Repositório UNIFEI UNIFEI - Campus 1: Itajubá PPG - Programas de Pós Graduação Teses
Use este identificador para citar ou linkar para este item: https://repositorio.unifei.edu.br/jspui/handle/123456789/2337
Tipo: Tese
Título: Analog radio over fiber solutions for multi-band 5g systems
Autor(es): BORGES, Ramon Maia
Primeiro Orientador: SPADOTI, Danilo Henrique
metadata.dc.contributor.advisor-co1: SODRÉ JUNIOR, Arismar Cerqueira
Resumo: Este trabalho apresenta soluções de rádio sobre fibra (RoF) para aplicações em redes sem fio de quinta geração (5G), e inclui quatro contribuições principais. A primeira delas refere-se à proposta e investigação de uma técnica de RoF baseada no modulador eletroóptico de braço duplo, dual-drive Mach-Zehnder (DD-MZM), para a transmissão simultânea de sinais de radiofrequência (RF) em bandas previstas para redes 5G. Resultados experimentais demonstram que o uso do DD-MZM favorece a ausência de interferência entre os sinais de RF transmitidos. A segunda contribuição trata da integração de um transceptor de RF, desenvolvido para aplicações 5G e apto a prover a forma de onda conhecida como generalized frequency division multiplexing (GFDM), em uma rede óptica passiva (PON) ao utilizar RoF e multiplexação por divisão de comprimento de onda (WDM). A arquitetura proposta permite transportar, na mesma infraestrutura de rede, sinais em banda base e de radiofrequência nas faixas do espectro candidatas para 5G. A prova de conceito inclui a distribuição conjunta de três tipos de sinais: um sinal GFDM na banda de 700 MHz, proveniente do transceptor desenvolvido; um sinal digital na frequência de 26 GHz, assumindo a faixa de ondas milimétricas; sinais em banda base provenientes de uma PON dedicada ao serviço de Internet. Resultados experimentais demonstram o desempenho do transceptor de RF ao utilizar a referida arquitetura para distribuir sinais GFDM, além de taxas de transmissão de dados da ordem de Gbit/s na faixa de 26 GHz. A terceira contribuição corresponde à implementação de um sistema fibra/rádio potencial para redes 5G, operando inclusive com o padrão ―5G New Radio (5G NR)‖ nas faixas de micro-ondas e ondas milimétricas. Tal sistema é capaz de prover macro células na banda de 700 MHz para aplicações de longo alcance e/ou rurais, utilizando sinais GFDM ou filtered orthogonal frequency division multiplexing (F-OFDM), assim como femto células na banda de 26 GHz, destinada a altas taxas de transmissão de dados para comunicações de curto alcance. Resultados experimentais demonstram a aplicabilidade da solução proposta para redes 5G, além da viabilidade de utilizar redes ópticas pertencentes a provedores de Internet para favorecer sistemas de nova geração. Por fim, a quarta contribuição trata da implementação de um sistema 5G NR multibanda, assistido por amplificação de RF no domínio óptico. Esse sistema faz uso de um novo método de amplificação, baseado no efeito não linear da mistura de quatro ondas, que vi permite integração direta em redes de transporte envolvendo rádio sobre fibra. Resultados experimentais demonstram ganho de RF igual a 15 dB em uma ampla faixa de frequências (700 MHz até 26 GHz), atendendo simultaneamente tecnologias de quarta e quinta geração. O desempenho digital obtido atendeu aos requisitos estabelecidos pela 3GPP (Third-Generation Partnership Project), indicando a aplicabilidade da solução em questão para distribuir e conjuntamente amplificar sinais de RF em enlaces de fibra óptica.
Abstract: This study presents radio over fiber (RoF) solutions for the fifth-generation (5G) of wireless networks. After the state of the art and a technical background review, four main contributions are reported. The first one is proposing and investigating a RoF technique based on a dual-drive Mach-Zehnder modulator (DD-MZM) for multi-band mobile fronthauls, in which two radiofrequency (RF) signals in the predicted 5G bands individually feed an arm of the optical modulator. Experimental results demonstrate the approach enhances the RF interference mitigation and can prevail over traditional methods. The second contribution comprises the integration of a 5G transceiver, previously developed by our group, in a passive optical network (PON) using RoF technology and wavelength division multiplexing (WDM) overlay. The proposed architecture innovates by employing DD-MZM and enables to simultaneously transport baseband and 5G candidate RF signals in the same PON infrastructure. The proof-of-concept includes the transmission of a generalized frequency division multiplexing (GFDM) signal generated by the 5G transceiver in the 700 MHz band, a 26 GHz digitally modulated signal as a millimeter-waves 5G band, and a baseband signal from an gigabit PON (GPON). Experimental results demonstrate the 5G transceiver digital performance when using RoF technology for distributing the GFDM signal, as well as Gbit/s throughput at 26 GHz. The third contribution is the implementation of a flexible-waveform and multi-application fiber-wireless (FiWi) system toward 5G. Such system includes the FiWi transmission of the GFDM and filtered orthogonal frequency division multiplexing (F-OFDM) signals at 788 MHz, toward long-range cells for remote or rural mobile access, as well as the recently launched 5G NR standard in microwave and mm-waves, aiming enhanced mobile broadband indoor and outdoor applications. Digital signal processing (DSP) is used for selecting the waveform and linearizing the RoF link. Experimental results demonstrate the suitability of the proposed solution to address 5G scenarios and requirements, besides the applicability of using existent fiber-to-the-home (FTTH) networks from Internet service providers for implementing 5G systems. Finally, the fourth contribution is the implementation of a multi-band 5G NR system with photonic-assisted RF amplification (PAA). The approach takes advantage of a novel PAA technique, based on RoF technology and four-wave mixing effect, that allows straightforward integration to the transport networks. Experimental results demonstrate iv uniform and stable 15 dB wideband gain for Long Term Evolution (LTE) and three 5G signals, distributed in the frequency range from 780 MHz to 26 GHz and coexisting in the mobile fronthaul. The obtained digital performance has efficiently met the Third-Generation Partnership Project (3GPP) requirements, demonstrating the applicability of the proposed approach for using fiber-optic links to distribute and jointly amplify LTE and 5G signals in the optical domain.
Palavras-chave: Rádio analógico
Rede sem fio 5G
Sistema fibra-rádio
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA
Idioma: eng
País: Brasil
Editor: Universidade Federal de Itajubá
Sigla da Instituição: UNIFEI
metadata.dc.publisher.department: IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
metadata.dc.publisher.program: Programa de Pós-Graduação: Doutorado - Engenharia Elétrica
Tipo de Acesso: Acesso Aberto
URI: https://repositorio.unifei.edu.br/jspui/handle/123456789/2337
Data do documento: 22-Jul-2020
Aparece nas coleções:Teses

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Tese_2021015.pdf5,19 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.