Repositório UNIFEI UNIFEI - Campus 1: Itajubá PPG - Programas de Pós Graduação Dissertações
Use este identificador para citar ou linkar para este item: https://repositorio.unifei.edu.br/jspui/handle/123456789/1665
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSILVA, Jonas Guedes Borges da-
dc.date.issued2008-02-21-
dc.identifier.citationSILVA, Jonas Guedes Borges da. Aplicação da Análise de componentes Principais (PCA) no diagnóstico de defeitos de rolamentos através da assinatura elétrica de motores de indução. 2008. 98 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá, 2008.pt_BR
dc.identifier.urihttps://repositorio.unifei.edu.br/jspui/handle/123456789/1665-
dc.description.abstractEste trabalho apresenta um estudo abrangente das técnicas de Análise da Assinatura Elétrica (ESA) aplicadas na detecção de defeitos em rolamentos de motores elétricos de indução. A Análise de Componentes Principais(PCA) é aplicada, com base em características extraídas dessas técnicas, com o objetivo de se criar um método mais sensível e eficaz de detecção de defeitos em rolamentos. As características utilizadas como entradas para o PCA são obtidas a partir das técnicas de ESA como Análise da Corrente Estatórica(MCSA), Abordagem Estendida do Vetor de Park (EPVA), Análise da Potência Instantânea (IPSA), Análise Wavelet e Qualidade de Energia. A metodologia proposta assume que um defeito, quando se propaga na máquina, causa mudanças em diversos parâmetros e características da máquina. Essas mudanças são consideradas pequenas em magnitude quando analisadas individualmente, mas juntas contabilizam por significativas variâncias nos dados, então detectadas e isoladas por PCA. A metodologia foi testada usando um motor pequeno de 4 pólos em três diferentes condições: rolamento saudável, rolamento com furo de φ2,3mm na pista externa e rolamento com furo de φ2,8mm na pista externa. O furo é utilizado para simular um defeito no rolamento. Um modelo PCA foi criado com base nas amostras do rolamento saudável e sua validação foi feita com novas amostras obtidas nas três condições. Os resultados mostram que o defeito na pista externa pôde ser detectado com eficiência utilizando as estatísticas T- quadrado e Q (com um limite de confiança de 95%). O modelo obtido foi capaz de classificar corretamente 99,8% das amostras testadas. A alta sensibilidade ao defeito apresentada pelo modelo sugere sua capacidade de detectar esse tipo de defeito em estágios mais incipientes, o que não é possível através das técnicas de ESA atuais.pt_BR
dc.language.isopt_BRpt_BR
dc.titleAplicação da Análise de componentes Principais (PCA) no diagnóstico de defeitos de rolamentos através da assinatura elétrica de motores de indução.pt_BR
dc.typeDissertaçãopt_BR
dc.placeItajubápt_BR
dc.pages98 p.pt_BR
dc.keywords.portugueseAnálise da Assinatura Elétrica(ESA)pt_BR
dc.keywords.portugueseAnálise de Componentes Principais(PCA)pt_BR
dc.keywords.portugueseDefeitos em rolamentospt_BR
dc.keywords.portugueseMotor de induçãopt_BR
dc.orientador.principalTORRES, Germano Lambert-
dc.orientador.coorientadorSILVA, Luiz Eduardo Borges da-
dc.place.presentationUniversidade Federal de Itajubápt_BR
dc.pg.programaEngenharia Elétricapt_BR
dc.pg.areaAutomação e Sistemas Elétricos Industriaispt_BR
dc.date.available2018-09-17T19:39:58Z-
dc.date.accessioned2018-09-17T19:39:58Z-
dc.publisher.departmentIESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação-
dc.publisher.programPrograma de Pós-Graduação: Mestrado - Engenharia Elétrica-
Aparece nas coleções:Dissertações

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
dissertacao_0032606.pdf3,27 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.