DSpace/Manakin Repository

Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI

Mostrar registro simples

dc.creator RODRIGUES, Igor Duarte
dc.date.issued 2021-02-26
dc.identifier.uri https://repositorio.unifei.edu.br/jspui/handle/123456789/2350
dc.description.abstract Autism Spectrum Disorder (ASD) is an age- and sex-related lifelong neurodevelopmental disorder characterized primarily by social impairments. Current ASD prevalence indicates that 1/59 children are diagnosed inside the spectrum. The Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) classifies ASD according to the disorder severity. ADOS-2 classifies as ’autism’ cases that manifest more severe symptoms and as ’ASD non-autism’ cases that exhibit milder symptoms. Many papers aimed to create algorithms to diagnose ASD through Machine Learning (ML) and functional Magnetic Resonance Images (fMRI). Such approaches evaluate the oxygen flow in the brain to classify the subjects as ASD or typical development. However, most of these works, do not provided information regarding the disorder severity. This paper aims to use ML and fMRI to classify the disorder severity, aim to find brain regions potentially related to the disorder severity. We used fMRI data of 202 subjects and their ADOS-2 scores available at the ABIDE consortium to determine the correct ASD sub-class for each one. Our results corroborate the initial hypothesis of functional differences within ASD, with some brain regions where the functional difference was enough to create classification accuracy of 74%. This paper has limitations regarding the total number of samples. However, it shows a promising approach to ASD diagnosis. pt_BR
dc.description.sponsorship Agência 1 pt_BR
dc.language por pt_BR
dc.publisher Universidade Federal de Itajubá pt_BR
dc.rights Acesso Aberto pt_BR
dc.subject ABIDE pt_BR
dc.subject Transtorno do espectro autista pt_BR
dc.subject Classificação de severidade do transtorno do espectro autista pt_BR
dc.subject fMRI pt_BR
dc.subject Machine Learning pt_BR
dc.title Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI pt_BR
dc.type Dissertação pt_BR
dc.date.available 2021-03-22
dc.date.available 2021-03-23T01:33:07Z
dc.date.accessioned 2021-03-23T01:33:07Z
dc.creator.Lattes http://lattes.cnpq.br/2620112695676766 pt_BR
dc.contributor.advisor1 BASTOS, Guilherme Sousa
dc.contributor.advisor1Lattes http://lattes.cnpq.br/1508015681115848 pt_BR
dc.description.resumo O Transtorno do Espectro Autista (TEA) é uma condição neurológica vitalícia relacionada à idade e ao sexo, caracterizada principalmente por disparidades sociais. A prevalência atual do TEA indica que uma em cada 59 crianças estão dentro do espectro. O Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) é um processo de diagnóstico que classifica o TEA de acordo com a gravidade do transtorno. ADOS-2 classifica sintomas mais graves como casos de “autismo” e os que manifestam sintomas mais leves como casos de “TEA não autista” (TEA-NA). Muitos artigos objetivam criar algoritmos para diagnosticar TEA por meio de aprendizado de máquina (do inglês Machine Learning - ML) e imagens de ressonância magnética funcional (do Inglês Functional Magnetic Resonance Imaging - fMRI). Essas abordagens avaliam o fluxo de oxigênio no cérebro para classificar os indivíduos como TEA ou com desenvolvimento típico. No entanto, em geral, esses trabalhos não fornecem informações sobre a gravidade do transtorno. Esse trabalho tem como objetivo a identificação de regiões do cérebro com diferença funcional entre indivíduos TEA-NA e autistas, como possível biomarcador para a severidade das características TEA. Para isso, o trabalho utilizou dados de fMRI de 202 indivíduos, e suas respectivas pontuações ADOS-2 disponíveis no consórcio ABIDE para determinar a subclasse de TEA correta para cada um. Esses dados foram utilizados para alimentar um algoritmo de ML, de aprendizado supervisionado, o Support Vector Machine (SVC), de forma a selecionar as regiões com maior diferença funcional para os indivíduos da amostra. Os resultados corroboram a hipótese inicial de diferenças funcionais entre as subclasses de TEA, com algumas regiões do cérebro onde a diferença funcional foi suficiente para criar 74% de precisão na classificação. Este trabalho apresenta limitações quanto ao número total de amostras. No entanto, a abordagem mostra-se promissora para o diagnóstico de severidade do TEA. pt_BR
dc.publisher.country Brasil pt_BR
dc.publisher.department IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação pt_BR
dc.publisher.program Programa de Pós-Graduação: Mestrado - Ciência e Tecnologia da Computação pt_BR
dc.publisher.initials UNIFEI pt_BR
dc.subject.cnpq CNPQ::CIÊNCIAS EXATAS E DA TERRA::CIÊNCIA DA COMPUTAÇÃO pt_BR
dc.relation.references RODRIGUES, Igor Duarte. Identificação de regiões do cérebro para classificação de severidade do TEA utilizando Machine Learning e fMRI. 2021. 66 f. Dissertação (Mestrado em Ciência e Tecnologia da Computação.) – Universidade Federal de Itajubá, Itajubá, 2021. pt_BR


Arquivos deste item

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples