DSpace/Manakin Repository

Nanopartículas híbridas termossensíveis baseadas em proteína-polímero como um potencial sistema carreador de agentes terapêuticos contra o câncer

Mostrar registro simples

dc.creator MAIA, Matheus Valentin
dc.date.issued 2025-12-09
dc.identifier.citation MAIA, Matheus Valentin. Nanopartículas híbridas termossensíveis baseadas em proteína-polímero como um potencial sistema carreador de agentes terapêuticos contra o câncer. 2025. 124 f. Tese (Doutorado em Química) - Programa de Pós-Graduação Multicêntrico em Química, Universidade Federal de Itajubá, Campus Theodomiro Carneiro Santiago. Itabira, 2025. Disponível em: <https://repositorio.unifei.edu.br/jspui/handle/123456789/4337>. Acesso em: dd mm aaaa. pt_BR
dc.identifier.uri https://repositorio.unifei.edu.br/jspui/handle/123456789/4337
dc.description.abstract In recent years, hybrid materials combining proteins and polymers have attracted significant interest in the biomedical field, particularly in the development of controlled drug delivery systems. The conjugation of these two classes of materials enables the integration of biocompatibility, stability, and functionality into a single system. Among natural proteins, silk fibroin (SF) stands out as a promising biocompatible material, while poly(N-vinylcaprolactam) (PNVCL) offers a thermoresponsive behavior suitable for therapeutic applications. In this context, the SF–PNVCL hybrid system emerges as an innovative strategy for the development of nanocarriers capable of responding to specific stimuli, such as temperature increases, thereby optimizing the release of therapeutic agents. In this work, novel thermoresponsive hybrid systems based on silk fibroin (SF) and PNVCL were developed, aiming to produce nanoparticles capable of promoting controlled release of therapeutic agents, using curcumin as a model drug. The hybrid systems were synthesized using a grafting-from strategy via reversible addition-fragmentation chain-transfer (RAFT) polymerization, through the functionalization of fibroin with chain transfer agents (CTA1 and CTA2). A second synthetic route was established by activating CTA2 with pentafluorophenol (PFP). The systems were characterized by Fouriertransform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The nanoparticles were further evaluated by dynamic light scattering (DLS), zeta potential measurements, and transmission electron microscopy (TEM). The results revealed that the hybrid systems exhibited nanoparticulate morphology (~200 nm), good colloidal stability, and a thermoresponsive phase transition near 40 °C. Additionally, the nanoparticles demonstrated curcumin encapsulation efficiency of approximately 40%, with enhanced release at elevated temperatures. The release kinetics showed a better fit to the Weibull and Gompertz models (R² > 0.99), indicating a controlled and thermoresponsive release process. In vitro cytotoxicity assays, evaluated by flow cytometry, revealed low toxicity in normal cells (MRC-5) and high selectivity toward the 4T1 cancer cell line, with up to 49.5% cell inhibition. Based on these findings, SF– PNVCL hybrid systems represent a promising platform for the development of smart carriers for targeted therapeutic applications. pt_BR
dc.description.sponsorship Agência 1 pt_BR
dc.language por pt_BR
dc.publisher Universidade Federal de Itajubá pt_BR
dc.rights Acesso Aberto pt_BR
dc.subject Materiais híbridos pt_BR
dc.subject Hybrid materials pt_BR
dc.subject Termossensibilidade pt_BR
dc.subject Thermosensitivity pt_BR
dc.subject Sistema Carreador pt_BR
dc.subject Carrier system pt_BR
dc.subject Nanopartículas pt_BR
dc.subject Nanoparticles pt_BR
dc.title Nanopartículas híbridas termossensíveis baseadas em proteína-polímero como um potencial sistema carreador de agentes terapêuticos contra o câncer pt_BR
dc.type Tese pt_BR
dc.date.available 2025-12-10
dc.date.available 2026-02-06T13:28:21Z
dc.date.accessioned 2026-02-06T13:28:21Z
dc.creator.Lattes http://lattes.cnpq.br/4686553170894624 pt_BR
dc.contributor.advisor1 SOARES, Daniel Cristian Ferreira
dc.contributor.advisor1Lattes http://lattes.cnpq.br/0451950971908426 pt_BR
dc.description.resumo Nos últimos anos, materiais híbridos envolvendo proteínas e polímeros têm despertado grande interesse na área biomédica, especialmente no desenvolvimento de sistemas de liberação controlada de fármacos. A conjugação entre essas duas classes de materiais permite reunir biocompatibilidade, estabilidade e funcionalidade em um único sistema. Entre as proteínas de origem natural, a fibroína de seda (SF) destaca-se como um biocomposto promissor, enquanto o poli(N-vinilcaprolactama) (PNVCL) oferece resposta termossensível adequada a aplicações terapêuticas. Neste cenário, o sistema híbrido SF–PNVCL surge como uma estratégia inovadora para o desenvolvimento de nanocarreadores capazes de responder a estímulos específicos, como o aumento de temperatura, otimizando a liberação de agentes terapêuticos. Neste trabalho, foram desenvolvidos sistemas híbridos inéditos baseados na fibroína de seda (SF) e o (PNVCL), com o objetivo de desenvolver nanopartículas capazes de promover a liberação controlada de agentes terapêuticos, utilizando a curcumina como agente terapêutico modelo. A síntese do sistema híbrido foi realizada pela metologia grafting-from, utilizando a técnica de polimerização radicalar por adição-fragmentação reversível (RAFT), a partir da funcionalização da fibroína com agentes de transferência de cadeia (CTA1 e CTA2). Uma segunda rota de síntese foi planejada por meio da ativação dos CTA2 com pentafluorofenol (PFP). Os sistemas desenvolvidos foram caracterizados por espectroscopia na região do infravermelho com transformada de Fourier (FTIR), análise termogravimétrica (TGA), difração de raios X de pó (PXRD). As nanopartículas dos sistemas híbridos foram caracterizadas pelo espalhamento dinâmico de luz (DLS), medição do potencial zeta e microscopia eletrônica de transmissão (MET). Os resultados revelaram que os sistemas obtidos apresentaram morfologia nanoparticulada (~200 nm), estabilidade coloidal e comportamento termorresponsivo com transição de fase próxima a 40 °C. Além disso, os sistemas demonstraram eficiência de encapsulamento da curcumina (~40%) e liberação intensificada a temperaturas elevadas. A análise da cinética de liberação indicou melhor ajuste aos modelos matemáticos de Weibull e Gompertz (R² > 0,99), sugerindo um processo controlado e termorresponsivo. Ensaios de citotoxicidade in vitro, avaliados por citometria de fluxo, revelaram baixa toxicidade em células normais (MRC5) e alta seletividade frente à linhagem tumoral 4T1, com até 49,5% de inibição celular Diante dos resultados obtidos, é possível considerar que os sistemas híbridos SF–PNVCL representam uma plataforma promissora para o desenvolvimento de carreadores inteligentes de agentes terapêuticos, com potencial aplicação em terapias direcionadas. pt_BR
dc.publisher.country Brasil pt_BR
dc.publisher.department PPG - Programas de Pós Graduação - Itabira pt_BR
dc.publisher.program Programa de Pós-Graduação: Doutorado - Multicêntrico em Química de Minas Gerais pt_BR
dc.publisher.initials UNIFEI pt_BR
dc.subject.cnpq CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA pt_BR
dc.subject.cnpq CNPQ::CIENCIAS BIOLOGICAS::MICROBIOLOGIA::MICROBIOLOGIA MEDICA pt_BR
dc.relation.references 1. Farokhi, M.; Mottaghitalab, F.; Reis, R.L.; Ramakrishna, S.; Kundu, S.C. Functionalized Silk Fibroin Nanofibers as Drug Carriers: Advantages and Challenges. J. Control. Release 2020, 321, 324–347. [CrossRef] [PubMed] 2. Yamaguchi, K.; Kikuchi, Y.; Takagi, T.; Kikuchi, A.; Oyama, F.; Shimura, K.; Mizuno, S. Primary Structure of the Silk Fibroin Light Chain Determined by CDNA Sequencing and Peptide Analysis. J. Mol. Biol. 1989, 210, 127–139. [CrossRef] [PubMed] 3. Neubauer, V.J.; Döbl, A.; Scheibel, T. Silk-Based Materials for Hard Tissue Engineering. Materials 2021, 14, 674. [CrossRef] [PubMed] 4. Xu, Z.; Gao, W.; Bai, H. Silk-Based Bioinspired Structural and Functional Materials. iScience 2022, 25, 103940. [CrossRef] [PubMed] 5. Tomeh, M.A.; Hadianamrei, R.; Zhao, X. Silk Fibroin as a Functional Biomaterial for Drug and Gene Delivery. Pharmaceutics 2019,11, 494. [CrossRef] 6. Nguyen, T.P.; Nguyen, Q.V.; Nguyen, V.-H.; Le, T.-H.; Huynh, V.Q.N.; Vo, D.-V.N.; Trinh, Q.T.; Kim, S.Y.; Le, Q. Van Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers 2019, 11, 1933. [CrossRef] 7. Zhao, Z.; Li, Y.; Xie, M.-B. Silk Fibroin-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 2015, 16, 4880–4903. [CrossRef] 8. Paladini, F.; Pollini, M. Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. Materials 2022, 15, 6952. [CrossRef] 9. Sun, W.; Gregory, D.A.; Tomeh, M.A.; Zhao, X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 1499. [CrossRef] 10. Li, G.; Sun, S. Silk Fibroin-Based Biomaterials for Tissue Engineering Applications. Molecules 2022, 27, 2757. [CrossRef] 11. Vidya, M.; Rajagopal, S. Silk Fibroin: A Promising Tool for Wound Healing and Skin Regeneration. Int. J. Polym. Sci. 2021, 2021, 9069924. [CrossRef] 12. Mazurek, Ł.; Szudzik, M.; Rybka, M.; Konop, M. Silk Fibroin Biomaterials and Their Beneficial Role in Skin Wound Healing. Biomolecules 2022, 12, 1852. [CrossRef] [PubMed] 13. Bari, E.; Di Gravina, G.M.; Scocozza, F.; Perteghella, S.; Frongia, B.; Tengattini, S.; Segale, L.; Torre, M.L.; Conti, M. Silk Fibroin Bioink for 3D Printing in Tissue Regeneration: Controlled Release of MSC Extracellular Vesicles. Pharmaceutics 2023, 15, 383. [CrossRef] 14. Kim, S.H.; Hong, H.; Ajiteru, O.; Sultan, M.T.; Lee, Y.J.; Lee, J.S.; Lee, O.J.; Lee, H.; Park, H.S.; Choi, K.Y.; et al. 3D Bioprinted Silk Fibroin Hydrogels for Tissue Engineering. Nat. Protoc. 2021, 16, 5484–5532. [CrossRef] 15. Kambe, Y. Functionalization of Silk Fibroin-Based Biomaterials for Tissue Engineering. Polym. J. 2021, 53, 1345–1351. [CrossRef] 16. Wu, R.; Li, H.; Yang, Y.; Zheng, Q.; Li, S.; Chen, Y. Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives. ACS Appl. Bio Mater. 2021, 4, 6630–6646. [CrossRef] 17. Wang, F.; Wu, H.; Venkataraman, V.; Hu, X. Silk Fibroin-Poly(Lactic Acid) Biocomposites: Effect of Protein-Synthetic Polymer Interactions and Miscibility on Material Properties and Biological Responses. Mater. Sci. Eng. C 2019, 104, 109890. [CrossRef] 18. Maziz, A.; Leprette, O.; Boyer, L.; Blatché, C.; Bergaud, C. Tuning the Properties of Silk Fibroin Biomaterial via Chemical Cross-Linking. Biomed. Phys. Eng. Express 2018, 4, 065012. [CrossRef] 19. Janani, G.; Kumar, M.; Chouhan, D.; Moses, J.C.; Gangrade, A.; Bhattacharjee, S.; Mandal, B.B. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS Appl. Bio Mater. 2019, 2, 5460–5491. [CrossRef] 20. Kundu, J.; Poole-Warren, L.A.; Martens, P.; Kundu, S.C. Silk Fibroin/Poly(Vinyl Alcohol) Photocrosslinked Hydrogels for Delivery of Macromolecular Drugs. Acta Biomater. 2012, 8, 1720–1729. [CrossRef] 21. Xia, Y.; Lu, Y. Fabrication and Properties of Conductive Conjugated Polymers/Silk Fibroin Composite Fibers. Compos. Sci. Technol. 2008, 68, 1471–1479. [CrossRef] 22. Saleem, M.; Rasheed, S.; Yougen, C. Silk Fibroin/Hydroxyapatite Scaffold: A Highly Compatible Material for Bone Regeneration. Sci. Technol. Adv. Mater. 2020, 21, 242–266. [CrossRef] [PubMed] 23. Cheng, Y.; Cheng, G.; Xie, C.; Yin, C.; Dong, X.; Li, Z.; Zhou, X.; Wang, Q.; Deng, H.; Li, Z. Biomimetic Silk Fibroin Hydrogels Strengthened by Silica Nanoparticles Distributed Nanofibers Facilitate Bone Repair. Adv. Healthc. Mater. 2021, 10, 2001646. [CrossRef] [PubMed] 24. Maleki, H.; Shahbazi, M.-A.; Montes, S.; Hosseini, S.H.; Eskandari, M.R.; Zaunschirm, S.; Verwanger, T.; Mathur, S.; Milow, B.; Krammer, B.; et al. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. ACS Appl. Mater. Interfaces 2019, 11, 17256–17269. [CrossRef] 25. Xu, Z.; Shi, L.; Yang, M.; Zhu, L. Preparation and Biomedical Applications of Silk FibroinNanoparticles Composites with Enhanced Properties—A Review. Mater. Sci. Eng. C 2019, 95, 302–311. [CrossRef] 26. Guo, L.; Chen, S. Facile Synthesis of Gold Nanorod-Decorated Silk Fibroin Spheres with Enhanced NIR-Sensitive Photo-Thermal Activity. Optik 2019, 188, 193–199. [CrossRef] 27. Yu, H.; Li, Y.; Zhang, Z.; Ren, J.; Zhang, L.; Xu, Z.; Kang, Y.; Xue, P. Silk Fibroin-Capped Metal-Organic Framework for Tumor- Specific Redox Dyshomeostasis Treatment Synergized by Deoxygenation-Driven Chemotherapy. Acta Biomater. 2022, 138, 545–560. [CrossRef] 28. Seib, F.P.; Jones, G.T.; Rnjak-Kovacina, J.; Lin, Y.; Kaplan, D.L. PH-Dependent Anticancer Drug Release from Silk Nanoparticles.Adv. Healthc. Mater. 2013, 2, 1606–1611. [CrossRef] 29. Mane, P.C.; Shinde, M.D.; Varma, S.; Chaudhari, B.P.; Fatehmulla, A.; Shahabuddin, M.; Amalnerkar, D.P.; Aldhafiri, A.M.; Chaudhari, R.D. Highly Sensitive Label-Free Bio-Interfacial Colorimetric Sensor Based on Silk Fibroin-Gold Nanocomposite for Facile Detection of Chlorpyrifos Pesticide. Sci. Rep. 2020, 10, 4198. [CrossRef] 30. Zhu, G.; Sun, Z.; Hui, P.; Chen, W.; Jiang, X. Composite Film with Antibacterial Gold Nanoparticles and Silk Fibroin for Treating Multidrug-Resistant, E. Coli -Infected Wounds. ACS Biomater. Sci. Eng. 2021, 7, 1827–1835. [CrossRef] 31. Majumder, S.; Ranjan Dahiya, U.; Yadav, S.; Sharma, P.; Ghosh, D.; Rao, G.; Rawat, V.; Kumar, G.; Kumar, A.; Srivastava, C. Zinc Oxide Nanoparticles Functionalized on Hydrogel Grafted Silk Fibroin Fabrics as Efficient Composite Dressing. Biomolecules 2020, 10, 710. [CrossRef] [PubMed] 32. Liu, Q.; Feng, L.; Chen, Z.; Lan, Y.; Liu, Y.; Li, D.; Yan, C.; Xu, Y. Ultrasmall Superparamagnetic Iron Oxide Labeled Silk Fibroin/Hydroxyapatite Multifunctional Scaffold Loaded with Bone Marrow-Derived Mesenchymal Stem Cells for Bone Regen- eration. Front. Bioeng. Biotechnol. 2020, 8, 697. [CrossRef] [PubMed] 33. Zou, X.; Jiang, Z.; Li, L.; Huang, Z. Selenium Nanoparticles Coated with PH Responsive Silk Fibroin Complex for Fingolimod Release and Enhanced Targeting in Thyroid Cancer. Artif. Cells Nanomed. Biotechnol. 2021, 49, 83–95. [CrossRef] [PubMed] 34. Wu, P.; Liu, Q.; Wang, Q.; Qian, H.; Yu, L.; Liu, B.; Li, R. Novel Silk Fibroin Nanoparticles Incorporated Silk Fibroin Hydrogel for Inhibition of Cancer Stem Cells and Tumor Growth. Int. J. Nanomed. 2018, 13, 5405–5418. [CrossRef] 35. Zhang, L.; Yang, R.; Yu, H.; Xu, Z.; Kang, Y.; Cui, H.; Xue, P. MnO2-Capped Silk Fibroin (SF) Nanoparticles with Chlorin E6 (Ce6) Encapsulation for Augmented Photo-Driven Therapy by Modulating the Tumor Microenvironment. J. Mater. Chem. B 2021, 9, 3677–3688. [CrossRef] 36. Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials Fabrication from Bombyx Mori Silk Fibroin.Nat. Protoc. 2011, 6, 1612–1631. [CrossRef] 37. Ranjana, R.; Asha, S.; Parushuram, N.; Harisha, K.S.; Shilpa, M.; Narayana, B.; Byrappa, K.; Sangappa, Y. Synthesis and Characterization of Gold Nanopaticles; AIP Publishing: Melville, NY, USA, 2018; p. 020042. 38. Braga, S.S.; Silva, A.M.S. A New Age for Iron: Antitumoral Ferrocenes. Organometallics 2013, 32, 5626–5639. [CrossRef] 39. Shivananda, C.S.; Asha, S.; Madhukumar, R.; Satish, S.; Narayana, B.; Byrappa, K.; Wang, Y.; Sangappa, Y. Biosynthesis of Colloidal Silver Nanoparticles: Their Characterization and Antibacterial Activity. Biomed. Phys. Eng. Express 2016, 2, 035004. [CrossRef] 40. Patil, S.; George, T.; Mahadik, K. Green Synthesized Nanosilver Loaded Silk Fibroin Gel for Enhanced Wound Healing. J. Drug Deliv. Sci. Technol. 2015, 30, 30–36. [CrossRef] 41. Chirila, T.V.; Barnard, Z.; Zainuddin; Harkin, D.G.; Schwab, I.R.; Hirst, L.W. Bombyx Mori Silk Fibroin Membranes as Potential Substrata for Epithelial Constructs Used in the Management of Ocular Surface Disorders. Tissue Eng. Part A 2008, 14, 1203–1211. [CrossRef] 42. Zheng, Z.; Guo, S.; Liu, Y.; Wu, J.; Li, G.; Liu, M.; Wang, X.; Kaplan, D. Lithium-Free Processing of Silk Fibroin. J. Biomater. Appl.2016, 31, 450–463. [CrossRef] [PubMed] 43. Wöltje, M.; Kölbel, A.; Aibibu, D.; Cherif, C. A Fast and Reliable Process to Fabricate Regenerated Silk Fibroin Solution from Degummed Silk in 4 Hours. Int. J. Mol. Sci. 2021, 22, 10565. [CrossRef] [PubMed] 44. Ajisawa, A. Dissolution Aqueous of Silk Fibroin with Calciumchloride / Ethanol Solution. J. Sericultural Sci. Jpn. 1997, 67, 91–94. 45. Grabska-Zielin´ska, S.; Sionkowska, A. How to Improve Physico-Chemical Properties of Silk Fibroin Materials for Biomedical Applications—Blending and Cross-Linking of Silk Fibroin—A Review. Materials 2021, 14, 1510. [CrossRef] 46. Horan, R.L.; Antle, K.; Collette, A.L.; Wang, Y.; Huang, J.; Moreau, J.E.; Volloch, V.; Kaplan, D.L.; Altman, G.H. In Vitro Degradation of Silk Fibroin. Biomaterials 2005, 26, 3385–3393. [CrossRef] 47. Umuhoza, D.; Yang, F.; Long, D.; Hao, Z.; Dai, J.; Zhao, A. Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomater. Sci. Eng. 2020, 6, 1290–1310. [CrossRef] 48. Reizabal, A.; Costa, C.M.; Pérez-Álvarez, L.; Vilas-Vilela, J.L.; Lanceros-Méndez, S. Silk Fibroin as Sustainable Advanced Material: Material Properties and Characteristics, Processing, and Applications. Adv. Funct. Mater. 2023, 33, 2210764. [CrossRef] 49. Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D.L. Silk-Based Biomaterials.Biomaterials 2003, 24, 401–416. [CrossRef] 50. Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X. Silk Fibroin Biomaterials for Tissue Regenerations. Adv. Drug Deliv. Rev. 2013, 65, 457–470. [CrossRef] 51. Murphy, A.R.; Kaplan, D.L. Biomedical Applications of Chemically-Modified Silk Fibroin. J. Mater. Chem. 2009, 19, 6443–6450. [CrossRef] 52. Buga, M.-R.; Zaharia, C.; Bălan, M.; Bressy, C.; Ziarelli, F.; Margaillan, A. Surface Modification of Silk Fibroin Fibers with Poly(Methyl Methacrylate) and Poly(Tributylsilyl Methacrylate) via RAFT Polymerization for Marine Antifouling Applications. Mater. Sci. Eng. C 2015, 51, 233–241. [CrossRef] [PubMed] 53. Furuzono, T.; Ishihara, K.; Nakabayashi, N.; Tamada, Y. Chemical Modification of Silk Fibroin with 2-Methacryloyloxyethyl Phosphorylcholine. II. Graft-Polymerization onto Fabric through 2-Methacryloyloxyethyl Isocyanate and Interaction between Fabric and Platelets. Biomaterials 2000, 21, 327–333. [CrossRef] [PubMed] 54. Chai, S.; Wu, H.; Peng, X.; Tan, Z.; Cao, H.; Wei, L.; Mao, X.; Zhang, Z.; Zhou, F.; Zhang, Q.; et al. Progress in Research and Application of Modified Silk Fibroin Fibers. Adv. Mater. Technol. 2024, 9, 2301659. [CrossRef] 55. Monti, P.; Freddi, G.; Sampaio, S.; Tsukada, M.; Taddei, P. Structure Modifications Induced in Silk Fibroin by Enzymatic Treatments. A Raman Study. J. Mol. Struct. 2005, 744–747, 685–690. [CrossRef] 56. Li, M.; Ogiso, M.; Minoura, N. Enzymatic Degradation Behavior of Porous Silk Fibroin Sheets. Biomaterials 2003, 24, 357–365. [CrossRef] 57. Wang, K.; Ma, Q.; Zhou, H.-T.; Zhao, J.-M.; Cao, M.; Wang, S.-D. Review on Fabrication and Application of Regenerated Bombyx Mori Silk Fibroin Materials. AUTEX Res. J. 2023, 23, 164–183. [CrossRef] 58. Gore, P.M.; Naebe, M.; Wang, X.; Kandasubramanian, B. Progress in Silk Materials for Integrated Water Treatments: Fabrication, Modification and Applications. Chem. Eng. J. 2019, 374, 437–470. [CrossRef] 59. King, J.A.; Hine, P.J.; Baker, D.L.; Ries, M.E. Understanding the Dissolution of Cellulose and Silk Fibroin in 1-Ethyl-3- Methylimidazolium Acetate and Dimethyl Sulphoxide for Application in Hybrid Films. Materials 2024, 17, 5262. [CrossRef] 60. Zhang, M.; Ding, C.; Chen, L.; Huang, L. The Preparation of Cellulose/Collagen Composite Films Using 1-Ethyl-3- Methylimidazolium Acetate as a Solvent. BioResources 2013, 9, 756–771. [CrossRef] 61. Romero, M.; Mombrú, D.; Pignanelli, F.; Faccio, R.; Mombrú, A.W. Hybrid Organic-Inorganic Materials and Interfaces With Mixed Ionic-Electronic Transport Properties: Advances in Experimental and Theoretical Approaches. Front. Chem. 2022, 10, 892013. [CrossRef] 62. Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Adv. Funct. Mater. 2018, 28, 1704158. [CrossRef] 63. Lu, K. Hybrid Materials—A Review on Co-Dispersion, Processing, Patterning, and Properties. Int. Mater. Rev. 2020, 65, 463–501.[CrossRef] 64. Saveleva, M.S.; Eftekhari, K.; Abalymov, A.; Douglas, T.E.L.; Volodkin, D.; Parakhonskiy, B.V.; Skirtach, A.G. Hierarchy of Hybrid Materials—The Place of Inorganics-in-Organics in It, Their Composition and Applications. Front. Chem. 2019, 7, 179. [CrossRef] 65. Kickelbick, G. Hybrid Materials—Past, Present and Future. Hybrid. Mater. 2014, 1, 39–51. [CrossRef] 66. Soares, D.C.F.; Domingues, S.C.; Viana, D.B.; Tebaldi, M.L. Polymer-Hybrid Nanoparticles: Current Advances in Biomedical Applications. Biomed. Pharmacother. 2020, 131, 110695. [CrossRef] 67. Vasile, C.; Pamfil, D.; Stoleru, E.; Baican, M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020, 25, 1539. [CrossRef] 68. Chen, C.; Ng, D.Y.W.; Weil, T. Polymer Bioconjugates: Modern Design Concepts toward Precision Hybrid Materials. Prog. Polym.Sci. 2020, 105, 101241. [CrossRef] 69. Abuchowski, A.; van Es, T.; Palczuk, N.C.; Davis, F.F. Alteration of Immunological Properties of Bovine Serum Albumin by Covalent Attachment of Polyethylene Glycol. J. Biol. Chem. 1977, 252, 3578–3581. [CrossRef] 70. Maeda, H.; Takeshita, J.; Kanamaru, R. A Lipophilic Derivative of Neocarzinostatin a Polymer Conjugation of an Antitumor Protein Antibiotic. Int. J. Pept. Protein Res. 1979, 14, 81–87. [CrossRef] 71. Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, Present and Future. Cell Death Dis. 2020,11, 88. [CrossRef] 72. Jiang, W.; Shang, B.; Li, L.; Zhang, S.; Zhen, Y. Construction of a Genetically Engineered Chimeric Apoprotein Consisting of Sequences Derived from Lidamycin and Neocarzinostatin. Anticancer. Drugs 2016, 27, 24–28. [CrossRef] [PubMed] 73. Truong, N.P.; Jones, G.R.; Bradford, K.G.E.; Konkolewicz, D.; Anastasaki, A. A Comparison of RAFT and ATRP Methods for Controlled Radical Polymerization. Nat. Rev. Chem. 2021, 5, 859–869. [CrossRef] [PubMed] 74. Pollini, M.; Paladini, F. Bioinspired Materials for Wound Healing Application: The Potential of Silk Fibroin. Materials 2020,13, 3361. [CrossRef] [PubMed] 75. Hong, H.; Seo, Y.B.; Kim, D.Y.; Lee, J.S.; Lee, Y.J.; Lee, H.; Ajiteru, O.; Sultan, M.T.; Lee, O.J.; Kim, S.H.; et al. Digital Light Processing 3D Printed Silk Fibroin Hydrogel for Cartilage Tissue Engineering. Biomaterials 2020, 232, 119679. [CrossRef] 76. Gholipourmalekabadi, M.; Sapru, S.; Samadikuchaksaraei, A.; Reis, R.L.; Kaplan, D.L.; Kundu, S.C. Silk Fibroin for Skin Injury Repair: Where Do Things Stand? Adv. Drug Deliv. Rev. 2020, 153, 28–53. [CrossRef] 77. van Uden, S.; Vanerio, N.; Catto, V.; Bonandrini, B.; Tironi, M.; Figliuzzi, M.; Remuzzi, A.; Kock, L.; Redaelli, A.C.L.; Greco, F.G.; et al. A Novel Hybrid Silk-Fibroin/Polyurethane ThreeLayered Vascular Graft: Towards in Situ Tissue-Engineered Vascular Accesses for Haemodialysis. Biomed. Mater. 2019, 14, 025007. [CrossRef] 78. Kim, J.H.; Kim, D.K.; Lee, O.J.; Ju, H.W.; Lee, J.M.; Moon, B.M.; Park, H.J.; Kim, D.W.; Lee, J.H.; Park, C.H. Osteoinductive Silk Fibroin/Titanium Dioxide/Hydroxyapatite Hybrid Scaffold for Bone Tissue Engineering. Int. J. Biol. Macromol. 2016, 82, 160–167. [CrossRef] 79. Brito-Pereira, R.; Correia, D.M.; Ribeiro, C.; Francesko, A.; Etxebarria, I.; Pérez-Álvarez, L.; Vilas, J.L.; Martins, P.; Lanceros- Mendez, S. Silk Fibroin-Magnetic Hybrid Composite Electrospun Fibers for Tissue Engineering Applications. Compos. Part B Eng. 2018, 141, 70–75. [CrossRef] 80. Xing, T.L.; Wang, H.J.; Li, Z.X.; Chen, G.Q. Surface Grafting Modification of Silk Fibroin by Atom Transfer Radical Polymerization.Key Eng. Mater. 2008, 373–374, 629–632. [CrossRef] 81. Radu, I.-C.; Biru, I.-E.; Damian, C.-M.; Ion, A.-C.; Iovu, H.; Tanasa, E.; Zaharia, C.; Galateanu, B. Grafting versus Crosslinking of Silk Fibroin-g-PNIPAM via Tyrosine-NIPAM Bridges. Molecules 2019, 24, 4096. [CrossRef] 82. Flores-Vela, E.V.; Conejo-Dávila, A.S.; Hernández-Escobar, C.A.; Dominguez, R.B.; ChávezFlores, D.; Tapia-Lopez, L.V.; Piñon- Balderrama, C.; Estrada-Monje, A.; Luna-Velasco, M.A.; Osuna, V.C.; et al. Silk Fibroin-g-Polyaniline Platform for the Design of Biocompatible-Electroactive Substrate. Polymers 2022, 14, 4653. [CrossRef] [PubMed] 83. Kuang, D.; Wu, F.; Yin, Z.; Zhu, T.; Xing, T.; Kundu, S.; Lu, S. Silk Fibroin/Polyvinyl Pyrrolidone Interpenetrating Polymer Network Hydrogels. Polymers 2018, 10, 153. [CrossRef] [PubMed] 84. Xing, T.L.; Xu, X.; Chen, G.Q. Grafting of 2-Diethylaminoethyl Methacrylate onto Silk by ATRP. Adv. Mater. Res. 2011, 175–176, 614–618. [CrossRef] 85. Di Foggia, M.; Tsukada, M.; Taddei, P. Vibrational Study on Structure and Bioactivity of Protein Fibers Grafted with Phosphory- lated Methacrylates. Molecules 2021, 26, 6487. [CrossRef] 86. Niu, L.; Chen, G.; Feng, Y.; Liu, X.; Pan, P.; Huang, L.; Guo, Y.; Li, M. PolyethylenimineModified Bombyx Mori Silk Fibroin as a Delivery Carrier of the ING4-IL-24 Coexpression Plasmid. Polymers 2021, 13, 3592. [CrossRef] 87. Heichel, D.L.; Vy, N.C.H.; Ward, S.P.; Adamson, D.H.; Burke, K.A. Controlled Radical Polymerization of Hydrophilic and Zwitterionic Brush-like Polymers from Silk Fibroin Surfaces. J. Mater. Chem. B 2020, 8, 10392–10406. [CrossRef] 88. Viola, M.; Ainsworth, M.J.; Mihajlovic, M.; Cedillo-Servin, G.; van Steenbergen, M.J.; van Rijen, M.; de Ruijter, M.; Castilho, M.; Malda, J.; Vermonden, T. Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs. Biomacromolecules 2024, 25, 1563–1577. [CrossRef] 89. Mao, K.-L.; Fan, Z.-L.; Yuan, J.-D.; Chen, P.-P.; Yang, J.-J.; Xu, J.; ZhuGe, D.-L.; Jin, B.-H.; Zhu, Q.-Y.; Shen, B.-X.; et al. Skin Penetrating Polymeric Nanoparticles Incorporated in Silk Fibroin Hydrogel for Topical Delivery of Curcumin to Improve Its Therapeutic Effect on Psoriasis Mouse Model. Colloids Surf. B Biointerfaces 2017, 160, 704–714. [CrossRef] 90. Ma, C.-C.; Wang, Z.-L.; Xu, T.; He, Z.-Y.; Wei, Y.-Q. The Approved Gene Therapy Drugs Worldwide: From 1998 to 2019. Biotechnol.Adv. 2020, 40, 107502. [CrossRef] 91. Roma-Rodrigues, C.; Rivas-García, L.; Baptista, P.V.; Fernandes, A.R. Gene Therapy in Cancer Treatment: Why Go Nano?Pharmaceutics 2020, 12, 233. [CrossRef] 92. Wirth, T.; Parker, N.; Ylä-Herttuala, S. History of Gene Therapy. Gene 2013, 525, 162–169. [CrossRef] [PubMed] 93. Chen, J.; Guo, Z.; Tian, H.; Chen, X. Production and Clinical Development of Nanoparticles for Gene Delivery. Mol. Ther.-Methods Clin. Dev. 2016, 3, 16023. [CrossRef] [PubMed] 94. Liu, Y.; You, R.; Liu, G.; Li, X.; Sheng, W.; Yang, J.; Li, M. Antheraea Pernyi Silk FibroinCoated PEI/DNA Complexes for Targeted Gene Delivery in HEK 293 and HCT 116 Cells. Int. J. Mol. Sci. 2014, 15, 7049–7063. [CrossRef] [PubMed] 95. Muhammad, Q.; Jang, Y.; Kang, S.H.; Moon, J.; Kim, W.J.; Park, H. Modulation of Immune Responses with Nanoparticles and Reduction of Their Immunotoxicity. Biomater. Sci. 2020, 8, 1490–1501. [CrossRef] 96. Numata, K.; Mieszawska-Czajkowska, A.J.; Kvenvold, L.A.; Kaplan, D.L. Silk-Based Nanocomplexes with Tumor-Homing Peptides for Tumor-Specific Gene Delivery. Macromol. Biosci. 2012, 12, 75–82. [CrossRef] 97. Numata, K.; Kaplan, D.L. Silk-Based Delivery Systems of Bioactive Molecules. Adv. Drug Deliv. Rev. 2010, 62, 1497–1508.[CrossRef] 98. Numata, K.; Subramanian, B.; Currie, H.A.; Kaplan, D.L. Bioengineered Silk Protein-Based Gene Delivery Systems. Biomaterials 2009, 30, 5775–5784. [CrossRef] 99. Gong, H.; Wang, J.; Zhang, J.; Wu, J.; Zheng, Z.; Xie, X.; Kaplan, D.L.; Li, G.; Wang, X. Control of Octreotide Release from Silk Fibroin Microspheres. Mater. Sci. Eng. C 2019, 102, 820–828. [CrossRef] 100. Hou, A.; Chen, H. Preparation and Characterization of Silk/Silica Hybrid Biomaterials by Sol–Gel Crosslinking Process. Mater.Sci. Eng. B 2010, 167, 124–128. [CrossRef] 101. Pereira, R.F.P.; Zehbe, K.; Günter, C.; dos Santos, T.; Nunes, S.C.; Paz, F.A.A.; Silva, M.M.; Granja, P.L.; Taubert, A.; de Zea Bermudez, V. Ionic Liquid-Assisted Synthesis of Mesoporous Silk Fibroin/Silica Hybrids for Biomedical Applications. ACS Omega 2018, 3, 10811–10822. [CrossRef] 102. Zhao, X.; Chen, Z.; Liu, Y.; Huang, Q.; Zhang, H.; Ji, W.; Ren, J.; Li, J.; Zhao, Y. Silk Fibroin Microparticles with Hollow Mesoporous Silica Nanocarriers Encapsulation for Abdominal Wall Repair. Adv. Healthc. Mater. 2018, 7, e1801005. [CrossRef] 103. Shen, L.; Guo, L.; Chen, S.; Wei, A.; Osaka, A.; Chen, W. Self-Assembly of Silica Spheres on Silk Fibroin Spheres for Synthesis of Porous Hollow Silica Spheres and Their in Vitro Biocompatibility and Drug Delivery Property. J. Non. Cryst. Solids 2019, 522, 119557. [CrossRef] 104. Cheng, N.; Wang, Y.; Zhang, Y.; Shi, B. The Osteogenic Potential of Mesoporous Bioglasses/Silk and Non-Mesoporous Bio- glasses/Silk Scaffolds in Ovariectomized Rats: In Vitro and In Vivo Evaluation. PLoS ONE 2013, 8, e81014. [CrossRef] [PubMed] 105. Wu, C.; Zhang, Y.; Zhu, Y.; Friis, T.; Xiao, Y. Structure–Property Relationships of SilkModified Mesoporous Bioglass Scaffolds.Biomaterials 2010, 31, 3429–3438. [CrossRef] [PubMed] 106. Zhang, Y.; Miron, R.J.; Li, S.; Shi, B.; Sculean, A.; Cheng, X. Novel MesoPorous BioGlass/Silk Scaffold Containing AdPDGF-B and AdBMP7 for the Repair of Periodontal Defects in Beagle Dogs. J. Clin. Periodontol. 2015, 42, 262–271. [CrossRef] 107. Yu, Y.; Yang, B.; Tian, D.; Liu, J.; Yu, A.; Wan, Y. Thiolated Hyaluronic Acid/Silk Fibroin Dual-Network Hydrogel Incorporated with Bioglass Nanoparticles for Wound Healing. Carbohydr. Polym. 2022, 288, 119334. [CrossRef] 108. Zhao, Z.; Ma, X.; Zhao, B.; Tian, P.; Ma, J.; Kang, J.; Zhang, Y.; Guo, Y.; Sun, L. Naringininlaid Silk Fibroin/Hydroxyapatite Scaffold Enhances Human Umbilical Cord-derived Mesenchymal Stem Cell-based Bone Regeneration. Cell Prolif. 2021, 54, e13043. [CrossRef] 109. Coelho, F.; Cavicchioli, M.; Specian, S.S.; Cilli, E.M.; Lima Ribeiro, S.J.; Scarel-Caminaga, R.M.; de Oliveira Capote, T.S. Silk Fibroin/Hydroxyapatite Composite Membranes: Production, Characterization and Toxicity Evaluation. Toxicol. Vitr. 2020, 62, 104670. [CrossRef] 1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249, doi:10.3322/caac.21660. 2. James, S. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788, doi:10.1016/S0140-6736(18)32203-7. 3. Soerjomataram, I.; Bray, F. Planning for Tomorrow: Global Cancer Incidence and the Role of Prevention 2020–2070. Nat. Rev. Clin. Oncol. 2021, 18, 663–672, doi:10.1038/s41571-02100514-z. 4. WHO WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All.; Geneva, 2020; 5. Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic Instability — an Evolving Hallmark of Cancer. Nat. Rev. Mol. Cell Biol. 2010, 11, 220–228, doi:10.1038/nrm2858. 6. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646– 674, doi:10.1016/j.cell.2011.02.013. 7. Weinberg, R.A. How Cancer Arises. Sci. Am. 1996, 275, 61–61, doi:10.1038/scientificamerican0996-61. 8. DeVita; Lawrence, T.S.; Rosenberg, S.A. Cancer: Principles & Practice of Oncology; 10th ed.; Lippincott Williams & Wilkins: USA, 2015; 9. Delahousse, J.; Skarbek, C.; Paci, A. Prodrugs as Drug Delivery System in Oncology. Cancer Chemother. Pharmacol. 2019, 84, 937–958, doi:10.1007/s00280-019-03906-2. 10. Oun, R.; Moussa, Y.E.; Wheate, N.J. The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalt. Trans. 2018, 47, 6645–6653, doi:10.1039/C8DT00838H. 11. Sutradhar, K.B.; Amin, M.L. Nanotechnology in Cancer Drug Delivery and Selective Targeting. ISRN Nanotechnol. 2014, 2014, 1–12, doi:10.1155/2014/939378. 12. Dragojevic, S.; Ryu, J.; Raucher, D. Polymer-Based Prodrugs: Improving Tumor Targeting and the Solubility of Small Molecule Drugs in Cancer Therapy. Molecules 2015, 20, 21750–21769, doi:10.3390/molecules201219804. 13. Kudarha, R.R.; Sawant, K.K. Albumin Based Versatile Multifunctional Nanocarriers for Cancer Therapy: Fabrication, Surface Modification, Multimodal Therapeutics and Imaging Approaches. Mater. Sci. Eng. C 2017, 81, 607–626, doi:10.1016/j.msec.2017.08.004. 14. Fathi Maroufi, N.; Rashidi, M.R.; Vahedian, V.; Akbarzadeh, M.; Fattahi, A.; Nouri, M. Therapeutic Potentials of Apatinib in Cancer Treatment: Possible Mechanisms and Clinical Relevance. Life Sci. 2020, 241, 117106, doi:10.1016/j.lfs.2019.117106. 15. Veiseh, O.; Kievit, F.M.; Ellenbogen, R.G.; Zhang, M. Cancer Cell Invasion: Treatment and Monitoring Opportunities in Nanomedicine. Adv. Drug Deliv. Rev. 2011, 63, 582–596, doi:10.1016/j.addr.2011.01.010. 16. Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N.N.I.M.; Begum, M.Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R.; et al. A Comprehensive Review on the Therapeutic Potential of Curcuma Longa Linn. in Relation to Its Major Active Constituent Curcumin. Front. Pharmacol. 2022, 13, doi:10.3389/fphar.2022.820806. 17. Razavi, B.M.; Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. A Review of Therapeutic Potentials of Turmeric (Curcuma Longa) and Its Active Constituent, Curcumin, on Inflammatory Disorders, Pain, and Their Related Patents. Phyther. Res. 2021, 35, 6489–6513, doi:10.1002/ptr.7224. 18. Joshi, P.; Joshi, S.; Semwal, D.; Bisht, A.; Paliwal, S.; Dwivedi, J.; Sharma, S. Curcumin: An Insight into Molecular Pathways Involved in Anticancer Activity. Mini-Reviews Med. Chem. 2021, 21, 2420–2457, doi:10.2174/1389557521666210122153823. 19. Fu, Y.-S.; Chen, T.-H.; Weng, L.; Huang, L.; Lai, D.; Weng, C.-F. Pharmacological Properties and Underlying Mechanisms of Curcumin and Prospects in Medicinal Potential. Biomed. Pharmacother. 2021, 141, 111888, doi:10.1016/j.biopha.2021.111888. 20. Wong, S.C.; Kamarudin, M.N.A.; Naidu, R. Anticancer Mechanism of Curcumin on Human Glioblastoma. Nutrients 2021, 13, 950, doi:10.3390/nu13030950. 21. Kabir, M.T.; Rahman, M.H.; Akter, R.; Behl, T.; Kaushik, D.; Mittal, V.; Pandey, P.; Akhtar, M.F.; Saleem, A.; Albadrani, G.M.; et al. Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules 2021, 11, 392, doi:10.3390/biom11030392. 22. Mansouri, K.; Rasoulpoor, S.; Daneshkhah, A.; Abolfathi, S.; Salari, N.; Mohammadi, M.; Rasoulpoor, S.; Shabani, S. Clinical Effects of Curcumin in Enhancing Cancer Therapy: A Systematic Review. BMC Cancer 2020, 20, 791, doi:10.1186/s12885-020-07256-8. 23. Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The Role of Curcumin in Cancer Treatment. Biomedicines 2021, 9, 1086, doi:10.3390/biomedicines9091086. 24. Ashrafizadeh, M.; Zarrabi, A.; Hashemi, F.; Moghadam, E.R.; Hashemi, F.; Entezari, M.; Hushmandi, K.; Mohammadinejad, R.; Najafi, M. Curcumin in Cancer Therapy: A Novel Adjunct for Combination Chemotherapy with Paclitaxel and Alleviation of Its Adverse Effects. Life Sci. 2020, 256, 117984, doi:10.1016/j.lfs.2020.117984. 25. Sabet, S.; Rashidinejad, A.; Melton, L.D.; McGillivray, D.J. Recent Advances to Improve Curcumin Oral Bioavailability. Trends Food Sci. Technol. 2021, 110, 253–266, doi:10.1016/j.tifs.2021.02.006. 26. Zheng, B.; McClements, D.J. Formulation of More Efficacious Curcumin Delivery Systems Using Colloid Science: Enhanced Solubility, Stability, and Bioavailability. Molecules 2020, 25, 2791, doi:10.3390/molecules25122791. 27. Liu, Z.; Smart, J.D.; Pannala, A.S. Recent Developments in Formulation Design for Improving Oral Bioavailability of Curcumin: A Review. J. Drug Deliv. Sci. Technol. 2020, 60, 102082, doi:10.1016/j.jddst.2020.102082. 28. Tabanelli, R.; Brogi, S.; Calderone, V. Improving Curcumin Bioavailability: Current Strategies and Future Perspectives. Pharmaceutics 2021, 13, 1715, doi:10.3390/pharmaceutics13101715. 29. Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905, doi:10.3390/molecules26195905. 30. Sung, Y.K.; Kim, S.W. Recent Advances in Polymeric Drug Delivery Systems. Biomater. Res. 2020, 24, 12, doi:10.1186/s40824-020-00190-7. 31. Karra, N.; Benita, S. The Ligand Nanoparticle Conjugation Approach for Targeted Cancer Therapy. Curr. Drug Metab. 2012, 13, 22–41, doi:10.2174/138920012798356899. 32. TEIXEIRA, G.B. Nanocarreador Baseado Em Quitosana Tiolada e Nanopartícula de Ouro Como Sistema de Liberação Controlada Para o Fármaco Antineoplásico Docetaxel., Universidade Federal de Sergipe, 2018. 33. Allam, A.A.; Potter, S.J.; Bud’ko, S.L.; Shi, D.; Mohamed, D.F.; Habib, F.S.; Pauletti, G.M. Lipid-Coated Superparamagnetic Nanoparticles for Thermoresponsive Cancer Treatment. Int. J. Pharm. 2018, 548, 297–304, doi:10.1016/j.ijpharm.2018.07.022. 34. Hajba, L.; Guttman, A. The Use of Magnetic Nanoparticles in Cancer Theranostics: Toward Handheld Diagnostic Devices. Biotechnol. Adv. 2016, 34, 354–361, doi:10.1016/j.biotechadv.2016.02.001. 35. Uhrich, K.E.; Cannizzaro, S.M.; Langer, R.S.; Shakesheff, K.M. Polymeric Systems for Controlled Drug Release. Chem. Rev. 1999, 99, 3181–3198, doi:10.1021/cr940351u. 36. Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23, doi:10.1016/j.addr.2012.09.010. 37. Torchilin, V.P. Micellar Nanocarriers: Pharmaceutical Perspectives. Pharm. Res. 2006, 24, 1– 16, doi:10.1007/s11095-006-9132-0. 38. Lasic, D.D. LIPOSOMES in GENE DELIVERY; 1st ed.; CRC Press: London, 2019; ISBN 9780138748807. 39. Mohammadi, M.R.; Nojoomi, A.; Mozafari, M.; Dubnika, A.; Inayathullah, M.; Rajadas, J. Nanomaterials Engineering for Drug Delivery: A Hybridization Approach. J. Mater. Chem. B 2017, 5, 3995–4018, doi:10.1039/C6TB03247H. 40. Pinto, L.; Bonifacio, M.A.; De Giglio, E.; Santovito, E.; Cometa, S.; Bevilacqua, A.; Baruzzi, F. Biopolymer Hybrid Materials: Development, Characterization, and Food Packaging Applications. Food Packag. Shelf Life 2021, 28, 100676, doi:10.1016/j.fpsl.2021.100676. 41. Soares, D.C.F.; Domingues, S.C.; Viana, D.B.; Tebaldi, M.L. Polymer-Hybrid Nanoparticles: Current Advances in Biomedical Applications. Biomed. Pharmacother. 2020, 131, 110695, doi:10.1016/j.biopha.2020.110695. 42. Chen, C.; Ng, D.Y.W.; Weil, T. Polymer Bioconjugates: Modern Design Concepts toward Precision Hybrid Materials. Prog. Polym. Sci. 2020, 105, 101241, doi:10.1016/j.progpolymsci.2020.101241. 43. Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials Fabrication from Bombyx Mori Silk Fibroin. Nat. Protoc. 2011, 6, 1612–1631, doi:10.1038/nprot.2011.379. 44. Feng, Y.; Li, X.; Li, M.; Ye, D.; Zhang, Q.; You, R.; Xu, W. Facile Preparation of Biocompatible Silk Fibroin/Cellulose Nanocomposite Films with High Mechanical Performance. ACS Sustain. Chem. Eng. 2017, 5, 6227–6236, doi:10.1021/acssuschemeng.7b01161. 45. Kundu, B.; Kurland, N.E.; Yadavalli, V.K.; Kundu, S.C. Isolation and Processing of Silk Proteins for Biomedical Applications. Int. J. Biol. Macromol. 2014, 70, 70–77, doi:10.1016/j.ijbiomac.2014.06.022. 46. Maia, M.V.; Egito, E.S.T. do; Sapin-Minet, A.; Viana, D.B.; Kakkar, A.; Soares, D.C.F. Fibroin-Hybrid Systems: Current Advances in Biomedical Applications. Molecules 2025, 30, 328, doi:10.3390/molecules30020328. 47. Vaithanomsat, P.; Punyasawon, C. Production of Water-Soluble Silk Powder from Bombyx Mori Linn. Nat. Sci 2006, 40, 152:158. 48. Okahisa, Y.; Narita, C.; Aoki, T. Surface Analysis of Novel Fibroin Films Based on WellPreserved Crystalline Structures. Int. J. Biol. Macromol. 2021, 191, 1017–1025, doi:10.1016/j.ijbiomac.2021.09.125. 49. Fibrous Proteins; Ling, S., Ed.; Methods in Molecular Biology; Springer US: New York, NY, 2021; Vol. 2347; ISBN 978-1-0716-1573-7. 50. Shao, J.; Zheng, J.; Liu, J.; Carr, C.M. Fourier Transform Raman and Fourier Transform Infrared Spectroscopy Studies of Silk Fibroin. J. Appl. Polym. Sci. 2005, 96, 1999–2004, doi:10.1002/app.21346. 51. Hu, Y.; Zhang, Q.; You, R.; Wang, L.; Li, M. The Relationship between Secondary Structure and Biodegradation Behavior of Silk Fibroin Scaffolds. Adv. Mater. Sci. Eng. 2012, 2012, 1–5, doi:10.1155/2012/185905. 52. Amiraliyan, N.; Nouri, M.; Haghighat Kish, M. Structural Characterization and Mechanical Properties of Electrospun Silk Fibroin Nanofiber Mats. Polym. Sci. Ser. A 2010, 52, 407–412, doi:10.1134/S0965545X10040097. 53. Lu, Q.; Hu, X.; Wang, X.; Kluge, J.A.; Lu, S.; Cebe, P.; Kaplan, D.L. Water-Insoluble Silk Films with Silk I Structure. Acta Biomater. 2010, 6, 1380–1387, doi:10.1016/j.actbio.2009.10.041. 54. Liu, J.; Sun, H.; Peng, Y.; Chen, L.; Xu, W.; Shao, R. Preparation and Characterization of Natural Silk Fibroin Hydrogel for Protein Drug Delivery. Molecules 2022, 27, 3418, doi:10.3390/molecules27113418. 55. Yoshimizu, H.; Asakura, T. Preparation and Characterization of Silk Fibroin Powder and Its Application to Enzyme Immobilization. J. Appl. Polym. Sci. 1990, 40, 127–134, doi:10.1002/app.1990.070400111. 56. Sionkowska, A.; Płanecka, A. Preparation and Characterization of Silk Fibroin/Chitosan Composite Sponges for Tissue Engineering. J. Mol. Liq. 2013, 178, 5–14, doi:10.1016/j.molliq.2012.10.042. 57. Zhang, H.; Li, L.; Dai, F.; Zhang, H.; Ni, B.; Zhou, W.; Yang, X.; Wu, Y. Preparation and Characterization of Silk Fibroin as a Biomaterial with Potential for Drug Delivery. J. Transl. Med. 2012, 10, 117, doi:10.1186/1479-5876-10-117. 58. Zhong, J.; Zhou, X.; Ye, C.; Yu, W.; Tang, Y. Using FTIR Imaging to Investigate Silk FibroinBased Materials. In; 2021; pp. 207–219. 59. Eftink, M.R. The Use of Fluorescence Methods to Monitor Unfolding Transitions in Proteins. Biophys. J. 1994, 66, 482–501, doi:10.1016/S0006-3495(94)80799-4. 60. Pace, C.N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to Measure and Predict the Molar Absorption Coefficient of a Protein. Protein Sci. 1995, 4, 2411–2423, doi:10.1002/pro.5560041120. 61. Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. (Shanghai). 2007, 39, 549–559, doi:10.1111/j.17457270.2007.00320.x. 62. Numata, K.; Subramanian, B.; Currie, H.A.; Kaplan, D.L. Bioengineered Silk Protein-Based Gene Delivery Systems. Biomaterials 2009, 30, 5775–5784, doi:10.1016/j.biomaterials.2009.06.028. 63. Parushuram, N.; Ranjana, R.; Narayana, B.; Mahendra, M.; Sangappa, Y. Facile Fabrication of Silk Fibroin Microparticles: Their Characterization and Potential Adsorption Study. J. Dispers. Sci. Technol. 2020, 1–19, doi:10.1080/01932691.2020.1774383. 64. Nashchekina, Y.A.; Konygina, V.S.; Popova, E.N.; Kodolova-Chukhontseva, V. V.; Nashchekin, A. V.; Yudin, V.E. Preparation of Water-Insoluble Silk Fibroin Films. Study of Their Structure and Properties. Tech. Phys. 2022, 67, 297–303, doi:10.1134/S1063784222050073. 65. Fu, Z.; Li, W.; Wei, J.; Yao, K.; Wang, Y.; Yang, P.; Li, G.; Yang, Y.; Zhang, L. Construction and Biocompatibility Evaluation of Fibroin/Sericin-Based Scaffolds. ACS Biomater. Sci. Eng. 2022, 8, 1494–1505, doi:10.1021/acsbiomaterials.1c01426. 66. Rajesha Shetty, G.; Lakshmeesha Rao, B. Preparation and Characterization of Silk FibroinPolyvinyl Alcohol (PVA) Blend Films for Food Packaging Materials. Mater. Today Proc. 2022, 55, 194–200, doi:10.1016/j.matpr.2022.02.034. 67. Matsumoto, A.; Lindsay, A.; Abedian, B.; Kaplan, D.L. Silk Fibroin Solution Properties Related to Assembly and Structure. Macromol. Biosci. 2008, 8, 1006–1018, doi:10.1002/mabi.200800020. 68. Xiang, Y.; Li, L.; Zheng, S. Morphologies and Dielectric Properties of Epoxy Thermosets Containing Poly(N-Vinylcarbazole), Fullerene-C60 and Their Charge Transfer Complex Nanophases. Polymer (Guildf). 2018, 138, 113–123, doi:10.1016/j.polymer.2018.01.057. 69. Vanparijs, N.; Maji, S.; Louage, B.; Voorhaar, L.; Laplace, D.; Zhang, Q.; Shi, Y.; Hennink, W.E.; Hoogenboom, R.; De Geest, B.G. Polymer-Protein Conjugation via a ‘Grafting to’ Approach – a Comparative Study of the Performance of Protein-Reactive RAFT Chain Transfer Agents. Polym. Chem. 2015, 6, 5602–5614, doi:10.1039/C4PY01224K. 70. Gonzalez-Urias, A.; Licea-Claverie, A.; Sañudo-Barajas, J.A.; González-Ayón, M.A. NVCLBased Hydrogels and Composites for Biomedical Applications: Progress in the Last Ten Years. Int. J. Mol. Sci. 2022, 23, 4722, doi:10.3390/ijms23094722. 71. Van Nieuwenhove, I.; Maji, S.; Dash, M.; Van Vlierberghe, S.; Hoogenboom, R.; Dubruel, P. RAFT/MADIX Polymerization of N-Vinylcaprolactam in Water–Ethanol Solvent Mixtures. Polym. Chem. 2017, 8, 2433–2437, doi:10.1039/C6PY02224C. 72. Chu, S.; Joma, N.; Yong, H.W.; Maysinger, D.; Kakkar, A.; Stochaj, U. Curcumin and Butyrate Induce Fibroblast Senescence without the Emergence of Fibrosis Biomarkers. Asp. Mol. Med. 2023, 2, 100021, doi:10.1016/j.amolm.2023.100021. 73. Lotocki, V.; Yazdani, H.; Zhang, Q.; Gran, E.R.; Nyrko, A.; Maysinger, D.; Kakkar, A. Miktoarm Star Polymers with Environment‐Selective ROS/GSH Responsive Locations: From Modular Synthesis to Tuned Drug Release through Micellar Partial Corona Shedding and/or Core Disassembly. Macromol. Biosci. 2021, 21, doi:10.1002/mabi.202000305. 74. Baghbanbashi, M.; Yong, H.W.; Zhang, I.; Lotocki, V.; Yuan, Z.; Pazuki, G.; Maysinger, D.; Kakkar, A. Stimuli‐Responsive Miktoarm Polymer‐Based Formulations for Fisetin Delivery and Regulatory Effects in Hyperactive Human Microglia. Macromol. Biosci. 2022, 22, doi:10.1002/mabi.202200174. 75. Aliabadi, H.M.; Mahmud, A.; Sharifabadi, A.D.; Lavasanifar, A. Micelles of Methoxy Poly(Ethylene Oxide)-b-Poly(ɛ-Caprolactone) as Vehicles for the Solubilization and Controlled Delivery of Cyclosporine A. J. Control. Release 2005, 104, 301–311, doi:10.1016/j.jconrel.2005.02.015. 76. Viana, D.B.; Mathieu-Gaedke, M.; Leão, N.M.; Böker, A.; Ferreira Soares, D.C.; Glebe, U.; Tebaldi, M.L. Hybrid Protein-Polymer Nanoparticles Based on P(NVCL-Co-DMAEMA) Loaded with Cisplatin as a Potential Anti-Cancer Agent. J. Drug Deliv. Sci. Technol. 2023, 79, 103995, doi:10.1016/j.jddst.2022.103995. 77. Chu, S.; Joma, N.; Yong, H.W.; Maysinger, D.; Kakkar, A.; Stochaj, U. Curcumin and Butyrate Induce Fibroblast Senescence without the Emergence of Fibrosis Biomarkers. Asp. Mol. Med. 2023, 2, 100021, doi:10.1016/j.amolm.2023.100021. 78. Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271, doi:10.1208/s12248-010-9185-1. 79. Gupta, A. Sen Role of Particle Size , Shape , and Stiffness in Design of Intravascular Drug Delivery Systems : Insights from Computations , Experiments ,. 2016, 8, 255–270, doi:10.1002/wnan.1362. 80. Ferreira Soares, D.C.; Domingues, S.C.; Viana, D.B.; Tebaldi, M.L. Polymer-Hybrid Nanoparticles: Current Advances in Biomedical Applications. Biomed. Pharmacother. 2020, 131, 110695, doi:10.1016/j.biopha.2020.110695. pt_BR


Arquivos deste item

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples