AFERIÇÃO DE UM SISTEMA ACÚSTICO POR TEMPO DE TRÂNSITO PARA MEDIÇÃO DE VAZÃO EM APROVEITAMENTOS HIDRELÉTRICOS

VITOR RAIMUNDO MAIA PAMPLONA

Itajubá, junho de 2017

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

VITOR RAIMUNDO MAIA PAMPLONA

AFERIÇÃO DE UM SISTEMA ACÚSTICO POR TEMPO DE TRÂNSITO PARA MEDIÇÃO DE VAZÃO EM APROVEITAMENTOS HIDRELÉTRICOS

Dissertação submetida ao Programa de Pós-Graduação em MEIO AMBIENTE E RECURSOS HÍDRICOS como parte dos requisitos para obtenção do Título de Mestre em Ciências em Meio Ambiente e Recursos Hídricos.

Área de Concentração: CIÊNCIAS DO AMBIENTE

Orientador: Prof. Dr. Geraldo Lúcio Tiago Filho

Junho de 2017

Itajubá

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIVERSIDADE FEDERAL DE ITAJUBÁ

VITOR RAIMUNDO MAIA PAMPLONA

AFERIÇÃO DE UM SISTEMA ACÚSTICO POR TEMPO DE TRÂNSITO PARA MEDIÇÃO DE VAZÃO EM APROVEITAMENTOS HIDRELÉTRICOS

Dissertação aprovada por banca examinadora em ____ de _____ de 2017, conferindo ao autor o título de *Mestre em Ciências em Meio Ambiente e Recursos Hídricos.*

Banca Examinadora:

Examinador 1: Prof. Dr. Fernando das Graças Braga da Silva (UNIFEI)
Examinador 2: Prof. Dr. Oswaldo Honorato de Souza Junior (UNIFEI)
Examinador 3: Profa. Dra. Yvone Farias Lemos De Lucca (CTH-USP)
Presidente: Prof. Dr. Geraldo Lúcio Tiago Filho (Orientador; UNIFEI)

Itajubá

2017

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

> "Não importa quantas palavras sagradas tenhas lido e não importa quantas tenha dito. De nada lhe servirão se não agir de acordo com elas"

> > BUDA

DEDICATÓRIA

Dedico este trabalho à minha mãe **Maria das Graças Maia Pamplona**, que todas as horas esteve ao meu lado e fez da sua vida e exemplos a minha maior motivação para os estudos e para a vida, e ao meu pai **Alan de Oliveira Pamplona** *(in memoriam)* que me ensinou a ser batalhador e firme nos ideais da vida.

AGRADECIMENTOS

A DEUS, o Grande Arquiteto do Universo e meu maior companheiro.

Ao meu orientador, Prof. Dr. Geraldo Lúcio Tiago Filho, por seu apoio e atenção na formatação do tema, e nivelamento das informações, transformando este trabalho em uma realidade técnica para o setor hidrelétrico nacional.

Aos professores e amigos do MEMARH-UNIFEI, pela grande dedicação resultante no sucesso desse programa de Pós-Graduação.

Aos meus irmãos e amigos que mantiveram firmes ao meu lado nas horas de desânimo.

Aos funcionários e gestores da RENNOSONIC TECNOLOGIA LTDA, que tanta paciência tiveram comigo no desenvolvimento deste trabalho.

Ao grande mentor Dr. Francisco Rennó, pelos ensinamentos, amizade e parceria ao longo dos anos.

Ao irmão Caio, que me apoiou na continuidade e pela parceria iniciada a poucos anos, que renderão frutos por muito tempo.

Ao amigo Gustavo, que se demonstrou um grande parceiro pelas grandes contribuições ao trabalho.

A minha pequenina Joy, que fez muita coisa na minha vida ter sentido após sua chegada.

RESUMO. Segundo dados oficiais, as fontes hidráulicas de energia ocupam aproximadamente 65% da matriz energética brasileira, se enquadrando como peças essenciais no modelo hidrotérmico que impulsiona o crescimento do país. Porém, na última década tornou-se mais presente o conceito de aproveitamentos a "fio-d'água", onde mais intensamente foram inseridas as turbinas de potencial hidrocinético - Kaplan e Bulbo. Nessas máquinas hidráulicas o fluxo de água (ou vazão) é um parâmetro de difícil mensuração (pelas características construtivas), porém é o mais importante parâmetro para a gestão operacional. O presente trabalho vem mostrar os resultados da aferição da metodologia de medição de vazão em um aproveitamento hidrelétrico (UHE Porto Primavera), para se determinar a eficiência energética do mesmo. Para isto, foi utilizado o método Acústico por Tempo de Trânsito - ATT - para a medição da vazão turbinada pelas máquinas, para um comparativo com dados de projeto (curva de Colina). Sendo a primeira aplicação do método no Brasil, para turbinas do tipo Kaplan, verificou-se as diferenças da configuração da instalação - com 8 e 18 caminhos - sendo esse um fator importante para viabilidade econômica de implantação do sistema. Sendo assim, certificou-se que a diferença das medições é pequena, podendo direcionar para a utilização de 8 caminhos acústicos por seção. A consistência dos dados de vazão foi feita comparando as medições com as curvas de projeto da turbina, permitindo avaliar as reais condições de eficiência da turbina. A UHE estudada tem um papel importante na base do sistema nacional por ser parte integrante de uma cascata de aproveitamentos hidrelétricos, sendo uma de suas usinas a jusante a Itaipu Binacional. Por meio de uma avaliação do rendimento de uma turbina da UHE Porto Primavera (UG 9), foi possível verificar o desvio dos valores de vazão em relação ao modelo reduzido, utilizado no projeto das máquinas, indicando perda de eficiência no processo e consequentemente afetando as usinas na cascata.

Palavras chave: Medição de vazão. Ultrassom. Tempo de Trânsito. Gestão Hidroenergética.

ABSTRACT. According to official data, hydraulic energy sources occupy approximately 65% of the Brazilian energy matrix, being classified as essential parts in the hydrothermal model that drives the growth of the country. However, in the last decade, the concept of "watercourse" has become more present, where hydrokinetic potential turbines - Kaplan and Bulbo - have been most intensively inserted. In these hydraulic machines the flow of water (or flow) is a parameter of difficult measurement (by the constructive characteristics), but it is the most important parameter for the operational management. The present work shows the results of the measurement of the methodology of flow measurement in a hydroelectric plant (Porto Primavera HPP), in order to determine the energy efficiency of the same. For this, the Acoustic Transit Time (ATT) method was used to measure the turbinated flow through the machines, for a comparison with design data (Hill curve). As the first application of the method in Brazil, for Kaplan turbines, it was verified the differences in the conFiguration of the installation - with 8 and 18 paths - being an important factor for the economical feasibility of system implementation. Thus, it was verified that the difference of the measurements is small, being able to direct to the use of 8 acoustic paths per section. The consistency of the flow data was made by comparing the measurements with the turbine design curves, allowing to evaluate the actual turbine efficiency conditions. The HPP studied has an important role in the base of the national system as it is an integral part of a cascade of hydroelectric projects, one of its downstream plants being the Itaipu Binacional. By means of an evaluation of the performance of a turbine of the Porto Primavera HPP (U 9), it was possible to verify the deviation of the flow values in relation to the reduced model, used in the design of the machines, indicating a loss of efficiency in the process and consequently affecting the Plants in the cascade.

Keywords: Flow measurement. Ultrasound. Transit time. Hydroenergetic Management.

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Sumário

RESUMOI
ABSTRACT II
LISTA DE FIGURASVI
LISTA DE QUADROSX
LISTA DE SIMBOLOSX
LISTA DE TABELASXI
SIMBOLOGIA XII
1 INTRODUÇÃO1
1.1 OBJETIVOS
1.1.1 OBJETIVOS ESPECÍFICOS
1.1.2 DIVISÃO DO TRABALHO
2 FUNDAMENTAÇÃO TEÓRICA
2.1 TIPOS DE MEDIDORES DE VAZÃO LÍQUIDA5
2.1.1 MÉTODO "WINTER-KENNEDY"
2.1.2 MÉTODO DE PITOT
2.1.3 MEDIDOR ELETROMAGNÉTICO
2.1.4 MÉTODO DO MOLINETE10
2.1.5 MÉTODO DE GIBSON11
2.1.6 MEDIDOR DE VAZÃO ULTRASSÔNICO12
2.2 TECNOLOGIA ULTRASSÔNICA POR TEMPO DE TRÂNSITO14
2.2.1 MEDIDOR ULTRASSÔNICO DE UMA TRAJETÓRIA 15
2.2.2 MEDIDOR ULTRASSÔNICO DE MÚLTIPLAS TRAJETÓRIAS 17

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

	2.2.3 PRÍNCIPIO DE MEDIÇÃO DA VELOCIDADE	20
	2.2.4 CÁLCULO DE VAZÃO PARA UMA TRAJETÓRIA ACÚSTICA 2	23
	2.2.5 CÁLCULO DE VAZÃO PARA VÁRIAS TRAJETÓRIAS	
	ACÚSTICAS2	24
	2.2.6 MÉTODOS DE INTEGRAÇÃO2	25
	2.2.7 TIPOS DE INSTALAÇÃO E FONTES DE INCERTEZA DO	
	MÉTODO ACÚSTICO POR TEMPO DE TRÂNSITO2	28
	2.3 TIPOS DE APROVEITAMENTOS HIDRELÉTRICOS	2
	2.3.1 ASPECTOS RELATIVOS ÀS MÁQUINAS KAPLAN	37
3	MATERIAIS E MÉTODOS4	.4
	3.1 CONSIDERAÇÕES INICIAIS4	.4
	3.2 ESTUDO DE CASO - UHE PORTO PRIMAVERA4	.5
	3.2.1 INFORMAÇÕES DA UHE PORTO PRIMAVERA4	5
	3.2.2 CURVA COLINA DA UHE PORTO PRIMAVERA	7
	3.3 COMPARAÇÃO ENTRE CONFIGURAÇÕES DE MEDIÇÃO5	2
	3.4 AVALIAÇÃO DA INCERTEZA DAS MEDIÇÕES5	2
	3.5 COMPARAÇÃO DE CURVAS OPERACIONAIS DA TURBINA	
	HIDRÁULICA	3
	3.6 SISTEMA DE MEDIÇÃO DE VAZÃO E TRANSDUTORES5	3
	3.7 INSTALAÇÃO DOS TRANSDUTORES5	5
	3.7.1 INSTALAÇÃO DOS TRANSDUTORES ULTRASSÔNICOS5	5
4	RESULTADOS	51
	4.1 COMISSIONAMENTO E VALIDAÇÃO DOS SINAIS ACÚSTICOS,	
	VELOCIDADE E VAZÃO6	51

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

	4.2 RESULTADOS DA COMPARAÇÃO ENTRE AS CONFIGURAÇÕES - 1	8
	versus 8 CAMINHOS ACÚSTICOS	64
	4.3 CÁLCULO DAS INCERTEZAS DA MEDIÇÃO DE VAZÃO	69
	4.4 RESULTADOS DA COMPARAÇÃO ENTRE AS CURVAS	
	OPERACIONAIS DA TURBINA	72
5	ANÁLISE DOS RESULTADOS	75
6	CONCLUSÕES	77
	6.1 SUGESTÕES PARA TRABALHOS FUTUROS	78
7	REFERÊNCIAS	79
APÊNE	DICE A	1
APÊNE	DICE B	6
APÊNE	DICE C	13
ANEX	O I	29

LISTA DE FIGURAS

Figura 1 - Esquema para determinação da Equação 26
Figura 2 - Localização das tomadas de pressão na caixa espiral - método Winter- Kennedy
Kennedy
Figura 3 - Medidor de pressão diferencial analógico - método Winter-Kennedy e Pitot.8
Figura 4 - Tubo de Pitot instalado em uma tubulação - método de Pitot9
Figura 5 - Medidor Eletromagnético de Vazão10
Figura 6 - Medidor tipo molinete11
Figura 7 - Esquema de medição de vazão pelo Método de Gibson12
Figura 8 - Medidor ultrassônico Doppler - para tubulações13
Figura 9 - Medidor ultrassônico Vortex - para tubulações13
Figura 10 - Medidor ultrassônico por Tempo de Trânsito - para tubulações14
Figura 11 - Medidor ultrassônico por Tempo de Trânsito - múltiplos caminhos15
Figura 12 - Tipos de trajetórias acústica16
Figura 13 - Posição dos transdutores tipo carretel17
Figura 14 - Tipos de arranjos de trajetórias acústicas17
Figura 15 - Posição relativa dos transdutores de medidor ultrassônico de 3 canais em
arranjo com planos cruzados
Figura 16 - Medidor de 4 canais em plano único: (esquerda) posicionamento dos
transdutores; (direita) vista externa
Figura 17 - Medidor de 8 canais em planos cruzados: (esquerda) posição dos
transdutores, (direita) canais em corte19
Figura 18 - Configuração de posições dos transdutores em conduto20
Figura 19 - Principio do Método de Tempo de Trânsito21

Figura 20 - Perfis de velocidades em condutos para os métodos de integração26
Figura 21 - Medidor acústico externo com uma trajetória - "Clamp On"
Figura 22 - a) Conduto Forçado exposto; b) Conduto Forçado abrigado
Figura 23 - a) Instalação dos transdutores acústicos em canal aberto; b) detalhe da disposição dos transdutores na parede do canal
Figura 24 - a) Adução por canal e conduto forçado; b) Adução com conduto de alta e baixa pressão
Figura 25 - a) Adução com conduto exposto; b) Adução com conduto concretado 34
Figura 26 - Esquema de adução para central com turbina do tipo Pelton
Figura 27 - Relação área da seção com velocidade - seção transversal circular
Figura 28 - a) Adução do tipo Bulbo; b) Adução do tipo Kaplan
Figura 29 - Corte de turbina Kaplan com três baias de engolimento
Figura 30. Desenho em vista superior da usina San Esteban II
Figura 31. ConFiguração hidráulica de San Esteban II, destacados os pontos de instalação do sistema ultrassônico
Figura 32. Geometria e caminhos ultrassônicos na entrada de uma turbina de baixa queda41
Figura 33. Distribuição típica do fluxo em uma tomada de água de três baias41
Figura 34. Desenho esquemático da seção de medição na entrada da turbina com reduzidos caminhos ultrassônicos
Figura 35 - Usina Eng. Sérgio Motta (Porto Primavera)45
Figura 36 - Curva Colina UHE Porto Primavera48
Figura 37 - Transdutores omnidirecional do tipo "Eyeball" CaldonHydro ™ - CAMERON e Medidor de vazão ultrassônico modelo LEFM® 880 Series – CAMERON

Figura 38 - Esquema das instalações de 8 e 18 caminhos ultrassônicos	56
Figura 39 – Medidores de vazão instalados, em fase de acabamento	57
Figura 40 – Transdutores já instalados na Baia A (36 transdutores)	58
Figura 41 - Transdutores já instalados na Baia B (16 transdutores)	59
Figura 42 - Transdutores já instalados na Baia C (16 transdutores)	60
Figura 43 - Forma de onda capturada na tela do osciloscópio	62
Figura 44 - Tela de diagnóstico dos caminhos acústicos	63
Figura 45 - Tela de cálculo para o sistema de medição 1	65
Figura 46 - Tela de cálculo para o sistema de medição 2	65
Figura 47 - Tela de cálculo para o sistema de medição 3	66
Figura 48 - Perfil de Velocidade avaliado - Baia A	68
Figura 49 - Fator de Medição Médio - Baia A	69
Figura 50 - Incrustações do Mexilhão Dourado no interior da Caixa Semi-Espiral	73
Figura 51 - Comparação entre curvas operacionais da turbina	74
Figura 52 - Espectro acústico de frequência	1
Figura 53 - Direção de propagação	3
Figura 54 – Modelo de conFiguração de um transdutor piezoelétrico	7
Figura 55 - Fator de Qualidade	9
Figura 56 - Impedância elétrica	10
Figura 57 - Campo Sonoro gerado pelo transdutor	11
Figura 58 - (a) Pulso elétrico convertido em ultrassônico; (b) Pulso ultrassô convertido em elétrico.	onico 12
Figura 59: Esquema para o cálculo da altura de queda líquida	16
Figura 60 - Conexões no painel do Regulador de Velocidade	18
	VIII

Figura 61: Transmissor de Pressão da Entrada da Caixa Semi-Espiral	19
Figura 62: Transmissor de Pressão da Saída da Caixa Semi-Espiral	20
Figura 63 - Bancada de aquisição de dados e calibração de instrumentos	22
Figura 64 – Potência x rendimento (conjugado).	25
Figura 65 – Vazão por rendimento (conjugado)	26
Figura 66 – Potência por rendimento (ensaio – OFF CAM)	27
Figura 67 – Vazão por rendimento (ensaio – OFF CAM)	28

LISTA DE QUADROS

Quadro 1 - Diferentes conFigurações para medidores acústicos por Tempo de Trânsito 29

LISTA DE SIMBOLOS

- ABNT Associação Brasileira de Normas Técnicas
- AHE Aproveitamentos Hidrelétricos
- ANEEL Agência Nacional de Energia Elétrica
- ASME American Society of Mechanical Engineers
- ATT Acoustic Transit Time
- CESP Companhia Energética de São Paulo
- IEC International Electrotechnical Commission
- OIML Organisation Internationale de Métrologie Légale
- OWICS Optimal Weighted Integration for Circular Section
- OWIRS Optimal Weighted Integration for Rectangular Section.
- P&D Pesquisa e Desenvolvimento
- PZT Piezoelectric Transmiter
- SIN Sistema Interligado Nacional
- SNR Signal to Noise Ratio
- SOSEm Sistema de Operação em Situação de Emergência
- UG Unidade Geradora
- UHE Usina Hidrelétrica

LISTA DE TABELAS

Tabela 1. Fontes de erros e incertezas associadas à medição da vazão. 39
Tabela 2 – Dados característicos da UHE Porto Primavera
Tabela 3 - Vazão turbinada em cada máquina49
Tabela 4 – Especificações necessárias do Sistema de medição de vazão53
Tabela 5 - Especificações necessárias do Transdutor Omnidirecional
Tabela 6 – Avaliação de medições 100MW - Baia A67
Tabela 7 – Avaliação de medições para outros patamares de potência - Baia A68
Tabela 8 – Tabela de Cálculo da Incerteza da Área da Seção de Medição70
Tabela 9 – Tabela de Cálculo da Incerteza do Caminho Acústico70
Tabela 10 – Tabela de Cálculo da Incerteza do Caminho Acústico71
Tabela 11 – Tabela de Cálculo da Incerteza da Velocidade do Som71
Tabela 12 – Tabela de Cálculo da Incerteza da Global da Medição72
Tabela 13 - Variações dos pontos de abertura – distribuidor e rotor
Tabela 14 - Resultados - Ensaio de Rendimento - Dados coletados e cálculos de
Rendimento

SIMBOLOGIA

- A1 [m²] área de entrada da caixa semi espiral
- A2 [m²] área de saída do tubo de sucção
- V1 [m/s] velocidade média do escoamento na seção "A1"
- V2 [m/s] velocidade média do escoamento na seção "A2"
- $\cos \phi$ fator de potência;
- g (m/s²) aceleração da gravidade local (9,784 m/s²)
- $H_{b'}$ [m] queda bruta da barragem ao canal de fuga.
- H_1 [m] altura de queda líquida calculada.
- $H_n[m]$ altura de queda líquida de referência;
- I_H [%] incerteza referente à altura de queda líquida;
- Ip1 [%] incerteza referente à medida de pressão (Entrada);
- Ip2 [%] incerteza referente à medida de pressão (Saída);
- Ipel [%] incerteza referente à medida de potência elétrica;
- IQ [%] incerteza referente à medida de vazão;
- Iv [%] incerteza referente às medidas de velocidade;
- Iz [%] incerteza referente à medida de diferença de cotas.
- Iη [%] incerteza referente ao cálculo do rendimento do grupo gerador;
- K' constante de proporcionalidade de vazão (Winter-Kennedy)

- K' constante de proporcionalidade de vazão (Pitot)
- n' expoente da equação de vazão (Winter-Kennedy)
- n" expoente da equação de vazão (Pitot)
- NA_{canal de fuga} [m] cota do nível d'água do canal de fuga;
- NA_{tomada d'água} [m] cota do nível d'água da barragem;
- p_{abs1} [m.c.a] pressão na entrada da caixa espiral;
- p_{abs2} [m.c.a] pressão na saída do tubo de sucção;
- Pe [m.c.a] pressão estática medida na linha hidráulica;
- Pd [m.c.a] pressão dinâmica medida na linha hidráulica;
- Pel [MW] potência elétrica gerada (ativa);
- P_h [MW] potência hidráulica disponível na turbina;
- P_n [MW] potência de eixo da turbina corrigida para H_n;
- Pturbina [MW] potência de eixo da turbina calculada;
- Q vazão turbinada [m³/s]
- $Q_n [m^3/s] vazão turbinada corrigida para a altura de queda líquida nominal;$
- Z [m] diferença entre as cotas $z_1 e z_2$.
- z_0 [m] cota da linha de centro entrada da caixa semi espiral;
- z_1 [m] cota de posição do sensor de pressão da entrada da caixa espiral
- $z_2 [m]$ cota de posição do sensor de pressão de saída do tubo de sucção

- $\Delta p \text{ [mbar]}$ pressão diferencial medida na caixa espiral
- η_{el} [%] rendimento do gerador;
- η_t [%] rendimento da turbina;
- $\rho \, [kg/m^3]$ massa específica da água
- Re Número de Reynolds
- ΔP Diferencial de pressão

1 INTRODUÇÃO

Umas das grandezas mais medidas nos processos industriais é a vazão de um fluido (PEREIRA, 2009). A importância de medir essa grandeza está relacionada à característica dessa medida afetar outras variáveis do processo tais como pressão, nível, temperatura e teor químico (CZAPLEWSKI, LLIC E ZALATUDINOV, 2004). As aplicações da medição de vazão são muitas, indo desde aplicações simples como medição de vazão em estações de tratamento e residências, até medição de gases industriais e combustíveis.

Para os Aproveitamentos Hidrelétricos a medição toma sua importância na avaliação e monitoramento da eficiência energética das turbinas hidráulicas, e consequentemente de toda a central.

De acordo com as normas, em particular a IEC 60041 (IEC, 1991) a medição de vazão requer normalmente um instrumento específico de medição que apresenta boas exatidões nas medidas - entre 0,2% e 5% (PEREIRA, 2009). Outro detalhe importante a se destacar é a variedade de tipos de medidores de vazão disponíveis no mercado e cada um possuindo características distintas de princípio de funcionamento. Segundo FERREIRA (2010) a escolha de um tipo de medidor de vazão depende de alguns fatores relevantes, entre eles: exatidão desejada para a medição; tipos de fluídos e suas características; condições termodinâmicas; espaço físico disponível; custo de implementação; entre outros.

Para as turbinas hidráulicas cuja vazão turbinada é relativamente pequena (abaixo de 1,0 m³/s) a exatidão é o ponto primordial para a avaliação da eficiência – entre 0,5% e 1,0%. Para turbinas maiores (com vazão acima de 100 m³/s) a exatidão torna-se importante, além da avaliação da eficiência, para a gestão dos usos múltiplos dos reservatórios – incluindo a agricultura e abastecimento urbano (FERREIRA, 2010). Sendo assim, podemos caracterizar como sendo a exatidão o fator mais importante na escolha de um método para a medição de vazão em Aproveitamentos Hidrelétricos de pequeno a grande porte.

Dando ênfase a um tipo de medidor de vazão, os medidores de vazão ultrassônicos são o destaque das últimas duas décadas. Eles apresentam robustez, atingem classes de exatidão

mais rigorosas (faixa de 0,2 a 2%), são capazes de medir grandes vazões, sua inserção e remoção nos processos de medição são relativamente fáceis de serem feitas, e apresentam grande flexibilidade quanto ao produto a ser medido e às condições de operação (FERREIRA, 2010). O medidor ultrassônico utiliza tecnologia de ponta em instrumentação, processamento de sinais eletrônica – característico de analisadores de alta frequência - e dinâmicas dos fluidos, estando em crescente aprimoramento de componentes para um melhor funcionamento.

Dois princípios de medição ultrassônica merecem destaques: Doppler e Tempo de Trânsito (*Acoustic Transit Time*). O medidor de vazão ultrassônico a efeito Doppler mede a vazão através da variação de frequência de ecos ultrassônicos emitidos pelo transdutor ultrassônico, que ao serem refletidos pelas bolhas ou sólidos contidos no liquido, retornam ao transdutor ultrassônico com frequência alterada (Efeito Doppler) (KOIKE ET AL, 2003).

Enquanto, o medidor de vazão ultrassônico pelo método Tempo de Trânsito mede a vazão através da diferença entre o tempo que o pulso ultrassônico leva ao se propagar a favor do escoamento e o tempo ao se propagar contra o escoamento (FRANKLIN, BAKER e RUSHMER, 2007). Os medidores de vazão a efeito Doppler trabalham melhor em líquidos contendo partículas ou bolhas como águas residuais, enquanto os medidores de vazão pelo método Tempo de Trânsito são aplicados em líquidos limpos como a água, óleos e produtos químicos (FERREIRA, 2010). Muitos medidores de vazão possuem uma medição híbrida entre os dois princípios fazendo com que uma técnica compense a desvantagem da outra (DYNASONICS, 2015).

O método do Tempo de Trânsito é a mais empregado em medidores de vazão ultrassônicos principalmente quando as medições exigem erros máximos de 0,5%. Isso se deve ao fato desses medidores terem grande robustez e exatidão. Um exemplo de indústria que utiliza esses tipos de medidores de vazão é a indústria do petróleo. Devido as suas características, esses tipos de medidores podem ser utilizados na medição fiscal e de transferência de custódia, pois seguem a exigência de erro mínimo de 0,2% da OIML R-117 (2007) na medição de vazão de líquidos, e de 0,5% da OIML R-137 (2006) na medição de vazão de gás natural (FERREIRA, 2010).

A medição das vazões de água em aproveitamentos hidrelétricos vem sendo muito discutida atualmente no Brasil, devido aos cenários de escassez hídrica do qual o país está inserido. Este parâmetro é importante pois reflete na capacidade de conversão energética do empreendimento – Eficiência – e a gestão dos Recursos Hídricos de uma Bacia Hidrográfica, prevalecendo o conceito dos Usos Múltiplos.

A aplicação do conceito de Eficiência Energética em centrais hidrelétricas só é viável quando as informações de vazões de água forem computadas de uma forma mais precisa e confiável. O intervalo de amostragem deve ser coerente com os períodos utilizados no processo de geração e gestão.

A implementação de uma política de conservação, e melhor gestão, permitiria a redução de tarifas de energia elétrica ao consumidor final e a redução da necessidade de expansão do parque gerador (SAMPAIO; RAMOS; SAMPAIO, 2005, p. 59).

O presente trabalho relata o estado da arte sobre medidores de vazão ultrassônicos, pelo método Tempo de Trânsito, características de instalação, quanto aos diferentes tipos de turbinas e adutoras e resultados da aplicação desses medidores na Usina Hidrelétrica de Porto Primavera - CESP - vinculado ao projeto de Pesquisa e Desenvolvimento P&D ANEEL n.º 0061-0044/2014 - "Sistema de aferição e gestão hidroenergética para melhoria da produtividade em aproveitamentos hidroelétricos".

Com aplicações já realizadas em Aproveitamentos Hidrelétricos e com o resultado da aplicação no projeto citado, busca-se direcionar a técnica de medição de vazão citada como a mais confiável para aplicação em todas as centrais, independente das suas características técnicas de concepção.

1.1 OBJETIVOS

Esse trabalho tem como objetivo principal mostrar os benefícios da utilização da medição de vazão turbinada, em Aproveitamentos Hidrelétricos, utilizando o método acústico Tempo de Trânsito, capaz de medir vazão de fluidos em grandes adutoras pressurizadas, ou em canais

abertos, visando a melhoria da produtividade hidroenergética e gestão dos recursos hídricos das centrais.

1.1.1 OBJETIVOS ESPECÍFICOS

- Identificar os principais métodos de medição de vazão utilizados em Aproveitamentos Hidrelétricos;
- Comparar tecnicamente a medição de vazão pelo método acústico Tempo de Trânsito com outro método de medição, para referência;
- Avaliar aplicação do método Tempo de Trânsito em uma turbina do tipo Kaplan, com o estudo de caso da UHE Porto Primavera CESP.

1.1.2 DIVISÃO DO TRABALHO

O presente trabalho está dividido em 10 capítulos.

No capítulo 2 apresenta-se a fundamentação teórica com conceitos teóricos e que deram base à aplicação da tecnologia.

No capítulo 3 apresenta-se os materiais e métodos adotados no trabalho.

No capítulo 4 são apresentados os resultados obtidos, quanto a aplicação da metodologia e avaliação da consistência dos dados de vazão turbinada no estudo de caso da UHE Porto Primavera.

No capítulo 5 é feita a análise dos resultados.

No capítulo 6 são apresentadas as conclusões e sugestões para trabalhos futuros.

Nos capítulos 7, 8 e 9 são apresentados os apêndices.

No capítulo 10 são apresentadas as referências do trabalho.

No ANEXO é feita uma descrição de cada norma da aplicação estudada.

2 FUNDAMENTAÇÃO TEÓRICA

2.1 TIPOS DE MEDIDORES DE VAZÃO LÍQUIDA

A vazão líquida é conceituada como sendo o volume de um determinado fluído que passa por uma determinada seção de controle, transversal de geometria conhecida, por unidade de tempo (PEREIRA, 2009).

$$Q = \frac{volume}{tempo} [m^3/s]$$
¹

Pela teoria da conservação da quantidade de movimento, podemos também conceituar a vazão como sendo o produto escalar entre a velocidade média (medida em m/s) do fluído que passa por uma determinada seção pela área da mesma (medida em m²) (PEREIRA, 2009), conforme a Equação 2.

$$Q = \frac{Volume}{tempo} = \frac{d}{tempo}.S = V.S [m^3/s]$$
²

De acordo com ALHANATI (2016), para a medição de grandes vazões a Equação 2 é mais empregada, sendo que pela Equação 1 faz-se necessário a utilização de dispositivos que mensurem grandes volumes ao longo do tempo, o que inviabiliza o uso desse conceito para monitoramento em Aproveitamentos Hidrelétricos. Na Figura 1 temos "V" como sendo o volume escoado pela seção transversal "S" em um intervalo de tempo "t", com velocidade média do escoamento sendo "v".

Figura 1 - Esquema para determinação da Equação 2 Fonte: ALHANATI (2016)

Em geral, a medição de vazão pode ser feita de forma pontual, com intuito qualitativo, ou por sistemas que permitam o monitoramento, ou seja, coleta e armazenamento contínuo das informações. Nesse trabalho avaliaremos os medidores aplicados ao monitoramento, devido a necessidade do gerenciamento dos recursos hídricos da central.

Diversos são os métodos para a medição da vazão, porém para aplicação em sistemas de monitoramento e em Aproveitamentos Hidrelétricos, devemos avaliar os seguintes pontos:

- Exatidão: Permitindo a obtenção de informações seguras e consistentes, que serão utilizadas para a determinação do desempenho das máquinas hidráulicas eficiência - e para o gerenciamento dos recursos hídricos;
- Robustez e Proteção: As características de fabricação dos medidores, bem como os graus de proteção do invólucro, deve atender a exposição direta às intempéries dos quais os equipamentos estarão sujeitos;
- Aplicabilidade: Preferencialmente o medidor, ou técnica, deve atender aos diferentes tipos de adutoras e máquinas hidráulicas existentes, permitindo uma uniformidade para comparações.

Pelos pontos acima mencionados apresenta-se alguns dos principais métodos ou técnicas aplicados à medição e monitoramento da vazão turbinada em Aproveitamentos Hidrelétricos.

2.1.1 MÉTODO "WINTER-KENNEDY"

Trata-se de um método empregado para a medição de vazão turbinada em testes de índice, ou *Index Test* (IEC, 1991). Através da medição da pressão diferencial, em pontos prédefinidos da turbina hidráulica, a vazão é calculada por uma Equação de correlação, onde os coeficientes são obtidos do projeto da máquina - modelo reduzido. Portanto, trata-se de uma medição de vazão relativa obtida pela Equação 3, onde ΔP é o diferencial de pressão obtido e as constantes K' e n' obtidas do projeto da turbina. Segundo a norma 60041 (IEC, 1991) esse método oferece um erro de 2 a 5% sobre o valor obtido, pela transposição modelo - protótipo.

$$Q = K' \Delta P^{n'}[m^3/s]$$
³

Figura 2 - Localização das tomadas de pressão na caixa espiral - método Winter-Kennedy Fonte: adaptado de IEC (1991)

Geralmente, nas tomadas de pressão é inserido um transmissor eletrônico de pressão diferencial, que envia as informações de vazão turbinada ao sistema de controle e supervisão da central, promovendo assim o monitoramento e armazenamento da informação.

Figura 3 - Medidor de pressão diferencial analógico - método Winter-Kennedy e Pitot Fonte: Acervo próprio

2.1.2 MÉTODO DE PITOT

Nesse método a vazão turbinada é obtida pela medição em uma tubulação. Com um instrumento chamado Tubo de Pitot uma pressão diferencial é medida e a vazão calculada por uma Equação de correlação, cujo os coeficientes são obtidos por relações geométricas entre a tubulação e o instrumento. Como no método anterior, trata-se de uma medição de vazão relativa obtida pela Equação 4, onde ΔP é o diferencial de pressão obtido entre as pressões P_d e P_e e as constantes K'' e n'' obtidas do das relações geométricas da instalação. Segundo a norma 60041 (IEC, 1991) esse método oferece um erro de 1,5 a 2,5% sobre o valor obtido.

Figura 4 - Tubo de Pitot instalado em uma tubulação - método de Pitot Fonte: adaptado de PNCDA (2007)

Baseado na pressão diferencial, para o monitoramento são utilizados dispositivos similares aos da Figura 3. Devidos as características intrusivas do Tubo de Pitot na tubulação (posicionamento ao centro da seção de medição) especialistas recomendam a utilização deste método em diâmetros de até 2.500 mm.

2.1.3 MEDIDOR ELETROMAGNÉTICO

São medidores que utilizam a características de condutividade elétrica da água, aplicando a Lei de Faraday (ARAÚJO, 2016). Com o equipamento criando um campo magnético controlado em torno da tubulação e com o movimento do fluído é possível obter a velocidade do escoamento e consequentemente a vazão turbinada. A exatidão desses

4

medidores varia de 0,5 a 1,0% da grandeza medida. Porém sua aplicação é limitada a pequenas tubulações, devido ao custo de aplicação - até 1.000 mm.

Figura 5 - Medidor Eletromagnético de Vazão ARAÚJO (2016)

Nesse tipo de medidor a medição e processamento é feita em um único dispositivo, que indica, armazena e transmite a informação de vazão para dispositivos secundários, como o sistema de controle e supervisão da central hidrelétrica.

2.1.4 MÉTODO DO MOLINETE

Aplicado na medição de vazão em canais - escoamento livre - o método de molinete é amplamente utilizado em sistemas hidráulicos com limitações hidráulicas para instalações de medidores em linhas de alta pressão. Consiste na obtenção da velocidade do escoamento a partir da equação de evolução da hélice que compõem o medidor. Pela Equação 5, conhecendo a área da seção média avaliada é possível obter-se a vazão. Este método oferece erros que vão de 2% a 5%, dependendo do número de hélices simultâneas utilizadas e das características geométricas da seção de medição.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

UNIVERSIDADE FEDERAL DE ITAJUBÁ

Figura 6 - Medidor tipo molinete SOUZA, SANTOS, BORTONI (2009)

2.1.5 MÉTODO DE GIBSON

Este método está previsto na norma IEC 60041 (1991) como um método direto de aferição dos valores de vazão escoada em uma tubulação. Baseia-se na obtenção da vazão a partir da avaliação da pressão diferencial, medidas entre dois pontos espaçados por regras dispostas na norma citada. Com a introdução de um evento transiente no escoamento - Golpe de Aríete - criado por uma interrupção brusca do escoamento, que surtirá em ondas oscilatórias de sub e sobrepressão, obtêm-se a vazão pela Equação 6, descrita de forma simplificada. O erro relativo esperado para este método é de 0,1%, dependendo diretamente das características da instalação e dos instrumentos utilizados no processo.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

UNIVERSIDADE FEDERAL DE ITAJUBÁ

Figura 7 - Esquema de medição de vazão pelo Método de Gibson SOUZA, SANTOS, BORTONI (2009)

2.1.6 MEDIDOR DE VAZÃO ULTRASSÔNICO

Medidores de vazão ultrassônicos utilizam o princípio da propagação do som, no caso sons acima de 20 [kHz], para efetuar medidas de fluxo de fluidos. São muito empregados na indústria e na área médica, devido as características de alta precisão e exatidão. Há disponíveis vários medidores de vazão que utilizam o princípio ultrassônico.

2.1.6.1 MEDIDOR DE VAZÃO ULTRASSÔNICO DOPPLER

O medidor ultrassônico Doppler mede a variação da frequência de um sinal ultrassônico que é refletido por partículas em suspensão ou bolhas de gás (ver Figura 8). É comumente aplicado na área industrial – controle de insumos – e no saneamento. A exatidão indicada por fabricantes é em média \pm 2% da vazão de referência.

Figura 8 - Medidor ultrassônico Doppler - para tubulações Fonte: ARAÚJO ET AL (2015)

2.1.6.2 MEDIDOR DE VAZÃO ULTRASSÔNICO VORTEX

O medidor vórtices ultrassônico - Vortex - gera vórtices no escoamento e mede, com tecnologia ultrassônica, o tempo de propagação do vórtice entre os sensores (ver Figura 9). A sua montagem é feita geralmente em flanges, o que limita a sua aplicação a 1.500 mm, e a exatidão média de \pm 1,50%.

Figura 9 - Medidor ultrassônico Vortex - para tubulações

2.1.6.3 MEDIDOR DE VAZÃO POR TEMPO DE TRÂNSITO

O medidor de Tempo de Trânsito mede a diferença entre o tempo que o pulso ultrassônico leva ao se propagar a favor do escoamento e o tempo ao se propagar contra o escoamento. Os medidores de Tempo de Trânsito são os mais comuns e utilizados para medidas em condutos fechados com grandes diâmetros (ver Figura 10).

Figura 10 - Medidor ultrassônico por Tempo de Trânsito - para tubulações Fonte: ARAÚJO (2016)

Como objeto do presente trabalho, maiores detalhes serão abordados na seção 2.2.

2.2 TECNOLOGIA ULTRASSÔNICA POR TEMPO DE TRÂNSITO

A tecnologia ultrassônica de Tempo de Trânsito foi patenteada por Rütgen em 1928, mas apenas 40 anos mais tarde, o medidor de vazão ultrassônico conseguiu atingir uma incerteza aceitável pela indústria (abaixo de 1,0%). Os primeiros instrumentos apareceram na década de 60, em uma configuração simples, com apenas uma trajetória passando pelo centro da tubulação (BRASSIER, 2000). Na década de 70, os primeiros medidores "*clamp-on*" foram comercializados nos Estados Unidos (YODER, 2009).

Utilizados inicialmente na medição de água, os medidores ultrassônicos começaram a ter expressão na indústria do petróleo, na medição de vazão de óleo e gás nos anos 80, melhorando o seu desempenho e passando a serem comercializados em larga escala na década de 90. Em 2008, 57% dos ultrassônicos comercializados no mundo eram medidores de gás, e 41%, de líquidos (YODER, 2009).

Figura 11 - Medidor ultrassônico por Tempo de Trânsito - múltiplos caminhos Fonte: ARAÚJO (2016)

2.2.1 MEDIDOR ULTRASSÔNICO DE UMA TRAJETÓRIA

O medidor de vazão de uma trajetória acústica consiste de um medidor com apenas dois transdutores associados à medição. São aplicados em medições de vazão em tubos com diâmetros menores, devido ao fato de serem muito sensíveis ao perfil de velocidade do escoamento (FERREIRA, 2010).

Grande parte das aplicações desses medidores envolvem transdutores ultrassônicos do tipo *clamp-on ou* medidor tipo braçadeira (transdutores fixados externamente ao tubo) e carretel (cujos transdutores fazem parte de uma estrutura fixa, montada em um trecho de duto) e poucas aplicações com transdutores do tipo inserção (podem ser instalados com o duto em operação). A montagem dos medidores *clamp-on* no duto é simples e de baixo custo, enquanto os medidores de carretel exigem a despressurização do duto e interrupção da operação para a sua instalação (PEREIRA, 2009).

Segundo a ABNT/ISO 12765 (ABNT, 2010), as instalações dos transdutores no tubo podem ser feitas no mesmo lado da tubulação ou em lados opostos possuindo trajetórias diretas e indiretas (com reflexão com a parede do tubo), como na Figura 12. Os tipos de trajetórias indiretas mais comuns são em "V" (uma reflexão com o duto) e em "W" (Três reflexões com o tubo), sendo a segunda geralmente para tubulações com diâmetro interno menos que 1.000 mm. Outro detalhe importante é o fato da trajetoria poder ser de dois tipos: diametral, passando pelo centro do duto, ou corda, passando por trajetória diferente da diametral.

Figura 12 - Tipos de trajetórias acústica Fonte: ARAÚJO (2016)

Em relação aos transdutores tipo carretel, a ABNT/ISO 12765 (ABNT, 2010) define o tipo de posicionamento do transdutor em referência ao contato com o fluido, Figura 13. Essas diferenças de posicionamento dos transdutores influenciam na medição. Para transdutores retraídos, os tubos apresentam um local vago para depósito de sedimentos que podem prejudicar a propagação de onda, além de aumentarem o comprimento da trajetória acústica. Transdutores intrusivos causam uma saliência no tubo provocando mudanças no perfil de propagação do fluxo e interferindo nas medições (FERREIRA, 2010).

O modo mais adequado de posicionamento é o faceado com o tubo.

A exatidão de medidores que operam nessa configuração é apresentada no Quadro 1.

2.2.2 MEDIDOR ULTRASSÔNICO DE MÚLTIPLAS TRAJETÓRIAS

Os medidores de vazão de múltiplas trajetórias (ou multitrajetórias ou multicanais) possuem duas ou mais trajetórias acústicas. Este tipo de medidor possui menor sensibilidade ao perfil de velocidade, devido ao fato de cobrirem uma maior porção da seção transversal e agregarem maiores informações (FERREIRA, 2010).

Os números de canais definem o tipo de arranjos das trajetórias. Pela Figura 14, os canais podem ser cruzados ou paralelos. Para os casos de serem trajetórias paralelas, as distâncias entre as trajetórias acústicas podem ser assimétricas ou simétricas entre eles (ABNT, 2010).

Figura 14 - Tipos de arranjos de trajetórias acústicas (FERREIRA, 2010)

O esquema da Figura 15 mostra a posição relativa dos transdutores de um medidor ultrassônico de três canais. As trajetórias são paralelas e, se rebatidas na seção transversal como apresenta o esquema (c) da Figura 14.

Figura 15 - Posição relativa dos transdutores de medidor ultrassônico de 3 canais em arranjo com planos cruzados Fonte: (KROHNE 2005).

Também alguns medidores apresentam as trajetórias em um único plano, Figura 16 e também podem possuir mais que um plano, Figura 17. Para medidores com mais planos as trajetórias de mesmo posicionamento em relação ao tubo geralmente são cruzadas entre si.

Figura 16 - Medidor de 4 canais em plano único: (esquerda) posicionamento dos transdutores; (direita) vista externa Fonte: (KROHNE 2005).

Figura 17 - Medidor de 8 canais em planos cruzados: (esquerda) posição dos transdutores, (direita) canais em corte Fonte: CAMERON (2016b)

Outros arranjos para medidores ultrassônicos aparecem na literatura, como o triângulo duplo ou a estrela de cinco pontas (MOORE, BROWN W STIMPSON, 2000) ou o arranjo assimétrico (YODER, 2009).

O medidor de multicanal trabalha em um sistema de varredura (YODER, 2009), devido ao fato de haver outras trajetórias, um canal pode interferir em outro. O cálculo da diferença de tempo de trânsito é feito canal por canal (BROWN, AUGENSTEIN E COUSINS, 2006).

A norma 60041 (IEC, 1991) descreve a teoria desses tipos de medidores, princípio de cálculo de vazão e velocidades médias axiais. É possível observar que, padrões de quantidades de trajetórias por plano estão definidos e que os medidores mais utilizados são os medidores que apresentam dois planos cruzados e 4 canais cada plano. A norma 60041 (IEC, 1991) mostra uma Figura que representa a posição dos transdutores referentes a um conduto circular, ver Figura 18. Os ângulos de referência α_1 e α_2 são padronizados e possuem valores e 18° e 54° respectivamente.

A exatidão para os medidores que operam em múltiplas trajetórias depende de características diversas, que são apresentados no Quadro 1.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Figura 18 - Configuração de posições dos transdutores em conduto Fonte: adaptado de IEC (1991)

2.2.3 PRÍNCIPIO DE MEDIÇÃO DA VELOCIDADE

Os medidores ultrassônicos de Tempo de Trânsito dispõem de transdutores com cristais piezoelétricos que enviam e recebem pulsos acústicos de alta frequência, transversalmente à tubulação, a Figura 19 ilustra o arranjo de uma trajetória dos transdutores numa tubulação fechada para aferição de tempo de trânsito.

O pulso que segue na direção do escoamento (pulso que segue em direção à face do Transdutor <u>downstream</u> (jusante) percorre a distância (L_w) entre os transdutores em intervalo

de tempo (t_d) menor do que o pulso que segue na direção oposta (pulso que segue em direção à face do Transdutor <u>upstream</u> (montante) percorrendo em um tempo (t_u) . A diferença entre os tempos $(t_u - t_d)$ de propagação será proporcional à velocidade média dos elementos presentes na trajetória, no tempo em que o pulso cruzar a tubulação (ABNT, 2010).

Figura 19 - Principio do Método de Tempo de Trânsito Fonte: adaptado de IEC, (1991)

Considerações:

 L_w : Comprimento da trajetória medida em referência a parede;

L : Comprimento da trajetória entre as faces dos transdutores;

 L_T : comprimento formado pela saliência do transdutor;

$$L_T = L_w - L 7$$

 φ : Ângulo formado pela trajetória;

 v_{ax} : velocidade axial

 v_{tr} : velocidade transversal;

 v_{laver} : Soma vetorial da velocidade

$$v_{layer} = v_s = \sqrt{v_{ax}^2 + v_{tr}^2}$$

 t_d : tempo de propagação da onda a favor do fluxo (tempo de *downstream* ou tempo a jusante)

 t_u : tempo de propagação da onda contra o fluxo (tempo de *upstream* ou tempo a montante)

Observação: Nomenclatura seguindo a norma 60041 (IEC, 1991).

Para o escoamento completamente desenvolvido, o cálculo da velocidade axial média do fluido na trajetória (v_{ax}) é desenvolvido a seguir:

Velocidades de propagação (c_{d/u}) é a soma da velocidade do som (c) com a componente

• Tempos de propagação dados por:

$$t_d = \frac{L_w}{c_0 - v_{ax} \cdot \cos\varphi} \tag{10}$$

$$t_u = \frac{L_w}{c_0 + v_{ax} \cdot \cos\varphi}$$
 11

• Manipulando as equações Equação 7 a 11 têm-se a velocidade axial média:

$$v_{ax} = \frac{L_w}{2.\cos\varphi} \cdot \frac{(t_u - t_d)}{t_d \cdot t_u}$$
¹²

A velocidade do som (c_0) do pode ser determinada em função dos tempos de trânsito:

$$c = \frac{L_w}{2} \cdot \frac{t_u + t_d}{t_d \cdot t_u}$$
¹³

O medidor ultrassônico de tempo de trânsito é constituído basicamente de pares de transdutores. Cada par de transdutores forma um canal acústico. Menores incertezas de medição são obtidas com medidores com mais de um canal acústico (ver Quadro 1). Nesse

caso, são denominados de medidores multicanais, em oposição aos medidores de uma trajetória ou canal.

2.2.4 CÁLCULO DE VAZÃO PARA UMA TRAJETÓRIA ACÚSTICA

Para o cálculo de vazão de um medidor de vazão com uma trajetória acústica onde os transdutores formam uma trajetória cortando o diâmetro da tubulação (Figura 17) tem-se que a vazão volumétrica (Q) é determinada pela seguinte Equação 14:

$$Q = A. v_{ax}(D)$$
 14

Onde, A é a área do conduto fechado e v_{ax} (D) é a velocidade axial média no diâmetro do conduto.

Para determinar v_{ax} (*D*), velocidade axial média do fluido, através da seção transversal (*A*) e consequentemente a vazão volumétrica, um fator de correção da distribuição de velocidades K_k deve ser conhecido (ABNT, 2010). Logo:

$$K_k = \frac{1}{1,12 - 0,011.\log(Re_D)}$$
 15

Para um escoamento turbulento totalmente desenvolvido, e

$$K_k = 0,75$$

Para escoamento laminar.

Sendo que:

$$K_k(Re_D) = \frac{v_{ax}}{v(D)}$$
¹⁶

Onde, Re_D é o número de Reynolds e v é a velocidade média do fluido ao longo da trajetória acústica.

Reformulando Q_v tem-se que:

$$Q_{v} = K_{k}.A.v$$

17

2.2.5 CÁLCULO DE VAZÃO PARA VÁRIAS TRAJETÓRIAS ACÚSTICAS

A norma 60041 (IEC, 1991) descreve as condições teóricas de determinação de vazão a partir de medidores de vazão ultrassônicos de multicanais. Um fato interessante sobre a norma é que ela leva em conta em seus exemplos medidores com oito canais separados em dois planos cruzados – dois planos cruzados por quatro paralelos, Figura 18, e os consideram bons para medição, porém não exclui outros tipos de configurações. Na norma ASME PTC 18 (ASME, 2002) a configuração proposta como ideal é a de dezoito canais separados em dois planos cruzados – dois planos cruzados por nove planos paralelos.

As divergências das normas apresentadas não contrapõem a necessidade de se utilizar múltiplos canais de medição, o que obviamente direciona para um maior mapeamento do perfil de velocidades e consequentemente a melhoria na medição. Não existe uma regra certa para a determinação do número de trajetórias ou canais de medição, deixando aos olhos do projetista que certamente tomará como base as dimensões do conduto e intensidade do escoamento estudado.

O conceito do cálculo da vazão está ligado a definição de função de fluxo de área definida como o produto entre a velocidade média axial v_{ax} e a largura da corda, formada por um canal, do tubo b(z) na altura z_i :

$$F(z) = v_{ax}(z). b(z)$$
18

Ao integrar F(z) ao longo de todo o tubo, é obtida a vazão Q:

$$Q = \int_{-D/2}^{D/2} F(z) dz$$
¹⁹

Em um contexto teórico, a Equação 17 é perfeita para se determinar a vazão Q. Porém, em casos práticos, para satisfazer a integral da Equação, infinitas trajetórias acústicas

deveriam ser colocadas no conduto para se medir a vazão. Na prática apenas um número finito de trajetórias é usado para obter a medida de vazão. Esse número está relacionado à quantidade de canais utilizados pelo medidor (tipicamente oito canais divididos em dois planos cruzados). Assim, a integral da Equação 19 é substituída por um somatório, caracterizando uma integração numérica da área transversal do conduto. Então, a tarefa do método de integração numérica é primeiramente reconstruir a função de fluxo de área amostrada através de interpolação e segundo integrar esta função reconstruída o mais preciso possível, utilizando para isso coeficientes de ponderação.

$$Q = \int_{-D/2}^{D/2} F(z) dz = C. \sum_{i=1}^{N} W_i. F(z_i)$$
20

Onde, *C* é uma constante; *W* é um vetor de coeficientes de ponderação, F(z) é a função de fluxo de área para F(z) e *N* é o número de canais.

2.2.6 MÉTODOS DE INTEGRAÇÃO

Diferentes métodos de integração têm sido utilizados para cálculo da vazão, desde os conhecidos métodos de Gauss-Jacobi e Gauss-Legendre aos novos, OWICS e OWIRS. Cada método adota um perfil de velocidade no conduto (MOORE, BROWN, E STIMPSON, 2000) (ver Figura 20).

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

	Gauss-Jacobi	OWICS	Gauss-Legendre	OWIRS
Configuration				
Velocidade Ideal Perfil simétrico	Re infinito, constante	Alto Re, Lei das paredes	Re infinito, constante	Alto Re, Lei das paredes
Seção da tubulação				
	$b(z) = 2\sqrt{R^2 - z^2}$	$b(z) = 2\sqrt{R^2 - z^2}$	b(z) = B	b(z) = B
Parâmetro ĸ	0.5	0.6	0	0.15

Figura 20 - Perfis de velocidades em condutos para os métodos de integração Fonte: adaptado de IEC (1991)

Logo, após definir os tipos de integrações e seus perfis de velocidades é possível definir a vazão Q. A Equação 20 se desenvolve para:

$$Q = k \frac{D}{2} \sum_{i=1}^{N} W_i \overline{v}_{ax}(z_i) b(z_i)$$
²¹

Sendo,

Para seções circulares: $b(z_i) = L_{wi} \cdot \sin(\varphi) = L_{wi} \cdot \sin(\alpha_i)$

Para seções retangulares: $b(z_i) = B$

 L_{wi} é a distância da trajetória acústica i

 φ Angulo do trajetória entre trajetórias acústicas

UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E

RECURSOS HÍDRICOS

α Ângulo de posicionamento de transdutores

D é a dimensão do conduto paralelo para a intercessão de dois planos acústicos

B é a dimensão do conduto perpendicular para D no caso de seções retangulares

 Wi são coeficientes de ponderação dependendo do número de caminhos e da técnica de integração usada

 $\overline{v}_{ax}(z_i)$ é a velocidade de fluxo médio axial ao longo do caminho I como calculado do tempo de transito medidos

N números de caminhos acústicos em um plano de medida

k o coeficiente de correção qual contam para o erro introduzido pela técnica de integração escolhida e a forma do conduto

i indica a trajetória acústica, sendo i = 1,...,N.

Os coeficientes de ponderação (W_i) dependem do tipo de integração numérica que está sendo utilizado. A norma 60041 (IEC, 1991), como dito anteriormente, relata quatro tipos: Gauss-Jacobi, Gauss-Legendre (métodos mais utilizados), OWICS e OWIRS (Novos métodos de integração).

Os métodos de Gauss-Legendre original e a integração de quadratura de Gauss-Jacobi atendem aos requisitos desta norma. Métodos de integração recentemente desenvolvidos como OWICS e OWIRS são recomendados em certas situações.

Os métodos OWICS / OWIRS são aconselhados para os perfis completamente desenvolvidos em "10 x D" - distância de dez vezes o diâmetro nominal de zonas de turbulência - ou mais longe de quaisquer perturbações a montante, enquanto que para perfis de velocidade fortemente perturbados perto de uma perturbação a montante a escolha entre os métodos Gauss/Jacobi-Legendre ou OWICS / OWIRS tem que ser feito de caso a caso.

A norma 60041 (IEC, 1991) aconselha o uso de medidores com menos oito canais separados em dois planos (de quatro em cada plano) cruzados. Esse padrão de conFiguração

obtém uma boa medida da vazão. Situações mais difíceis de medição podem exigir um maior número de caminhos em um plano ou de regimes de planos cruzados.

Para dadas posições zi, i=1, ... N o peso pode ser obtido pela relação

$$W_{i} = \frac{1}{(1 - 4z_{i}^{2}/D^{2})^{k}} \cdot \frac{2}{D} \cdot \int_{-D/2}^{D/2} (1 - 4z^{2}/D^{2})^{k} \cdot L_{i} dz$$

$$L_{i}(z) = \prod_{\substack{k=1\\k \neq i}}^{N} \frac{z - z_{k}}{z_{i} - z_{k}}$$
23

Li, i=1,...,N são polinômios da interpolação de Lagrange (L_i)

2.2.7 TIPOS DE INSTALAÇÃO E FONTES DE INCERTEZA DO MÉTODO ACÚSTICO POR TEMPO DE TRÂNSITO

Os medidores por Tempo de Trânsito podem ser classificados da seguinte forma, de acordo com a forma de instalação e aplicação (ver Quadro 1).

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Método	Exatidão esperada	Principais fontes de Erro
		Perda de ângulos de refração
		devido a mudança de fase,
		Integração de perfil em um
		ponto; Interferência do fluxo
1-Caminho Externo (Clamp On)	+/- 7-10%	cruzado do escoamento;
		Turbulência; Flutuações
		diversas; Dimensão da
		tubulação;
		Perda de ângulos de refração
		devido a mudança de fase;
2-Caminhos Externos (Clamp On)	⊥/_ 5 _7%	Integração de perfil em um
2-Caminitos Externos (Clamp On)	+/- 5-7 /0	ponto; Flutuações diversas;
		Dimensão da tubulação;
		Integração de perfil em um
		ponto; Interferência do fluxo
1-Caminho Intrusivo	+/- 3-5%	cruzado do escoamento;
	17 5 570	Flutuações diversas; Dimensão
		da tubulação;
		Integração de perfil em um
		ponto; Interferência do fluxo
2-Caminhos Intrusivos	+/- 2-3%	cruzado do escoamento;
	17 2 370	Flutuações diversas; Dimensão
		da tubulação;
		Interferência do fluxo cruzado
4-Caminhos Intrusivos		do escoamento; Flutuações
	+/- 0.5-1%	diversas; Dimensão da
		tubulação;
		Variabilidade do tempo de
8-Caminhos Intrusivos	+/- 0 5%	trânsito; Dimensão da
	17 0.570	tubulação:

Quadro 1 - Diferentes configurações para medidores acústicos por Tempo de Trânsito

Fonte: Informações disponibilizadas pela Cameron Measurements - USA

Para o conceito de caminho Externo e Interno podemos definir:

- Externo: quando o transdutor é posicionado na região externa da tubulação, sem ter contato direto com o fluído. Nesse tipo de instalação o sinal acústico está imerso a diversas fontes de interferência externa, como vibrações, ruídos do meio, etc. São usados no máximo dois caminhos acústicos para a medição.
- **Interno**: quando o transdutor é instalado por meio de válvulas que permitem que o cristal piezoelétrico fique em contato direto com o fluído. Essa disposição

permite uma melhor avaliação do escoamento pois são utilizados diversos caminhos acústicos, em múltiplos planos, garantindo uma maior exatidão das medições.

A aplicação dos medidores varia com a características físicas do sistema hidráulico. A seguir serão apresentadas algumas configurações mais utilizadas.

2.2.7.1 Instalação em Tubulações Forçadas

Em sistemas adutores que possuam tubulações forçadas (pressurizadas) a instalação pode ser classificada das seguintes formas:

2.2.7.1.1 Não intrusivo ou externo

Aplicações típicas de tubulações com diâmetros pequenos e médios (de 200 a 2000 mm). Apresentam geralmente baixa exatidão devido a interferências externas e pelos erros de extrapolação dos cálculos para diâmetros maiores - integração - ver quadro 1.

Figura 21 - Medidor acústico externo com uma trajetória - "Clamp On" Fonte: GE (2016)

2.2.7.1.2 Intrusivo com uma trajetória acústica

Aplicações típicas de tubulações com diâmetros menores (de 200 a 1500 mm). São recomendados para diâmetros maiores por alguns fabricantes, porém sofrem diversas interferências, principalmente pela integração do perfil de velocidade, sendo a extrapolação relativamente alta.

2.2.7.1.3 Intrusivo de múltiplas trajetórias acústicas

De aplicação mais abrangente, recomendada pelas principais normas técnicas, oferece características que produzem medições suficientemente exatas.

Para a aplicação em Aproveitamentos Hidrelétricos, esse método é recomendado pela norma 60041 (IEC, 1991), com descrição no seu "Apêndice J", e adotado pela ASME PTC 18 como sendo um método preciso tanto para a medição, em testes de aceitação de turbinas, quanto para monitoramento.

(a)

(b)

Figura 22 - a) Conduto Forçado exposto; b) Conduto Forçado abrigado Fonte: Acervo próprio

Na Figura 22-a é possível visualizar a instalação em um dos Condutos Forçados da UHE Furnas, com a configuração de 8 caminhos acústicos. Já na Figura 22-b temos a montagem dos transdutores na UHE Itá, também com a configuração de 8 caminhos

acústicos, porém em um conduto abrigado por concreto. Em ambas as instalações as adutoras são de seções transversais circulares de diâmetro maior que 6.000 mm. Ou seja, é necessário, tanto por recomendação das normas técnicas citadas, quanto pelas boas práticas de engenharia a utilização de múltiplos caminhos em grandes condutos para se obter um perfil de velocidade mais próximo do real.

2.2.7.1.4 Instalação em Canais

A inviabilidade da instalação dos transdutores nos condutos forçados permite o direcionamento da instalação para regiões onde existe uma seção transversal com dimensões conhecidas, porém de escoamento livre, ou seja, canais abertos. Na Figura 23 é possível visualizar a disposição dos transdutores em um canal aberto.

Figura 23 - a) Instalação dos transdutores acústicos em canal aberto; b) detalhe da disposição dos transdutores na parede do canal. Fonte: CAMERON 2016

2.3 TIPOS DE APROVEITAMENTOS HIDRELÉTRICOS

A classificação dos Aproveitamentos Hidrelétricos se dá por características como potência instalada, área do reservatório, tipo de turbinas, etc. A seleção das turbinas hidráulicas é feita com base em uma relação ótima entre a *Altura de Queda* (H_n) e a *Vazão*

turbinada (Q) no processo de conversão hidroenergético. Tais características são premissas para a projeção de todas as estruturas civis, elétricas e mecânicas da central.

Com base no escoamento, e disposição física da central, é determinada as características das adutoras - sistema composto por canais, tubulações e demais acessórios, que conduzem a água do reservatório as turbinas hidráulicas.

A Figura 24-a apresenta uma central hidrelétrica de derivação com adução formada por canal aberto (baixa pressão) migrando para conduto forçado (alta pressão) e a Figura 24-b um sistema similar a Figura anterior, porém a adução de baixa pressão é feita por um conduto. Em ambas as situações temos centrais com turbinas do tipo Francis de Eixo Horizontal.

Figura 24 - a) Adução por canal e conduto forçado; b) Adução com conduto de alta e baixa pressão Fonte: SOUZA, SANTOS, BORTONI (2009)

Para as Figuras 25-a e 25-b podemos visualizar duas centrais onde o sistema de baixa pressão é o próprio reservatório, ou seja, a adução é feita direta por um conduto forçado, conduzindo a água até a Caixa Espiral. Podemos observar que na Figura 25-a a tubulação é exposta - aço ao tempo - enquanto a Figura 25-b apresenta um conduto abrigado, podendo ser também caracterizado como um túnel. Em ambas as situações temos centrais com turbinas do tipo Francis, porém a Figura 25-a possuí Eixo Horizontal e a Figura 25-b de Eixo Vertical.

Figura 25 - a) Adução com conduto exposto; b) Adução com conduto concretado Fonte: SOUZA, SANTOS, BORTONI (2009)

Quando operamos com desvios geométricos muito grande e com vazões muito baixas tendemos para centrais hidrelétricas com turbinas de ação ou principalmente do tipo Pelton, como apresentado na Figura 26. Nesse caso a adução é feita direta por um conduto forçado e caracterizada por velocidades maiores e estruturas reforçadas, devido à alta pressão.

Figura 26 - Esquema de adução para central com turbina do tipo Pelton. Fonte: SOUZA, SANTOS, BORTONI (2009)

Quando temos uma central como as apresentadas nas Figuras 24, 25 e 26 a lógica dos medidores de vazão aplicados na adutora são de simples avaliação pois teremos seções transversais circulares e o princípio apresentado na Figura 1 pode ser mais facilmente compreendido.

 $Q = V_{média} \cdot A = V_{média} \cdot 2\pi R$

Figura 27 - Relação área da seção com velocidade - seção transversal circular Elaboração própria

Uma característica particular das centrais hidrelétricas de baixa queda, consequentemente com vazões relativamente altas, é vista na Figura 28. Nessa concepção a adução é do tipo direta, por túneis de seção irregular, criando uma *Caixa Semi-Espiral*. Sendo uma central cuja a variação de potência da unidade geradora está diretamente ligada ao engolimento de água da turbina, é possível certificar que este tipo de central toma-se como de grande importância a medição e o monitoramento das vazões turbinadas.

Figura 28 - a) Adução do tipo Bulbo; b) Adução do tipo Kaplan Fonte: SOUZA, SANTOS, BORTONI (2009)

Nas turbinas tipo hélice - Propeller, Kaplan e Bulbo - também conhecidas como turbinas axiais temos um fator complicante na mensuração do fluxo que é a divisão do mesmo em múltiplas seções. No caso da aplicação de um método direto para a medição da vazão de engolimento dessas turbinas faz-se necessário a medição em cada uma das Baias, conforme apresentado na Figura 29.

Pela seleção da turbina hidráulica já é possível prever as características principais dos sistemas de adução. Essas informações permitem a seleção tanto do tipo de medidor de vazão turbinada a ser utilizado, quanto a localização deste no circuito hidráulico.

No intuito de apresentar a ampla aplicabilidade dos medidores acústicos por Tempo de Trânsito será apresentado a seguir as diferentes formas de aplicação.

Figura 29 - Corte de turbina Kaplan com três baias de engolimento. Fonte: Adaptado de CESP 2014.

Como o estudo de caso será aplicado em uma turbina do tipo Kaplan Vertical (como na Figura 29), iremos abordar a seguir algumas características sobre a aplicação dos medidores acústicos para fins da medição de vazão turbinada.

2.3.1 ASPECTOS RELATIVOS ÀS MÁQUINAS KAPLAN

Normalmente a instalação dos transdutores ultrassônicos é feita a montante das turbinas, por se tratar principalmente de um escoamento menos turbulento possuir características multifásicas mais apropriadas. A instalação em locais fora de padrão das normas atuais tem sido discutida, pois bons resultados vêm sendo encontrados em instalações com particularidades que dificultassem a aplicação dos valores normatizados.

Instalações próximas a regiões de turbulência como curvas na tubulação ou válvula borboleta vêm sendo realizadas e obtendo dados precisos, com boa repetibilidade e confiabilidade. LARREATEGUI E WALSH (2014) analisaram uma operação de extensão da usina San Esteban II, na Espanha, localizada no rio Sil, maior contribuinte do rio Miño, próximo à cidade de Orense, sendo a usina colocada em operação em 1956, com uma geração total de 240 MW e vazão de 300 m³/s (Figura 30).

Figura 30. Desenho em vista superior da usina San Esteban II. Fonte: LARREATEGUI E WALSH, 2014.

Figura 31. ConFiguração hidráulica de San Esteban II, destacados os pontos de instalação do sistema ultrassônico. Fonte: LARREATEGUI E WALSH, 2014.

Foram selecionados pontos de instalação diferenciados da norma, no único local que apresentava simetria favorável, ficando 1 diâmetro a montante da região de afunilamento na entrada da caixa espiral, e 1 ¼ diâmetros à jusante de uma curva no conduto. Lembrando que a norma 60041 (IEC, 1991) prevê que as instalações devem possuir seção retilínea de no mínimo "10 vezes" diâmetros a montante do ponto de instalação e "3 vezes" diâmetros à jusante (LARREATEGUI E WALSH, 2014).

Com relação às incertezas associadas às medições de vazão, havia uma incerteza máxima no contrato de 0,5%, podendo ser aferida após a instalação do sistema de medição. A Tabela 1 mostra as fontes de erros e as incertezas associadas. A configuração dos 18 caminhos ultrassônicos resultou em uma incerteza sistemática de 0,396%, sendo, portanto, um resultado satisfatório.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Fontes	Detalhes/comentários	Parcial	Total
Erros geométricos de instalação	Medição de comprimento de caminhos	0,0042%	
	Medição de ângulos de caminhos	0,0111%	
	Medição de altura de caminho e		
	conformidade com as posições		
	prescritas		
	Medição do diâmetro do conduto		0,188%
Erros de medição de tempo	Medição de tempo/resolução de tempo	0,0123%	
	Estimativa de tempo sem água	0,0091%	
	Precisão computacional interna	0,0010%	
Erro de protrusão	Incerteza devida à distorção do	0,0447%	
	fluxo em torno dos transdutores		
Erro de integração devida à	Existência de componentes de fluxo		
condição hidráulica	transverso		
	Distorções do perfil do fluxo		
	Incerteza de integração		0,250%
	Variações espaciais da velocidade	0,1000%	
	do som		
	Variação da velocidade do fluxo,		0,128%
	velocidade do som e descarga com o		
	tempo		
Erros devidos à influência do ambiente	Geral		0,100%
	Erro devido a mudanças em		0,100%
	dimensões quando o conduto é		
	pressurizado ou experimenta		
	mudança de temperatura		
Incerteza sistemática total			0,396%

Tabela 1. Fontes de erros e incertezas associadas à medição da vazão - 18 caminhos.

Fonte: LARREATEGUI E WALSH (2014).

Para esta instalação os autores compararam as incertezas de diferentes caminhos ultrassônicos. A diferença entre os resultados do conjunto de 8 caminhos e 18 caminhos foi de aproximadamente 1,5%, ou seja, para 8 caminhos a incerteza sistemática total foi de 1,898%.

Quanto à medição de vazão em turbinas tipo Kaplan, a precisão da medida é um fator crítico para avaliação do desempenho do conjunto turbina-gerador. A precisão tem sido uma

exigência das agências de energia na medição do desempenho das unidades geradoras, para obtenção de resultados com boa repetitividade, possibilitando uma análise consistente e confiável para testes individuais ou em grupos de máquinas (BURCH E WALSH, 1995).

Os métodos para se obter a vazão em hidrelétricas de baixa queda são mais restritos, devido principalmente à curta distância disponível entre a tomada de água e a entrada da turbina. Uma usina de baixa queda típica utiliza múltiplas baias na tomada de água de geometria irregular, gerando condições não uniformes de fluxo de forma que os métodos prescritos em normas não se adaptam facilmente. A operação de unidades adjacentes pode contribuir para a variabilidade do fluxo na entrada da turbina, e consequentemente, influenciar na precisão da medida de vazão (BURCH E WALSH, 1995).

A tomada de água curta e convergente, comum a usinas de baixa queda, facilita a formação de redemoinhos, linhas de fluxo cruzado e distorções no perfil de velocidade horizontal e vertical. Devido a essas características, o número de medidores de corrente/transdutores para tomadas de baixa queda necessários são geralmente o dobro ou até o triplo dos utilizados em tubulações convencionais (LEVESQUE, 1994).

O método de tempo de trânsito com múltiplos caminhos ultrassônicos oferece os meios para se obter dados significativos de vazão e eficiência nas condições diferenciadas das usinas de baixa queda. Comparado ao método de medição de vazão com molinetes, nas múltiplas baias de tomada de água, o método ultrassônico apresenta resultados muito próximos, demonstrando que o método ultrassônico representa uma alternativa valiosa para avaliação e testes das unidades geradoras de uma usina de baixa queda, por apresentar informações detalhadas sobre as características dos perfis de velocidade de cada baia de tomada d'água (BURCH E WALSH, 1995).

Normalmente a entrada da máquina possui três baias, conforme mostrado na Figura 32. O fluxo nestas baias é tipicamente distribuído conforme a Figura 33, onde a maior vazão concentra-se na baia A.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Figura 32. Geometria e caminhos ultrassônicos na entrada de uma turbina de baixa queda. FONTE: BURCH E WALSH, 1995

Figura 33. Distribuição típica do fluxo em uma tomada de água de três baias. Fonte: BURCH E WALSH (1995)

Devido ao maior fluxo em uma das baias, normalmente instala-se maior quantidade de caminhos ultrassônicos, buscando a precisão adequada nas medições, e perfilhamento das

velocidades no fluxo. As demais baias podem receber menos caminhos ultrassônicos, sendo os resultados das 3 baias numericamente integrados para se obter uma estimativa do fluxo através da secção transversal da baia como um todo.

Os caminhos acústicos em plano cruzado devem ser usados efetivamente para monitorar e corrigir os efeitos de linhas de fluxo cruzado e componentes de fluxo em redemoinho. Medições de velocidade de caminhos cruzados em um nível vertical específico caracterizam uma maior velocidade aparente para o caminho mais alinhado com o vetor velocidade nãoaxial, e uma velocidade menor para o caminho de passagem.

As duas medições podem ser combinadas para fornecer uma estimativa mais precisa da velocidade média de escoamento axial ao nível do caminho.

Muito da incerteza na medição causada pelos fluxos cruzados horizontais ou fluxo axial de redemoinho pode ser eliminado desta forma. Além disso, as medições de velocidade de caminho cruzado pode ser utilizado para quantificar a gravidade de fluxos em linha cruzada em relação ao padrão de fluxo global.

Contudo, apesar de a redução do número de sensores diminuir a precisão, espera-se que a utilização de 16 sensores (08 caminhos acústicos) em cada baia seja uma quantidade razoável para este projeto.

Inicialmente serão instalados 18 caminhos por seção de acordo com as diretrizes da norma ASME PTC 18 (ASME, 2002). Esta quantidade poderá ser reduzida para 16 sensores, que por sua vez serão instalados de acordo com a Figura 34. Com um número menor de sensores, será necessário avaliar novos posicionamentos (axial e ângulo) dos caminhos, buscando as condições ideais de medição.

Figura 34. Desenho esquemático da seção de medição na entrada da turbina com reduzidos caminhos ultrassônicos. Fonte: BURCH E WALSH (1995)

Com relação ao procedimento de medição, primeiramente serão realizados os testes de comunicação e de qualidade dos sinais entre os diferentes caminhos ultrassônicos. Estes testes envolvem análise de resposta entre os sensores, amplitude e qualidade do sinal, melhor faixa de frequência e comparação entre as vazões medidas pelos diferentes pares de sensores.

A particularidade das seções irregulares na entrada da turbina Kaplan demanda um tipo de sensor ajustável para o alinhamento dos sensores. Devido ao grande tamanho das seções, a norma ASME PTC 18 (1992) prevê 18 caminhos ultrassônicos, que utilizam um painel concentrador de sinais para processamento das medições. No caso de múltiplas seções de engolimento, há ainda a necessidade de um painel integrador do sistema ultrassônico que fará a conexão de todas as seções. Visando à redução de ruído e ao condicionamento do sinal, esta estrutura utilizará cabeamento específico, de cabos coaxiais.

3 MATERIAIS E MÉTODOS

3.1 CONSIDERAÇÕES INICIAIS

O trabalho se caracteriza como pesquisa aplicada, tendo como base pesquisa bibliográfica acerca das particularidades dos temas abordados. É uma pesquisa exploratória visto o caráter avaliativo de seus objetivos.

É feito estudo de caso, com uma aplicação real elaborada e instalada, supervisionada pelo autor na UHE Porto Primavera, por meio do CONVÊNIO P&D ANEEL 0061-0044/2014, onde são aplicados métodos conhecidos de medição de vazão de formas inovadoras, e seus resultados, avaliados, podem indicar uma mudança nos resultados do planejamento energético de operação de curto e médio prazo, tanto da geradora em questão quanto do SIN.

O método acústico de medição de vazão por ultrassom, tempo de trânsito, se baseia na medição dos tempos nos quais ondas acústicas são emitidas simultaneamente no sentido do escoamento e contra o mesmo. Esses medidores podem ter o sistema emissor / receptor colocado externamente (sem contato com a água) ou internamente (com os transdutores em contato com a água).

O segundo caso é o aplicado a este projeto, pela viabilidade técnica do mesmo, tendo em vista a particularidade das turbinas axiais com seções de adução não uniformes.

Não há registros no Brasil de aplicação de medidores ultrassônicos em turbinas axiais (Kaplan e Bulbo), com seções não uniformes.

Foram instalados medidores ultrassônicos nos três vãos de entrada da tomada d'água de uma turbina hidráulica da UHE Porto Primavera (UG 09), de tal forma que em um dos vãos, aplicou-se a especificação de número de caminhos ultrassônicos previstos em norma para grandes seções de adução (18 caminhos ultrassônicos – 36 transdutores) (ASME, 2002; IEC, 1991) e, nos dois outros vãos, foi avaliada uma redução na quantidade de caminhos, utilizando-se 8 caminhos (16 transdutores).

3.2 ESTUDO DE CASO - UHE PORTO PRIMAVERA

Para desenvolver essa pesquisa, que pretende analisar o desempenho dos medidores de vazão ultrassônicos em usinas com turbina Kaplan com múltiplas seções de tomada d'água, foi escolhida a UHE Engenheiro Sérgio Motta (Porto Primavera).

3.2.1 INFORMAÇÕES DA UHE PORTO PRIMAVERA

A UHE Porto Primavera (ver Figura 35), localizada no município de Rosana-SP, é operada pela CESP (Companhia Energética de São Paulo), se encontra no Rio Paraná e conta com 14 unidades geradoras do tipo Kaplan vertical. Apresenta uma potência instalada de 1.540 MW. Sua construção foi iniciada no ano de 1980 e a última UG a iniciar sua operação ocorreu em 2003. Sua barragem apresenta 10.186,20 metros de comprimento, sendo assim, a mais extensa do Brasil [CESP, 2009].

Figura 35 - Usina Eng. Sérgio Motta (Porto Primavera). Fonte; acervo próprio

Na Tabela 2 a seguir encontram-se dados extraídos do portal da CESP contendo as características da UHE Engenheiro Sérgio Motta ou Porto Primavera.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Condições de Montante	
Área da Bacia hidrográfica (do rio Paraná até	574.0001 2
a barragem)	574.000 km^2
Área do espelho d'água (N.A. 259,00m)	2.250 km ²
Volume morto	15.700 x 10 ⁶ m ³
Níveis característicos de montante	
N.A. máximo maximorum	259,70 m
N.A. máximo útil	259,00 m
N.A. mínimo útil	257,00 m
Vazão média de longo termo (MLT período 1931 – 2005)	7.145 m³/s
Vazão defluente média diária observada (13/02/07)	18.625 m³/s
Condições de jusante	
N.A. máximo maximorum	244,60 m
N.A. máximo	239,80 m
N.A. mínimo	237,80 m
Vazão máxima dos descarregadores (N.A. 257,00)	44.150 m ³ /s
Vazão turbinada nominal total	7.070 m³/s
Turbinas	
Tipo	Kaplan (eixo vertical)
Turbinas instaladas	14
Potência nominal unitária	111.800 kW
Queda líquida de referência	18,95 m
Vazão nominal	651,60 m ³ /s
Geradores	
Tipo	SAT 1290-152-96 ATI MAVF 1250/163/96
Potência nominal unitária	117 MVA
Potência nominal total instalada	1.540.000 kW

Tabela 2 - Dados característicos da UHE Porto Primavera

Fonte: CESP, 2014

A Usina Hidrelétrica Porto Primavera está integrada ao Sistema Interligado Nacional – SIN com 14 unidades geradoras instaladas e podendo expandir em mais 4 unidades, totalizando 18 máquinas, conforme previsto em projeto. A usina, com potência instalada de

1.540 MW, contribui para o SIN com 1.017 MW médios de garantia física e essa energia é injetada na rede básica de operação na tensão de 440 kV.

3.2.2 CURVA COLINA DA UHE PORTO PRIMAVERA

A curva de rendimento de uma turbina hidráulica, mais conhecida como curva colina relaciona a capacidade de geração com queda bruta e vazão turbinada. Nessa curva são relacionadas variáveis que influenciam na produção de energia elétrica e por meio desta curva é possível operar as máquinas, e consequentemente a usina, em seu ponto ótimo de produção. O ponto ótimo de operação é quando a usina consegue gerar a máxima quantidade de energia gastando menos água possível.

Atualmente, o cálculo da vazão turbinada é obtido automaticamente pelo sistema de gestão da CESP através da tabela que consta no manual da empresa para esta usina, e está reproduzida no item anterior deste relatório. Como esses valores de vazão são teóricos, a usina pode não estar operando em seu ponto ótimo.

A instalação dos medidores ultrassônicos permitirá um controle mais rigoroso das vazões turbinadas na geração de energia elétrica, mas também dará suporte para validar ou até calibrar a curva colina que o setor elétrico usa atualmente para a UHE Porto Primavera, e por fim operar a UHE em um melhor ponto de rendimento.

Há curvas que ainda relacionam o rendimento do conjunto turbina-gerador em função da queda bruta e da potência gerada, substituindo a vazão turbinada. A Figura 36 foi extraída do modelo de simulação hidráulica HydroExpert desenvolvido pelo pesquisador Marcelo Augusto Cicogna.

Figura 36 - Curva Colina UHE Porto Primavera Fonte: acervo CESP

3.2.2.1 Cálculo da Vazão Turbinada pela tabela no Manual SOSEm CESP

O manual de consulta rápida do Sistema de Operação em Situação de Emergência – SOSEm (CESP, 2016) mostra a Tabela 3 com as vazões turbinadas, em cada máquina, em função da queda bruta e da potência média gerada, portanto valor determinado de forma indireta.

As variáveis que são medidas são a geração em cada máquina e a queda bruta. Essa queda é extraída da diferença entre as cotas montante e jusante. A partir dessas informações, a vazão turbinada é então obtida interpolando os valores da Tabela 3.

Um dos objetivos desse projeto de pesquisa é confrontar os dados dessa tabela, que foram fornecidos pelo fabricante, consistindo em cálculos teóricos, com os valores medidos nos sensores ultrassônicos instalados numa unidade geradora. Com isso, a CESP poderá validar os dados da tabela e avaliar a operação da usina por meio de uma informação direta e mais precisa.

A Tabela 3 (SOSEm – CESP) apresenta os valores de vazão turbinada em cada máquina em função de valores da queda bruta e da potência gerada.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

	UHE Porto Primavera																
PG									Queda I	Bruta (m)					T	
(MW)	14,0	14,5	15,0	15,5	16,0	16,5	17,0	17,5	18,0	18,5	19,0	19,5	20,0	20,5	21,0	21,5	22,0
1	18,7	18,4	18,1	17,8	17,6	17,4	17,1	16,9	16,7	16,6	16,4	16,2	16,1	15,9	15,8	15,7	15,5
2	26,5	25,9	25,4	24,9	24,4	24,0	23,5	23,2	22,8	22,4	22,1	21,8	21,5	21,2	20,9	20,7	20,4
3	34,4	33,5	32,7	31,9	31,2	30,6	29,9	29,4	28,8	28,3	27,8	27,3	26,9	26,5	26,1	25,7	25,4
4	42,2	41,1	40,0	39,0	38,1	37,2	36,4	35,6	34,9	34,2	33,5	32,9	32,3	31,8	31,2	30,7	30,3
5	50,1	48,6	47,3	46,0	44,9	43,8	42,8	41,8	40,9	40,0	39,2	38,5	37,7	37,0	36,4	35,8	35,2
6	57,9	56,2	54,6	53,1	51,7	50,4	49,2	48,0	46,9	45,9	44,9	44,0	43,1	42,3	41,5	40,8	40,1
7	65,8	63,8	61,9	60,2	58,5	57,0	55,6	54,2	53,0	51,8	50,6	49,6	48,5	47,6	46,7	45,8	45,0
8	73,6	71,3	69,2	67,2	65,4	63,6	62,0	60,4	59,0	57,6	56,3	55,1	54,0	52,9	51,8	50,8	49,9
9	81,5	78,9	76,5	74,3	72,2	70,2	68,4	66,7	65,0	63,5	62,1	60,7	59,4	58,1	57,0	55,8	54,8
10	89,4	86,5	83,8	81,3	79,0	76,8	74,8	72,9	71,1	69,4	67,8	66,2	64,8	63,4	62,1	60,9	59,7
11	97,2	94,1	91,1	88,4	85,9	83,5	81,2	79,1	77,1	75,2	73,5	71,8	70,2	68,7	67,3	65,9	64,6
12	105	102	98,5	95,5	92,7	90,1	87,6	85,3	83,2	81,1	79,2	77,4	75,6	74,0	72,4	70,9	69,5
13	113	109	106	103	99,5	96,7	94,1	91,6	89,2	87,0	84,9	82,9	81,0	79,2	77,6	75,9	74,4
14	121	117	113	110	106	103	100	97,8	95,3	92,9	90,6	88,5	86,5	84,5	82,7	81,0	79,3
15	129	124	120	117	113	110	107	104	101	98,7	96,3	94,0	91,9	89,8	87,9	86,0	84,2
16	137	132	128	124	120	117	113	110	107	105	102	99,6	97,3	95,1	93,0	91,0	89,1
17	144	140	135	131	127	123	120	116	113	110	108	105	103	100	98,2	96,0	94,0
18	152	147	142	138	134	130	126	123	119	116	113	111	108	106	103	101	98,9
19	160	155	150	145	141	136	133	129	125	122	119	116	114	111	108	106	103
20	168	162	157	152	147	143	139	135	132	128	125	122	119	116	114	111	108
21	176	170	164	159	154	150	145	141	138	134	131	127	124	121	119	116	113
22	184	178	172	166	161	156	152	148	144	140	136	133	130	127	124	121	118
23	192	185	179	173	168	163	158	154	150	146	142	139	135	132	129	126	123
24	200	193	187	181	175	170	165	160	156	152	148	144	141	137	134	131	128
25	208	201	194	188	182	176	171	166	162	158	154	150	146	143	139	136	133
26	216	208	201	195	189	183	178	173	168	164	159	155	152	148	145	141	138
27	224	216	209	202	196	190	184	179	174	169	165	161	157	153	150	146	143
28	232	224	216	209	203	196	197	185	180	175	171	166	162	159	155	152	148
29	240	231	224	216	209	203	197	192	186	181	177	172	168	164	160	156	153
30	248	239	231	223	216	210	204	198	192	187	182	178	173	169	165	161	158
31	256	247	238	231	223	216	210	204	198	193	188	183	179	174	170	167	163
32	264	255	246	238	230	223	217	210	205	199	194	189	184	180	176	172	168
33	272	262	253	245	237	230	223	217	211	205	200	194	190	185	181	177	173
34	280	270	261	252	244	237	230	223	217	211	205	200	195	190	186	182	178

Tabela 3 - Vazão turbinada em cada máquina

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

35	288	278	268	259	251	243	236	229	223	217	211	206	201	196	191	187	183
36	296	286	276	267	258	250	243	236	229	223	217	211	206	201	196	192	188
37	304	293	283	274	265	257	249	242	235	229	223	217	212	206	202	197	192
38	313	301	291	281	272	264	256	248	241	235	228	223	217	212	207	202	197
39	321	309	298	288	279	270	262	255	247	241	234	228	222	217	212	207	202
40	329	317	306	296	286	277	269	261	253	247	240	234	228	222	217	212	207
41	338	325	314	303	293	284	275	267	260	253	246	239	233	228	222	217	212
42	346	333	321	310	300	291	282	274	266	258	252	245	239	233	228	222	217
43	354	341	329	318	307	297	288	280	272	264	257	251	244	238	233	227	222
44	362	349	337	325	314	304	295	286	278	270	263	256	250	244	238	232	227
45	371	357	344	333	322	311	302	293	284	276	269	262	255	249	243	237	232
46	379	365	352	340	329	318	308	299	290	282	275	268	261	254	248	243	237
47	388	373	360	348	336	325	315	305	297	288	281	273	266	260	254	248	242
48	396	381	368	355	343	332	322	312	303	294	286	279	272	265	259	253	247
49	405	389	376	363	350	339	329	319	309	300	292	285	277	271	264	258	252
50	413	398	383	370	358	346	335	325	316	307	298	290	283	276	269	263	257
51	422	406	391	378	365	353	342	332	322	313	304	296	288	281	274	268	262
52	430	414	399	385	372	360	349	338	328	319	310	302	294	287	280	273	267
53	439	422	407	393	380	367	356	345	335	325	316	308	300	292	285	278	272
54	447	430	415	400	387	374	363	352	341	331	322	313	305	297	290	283	277
55	456	439	423	408	394	381	370	358	348	338	328	319	311	303	295	288	282
56	465	447	431	416	402	388	376	365	354	344	334	325	317	308	301	294	287
57	473	455	439	423	409	396	383	371	360	350	340	331	322	314	306	299	292
58	482	464	447	431	416	403	390	378	367	356	346	337	328	320	312	304	297
59	486	472	455	439	424	410	397	385	373	363	353	343	334	325	317	309	302
60	500	480	463	446	431	417	404	391	380	369	359	349	340	331	323	315	307
61	511	489	471	454	439	424	411	398	386	375	365	355	345	336	328	320	312
62	522	497	479	462	446	431	418	405	393	381	371	361	351	342	333	325	317
63		506	487	469	453	439	425	411	399	388	377	367	357	348	339	331	323
64		518	495	477	461	446	432	418	406	394	383	373	363	353	344	336	328
65		528	503	485	468	453	438	425	412	400	389	379	368	359	350	341	333
66		539	514	493	476	460	445	432	419	407	395	384	374	365	355	347	338
67			524	501	483	467	452	438	425	413	401	390	380	370	361	352	344
68			534	510	491	475	459	445	432	419	408	396	386	376	366	357	349
69			545	520	499	482	466	452	438	426	414	402	392	381	372	363	354
70			555	529	506	489	473	459	445	432	420	408	398	387	377	368	359
71				539	516	497	481	466	452	438	426	414	403	393	383	373	364
72				549	525	504	488	472	458	445	432	420	409	398	388	379	370

Tabela 3 – Vazão turbinada em cada máquina, cont.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

73			559	535	513	495	479	465	451	438	426	415	404	394	384	375
74			569	544	522	502	486	471	458	445	432	421	410	399	390	380
75				553	531	510	493	478	464	451	438	427	416	405	395	385
76				563	539	518	500	485	470	457	444	432	421	411	400	391
77				568	548	527	507	491	477	463	450	438	427	416	406	396
78				576	557	535	515	498	483	469	456	444	433	422	411	401
79				583	566	544	523	505	490	476	463	450	438	427	417	407
80					570	552	531	512	496	482	469	456	444	433	422	412
81					578	560	539	520	503	488	475	462	450	438	427	417
82					586	567	547	528	510	495	481	468	456	444	433	422
83					593	574	555	536	517	501	487	474	461	449	438	428
84						581	563	543	525	507	493	480	467	455	444	433
85						588	569	551	532	515	499	486	473	461	449	438
86						595	576	559	539	522	505	491	479	466	455	444
87						603	583	565	547	529	512	497	484	472	460	449
88							590	572	554	536	519	503	490	478	466	454
89							597	578	561	543	526	510	496	483	471	460
90							605	585	567	550	533	517	502	489	477	465
91							612	592	574	557	539	523	507	494	482	470
92								599	581	564	546	530	514	500	488	476
93								606	588	570	553	536	520	506	493	481
94								613	594	576	560	543	527	512	499	486
95									601	583	566	549	533	518	504	492
96									608	590	572	556	539	524	510	497
97									615	596	579	562	546	530	516	502
98										603	585	568	552	536	522	508
99										610	592	574	558	542	528	514
100										616	598	581	564	549	534	519
101											605	587	570	555	539	525
102											611	593	577	561	545	531
103											618	600	583	567	551	537
104												606	589	573	557	542
105												613	595	579	563	548
106												619	601	585	569	554
107												625	608	591	575	559
108													614	597	581	565
109													620	603	587	571
110													626	609	593	577

Tabela 3 – Vazão turbinada em cada máquina, cont.

3.3 COMPARAÇÃO ENTRE CONFIGURAÇÕES DE MEDIÇÃO

Como apresentado no ANEXO I, as normas consultadas para esse trabalho apresentam recomendações diferentes quanto a exatidão do método de medição acústico por tempo de trânsito. A comparação será feita seguindo a descrição abaixo:

- A norma ASME PTC-18 (ASME, 2002) recomenda a utilização de 18 caminhos acústicos, enquanto a norma IEC 60041 (IEC, 1991) promove a utilização de 8 caminhos acústicos;

- Ambas as normas direcionam para uma exatidão ideal, com as configurações acima dispostas, de $\pm 0,50\%$.

- Será feita uma comparação das duas configurações propostas, com análise dos Perfil de Velocidades, determinando uma Fator de Correlação, e da Vazão líquida.

3.4 AVALIAÇÃO DA INCERTEZA DAS MEDIÇÕES

Com base na tabela 1, e pela recomendação do fabricante dos equipamentos utilizados neste estudo, consideramos para a avaliação da incerteza das medições os elementos listados a seguir. Os elementos são divididos em duas partes, onde um está diretamente relacionado as características físicas da instalação enquanto e a outra parte compreende os erros de cálculo e da eletrônica do medidor utilizado.

Elementos ligados a instalação:

- Incerteza referente a medição da Área da Seção Transversal
- Incerteza referente ao Comprimento do Caminho Acústico
- Incerteza referente ao Ângulo de Comunicação entre os Transdutores
- Incerteza referente a medição de Velocidade em cada Caminho Acústico
- Incerteza referente a medição de vazão pelas diferentes configurações

Elementos ligados ao equipamento utilizado:

- Incerteza referente a medição do Tempo de Trânsito

- Incerteza referente ao cálculo (integração das velocidades) para o cálculo da Vazão

3.5 COMPARAÇÃO DE CURVAS OPERACIONAIS DA TURBINA HIDRÁULICA

Para o estudo de caso, foi realizado um ensaio de rendimento, com a medição da vazão turbinada pelo método acústico por tempo de trânsito. Com o sistema de medição comissionado e validado, foram feitas variações de carga na Unidade Geradora, criando assim uma curva correlacionando Vazão Turbinada com Potência da Turbina e Vazão Turbinada com o Rendimento Hidráulico da Turbina. O intuito desse levantamento foi avaliar as condições operacionais da Unidade Geradora. Porém, para o estudo em questão, as curvas obtidas serão apresentadas como resultados para validar os benefícios da utilização do método estudado.

3.6 SISTEMA DE MEDIÇÃO DE VAZÃO E TRANSDUTORES

O sistema de medição de vazão selecionado para aplicação no projeto é o transmissor de vazão Caldon Hydro ™ LEFM® 880, consolidado mundialmente na medição de vazão de óleo, gás e água. As Tabelas 4 e 5 a seguir mostram a especificação desse sistema e seus transdutores.

Essa vazão é transmitida ao sistema de supervisão da usina, através de sinal analógico, possibilitando o seu monitoramento em tempo real, e consequentemente a comparação desses dados medidos com os valores de vazão tabelados em função de queda bruta e da geração.

Caixa	NEMA 4/IP 66
Display	Gráfico
Entradas	16 TRAs (transdutores)
Saídas Digitais	2 x RS-485/RS-422
Saídas Analógicas	1 x 0/4-20 mA

Tabela 4 - Especificações necessárias do Sistema de medição de vazão

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Interface de programação (software)	Sim				
Capacidade Modbus	Sim				
Entradas Analógicas	2 x 0/4-20 mA				
Saídas de Totalização	Pulsos e dados digitais				
Memória/Data Logging	USB				
Processamento de Sinais	ACG Cross-Correlation Zcd				
Frequência das Medições	Até 50 Hz (50 por seg.)				
Processamento de Dados	Filtro desvio/mediana				
Madiaña da Tampa	Osciladores Duplos com resolução				
	de 0.6nS				
Temperatura de Armazenamento	-50 a 75°C (58 a 167°F)				
Temperatura de Trabalho	-30 a 60°C (22 a 140°F)				
Faixa de Temperatura de Op. do Display	0 a 50°C (32 a 122°F)				
Umidade	0-99% s/condensação				
Complete de concerte	90-240 VAC/47-63 Hz, 16-28				
	VDC, 15 Watt				
Peso aproximado para embarque	34 lb (15 kg)				
Precisão	±0.5%				

Fonte: CAMERON (2016a)

Além do monitoramento mais efetivo, a medição poderá levantar uma nova curva de produtividade da usina em função da queda bruta (e atualização da curva colina). Podem ocorrer comportamentos diferentes do previsto em projeto e faixas de operação bem distintas que implique em mudar a filosofia de operação. A Análise da Produtibilidade da planta é o tema principal do P&D, entretanto não será tratado nesse trabalho.

Coholo 5		manifi	200200	nagaggáriag	do	Trandutor	Omnidia	ragional
l abera J	- E	specific	cacues	necessarias	uυ	Transdutor	Ommun	ecional
		· · · ·						

Frequência de operação	500 Hz
Faixa de ângulo do caminho	30 a 75 °C
Pressão máxima de operação	2,2 bar
Faixa de medição de temperatura	0 a 55 ℃
Temperatura de armazenamento	-15 a 60 °C
Material de construção	CPVC /PVC/ Resina Fenólica

Fonte: CAMERON (2016b)

A Figura 37 mostra os equipamentos utilizados.

Figura 37 - Transdutores omnidirecional do tipo "Eyeball" CaldonHydro ™ - CAMERON e Medidor de vazão ultrassônico modelo LEFM® 880 Series – CAMERON. Fonte: Acervo próprio

A instalação dos transdutores seguiu as recomendações do fabricante, que por sua vez utiliza como base a norma ASME PTC 18 (ASME, 2002) como referência na instalação.

3.7 INSTALAÇÃO DOS TRANSDUTORES

3.7.1 INSTALAÇÃO DOS TRANSDUTORES ULTRASSÔNICOS

Ao analisar os desenhos construtivos da turbina verificou-se que a entrada de água se dá por três baias (ver Figura 29). Portanto, é previsto que a vazão se divida em três, fazendo necessário a medição das parciais em cada uma das baias de engolimento da turbina.

Inicialmente procedeu-se à montagem dos andaimes para instalação, e a instalação da instrumentação e infraestrutura referente à seção central da adução da UG 09, denominada Baia B.

Essa etapa, realizada em abril de 2016, contou com a participação do especialista Eng. *Robert H. Beede*, consultor da empresa *Flowmeter Services* (EUA) – que possui vasta experiência no campo de medição de vazão por ultrassom- que realizou as medições necessárias e marcação das primeiras elevações dos transdutores para orientar a instalação.

Após o encerramento da instalação na Baia B, optou-se por instalar na seção direita e esquerda a montante da adução da UG 09, denominadas respectivamente, Baia C e Baia A.

A Figura 36 mostra um esquema dos pontos de instalação dos transdutores.

Figura 38 - Esquema das instalações de 8 e 18 caminhos ultrassônicos. Fonte: Elaboração própria

Considerando que os trechos de instalação dos transdutores são curvados curvas desde os pontos mais próximos às comportas, utiliza-se métodos de integração Gauss-Legendre para selecionar os parâmetros de correlação para a determinação das elevações dos transdutores.

Avaliando-se as 3 seções das Baias de adução, verifica-se que normalmente a Baia A possui escoamento mais turbulento, diferenciado, sendo necessária uma avaliação mais elaborada da vazão nessa seção. Escolheu-se então a Baia A para receber a instalação de 18 caminhos ultrassônicos (36 transdutores). A partir desta instalação foi feita análise que permitiu configurar 8 caminhos ultrassônicos nas 3 Baias, mantendo-se a precisão das medições.

A Figura 39 mostra os sistemas de medição de vazão instalados, sendo posicionados da esquerda para a direita: Baia B, Baia A e Baia C. As Figuras 39 a 41 mostram os transdutores instalados nas três baias

Figura 39 – Medidores de vazão instalados, em fase de acabamento. Fonte: Acervo próprio

Para a instalação, foram utilizados andaimes modulares, possibilitando mobilidade entre os pontos de instalação

Figura 40 – Transdutores já instalados na Baia A (36 transdutores). Fonte: Acervo próprio

Figura 41 - Transdutores já instalados na Baia B (16 transdutores). Fonte: Acervo próprio

Figura 42 - Transdutores já instalados na Baia C (16 transdutores). Fonte: Acervo próprio

Finalizada a instalação dos transdutores, realizou-se a inicialização do sistema descrita no Capítulo 4.

4 RESULTADOS

4.1 COMISSIONAMENTO E VALIDAÇÃO DOS SINAIS ACÚSTICOS, VELOCIDADE E VAZÃO

Como apresentado no item 3.1, e pela característica física da turbina - adução com caixa semi-espiral em três baias - foram instalados três sistemas de medição. A configuração final é disposta a seguir:

- BAIA A: Foram instalados 36 transdutores, divididos em 18 caminhos acústicos, distribuídos em 9 planos perpendiculares a seção da baia (ver Figura 40). Cada um desse transdutores é conectado ao sistema de medição utilizando cabos coaxiais, protegidos por canaletas de PVC, fixadas no concreto das paredes internas da baia. O alinhamento foi realizado antes do enchimento da adutora, na mesma ocasião que foram levantadas as informações "AS-BUILT".

- BAIA B: Foram instalados 16 transdutores, divididos em 8 caminhos acústicos, distribuídos em 4 planos perpendiculares a seção da baia (ver Figura 41). Cada um desse transdutores é conectado ao sistema de medição utilizando cabos coaxiais, protegidos por canaletas de PVC, fixadas no concreto das paredes internas da baia. O alinhamento foi realizado antes do enchimento da adutora, na mesma ocasião que foram levantadas as informações "AS-BUILT".

- BAIA C: Foram instalados 16 transdutores, divididos em 8 caminhos acústicos, distribuídos em 4 planos perpendiculares a seção da baia (ver Figura 42). Cada um desse transdutores é conectado ao sistema de medição utilizando cabos coaxiais, protegidos por canaletas de PVC, fixadas no concreto das paredes internas da baia. O alinhamento foi realizado antes do enchimento da adutora, na mesma ocasião que foram levantadas as informações "AS-BUILT".

Estando todos os transdutores conectados no sistema de medição de vazão e com a adutora pressurizada com água iniciou-se o comissionamento. O processo de comissionamento consiste nas seguintes avaliações:

- Verificação da forma de onda: Com auxílio de um osciloscópio verificou-se a forma de onda recebida por cada um dos transdutores (ver Figura 43).

Figura 43 - Forma de onda capturada na tela do osciloscópio Fonte: Acervo próprio

Validado todas as formas de onda dos transdutores iniciou-se a avaliação dos sinais já com o auxílio das interfaces do próprio sistema de medição de vazão.

- Verificou-se, conforme instruído pelo manual de operação do equipamento as seguintes grandezas dos sinais:

<u>GANHOS</u>: Avaliação do ganho necessário para amplificar o sinal. Para as condições do escoamento o fabricante recomendou que o ganho estivesse entre 30 e 45 dB.

<u>SNR</u>: Avaliação da relação entre o sinal e ruído. O fabricante recomenda que o SNR seja maior que 20%, sendo o ideal estar próximo de 100% (garantindo um sinal "limpo").

<u>REJEIÇÃO</u>: Avaliação do percentual de sinal rejeitado, principalmente pelo baixo SNR. O fabricante recomenda que a operação seja validada com rejeição menor que 5%.

A Figura 44 apresenta a tela com a visualização dos diagnósticos dos caminhos conectados ao sistema de medição de vazão.

	MAIN	DATA	н	IEALTH	CONFIG	URATION			
Overview	Path Diagnostic Data								
Both Disgnastic		Path 1	Path 2	Path 3	Path 4	Path 5	Path 6	Path 7	Path 8
Path Diagnostic	TDown (ns)	5057993.5	5055337.5	5008622.0	5007011.0	4976111.0	4966850.0	4937531.0	4921193.0
Path Calculated	DeltaT (ns)	4404.4	4195.1	3207.6	2366.9	3450.6	3099.1	2667.2	1658.4
	Reject (%)	0	0	0	0	0	0	0	0
	SNR Up	93	93	92	94	90	92	88	89
	SNR Dn	83	87	92	88	84	93	94	91
	Gain Up (dB)	31.5	31.7	31.4	31.1	29.7	29.5	30.1	30.8
	Gain Dn (dB)	29.3	29.8	30.4	30.1	31.9	31.1	31.1	31.0
	Status	Normal							
	Data Quality States (Path Events No Signal Low SNR High Gain Bad Waveform Bad DeltaT Unstable DeltaT Unstable Tdown								

CAMERON

Figura 44 - Tela de diagnóstico dos caminhos acústicos Fonte: Acervo próprio

Todos os caminhos - 18 da Baia A, 8 da Baia B e 8 da Baia C - tiveram os sinais validados conforme orientações de comissionamento do sistema.

4.2 RESULTADOS DA COMPARAÇÃO ENTRE AS CONFIGURAÇÕES - 18 VERSUS 8 CAMINHOS ACÚSTICOS

Como explicado em capítulos anteriores para uma turbina do tipo Kaplan Vertical, com Caixa Semi Espiral, a vazão é dividida em Baias. Essa disposição permite uma melhor distribuição do fluxo para o equilíbrio da energia cinética, devido a grande massa de água aduzida.

Portanto, também considerando o custo de implementação do sistema de medição de vazão como um todo - eletrônica e transdutores - optou-se pela instalação de 18 caminhos somente na Baia A - selecionada com base no item 2.3.1. A sistemática da análise seguiu o disposto a seguir:

- Cada sistema de medição de vazão utilizado suporta a entrada de 16 transdutores acústicos (ver tabela 4);

- Utilizamos os três sistemas de medição disponíveis (como disposto na Figura 39) para a coleta das informações dos 18 caminhos acústicos na Baia A;

- Dessa forma, a distribuição temporária dos transdutores se deu da seguinte maneira:

SISTEMA DE MEDIÇÃO 1: CAMINHOS 1,3,5,7,10,12,14 e 16; SISTEMA DE MEDIÇÃO 2: CAMINHOS 2,4,6,8,11,13,15 e 17; SISTEMA DE MEDIÇÃO 3: CAMINHOS 9 e 18.

As Figuras 45 a 47 apresentam as telas de cálculos dos sistemas de medição de vazão para os caminhos da Baia A.

ł

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

	MAIN	DATA	-	IEALTH	CONFIG	URATION			_
Overview	Path Calculated Data								
Path Diagnostic		Path 1	Path 2	Path 3	Path 4	Path 5	Path 6	Path 7	Path 8
atribiagnostic	VOS	1484.9	1475.3	1485.0	1483.4	1482.6	1482.9	1481.7	1482.7
Path Calculated	Velocity	2.242	2.292	1.880	1.425	1.777	1.717	1.525	0.981
	Vnorm	2.5920	2.6521	2.1596	1.6206	2.0404	1.9597	1.7621	1.1428
	Turbulence Intensity (%)	1.7	2.4	2.2	4.7	3.0	3.1	3.3	11.3
	Impedance Up+	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0
	Impedance Up-	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0
	Impedance Dn+	200.0	200.0	200.0	200.0	200.0	200.0	200.0	20.2
	Impedance Dn-	200.0	200.0	200.0	191.1	200.0	200.0	200.0	23.2
	Status	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
	Data Quality States (Path Eve Impedance Velocity Outlier Calculation Iteration	nts)	ł	ł	ł	ł	ł	ł	ł

Figura 45 - Tela de cálculo para o sistema de medição 1

Fonte: Acervo próprio

CAMERON	
---------	--

	MAIN	DATA	ł	IEALTH	CONFIG	URATION			
Overview	Path Calculated Data								
Path Diagnostic		Path 1	Path 2	Path 3	Path 4	Path 5	Path 6	Path 7	Path 8
	VOS	1484.2	1481.9	1482.2	1482.3	1481.7	1483.1	1482.0	1483.4
Path Calculated	Velocity	2.034	2.250	2.158	1.830	1.718	1.793	1.497	1.333
	Vnorm	2.4125	2.6543	2.5455	2.1421	2.0114	2.1040	1.7747	1.5940
	Turbulence Intensity (%)	3.9	1.5	2.5	3.2	5.0	2.3	4.0	5.6
	Impedance Up+	200.0	103.2	200.0	200.0	200.0	200.0	200.0	200.0
	Impedance Up-	200.0	94.9	200.0	200.0	200.0	200.0	200.0	200.0
	Impedance Dn+	200.0	200.0	200.0	200.0	200.0	80.9	200.0	200.0
	Impedance Dn-	200.0	200.0	200.0	200.0	200.0	72.6	200.0	200.0
	Status	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
	Data Quality States (Path Events	<u>5)</u>							
	Impedance								
	Velocity Outlier								
	Calculation								
	Iteration								
	vos								

Figura 46 - Tela de cálculo para o sistema de medição 2 Fonte: Acervo próprio

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

	MAIN	DATA			CONFIG	IRATION			
	MAIN	DAIA		CALIN	CONFIGU	JRATION			
Overview	Path Calculated Data								
Path Diagnostic		Path 1	Path 2	Path 3	Path 4	Path 5	Path 6	Path 7	Path 8
	VOS	1481.7	1482.3	0.0	0.0	0.0	0.0	0.0	0.0
Path Calculated	Velocity	0.743	0.413	0.000	0.000	0.000	0.000	0.000	0.000
	Vnorm	-0.0000	1.0276	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Turbulence Intensity (%)	12.3	24.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
	Impedance Up+	200.0	200.0	0.0	0.0	0.0	0.0	0.0	0.0
	Impedance Up-	200.0	200.0	0.0	0.0	0.0	0.0	0.0	0.0
	Impedance Dn+	200.0	200.0	0.0	0.0	0.0	0.0	0.0	0.0
	Impedance Dn-	200.0	200.0	0.0	0.0	0.0	0.0	0.0	0.0
	Status	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
	Data Quality States (Path Events	<u>s)</u>							
	Impedance								
	Velocity Outlier								
	Calculation								
	Iteration								
	VOS								

CAMERON

Figura 47 - Tela de cálculo para o sistema de medição 3 Fonte: Acervo próprio

Através da interface de comunicação dos sistemas de medição de vazão também foi possível salvar as informações de diagnóstico e cálculo em um arquivo tipo "CSV", com informações gravadas a cada 3 segundos. Os arquivos foram salvos para diferentes patamares de potência da Unidade Geradora, consequentemente com diferentes patamares de vazão.

A Tabela 6 apresenta para os valores de velocidade obtidos para os 18 caminhos da Baia A, no patamar de 100 MW de potência da Unidade Geradora.

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Caminho	Configuração - 18 ca	aminhos	Configuração - 8 caminhos			
	Velocidade [m/s]	Peso	Velocidade [m/s]	Peso		
1	2,086	0,020				
2	2,241	0,045	2,241	0,087		
3	2,258	0,065				
4	2,299	0,078	2,299	0,163		
5	2,163	0,083				
6	1,874	0,078	1,874	0,163		
7	1,836	0,065				
8	1,404	0,045	1,404	0,087		
9	0,750	0,020				
10	1,688	0,020				
11	1,772	0,045	1,772	0,087		
12	1,783	0,065				
13	1,709	0,078	1,709	0,163		
14	1,530	0,083				
15	1,491	0,078	1,491	0,163		
16	1,368	0,065				
17	0,964	0,045	0,964	0,087		
18	0,338	0,020				
Q Total [m ³ /s]	172,304		174,	026		
Desvio [%]		1,0	00			
Fator de Medição		0,990				

Tabela 6 – Avaliação	de medições	100MW -	Baia A.
----------------------	-------------	---------	---------

Fonte: Elaboração própria

A tabela 6 apresenta as velocidades em cada caminho quando mantido as conexões dos 18 caminhos nos sistemas de medição de vazão e quando mantendo conectados somente 8 caminhos, para o patamar de potência da UG de 100 MW . A distribuição física dos caminhos pode ser visualizada na Figura40. A Área de Cobertura corresponde ao percentual da seção transversal da Baia A monitorada para o levantamento do Perfil de Velocidades. Os coeficientes de ponderação são explicados pela Equação 21.

A Figura 48 apresenta a comparação do Perfil de Velocidades para as duas configurações, sendo no caso dos 18 caminhos acústicos a distribuição em 9 planos e para 8 caminhos acústicos a distribuição para 4 planos.

Perfil de Velocidade 18 x 8 caminhos - 100 MW

Outros patamares de potência foram avaliados e um resumo do fator de medição pode ser visto na Tabela 7, e uma distribuição gráfica na Figura 47.

Potência da UG [MW]	Fator de correção 8 caminhos
35	0,987
45	0,989
58	0,988
77	0,987
100	0,990
Fator de Medição médio	0,988

Tabela 7 - Avaliação de medições para outros patamares de potência - Baia A.

Fonte: Elaboração própria

Fator de Medição - Bay A

Figura 49 - Fator de Medição Médio - Baia A

4.3 CÁLCULO DAS INCERTEZAS DA MEDIÇÃO DE VAZÃO

Conforme apresentado na seção 3.4, as incertezas foram divididas em dois elementos, sendo um ligado ao processo de instalação, que considera as ferramentas de medição utilizadas e características físicas e reais da edificação, e outro elemento ligado as características dos equipamentos utilizados para a medição de vazão e velocidade.

Com o foco em avaliar as diferenças quanto a exatidão da medição para as configurações de 18 e 8 caminhos acústicos, e considerando o disposto no item 4.2, a avaliação da incerteza foi concertada somente na Baia A.

As Tabelas de 8 a 11 apresentam, de forma detalhada, os valores utilizados para o cálculo dos erros do processo.

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Tabela 8 – Tabela de Cálculo da Incerteza da Área da Seção de Medição.

CÁLCULO DA INCERTEZA - ÁREA DA SEÇÃO DE MEDIÇÃO								
PASSO 1 - INCERTEZA DA GEOMETRIA DA SEÇÃO								
	mm	m	m2	%				
Altura da Seção - NOMINAL	14110	14,110	-	-				
Largura da Seção - NOMINAL	6900	6,900	-	-				
Incerteza do Instrumento de medição - TRENA DE FIBRA DE VIDRO (mm -1.000 m)	14	0,014	-	-				
Área da Seção - NOMINAL	-	-	97,359	-				
Área da Seção - MÁXIMA	-	-	97,656	-				
Delta	-	-	0,297	-				
INCERTEZA NOMINAL DA GEOMETRIA DA SEÇÃO	-	-		0,3047				
PASSO 2 - INCERTEZA DA ALT	PASSO 2 - INCERTEZA DA ALTURA - BAIA "A"							
Máxima Altura da Seção	13890	13,890	-	-				
Mínima Altura da Seção	14830	14,830	-	-				
Incerteza da Altura devido a inclinação	-	0,1880	-	-				
Incerteza da área devido à inclinação	-	-	0,432	-				
Incerteza da área devido à inclinação	-	-	-	0,4441				
PASSO 3 - INCERTEZA DEVIDO A ENCRUSTRAÇÃO DO MEXILHÃO DOURADO								
Espessura da encrustração - Mexilhão - NOMINAL	40,0000	0,0400	-	-				
Variação da espessura da encrustração - Mexilhão	20,0000	0,0200	-	-				
Área da Seção - NOMINAL	-	-	97,3590	-				
Área da Seção - MÍNIMA	-	-	96,5202	-				
Delta	-	-	0,8388	-				
INCERTEZA DA ÁREA DEVIDO A ENCRUSTRAÇÃO	-	-	-	0,8616				
INCERTEZA TOTAL - ÁREA DA SEÇÃO DE MEDIÇÃO	-	-	-	1,0161				

Tabela 9 - Tabela de Cálculo da Incerteza do Caminho Acústico.

CÁLCULO DA INCERTEZA - CAMINHO ACÚSTICO					
Comprimento do Caminho Acústico - NOMINAL	-	7,5150	-	-	
Incerteza do Instrumento de medição - TRENA LASER	5,0000	0,0050	-	-	
INCERTEZA DO CAMINHO ACÚSTICO	-	-	-	0,0665	

Γ

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Tabela 10 – Tabela de Cálculo da Incerteza do Caminho Acústico.

CÁLCULO DA INCERTEZA - ÂNGULO DE MEDIÇÃO ENTRE OS TRANSDUTORES					
Distância Axial - NOMINAL	-	2,7150	-	-	
Comprimento do Caminho Acustico - NOMINAL	-	7,5150	-	-	
Ângulo de medição (Caminho) - NOMINAL	-	68,8213	-	-	
Cosseno do ângulo (Caminho) - NOMINAL	-	0,3613	-	-	
Incerteza do Instrumento de medição - TRENA LASER	5,0000	0,0050	-	-	
Distância Axial - Minimo	-	2,7100	-	-	
Comprimento do Caminho Acustico - Máximo	-	7,5200	-	-	
Ângulo de medição (Caminho)	-	68,8769	-	-	
Cosseno do ângulo (Caminho)	-	0,3604	-	-	
INCERTEZA DO ÂNGULO DE MEDIÇÃO ENTRE OS TRANSDUTORES	-	-	-	0,0808	

CÁLCULO DA INCERTEZA - VELOCIDADE DO SOM							
<u>Grandeza Avaliada</u>	Configuração 18 Caminhos	Diferença	Diferença	Configuração 8 Caminhos	Diferença	Diferença	
	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]	
Velocidade do SOM (VOS) - NOMINAL	1480,00	-	-	1480,00	-	-	
Velocidade do SOM - Caminho 1	1484,90	4,90	0,33	-	-	-	
Velocidade do SOM - Caminho 2	1484,20	4,20	0,28	1484,20	4,20	0,28	
Velocidade do SOM - Caminho 3	1475,30	-4,70	-0,32	-	-	-	
Velocidade do SOM - Caminho 4	1481,90	1,90	0,13	1481,90	1,90	0,13	
Velocidade do SOM - Caminho 5	1485,00	5,00	0,34	-	-	-	
Velocidade do SOM - Caminho 6	1482,20	2,20	0,15	1482,20	2,20	0,15	

Tabela 11 - Tabela de Cálculo da Incerteza da Velocidade do Som.

Tabela 10 - Tabela de Cálculo da Incerteza da Velocidade do Som. cont.

CÁLCULO DA INCERTEZA - VELOCIDADE DO SOM						
<u>Grandeza Avaliada</u>	Configuração 18 Caminhos	Diferença	Diferença	Configuração 8 Caminhos	Diferença	Diferença
	[m/s]	[m/s]	[%]	[m/s]	[m/s]	[%]
Velocidade do SOM - Caminho 7	1483,40	3,40	0,23	-	-	-
Velocidade do SOM - Caminho 8	1482,30	2,30	0,16	1482,30	2,30	0,16
Velocidade do SOM - Caminho 9	1481,70	1,70	0,11	-	-	-

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Velocidade do SOM - Caminho 10	1482,60	2,60	0,18	-	-	-
Velocidade do SOM - Caminho 11	1481,70	1,70	0,11	1481,70	1,70	0,11
Velocidade do SOM - Caminho 12	1482,90	2,90	0,20	-	-	-
Velocidade do SOM - Caminho 13	1483,10	3,10	0,21	1483,10	3,10	0,21
Velocidade do SOM - Caminho 14	1481,70	1,70	0,11	-	-	-
Velocidade do SOM - Caminho 15	1482,00	2,00	0,14	1482,00	2,00	0,14
Velocidade do SOM - Caminho 16	1482,70	2,70	0,18	-	-	-
Velocidade do SOM - Caminho 17	1483,40	3,40	0,23	1483,40	3,40	0,23
Velocidade do SOM - Caminho 18	1482,30	2,30	0,16	-	-	-
Incerteza média - RMS			0,2111	-	-	0,1842

Considerando os valores apresentados nas tabelas anteriores e as informações técnicas dos equipamentos, informadas pelo fabricante, chegamos na tabela 12 que apresenta as incertezas, considerando as duas configurações do sistema na Baia A - 18 caminhos e 8 caminhos acústicos.

Fontes de Erros	Incerteza Configuração 18 Caminhos	Incerteza Configuração 8 Caminhos	
	[%]	[%]	
Medição do Tempo de Trânsito	0,0500	0,0500	
Cálculo e Integração	0,1500	0,1500	
Área da Seção de Medição	1,0161	1,0161	
Comprimento do Caminho Acústico	0,0665	0,0665	
Ângulo entre os Transdutores Acústicos	0,0808	0,0808	
Velocidade do Som	0,2111	0,1842	
Diferença da Medição	-	0,9995	
Incerteza Total	1,5744	2,5470	
Incerteza média - RMS	0,7163	1,0413	

Tabela 12 - Tabela de Cálculo da Incerteza da Global da Medição.

4.4 RESULTADOS DA COMPARAÇÃO ENTRE AS CURVAS OPERACIONAIS DA TURBINA

Uma das formas de verificação da consistência das medições de vazão e outros parâmetros operacionais é a comparação entre os valores obtidos com os esperados pelo projeto construtivo da turbina.

Sendo a turbina da UHE PORTO PRIMAVERA uma turbina axial, do tipo Kaplan, a forma mais adequada de se avaliar a performance da máquina é promovendo ensaios com variação de conjugação - ensaios do tipo ON CAM (conjugação automática) e OFF CAM (variação manual de aberturas da pá do rotor e distribuidor). Os procedimentos do ensaio podem ser avaliados no Apêndice C.

O método mais comum existente para a medição de vazão turbinada é o método Winter-Kennedy, apresentado no item 2.1.1. Entretanto, na UHE PORTO PRIMAVERA existe uma particularidade que é a incrustação da adutora por organismos conhecidos como Mexilhão Dourado - um molusco originário da Ásia que é considerado uma praga em muitos aproveitamentos hidrelétricos das regiões Sul e Sudeste do Brasil. (Figura 50). Estes moluscos obstruíram as tomadas de pressão disponíveis na máquina, impedindo assim a medição da vazão pelo método Winter-Kennedy.

Figura 50 - Incrustações do Mexilhão Dourado no interior da Caixa Semi-Espiral

Para fins comparativos, utilizaremos as informações apresentadas no item 3.2.2.1 dados do SOSEm CESP - que se resumem como uma transcrição da curva de colina da turbina para diferentes condições de queda da turbina.

A Figura 51 apresenta a comparação entre as curvas operacionais - curvas que correlacionam a Vazão Turbinada e o Rendimento Hidráulico da Turbina - obtidas tanto com as informações extraídas do projeto da turbina, quanto as informações levantadas com a medição de vazão pelo método acústico já operante.

Figura 51 - Comparação entre curvas operacionais da turbina

5 ANÁLISE DOS RESULTADOS

A avaliação da instalação com 18 e 8 caminhos ultrassônicos direcionaram para um baixo desvio das medições de vazão entre as configurações. Com um fator de correção médio de 0,988 (Tabela 7), ou seja, com uma diferença média entre as medições de 1,22% é possível considerar segura a medição com o número reduzido de caminhos ultrassônicos, confrontando com sucesso a normatização para esse tipo de instalação (IEC 60041, 1991; ASME PTC 18, 1994).

Conforme resultado mostrado na Figura 48 (perfil de velocidades) é possível verificar que o pequeno desvio se dá pelos caminhos nas elevações inferiores, entretanto, o tipo de integração das velocidades (por Gauss-Jacobi) permite que a faixa não monitorada seja redistribuída entre os outros caminhos, favorecendo assim um equilíbrio das velocidades e a similaridade das medições com 8 e 18 caminhos.

A partir de uma vazão de alta precisão foi possível apresentar resultados de rendimento da turbina calculados (Figura 51), permitindo uma avaliação das reais condições operacionais da turbina e também as possíveis alterações com intuito de maximizar o rendimento da unidade geradora.

Na seção4.3 os cálculos da incerteza levaram em conta principalmente as características da instalação dos transdutores acústicos - geometria e posição. Avaliado esses pontos o restante dos erros são oriundos do próprio processo de cálculo das velocidades e vazão - já inseridos na eletrônica do sistema de medição de vazão e nas lógicas matemáticas. Lembrando que o método baseia os cálculos de acordo com a propagação das ondas acústicas no fluído, fazendo-se importante conhecer os desvios da velocidade do som no ambiente monitorado, o que foi previsto nos cálculos da incerteza. Sendo assim, encontrou-se uma diferença de \pm 0,7163% para \pm 1,0413% de incerteza entre as medições com a configuração de 18 e 8 caminhos, respectivamente. Essa variação de \pm 0,325% da incertezas são atribuídas principalmente pelos erros acumulados na avaliação da velocidade do som e da vazão de água medida nas duas configurações, e se mantém satisfatória em comparação a outros métodos antes aplicados para o mesmo tipo de medição. Reforçando que para o caso específico da

UHE Porto Primavera a avaliação da vazão e feita por meio de tabelas extraídas de projeto (Tabela 3) e a medição pelo método Winter-Kennedy (utilizada no comissionamento da turbina) permanece inutilizado devido a problemas de obstrução permanente.

Considerando como um dos objetivos da avaliação da seção 4.2 é a viabilização da implementação de um sistema de medição de vazão com boa exatidão e com custos otimizados, concluímos em êxito. Para a implementação de um sistema com 18 caminhos acústicos nas três Baias teríamos um volume maior de transdutores e principalmente de processadores de sinal. No total foram utilizados 68 transdutores e 03 sistemas de medição de vazão, para 08 caminhos acústicos nas Baias B e C, e 18 caminhos acústicos na Baia A. Optando pela configuração final teremos as Baias A, B e C com 08 caminhos acústicos cada e necessitando de somente 03 sistemas de medição de vazão. Considerando somente os principais dispositivos listados anteriormente, a aplicação de 08 caminhos acústicos por Baia ofereceu uma redução nos custos de aproximadamente 46%.

6 CONCLUSÕES

A aplicação do método de medição de vazão turbinada, em turbinas Kaplan, utilizando o método acústico por tempo de trânsito, apresentou além de bons resultados pela qualidade dos sinais também algumas constatações sobre as características operacionais da máquina em relação ao projetado.

O planejamento energético do SIN é todo baseado nas informações operacionais das plantas, consequentemente das unidades geradoras. A falta de uma informação de vazão confiável direciona o status da planta para uma ineficiência "não-física", em muitos dos casos.

Em consequência, haverão unidades geradoras consumindo mais água que o necessário devido a erros de ajustes nos dispositivos de controle de entrada de água – distribuidor ou injetores. Os ajustes ideais serão possíveis somente com medições precisas da vazão turbinada.

A aplicação do método acústico por tempo de trânsito, em adutoras construídas em tubulações circulares já é conhecida pelas principais plantas de geração hidrelétrica no Brasil. Adutoras que possuem diâmetros de 3.000 a 10.500 mm possuem sistemas modernos de medição que podem proporcionar uma melhor gestão dos recursos hídricos empregados na geração de energia.

O maior desafio encontrado para a expansão da aplicação é o custo de manutenção do sistema de medição – eletrônica de processamento, transdutores, etc – que na maioria das vezes são produzidos fora do país. Entretanto, se avaliada a quantidade de benefícios adquiridos, como a possibilidade de aumentar a capacidade de geração da planta, o sistema torna-se economicamente viável para aplicação.

Atualmente não existe uma norma específica para o monitoramento de vazão turbinada em Aproveitamentos Hidrelétricos no Brasil. Existem algumas normativas e notas técnicas, publicadas pela Agência Nacional de Energia Elétrica (ANEEL) e Operador Nacional do Sistema (ONS), que tomam como base as principais normas técnicas citadas por esse trabalho – IEC 60041 e ASME PTC 18.

A IEC 60041 encontra-se em processo de revisão (com circulação prevista para meados de 2018) e terá o método acústico por tempo de trânsito listado como método primário, devido à grande evolução e contribuição tecnológica dos últimos anos.

A utilização de múltiplos caminhos acústicos tornou-se padrão no setor de óleo e gás, como medição de faturamento em poços de petróleo e gás, existindo normas específicas para a aplicação.

Espera-se que em pouco anos seja possível tornar comum o monitoramento da vazão turbinada pelas máquinas em AHEs, com uma exatidão satisfatória como a obtida neste estudo - aproximadamente 1,00%.

Atualmente os transdutores e sistemas de medição são importados, estando assim sujeitos a variação de câmbio e incidência de impostos de importação. Existem projetos avançados para a nacionalização da tecnologia, com previsão de entrada em circulação no inicio de 2018. Como mencionado nesse trabalho, também está previsto para 2018 a circulação da revisão da norma IEC 60041, que trará o método acústico por tempo de trânsito como primário em ensaios de aceitação de turbinas, naturalmente refletindo para primeira opção na implementação de sistemas de monitoramento de vazão turbinada de forma instantânea.

Assim, teremos melhorias nos estudos de planejamento energético, pelo conhecimento da real relação insumo-produto das hidrelétricas, e melhor gestão dos recursos hídricos da bacia, levando em conta os usos múltiplos nela inseridos.

6.1 SUGESTÕES PARA TRABALHOS FUTUROS

A fim de complementar o presente trabalho, sugere-se:

 Estudo da aplicação da metodologia em mais de uma unidade geradora, da mesma planta, buscando encontrar a diferença entre máquinas e o rendimento global desse Aproveitamento Hidrelétrico.

- Remodelagem do Sistema Elétrico Brasileiro utilizando informações mais precisas de medição de vazão nos Aproveitamentos Hidrelétricos, somados a outras técnicas - como

batimetrias de reservatórios, revisão de levantamentos topográficos, etc - com intuito de atualizar as condições de geração das plantas.

- Estudo para a avaliação de eventos hidráulicos, como Perdas de Carga localizadas e distribuídas e Cavitação, utilizando o a metodologia abordada nesse trabalho como ferramenta auxiliar para os cálculos, pela determinação precisa do Perfil de Velocidade do escoamento.

7 REFERÊNCIAS

ABNT. ABNT/ISO 12765, Medição De Vazão De Fluidos Em Condutos Fechados - Métodos Usando Medidor De Vazão Ultrassônico Por Tempo De Trânsito, ABNT, 2010.

ALHANATI, L.S. Conservação da massa – Equação de Continuidade. Disponível em: http://www.alfaconnection.pro.br/fisica/liquidos/teoremas-basicos-da-hidrodinamica/conservacao-da-massa-equacao-de-continuidade/#, Acesso em 10/10/2016

AMERICAN SOCIETY OF MECHANICAL ENGINEERS. ASME PTC 18: Hydraulic Turbines: Performance Test Codes. Nova Iorque, 1992.

ARAÚJO, A.F., JÚNIOR, A.M.S, SILVA,I.L, SILVA, J.A, HONÓRIO, R.F, RODRIGUES, R.L. E LEMOS, T.N. MEDIÇÃO DE VAZÃO: CONCEITOS E MÉTODOS DE MEDIDAS. UEMG. Disponível em: http://jomar.pro.br/wp/wp-content/uploads/2015/09/Artigo-sobre-Medidores-de-Vaz%C3%A30.pdf. Acesso em 05/07/2016.

ARAÚJO, M.V. SISTEMAS DE MEDIDAS E INSTRUMENTAÇÃO. PARTE 3. Disponível em: http://docplayer.com.br/6841310-Sistemas-de-medidas-einstrumentacao.html, acesso em 10/12/16.

ASME. ASME PTC 18; Hydraulic Turbines and Pump-Turbines Performance Test Codes; American National Standard; 2002".

ASTM. ASTM E 1065- Standard Guide for Evaluating Characteristics of Ultrasonic Sarch Units, American National Standard, 1999.

BENETTI, A. D.; LANNA, A. E.; COBALCHINI, M. S. Metodologias para Determinação de Vazões Ecológicas em Rios. Revista Brasileira de Recursos Hídricos, Porto Alegre, v. 8, n. 2, p. 149-160, abr./jun. 2003.

BRASSIER, P. Débitmétrie par technique ultrasonore en milieu gazeux industriel, É. D. d. S. P. e. d. L'Ingenieur, Ed., Bordeaux: L'Université Bordeaux I, 2000.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

BROWN, G., AUGENSTEIN, D., E COUSINS, T. The relative merits of ultrasonic meters employing between two and eight paths. Proceedings of INTERNATIONAL SOUTH EAST HYDROCARBON FLOW MEASUREMENT WORKSHOP, 5. Kuala Lumpur, 2006.

BRUNETTI, Franco; Mecânica dos Fluídos. 2 ed. São Paulo. Pearson Prentice Hall, 2008

BURCH, T. L., e J. T. WALSH. "Ultrasonic flow measurement for unit testing and performance monitoring at low-head hydroelectric plants." Hydrovision France., 2000.

CAMERON. Hydro transducers datasheet. Disponível em: http://cameron.slb.com/-/media/cam/resources/2014/10/09/13/55/caldonhydro-transducers.ashx, Acesso em: 08/08/16.

CAMERON. LEFM 880 Technical datasheet. Disponível em: http://cameron.slb.com/-/media/cam/resources/2014/10/08/20/55/caldon-880.ashx, Acesso em: 08/08/16.

CESP. Criação do Sistema de Operação em Situação de Emergências (SOSEm) CESP. Disponível em: http://www.cesp.com.br/portalcesp/portal.nsf/V03.02/Operacao_Sosem?OpenDocument#, Acesso em 22/10/2016.

CESP. Desenhos técnicos de unidades geradoras. Acervo da UHE Eng. Sérgio Motta – Porto Primavera. 2014. Disponibilizado para reprodução em 08/2014.

CZAPLEWSKI, D.A., LLIC, B.R., ZALATUDINOV, M. Micromechanical Flow Sensor for Microfluidic Applications, Journal of Microelectromechanical Systems 4 ed., vol. 13, 2004, pp. 576-585.

DOERING, J. C.; GAWNE, K. D. Developing a traversing acoustic discharge measurement technique for the performance testing of low-head hydroelectric turbines. Canadian Journal of Civil Engineering, Toronto, v. 25, n. 4, p. 777-788, set. 1998.

DYNASONICS. Dynasonics ultrasonic flow meters, Website. Disponível em: https://loewener.dk/wp-content/files/5265 01 dynasonics uf dynasonics ub 02 0635.pdf. Acesso em:

content/files/5265_01_dynasonics_uf_dynasonics_ub_02_0635.pdf. Acesso em: 20/02/2015.

FERREIRA, A.L.A.S., TECNOLOGIA ULTRASSÔNICA NA MEDIÇÃO DE VAZÃO EM ESCOAMENTOS INCOMPRESSÍVEIS, Tese apresentada ao Programa de Pósgraduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Mecânica, PUC RJ, Rio de Janeiro, 2010, orientador: Alcir de Faro Orlando.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

FRANKLIN D., BAKER D. e RUSHMER, R. "Pulsed Ultrasonic Transit Time Flowmeter," Bio-Medical Electronic, vol. 9, n. 1. 2007.

GE. PT878 Flowmeter user manual. Consulta em 10/10/2016.

GHASEMI, N. Improving Ultrasound Excitation Systems Using Flexible Power Supply with adjustable voltage and frequency to Drive Piezoelectric Transducer, Tese ed., Queensland: Queensland University of Technology, 2012.

http://www.olympus-ims.com/en/.downloads/download/?file=285213010&fl=en_US, acesso em 12/12/2016.

IEC - INTERNATIONAL ENGINEERING CONSORTIUM. IEC 60041: Field acceptance tests to determine the hydraulic performance of hydraulic turbines, storage pumps and pump-turbines. Genebra, Switzerland 1991.

IEC PWI 87-4, Ultrasonics- Piezoceramic transducers- Characteristics and measurements methods; ed 1.0; 2001.

KOIKE, Y. K. H., WADA, S., TAISHI, T., ARITOMI, M. e MORIKOI, M., "Optimum Distribution of Cavitation Bubbles for a flow rate measurement using Ultrasonic Doppler Method," Ultrasonic, vol. 2, 2003.

KOWALSKI, E. L., e S. C. KOWALSKI. "Revisão sobre os métodos de controle do mexilhão dourado em tubulações." Revista Produção. ISSN 1676 - 1901 / Vol. 8/ Num. 2/ Julho/2008 de 2008.

KROHNE. UFM 3030 Technical Data Sheet, Krohne, 2005.

LARREATEGUI, A., e J. T. WALSH. "Improving the accuracy on the efficiency measurements in the acceptance tests of hydraulic machines: a nice lesson for manufacturers, utilities, engineers and independent testers." Em: International Conference on Hydraulic Efficiency and Measurements. Itajubá, 2014.

LEVESQUE, J. M. "Measuring flow with pressure-time, current meter methods." Hydro Review, 1994: 102-109.

MARTIN, C. C. Ultrassom, 1 ed., São Paulo, SP: Abendi, 2012.

MARTINS, D. M. F.; CHAGAS, R. M.; NETO, J. O. M.; JÚNIOR, A. V. M. Impactos da construção da usina hidrelétrica de Sobradinho no regime de vazões no Baixo São Francisco. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 15, n. 9, p. 1054-1061, agosto 2011.

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

MATHIAS, R. B. "Influência do perfil de velocidade do escoamento sobre a medição ultrassônica de vazão por tempo de trânsito." Dissertação de mestrado. Programa de Pós-Graduação em Engenharia Mecânica. Universidade Federal do Espírito Santo. 98 f., 2010.

MOORE, P. I.; BROWN, G. J.; STIMPSON, B. P. Ultrasonic transit-time flowmeters modeled with theoretical velocity profiles: methodology. Measurement Science and Technology. Bristol, UK, v. 11, n. 11, 2000.

OLYMPUS Panametrics- NDT; Ultrasonic transducer Technical Notes. Disponível em:

Operador Nacional do Sistema Elétrico – ONS. Disponível em http://www.ons.org.br Acesso em 18 de março de 2015.

PEIXOTO, L. S.; MAUAD, F. F. Estudo de Conflitos de Usos Múltiplos da Água Utilizando Simulação Computacional. Revista Brasileira de Recursos Hídricos, Porto Alegre, v. 8, n. 4, p. 209-215, dez. 2003.

PEREIRA, M. Flow Meters: Part 1, vol. 1, IEEE, 2009, pp. 18-26.

PNCDA. Técnicas de operação em sistemas de abastecimento de água – Macromedição. MINISTÉRIO DAS CIDADES, Volume 1, 2007,

RABALAIS, R. A. "Ultrasonic Flow Measurement: Technology and Applications in Process and Multiple Vent Stream Situations." Proceedings of the Texas A&M Symposium., 2002

RAMOS, R. Desenvolvimento de medidor de vazão de gás por ultrassom. Universidade Federal do Espírito Santo, PPGMEC-Programa de Pós-Graduação em Engenharia Mecânica. 2006.

RENNOSONIC TECNOLOGIA LTDA. Medição de vazão. 2009. Disponível em: http://http://www.renno.com.br/rennosonic/Pagina.do. Acesso em: 16 ago. 2016.

SAMPAIO, L. M. B.; RAMOS, F. S.; SAMPAIO, Y. Privatização e Eficiência das Usinas Hidrelétricas Brasileiras. Economia Aplicada, Ribeirão Preto, v. 9, n. 3, p. 57-63, set. 2005.

SAMPAIO, P. A. B, J. L. H. FACCINI, e J. SU. "Numerical simulation of an ultrasonic flowmeter for measurement of two-phase gas-liquid stratified flow." Proceedings of 19th International Congress of Mechanical Engineering. ABCM, Brasília. Brasil, 2007.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

SANTOS, Cintia Pinheiro dos. Desenvolvimento de metodologia para controle das larvas de Limnoperna fortunei com o uso de radiação ultravioleta e seus impactos sobre Microscystis aeruginosa potencialmente presentes na água superficial. 2011. 83. Tese (Doutorado em Ecologia). Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2011.

SOUZA, Z. E BORTONI, E.C. 2006. Instrumentação para sistemas energéticos e industriais. Ed. do autor, Itajubá-MG, 2006.

SOUZA, Z.; SANTOS, A. H. M.; BORTONI, E. C. Centrais Hidrelétricas: Implantação e Comissionamento. 2. ed. Rio de Janeiro: Interciência, 2009. p. 38-43.

YODER, J., Ultrasonic flow meters in the energy measurement spotlight, Pipeline & Gas Journal, 2009.

APÊNDICE A

FUNDAMENTO TEÓRICO DE PROPAGAÇÃO DE ONDAS SONORAS EM FLUIDOS

O som é uma onda mecânica que propaga em meios sólidos, líquidos ou gasosos e as ondas ultrassônicas são ondas sonoras com frequência acima de 20 [kHz] estendendo pelo espectro de frequência, ver Figura 52 (MARTIN, 2012). Embora a onda ultrassônica se comporte de forma similar ao som audível, eles têm um comprimento de onda menor. Isso significa que podem ser refletidos em pequenas superfícies tais como os defeitos em materiais sob teste.

Figura 52 - Espectro acústico de frequência Fonte: MARTIN, 2012

7.1.1 VELOCIDADE DE PROPAGAÇÃO

A velocidade de propagação da onda em um meio elástico sob uma determinada temperatura e pressão constante é determinada por:

$$c = \frac{\lambda}{T} = \lambda.f$$
²²

Onde:

c: velocidade de propagação [m/s];

 λ : comprimento de onda [m];

T: período da onda [s].

A velocidade do som é função da densidade do meio e varia com a pressão e temperatura. No ar, 20[°C], é igual aproximadamente a 343 [m/s] e, na água, a 20 [°C] é de, aproximadamente, 1495 [m/s]. A Equação geral para velocidade de propagação (c) de uma onda sonora, em meio gasoso, líquido ou sólido, para processo isentrópico é:

$$c = \sqrt{\frac{\partial P}{\partial \rho}\Big|_{s}}$$
23

Onde:

P: pressão [kg/m.s];

 ρ : massa especifica [kg/m³];

 $c = \sqrt{\frac{\partial P}{\partial \rho}} \Big|_{s}$

s: entropia

7.1.2 TIPOS DE PROPAGAÇÕES

Segundo MARTIN (2012) podemos classificar as ondas sonoras da seguinte forma:

- Ondas longitudinais: uma onda de compressão que as partículas se movem no mesmo sentido da propagação da onda, Figura 53.
- Ondas transversais: também conhecida como onda de cisalhamento, a direção de deslocamento das partículas é perpendicular à sua propagação, Figura 53.

- Ondas superficiais ou de Reyleingh: propaga-se na superfície limite (interface) entre um meio sólido e o ar, estando à profundidade de penetração limitada a um comprimento de onda.
- Onda de Lamb: quando uma onda superficial é introduzida em um material que tenha espessura igual ou menor a três comprimentos de onda, é gerado um tipo vibracional complexo que se propaga paralelamente à superfície, conhecidas como onda de chapas ou de Lamb.

Direção do movimento da particula

Figura 53 - Direção de propagação Fonte: adaptado de MARTIN (2012)

Impedância acústica

Segundo MARTIN (2012), a impedância acústica é a resistência oferecida à propagação de uma onda ultrassônica em um meio de propagação. Cada material tem diferentes impedâncias acústicas, água possui 1,480x10³ [kg/m².s] enquanto o ar possui 430x10³ [kg/m².s]. A impedância acústica pode ser obtida por meio de cálculos:

$$Z = \rho . v$$

24

Onde:

Z: representa a impedância [kg/m².s];

 ρ : densidade do material [kg/m³];

v: velocidade do som no meio [m/s].

7.1.3 PRESSÃO ACÚSTICA

A pressão acústica é quando o som se propaga no meio as partículas oscilam produzindo zonas de compressão e zonas de rarefação no meio. A amplitude dessa alternância de tensões em um meio é denotada de pressão acústica (MARTIN, 2012).

$$= Z.a$$
 25

Onde:

P: pressão acústica [kg/m.s];

Р

Z: impedância acústica [kg/m².s];

a: amplitude de vibração da partícula [m]

7.1.4 INTENSIDADE SONORA

A intensidade sonora é a relação entre a impedância acústica e a amplitude de vibração das partículas do meio (ASTM, 1999).

$$I = \frac{P^2}{2Z} = \frac{P \cdot a}{2}$$
²⁶

Onde:

I: intensidade sonora;

- P: pressão acústica [kg/m.s];
- Z: impedância acústica [kg/m².s];
- a: amplitude de vibração [m]

7.1.5 ATENUAÇÃO DO SOM

A redução da intensidade acústica causada pela resistência do meio para a transmissão de energia acústica é denominada atenuação do som (OLYMPUS, 2016). É análogo à perda de energia elétrica num fio em que há perda de propagação.

$$coef \ aten. = \frac{\Delta V_g}{2d}$$
²⁷

Onde:

coef aten : coeficiente de atenuação [dB/mm];

 ΔV_q : diferença de amplitude dos dois primeiros ecos por controle de ganho [dB];

d distância percorrida pelo som

As causas da atenuação do som são:

- Espalhamento de ondas ultrassônicas: está relacionada a perda por divergência do feixe causada pelo meio de propagação, se deve ao fato de que o meio onde as ondas se propagam não é absolutamente homogêneo dando origem ao ângulo de divergência do feixe.
- Absorção das ondas ultrassônicas: as ondas sonoras em alguns materiais são absorvidas pelo processo de histerese mecânica, fricção interna ou outros mecanismos de perda de energia.
- Perdas devido a rugosidade superficial: uma terceira causa de atenuação é a perda de transmissão do som devido a rugosidade da superfície.

• **Difração:** perdas causadas pelo fenômeno de difração.

APÊNDICE B

7.2 TRANSDUTORES ULTRASSÔNICOS

Transdutores são componentes que convertem um tipo de energia em outra. Os transdutores ultrassônicos transformam a energia elétrica de excitação em energia mecânica, na forma de som com frequências acima de 20[kHz]. Nessa faixa de frequência o ouvido humano não ouve caracterizando o ultrassom. Pelas características de muitos transdutores ultrassônicos, pelo efeito dual é possível transformar sinais acústicos ultrassônicos em sinais elétricos. Existem vários tipos de transdutores de ultrassom, dentre eles o piezoelétrico, magnéticos, capacitivo e eletromagnético. O mais utilizado é o transdutor piezoelétrico, devido a ampla faixa de frequência de operação, e possibilidade de operar em frequência de valores superiores a 10^6 hertz [MHz] (OLYMPUS, 2016).

Um material piezoelétrico é aquele que quando aplicado uma força mecânica resulta na geração de uma força eletromotriz e aplicando uma força eletromotriz nos terminais do componente transforma-se em energia mecânica acústica (MARTIN, 2012). O efeito piezoelétrico é entendido como a interação eletromecânica linear entre a força mecânica e o estado elétrico em materiais cristalinos.

O efeito piezoelétrico é um processo reversível em que os materiais exibem o efeito piezoelétrico direto (a geração interna de carga elétrica resultante de uma força mecânica aplicada) também exibem o efeito piezoelétrico reverso (a geração interna de uma tensão mecânica, resultante de um campo elétrico aplicado). Exemplos de materiais piezoelétricos utilizados na fabricação de transdutores são cristais e cerâmicas. Estes transdutores piezoelétricos são os mais empregados no campo de medição de vazão, ensaios não-destrutivos, medicina para aplicações com imagens de ultrassom, e outras (OLYMPUS, 2016).

Tanto para indústria como para a área médica, esses transdutores são indispensáveis. A vastidão de aplicação é o fator principal para o recorrente aprimoramento desses dispositivos gerando tecnologias mais aprimoradas e uma gama de componentes com diferentes características e aplicações.

7.2.1 COMPONENTES ESTRUTURAIS DO TRANSDUTOR

As propriedades acústicas do transdutor dependem fortemente da construção do transdutor. A Figura 54 Ilustra o modelo de um possível transdutor ultrassônico.

Figura 54 – Modelo de conFiguração de um transdutor piezoelétrico Fonte: adaptado de ABNT (2010).

Os elementos que definem a característica do transdutor são os seguintes (KOIKE ET AL, 2003): Elemento piezoeletrico (ou elemento ativo); camada de retaguarda (ou Backing); e camada de ajuste (ou *Wearplate*).

O elemento ativo, que é piezoelétrico, converte energia elétrica em energia ultrassônica. Os materiais mais utilizados são cerâmicos (sobretudo o PZT) que podem ser cortados em vários formatos e dimensões para produzir diferentes modos de ondas. Novos materiais, como

polímeros piezoelétricos e compósitos também estão sendo empregados para aplicações onde eles fornecem benefício para o transdutor e desempenho do sistema.

O backing é geralmente um material altamente atenuável e de alta densidade que é usado para controlar a vibração do transdutor. Esta camada é usada para dar suporte mecânico ao transdutor, para garantir máxima eficiência no acoplamento eletromecânico, e para impedir que haja reverberação, a qual consiste em um fenômeno de prolongamento de um som após o fim da emissão por parte de uma fonte emissora e é causada pela diferença entre a impedância acústica da cerâmica piezoelétrica e os meios que fazem contato com ela.

Características de um transdutor ultrassônico

Serão apresentadas as principais características dos transdutores (MARTIN, 2012; OLYMPUS, 2016; ASTM, 1999; GHASEMI, 2012).

- Frequência de ressonância (f_{res}): A frequência natural do sistema eletromecânico correspondente para o máximo valor da potência elétrica de entrada P_e ou para a máxima amplitude de deslocamento vibracional (ε). A frequência *f_{res}* depende da impedância elétrica de saída do gerador que alimenta o transdutor.
- Largura de Banda (BW): é a porção da resposta em frequência que está dentro de um dado limite. Neste contexto os limites usados são o nível -6 dB, como a medida do eco da resposta em frequência. A Equação usada para BW é:

$$BW = \frac{f_u - f_l}{f_c} * 100$$
²⁸

Onde:

 f_u : frequência de corte de alta - frequência onde a resposta em frequência cai para -6 dB na parte de alta frequência.

 f_l : frequência de corte de baixa- frequência onde a resposta em frequência cai para -6 dB na parte de baixa frequência.

 f_c : frequência central- é dada pela metade entre os limites das frequências $f_l e f_u$.

Resposta em frequência: curva característica da resposta do transdutor quando o mesmo é submetido a um ensaio de pulso-eco. (Espectro de frequência). Mostra o comportamento do transdutor sob diferentes frequências de excitação.

Fator de Qualidade ou fator Q: é definido como a razão entre a frequência de ressonância e máxima largura de banda. Este fator refere-se a duas características do material piezoelétrico: A banda de frequência do ultrassom produzido e o intervalo que ele persiste. Um transdutor de alto Q produz um pulso numa faixa de frequências muito próximas, isto é banda estreita, enquanto que um transdutor de Q baixo produz todo um espectro de frequências, chamado banda larga, conforme Figura 55.

Figura 55 - Fator de Qualidade Fonte: adaptado de IEC (2001)

• Impedância Elétrica: Comportamento da impedância do transdutor referente a frequência. A Figura 56 mostra a resposta da impedância elétrica referente à variação da frequência.

$$Z = |Z|e^{-j\theta}$$
²⁹

Onde:

Z é uma impedância complexa.

Figura 56 - Impedância elétrica Fonte: adaptado de IEC (2001)

- Sensibilidade pulso-eco: uma medição que compara a amplitude de tensão aplicada com a amplitude da tensão pulso-eco registrada por um alvo especificado.
- **Potência elétrica de entrada (Pe):** é a potência elétrica consumida pelo transdutor quando o transdutor é excitado com um pulso elétrico.
- Potência acústica de saída (Pa): é a potência do pulso ultrassônico quando emitido pelo transdutor ultrassônico.

• Feixe ultrassônico: forma de propagação do som emitido pelo transdutor. É dividido e duas zonas; o campo próximo e o campo distante, Figura 57. O campo próximo é a região diretamente a frente do transdutor aonde a amplitude de eco vai através de uma série de máximos e mínimos e finaliza no ultimo máximo à distância N do transdutor. A localização do último máximo é conhecida como a distância campo próximo e é foco natural do transdutor. O campo distante é a área além de N onde a pressão do campo de som gradualmente cai para zero.

Figura 57 - Campo Sonoro gerado pelo transdutor Fonte: adaptado de IEC (2001)

7.3 SISTEMA DE AQUISIÇÃO E PROCESSAMENTO DE DADOS

Um sistema de Aquisição de Dados basicamente consiste dos seguintes blocos: Sensor; Condicionamento de Sinal; Conversor Analógico-Digital (ADC) e Processamentos Digitais de Sinais (Figura 58). Os Sensores convertem um fenômeno físico (temperatura, pressão, ou som) em uma grandeza elétrica (tensão ou corrente). O Condicionamento do Sinal é

responsável por condicionar a grandeza elétrica de saída do sensor em níveis de tensões ou correntes padronizados.

Após o condicionamento do sinal, o Conversor Analógico-Digital converte a grandeza analógica em digital, tornando um dado de computador e o bloco de Processamentos Digitais de Sinais processa a informação dos dados vindos do bloco Conversor Analógico-Digital. O Receptor (do Pulsador/Receptor) seria o bloco de Condicionamento de Sinal e em casos mais completos o Receptor seria os blocos de Condicionamento de Sinal, Conversor Analógico-Digital e Processamentos de Sinais.

Muitos dos Receptores já possuem esse bloco de Aquisição de Dados presentes no circuito Pulsador/Receptor.

Figura 58 - (a) Pulso elétrico convertido em ultrassônico; (b) Pulso ultrassônico convertido em elétrico. Fonte: Elaboração própria

APÊNDICE C

7.4 ENSAIOS DINÂMICOS NA TURBINA

7.4.1 PROCEDIMENTO DOS ENSAIOS

O ensaio de rendimento de uma turbina tipo Kaplan visa não só estabelecer os pontos de melhor rendimento em comparação com os resultados obtidos do modelo em laboratório, mas também estabelecer os melhores pontos de operação da UG de acordo com o comportamento dinâmico em função da conjugação entre aberturas do Distribuidor versus Rotor Kaplan (IEC, 1991). As aberturas conjugadas do Distribuidor e do Rotor Kaplan são definidas em função dos melhores pontos operacionais encontrados nestas curvas.

A execução do ensaio segue o seguinte procedimento:

Conjugação Atual: Com o Regulador de Velocidade (RV) em modo de controle de potência, estabilizou-se a UG em uma condição de carga previamente definida. Nesta etapa foram analisados os seguintes patamares de carga da UG 09 em média: 96%, 91%, 82%, 73%, 63%, 54%, 45% da potência nominal.

Para cada patamar de potência efetuou-se a coleta dos sinais analógicos, pelo sistema de aquisição, em uma taxa de amostragem de 2.000 Hz (2 kHz).

Medição Desconjugada – OFF CAM: Com o Regulador de Velocidade (RV) em modo de controle de potência, estabiliza-se a UG em uma condição de carga previamente definida. Após atingido este patamar altera-se o parâmetro de controle do RV para abertura. O Regulador de Tensão (RT) deve estar ajustado para fator de potência unitário a fim de se obter Potência Aparente = Potência Ativa (MVAr = 0). Fixa-se então a abertura do Rotor pelo seu limitador de abertura, através do controle individual de abertura do Distribuidor efetua-se o fechamento e abertura em relação ao ponto de partida, obtendo-se curvas individuais para cada abertura do rotor. A tabela abaixo descreve a relação entre as aberturas do distribuidor e rotor da turbina.

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

Patamar de carga (% - relação a Peel max do gerador)	Rotação	Abertura do Rotor	Abertura do Distribuidor	Patamar de carga (% - relação a Peel max do gerador)	Rotação	Abertura do Rotor	Abertura do Distribuidor
	RMS [rpm]	RMS[%]	RMS[%]	man do Benddorf	RMS	RMS[%]	RMS[%]
	74,799	26,139	63,219		74,905	67,957	86,422
	74,761	28,127	62,745		74,901	69,892	86,066
	74,774	29,120	62,492		74,894	70,873	85,708
45%	74,758	31,080	61,536	82%	74,931	72,844	85,421
	74,731	24,170	63,856		74,890	65,946	86,106
	74,731	23,169	66,871		74,875	64,947	87,079
	74,781	21,201	70,471		74,885	62,976	87,974
	74,823	31,652	65,504		74,924	78,159	92,335
	74,819	37,527	69,107		74,904	80,025	92,105
54%	74,836	39,411	68,678		74,923	81,003	91,691
	74,837	40,391	68,256	91%	74,961	83,011	90,813
	74,855	42,356	67,790		74,934	76,135	91,245
	74,832	35,488	68,760		74,939	75,118	91,828
	74,793	34,479	70,143		74,935	73,143	92,512
	74,808	32,517	72,170		74,989	86,674	97,232
63%	74,832	47,962	75,347		74,912	88,773	98,419
	74,828	49,839	74,840	96%	74,923	91,720	99,754
	74,830	50,826	74,234		74,945	81,914	99,823
	74,802	52,787	74,118		74,943	84,863	99,825
	74,806	45,897	75,140				
	74,779	44,916	76,635				
	74,820	42,938	78,359				
	74,829	58,130	80,753				
	74,807	60,122	80,822				
	74,840	61,121	80,488				
73%	74,897	63,080	80,003				
	74,879	56,219	80,622				
	74,879	55,261	81,653				
	74,881	53,312	83,345				

Tabela 13 - Variações dos pontos de abertura - distribuidor e rotor

Fonte: Elaboração própria

Para cada patamar de potência efetuou-se a coleta dos sinais analógicos, pelo sistema de aquisição, em uma taxa de amostragem de 2.000 Hz (2 kHz).

7.4.2 GRANDEZAS MONITORADAS

Para a avaliação do rendimento da turbina foram utilizados diversos instrumentos. Nessa oportunidade avaliasse além das condições de eficiência da turbina também

as condições dinâmicas de operação - como vibrações mecânicas e flutuações de pressão. Entretanto, serão apresentados somente os detalhes de instrumentação e cálculo para os parâmetros a seguir:

- Nível d'água Montante e Jusante:
- Pressão da entrada da caixa semi-espiral
- Pressão de saída do Tubo de Sucção
- Vazão Turbinada Absoluta
- Potência Ativa (Sinal do Regulador de Velocidade)

7.4.3 PROCEDIMENTO DE CÁLCULO DE RENDIMENTO DA TURBINA

A seguir tem-se o equacionamento utilizado para os cálculos de rendimento.

7.4.3.1 Queda Bruta

A queda bruta é determinada pela Equação 30:

$$H_b = NA_{montante} - NA_{jusante}$$
³⁰

Potência mecânica no eixo da turbina

A potência mecânica no eixo da turbina foi determinada através da medição da potência elétrica na saída do gerador decrescida do valor das perdas no mesmo (rendimento do gerador).

$$P_t = \frac{P_{el}}{\eta_{el}}$$
³¹

7.4.3.2 Queda líquida real (H_l)

A queda líquida (H_1) para turbinas hidráulicas, é calculada utilizando a Equação 32, segundo a norma 60041 – item 2 (IEC, 1991) (ver Figura 59).

Figura 59: Esquema para o cálculo da altura de queda líquida Fonte: adaptado de IEC, 1991

As velocidades $v_1 e v_2$ não são conhecidas na prática e, portanto, devem ser calculadas em função da vazão turbinada e das áreas das seções (A₁ e A₂) onde são medidas $\rho_{abs1} e \rho_{abs2}$.

7.4.3.3 Aceleração da gravidade e Massa específica da água

A aceleração da gravidade local (g) e a Massa específica da água (ρ) foram obtidas de acordo com a norma 60041 (IEC, 1991).

$$g = 9,7803(1+0,0053\sin^2\varphi) - 3 \cdot 10^{-6}z$$
³³

$$g = 9,787 \text{ m/s}^2$$

E massa específica da água adotada:

$$\rho = 995,700 \text{ kg/m}^3$$

A Equação 34 define o cálculo do rendimento da turbina.

$$\eta = \frac{P_T}{\rho.g.Q.Hl.10^{-6}}$$
34

Como a altura de queda líquida varia ao longo do ensaio, é necessário transpor os resultados obtidos para a altura nominal, através das Equações 35 e 36.

$$Q_n = Q \cdot \left(\frac{H_n}{H_l}\right)$$
 35

$$P_n = P_t \cdot \left(\frac{H_n}{H_l}\right)^{3/2}$$
 36

7.4.3.4 TOLERÂNCIAS E INCERTEZAS

A incerteza do rendimento do grupo gerador foi calculada, avaliando as incertezas sistemáticas e aleatórias, com intervalo de confiança de 95%. A incerteza sistemática é inerente aos equipamentos utilizados, ou seja, fornecida pelo fabricante ou conferida por curvas de calibração. A incerteza do cálculo da altura de queda líquida é dada pela Equação 37.

$$I_{H} = \frac{\left[\left(\frac{p_{1}}{\rho g} \ I_{p1} \right)^{2} + \left(\frac{p_{2}}{\rho g} \ I_{p2} \right)^{2} + \left(\frac{v_{1}^{2}}{2 g} \ I_{v} \right)^{2} + \left(\frac{v_{2}^{2}}{2 g} \ I_{v} \right)^{2} + \left(I_{z} \right)^{2} \right]^{\frac{1}{2}}}{H}$$

$$37$$

A incerteza do rendimento do grupo gerador é dada pela Equação 38.

$$I_{\eta} = \left(I_{Q}^{2} + I_{P_{d}}^{2} + I_{H}^{2}\right)^{\frac{1}{2}}$$
38

7.4.4 INSTRUMENTAÇÃO PARA ANÁLISE DO RENDIMENTO

7.4.4.1 Abertura do Distribuidor da Turbina e das Pás do Rotor Kaplan:

Do painel do Regulador de Velocidades - RV - da UG 09 foi comandado as variações de abertura dos dispositivos de controle da turbina, estando o mesmo em modo Manual nesse momento (ver Figura 60).

Figura 60 - Conexões no painel do Regulador de Velocidade Fonte: Acervo próprio

7.4.4.2 Nível d'água Montante e Jusante:

Os sinais de nível de montante e jusante foram extraídos diretamente do painel do Regulador de Velocidades - RV, podendo ser conferidos por relatório emitido pelo mesmo via SDSC.

7.4.4.3 Pressão da entrada da caixa semi-espiral

A pressão da entrada da turbina foi medida através de um transmissor de pressão piezoresistivo instalado no bloco de derivação específico para este fim (Figura 61). Características técnicas:

Marca: VELKI Faixa de medição: -1 a 5 bar Precisão: 0,25% FE Alimentação: 8 a 28 Vcc Sinal: 4...20 mA (2 fios) Elevação do transmissor: 23

Elevação do transmissor: 239,95 m (piso) + 1,28 m = 241,23 m (nível do mar)

Figura 61: Transmissor de Pressão da Entrada da Caixa Semi-Espiral Fonte: Acervo próprio

7.4.4.4 Pressão de saída do Tubo de Sucção

A pressão de saída da turbina foi medida através de um transmissor de pressão piezoresistivo instalado no bloco de derivação específico para este fim (Figura 62).

Características técnicas:

Marca: VELKI Faixa de medição: -1 a 3 bar Precisão: 0,25% FE Alimentação: 8 a 28 Vcc Sinal: 4...20 mA (2 fios)

Elevação do transmissor: 217,7m (piso) + 1,67 m = 219,37 m (nível do mar)

Figura 62: Transmissor de Pressão da Saída da Caixa Semi-Espiral Fonte: Acervo próprio

7.4.4.5 Vazão Turbinada

A vazão turbinada foi obtida com o sistema de medição de vazão por ultrassom instalado na UG 09, cujo detalhamento foi apresentado nos itens 3.6 e 4.1 desse trabalho.

7.4.4.6 Potência Ativa (Sinal do Regulador de Velocidade)

A potência ativa foi extraída diretamente do painel do Regulador de Velocidades - RV, através de um sinal analógico de 4 a 20 mA, podendo ser conferida por relatório emitido pelo mesmo via SDSC.

7.4.4.7 Rotação (Sinal do Regulador de Velocidade)

A rotação foi medida através de sinal de 4 a 20 mA disponível no painel RV.

7.4.4.8 Sistema de aquisição de dados

Para coleta e armazenamento de todos os dados dos ensaios realizados, foram utilizados os seguintes equipamentos:

- Sinais analógicos: Sistema ADS 2002 / LYNX Tecnologia / 32 canais
- Análise de Sinais: Notebook Dell

7.4.5 CALIBRAÇÃO DA INSTRUMENTAÇÃO

A calibração dos instrumentos utilizados nos testes foi feita em campo (transmissores de pressão), bem como as análises de atenuação de toda a rede de transmissão de sinais, a fim de identificar possíveis perdas de sinais que pudessem comprometer as medições realizadas. Foi Utilizado calibrador de pressão *Presys*® para calibração dos transmissores em bancada (ver Figura 63).

Figura 63 - Bancada de aquisição de dados e calibração de instrumentos Fonte: Acervo próprio

7.4.6 TABELAS E GRÁFICOS

Utilizando-se os dados coletados durante os ensaios calcula-se queda líquida e o rendimento da turbina para cada um dos pontos, e são plotadas as curvas "rendimento x potência" e "rendimento x vazão" que são comparáveis com as curvas de projeto e operação atual da unidade geradora.

A tabela 8 mostra todos os dados coletados do painel do Regulador de Velocidade, e os parâmetros medidos através dos instrumentos instalados.

As Figuras 64 a 67 apresentam os gráficos de potência por rendimento e vazão por rendimento e análises relacionadas.

UNIVERSIDADE FEDERAL DE ITAJUBÁ

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

	Tabela 14 - Resultados -	- Ensaio de Rendimento	 Dados coletados e 	e cálculos de Rendimento
--	--------------------------	------------------------	---------------------------------------	--------------------------

Patamar de carga	Regulador de Velocidade					PRESSÕES e Vazões- Aquisição RENNOSONIC - RENDIMENTO							
	Rotação	Abertura do Rotor	Abertura do Distribuidor	Nível Montante	Nível Jusante	Potência Ativa	Pressão na Entrada da Turbina	Pressão na Saída da Turbina	Vazão Turbinada - Q1	Vazão Turbinada - Q2	Vazão Turbinada - Q3	Vazão Turbinada - TOTAL	
	RMS [rpm]	RMS[%]	RMS[%]	[m]	[m]	RMS[MW]	RMS[bar]	RMS[bar]	[m3/s]	[m3/s]	[m3/s]	[m3/s]	
	74,799	26,139	63,219	257,120	236,800	49,006	1,629	1,697	83,973	105,344	84,130	273,447	
	74,761	28,127	62,745	257,120	236,800	50,121	1,628	1,697	86,266	107,544	86,786	280,596	
	74,774	29,120	62,492	257,120	236,800	49,983	1,628	1,699	87,333	108,321	88,192	283,846	
45%	74,758	31,080	61,536	257,120	236,800	50,019	1,625	1,698	88,820	110,361	88,890	288,071	
	74,731	24,170	63,856	257,120	236,800	47,411	1,624	1,699	81,971	101,779	82,929	266,680	
	74,731	23,169	66,871	257,120	236,800	47,135	1,620	1,698	82,166	102,120	82,124	266,410	
	74,781	21,201	70,471	257,120	236,800	46,037	1,621	1,700	81,557	100,846	81,961	264,364	
	74,823	31,652	65,504	257,120	236,800	53,968	1,569	1,695	93,275	115,095	93,563	301,933	
	74,819	37,527	69,107	257,120	236,800	59,799	1,567	1,694	102,650	127,695	103,466	333,811	
	74,836	39,411	68,678	257,120	236,800	59,580	1,567	1,698	103,940	129,482	105,386	338,808	
54%	/4,83/	40,391	68,256	257,120	236,800	59,720	1,567	1,696	105,446	130,500	105,131	341,077	
	74,855	42,356	67,790	257,120	236,800	59,862	1,567	1,696	106,310	131,873	107,486	345,669	
	/4,832	35,488	68,760	257,120	236,800	58,077	1,569	1,695	99,553	123,835	100,090	323,478	
	74,793	34,479	70,143	257,120	236,800	58,042	1,569	1,697	99,702	123,857	99,779	323,338	
	74,808	32,517	/2,1/0	257,120	236,800	57,099	1,569	1,696	98,319	122,513	98,759	319,591	
	74,832	47,962	75,347	257,120	236,800	/0,347	1,562	1,690	121,332	149,806	122,1/1	393,309	
	74,828	49,839	74,840	257,120	236,800	69,966	1,561	1,697	122,411	151,530	122,665	396,606	
C20/	74,830	50,826	74,234	257,120	236,800	69,372	1,561	1,695	122,953	151,901	123,611	398,465	
03%	74,802	52,787	74,118	257,120	236,800	69,779	1,560	1,692	124,155	154,660	124,989	403,804	
	74,806	45,897	75,140	257,120	236,800	68,520	1,562	1,693	117,689	146,430	118,850	382,969	
	74,779	44,916	76,635	257,120	236,800	68,691	1,562	1,695	118,317	146,871	118,600	383,788	
	74,820	42,938	78,359	257,120	236,800	67,512	1,563	1,695	117,128	145,131	117,762	380,021	
	74,829	58,130	80,753	257,120	236,800	80,303	1,556	1,693	139,609	172,817	139,630	452,056	
	74,807	60,122	80,822	257,120	230,800	80,808	1,555	1,090	141,529	175,207	141,720	458,250	
729/	74,840	61,121	80,488	257,120	236,800	80,350	1,556	1,699	141,887	175,703	142,132	459,722	
7376	74,697	55,080	80,005	257,120	230,800	79,707	1,550	1,092	145,254	1/7,452	145,446	404,154	
	74,879	56,219	80,622	257,120	236,800	78,720	1,558	1,693	136,193	168,521	136,771	441,485	
	74,679	53,201	01,000	257,120	230,800	76,569	1,559	1,095	130,207	106,759	130,961	442,007	
	74,001	67.057	85,345	257,120	230,800	77,303	1,559	1,050	153,200	107,182	153,344	437,532	
	74,905	67,957	86,422	257,120	230,800	90,500	1,550	1,099	156,552	196,112	156,060	513,130	
82%	74,901	70 972	80,000	257,120	230,800	90,040	1,545	1,700	155,855	190,883	101,123	517,507	
	74,694	70,873	65,706 95,401	257,120	230,800	90,373	1,549	1,702	160,560	201 220	162,001	520,045	
	74,931	72,844 65.046	96 106	257,120	230,800	90,314	1,545	1,054	102,872	102.020	105,091	507,183	
	74,850	64 047	80,100	257,120	230,800	00,703	1,551	1,054	153,220	192,029	155,152	502,401	
	74,875	62.076	87,073	257,120	230,800	88,312	1,551	1,032	159,400	191,012	153,324	405 606	
	74,883	78 159	97,374	257,120	230,800	100 150	1,532	1,093	133,288	221 603	178 838	493,000	
91%	74,324	20,025	92,333	257,120	230,800	100,130	1,540	1,098	1/3,103	221,003	170,030	575,024	
	74,904	81,023	92,103	257,120	230,800	100,377	1,540	1,090	101,503	223,373	100,003	505,035	
	74,323	81,003	90,813	257,120	230,800	100,017	1,540	1,037	181,510	224,203	181,375	507 681	
	74,901	76 125	90,815	257,120	230,800	00,110	1,540	1,093	175 640	223,301	175 462	552,081	
	74,934	70,133	91,243	257,120	230,800	98,230	1,544	1,038	175,040	215,781	173,402	566 101	
	74,539	73 1/2	91,020	257,120	230,800	96,305	1,345	1,098	173,017	213,304	179,500	500,101	
	74,535	86 674	92,312	257,120	230,800	106 156	1 = 22	1,095	107 372	213,340	106 770	535,263	
	74,569	88 772	97,232	257,120	230,000	106,130	1,333	1,094	201 702	241,339	200 326	640 000	
96%	74,912	91 720	99 754	257,120	230,800	107 328	1,531	1,092	201,702	240,578	200,320	666 424	
50%	74,025	91 01 <i>4</i>	99.823	257,120	236,800	106 310	1 520	1,005	196.072	235,331	105 0/2	630.025	
	74 9/3	84 863	99.825	257,120	236,800	106,510	1 522	1,691	201 462	235,010	199 987	646 020	
	77,545	04,003	55,025	257,120	230,000	100,000	1,332	1,090	201,402	245,470	133,382	0-10,920	

Fonte: Elaboração própria

7.4.6.1 Execução e resultados

Foram realizados procedimentos de ensaio ON CAM e OFF CAM, sendo que no segundo concluiu-se que a melhor conjugação (relação de abertura rotor-distribuidor) encontrada, era já aplicada na operação da máquina.

Conjugação Atual – ON CAM: Com o Regulador de Velocidade (RV) em modo de controle de potência, estabilizou-se a UG em uma condição de carga previamente definida. Nesta etapa foram analisados os seguintes patamares de carga da UG 09 em média: 96%, 91%, 82%, 73%, 63%, 54%, 45% da potência nominal.

Para cada patamar de potência efetuou-se a coleta dos sinais analógicos, pelo sistema de aquisição, em uma taxa de amostragem de 2.000 Hz (2 kHz).

Medição Desconjugada – OFF CAM: Com o Regulador de Velocidade (RV) em modo de controle de potência, estabiliza-se a UG em uma condição de carga previamente definida. Após atingido este patamar altera-se o parâmetro de controle do RV para abertura. O Regulador de Tensão (RT) deve estar ajustado para fator de potência unitário a fim de se obter Potência Aparente \approx Potência Ativa (MVAr \approx 0). Fixa-se então a abertura do Rotor pelo seu limitador de abertura, através do controle individual de abertura do Distribuidor efetua-se o fechamento e abertura em relação ao ponto de partida, obtendo-se curvas individuais para cada abertura do rotor.

As Figuras 64 a 65 mostram os gráficos encontrados para o Rendimento da turbina, em função da Potência da Turbina e Vazão turbinada.

Figura 64 – Potência x rendimento (conjugado). Fonte: Elaboração própria

A partir dos gráficos concluiu-se que é possível verificar que por uma interpolação de 7 pontos – na conjugação atual - temos uma curva operacional de rendimento absoluto com o mesmo perfil extraído da colina da máquina, para uma referência de queda líquida de 20,26 m, do qual os dados foram transpostos. Entretanto pelas Figuras 64 e 65 é possível observar que somente a partir de 80 MW, considerando as incertezas, que temos uma aproximação dos valores obtidos com os projetados.

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

UNIVERSIDADE FEDERAL DE ITAJUBÁ

Figura 65 – Vazão por rendimento (conjugado). Fonte: Elaboração própria

PROGRAMA DE PÓS-GRADUAÇÃO EM MEIO AMBIENTE E RECURSOS HÍDRICOS

UNIVERSIDADE FEDERAL DE ITAJUBÁ

ANEXO I

DESCRIÇÃO DAS NORMAS EXISTENTES

O objetivo desta seção é mostrar as normas existentes que regem a aplicação, análise e calibração de medidores de vazão ultrassônicos. Apresenta-se um breve resumo do conteúdo descrito na norma.

ABNT/ISO 12765 (ISO 12765): Esta norma descreve as diretrizes gerais para utilização e principais características de medidores de vazão ultrassônicos baseados na medição da diferença no Tempo de Trânsito para medições de vazões volumétricas de fluidos, em especial líquidos. Ela abrange sua operação, desempenho e calibração. Esta norma, primordialmente, abrange transdutores molhados (em contato com o fluido), mas refere-se de modo sucinto a arranjos com transdutores *Clamp-on*. Possui um capítulo sobre medição em petróleo baseada na API 5.8.

IEC 60041: Relata a aplicação de medição de vazão utilizando o método de Tempo de Trânsito (*Transit Time*) em medidores com multicanais. Os principais conteúdos são: Princípio de medição utilizando o método de Tempo de Trânsito; Teoria de cálculo de vazão; principais tipos de integração e cálculo de coeficiente de ponderação; e incertezas associadas ao método. Objetivo é fornecer a base teórica de cálculo de medição de vazão em medidores ultrassônicos a Tempo de Trânsito.

Capitulo 5, seção 8 do documento API MPMS: é uma seção especial do manual API MPMS – *Manual of Petroleum Measurement Standards*- *Chapter 5*, conhecida como Section.8 (2005) – *Measurement of Liquid Hydrocarbons by Ultrasonic Flowmeters Using Transit Time Technology*, que descreve métodos para instalação e operação de Medidores de Fluxo em aplicações em Hidrocarbonetos.

ASME PTC 18: Uma norma Americana que define padrões de medição em turbinas hidráulicas, sobre tudo de medição de vazão e potência, para estimação de eficiência.

ASTM E 1065: é uma norma procedural que cobre métodos de medições de certas características importantes de um transdutor ultrassônico. Basicamente, descreve meios de obter dados de performance que deve ser usado para definir respostas acústicas e elétricas de transdutores. São descritos procedimentos para ensaios de: Resposta em frequência; Sensibilidade relativa Pulso-Eco; Resposta no tempo; Impedância elétrica; e Medições de Campos Ultrassônicos.

EN 12668: "*Non-destructive testing - Characterization and verification of ultrasonic examination equipment*", norma da *European Standard* para a área de controle não destrutivo. Tem como objetivo mostrar métodos de medição, levantamento de características, e são aplicadas para transdutores na faixa de operação de 0,5 [MHz] e 15 [MHz].

IEC PWI 87: *"Ultrasonic- Piezoceramics transducers- Characteristics and measurement methods",* uma norma voltada para caracterização de transdutores ultrassônicos. Tem como objetivo especificar as características essenciais de desempenho eletroacústicos para transdutores ilustrando métodos de medição.

ISO 6416: "Hydrometry — Measurement of discharge by the ultrasonic (acoustic) method", norma que descreve o estabelecimento e operação de estações de medição ultrassônicas para medidas de vazão em rios, canais abertos ou condutos fechados. Também descreve o princípio pelo qual o método de *Transit Time* é baseado, operação e desempenho de instrumentações associadas e procedimentos e comissionamentos.