UNIFEI - Campus 1: Itajubá PPG - Programas de Pós Graduação Dissertações
Use este identificador para citar ou linkar para este item: https://repositorio.unifei.edu.br/jspui/handle/123456789/262
Tipo: Dissertação
Título: Estudo Comparativo entre Regressão Logística Binária e Redes Neurais Artificiais na Avaliação dos Resultados Clássicos de Hosmer, Lemeshow e Sturdivant.
Autor(es): BISSACOT, Alexandre Corrêa Grassi
Abstract: Problemas de classificação estão presentes em diversas áreas do conhecimento. Para explorá-los e avaliá-los, diferentes metodologias podem ser utilizadas. Este trabalho busca comparar a habilidade de classificação de duas destas técnicas: regressão logística e redes neurais artificiais treinadas por planejamento ou delineamento de experimentos (Design of Experiments, ou DOE). A primeira pode ser considerada como técnica padrão e já é consagrada como ferramenta de auxílio na tomada de decisões. A segunda tem sido utilizada em profusão para problemas similares e apresenta-se como alternativa à regressão logística, pois assume menos restrições de uso, apesar de exigir uma simulação computacional mais complexa. Este estudo tem como objetivo realizar uma análise comparativa de oito problemas bem sedimentados, descritos no livro Applied Logistic Regression de Hosmer, Lemeshow e Sturdivant. Para tal análise, foi calculada a área sob a curva ROC (Receiver Operating Characteristic) de cada metodologia para todos os casos. A hipótese de que as redes neurais superariam os resultados encontrados pela regressão logística foi confirmada, sendo que a média para a área sob a curva dos modelos de redes neurais foram estatisticamente superiores à média dos casos modelados por regressão logística.
Citação: BISSACOT, Alexandre Corrêa Grassi. Estudo Comparativo entre Regressão Logística Binária e Redes Neurais Artificiais na Avaliação dos Resultados Clássicos de Hosmer, Lemeshow e Sturdivant. 2015. 106 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2015.
URI: https://repositorio.unifei.edu.br/jspui/handle/123456789/262
Data do documento: 2015
Aparece nas coleções:Dissertações

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
dissertacao_bissacot_2015.pdf2.34 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.