Use este identificador para citar ou linkar para este item:
https://repositorio.unifei.edu.br/jspui/handle/123456789/4349Registro completo de metadados
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.creator | DI CIOCCIO, Darwin Omar Mastre | - |
| dc.date.issued | 2025-06-27 | - |
| dc.identifier.citation | Given the current demand for increasingly quieter fans, in order to comply with industrial and/or domestic noise level standards, the importance of introducing innovative concepts in the design of low-noise centrifugal fans becomes evident. This can be achieved through numerical analyses using Computational Fluid Dynamics (CFD). In this work, an initial approach was developed to determine the main aerodynamic performance characteristics of centrifugal fans with and without splitter blades, considering the rotor-volute interaction. At this stage, steady-state simulations were employed to identify and quantify noise sources through acoustic source prediction. The simulation methodology used to obtain aerodynamic quantities was validated using results from experimental tests conducted on a fan test bench at the LabVent laboratory, IEM/UNIFEI. In a second approach, transient simulations were carried out to analyze sound pressure levels over a wide frequency range, aiming to consistently characterize the aeroacoustic behavior and noise sources of the fans. From the solution of the flow and acoustic fields in configurations with and without auxiliary blades, the following geometric variables were considered: i) inlet angle, ii) outlet angle, iii) curvature radius relative to the main blade, and iv) circumferential position and shape of the tongue. These variables were optimized based on a factorial design of experiments, from which a metamodel was generated using radial basis functions, aiming to achieve maximum efficiency while maintaining acceptable sound pressure levels. The results showed that as the length of the splitter blades increases and they are positioned closer to the suction side of the main blades, the flow conditions within the fan improve, leading to satisfactory aerodynamic behavior in terms of effective efficiency and total pressure. Additionally, a reduction in tonal noise was observed, as the peak sound pressure levels at the blade-passing frequency decreased in comparison to the baseline fan geometry. This work presents technological contributions based on scientific methodologies, integrating aeroacoustic field analyses with multi-objective optimization techniques to maintain fan performance characterized by high efficiency and low noise levels. These findings contribute to the development of new design concepts for centrifugal fans intended for industrial applications. | pt_BR |
| dc.identifier.uri | https://repositorio.unifei.edu.br/jspui/handle/123456789/4349 | - |
| dc.description.abstract | Given the current demand for increasingly quieter fans, in order to comply with industrial and/or domestic noise level standards, the importance of introducing innovative concepts in the design of low-noise centrifugal fans becomes evident. This can be achieved through numerical analyses using Computational Fluid Dynamics (CFD). In this work, an initial approach was developed to determine the main aerodynamic performance characteristics of centrifugal fans with and without splitter blades, considering the rotor-volute interaction. At this stage, steady-state simulations were employed to identify and quantify noise sources through acoustic source prediction. The simulation methodology used to obtain aerodynamic quantities was validated using results from experimental tests conducted on a fan test bench at the LabVent laboratory, IEM/UNIFEI. In a second approach, transient simulations were carried out to analyze sound pressure levels over a wide frequency range, aiming to consistently characterize the aeroacoustic behavior and noise sources of the fans. From the solution of the flow and acoustic fields in configurations with and without auxiliary blades, the following geometric variables were considered: i) inlet angle, ii) outlet angle, iii) curvature radius relative to the main blade, and iv) circumferential position and shape of the tongue. These variables were optimized based on a factorial design of experiments, from which a metamodel was generated using radial basis functions, aiming to achieve maximum efficiency while maintaining acceptable sound pressure levels. The results showed that as the length of the splitter blades increases and they are positioned closer to the suction side of the main blades, the flow conditions within the fan improve, leading to satisfactory aerodynamic behavior in terms of effective efficiency and total pressure. Additionally, a reduction in tonal noise was observed, as the peak sound pressure levels at the blade-passing frequency decreased in comparison to the baseline fan geometry. This work presents technological contributions based on scientific methodologies, integrating aeroacoustic field analyses with multi-objective optimization techniques to maintain fan performance characterized by high efficiency and low noise levels. These findings contribute to the development of new design concepts for centrifugal fans intended for industrial applications. | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal de Itajubá | pt_BR |
| dc.rights | Acesso Aberto | pt_BR |
| dc.subject | Ventilador centrífugo | pt_BR |
| dc.subject | CFD | pt_BR |
| dc.subject | Pás auxiliares | pt_BR |
| dc.subject | Aeroacústica | pt_BR |
| dc.title | Otimização aeroacústica de ventiladores centrífugos com pás auxiliares | pt_BR |
| dc.type | Tese | pt_BR |
| dc.date.available | 2026-02-20 | - |
| dc.date.available | 2026-02-20T14:22:20Z | - |
| dc.date.accessioned | 2026-02-20T14:22:20Z | - |
| dc.creator.Lattes | http://lattes.cnpq.br/7692167667219740 | pt_BR |
| dc.contributor.advisor1 | CAMACHO, Ramiro Gustavo Ramirez | - |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/6194277568885657 | pt_BR |
| dc.contributor.advisor-co1 | OLIVEIRA, Waldir de | - |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/7226409561260413 | pt_BR |
| dc.description.resumo | Considerando a demanda atual por ventiladores cada vez mais silenciosos de forma a não ultrapassar os níveis sonoros industriais e/ou domésticos, verifica-se a importância de introduzir conceitos inovadores para o projeto de ventiladores centrífugos de baixo ruído através de análises numéricas por meio da Dinâmica dos Fluidos Computacional (DFC). Neste trabalho desenvolveu-se um estudo, numa primeira abordagem, para determinar as principais características de desempenho aerodinâmico dos ventiladores centrífugos com e sem pás auxiliares, considerando a interação do rotor-voluta. Nesta etapa, fez-se uso de simulações em regime permanente para identificação e quantificação das fontes de ruído, por meio de predição de fontes sonoras. A metodologia da simulação para obter as grandezas aerodinâmicas foi validada através de resultados retirados de um ensaio experimental realizado em um banco de ensaios do laboratório de ventiladores LabVent do IEM/UNIFEI. Numa segunda abordagem, em regime transiente, foi analisado o nível de pressão sonora numa ampla faixa de frequências, com o intuito de caracterizar de forma consistente o comportamento aeroacústico e fontes de ruído dos ventiladores. A partir da solução dos campos sonoros e do escoamento nas situações com e sem pás auxiliares, foram consideradas as seguintes variáveis geométricas: i) ângulo de entrada, ii) ângulo de saída, iii) raio de curvatura em relação à pá principal e iv) posição circunferencial e formato da lingueta. Essas variáveis foram otimizadas com base em um plano de experimentos do tipo fatorial, sendo gerado um metamodelo por meio de funções de base radial., na busca do máximo rendimento com níveis de pressão sonora admissíveis. Resultados mostraram que à medida que o comprimento das pás auxiliares aumenta e são posicionadas mais próximas ao lado de sução das pás principais, melhoram as condições do escoamento no ventilador, resultando em um comportamento aerodinâmico satisfatório em termos de rendimento efetivo e de pressão total, bem como uma redução do ruído tonal do ventilador, uma vez que os valores máximos de nível de pressão sonora na frequência de passagem da pá são reduzidos em comparação com a geometria base do ventilador. Este trabalho apresenta contribuições tecnológicas com base em metodologias cientificas, onde são integradas às análises dos campos aeroacústicos e técnicas de otimização multiobjetivo para manter as características do ventilador com alta eficiência e baixos níveis de ruído, de forma a contribuir com novos conceitos para o projeto de ventiladores centrífugos à indústria. | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | IEM - Instituto de Engenharia Mecânica | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação: Doutorado - Engenharia Mecânica | pt_BR |
| dc.publisher.initials | UNIFEI | pt_BR |
| dc.subject.cnpq | CNPQ::ENGENHARIAS::ENGENHARIA MECÂNICA | pt_BR |
| Aparece nas coleções: | Teses | |
Arquivos associados a este item:
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Tese_2026003.pdf | 6,3 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.
