$. Portanto, r_1 não pode localizar-se abaixo das linhas $M_3 \in M_4$, pelos tópicos $\langle 1 \rangle \in \langle 5 \rangle$ resulta-nos o item i) e o item ii). Agora o item iii) segue do item i) e de um cálculo elementar.

Passo 3: Prova do item iv).

Se r_1 está no lado esquerdo de L_Q , pelo item *i*) nós temos que $r_1 \in R_1$.

Isto implica que $\angle r_1r_3r_4 < \angle Ar_3r_4$, pelo fato de que a partícula r_1 não pode estar sobre o arco C_K de G e A, assim r_1 está dentro da região delimitada pelo círculo C_K de centro K. Observamos que se r_1 localiza-se em L_Q ou sobre o lado direito de L_Q , então pelo Teorema 2.0.5, r_2 localiza-se em L_Q ou sobre o lado esquerdo de L_Q , e assim não pode localizar-se em $\overline{r_3A}$ ou sobre o lado direito de $\overline{r_3A}$.

O entendimento desse fato se dá da seguinte forma, se r_1 está sobre L_Q , r_2 pode estar sobre L_Q , pois ainda estará satisfazendo o Lema 4.0.1.

Similarmente, nós obtemos que r_2 não pode localizar-se em $\overline{r_4A}$ ou sobre o lado esquerdo de $\overline{r_4A}$, pelo Teorema 2.0.5, uma vez que r_1 esteja sobre L_Q ou sobre o lado esquerdo de L_Q dentro da região R_1 .

Visto isso, o Lema 4.0.3 que diz que na Figura 4.1 os pontos r_3 , $F \in A$ são colineares e, assim os pontos r_3 , $F' \in A$ também o são. Aceito isso, o que comprovamos anteriormente, $r_2 \in R_2$, para qualquer movimentação de $r_1 \in R_1$.

Passo 4: prova do item v) e item vi). Vejamos que a desigualdade $0^{\circ} < min \{ \angle r_2 r_3 r_4, \angle r_2 r_4 r_3 \}$ segue do Teorema 2.0.5.

De fato, visto que r_2 no interior do triângulo $\Delta r_1 r_3 r_4, r_2$ não pode ser colinear com r_3 e r_4 , senão infringiria o Lema 1 e, visto que r_1 não pode estar abaixo das linhas M_3 e M_4 , os ângulos $\angle r_1 r_{34} r_3 > 30^\circ$ e $\angle r_1 r_3 r_4$.

Vejamos que a desigualdade $max \{ \angle r_2 r_3 r_4, \angle r_2 r_4 r_3 \} < 75^\circ$ segue do Lema 4.0.2, visto também que $r_2 \in R_2$ e pelo Lema 4.0.3, então $max \{ \angle r_2 r_3 r_4, \angle r_2 r_4 r_3 \} < 75^\circ$ é satisfeita.

Agora, a afirmação item vi) segue do fato de $r_2 \in R_2$ e uma manipulação algébrica.

Mostramos assim uma caracterização geométrica para uma configuração central côncava. Ainda não há muitos resultados sobre configurações centrais côncavas, porém, na tese de Hampton, vide [5], há alguns resultados sobre tais configurações para o leitor que queira saber mais sobre o assunto.

Dando sequência, no capítulo final deste trabalho, vamos colocar um problema sobre a existência de configurações centrais do tipo trapézio, todavia, retirada sua reta de simetria. Através de análises numéricas, temos evidências de que existirá um aberto próximo dos trapézios isósceles, resultando assim que teremos famílias de configurações centrais sem nenhuma reta de simetria.

Capítulo 5

Trabalhos futuros

Estamos trabalhando com o problema do trapézio não isósceles, que seria considerar que dois lados do quadrilátero são paralelos.

Vamos tomar coordenadas da seguinte forma, $r_1 = (-1, 0)$, $r_2 = (1, 0)$, $r_3 = (x, h)$ e $r_4 = (y, h)$, vide Figura 5.1. Queremos encontrar os valores de $x, y \in h$ para os quais existam massas positivas $m_1, m_2, m_3 \in m_4$ para as quais os quatro corpos com estas posições e massas formem uma configuração central.

Figura 5.1: Configuração Trapézio não isósceles.

Usando as equações de Andoyer vamos definir as razões de massas com as quais vamos trabalhar este problema

$$M_{ij} = \frac{m_i}{m_j}$$

Através das equações de razão de massa, podemos chegar a seguinte função,

$$T_1 := (R_{14} - R_{13})(R_{12} - R_{23})(R_{24} - R_{34}) - (R_{13} - R_{12})(R_{24} - R_{23})(R_{14} - R_{34}).$$
(5.1)

A forma como chegamos nessa função e qual a sua utilidade será mostrada na Seção 5.0.1.

Vamos agora plotar as regiões e ver onde estas razões são positivas. Nas figuras, a região amarela indica valores positivos e as vermelhas indicam valores negativos. As razões de massa estão em função m_3 .

$$M_{43} = -\frac{R_{13} - R_{23}}{R_{14} - R_{24}},\tag{5.2}$$

Gráfico de M_{43} junção com o gráfico da função 5.8

Figura 5.2: Razão de massa M_{43} junto da função T_1 .

$$M_{21} = \frac{R_{14} - R_{13}}{R_{23} - R_{24}},\tag{5.3}$$

Gráfico de M_{21} junção com o gráfico da função 5.1

Figura 5.3: Razão de massa M_{21} junto da função T_1 .

$$M_{32} = \frac{R_{24} - R_{12}}{(R_{13} - R_{43})(x - y)},$$
(5.4)

Gráfico de M_{32} junção com o gráfico da função 5.8

Figura 5.4: Razão de massa M_{32} junto da função T_1 .

$$M_{31} = \frac{R_{21} - R_{41}}{(R_{23} - R_{43})(x - y)},$$
(5.5)

Gráfico de M_{31} junção com o gráfico da função 5.8

Figura 5.5: Razão de massa M_{31} junto da função T_1 .

$$M_{42} = \frac{R_{1,2} - R_{3,2}}{(R_{1,4} - R_{3,4})(x - y)},$$
(5.6)

Gráfico de M_{42} junção com o gráfico da função 5.8

Figura 5.6: Razão de massa M_{42} junto da função T_1 .

$$M_{41} = \frac{R_{2,1} - R_{3,1}}{(R_{2,4} - R_{3,4})(x - y)}.$$
(5.7)

Gráfico de M_{41} junção com o gráfico da função 5.8

Figura 5.7: Razão de massa M_{41} junto da função T_1 .

5.0.1 Funções T

Nesta seção vamos mostrar como chegamos nas funções T. A identidade $T_1 = 0$ pode ser vista como uma equação de compatibilidade, isto é, sobre a curva $T_1 = 0$ as razões de masas concordam.

Com efeito, a função T_1 é definida da seguinte forma, fazemos o quociente de M_{41} por M_{21} e igualamos isto a M_{42} , isto é,

$$\frac{M_{41}}{M_{21}} = M_{42}.$$

Dessa forma temos que,

$$\frac{(R_{21} - R_{31})}{(R_{24} - R_{34})} \frac{(R_{23} - R_{24})}{(R_{14} - R_{13})} = \frac{(R_{12} - R_{32})}{(R_{14} - R_{34})}$$

Temos assim,

$$(R_{21} - R_{31})(R_{23} - R_{24})(R_{14} - R_{34}) = (R_{24} - R_{34})(R_{14} - R_{13})(R_{12} - R_{32}).$$

CAPÍTULO 5. TRABALHOS FUTUROS

Chegamos assim, a seguinte expressão que define ${\cal T}_1$

$$T_1 := (R_{14} - R_{13})(R_{12} - R_{23})(R_{24} - R_{34}) - (R_{13} - R_{12})(R_{24} - R_{23})(R_{14} - R_{34}).$$
(5.8)

vejamos o gráfico da função ${\cal T}_1$

Figura 5.8: Função T_1 .

Vamos agora definir T_2 , esta por sua vez é definida como o quociente de M_{31} por M_{21} e igualamos tal quociente a M_{32} , ou seja,

$$\frac{M_{31}}{M_{21}} = M_{32}$$

Temos então o seguinte cenário,

$$\frac{(R_{21} - R_{41})}{(R_{23} - R_{43})} \frac{(R_{23} - R_{24})}{(R_{14} - R_{13})} = \frac{(R_{24} - R_{12})}{(R_{13} - R_{43})},$$

Assim,

$$(R_{14} - R_{12})(R_{24} - R_{23})(R_{13} - R_{34}) = (R_{13} - R_{14})(R_{24} - R_{12})(R_{23} - R_{34}).$$

Definimos então T_2 como sendo a expressão,

$$T_2 := (R_{13} - R_{14})(R_{24} - R_{12})(R_{23} - R_{34}) - (R_{12} - R_{14})(R_{24} - R_{23})(R_{13} - R_{34}).$$
(5.9)

Plotemos o gráfico da função T_2 e, vejamos de fato que $T_2 = -T_1$.

Figura 5.9: Função T₂.

A função T_3 , encontramos do quociente de M_{41} por M_{31} e igualamos a M_{43} . Temos então,

$$\frac{(R_{21} - R_{31})}{(R_{21} - R_{34})} \frac{(R_{23} - R_{43})}{(R_{21} - R_{41})} = -\frac{(R_{13} - R_{23})}{(R_{14} - R_{24})}$$

temos então,

$$-(R_{13} - R_{12})(R_{23} - R_{34})(R_{24} - R_{14}) = -(R_{13} - R_{23})(R_{24} - R_{34})(R_{12} - R_{14})$$

 T_3 é definida então como,

$$T_3 := (R_{13} - R_{23})(R_{12} - R_{14})(R_{24} - R_{34}) - (R_{13} - R_{12})(R_{24} - R_{14})(R_{23} - R_{34}).$$
(5.10)

A função T_4 é definida da seguinte forma, fazemos o quociente de M_{42} por M_{32} e igualamos isto a M_{43} , isto é,

$$\frac{M_{42}}{M_{32}} = M_{43}.$$

Dessa forma temos que,

$$\frac{(R_{12} - R_{32})}{(R_{14} - R_{34})} \frac{(R_{13} - R_{43})}{(R_{24} - R_{12})} = -\frac{(R_{13} - R_{23})}{(R_{14} - R_{24})}$$

Temos assim,

$$-(R_{14} - R_{34})(R_{13} - R_{23})(R_{24} - R_{12}) = -(R_{12} - R_{32})(R_{13} - R_{43})(R_{24} - R_{14}).$$

Definimos T_4 como

$$T_4 := (R_{13} - R_{23})(R_{24} - R_{12})(R_{14} - R_{34}) - (R_{12} - R_{23})(R_{24} - R_{14})(R_{13} - R_{43}).$$
(5.11)

As funções T_5 e T_6 são definidas de uma forma um pouco diferente, vejamos.

A função T_5 é obtida do quociente de M_{31} por M_{42} igualada ao produto entre M_{21} e M_{43} , ou seja,

$$\frac{(R_{21} - R_{41})}{(R_{23} - R_{43})} \frac{(R_{14} - R_{34})}{(R_{12} - R_{32})} = \frac{(R_{14} - R_{13})}{(R_{23} - R_{24})} M_{43}.$$

Temos então que,

$$(R_{13} - R_{14})(R_{12} - R_{23})(R_{23} - R_{34}) = (R_{12} - R_{14})(R_{24} - R_{23})(R_{14} - R_{34})M_{43}$$

Assim,

$$\frac{(R_{13} - R_{14})(R_{12} - R_{23})(R_{23} - R_{34})}{(R_{12} - R_{14})(R_{24} - R_{23})(R_{14} - R_{34})} = \frac{(R_{13} - R_{23})}{(R_{24} - R_{14})}$$

Definimos T_5 então da seguinte forma,

$$T_5 := \frac{(R_{13} - R_{23})}{(R_{24} - R_{14})} - \frac{(R_{13} - R_{14})(R_{12} - R_{23})(R_{23} - R_{34})}{(R_{12} - R_{14})(R_{24} - R_{23})(R_{14} - R_{34})}$$
(5.12)

A função T_6 é definida como sendo o quociente entre M_{41} e M_{21} igualada ao produto entre M_{32} e M_{43} , isto é,

$$\frac{M_{41}}{M_{21}} = M_{32}M_{43}$$

temos então que,

$$\frac{(R_{21} - R_{31})}{(R_{24} - R_{34})} \frac{(R_{23} - R_{24})}{(R_{14} - R_{13})} = \frac{(R_{24} - R_{12})}{(R_{13} - R_{43})} M_{43},$$

que implica

$$\frac{(R_{13} - R_{12})(R_{24} - R_{23})(R_{13} - R_{34})}{(R_{13} - R_{14})(R_{24} - R_{12})(R_{24} - R_{34})} = \frac{(R_{13} - R_{23})}{(R_{24} - R_{14})}$$

Chegamos então que ${\cal T}_6$ é definido como

$$T_6 := \frac{(R_{13} - R_{23})}{(R_{24} - R_{14})} - \frac{(R_{13} - R_{12})(R_{24} - R_{23})(R_{13} - R_{34})}{(R_{13} - R_{14})(R_{24} - R_{12})(R_{24} - R_{34})}.$$
(5.13)

Definidas as funções T, vamos mostrar que todas as funções T, dependem de T_1 , ou seja, a menos de um parâmetro estas funções tem o mesmo formato de T_1 .
Primeiramente, vamos fazer as contas, isto é, expandirmos as funções T. Assim, temos que

$$T_{1} = R_{12}R_{14}R_{23} - R_{13}R_{14}R_{23} - R_{12}R_{13}R_{24} - R_{13}R_{14}R_{24} + R_{13}R_{23}R_{24} - R_{14}R_{23}R_{24} + R_{12}R_{13}R_{34} - R_{12}R_{14}R_{34} - R_{12}R_{23}R_{34} + R_{14}R_{23}R_{34} + R_{12}R_{24}R_{34} - R_{13}R_{24}R_{34}.$$

Ao fazermos a expansão de T_2 , chegamos ao seguinte resultado,

$$T_{2} = -R_{12}R_{14}R_{23} + R_{13}R_{14}R_{23} + R_{12}R_{13}R_{24} + R_{13}R_{14}R_{24} - R_{13}R_{23}R_{24} + R_{14}R_{23}R_{24}$$
$$-R_{12}R_{13}R_{34} + R_{12}R_{14}R_{34} + R_{12}R_{23}R_{34} - R_{14}R_{23}R_{34} - R_{12}R_{24}R_{34} + R_{13}R_{24}R_{34}.$$

Ou seja, chegamos a conclusão de que $-T_2 = T_1$. Fazendo os cálculos para T_3 , chegamos a seguinte resultado,

$$T_{3} = R_{12}R_{14}R_{23} - R_{13}R_{14}R_{23} - R_{12}R_{13}R_{24} - R_{13}R_{14}R_{24} + R_{13}R_{23}R_{24} - R_{14}R_{23}R_{24} + R_{12}R_{13}R_{34} - R_{12}R_{14}R_{34} - R_{12}R_{23}R_{34} + R_{14}R_{23}R_{34} + R_{12}R_{24}R_{34} - R_{13}R_{24}R_{34}.$$

Assim, temos que $T_3 = T_1$. Expandindo T_4 , temos como resultado,

$$T_{4} = -R_{12}R_{14}R_{23} + R_{13}R_{14}R_{23} + R_{12}R_{13}R_{24} + R_{13}R_{14}R_{24} - R_{13}R_{23}R_{24} + R_{14}R_{23}R_{24}$$
$$-R_{12}R_{13}R_{34} + R_{12}R_{14}R_{34} + R_{12}R_{23}R_{34} - R_{14}R_{23}R_{34} - R_{12}R_{24}R_{34} + R_{13}R_{24}R_{34}.$$

Isto é, $T_4 = T_2 = -T_1$. Ao fazermos a expansão de T_5 temos o seguinte panorama

$$T_{5} = -(R_{23} - R_{14})(R_{12}R_{14}R_{23} - R_{13}R_{14}R_{23} - R_{12}R_{13}R_{24} - R_{13}R_{14}R_{24}$$
$$+R_{13}R_{23}R_{24} - R_{14}R_{23}R_{24} + R_{12}R_{13}R_{34} - R_{12}R_{14}R_{34}$$
$$-R_{12}R_{23}R_{34} + R_{14}R_{23}R_{34} + R_{12}R_{24}R_{34} - R_{13}R_{24}R_{34}).$$

Temos então que $T_5 = -(R_{23} - R_{14})T_1$. Fazendo as contas para T_6 , temos que,

$$T_{6} = (R_{24} - R_{13})(R_{12}R_{14}R_{23} - R_{13}R_{14}R_{23} - R_{12}R_{13}R_{24} - R_{13}R_{14}R_{24} + R_{13}R_{23}R_{24} - R_{14}R_{23}R_{24} + R_{12}R_{13}R_{34} - R_{12}R_{14}R_{34}$$

$$-R_{12}R_{23}R_{34} + R_{14}R_{23}R_{34} + R_{12}R_{24}R_{34} - R_{13}R_{24}R_{34}).$$

Assim, $T_6 = (R_{24} - R_{13})T_1$.

Portanto, mostramos que todas as funções T são dependentes de T_1 . Ou seja, para resolver o problema basta estudarmos o sinal das razões de massas sobre a curva T_1 e procurar as posições sobre esta onde todas as razões fiquem positivas. Temos evidências numéricas da existência de um aberto próximo aos trapézios isósceles no qual teremos famílias de configurações centrais sem nenhuma reta de simetria.

Referências Bibliográficas

- A. Albouy, Y. Fu, S. Sun Symmetry of Planar Four-Body Convex Central Configurations, arXiv, (2007).
- [2] M. Alonso, E. Finn, *Física, um Curso Universitário*, vol. 1, Edgard Bluscher, São Paulo, (1972).
- [3] H. Bruns, Über des integrales der Vielkörperproblem, Acta Mathematica, vol. 11, (1887).
- [4] A. C. Fernandes, Sobre configurações centrais do problema de n corpos. Configurações centrais planares, especiais e empilhadas, Tese de Doutorado, Universidade de São Paulo, São Paulo, 2011.
- [5] M. Hampton, Concave Central Configurations in the Four-Body Problem, Tese de Doutorado, University of Washington, Washington, 2002.
- Y. Long, Admissible Shapes of 4-Body Non-Collinear Relative Equilibria, Adv. Non-Linear Studies, 1 (2003), 495-509.
- Y. Long, S. Sun, Four-Body Central Configurations with some Equal Masses, Arch.
 Rational Mech. Anal., 162 (2002), 25-44.
- [8] W. D. MacMillan, W. Bartky, Permanent Configurations in the Problem of Four Bodies, Trans. Amer. Math., 38 (1932), 838-875.
- [9] L. F. Mello, F. E. Chaves, A. C. Fernandes Configurações centrais planares do tipo pipa, Revista Brasileira de Ensino de Física, v. 31, 1 (2009).

- [10] R. Moeckel, On central configurations, Math. Z., (1990), 499-517.
- [11] I. Newton, *Philosophiae Naturalis Principia Mathematica*, Royal Society, London, (1687).
- [12] E. Perez-Chavela, M. Santoprete, Convex Four Body Central Configurations with Some Equal Masses, Arch. Rational Mech. Anal., 185 (2007), 481-494.
- [13] J. Sotomayor, Lições de Equações Diferenciais Ordinárias, Rio de Janeiro: IMPA -Projeto Euclides, (1979).
- [14] A. Wintner, Analytical Foundations of Celestial Mechanics, Princeton University Press, (1941).