UNIFEI - Campus 1: Itajubá PPG - Programas de Pós Graduação Teses
Use este identificador para citar ou linkar para este item: https://repositorio.unifei.edu.br/jspui/handle/123456789/1995
Tipo: Tese
Título: Gestão de Riscos Logísticos em Cadeias de Suprimentos: Otimização via Metamodelo de Simulação.
Autor(es): OLIVEIRA, Josenildo Brito de
Abstract: Alguns tipos de riscos podem causar danos às cadeias de suprimentos, provocando rupturas nos fluxos de materiais e produtos acabados. Riscos logísticos se relacionam às falhas nos processos de transporte, armazenagem, produção e vendas. A gestão adequada desses riscos é fator crítico para a integração dos fluxos sob a responsabilidade da logística e operações, cujas atividades são frequentemente realizadas por provedores de serviços logísticos. Entretanto, observou-se a falta de procedimentos sistemáticos focados na gestão de riscos logísticos que melhor aproveitasse as vantagens da integração entre métodos de simulação e otimização. A pesquisa foi realizada em uma cadeia de suprimentos do segmento automotivo português, a partir de dados secundários disponíveis na literatura. Os problemas desse estudo foram: (a) quais os impactos dos riscos logísticos sobre o desempenho dessa cadeia? (b) sob a influência desses riscos, que ajustes no sistema logístico poderiam melhorar a resposta do arranjo aos impactos? Para solucionar tais questões, definiu-se como objetivo, mitigar os efeitos desses riscos a partir de um metamodelo de simulação para a otimização de parâmetros críticos. As atividades logísticas desempenhadas na cadeia de suprimentos foram escolhidas como objeto de estudo. Essa pesquisa foi classificada como aplicada, quantitativa e exploratória normativa, considerando, respectivamente, a sua natureza, a abordagem do problema e os objetivos. A simulação a eventos discretos, elaborada no ambiente Arena®, foi utilizada como método de pesquisa. A otimização Black Box, realizada através do software OptQuest®, foi empregada para projetar os parâmetros adequados para o sistema logístico. Um metamodelo de regressão baseado no método OLS foi desenvolvido a partir da projeção e implantação de experimentos, servindo para integrar as saídas do modelo de simulação às entradas do modelo de otimização. Inúmeras técnicas de verificação e validação foram empregadas para calibrar o modelo de otimização via simulação, tais como: implantação modular e análise de sensibilidade. Uma sistemática metodológica fundamentada na abordagem DMAIC foi elaborada para relacionar as etapas de gestão dos riscos logísticos e conduzir aos resultados dessa pesquisa, incluindo a identificação (Definir), avaliação (Mensuração), gestão (Melhoria e análise) e monitoramento (Controle) do risco logístico. Um evento de risco logístico foi inserido no modelo com o fim de reproduzir rupturas no fluxo físico de distribuição e permitir a avaliação dos seus impactos sobre o desempenho da cadeia. Os impactos foram medidos por meio do custo logístico total, do risco de ruptura e da taxa de nível de serviço. Estratégias de mitigação do risco logístico de transporte, como redundância e flexibilidade, foram testadas para minimizar simultaneamente custo e risco e maximizar a taxa de entrega. A solução sugerida pelo modelo multiobjetivo de otimização via simulação mostrou ser adequada e eficaz já que os ajustes no sistema logístico bloquearam as consequências da ruptura. A principal contribuição da pesquisa foi desenvolver procedimentos sistemáticos para melhorar a gestão de riscos logísticos no âmbito de cadeias de suprimentos a partir do uso combinado entre métodos de simulação e otimização.
Citação: OLIVEIRA, Josenildo Brito de. Gestão de Riscos Logísticos em Cadeias de Suprimentos: Otimização via Metamodelo de Simulação. 2019. 192 f. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Itajubá, Itajubá, 2019.
URI: https://repositorio.unifei.edu.br/jspui/handle/123456789/1995
Data do documento: Mar-2019
Aparece nas coleções:Teses

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
tese_2019015.pdf4,13 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.