DSpace/Manakin Repository

Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos

Mostrar registro simples

dc.creator AMARAL, João Victor Soares do
dc.date.issued 2021-02-09
dc.identifier.uri https://repositorio.unifei.edu.br/jspui/handle/123456789/2288
dc.description.abstract In the context of industry 4.0, optimization via simulation (OvS) emerges as one of the most powerful tools in the modern industry, allowing decision-makers to allocate their resources more assertively. However, in very complex systems, the use of conventional OvS techniques requires computational time, which frequently, makes its application unfeasible. In recent years, the development in the machine learning area has emerged algorithms with high learning capacity, making the use of optimization via simulation by metamodeling (OvSM) techniques to solve complex problems a promising field of study. In this sense, the present study proposes a framework for OvSM based on the insights and analyses derived from the systematic literature review carried out. The proposed framework incorporates the use of discrete event simulation techniques, design of experiments, machine learning algorithms, and hyper-parameter optimization via genetic algorithm for OvS problems. To validate the proposed method, this dissertation tested and compared six machine learning algorithms (Support Vector Machine, Artificial Neural Networks, Gradient-Boosted Trees, Randon Forest, Polynomial Regression, and Gaussian Process) with and without the hyper optimization step -parameters in two experimental arrangements (Latin Hypercube Design and Random) applied to the problem of resource allocation in three real cases in the industry. With the application of the method in the study objects presented, the best performing metamodels obtained solutions that reached, respectively, 100%, 96.17%, and 100% of the optimal benchmark location, demanding, on average, 35.22% less time computational. Also, the incorporation of the hyper-parameter optimization step in the proposed metamodeling method allowed a 31.28% reduction in the root mean square error of the metamodels compared to the traditional method, which does not include this step. pt_BR
dc.description.sponsorship Agência 1 pt_BR
dc.language por pt_BR
dc.publisher Universidade Federal de Itajubá pt_BR
dc.rights Acesso Aberto pt_BR
dc.subject Simulação a eventos discretos pt_BR
dc.subject Otimização via simulação pt_BR
dc.subject Metamodelagem pt_BR
dc.subject Machine learning pt_BR
dc.subject Design of experiments pt_BR
dc.subject Framework pt_BR
dc.title Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos pt_BR
dc.type Dissertação pt_BR
dc.date.available 2021-02-14
dc.date.available 2021-02-15T19:03:01Z
dc.date.accessioned 2021-02-15T19:03:01Z
dc.creator.Lattes http://lattes.cnpq.br/0938610135560054 pt_BR
dc.contributor.advisor1 MONTEVECHI, José Arnaldo Barra
dc.contributor.advisor1Lattes http://lattes.cnpq.br/2169751971927037 pt_BR
dc.contributor.advisor-co1 MIRANDA, Rafael de Carvalho
dc.contributor.advisor-co1Lattes http://lattes.cnpq.br/4478766390160865 pt_BR
dc.description.resumo No contexto da indústria 4.0, a otimização via simulação (OvS) surge como uma das mais potentes ferramentas da indústria moderna, permitindo aos decisores alocarem seus recursos de forma mais assertiva. Todavia, em sistemas muito complexos, o uso de técnicas convencionais de OvS demandam um tempo computacional que, muitas vezes, inviabiliza sua aplicação. Nos últimos anos, o desenvolvimento na área de machine learning surgiram algoritmos com alta capacidade de aprendizado, tornando o uso das técnicas de otimização via simulação por metamodelagem (OvSM) para solucionar problemas complexos um campo de estudo promissor. Neste sentido, o presente estudo propõe um framework para OvSM embasado nos insights e análises provindos da revisão sistemática de literatura realizada. O framework proposto incorpora o uso de técnicas de simulação a eventos discretos, design of experiments, algoritmos de machine learning, e otimização de hiper-parâmetros via algoritmo genético para problemas de OvS. A fim de validar o framework proposto, esta dissertação testou e comparou seis algoritmos de machine learning (Support Vector Machine, Redes Neurais Artificiais, Gradient-Boosted Trees, Randon Forest, Regressão Polinomial e Gaussian Process) com e sem a etapa de otimização de hiper-parâmetros em dois arranjos experimentais (Latin Hipercube Design e Aleatório) aplicados ao problema de alocação de recursos em três casos reais da indústria. Com a aplicação do método nos objetos de estudo apresentados, os metamodelos de melhor performance obtiveram soluções que atingiram, respectivamente, 100%, 96,17%, e 100% do ótimo local benchmark, demandando, em média, 35,22% menos tempo computacional. Além disto, a incorporação da etapa de otimização de hiper-parâmetros no método de metamodelagem proposto permitiu uma redução de 31,28% no root mean square error dos metamodelos se comparado ao método tradicional, que não contempla esta etapa. pt_BR
dc.publisher.country Brasil pt_BR
dc.publisher.department IEPG - Instituto de Engenharia de Produção e Gestão pt_BR
dc.publisher.program Programa de Pós-Graduação: Mestrado - Engenharia de Produção pt_BR
dc.publisher.initials UNIFEI pt_BR
dc.subject.cnpq CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUÇÃO pt_BR
dc.relation.references AMARAL, João Victor Soares do. Otimização baseada em metamodelos: uma abordagem para metamodelagem em simulação a eventos discretos. 2020. 148 f. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2020. pt_BR


Arquivos deste item

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples